WO2021000529A1 - 模拟咀嚼式复合树脂材料磨耗试验机及其操作方法 - Google Patents

模拟咀嚼式复合树脂材料磨耗试验机及其操作方法 Download PDF

Info

Publication number
WO2021000529A1
WO2021000529A1 PCT/CN2019/125751 CN2019125751W WO2021000529A1 WO 2021000529 A1 WO2021000529 A1 WO 2021000529A1 CN 2019125751 W CN2019125751 W CN 2019125751W WO 2021000529 A1 WO2021000529 A1 WO 2021000529A1
Authority
WO
WIPO (PCT)
Prior art keywords
counter
test piece
composite resin
grinding
resin material
Prior art date
Application number
PCT/CN2019/125751
Other languages
English (en)
French (fr)
Inventor
徐恒昌
刘文一
王同
郑刚
孙志辉
张研
林红
韩建民
Original Assignee
北京大学口腔医学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910591327.3A external-priority patent/CN110186801A/zh
Priority claimed from CN201921024289.5U external-priority patent/CN210136148U/zh
Application filed by 北京大学口腔医学院 filed Critical 北京大学口腔医学院
Priority to DE112019000100.0T priority Critical patent/DE112019000100B4/de
Publication of WO2021000529A1 publication Critical patent/WO2021000529A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather

Definitions

  • This application relates to the technical field of medical devices, and in particular to a simulated chewing composite resin material abrasion tester and its operation method.
  • the cavities on the teeth are filled and repaired.
  • the most widely used dental filling material is the composite resin filling material.
  • the composite resin filling material is abraded and lost due to chewing food, which is one of the main failure modes of the composite resin filling material in the oral cavity.
  • in vitro wear experiments have become one of the indispensable methods for evaluating the performance of dental filling materials.
  • test pieces of the existing chewing simulation wear tester can only rub repeatedly in the same direction.
  • the existing upper jaw simulation mechanism 1 rotates, the upper and lower sets of test pieces The friction distance and the friction linear velocity of each point along the radius are different, which will lead to uneven surface wear of the test piece, which affects the evaluation of the wear resistance of the test piece.
  • the friction between the upper and lower groups of test pieces in saliva is not consistent with the chewing and abrasion state of clinical food intervention.
  • the present application provides a new simulated chewing composite resin material abrasion tester for the above-mentioned problems.
  • This application provides a simulated chewing composite resin material abrasion tester and its operation method, so as to at least solve the problem of uneven abrasion of the test piece in the prior art, as well as the way the test piece is worn in vitro and the morphology of the worn surface.
  • the present application provides a simulated chewing type composite resin material abrasion tester, which includes a movement device, a pair of grinding parts and a frame, and the movement device and the pair of grinding parts are both connected to the frame;
  • a test piece clamp configured to fix the test piece is connected to the moving device
  • the moving device can make the test piece holder rise and fall and rotate with respect to the frame repeatedly, and when the test piece holder is raised and lowered relative to the frame, the test piece holder can move closer to or away from the counter-grinding couple
  • the pair of grinding pieces can rotate relative to the frame; the side of the pair of grinding pieces close to the test piece holder is provided with an abrasive configured to simulate food.
  • the abrasive includes fluorite powder with a Mohs hardness of 4 and distilled water added to the fluorite powder.
  • the counter-grinding part is a rubber plate.
  • the movement device includes a sliding sleeve and a lifting shaft, and the sliding sleeve is rotatably connected with the frame;
  • the sliding sleeve is provided with a key groove, and the key groove extends along the axial direction of the sliding sleeve; a sliding key is provided on the lifting shaft, and the sliding key cooperates with the key groove and is configured to make the lifting The shaft can rotate with the sliding sleeve;
  • the lifting shaft Along the axial direction of the lifting shaft, the lifting shaft includes a corresponding first end and a second end, and the test piece clamp is arranged at the first end.
  • the sliding key can move along the extension direction of the key groove
  • the second end of the lifting shaft is fixedly connected with an end face cam, and the protrusion of the end face cam is close to the test piece holder;
  • a support wheel is fixedly connected to the frame, and the support wheel is arranged below the end cam, and the support wheel cooperates with the protrusion to be configured to repeatedly lift the lifting shaft.
  • it further includes a counterweight; the counterweight is fixedly connected to a side of the end cam away from the test piece holder.
  • the simulated chewing composite resin material abrasion tester further includes a rotating sleeve
  • the rotating sleeve is connected to the first end of the lifting shaft through a bearing set and can rotate relative to the lifting shaft, and the test piece is clamped and fixed to the rotating sleeve;
  • a plurality of positioning rods are uniformly fixed on the circumferential surface of the rotating sleeve along the circumferential direction, and the axial direction of the positioning rods is perpendicular to the axial direction of the rotating sleeve;
  • a positioning plate is fixedly connected to the frame
  • the positioning rod When the lifting shaft descends, the positioning rod can be driven down by the rotating sleeve, so that the positioning rod abuts the positioning plate, and is configured to stop the positioning rod.
  • the simulated chewing composite resin material abrasion tester further includes a grinding disc shaft;
  • the grinding disc shaft is rotatably connected to the frame, and the counter grinding coupler is fixedly connected to the grinding disc shaft.
  • it further includes a grinding disc; the grinding disc is fixed to the grinding disc shaft, and the counter-grinding part is configured to be fixed to the grinding disc shaft through the grinding disc.
  • the simulated chewing composite resin material abrasion tester further includes an abrasive baffle, and the abrasive baffle is fixed to the frame;
  • the abrasive baffle includes corresponding first and second sides; along the length of the abrasive baffle, the abrasive baffle extends in a spiral line, Is configured to form a cavity in the abrasive baffle; an inlet is formed between the first side and the second side, the inlet communicates with the cavity, and the first side is compared Closer to the center of the cavity on the second side;
  • the abrasive baffle is arranged on the counter-grinding part and is located on the side close to the edge of the counter-parts.
  • the inlet is opposite to the test piece holder; when the counter-parts is rotated, The first side is located downstream of the rotation of the second side;
  • a side of the abrasive baffle plate close to the first side is provided with an incision, and the incision is disposed opposite to the test piece clamp, and the incision and the counter-grinding piece are close to the side of the abrasive baffle plate parallel.
  • a side of the abrasive baffle close to the first side is spaced from the surface of the counter-grinding part.
  • the structure of the abrasive baffle is in the shape of a spiral cone, and the space of the cavity close to the first side is smaller than the space of the cavity close to the second side.
  • the simulated chewing composite resin material abrasion testing machine further includes a driving device
  • the driving device includes a driving shaft, a gear transmission assembly, a ratchet transmission assembly and a driving component;
  • the driving component is drivingly connected to the driving shaft to enable the driving shaft to rotate; the driving shaft is drivingly connected to the sliding sleeve through the gear transmission assembly, and the driving shaft is drivingly connected to the shaft through the ratchet transmission assembly
  • the grinding disc shaft is drivingly connected to the driving shaft to enable the driving shaft to rotate; the driving shaft is drivingly connected to the sliding sleeve through the gear transmission assembly, and the driving shaft is drivingly connected to the shaft through the ratchet transmission assembly The grinding disc shaft.
  • the gear transmission assembly includes a first gear and a second gear that mesh with each other;
  • the first gear is fixedly connected to the driving shaft
  • the second gear is fixedly connected to the sliding sleeve
  • the driving member is configured to drive the driving shaft to drive the first gear to rotate
  • the first The gear is configured to drive the sliding sleeve to rotate through the second gear.
  • the ratchet transmission assembly includes a ratchet wheel and a ratchet wheel that are matched;
  • the ratchet wheel is fixedly connected to the driving shaft, the ratchet wheel is fixedly connected to the grinding disc shaft, the driving member is configured to drive the driving shaft to drive the ratchet wheel to rotate, and the ratchet wheel is configured To dial the ratchet to drive the grinding disc shaft to rotate.
  • the simulated chewing composite resin material abrasion tester further includes a positioning disk, and the positioning disk is fixedly connected to the grinding disk shaft;
  • a lower bearing sleeve is fixedly connected to the frame, and the lower bearing sleeve is connected to the grinding disc shaft through a second bearing;
  • An elastic member is fixedly connected to the positioning plate, and a positioning ball is fixed to the side of the elastic member close to the lower bearing sleeve;
  • the lower bearing sleeve is provided with a conical positioning hole, and the positioning ball The part of is located in the positioning hole, and the elastic member makes the positioning bead always tightly abut against the positioning hole;
  • the angle between the adjacent positioning holes is equal to the intermittent rotation angle of the ratchet transmission assembly.
  • it further comprises an upper bearing sleeve, the upper bearing sleeve is fixedly connected to the frame, and the upper bearing sleeve is rotatably connected with the grinding disc shaft through a third bearing.
  • This application provides an operating method based on the said simulated chewing composite resin material abrasion tester, which includes the following working steps:
  • the moving device drives the specimen clamp down, so that the specimen connected to the front end of the specimen clamp engages with the counter-grinding coupler;
  • the moving device drives the specimen clamp to rise to make the specimen gradually move away from the counter-grinding part.
  • the moving device drives the specimen holder to rotate relative to the frame to make the test-piece rotate a certain angle; it is configured to rotate the counter-grinding part to a certain angle and replace The bite position of the specimen clamp;
  • this application includes at least the following beneficial effects:
  • the specimen holder is raised or lowered through the movement device, and the specimen holder is moved to the direction close to the counter-grinding part to realize the bite between the specimen and the counter-grinding part; and the specimen holder is repeatedly raised and lowered by the movement device to simulate The occlusal and chewing movement of the human body; when the test piece is engaged with the counter-molding part, the friction between the test-piece and the counter-molding part is realized by rotating the counter-molding part relative to the frame.
