WO2021000548A1 - 一种集成式双电机控制器 - Google Patents
一种集成式双电机控制器 Download PDFInfo
- Publication number
- WO2021000548A1 WO2021000548A1 PCT/CN2019/129703 CN2019129703W WO2021000548A1 WO 2021000548 A1 WO2021000548 A1 WO 2021000548A1 CN 2019129703 W CN2019129703 W CN 2019129703W WO 2021000548 A1 WO2021000548 A1 WO 2021000548A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper bar
- module
- boost
- motor controller
- board
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/27—Devices for sensing current, or actuated thereby
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P5/00—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1422—Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
- H05K7/1427—Housings
- H05K7/1432—Housings specially adapted for power drive units or power converters
- H05K7/14322—Housings specially adapted for power drive units or power converters wherein the control and power circuits of a power converter are arranged within the same casing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/20927—Liquid coolant without phase change
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/008—Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/10—Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
Definitions
- the invention relates to a dual-motor controller, in particular to an integrated dual-motor controller.
- the power modules, capacitors, and current sensors currently used in the controller are all scattered inside the controller.
- the internal connections are complicated and the overall machine space utilization is low; and two power module solutions are used, with larger dimensions and connected components. More and complicated structure.
- the technical problem to be solved by the present invention is to provide an integrated dual-motor controller for the shortcomings of the prior art.
- an integrated dual-motor controller which includes: a controller housing and a busbar magnetic ring assembly, an all-in-one module, a control board, an isolation board, and a drive board; the busbar magnetic The ring assembly, the all-in-one module, the control board, the isolation board, and the drive board are all integrated in the controller housing.
- the beneficial effects of the present invention are: by designing an integrated dual-motor controller, the integration is high, and the internal modular design is adopted, which is convenient for installation and reduces the size.
- the present invention can also be improved as follows.
- busbar magnetic ring assembly is located at the end side of the all-in-one module, the drive board is fixed above the all-in-one module, the control board is arranged above the drive board in parallel, and the control board and the drive board are inserted and installed through the adapter board. , And an isolation board is set in the middle.
- the beneficial effect of adopting the above-mentioned further scheme is: the two power module units of the dual motor controller, BOOST module, water cooling plate, capacitor, BOOST inductor, three-phase current sensor and other components are packaged in one package, which is conducive to rational use of space and improves space utilization
- the efficiency and integration degree have greatly reduced the package volume of the module.
- the all-in-one module includes a water cooling plate, a power module, a capacitor, a BOOST inductor group, a three-phase current sensor, a relay, a potting box BOOST module, a motor module, and a generator module;
- a capacitor, a BOOST inductor group, and a relay are arranged on one side of the water-cooling plate; the other side is a fixed power module, a three-phase current sensor, a BOOST module, a motor module, and a generator module;
- the potting box and the water cooling plate are fixedly connected to form a potting cavity, and the capacitor and BOOST inductor group are potted and fixed in the potting cavity.
- the beneficial effect of adopting the above-mentioned further scheme is that the controller integrates a multiplexed charger module, a motor module, a generator module, and a BOOST booster module with high integration.
- the power module includes a BOOST module, a generator controller unit, and a motor controller unit, and the crystal element components of each unit of the power module are welded to the water cooling plate;
- the BOOST inductor group includes: a first BOOST inductor, a second BOOST inductor, and a third BOOST inductor.
- the beneficial effect of adopting the above-mentioned further solution is that the module cancels the current commonly used copper substrate structure and directly welds the module to the water-cooling plate, which greatly reduces the heat dissipation resistance and improves the heat dissipation efficiency.
- the modules of the all-in-one module are connected by a copper bar assembly, and the copper bar assembly includes a positive copper bar, a negative copper bar, a first transition copper bar, a second transition copper bar, and a third transition copper bar , The fourth transition copper bar, the fifth transition copper bar, the first inductor output copper bar, the second inductor output copper bar, and the third inductor output copper bar.
- control board is integrated with the adapter board, the control board and the drive board are connected in a butt plug manner, and the low-voltage connector is fixed on the control board by welding, reducing the connection of the wiring harness.
- the positive input terminal is connected to the two input poles of the relay through the positive copper bar, and the positive copper bar is also connected to the capacitor through the first transfer copper bar.
- the positive copper bar is connected in three ways in parallel, two of which pass through
- the relay output pole is connected to the first BOOST inductor and the second BOOST inductor input pole from the second and third transition copper bars, respectively, and the other way is directly connected to the first and second BOOST inductor through the relay input pole through the fourth transition copper bar.
- the negative copper bar is connected to the capacitor, and the output electrode of the BOOST inductor group is connected to the three-phase electrode of the BOOST module of the power module through the fifth switching copper bar.
- the beneficial effect of adopting the above-mentioned further scheme is: the capacitor, BOOST inductance, three-phase current sensor and the entire power module are packaged on the water-cooling board, and the relay for switching the BOOST function and the charger function is also installed on the water-cooling board.
- Three-phase current The sensor signal lead pins are directly welded to the drive board at the same time as the power module pins, reducing internal connections and fixing parts, simplifying assembly, compact structure, and reducing costs.
- the electrodes of the capacitor and the electrodes of the power module are connected by welding or screws.
- the beneficial effect of adopting the above-mentioned further solution is that the module cancels the current commonly used copper substrate structure and directly welds the module to the water-cooling plate, which greatly reduces the heat dissipation resistance and improves the heat dissipation efficiency.
- the potting box and the water-cooling plate are fixedly connected by screws to form a potting cavity, and a sealing structure is provided around the cavity;
- the three-phase current sensor is sleeved on the three-phase side electrode of the power module and fixed to the water cooling plate, and the relay is fixed to the outside of the potting box and the water cooling plate by screws.
- the beneficial effect of adopting the above-mentioned further scheme is: adopting a modular design, which is convenient for installation and maintenance.
- controller housing is divided into three layers, the upper layer is the controller upper cover, the middle is the controller housing, and the lower layer is the controller lower cover;
- the controller housing is provided with a generator three-phase output terminal, a motor three-phase output terminal, a positive input terminal, a low-voltage plug-in unit, a reusable charger socket, and water inlet and outlet nozzles connected to the water cooling plate.