  • test-part clamp moves in the direction close to the counter-grinding part to realize the test piece and the counter-grinding part.
  • specimen clamp is located below the counter-grinding part, when the moving device makes the test-part holder ascend, the specimen-holder moves in the direction close to the counter-grinding part to realize the occlusion of the specimen and the counter-grinding part .
  • the following is an example of the test piece clamp being located above the grinding coupler.
  • the operation steps of the simulated chewing composite resin material abrasion tester during operation include the following: S1, connect the test piece to the test piece clamp; wherein, the test piece clamp with the test piece is fixed on the first end of the lifting shaft; S2, the moving device drives the specimen clamp down, so that the test piece and the counter-grinding part are engaged; S3, the counter-grinding part is rotated relative to the frame to realize the friction between the test part and the counter-grinding part; S4, the movement device is driven The specimen clamp rises to make the specimen gradually move away from the mating part, and at the same time, the specimen clamp is driven to rotate relative to the frame through the motion device, so that the specimen is rotated to a certain angle; at the same time, the mating part is rotated to a certain angle, and the specimen is replaced Clamp the bite position; S5, repeat the above steps S2-S4.
  • step S3 After step S3, a wear of the test piece is realized. Through the setting of step S4, after each wear process, the test piece is lifted to a certain height, separated from friction, and rotated to a certain angle, and then Then carry out the next descending bite action and friction action with the counter-grinding part.
  • the worn surface of the test piece can receive abrasion in multiple different directions in turn, so that the worn surface of the test piece is uniformly worn, which is beneficial to keep the worn surface of the test piece flat, and will not be caused by wear in the same direction.
  • the initial wear surface of the test piece and the wear surface at the end of the final wear experiment have excessive shape changes, which reduces the influence of the directionality of the wear test on the experimental results. This is important for accurately measuring the wear of the test piece, especially when testing with measuring materials. This kind of height change is of great significance to evaluate the wear resistance of materials.
  • the surface of the specimen subjected to abrasion can show the desired abrasion state after being worn, that is, the above-mentioned abrasion state is similar to the clinical abrasion state, making the results of the abrasion experiment and clinical abrasion results More similar.
  • the material test piece can only be subjected to abrasion test in saliva, which is inconsistent with the actual situation that the filling material is mainly worn by food in the oral environment.
  • the specific actual situation is that during the process of oral chewing, the abrasion and wear damage of the filling material is mainly caused by the teeth on the opposite side squeezing the food and the teeth filled with the filling material for rolling and rubbing.
  • the simulated chewing composite resin material abrasion tester is configured to simulate food by disposing an abrasive on the counter-molding part, and simulating the upper and lower teeth through the relative vertical movement between the test part and the counter-molding part.
  • the occlusal action through the relative parallel movement between the wear surface of the test piece and the counter-mold part under the action of the simulated occlusal stress, that is, the counter-mold part rotates relative to the test piece to simulate the occlusal squeezing of the upper and lower teeth under the action of the bite force.
  • the friction action after pressing the food.
  • the simulated chewing composite resin material abrasion testing machine of the present application further ensures that the specimen is subjected to abrasion test in an environment similar to the human oral cavity, and improves the in vitro abrasion test results of the composite resin filling material and its long-term use in the patient’s oral cavity. Correlation of wear results after use.
  • Figure 1 is a schematic diagram of the structure of a wear tester in the prior art
  • Figure 2 is a front view of a simulated chewing composite resin material abrasion tester provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a simulated chewing composite resin material abrasion tester provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of a partial structure of a simulated chewing composite resin material abrasion test machine provided by an embodiment of the application;
  • FIG. 5 is a partial structural cross-sectional view of a simulated chewing composite resin material abrasion tester provided by an embodiment of the application;
  • FIG. 6 is a partial structure enlarged view of part A of the simulated chewing composite resin material abrasion test machine shown in FIG. 5;
  • FIG. 7 is a cross-sectional view of another part of the structure of the simulated chewing composite resin material abrasion tester provided by an embodiment of the application;
  • Figure 8 is an electron micrograph of the surface morphology of the composite resin filling material after being worn in the clinical oral cavity
  • Figure 9 is an electron micrograph of the surface morphology of the composite resin filling material after being worn by a simulated chewing composite resin material abrasion tester;
  • Figure 10 is an electron micrograph of the surface morphology of the composite resin material after abrasion by a rigid counter-part and a hard abrasive.
  • Icon 1’-Upper jaw simulation mechanism; 2’-Lower jaw simulation mechanism; 3’-Saliva trough;
  • Figure 1 is a structural schematic diagram of an existing chewing simulation wear test machine, which includes an upper jaw simulation mechanism 1', a mandibular simulation mechanism 2', and a saliva groove 3'.
  • the mandibular simulation mechanism 2' is located in the saliva groove In 3'
  • the upper jaw simulation mechanism 1' is located above the lower jaw simulation mechanism 2'
  • the upper jaw simulation mechanism 1'and the lower jaw simulation mechanism 2' are arranged oppositely, the upper jaw simulation mechanism 1'can rotate along its own axis
  • the lower jaw simulation mechanism 2' Can reciprocate up and down.
  • the test piece composite resin filling material
  • the upper jaw simulation mechanism 1' rotates to simulate the horizontal grinding of the teeth during chewing; among them, the saliva groove 3'is used to hold saliva to prevent dry friction between the test pieces.
  • the upper and lower sets of test pieces are relatively rotated and worn along the fixed axis, so that the part of the test piece near the axis of the maxillary simulation mechanism has a small amount of wear, and the part far away from the axis has a large amount of wear.
  • this embodiment provides a simulated chewing composite resin material abrasion tester, which includes a movement device, a counter-wearing part 1 and a machine
  • the frame 2 and the moving device and the counter-grinding piece 1 are both connected to the frame 2.
  • the moving device is connected with a test piece holder 31 configured to fix the test piece 32; it should be noted that, in this embodiment, the test piece 32 Filling material for composite resin.
  • the moving device can make the test piece holder 31 rise and fall and rotate with respect to the frame 2 repeatedly, and when the test piece holder 31 is raised and lowered relative to the frame 2, the test piece holder 31 can move towards or away from the counter-milling part 1;
  • the piece 1 can rotate with respect to the frame 2; the side of the mating piece 1 close to the test piece holder 31 is provided with an abrasive (not shown in the figure) configured to simulate food.
  • the moving device makes the test piece holder 31 rise or fall, and the test piece holder 31 is moved in a direction close to the counter-grinding piece 1, so as to realize the engagement of the test piece 32 and the counter-wearing piece 1; and through the moving device
  • the test piece holder 31 is raised and lowered repeatedly to simulate the occlusal chewing movement of the human body; when the test piece 32 engages with the counter-grinding part 1, the counter-grinding part 1 rotates relative to the frame 2 to realize the test-part 32 and the counter-grinding part 1 friction between.
  • test piece holder 31 when the test piece holder 31 is located above the counter-grinding piece 1, while the moving device makes the test piece holder 31 descend, the test-piece holder 31 moves in a direction close to the counter-grinding piece 1, so as to realize the test.
  • the test piece holder 31 is located below the counter piece 1 and the moving device makes the test piece holder 31 ascend, the test piece holder 31 moves towards the direction of the counter piece 1 Move to achieve the bite between the test piece and the counter-grinding piece 1.
  • the test piece holder 31 is located above the pair of grinding pieces as an example.
  • the operation steps of the simulated chewing composite resin material abrasion tester when used include the following: S1, connect the test piece 32 to the test piece holder 31; wherein, the test piece holder 31 with the test piece 32 is fixed to the lift shaft 41 On the first end; S2, the motion device drives the specimen holder 31 down, so that the specimen 32 is engaged with the counter-grinding part 1; S3, the counter-grinding part 1 is then rotated relative to the frame 2 to realize the specimen 32 and the counter-grinding Friction between the coupler 1; S4, the moving device drives the test piece holder 31 to rise, so that the test piece 32 is gradually away from the counter-milling coupler 1, and at the same time, the test piece holder 31 is driven to rotate relative to the frame 2 through the moving device, so that the test piece 32 Rotate a certain angle; at the same time, rotate the counter-grinding part 1 to a certain angle, and change the position where it engages with the specimen holder 31; S5, repeat the above S2-S4 process.
  • step S3 After step S3, a wear of the test piece 32 is realized. Through the setting of step S4, the test piece 32 is lifted to a certain height after each wear process, free from friction, and rotated to a certain angle , And then perform the next lowering bite action and friction action with the counter-grinding piece 1.
  • the abraded surface of the test piece 32 can receive abrasion in multiple different directions in turn, so that the abraded surface of the test piece 32 is uniformly worn, which is beneficial to keep the abraded surface of the test piece 32 flat, and will not always be uniform.
  • Directional wear causes excessive shape changes between the initial wear surface of the specimen 32 and the wear surface at the end of the final wear experiment, which can reduce the influence of the directionality of the wear test on the experimental results. It is particularly important for accurately measuring the wear of the specimen 32. It is of great significance to evaluate the wear resistance of the material by measuring the height change of the material sample.
  • the abrasive can make the surface of the specimen subjected to the abrasion test to show the required abrasion state after being worn, that is, the above-mentioned abrasion state can be made similar to the clinical abrasion state, so that the results of the abrasion test and the clinical wear results are more relevant. .
  • the material test piece can only be subjected to abrasion test in saliva, which is inconsistent with the actual situation that the filling material is mainly worn by food in the oral environment.
  • the specific actual situation is that during the process of oral chewing, the abrasion and abrasion damage of the filling material is mainly caused by the teeth on the opposite side squeezing the food and the teeth filled with the filling material for rolling and rubbing.
  • the occlusal action of the upper and lower teeth there is both the occlusal action of the upper and lower teeth, and the friction action of the squeezed food against the filling material specimen under the action of the occlusal force, which is the so-called three-body abrasion method.
  • the simulated chewing composite resin material abrasion testing machine is simulated by setting abrasives configured to simulate food on the counter-molding piece 1, and simulating the relative vertical movement between the test piece 32 and the counter-molding piece 1.
  • the occlusal movement of the upper and lower teeth simulates the upper and lower teeth through the relative parallel movement between the wear surface of the test piece 32 and the counter-mold part 1 under the simulated occlusal stress, that is, the rotation of the counter-mold part 1 relative to the test piece 32 Under the action of bite force, the friction action after biting and squeezing food.
  • the simulated chewing composite resin material abrasion test machine of this embodiment further ensures that the specimen 32 is subjected to abrasion test in an environment similar to the human oral cavity, and improves the in vitro abrasion test results of the composite resin filling material and the patient’s oral cavity. Correlation of the wear results after long-term use.
  • the hardness of the abrasive is very important. If the abrasive hardness is too high, the wear marks on the wear surface of the test piece 32 will be very different from the actual wear form of the material in the oral cavity; if the hardness is too low, it will affect the wear efficiency.
  • the actual situation of the oral cavity is that the hardness of food is much lower than that of various filling materials filled in the cavity of the tooth.
  • a large number of composite resin filling materials are used clinically to repair dental caries. Because this material is composed of a resin matrix with a lower hardness and a glass powder filler with a high hardness, it can be used in the oral cavity for a long time. Observation of material abrasion surface shows that the abrasion law of this composite material is: the resin matrix of the surface layer is firstly abraded due to the rolling and friction of the food, so that the high hardness filler particles protrude from the surface of the material (see Figure 8).
  • the abrasive may include fluorite powder material (existing material) with a Mohs hardness of 4, which is a stable inorganic material.
  • fluorite powder material existing material
  • Mohs hardness of 4 which is a stable inorganic material.
  • fluorite concentrate FC-98 in the national industry standard YB/T 5217-2005 "Fluorite” chemical composition requirements: CaF2> 98%, SiO2 ⁇ 0.6%; particle size requirements: ⁇ 110 mesh, 110 mesh
  • the content between to 120 mesh is not less than 65%.
  • the counter-grinding part 1 is a rubber plate.
  • the Shore hardness of the rubber sheet is 60 degrees
  • the thickness is 6mm
  • the material formula is determined. Therefore, the test pieces 32 of various dental materials all use the same and standard anti-wear coupler 1, and under the same wear conditions, it is more objective to compare the wear resistance of the test pieces 32 of different materials. Comply with the single contrast principle.
  • the chewing conditions of the oral cavity can be more realistically simulated.
  • the teeth are surrounded by periodontal ligament with a certain buffering effect, the upper and lower teeth are not colliding with two rigid bodies when chewing. Therefore, a rubber plate with a certain hardness can not only play a certain buffering effect, but also transmit necessary Chewing pressure.
  • the test piece 32 is in contact with the surface of the soft and elastic rubber plate, which prevents the filler particles from falling off due to impact and collision. At the same time, the elastic deformation of the rubber plate surface can be more fully transferred to the filler particles.
  • the microscopic morphology of the composite resin filling material after abrasion is also consistent with the abrasion morphology of similar materials by food in the oral cavity (see FIG. 9).
  • the abrasion experiment of the rigid coupling parts and the hard abrasive is carried out, and the microscopic morphology of the composite resin material obtained after abrasion is completely different (see Figure 10).
  • test piece and the rubber plate are paired to grind, and there is an abrasive simulating food between the two.
  • the test pieces of various dental materials use the same and standard mating parts and abrasives, and while replacing the test pieces, the mating parts and abrasives are updated so that all test pieces can be obtained under the same wear conditions
  • the abrasion test results can be used to compare the abrasion resistance of different specimen materials more objectively.
  • the movement device includes a sliding sleeve 41 and a lifting shaft 42, and the sliding sleeve 41 is rotatably connected with the frame 2;
  • the sliding sleeve 41 is provided with a key groove 411, and the key groove 411 is along the axial direction of the sliding sleeve 41 Extension;
  • the lift shaft 42 is provided with a feather key 421, and the feather key 421 cooperates with the keyway 411, and is configured to enable the lift shaft 42 to rotate with the sliding sleeve 41;
  • the lift shaft 42 along the axis of the lift shaft 42, the lift shaft 42 includes a corresponding first One end and the second end, and the test piece holder 31 is arranged at the first end. That is, the second end is located above the first end.
  • the sliding sleeve 41 may be connected to the frame 2 through a bearing, so that the sliding sleeve 41 can rotate relative to the frame 2.
  • the feather key 421 can move along the extending direction of the key groove 411, and at the same time, the length of the key groove 411 needs to be greater than the length of the feather key 421; the second end of the lifting shaft 42 is fixedly connected with the end cam 5, and the protrusion of the end cam 5
  • the part 51 is close to the specimen holder 31; a support wheel 61 is fixed on the frame 2, and the support wheel 61 is arranged below the end cam 5, and the support wheel 61 cooperates with the protrusion 51 to be configured to repeatedly lift the lifting shaft 42 .
  • the lifting shaft 42 when the lifting shaft 42 rotates, it can drive the end cam 5 to rotate.
  • the support wheel 61 can support the boss 51, so that the boss 51 can rise.
  • the raised portion 51 rotates to gradually separate from the support wheel 61, the raised portion 51 gradually descends. Therefore, during the one-round rotation of the end cam 5, the lifting shaft 42 is raised and lowered once; in addition, because the sliding key 421 can Moving along the extending direction of the key groove 411 makes it possible for the lifting shaft 42 to rise and fall along the axial direction in the sliding sleeve 41.
  • end cam 5 is a cam with a convex portion 51 on the end surface, which is a prior art, and will not be repeated here.
  • a sliding key is provided on the sliding sleeve 41, and a keyway is provided on the lifting shaft 42.
  • the sliding key and the keyway are matched to enable the lifting shaft 42 to rotate with the sliding sleeve 41.
  • the length of the keyway is greater than the length of the sliding key, which can be lifted The lifting of the shaft 42 provides a margin.
  • the simulated chewing composite resin material abrasion tester further includes a counterweight 62; the counterweight 62 is fixed to the end cam 5 on the side away from the specimen clamp 31.
  • the counterweight 62 is fixed to the end cam 5 by a fixing pin 621.
  • the counterweight 62 can make the end cam 5 always tightly abut on the support wheel 61, thereby ensuring that the end cam 5 drives the lifting shaft 42 to move up and down stably.
  • the counterweight 62 can also provide positive pressure for the occlusion of the test piece 32 and the counter-molding part 1 to simulate the occlusal force of the human teeth.
  • the component that provides the occlusal force for the test piece 32 may also include lifting The shaft 42, the end cam 5 and the fixed pin 621.
  • the simulated chewing composite resin material abrasion tester further includes a rotating sleeve 63; the rotating sleeve 63 is connected to the first end of the lifting shaft 42 through a bearing set, and the specimen clamp 31 is fixed to Rotating sleeve 63; a plurality of positioning rods 64 are uniformly fixed along the circumferential surface of the rotating sleeve 63, and the axial direction of the positioning rods 64 is perpendicular to the axial direction of the rotating sleeve 63; a positioning plate 65 is fixed on the frame 2 When the lifting shaft 42 descends, it can drive the rotating sleeve 63 and the positioning rod 64 to descend, and is configured to make the positioning rod 64 abut the positioning plate 65, thereby stopping the rotating sleeve 63 and the positioning rod 64.
  • the operation process of the simulated chewing composite resin material abrasion tester includes the following: when the sliding sleeve 41 rotates relative to the frame 2, the lifting shaft 42 is driven to rotate relative to the frame 2, so that the end cam 5 can rotate, and the lifting shaft 42 can be rotated. Repeated lifting; Among them, when the lifting shaft 42 is lowered, the rotating sleeve 63 and the specimen holder 31 will descend accordingly, so that the test piece 32 engages with the counter-grinding couple 1 underneath. At this time, the rotating sleeve 63 descends to its periphery The fixed positioning rod 64 is in contact with the positioning plate 65. When the positioning rod 64 is blocked, the rotating sleeve 63 stops rotating.
  • the lifting shaft 42 continues to rotate, that is, the test piece 32 is below it
  • the test piece 32 does not rotate; as the end cam 5 continues to rotate, the lifting shaft 42 rises until the positioning rod 64 is separated from the positioning plate 65.
  • the lifting shaft 42 drives The rotating sleeve 63 continues to rotate, so the test piece holder 31 rotates until the lifting shaft 42 drops again until the positioning rod 64 abuts the positioning plate 65 again.
  • the test piece 32 rotates to a certain angle under the action of the test piece holder 31 After it stops rotating and engages with the counter-wear part 1, the above process is repeated to realize that the worn surface of the test piece 32 receives abrasion in multiple different directions in turn, so that the worn surface of the test piece 32 is evenly worn.
  • the test piece 32 engages with the counter-grinding piece 1 below, the test piece 32 does not rotate, that is, at this time, the test piece 32 only applies pressure to the counter-grinding piece 1 to eliminate the interference caused by the rotation of the test piece 32 and ensure The independence of the test piece 32 on the force applied to the grinding coupler 1 allows the pressure applied by the test piece 32 to be conveniently controlled, so as to effectively ensure that the pressure applied by the test piece 32 is within the specified pressure range.
  • the counter-wearing piece 1 rotates by an angle to realize the friction with the test piece 32 ; Then, after the test piece 32 rises and disengages from the counter-grinding part 1, before the next occlusal movement starts, the counter-grinding part 1 rotates another angle to prepare for the next occlusal movement.