- the beneficial effect of adopting the above-mentioned further scheme is: adopting a layered design, improving the space utilization rate and increasing the power density of the whole machine.
- adapter board and the control board are integrated into one board, and the control board is also welded with low-voltage connectors.
- the beneficial effect of adopting the above-mentioned further solution is that the adapter plate is directly welded to the water-cooling plate, which greatly reduces the heat dissipation resistance and improves the heat dissipation efficiency.
- FIG. 1 is one of the structural schematic diagrams of an integrated dual-motor controller provided by an embodiment of the present invention.
- Fig. 2 is a second structural diagram of an integrated dual-motor controller provided by an embodiment of the present invention.
- Figure 3 is one of the electrical connection topology diagrams of the integrated dual-motor controller provided by the embodiment of the present invention.
- Fig. 4 is the third structural diagram of the integrated dual-motor controller provided by the embodiment of the present invention.
- FIG. 5 is the fourth structural diagram of the integrated dual-motor controller provided by the embodiment of the present invention.
- FIG. 6 is the fifth structural diagram of the integrated dual-motor controller provided by the embodiment of the present invention.
- Fig. 7 is a sixth structural diagram of an integrated dual-motor controller provided by an embodiment of the present invention.
- Fig. 8 is a seventh structural diagram of an integrated dual-motor controller provided by an embodiment of the present invention.
- Fig. 9 is the second electrical connection topology diagram of the integrated dual-motor controller provided by the embodiment of the present invention.
- FIG. 10 is the eighth structural diagram of the integrated dual-motor controller provided by the embodiment of the present invention.
- Fig. 11 is a ninth structural diagram of an integrated dual-motor controller provided by an embodiment of the present invention.
- Fig. 12 is a tenth structural diagram of an integrated dual-motor controller provided by an embodiment of the present invention.
- Figure 1 is one of the structural schematic diagrams of the integrated dual-motor controller provided by an embodiment of the present invention.
- Fig. 2 is a second structural diagram of an integrated dual-motor controller provided by an embodiment of the present invention.
- Figure 3 is one of the electrical connection topology diagrams of the integrated dual-motor controller provided by the embodiment of the present invention.
- Fig. 4 is the third structural diagram of the integrated dual-motor controller provided by the embodiment of the present invention.
- FIG. 5 is the fourth structural diagram of the integrated dual-motor controller provided by the embodiment of the present invention.
- FIG. 6 is the fifth structural diagram of the integrated dual-motor controller provided by the embodiment of the present invention.
- Fig. 7 is a sixth structural diagram of an integrated dual-motor controller provided by an embodiment of the present invention.
- Fig. 1 is one of the structural schematic diagrams of the integrated dual-motor controller provided by an embodiment of the present invention.
- Fig. 2 is a second structural diagram of an integrated dual-motor controller provided by an embodiment of the present invention.
- Figure 3 is
- FIG. 8 is a seventh structural diagram of an integrated dual-motor controller provided by an embodiment of the present invention.
- Fig. 9 is the second electrical connection topology diagram of the integrated dual-motor controller provided by the embodiment of the present invention.
- FIG. 10 is the eighth structural diagram of the integrated dual-motor controller provided by the embodiment of the present invention.
- Fig. 11 is a ninth structural diagram of an integrated dual-motor controller provided by an embodiment of the present invention.
- Fig. 12 is a tenth structural diagram of an integrated dual-motor controller provided by an embodiment of the present invention.
- the embodiment of the present invention provides an integrated dual-motor controller, which includes: a controller housing 1 and a bus bar magnetic ring assembly 2, an all-in-one module 3, a control board 4, an isolation board 5, and a driving board 6; the bus The magnetic ring assembly 2, the all-in-one module 3, the control board 4, the isolation board 5, and the drive board 6 are all integrated in the controller housing 1.
- the beneficial effects of the present invention are: by designing an integrated dual-motor controller, the integration is high, and the internal modular design is adopted, which is convenient for installation and reduces the size.
- the controller of the present invention includes a controller housing 1 and various modules inside the controller.
- the controller housing 1 is divided into three layers, the upper layer is the controller upper cover 35, the middle is the controller housing 36, and the lower layer is the controller lower cover 37.
- the controller housing 36 is provided with a generator three-phase output terminal 38, a motor three-phase output terminal 39, a positive input terminal 34, a low voltage plug-in 40, a multiplex charger socket 41, and a water inlet connected to the water cooling plate 8. Mouth 42, outlet nozzle 43.
- the controller includes a bus magnetic ring assembly 2, an all-in-one module 3, a control board 4, an isolation board 5 and a drive board 6.
- the bus magnetic ring assembly 2 is located at the end of the all-in-one module 3.
- the driving board 6 is fixed above the all-in-one module 3
- the control board 4 is arranged above the driving board 6 in parallel
- the control board 4 and the driving board 6 are inserted and installed through the adapter board 7, and the isolation board 5 is arranged in the middle.
- the adapter board 7 and the control board 4 are integrated into one board, and a low voltage plug-in 40 is welded on the control board 4.
- the all-in-one module 2 includes a water-cooling plate 8, a capacitor 10, a BOOST inductor group 11, a relay 13, a BOOST module 15, a motor module 16, and a generator module 17; A capacitor 10, a BOOST inductor group 11, and a relay 13 are arranged on one side; the BOOST module 15, a motor module 16 and a generator module 17 are fixed on the other side.
- the BOOST inductor group 11 includes a first BOOST inductor 21, a second BOOST inductor 22 and a third BOOST inductor 23.
- the modules of the all-in-one module 3 are connected by a copper bar assembly 44.
- the copper bar assembly 44 includes a positive copper bar 24, a negative copper bar 25, a first transition copper bar 26, a second transition copper bar 27, and a third copper bar.