  • the bearing set includes a plurality of first bearings 66 and a plurality of fourth bearings 67.
  • the bearing set includes two first bearings 66 and a fourth bearing 67.
  • the first bearing 66 One bearing 66 is a thrust bearing
  • the fourth bearing 67 is a tapered roller bearing. The above arrangement of a bearing 66 and a fourth bearing 67 can not only transmit the pressure of the lifting shaft 42 to the rotating sleeve 63, but also ensure that the lifting shaft 42 and the rotating sleeve 63 can rotate relatively.
  • the rotating sleeve 63 When the rotating sleeve 63 does not bear external resistance, the rotating sleeve 63 can rotate synchronously with the lifting shaft 42 under the action of friction. After setting the relative positions of the positioning plate 65 and the positioning rod 64, the rotation angle of the rotating sleeve 63 in each lifting cycle can be controlled.
  • the number of positioning rods 64 is N, for example, N is two, three, four or five, and the angle between two adjacent positioning rods 64 is 360°/N, so The above-mentioned "certain angle" is 360°/N, that is, every time the lifting shaft 42 is raised and lowered, the rotation angle of the test piece 32 is 360°/N, which realizes the uniform wear of the test piece 32 in N directions.
  • the simulated chewing composite resin material abrasion tester further includes a grinding disc shaft 8; the grinding disc shaft 8 is rotatably connected to the frame 2, and the counter-grinding part 1 is fixed to the grinding disc shaft 8. That is to say, the grinding disc shaft 8 rotates relative to the frame 2 to drive the counter-grinding part 1 to rotate relative to the frame 2.
  • FIG. 7 it further includes a grinding disc 811, the grinding disc 811 is fixed to the grinding disc shaft 8, and the counter-grinding part 1 is fixed to the grinding disc shaft 8 through the grinding disc 811.
  • the simulated chewing composite resin material abrasion tester further includes an abrasive baffle 81, and the abrasive baffle 81 is fixed to the frame 2; along the length direction of the abrasive baffle 81,
  • the abrasive baffle 81 includes a corresponding first side 812 and a second side 813; along the length of the abrasive baffle 81, the abrasive baffle 81 extends in a spiral line, and is configured to form a cavity in the abrasive baffle 81
  • An inlet 82 is formed between the first side 812 and the second side 813, the inlet 82 communicates with the cavity, and the first side 812 is closer to the center of the cavity than the second side 813; the abrasive baffle 81
  • the cover is set on the counter-milling part 1 and is located on the side close to the edge of the counter-milling part 1, and the entrance 82 is opposite to the test piece
  • the structure of the abrasive baffle 81 has a spiral cone shape, and the space of the cavity close to the first side 812 is smaller than the space of the cavity close to the second side 813.
  • the test piece 32 When the test piece 32 is engaged with the mating part 1, the test piece 32 is first pressed against the wet sand-like abrasive, so that the edge of the abrasive centered at the pressing point is lifted, and then it can follow the mating part 1
  • the frictional rotation is brought into the inlet 82 located near the edge of the counter-milling part 1 to enter the cavity and realize the collection of abrasive; when the abrasive rotates with the counter-part 1 in the cavity, because the first side 812 is located
  • the second side 813 rotates downstream, so the abrasive rotates from the second side 813 to the first side 812.
  • the space between the abrasive baffle 81 and the mating part 1 gradually decreases.
  • the abrasive is gradually squeezed by the lower and lower abrasive baffle 81, which realizes the agitation of the abrasive and moves from near the first side.
  • the side 812 is output at the incision 83.
  • the abrasive can be output in a flattened state; since the incision 83 is arranged opposite to the specimen holder 31, the flattened abrasive is output again When the test piece clamp 31 and the test piece 32 are under the test piece 32, the test piece 32 bites and is rubbed again during the rotation of the counter-grinding piece 1.
  • the abrasive baffle 81 automatically attaches the abrasive that was squeezed away during the previous rubbing to the counter-part 1
  • the abrasives are collected, squeezed, stirred, and leveled to a certain height.
  • the counter-grinding part 1 rotates, it is accurately transported to the drop point of the test piece 32.
  • the homogenization of the abrasive is realized, so the particles in the abrasive will not naturally settle, and the abrasive is spread more stably and consistently, so that the role of the abrasive can be fully exerted.
  • the role of the abrasive baffle includes: on the one hand, it collects, mixes, and squeezes the occluded and squeezed abrasive, which acts as agitation, so that the abrasive can be fully and evenly used; on the other hand, from the first side
  • the 812 extruded abrasive has the same height, ensuring that every bite and friction are carried out under the same abrasion conditions.
  • the mating part 1 adopts a rubber plate
  • the friction between the surface of the rubber plate and the abrasive can also stabilize the abrasive, ensuring that there is no sliding between the abrasive and the mating part 1, so that the abrasive will be tested.
  • the abrasion of the piece 32 is more effective.
  • the simulated chewing composite resin material abrasion tester further includes a driving device;
  • the driving device includes a driving shaft 91, a gear transmission assembly, a ratchet transmission assembly and a driving component (not shown in the figure);
  • the driving shaft 91 is drivingly connected to the driving shaft 91 to rotate;
  • the driving shaft 91 is drivingly connected to the sliding sleeve 41 through a gear transmission assembly, and the driving shaft 91 is drivingly connected to the grinding disc shaft 8 through a ratchet transmission assembly.
  • the gear transmission assembly includes a first gear 921 and a second gear 922 that are engaged with each other.
  • the first gear 921 is fixed to the driving shaft 91
  • the second gear 922 is fixed to the sliding sleeve 41.
  • the component drives the driving shaft 91 to rotate, thereby driving the first gear 921 to rotate, and the first gear 921 drives the sliding sleeve 41 to rotate through the second gear 922.
  • the ratchet gear transmission assembly includes a mating pawl wheel 931 and a ratchet wheel 932.
  • the pawl wheel 931 is fixed to the driving shaft 91, and the ratchet wheel 932 is fixed to the grinding disc shaft 8.
  • the driving part drives the driving shaft 91 to rotate, thereby driving the pawl wheel 931 It rotates, and the ratchet wheel 932 is turned by the ratchet wheel 931 to drive the grinding disc shaft 8 to rotate evenly and intermittently.
  • the uniform and intermittent rotation of the grinding disc shaft 8 drives the uniform and intermittent rotation of the counter-grinding part 1 to more truly simulate the frictional movement of the teeth in the human oral cavity after each bite.
  • the driving component may be a motor or a decelerating motor, but it is not limited to the above form and is not limited here, as long as it can drive the driving shaft 91 to rotate.
  • the simulated chewing composite resin material abrasion testing machine further includes a positioning disk 71, which is fixedly connected to the grinding disk shaft 8; a lower bearing sleeve 72 is fixedly connected to the frame 2, The lower bearing sleeve 72 is connected to the grinding disc shaft 8 through the second bearing 73; an elastic member 74 is fixed on the positioning plate 71, and a positioning ball 75 is fixed on the side of the elastic member 74 close to the lower bearing sleeve 72; the lower bearing sleeve 72 is opened There is a conical positioning hole, and part of the positioning bead 75 is located in the positioning hole.
  • the elastic member 74 makes the positioning bead 75 always tightly abut against the positioning hole; there are multiple positioning holes, and multiple positioning holes are in the lower bearing sleeve. 72 is evenly arranged on a circle; the angle between adjacent positioning holes is equal to the intermittent rotation angle of the ratchet drive assembly.
  • the positioning disc 71 rotates with it, and the lower bearing sleeve 72 does not rotate. If the rotation angle of the grinding disc shaft 8 is not in place, the positioning ball 75 cannot rotate to the center position in the next positioning hole at this time For example, the positioning bead 75 is clamped in the positioning hole, and abuts against the conical side surface. At this time, due to the guiding effect of the tapered surface of the positioning hole, the positioning ball 75 is forced into the positioning hole and is located at the center of the positioning hole, thereby driving the rotation of the grinding disc shaft 8 and providing a aligning effect for the rotation of the grinding disc shaft 8. The precise positioning of the grinding disc shaft 8 is realized.
  • the upper bearing sleeve 76 is fixed to the frame 2, and the upper bearing sleeve 76 is rotatably connected with the grinding disc shaft 8 through a third bearing 77.
  • the thrust bearing 78 accepts the positive pressure when the test piece 32 engages with the counter-grinding piece 1 and reduces the frictional force generated by the axial pressure when the grinding disc shaft 8 rotates.
  • the embodiment of the application provides a simulated chewing composite resin material abrasion testing machine, which can ensure that the abraded surface morphology of the material specimen is similar to the abraded surface morphology of the material in the human oral cavity; moreover, a variety of materials are in these two.
  • the results of abrasion tests in a different environment show that the order of the abrasion resistance of these materials is consistent in the two environments. Therefore, the correlation between the in vitro abrasion test results of the composite resin filling material and the abrasion results after long-term use in the patient's oral cavity is improved, and the reliability of evaluating the abrasion resistance of such dental filling materials in the oral cavity through in vitro experiments is ensured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Crushing And Grinding (AREA)

Abstract

一种模拟咀嚼式复合树脂材料磨耗试验机,该试验机包括运动装置、对磨偶件(1)和机架(2),运动装置和对磨偶件(1)连接于机架(2);运动装置连接有配置成固接试件(32)的试件夹(31);试件夹(31)能够相对机架(2)反复升降及旋转,并能够向靠近或者远离对磨偶件(1)的方向移动;对磨偶件(1)能够相对机架(2)旋转;对磨偶件(1)靠近试件夹(31)的一侧设置有配置成模拟食物的磨料。其中,试件(32)与对磨偶件(1)和磨料的咬合接触,及其相对摩擦过程是分别间歇式进行的,同时采用低硬度的"软磨料"和弹性对磨偶件(1),以解决试件磨耗不均匀,及表面磨耗形态与临床实际情况不相符的技术问题。

Description

模拟咀嚼式复合树脂材料磨耗试验机及其操作方法
相关申请的交叉引用
本申请要求于2019年07月02日提交中国专利局的申请号为201921024289.5、名称为“模拟咀嚼式复合树脂材料磨耗试验机”的中国专利申请的优先权,要求于2019年07月02日提交中国专利局的申请号为201910591327.3、名称为“模拟咀嚼式复合树脂材料磨耗试验机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械技术领域,尤其是涉及一种模拟咀嚼式复合树脂材料磨耗试验机及其操作方法。
背景技术
在口腔临床治疗中,针对患龋病的牙齿,会对牙齿上的龋洞进行充填修补治疗,目前使用量最大的补牙充填材料是复合树脂充填材料。在目前的材料水平条件下,因咀嚼食物而使得复合树脂充填材料被磨耗损失,是复合树脂充填材料在口腔中的主要失效形式之一。而且由于复合树脂材料的基本机械物理特性与耐磨耗性能之间没有线性相关关系,因此进行体外磨耗实验已成为评价补牙充填材料使用性能的不可缺少的手段之一。
然而,现有的咀嚼模拟磨损试验机的试件只能在同一个方向上反复摩擦,其中,如图1所示,现有的上颌模拟机构1’旋转时,由于上、下两组试件沿半径方向各点的摩擦距离和摩擦线速度不同,进而会导致试件表面磨耗量不均匀,使得对试件耐磨耗性能的评价受到影响。另外,上、下两组试件在唾液中互相摩擦与临床上有食物介入的咀嚼磨耗状态不符。
因此,本申请针对上述问题提供一种新的模拟咀嚼式复合树脂材料磨耗试验机。
申请内容
本申请提供一种模拟咀嚼式复合树脂材料磨耗试验机及其操作方法,以至少能够解决现有技术中存在的试件磨耗不均匀,以及试件在体外磨耗的方式和磨耗表面的形态与临床实际情况不相符的技术问题中的一个。
本申请提供一种模拟咀嚼式复合树脂材料磨耗试验机,包括运动装置、对磨偶件和机架,且所述运动装置和所述对磨偶件均连接于所述机架;
所述运动装置上连接有配置成固定试件的试件夹;
所述运动装置能够令所述试件夹相对所述机架反复升降以及旋转,且所述试件夹相对所述机架升降时,所述试件夹能够向靠近或者远离所述对磨偶件的方向移动;所述对磨偶件能够相对所述机架旋转;所述对磨偶件靠近所述试件夹的一侧设置有配置成模拟食物的磨料。
可选地,所述磨料包括莫氏硬度为4的萤石粉和添加于所述萤石粉内的蒸馏水。
可选地,所述对磨偶件为橡胶板。
可选地,所述运动装置包括滑套和升降轴,且所述滑套与所述机架转动连接;
所述滑套上开设有键槽,且所述键槽沿所述滑套的轴向延伸;所述升降轴上设置有滑键,且所述滑键与所述键槽配合,配置成令所述升降轴能够随所述滑套转动;
沿所述升降轴的轴线方向,所述升降轴包括相对应的第一端和第二端,所述试件夹设置于所述第一端。
可选地,所述滑键能够沿所述键槽的延伸方向移动;
所述升降轴的第二端固接有端面凸轮,且所述端面凸轮的凸起部靠近所述试件夹;
所述机架上固接有支撑轮,且所述支撑轮设置于所述端面凸轮的下方,且所述支撑轮与所述凸起部配合,配置成令所述升降轴反复升降。
可选地,还包括配重;所述配重固接于所述端面凸轮远离所述试件夹的一侧。
可选地,所述模拟咀嚼式复合树脂材料磨耗试验机,还包括旋转套;
所述旋转套通过轴承组连接于所述升降轴的第一端,能够相对升降轴转动,所述试件夹固接于所述旋转套;
所述旋转套的周面上沿周向均匀固接有多个定位杆,且所述定位杆的轴线方向与所述旋转套的轴线方向垂直;
所述机架上固接有定位板;
所述升降轴下降时,能够通过所述旋转套带动所述定位杆下降,以令所述定位杆与所述定位板抵接,配置成使所述定位杆停转。
可选地,所述模拟咀嚼式复合树脂材料磨耗试验机,还包括磨盘轴;
所述磨盘轴转动连接于所述机架,所述对磨偶件固接于所述磨盘轴。
可选地,还包括磨盘;所述磨盘固接于所述磨盘轴上,所述对磨偶件配置成通过所述磨盘与所述磨盘轴固接。
可选地,所述模拟咀嚼式复合树脂材料磨耗试验机,还包括磨料挡板,且所述磨料 挡板固接于所述机架;
沿所述磨料挡板的长度方向,所述磨料挡板包括相对应的第一边侧和第二边侧;沿所述磨料挡板的长度方向,所述磨料挡板呈螺旋线状延伸,配置成令所述磨料挡板内形成腔体;所述第一边侧和所述第二边侧之间形成入口,所述入口与所述腔体连通,且所述第一边侧相比于所述第二边侧更靠近所述腔体的中心;
所述磨料挡板罩设于所述对磨偶件上,且位于靠近所述对磨偶件边缘的一侧,所述入口与所述试件夹相对;所述对磨偶件转动时,所述第一边侧位于所述第二边侧的旋转下游;
所述磨料挡板靠近所述第一边侧的一侧开设有切口,且所述切口与所述试件夹相对设置,所述切口与所述对磨偶件靠近所述磨料挡板的一面平行。
可选地,所述磨料挡板靠近所述第一边侧的一侧与所述对磨偶件表面具有间距。
可选地,所述磨料挡板的结构呈螺旋锥面形状,所述腔体靠近所述第一边侧的空间小于所述腔体靠近所述第二边侧的空间。
可选地,所述模拟咀嚼式复合树脂材料磨耗试验机,还包括驱动装置;
所述驱动装置包括主动轴、齿轮传动组件、棘轮传动组件和驱动部件;
所述驱动部件驱动连接所述主动轴,能够令所述主动轴转动;所述主动轴通过所述齿轮传动组件驱动连接所述滑套,且所述主动轴通过所述棘轮传动组件驱动连接所述磨盘轴。
可选地,所述齿轮传动组件包括相啮合的第一齿轮和第二齿轮;
所述第一齿轮与所述主动轴固定连接,所述第二齿轮与所述滑套固定连接,所述驱动部件配置成通过驱动所述主动轴带动所述第一齿轮转动,所述第一齿轮配置成通过所述第二齿轮驱动所述滑套转动。
可选地,所述棘轮传动组件包括相配合的棘爪轮和棘轮;
所述棘爪轮与所述主动轴固定连接,所述棘轮与所述磨盘轴固定连接,所述驱动部件配置成通过驱动所述主动轴带动所述棘爪轮转动,所述棘爪轮配置成拨动所述棘轮驱动所述磨盘轴转动。
可选地,所述模拟咀嚼式复合树脂材料磨耗试验机,还包括定位盘,且所述定位盘固接于所述磨盘轴;
所述机架上固接有下轴承套,且所述下轴承套通过第二轴承与所述磨盘轴连接;
所述定位盘上固接有弹性件,所述弹性件靠近所述下轴承套的一侧固接有定位珠; 所述下轴承套上开设有呈圆锥形的定位孔,且所述定位珠的部分位于所述定位孔内,所述弹性件令所述定位珠始终紧紧地抵接于所述定位孔内;
所述定位孔有多个,且多个所述定位孔在所述下轴承套上呈圆周均布;
相邻所述定位孔之间的角度与所述棘轮传动组件的间歇转动角度相等。
可选地,还包括上轴承套,所述上轴承套固接于所述机架上,且所述上轴承套通过第三轴承与所述磨盘轴转动连接。
本申请提供一种基于所述的模拟咀嚼式复合树脂材料磨耗试验机的操作方法,包括以下工作步骤:
将试件连接于试件夹上;
运动装置驱动试件夹下降,令连接在试件夹前端的试件与对磨偶件咬合;
令对磨偶件相对机架旋转,配置成试件与对磨偶件之间摩擦;
运动装置驱动试件夹上升,令试件逐渐远离对磨偶件,同时通过运动装置驱动试件夹相对机架旋转,令试件旋转一定角度;配置成对磨偶件旋转一定角度,更换与试件夹咬合的位置;
重复上述步骤。
采用上述技术方案,本申请至少包括以下有益效果:
通过运动装置令试件夹上升或者下降,令试件夹向靠近对磨偶件的方向移动,以实现试件与对磨偶件的咬合;并通过运动装置令试件夹反复升降,以模拟人体的咬合咀嚼运动;当试件与对磨偶件咬合后,通过对磨偶件相对机架旋转,实现试件与对磨偶件之间摩擦。
需要说明的是,当试件夹位于对磨偶件的上方时,当运动装置令试件夹下降时,试件夹向靠近对磨偶件的方向移动,以实现试件与对磨偶件的咬合;当试件夹位于对磨偶件的下方时,当运动装置令试件夹上升时,试件夹向靠近对磨偶件的方向移动,以实现试件与对磨偶件的咬合。以下以试件夹位于对磨偶件的上方为例进行说明。
该模拟咀嚼式复合树脂材料磨耗试验机运转时的作业步骤包括如下:S1、将试件连接于试件夹上;其中,安装有试件的试件夹固定于升降轴的第一端上;S2、运动装置驱动试件夹下降,令试件与对磨偶件咬合;S3、再令对磨偶件相对机架旋转,实现试件与对磨偶件之间摩擦;S4、运动装置驱动试件夹上升,令试件逐渐远离对磨偶件,同时通过运动装置驱动试件夹相对机架旋转,从而令试件旋转一定角度;同时使对磨偶件旋转一定角度,更换与试件夹咬合的位置;S5、重复上述S2-S4步骤。
对以上作业步骤分析如下:S3步骤之后,实现了对试件的一次磨耗,通过S4步骤的设置,使试件每进行一次磨耗过程后,被提升一定高度,脱离摩擦,并旋转一定角度,然后再进行下一次的下降咬合动作和与对磨偶件的摩擦动作。使试件的被磨耗表面能够轮流接受多个不同方向的摩耗作用,从而令试件的被磨耗表面受到均匀的磨损,有利于保持试件被磨耗表面的平整,不会因始终同一方向磨损造成试件的初始磨耗表面与最终磨耗实验结束时的磨耗表面发生过多的形状改变,减少磨耗试验的方向性对实验结果的影响,这对于准确计量试件的磨耗量,特别是用测量材料试样的高度变化评价材料的耐磨性具有重要意义。
另外,在磨耗实验中,由于磨料的存在可以使接受磨耗作用的试件被磨耗以后的表面呈现所需的磨耗状态,即上述的磨耗状态与临床磨耗状态相似,使磨耗实验结果与临床磨损结果更相似。
在现有技术中,材料试件只能在唾液中进行磨耗试验,与补牙材料在口腔环境中主要被食物磨损的实际情况不符。具体的实际情况是,在口腔咀嚼过程中,补牙材料发生的磨耗磨损破坏,主要是在咀嚼时,对侧的牙齿挤压着食物与补有补牙材料的牙齿进行碾压、摩擦。既有上下牙的咬合动作,也有在咬合力作用下,咬合挤压着食物的摩擦动作。
因此,本实施例中,模拟咀嚼式复合树脂材料磨耗试验机通过在对磨偶件上设置配置成模拟食物的磨料,通过试件与对磨偶件之间的相对垂直运动来模拟上下牙的咬合动作,通过试件的磨耗面与对磨偶件之间在模拟咬合应力作用下的相对平行运动,也即对磨偶件相对于试件转动来模拟上下牙在咬合力作用下,咬合挤压食物后的摩擦动作。综上,本申请的模拟咀嚼式复合树脂材料磨耗试验机进一步保证了试件在与人体口腔相类似的环境中进行磨耗试验,提高了复合树脂充填材料的体外磨耗试验结果与其在患者口腔内长期使用后的磨耗结果的相关性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单的介绍。应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为现有技术中的磨损试验机的结构示意图;
图2为本申请实施例提供的模拟咀嚼式复合树脂材料磨耗试验机的主视图;
图3为本申请实施例提供的模拟咀嚼式复合树脂材料磨耗试验机的立体结构示意图;
图4为本申请实施例提供的模拟咀嚼式复合树脂材料磨耗试验机的部分结构示意图;
图5为本申请实施例提供的模拟咀嚼式复合树脂材料磨耗试验机的部分结构剖视图;
图6为图5所示的模拟咀嚼式复合树脂材料磨耗试验机的A部分的局部结构放大图;
图7为本申请实施例提供的模拟咀嚼式复合树脂材料磨耗试验机的另一部分结构剖视图;
图8为复合树脂充填材料经临床口腔内磨耗后的表面形态的电镜图;
图9为复合树脂充填材料经模拟咀嚼式复合树脂材料磨耗试验机磨耗后的表面形态的电镜图;
图10为采用刚性对磨偶件和硬质磨料磨耗后的复合树脂材料表面形态的电镜图。
图标:1’-上颌模拟机构;2’-下颌模拟机构;3’-唾液槽;
1-对磨偶件;2-机架;31-试件夹;32-试件;
41-滑套;411-键槽;42-升降轴;421-滑键;
5-端面凸轮;51-凸起部;61-支撑轮;62-配重;621-固定销;63-旋转套;64-定位杆;65-定位板;66-第一轴承;67-第四轴承;
71-定位盘;72-下轴承套;73-第二轴承;74-弹性件;75-定位珠;76-上轴承套;77-第三轴承;78-推力轴承;
8-磨盘轴;81-磨料挡板;811-磨盘;812-第一边侧;813-第二边侧;82-入口;83-切口;91-主动轴;921-第一齿轮;922-第二齿轮;931-棘爪轮;932-棘轮。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整的描述。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参见图1所示,图1为现有的一种咀嚼模拟磨损试验机的结构示意图,其包括上颌模拟机构1’、下颌模拟机构2’和唾液槽3’,下颌模拟机构2’位于唾液槽3’内,上 颌模拟机构1’位于下颌模拟机构2’的上方,且上颌模拟机构1’和下颌模拟机构2’相对设置,上颌模拟机构1’能够沿自身轴线转动旋转,下颌模拟机构2’能够往复升降。使用时,在上颌模拟机构1’和下颌模拟机构2’分别放置试件(复合树脂充填材料),在下颌模拟机构2’往复升降的过程中实现与上颌模拟机构1’的反复咬合,而且利用上颌模拟机构1’旋转来模拟牙齿咀嚼时的水平研磨;其中,唾液槽3’内用于盛装唾液防止试件间的干摩擦。在现有技术中,上下两组试件是沿固定的轴心进行相对转动磨耗的,使得试件靠近上颌模拟机构轴心位置部分的磨损量小,远离轴心位置部分的磨损量大,从而试件的磨耗表面会出现单方向磨痕,导致磨耗破坏形态具有方向性,进而导致试件表面的磨损量不均匀,不利于对磨耗实验结果的测量。
针对上述问题,参见图2-图10所示,本实施例提供一种模拟咀嚼式复合树脂材料磨耗试验机,该模拟咀嚼式复合树脂材料磨耗试验机包括运动装置、对磨偶件1和机架2,且运动装置和对磨偶件1均连接于机架2;运动装置上连接有配置成固接试件32的试件夹31;需要说明的是,本实施例中,试件32为复合树脂充填材料。运动装置能够令试件夹31相对机架2反复升降以及旋转,且试件夹31相对机架2升降时,试件夹31能够向靠近或者远离对磨偶件1的方向移动;对磨偶件1能够相对机架2旋转;对磨偶件1靠近试件夹31的一侧设置有配置成模拟食物的磨料(图中未显示)。
通过上述的设置,运动装置令试件夹31上升或者下降,令试件夹31向靠近对磨偶件1的方向移动,以实现试件32与对磨偶件1的咬合;并通过运动装置令试件夹31反复升降,以模拟人体的咬合咀嚼运动;当试件32与对磨偶件1咬合后,通过对磨偶件1相对机架2旋转,实现试件32与对磨偶件1之间摩擦。
需要说明的是,当试件夹31位于对磨偶件1的上方时,运动装置令试件夹31下降的过程中,试件夹31向靠近对磨偶件1的方向移动,以实现试件与对磨偶件1的咬合;当试件夹31位于对磨偶件1的下方时,运动装置令试件夹31上升的过程中,试件夹31向靠近对磨偶件1的方向移动,以实现试件与对磨偶件1的咬合。以下以试件夹31位于对磨偶件的上方为例进行说明。
该模拟咀嚼式复合树脂材料磨耗试验机使用时的作业步骤包括如下:S1、将试件32连接于试件夹31上;其中,安装有试件32的试件夹31固定于升降轴41的第一端上;S2、运动装置驱动试件夹31下降,令试件32与对磨偶件1咬合;S3、再令对磨偶件1相对机架2旋转,实现试件32与对磨偶件1之间摩擦;S4、运动装置驱动试件夹31上升,令试件32逐渐远离对磨偶件1,同时通过运动装置驱动试件夹31相对机架2旋转, 从而令试件32旋转一定角度;同时使对磨偶件1旋转一定角度,更换与试件夹31咬合的位置;S5、重复上述S2-S4过程。
对以上作业步骤分析如下:S3步骤之后,实现了对试件32的一次磨耗,通过S4步骤的设置,使试件32每进行一次磨耗过程后,被提升一定高度,脱离摩擦,并旋转一定角度,然后再进行下一次下降咬合动作和与对磨偶件1的摩擦动作。使试件32的被磨耗表面能够轮流接受多个不同方向的摩耗作用,从而令试件32的被磨耗表面受到均匀的磨损,有利于保持试件32被磨耗表面的平整,不会因始终同一方向磨损造成试件32的初始磨耗表面与最终磨耗实验结束时的磨耗表面发生过多的形状改变,能够减少磨耗试验的方向性对实验结果的影响,对于准确计量试件32的磨耗量,特别是用测量材料试样的高度变化评价材料的耐磨性具有重要意义。
另外,由于磨料可以使接受磨耗试验的试件被磨耗以后的表面呈现所需的磨耗状态,即可以使上述的磨耗状态与临床的磨耗状态相似,使磨耗实验结果与临床磨损结果相关性更高。
在现有技术中,材料试件只能在唾液中进行磨耗试验,与补牙材料在口腔环境中主要被食物磨损的实际情况不符。具体的实际情况是,在口腔咀嚼过程中,补牙材料发生的磨耗磨损破坏,主要是在咀嚼时,对侧的牙齿挤压着食物与充填有补牙材料的牙齿进行碾压、摩擦。在这个过程中,既有上下牙的咬合动作,也有在咬合力作用下,被挤压的食物对补牙材料试件的摩擦动作,即所谓三体磨耗方式。