- the positive input terminal 34 is connected to the two input poles of the relay 13 through the positive copper bar 24, the positive copper bar 24 is also connected to the capacitor 10 through the first transition copper bar 26, and the two output poles of the relay 13
- the first BOOST inductor 21 and the second BOOST inductor 22 are connected through the second copper bar 27 and the third copper bar 28 respectively; the positive copper bar 24 is also directly connected to the third BOOST through the fourth copper bar 29 Inductance 23; negative copper bar 25 connects capacitor 10;
- the first BOOST inductor 21, the second BOOST inductor 22, and the third BOOST inductor 23 respectively output the copper bar 31 through the first inductor, the second inductor output copper bar 32, and the third inductor output copper bar 33 connects the three phases of the BOOST module 15 Input terminal. From the BOOST input copper bar through the BOOST module 15, one way to the capacitor 10, one way to the motor module 16 and generator module 17, and through the motor module 16 and generator module 17 to the motor three-phase output terminal 39 and the generator three-phase output terminal 38 .
- the positive pole of the reusing charger socket is connected to the positive copper bar 24, and the negative pole is connected to the negative copper bar 25 to recharge the charger.
- the controller of the present invention includes a water cooling plate 8, a power module 9, a capacitor 10, a BOOST inductor group 11, a three-phase current sensor 12, a relay 13, a potting box 14 and a copper bar assembly 44;
- the power module 9 and the three-phase current sensor 12 are fixed on one side of the water-cooling plate 8, and the capacitor 10, the BOOST inductor group 11 and the relay 13 are arranged on the other side;
- the potting box 14 is fixedly connected with the water-cooling plate 8 to form a potting cavity, so The capacitor 10 and the BOOST inductor group 11 are potted and fixed in the potting cavity.
- the power module 9 includes a BOOST converter unit 18, a generator controller unit 19 and a motor controller unit 20.
- the crystal element components of each unit of the power module 9 are welded to the water cooling plate 8.
- the electrodes of the capacitor 10 and the electrodes of the power module 9 are connected by welding or screws.
- the potting box 14 and the water-cooling plate 8 are fixedly connected by screws to form a potting cavity, and a sealing structure is provided around the cavity to ensure that the potting glue of the capacitor 10 and the BOOST inductor group 11 will not leak.
- the three-phase current sensor 12 is sleeved on the three-phase side electrode of the power module 9 and fixed to the water cooling plate 8.
- the relay 13 is fixed to the outside of the potting box 14 and the water cooling plate 8 by screws.
- the BOOST inductor group 11 includes a first BOOST inductor 21, a second BOOST inductor 22 and a third BOOST inductor 23.
- the copper bar assembly 11 includes a positive copper bar 24, a negative copper bar 25, and first to fifth transition copper bars 26-30; the positive copper bar 24 is directly connected to the input pole of the relay 13, and then Connect the positive electrode of the capacitor 10 through the first transition copper bar 26; connect the negative copper bar 25 to the negative electrode of the capacitor 10; after the positive copper bar 24 is connected, it is connected in three ways in parallel.
- the switching copper bar 27 and the third switching copper bar 28 are respectively connected to the input poles of the first BOOST inductor 21 and the second BOOST inductor 22, and the other one is directly connected to the input pole of the relay 13 through the fourth switching copper bar 29.
- the three BOOST inductors 23 are input poles; the output poles of the BOOST inductor group 11 are connected to the three-phase electrodes of the BOOST converter unit 18 of the power module 9 through the fifth switching copper bar 30.
- the solution of the present invention encapsulates the two power module units of the dual-motor controller, BOOST converter unit 18, water-cooling plate 8, capacitor 10, BOOST inductor group 11, three-phase current sensor 12 and other components in one package, which is beneficial to the rational use of space and can be Effectively reduce the volume of the whole machine, improve space utilization and integration, and greatly reduce the package volume of the module;
- busbar magnetic ring assembly 2 is located at the end side of the all-in-one module 3, the drive board 6 is fixed above the all-in-one module 3, the control board 4 is arranged in parallel above the drive board 6, and the control board 4 and the drive board 6 The middle is inserted and installed through the adapter plate 7, and the isolation plate 5 is arranged in the middle.
- the beneficial effect of adopting the above-mentioned further scheme is: the two power module units of the dual motor controller, BOOST module, water cooling plate, capacitor, BOOST inductor, three-phase current sensor and other components are packaged in one package, which is conducive to rational use of space and improves space utilization
- the efficiency and integration degree have greatly reduced the package volume of the module.
- the all-in-one module 3 includes a water cooling plate 8, a power module 9, a capacitor 10, a BOOST inductor group 11, a three-phase current sensor 12, a relay 13, a potting box 14, a BOOST module 15, a motor module 16, and a power generator Machine module 17;
- a capacitor 10, a BOOST inductor group 11, and a relay 13 are arranged on one side of the water-cooling plate 8, and a fixed power module 9, a three-phase current sensor 12, a BOOST module 15, a motor module 16 and a generator module 17 are arranged on the other side;
- the potting box 14 and the water cooling plate 8 are fixedly connected to form a potting cavity, and the capacitor 10 and the BOOST inductor group 11 are potted and fixed in the potting cavity.
- the beneficial effect of adopting the above-mentioned further scheme is that the controller integrates a multiplexed charger module, a motor module, a generator module, and a BOOST booster module with high integration.
- the power module 9 includes a BOOST module 18, a generator controller unit 19, and a motor controller unit 20, and the crystal element components of each unit of the power module 9 are welded to the water cooling plate 8;
- the BOOST inductor group 11 includes: a first BOOST inductor 21, a second BOOST inductor 22 and a third BOOST inductor 23.
- the beneficial effect of adopting the above-mentioned further solution is that the module cancels the current commonly used copper substrate structure and directly welds the module to the water-cooling plate, which greatly reduces the heat dissipation resistance and improves the heat dissipation efficiency.
- a copper bar assembly 44 which includes a positive copper bar 24, a negative copper bar 25, a first transition copper bar 26, and a second transition copper bar 27 ,
- control board is integrated with the adapter board, the control board and the drive board are connected in a butt plug manner, and the low-voltage connector is fixed on the control board by welding, reducing the connection of the wiring harness.
- the positive input terminal 34 is connected to the two input poles of the relay 13 through the positive copper bar 24, the positive copper bar 24 is also connected to the capacitor 10 through the first transfer copper bar 26, and the positive copper bar 24 is connected into three ways. Connected in parallel, two of which are connected to the input poles of the first BOOST inductor 21 and the second BOOST inductor 22 through the output pole of the relay 13 by the second transfer copper bar 27 and the third transfer copper bar 28, and the other one is directly connected by the relay 13 The input pole is directly connected to the input pole of the third BOOST inductor 23 through the fourth transition copper bar 29;
- the negative copper bar 25 is connected to the capacitor 10, and the output electrode of the BOOST inductor group 11 is connected to the three-phase electrode of the BOOST module 15 of the power module 9 through the fifth switching copper bar 30.
- the beneficial effect of adopting the above-mentioned further scheme is: the capacitor, BOOST inductance, three-phase current sensor and the entire power module are packaged on the water-cooling board, and the relay for switching the BOOST function and the charger function is also installed on the water-cooling board.
- Three-phase current The sensor signal lead pins are directly welded to the drive board at the same time as the power module pins, reducing internal connections and fixing parts, simplifying assembly, compact structure, and reducing costs.
- the electrodes of the capacitor 10 and the electrodes of the power module 9 are connected by welding or screws.
- the capacitor is a film capacitor.
- the beneficial effect of adopting the above-mentioned further solution is that the module cancels the current commonly used copper substrate structure and directly welds the module to the water-cooling plate, which greatly reduces the heat dissipation resistance and improves the heat dissipation efficiency.
- the potting box 14 and the water-cooling plate 8 are fixedly connected by screws to form a potting cavity, and a sealing structure is provided around the cavity;
- the three-phase current sensor 12 is sleeved on the three-phase side electrode of the power module 9 and fixed to the water-cooling plate 8, and the relay 13 is fixed to the outside of the potting box 14 and the water-cooling plate 8 by screws.
- the beneficial effect of adopting the above-mentioned further scheme is: adopting modular design, which is convenient for installation and maintenance.
- controller housing 1 is divided into three layers, the upper layer is the controller upper cover 35, the middle is the controller housing 36, and the lower layer is the controller lower cover 37;
- the controller housing 36 is provided with a generator three-phase output terminal 38, a motor three-phase output terminal 39, a positive input terminal 34, a low voltage plug-in 40, a multiplex charger socket 41, and a water inlet connected to the water cooling plate 8. Mouth 42, outlet nozzle 43.
- the beneficial effect of adopting the above-mentioned further scheme is: adopting a layered design, improving the space utilization rate and increasing the power density of the whole machine.
- adapter board 7 and the control board 4 are integrated into one board, and the control board 4 is also welded with low-voltage connectors.