因此,本实施例中,模拟咀嚼式复合树脂材料磨耗试验机通过在对磨偶件1上设置配置成模拟食物的磨料,通过试件32与对磨偶件1之间的相对垂直运动来模拟上下牙的咬合动作,通过试件32的磨耗面与对磨偶件1之间在模拟咬合应力作用下的相对平行运动,也即对磨偶件1相对于试件32的转动来模拟上下牙在咬合力作用下,咬合挤压食物后的摩擦动作。综上,本实施例的模拟咀嚼式复合树脂材料磨耗试验机进一步保证了试件32在与人体口腔相类似的环境中进行磨耗试验,提高了复合树脂充填材料的体外磨耗试验结果与其在患者口腔内长期使用后的磨耗结果的相关性。
其中,需要说明的是,磨料的硬度至关重要。磨料硬度过高,会使在试件32的磨耗表面留下的磨痕,与材料在口腔中的实际磨耗形态有很大的差别;硬度过低,则会影响磨耗效率。
口腔临床的实际情况是食物的硬度远低于充填在患牙龋洞的各种补牙材料。特别是临床上大量应用于修补牙齿龋洞的复合树脂充填材料,由于这种材料是由硬度较低的树 脂基质与高硬度的玻璃粉体填料复合而成,所以通过对口腔中长期使用后的材料磨耗表面观察,发现这种复合材料的磨耗规律是:表层的树脂基质首先因食物的碾压、摩擦而被磨损,使高硬度的填料粒子突出于材料的表面(参见图8所示),这会对填料粒子间的树脂基质起到一定保护作用,减缓被磨损的过程;当树脂基质被磨损到无法稳定填料粒子的程度时,填料粒子会发生失稳脱落,在充填材料的表面留下窝痕;在失去坚硬填料的保护后,树脂基质会被继续磨损,直至又暴露出下面的填料粒子。
优选地,本实施例中,磨料可以包括莫氏硬度为4的萤石粉材料(现有材料),其为一种稳定的无机材料,磨耗实验时在萤石粉材料内加入适量的蒸馏水,形成湿沙状的磨料。按照国家行业标准YB/T 5217-2005《萤石》标准中对萤石精矿FC-98的要求,化学成分要求:CaF2>98%,SiO2<0.6%;粒度要求:<110目,110目至120目之间的含量不少于65%。采用这种磨料对多种口腔充填材料进行体外(模拟咀嚼式复合树脂材料磨耗试验机)磨耗实验的结果,与这些材料在患者口腔内长期使用后的磨耗结果具有相关性。而且,口腔内、体外两种实验结果中,这些材料的耐磨性能的排列顺序是一致的,体外复合树脂充填材料的磨耗表面形态与口腔内的磨耗形态基本相同。
优选地,对磨偶件1为橡胶板。例如,橡胶板的邵氏硬度为60度,厚度为6mm,且材料配方确定。因此,各种不同的牙科材料的试件32都采用相同的、标准的对磨偶件1,在相同的磨耗条件下,比较不同材料的试件32的耐磨耗性能才更具有客观性,符合单一对比原则。
另外,通过对磨偶件1统一采用具有一定硬度的橡胶板,可以更真实地模拟口腔的咀嚼条件。因为牙齿的周围是具有一定缓冲作用的牙周膜,上、下牙齿咀嚼时并不是两个刚性体的碰撞,所以,具有一定硬度的橡胶板既可以起到一定的缓冲作用,又可以传递必要的咀嚼压力。从微观的角度分析,试件32与软而富有弹性的橡胶板表面咬合接触,避免了填料粒子因冲击、碰撞而脱落,同时,橡胶板表面的弹性变形能够更充分地向填料粒子之间传递压力,增强磨料粒子对树脂基质的磨耗作用。因此,本实施例中,复合树脂充填材料磨耗后的微观形态与口腔内食物对同类材料磨损的形态也是一致的(参见图9所示)。而采用刚性对磨偶件和硬质磨料进行磨耗实验,得到的复合树脂材料磨耗后的微观形态则完全不同(参见图10所示)。
在现有技术中,由于上下两组试件的材料相同,同种材料的试件相磨的结果,无法评价和比较不同材料之间耐磨耗性能的差异。因为,试件的对磨偶件也是试件,相同的材料试样互相摩擦,缺乏评价不同材料耐磨耗结果的统一标准。
本实施例通过试件与橡胶板对磨,并且有模拟食物的磨料介于二者之间。各种不同的牙科材料的试件都采用相同的、标准的对磨偶件和磨料,并且在更换试件的同时,更新对磨偶件和磨料,使所有试件在相同的磨耗条件下得到的磨耗实验结果,能够更客观地比较不同试件材料的耐磨耗性能。
优选地,参见图2所示,运动装置包括滑套41和升降轴42,且滑套41与机架2转动连接;滑套41上开设有键槽411,且键槽411沿滑套41的轴向延伸;升降轴42上设置有滑键421,且滑键421与键槽411配合,配置成令升降轴42能够随滑套41转动;沿升降轴42的轴线方向,升降轴42包括相对应的第一端和第二端,试件夹31设置于第一端。也就是说,第二端位于第一端的上方。
通过上述的设置,当滑套41相对于机架2转动时,由于升降轴42上的滑键421与滑套41上的键槽411配合,进而能够使滑套41带动升降轴42相对于机架2转动,因而升降轴42的第一端上的试件夹31随之转动,实现了使试件夹31上的试件随之转动一定角度。
可选地,滑套41可以通过轴承与机架2连接,实现滑套41能够相对于机架2转动。
优选地,滑键421能够沿键槽411的延伸方向移动,同时,键槽411的长度需要大于滑键421的长度;升降轴42的第二端固接有端面凸轮5,且端面凸轮5的凸起部51靠近试件夹31;机架2上固接有支撑轮61,且支撑轮61设置于端面凸轮5的下方,且支撑轮61与凸起部51配合,配置成令升降轴42反复升降。
这样的设置,当升降轴42转动时,能够带动端面凸轮5转动,当凸起部51与支撑轮61接触时,支撑轮61可以对凸起部51进行支撑,从而可以支撑凸起部51上升,当凸起部51转动至逐渐与支撑轮61脱离时,凸起部51逐渐下降,因此,端面凸轮5转动一周的过程中,实现了升降轴42的一次升降;另外,由于滑键421能够沿键槽411的延伸方向移动,为升降轴42在滑套41内沿轴线方向升降提供了可能。
需要说明的是,端面凸轮5为其端面具有凸起部51的凸轮,为现有技术,在此不再赘述。
可选地,滑套41上设置有滑键,升降轴42上开设有键槽,滑键与键槽配合,令升降轴42能够随滑套41转动,键槽的长度大于滑键的长度,可以为升降轴42的升降提供余量。
优选地,参见图1和图2所示,本实施例中,模拟咀嚼式复合树脂材料磨耗试验机还包括配重62;配重62固接于端面凸轮5远离试件夹31的一侧。
可选地,参见图2所示,配重62通过固定销621固定于端面凸轮5上。
这样的设置,配重62能够令端面凸轮5始终紧紧地抵在支撑轮61的上方,进而能够保证端面凸轮5带动升降轴42稳定地升降。同时,由于配重62的设置,也可以为试件32与对磨偶件1的咬合提供正压力,来模拟人体牙齿的咬合力,其中,为试件32提供咬合力的部件还可以包括升降轴42、端面凸轮5和固定销621。
优选地,参见图2和图7所示,模拟咀嚼式复合树脂材料磨耗试验机还包括旋转套63;旋转套63通过轴承组连接于升降轴42的第一端,试件夹31固接于旋转套63;旋转套63的周面上沿周向均匀固接有多个定位杆64,且定位杆64的轴线方向与旋转套63的轴线方向垂直;机架2上固接有定位板65;升降轴42下降时,能够带动旋转套63及定位杆64下降,配置成令定位杆64与定位板65抵接,从而使旋转套63及定位杆64停转。
该模拟咀嚼式复合树脂材料磨耗试验机作业过程包括如下:滑套41相对于机架2转动时,带动升降轴42相对于机架2转动,从而端面凸轮5能够转动,实现了升降轴42的反复升降;其中,升降轴42下降的过程中,旋转套63和试件夹31会随之下降,令试件32与其下方的对磨偶件1咬合,此时,旋转套63下降至其周边固接的定位杆64与定位板65抵接,当定位杆64被阻挡,此时旋转套63停转,在轴承组的作用下,升降轴42继续转动,也就是说,试件32与其下方的对磨偶件1咬合时,试件32不转;随着端面凸轮5继续转动,升降轴42上升,直到定位杆64脱离定位板65,在轴承组的摩擦力作用下,升降轴42带动旋转套63继续转动,因此试件夹31转动,直到升降轴42再次下降,直至定位杆64再次与定位板65抵接,此时,试件32在试件夹31的作用下旋转了一定角度后停转,并与对磨偶件1咬合,重复以上过程,实现了试件32的被磨耗表面轮流接受多个不同方向的摩耗作用,从而令试件32的被磨耗表面受到均匀的磨损。
其中,试件32与其下方的对磨偶件1咬合时,试件32不转,也即此时试件32只对对磨偶件1施加压力,排除试件32旋转带来的干扰,保证试件32对对磨偶件1的作用力的独立性,以方便地对试件32施加的压力进行控制,从而能够有效地保证试件32施加的压力在规定的压力范围之内。同时,在试件32与其下方的对磨偶件1咬合时,由于磨盘轴8的转动是由棘爪轮931间歇式推动棘轮932完成的,因此与磨盘轴8固定连接的磨盘811及固定连接于其表面的对磨偶件1,也是间歇运动的。即在试件32与对磨偶件1咬合时,对磨偶件1不转动,试件32下降停止,咬合动作完成后,对磨偶件1 才转动一个角度,实现与试件32的摩擦;然后,在试件32上升,与对磨偶件1脱离咬合后,下一个咬合动作开始前,对磨偶件1再转动一个角度,准备接受下一次咬合动作。
可选地,轴承组包括多个第一轴承66和若干个第四轴承67,例如,参见图7所示,轴承组包括两个第一轴承66和一个第四轴承67,可选地,第一轴承66为推力轴承,第四轴承67为圆锥滚子轴承。通过一轴承66和第四轴承67的上述设置既能够将升降轴42的压力传递给旋转套63,又能够保证升降轴42与旋转套63之间可以相对转动。