- the beneficial effect of adopting the above-mentioned further solution is that the adapter plate is directly welded to the water-cooling plate, which greatly reduces the heat dissipation resistance and improves the heat dissipation efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inverter Devices (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
一种集成式双电机控制器,其包括:控制器外壳(1)以及母线磁环组件(2)、多合一模块(3)、控制板(4)、隔离板(5)、驱动板(6);所述母线磁环组件(2)、所述多合一模块(3)、所述控制板(4)、所述隔离板(5)、所述驱动板(6)均集成于所述控制器外壳(1)中。通过设计一种集成式双电机控制器,集成度高,内部采用模块化设计,便于安装,减小尺寸。
Description
本发明涉及双电机控制器,特别涉及一种集成式双电机控制器。
目前应用在控制器上的功率模块,电容,电流传感器均分散布置在控制器内部,内部连接复杂,整机空间利用率较低;且采用的是两个功率模块方案,尺寸较大,连接器件较多,结构复杂。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种集成式双电机控制器。
本发明解决上述技术问题的技术方案如下:一种集成式双电机控制器,其包括:控制器外壳以及母线磁环组件、多合一模块、控制板、隔离板、驱动板;所述母线磁环组件、所述多合一模块、所述控制板、所述隔离板、所述驱动板均集成于所述控制器外壳中。
本发明的有益效果是:通过设计一种集成式双电机控制器,集成度高,内部采用模块化设计,便于安装,减小尺寸。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步地,所述母线磁环组件位于多合一模块端侧,驱动板固定于多合一模块上方,控制板平行设置于驱动板上方,控制板与驱动板之间通过转接板对插安装,且中间设置隔离板。
采用上述进一步方案的有益效果是:将双电机控制器的两个功率模块单元、BOOST模块、水冷板、电容、BOOST电感、三相电流传感器等器件一体封装,有利于空间合理利用,提高空间利用率和集成度,极大了减小了模块的封装体积。
进一步地,所述多合一模块包括水冷板、功率模块、电容、BOOST电感组、三相电流传感器、继电器、灌封盒BOOST模块、电动机模块及发电机模块;
所述水冷板一侧布置电容、BOOST电感组、继电器;另一侧固定功率模块、三相电流传感器、BOOST模块、电动机模块及发电机模块;
所述灌封盒与水冷板固定连接形成灌胶腔体,所述电容、BOOST电感组灌封固定到灌胶腔体中。
采用上述进一步方案的有益效果是:控制器集成复用充电机模块,电动机模块,发电机模块以及BOOST升压模块,集成度高。
进一步地,所述功率模块包括BOOST模块、发电机控制器单元以及电动机控制器单元,功率模块各单元的晶元组件焊接到水冷板上;
所述BOOST电感组包括:第一BOOST电感、第二BOOST电感和第三BOOST电感。
采用上述进一步方案的有益效果是:模块取消目前常用的铜基板结构,直接将模块焊接到水冷板上,极大降低了散热热阻,提高了散热效率。
进一步地,所述多合一模块的各模块通过铜排组件连接,铜排组件包括正极铜排、负极铜排、第一转接铜排、第二转接铜排、第三转接铜排、第四转接铜排、第五转接铜排、第一电感输出铜排、第二电感输出铜排、第三电感输出铜排。
采用上述进一步方案的有益效果是:控制板与转接板集成,控制板与驱动板采用对插方式连接,低压接插件采用焊接的方式固定在控制板上,减少线束的连接。
进一步地,正极输入端子通过正极铜排接通继电器的两个输入极,正极铜排还通过第一转接铜排接通电容,正极铜排接入后分三路并联连接,其中两路经过继电器输出极由第二转接铜排、第三转接铜排分别接入第一BOOST电感、第二BOOST电感输入极,另外一路直接由继电器输入极通过第四转接铜排直接接入第三BOOST电感输入极;
负极铜排接通电容,BOOST电感组输出极通过第五转接铜排接入功 率模块的BOOST模块三相电极。
采用上述进一步方案的有益效果是:将电容,BOOST电感,三相电流传感器与整个功率模块一体封装到水冷板上,BOOST功能与充电机功能切换的继电器也一体安装到水冷板上,三相电流传感器信号引出针脚直接与功率模块针脚同时焊接到驱动板,减少了内部连接、固定零部件,简化装配,结构紧凑,降低成本。
进一步地,所述电容的电极与功率模块的电极通过焊接方式或螺钉连接。
采用上述进一步方案的有益效果是:模块取消目前常用的铜基板结构,直接将模块焊接到水冷板上,极大降低了散热热阻,提高了散热效率。
进一步地,所述灌封盒与水冷板通过螺钉固定连接形成灌胶腔体,并在腔体四周设有密封结构;
所述三相电流传感器套装到功率模块的三相侧电极,并固定到水冷板上,所述继电器通过螺钉固定到灌封盒外侧与水冷板上。
采用上述进一步方案的有益效果是:采用模块化设计,便于安装和维修。
进一步地,所述控制器外壳分为三层,上层为控制器上盖,中间为控制器壳体,下层为控制器下盖;
所述控制器壳体上设置有发电机三相输出端子、电动机三相输出端子、正极输入端子、低压插件、复用充电机插座、以及接通水冷板的进水嘴、出水嘴。
采用上述进一步方案的有益效果是:采用分层式设计,提高空间利用率,提升整机功率密度。
进一步地,所述转接板与控制板集成为一块板,控制板上还焊接低压接插件。
采用上述进一步方案的有益效果是:直接将转接板焊接到水冷板上,极大降低了散热热阻,提高了散热效率。
本发明附加的方面的优点将在下面的描述中部分给出,部分将从下 面的描述中变得明显,或通过本发明实践了解到。
图1为本发明实施例提供的集成式双电机控制器的结构示意图之一。
图2为本发明实施例提供的集成式双电机控制器的结构示意图之二。
图3为本发明实施例提供的集成式双电机控制器的电器连接拓扑图之一。
图4为本发明实施例提供的集成式双电机控制器的结构示意图之三。
图5为本发明实施例提供的集成式双电机控制器的结构示意图之四。
图6为本发明实施例提供的集成式双电机控制器的结构示意图之五。
图7为本发明实施例提供的集成式双电机控制器的结构示意图之六。
图8为本发明实施例提供的集成式双电机控制器的结构示意图之七。
图9为本发明实施例提供的集成式双电机控制器的电器连接拓扑图之二。
图10为本发明实施例提供的集成式双电机控制器的结构示意图之八。
图11为本发明实施例提供的集成式双电机控制器的结构示意图之九。
图12为本发明实施例提供的集成式双电机控制器的结构示意图之十。
附图标号说明:1-控制器外壳;2-母线磁环组件;3-多合一模块;4-控制板;5-隔离板;6-驱动板;7-转接板;8-水冷板;9-功率模块;10-电容;11-BOOST电感组;12-三相电流传感器;13-继电器;14-灌封盒;15-BOOST模块;16-电动机模块;17-发电机模块;18-变换器单元;19-发电机控制器单元;20-电动机控制器单元;21-第一BOOST电感;22-第二BOOST电感;23-第三BOOST电感;24-正极铜排;25-负极铜排;26-第一转接铜排;27-第二转接铜排;28-第三转接铜排;29-第四转接铜排;30-第五转接铜排;31-第一电感输出铜排;32-第二电感输出铜排;33-第三电感输出铜排;34-正极输入端子;35-控制器上盖;36-控制器壳 体;37-控制器下盖;38-发电机三相输出端子;39-电动机三相输出端子;40-低压插件;41-复用充电机插座;42-进水嘴;43-出水嘴;44-铜排组件。
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。、
如图1至图12所示,图1为本发明实施例提供的集成式双电机控制器的结构示意图之一。图2为本发明实施例提供的集成式双电机控制器的结构示意图之二。图3为本发明实施例提供的集成式双电机控制器的电器连接拓扑图之一。图4为本发明实施例提供的集成式双电机控制器的结构示意图之三。图5为本发明实施例提供的集成式双电机控制器的结构示意图之四。图6为本发明实施例提供的集成式双电机控制器的结构示意图之五。图7为本发明实施例提供的集成式双电机控制器的结构示意图之六。图8为本发明实施例提供的集成式双电机控制器的结构示意图之七。图9为本发明实施例提供的集成式双电机控制器的电器连接拓扑图之二。图10为本发明实施例提供的集成式双电机控制器的结构示意图之八。图11为本发明实施例提供的集成式双电机控制器的结构示意图之九。图12为本发明实施例提供的集成式双电机控制器的结构示意图之十。
本发明实施例提供了一种集成式双电机控制器,其包括:控制器外壳1以及母线磁环组件2、多合一模块3、控制板4、隔离板5、驱动板6;所述母线磁环组件2、所述多合一模块3、所述控制板4、所述隔离板5、所述驱动板6均集成于所述控制器外壳1中。
本发明的有益效果是:通过设计一种集成式双电机控制器,集成度高,内部采用模块化设计,便于安装,减小尺寸。
具体地,如图1、2所示,本发明的控制器,包括控制器外壳1及控制器内部的各模块。所述控制器外壳1分为三层,上层为控制器上盖35,中间为控制器壳体36,下层为控制器下盖37。所述控制器壳体36上设置有发电机三相输出端子38、电动机三相输出端子39、正极输入端子34、 低压插件40、复用充电机插座41、以及接通水冷板8的进水嘴42、出水嘴43。
如图4、5所示,控制器内部包括母线磁环组件2、多合一模块3、控制板4、隔离板5和驱动板6;所述母线磁环组件2位于多合一模块3端侧,驱动板6固定于多合一模块3上方,控制板4平行设置于驱动板6上方,控制板4与驱动板6之间通过转接板7对插安装,且中间设置隔离板5。如图8所示,所述转接板7与控制板4集成为一块板,控制板4上还焊接低压插件40。
如图6、7所示,所述多合一模块2包括水冷板8、电容10、BOOST电感组11、继电器13、BOOST模块15、电动机模块16及发电机模块17;所述水冷板8一侧布置电容10、BOOST电感组11、继电器13;另一侧固定BOOST模块15、电动机模块16及发电机模块17。所述BOOST电感组11包括第一BOOST电感21、第二BOOST电感22和第三BOOST电感23。
所述多合一模块3的各模块通过铜排组件44连接,铜排组件44包括正极铜排24、负极铜排25、第一转接铜排26、第二转接铜排27、第三转接铜排28、第四转接铜排29、第一电感输出铜排31、第二电感输出铜排32、第三电感输出铜排33。
结合图3,所述正极输入端子34通过正极铜排24接通继电器13的两个输入极,正极铜排24还通过第一转接铜排26接通电容10,继电器13的两个输出极分别通过第二转接铜排27、第三转接铜排28接通第一BOOST电感21、第二BOOST电感22;正极铜排24还直接通过第四转接铜排29接通第三BOOST电感23;负极铜排25接通电容10;
第一BOOST电感21、第二BOOST电感22和第三BOOST电感23分别通过第一电感输出铜排31,第二电感输出铜排32,第三电感输出铜排33接通BOOST模块15的三相输入端。从BOOST输入铜排经BOOST模块15,一路到电容10,一路到电动机模块16和发电机模块17,经电动机模块16和发电机模块17到电动机三相输出端子39和发电机三相输出端子38。
所述继电器13断开时,复用充电机插座正极接入正极铜排24,负极接入负极铜排25复用充电机充电。
如图10所示,本发明的控制器,包括水冷板8、功率模块9、电容10、BOOST电感组11、三相电流传感器12、继电器13、灌封盒14以及铜排组件44;所述水冷板8一侧固定功率模块9和三相电流传感器12,另一侧布置电容10、BOOST电感组11和继电器13;所述灌封盒14与水冷板8固定连接形成灌胶腔体,所述电容10、BOOST电感组11灌封固定到灌胶腔体中。
如图11所示,所述功率模块9包括BOOST变换器单元18、发电机控制器单元19以及电动机控制器单元20,功率模块9各单元的晶元组件焊接到水冷板8上。所述电容10的电极与功率模块9的电极通过焊接方式或螺钉连接。所述灌封盒14与水冷板8通过螺钉固定连接形成灌胶腔体,并在腔体四周设有密封结构,以保证电容10,BOOST电感组11灌封胶不会泄漏。所述三相电流传感器12套装到功率模块9的三相侧电极,并固定到水冷板8上。所述继电器13通过螺钉固定到灌封盒14外侧与水冷板8上。
如图12所示,所述集成封装结构内部通过铜排组件44实现电气连接。所述BOOST电感组11包括第一BOOST电感21、第二BOOST电感22和第三BOOST电感23。
结合图10至图12,所述铜排组件11包括正极铜排24、负极铜排25以及第一~第五转接铜排26~30;正极铜排24直接接入继电器13输入极,再通过第一转接铜排26接入电容10的正极;负极铜排25接入电容10的负极;正极铜排24接入后分三路并联连接,其中两路经过继电器13输出极由第二转接铜排27、第三转接铜排28分别接入第一BOOST电感21、第二BOOST电感22输入极,另外一路直接由继电器13输入极通过第四转接铜排29直接接入第三BOOST电感23输入极;BOOST电感组11输出极通过第五转接铜排30接入功率模块9的BOOST变换器单元18三相电极。
本发明方案将双电机控制器的两个功率模块单元、BOOST变换器单 元18、水冷板8、电容10、BOOST电感组11、三相电流传感器12等器件一体封装,有利于空间合理利用,可有效降低整机的体积,提高空间利用率和集成度,极大了减小了模块的封装体积;
进一步地,所述母线磁环组件2位于多合一模块3端侧,驱动板6固定于多合一模块3上方,控制板4平行设置于驱动板6上方,控制板4与驱动板6之间通过转接板7对插安装,且中间设置隔离板5。
采用上述进一步方案的有益效果是:将双电机控制器的两个功率模块单元、BOOST模块、水冷板、电容、BOOST电感、三相电流传感器等器件一体封装,有利于空间合理利用,提高空间利用率和集成度,极大了减小了模块的封装体积。
进一步地,所述多合一模块3包括水冷板8、功率模块9、电容10、BOOST电感组11、三相电流传感器12、继电器13、灌封盒14、BOOST模块15、电动机模块16及发电机模块17;
所述水冷板8一侧布置电容10、BOOST电感组11、继电器13;另一侧固定功率模块9、三相电流传感器12、BOOST模块15、电动机模块16及发电机模块17;
所述灌封盒14与水冷板8固定连接形成灌胶腔体,所述电容10、BOOST电感组11灌封固定到灌胶腔体中。
采用上述进一步方案的有益效果是:控制器集成复用充电机模块,电动机模块,发电机模块以及BOOST升压模块,集成度高。
进一步地,所述功率模块9包括BOOST模块18、发电机控制器单元19以及电动机控制器单元20,功率模块9各单元的晶元组件焊接到水冷板8上;
所述BOOST电感组11包括:第一BOOST电感21、第二BOOST电感22和第三BOOST电感23。
采用上述进一步方案的有益效果是:模块取消目前常用的铜基板结构,直接将模块焊接到水冷板上,极大降低了散热热阻,提高了散热效率。
进一步地,所述多合一模块3的各模块通过铜排组件44连接,铜排 组件44包括正极铜排24、负极铜排25、第一转接铜排26、第二转接铜排27、第三转接铜排28、第四转接铜排29、第五转接铜排30、第一电感输出铜排31、第二电感输出铜排32、第三电感输出铜排33。
采用上述进一步方案的有益效果是:控制板与转接板集成,控制板与驱动板采用对插方式连接,低压接插件采用焊接的方式固定在控制板上,减少线束的连接。
进一步地,正极输入端子34通过正极铜排24接通继电器13的两个输入极,正极铜排24还通过第一转接铜排26接通电容10,正极铜排24接入后分三路并联连接,其中两路经过继电器13输出极由第二转接铜排27、第三转接铜排28分别接入第一BOOST电感21、第二BOOST电感22输入极,另外一路直接由继电器13输入极通过第四转接铜排29直接接入第三BOOST电感23输入极;
负极铜排25接通电容10,BOOST电感组11输出极通过第五转接铜排30接入功率模块9的BOOST模块15三相电极。
采用上述进一步方案的有益效果是:将电容,BOOST电感,三相电流传感器与整个功率模块一体封装到水冷板上,BOOST功能与充电机功能切换的继电器也一体安装到水冷板上,三相电流传感器信号引出针脚直接与功率模块针脚同时焊接到驱动板,减少了内部连接、固定零部件,简化装配,结构紧凑,降低成本。
进一步地,所述电容10的电极与功率模块9的电极通过焊接方式或螺钉连接。
其中,电容为薄膜电容。
采用上述进一步方案的有益效果是:模块取消目前常用的铜基板结构,直接将模块焊接到水冷板上,极大降低了散热热阻,提高了散热效率。
进一步地,所述灌封盒14与水冷板8通过螺钉固定连接形成灌胶腔体,并在腔体四周设有密封结构;
所述三相电流传感器12套装到功率模块9的三相侧电极,并固定到水冷板8上,所述继电器13通过螺钉固定到灌封盒14外侧与水冷板8 上。
采用上述进一步方案的有益效果是:采用模块化设计,便于安装和维修。
进一步地,所述控制器外壳1分为三层,上层为控制器上盖35,中间为控制器壳体36,下层为控制器下盖37;
所述控制器壳体36上设置有发电机三相输出端子38、电动机三相输出端子39、正极输入端子34、低压插件40、复用充电机插座41、以及接通水冷板8的进水嘴42、出水嘴43。
采用上述进一步方案的有益效果是:采用分层式设计,提高空间利用率,提升整机功率密度。
进一步地,所述转接板7与控制板4集成为一块板,控制板4上还焊接低压接插件。
采用上述进一步方案的有益效果是:直接将转接板焊接到水冷板上,极大降低了散热热阻,提高了散热效率。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (10)
- 一种集成式双电机控制器,其特征在于,包括:控制器外壳(1)以及母线磁环组件(2)、多合一模块(3)、控制板(4)、隔离板(5)、驱动板(6);所述母线磁环组件(2)、所述多合一模块(3)、所述控制板(4)、所述隔离板(5)、所述驱动板(6)均集成于所述控制器外壳(1)中。
- 根据权利要求1所述的一种集成式双电机控制器,其特征在于,所述母线磁环组件(2)位于多合一模块(3)端侧,驱动板(6)固定于多合一模块(3)上方,控制板(4)平行设置于驱动板(6)上方,控制板(4)与驱动板(6)之间通过转接板(7)对插安装,且中间设置隔离板(5)。
- 根据权利要求1所述的一种集成式双电机控制器,其特征在于,所述多合一模块(3)包括水冷板(8)、功率模块(9)、电容(10)、BOOST电感组(11)、三相电流传感器(12)、继电器(13)、灌封盒(14)、BOOST模块(15)、电动机模块(16)及发电机模块(17);所述水冷板(8)一侧布置电容(10)、BOOST电感组(11)、继电器(13);另一侧固定功率模块(9)、三相电流传感器(12)、BOOST模块(15)、电动机模块(16)及发电机模块(17);所述灌封盒(14)与水冷板(8)固定连接形成灌胶腔体,所述电容(10)、BOOST电感组(11)灌封固定到灌胶腔体中。
- 根据权利要求3所述的一种集成式双电机控制器,其特征在于,所述功率模块(9)包括BOOST模块(15)、发电机控制器单元(19)以及电动机控制器单元(20),功率模块(9)各单元的晶元组件焊接到水冷板(8)上;所述BOOST电感组(11)包括:第一BOOST电感(21)、第二BOOST电感(22)和第三BOOST电感(23)。
- 根据权利要求1所述的一种集成式双电机控制器,其特征在于,所述多合一模块(3)的各模块通过铜排组件连接,铜排组件包括正极铜 排(24)、负极铜排(25)、第一转接铜排(26)、第二转接铜排(27)、第三转接铜排(28)、第四转接铜排(29)、第五转接铜排(30)、第一电感输出铜排(31)、第二电感输出铜排(32)、第三电感输出铜排(33)。
- 根据权利要求1所述的一种集成式双电机控制器,其特征在于,正极输入端子(34)通过正极铜排(24)接通继电器(13)的两个输入极,正极铜排(24)还通过第一转接铜排(26)接通电容(10),正极铜排(24)接入后分三路并联连接,其中两路经过继电器(13)输出极由第二转接铜排(27)、第三转接铜排(28)分别接入第一BOOST电感(21)、第二BOOST电感(22)输入极,另外一路直接由继电器(13)输入极通过第四转接铜排(29)直接接入第三BOOST电感(23)输入极;负极铜排(25)接通电容(10),BOOST电感组(11)输出极通过第五转接铜排(30)接入功率模块(9)的BOOST模块(15)三相电极。
- 根据权利要求1所述的一种集成式双电机控制器,其特征在于,所述电容(10)的电极与功率模块(9)的电极通过焊接方式或螺钉连接。
- 根据权利要求3所述的一种集成式双电机控制器,其特征在于,所述灌封盒(14)与水冷板(8)通过螺钉固定连接形成灌胶腔体,并在腔体四周设有密封结构;所述三相电流传感器(12)套装到功率模块(9)的三相侧电极,并固定到水冷板(8)上,所述继电器(13)通过螺钉固定到灌封盒(14)外侧与水冷板(8)上。
- 根据权利要求1所述的一种集成式双电机控制器,其特征在于,所述控制器外壳(1)分为三层,上层为控制器上盖(35),中间为控制器壳体(36),下层为控制器下盖(37);所述控制器壳体(36)上设置有发电机三相输出端子(38)、电动机三相输出端子(39)、正极输入端子(34)、低压插件(40)、复用充电机插座(41)、以及接通水冷板(8)的进水嘴(42)、出水嘴(43)。
- 根据权利要求2所述的一种集成式双电机控制器,其特征在于,所述转接板(7)与控制板(4)集成为一块板,控制板(4)上还焊接低压接插件(40)。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019000261.9T DE112019000261T5 (de) | 2019-07-03 | 2019-12-30 | Integrierte steuerung für zwei elektrische maschinen |
US16/959,168 US11569715B2 (en) | 2019-07-03 | 2019-12-30 | Integrated dual-motor controller |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910592307.8 | 2019-07-03 | ||
CN201910592307.8A CN110311595B (zh) | 2019-07-03 | 2019-07-03 | 一种双电机控制器的集成封装结构 |
CN201910623572.8A CN110311596A (zh) | 2019-07-11 | 2019-07-11 | 一种集成化双电机控制器 |
CN201910623572.8 | 2019-07-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021000548A1 true WO2021000548A1 (zh) | 2021-01-07 |
Family
ID=74101048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/129703 WO2021000548A1 (zh) | 2019-07-03 | 2019-12-30 | 一种集成式双电机控制器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11569715B2 (zh) |
DE (1) | DE112019000261T5 (zh) |
WO (1) | WO2021000548A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114435098A (zh) * | 2022-02-10 | 2022-05-06 | 南京金龙客车制造有限公司 | 一种电动汽车驱动系统 |
CN115226329A (zh) * | 2022-07-27 | 2022-10-21 | 广州汽车集团股份有限公司 | 一种电机控制器及车辆 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11353519A (ja) * | 1998-06-04 | 1999-12-24 | Laurel Bank Mach Co Ltd | 硬貨包装機 |
CN207994847U (zh) * | 2018-03-09 | 2018-10-19 | 上海电驱动股份有限公司 | 一种集成电机控制系统 |
CN207995590U (zh) * | 2018-03-09 | 2018-10-19 | 上海电驱动股份有限公司 | 高功率集成控制装置及包含该装置的高功率集成控制器 |
CN208924141U (zh) * | 2018-10-31 | 2019-05-31 | 上海电驱动股份有限公司 | 一种用于电动汽车电机驱动的双电机控制器 |
CN110311595A (zh) * | 2019-07-03 | 2019-10-08 | 合肥巨一动力系统有限公司 | 一种双电机控制器的集成封装结构 |
CN110311596A (zh) * | 2019-07-11 | 2019-10-08 | 合肥巨一动力系统有限公司 | 一种集成化双电机控制器 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5567991A (en) * | 1994-06-10 | 1996-10-22 | Northrop Grumman Corporation | Electric vehicle relay assembly using flexible circuit connector coupling the relay to the relay circuit |
-
2019
- 2019-12-30 US US16/959,168 patent/US11569715B2/en active Active
- 2019-12-30 WO PCT/CN2019/129703 patent/WO2021000548A1/zh active Application Filing
- 2019-12-30 DE DE112019000261.9T patent/DE112019000261T5/de active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11353519A (ja) * | 1998-06-04 | 1999-12-24 | Laurel Bank Mach Co Ltd | 硬貨包装機 |
CN207994847U (zh) * | 2018-03-09 | 2018-10-19 | 上海电驱动股份有限公司 | 一种集成电机控制系统 |
CN207995590U (zh) * | 2018-03-09 | 2018-10-19 | 上海电驱动股份有限公司 | 高功率集成控制装置及包含该装置的高功率集成控制器 |
CN208924141U (zh) * | 2018-10-31 | 2019-05-31 | 上海电驱动股份有限公司 | 一种用于电动汽车电机驱动的双电机控制器 |
CN110311595A (zh) * | 2019-07-03 | 2019-10-08 | 合肥巨一动力系统有限公司 | 一种双电机控制器的集成封装结构 |
CN110311596A (zh) * | 2019-07-11 | 2019-10-08 | 合肥巨一动力系统有限公司 | 一种集成化双电机控制器 |
Also Published As
Publication number | Publication date |
---|---|
US20210408873A1 (en) | 2021-12-30 |
US11569715B2 (en) | 2023-01-31 |
DE112019000261T5 (de) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109510560B (zh) | 一种并联均流的双igbt单逆变器的电力电子控制系统 | |
US8570132B2 (en) | Power electronics assembly with multi-sided inductor cooling | |
US7969735B2 (en) | Power converter | |
CN105355611A (zh) | 一种大容量水冷功率单元 | |
CN208924141U (zh) | 一种用于电动汽车电机驱动的双电机控制器 | |
WO2021000548A1 (zh) | 一种集成式双电机控制器 | |
CN211744370U (zh) | 一种逆变器总成及电动汽车 | |
CN110311596A (zh) | 一种集成化双电机控制器 | |
CN216128156U (zh) | 一种车载充电机及电动车辆 | |
CN110311595B (zh) | 一种双电机控制器的集成封装结构 | |
CN113904566A (zh) | 一种基于SIC功率模块的200kW车载逆变控制器 | |
WO2022262215A1 (zh) | 一种逆变器总成 | |
JP5273488B2 (ja) | 電力変換装置 | |
CN212875708U (zh) | 一种双电机控制器及具有其的车辆 | |
CN114006532A (zh) | 一种变流装置 | |
CN211701906U (zh) | 车辆及其电机控制器 | |
CN106664029A (zh) | 功率转换器和功率转换器的组装方法 | |
CN207995589U (zh) | 一种用于双电机控制器的集成功率装置 | |
CN214591239U (zh) | 双电机控制器和电驱动系统 | |
CN214506925U (zh) | 一种电动汽车用六相电机驱动控制器 | |
WO2024036657A1 (zh) | 带boost功能的电机控制器及电机 | |
CN212555799U (zh) | 一种高度集成的两驱电驱动系统 | |
CN207994975U (zh) | 一种用于高功率控制器的集成电气装置 | |
CN219802170U (zh) | 一种逆变器结构及电动运输设备 | |
CN216490246U (zh) | 一种基于SIC功率模块的200kW车载逆变控制器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19935896 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19935896 Country of ref document: EP Kind code of ref document: A1 |