在旋转套63不承受外部阻力时,旋转套63在摩擦力的作用下可以随升降轴42同步转动。设置好定位板65和定位杆64的相对位置后,便能够控制旋转套63在每个升降周期的旋转角度。
需要说明的是,可选地,定位杆64的数量为N,例如N为两个、三个、四个或者五个,相邻两个定位杆64之间的角度为360°/N,因此,上述“一定角度”为360°/N,也即,升降轴42每升降一次,试件32转动角度为360°/N,实现了对试件32在N个方向的均匀磨耗。
优选地,参见图5和图7所示,该模拟咀嚼式复合树脂材料磨耗试验机还包括磨盘轴8;磨盘轴8转动连接于机架2,对磨偶件1固接于磨盘轴8。也就是说,通过磨盘轴8相对于机架2转动,从而驱动对磨偶件1相对于机架2转动。
优选地,参见图7所示,还包括磨盘811,磨盘811固接于磨盘轴8,且使对磨偶件1通过磨盘811与磨盘轴8固接。
优选地,参见图4和图7所示,该模拟咀嚼式复合树脂材料磨耗试验机还包括磨料挡板81,且磨料挡板81固接于机架2;沿磨料挡板81的长度方向,磨料挡板81包括相对应的第一边侧812和第二边侧813;沿磨料挡板81的长度方向,磨料挡板81呈螺旋线状延伸,配置成令磨料挡板81内形成腔体;第一边侧812和第二边侧813之间形成入口82,入口82与腔体连通,且第一边侧812相比于第二边侧813更靠近腔体的中心;磨料挡板81罩设于对磨偶件1上,且位于靠近对磨偶件1边缘的一侧,入口82与试件夹31相对;对磨偶件1转动时,第一边侧812位于第二边侧813的旋转下游;磨料挡板81靠近第一边侧812的一侧开设有切口83,且切口83与试件夹31相对设置,切口83与对磨偶件1靠近磨料挡板81的一面平行,也即,磨料挡板81靠近第一边侧812的一侧与对磨偶件1表面具有一定的距离。
也即,参见图4所示,磨料挡板81的结构呈螺旋锥面形状,且腔体靠近第一边侧812的空间小于腔体靠近第二边侧813的空间。
当试件32咬合于对磨偶件1时,试件32首先压合于呈湿沙状的磨料,令磨料以压合处为中心的边缘被掀起,进而能够随着对磨偶件1的摩擦转动被带入位于靠近对磨偶件1边缘的入口82内,从而进入腔体,实现了对磨料的收集;磨料在腔体内随对磨偶件1转动时,由于第一边侧812位于第二边侧813的旋转下游,因此磨料从第二边侧813转动至第一边侧812,由于第一边侧812相对于第二边侧813更靠近腔体的中心,因此从第二边侧813到第一边侧812,磨料挡板81与对磨偶件1之间的空间逐渐减小。综上,磨料从第二边侧813转动至第一边侧812的过程中,磨料逐渐被越来越低的磨料挡板81挤压,即实现了对磨料的搅拌,并从靠近第一边侧812的切口83处输出,由于切口83与对磨偶件1的表面平行,因此磨料能够呈被铺平状态输出;由于切口83与试件夹31相对设置,因此被铺平的磨料再输出至试件夹31和试件32下,被试件32咬合、并在对磨偶件1旋转的过程中被再次摩擦。
本实施例的模拟咀嚼式复合树脂材料磨耗试验机,在对磨偶件1旋转的过程中,磨料挡板81自动将前一次摩擦时被挤开的磨料,以及附着在对磨偶件1上的磨料收集、挤压、搅拌,并铺平为一定高度,随着对磨偶件1的旋转,准确输送到试件32下落处。实现了磨料的均匀化处理,因此磨料中的颗粒不会发生自然沉降,实现了磨料更稳定以及一致性地被铺展,使磨料的作用能充分发挥。保证了试件32每一次与对磨偶件1的咬合以及摩擦都在相同的磨料条件下进行,令磨料对试件32的破坏作用都是一致且充分的,并且所有磨料均能够充分参与材料试样磨耗的全过程。
综上,磨料挡板的作用包括:一方面将被咬合挤散的磨料收集、混合、挤压,起到搅拌的作用,使磨料得到充分、均匀的利用;另一方面,从第一边侧812挤出的磨料高度一致,保证每一次咬合、摩擦都在相同的磨耗条件下进行。
另外,由于对磨偶件1采用橡胶板,橡胶板表面与磨料之间产生的摩擦力还可以起到稳定磨料的作用,保证磨料与对磨偶件1之间不发生滑动,使磨料对试件32的磨耗更有效。
优选地,参见图2所示,该模拟咀嚼式复合树脂材料磨耗试验机还包括驱动装置;驱动装置包括主动轴91、齿轮传动组件、棘轮传动组件和驱动部件(图中未显示);驱动部件驱动连接主动轴91,能够令主动轴91转动;主动轴91通过齿轮传动组件驱动连接滑套41,且主动轴91通过棘轮传动组件驱动连接磨盘轴8。
具体地,参见图2所示,齿轮传动组件包括相啮合的第一齿轮921和第二齿轮922,第一齿轮921固接于主动轴91,第二齿轮922固接于滑套41,通过驱动部件驱动主动 轴91转动,进而带动第一齿轮921转动,且第一齿轮921通过第二齿轮922驱动滑套41转动。
棘轮传动组件包括相配合的棘爪轮931和棘轮932,棘爪轮931固接于主动轴91,棘轮932固接于磨盘轴8,通过驱动部件驱动主动轴91转动,进而带动棘爪轮931转动,且棘爪轮931拨动棘轮932驱动磨盘轴8均匀间歇转动。
通过磨盘轴8均匀间歇转动,来带动对磨偶件1均匀间歇转动,更真实地模拟人体口腔内牙齿在每一次咬合后的摩擦运动。
可选地,驱动部件可以为电机或者减速电机,但是不限于以上形式,在此不进行限制,其只要能够实现驱动主动轴91转动即可。
优选地,参见图5和图6所示,该模拟咀嚼式复合树脂材料磨耗试验机还包括定位盘71,定位盘71固接于磨盘轴8;机架2上固接有下轴承套72,下轴承套72通过第二轴承73与磨盘轴8连接;定位盘71上固接有弹性件74,弹性件74靠近下轴承套72的一侧固接有定位珠75;下轴承套72上开设有呈圆锥形的定位孔,且定位珠75的部分位于定位孔内,弹性件74令定位珠75始终紧紧地抵接于定位孔内;定位孔有多个,多个定位孔在下轴承套72上呈圆周均匀布置;相邻定位孔之间的角度与棘轮传动组件的间歇转动角度相等。
当磨盘轴8间歇转动时,定位盘71随之转动,且下轴承套72不转,若磨盘轴8的转动角度不到位时,此时定位珠75不能转动至下一个定位孔内的中心位置,例如,定位珠75卡设于定位孔内,且抵接于圆锥形的侧面上。此时,由于定位孔的锥面的导向作用,将定位珠75强制压进定位孔内,且位于定位孔的中心位置,从而带动磨盘轴8转动,为磨盘轴8的转动提供找正作用,实现对磨盘轴8的精准定位。
优选地,参见图5所示,还包括上轴承套76,上轴承套76固接于机架2,且上轴承套76通过第三轴承77与磨盘轴8转动连接。通过推力轴承78承接试件32与对磨偶件1咬合时的正压力并减少磨盘轴8转动时因轴向压力产生的摩擦力。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换,包括采用步进电机或伺服电机等数字化控制单元替代齿轮、棘轮、挡板等传动及定位机构;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的范围。
工业实用性
本申请实施例提供的一种模拟咀嚼式复合树脂材料磨耗试验机,能够保证材料试件被磨耗的表面形态与材料在人体口腔内被磨耗的表面形态相类似;而且,多种材料在这两种不同的环境中进行磨耗试验的结果显示,这些材料的耐磨耗性能优劣排列顺序在两种环境中是一致的。因此,提高了复合树脂充填材料的体外磨耗试验结果与其在患者口腔内长期使用后的磨耗结果的相关性,保证了通过体外实验评价此类补牙材料在口腔内耐磨性能的可靠性。

Claims (18)

  1. 一种模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,包括运动装置、对磨偶件(1)和机架(2),且所述运动装置和所述对磨偶件(1)均连接于所述机架(2);
    所述运动装置上连接有配置成固接试件(32)的试件夹(31);
    所述运动装置能够令所述试件夹(31)相对所述机架(2)反复升降以及旋转,且所述试件夹(31)相对所述机架(2)升降时,所述试件夹(31)能够向靠近或者远离所述对磨偶件(1)的方向移动;所述对磨偶件(1)能够相对所述机架(2)旋转;所述对磨偶件(1)靠近所述试件夹(31)的一侧设置有配置成模拟食物的磨料。
  2. 根据权利要求1所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,所述磨料包括莫氏硬度为4的萤石粉和添加于所述萤石粉内的蒸馏水。
  3. 根据权利要求1或2所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,所述对磨偶件(1)为橡胶板。
  4. 根据权利要求1-3任一项所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,所述运动装置包括滑套(41)和升降轴(42),且所述滑套(41)与所述机架(2)转动连接;
    所述滑套(41)上开设有键槽(411),且所述键槽(411)沿所述滑套(41)的轴向延伸;所述升降轴(42)上设置有滑键(421),且所述滑键(421)与所述键槽(411)配合,配置成令所述升降轴(42)能够随所述滑套(41)转动;
    沿所述升降轴(42)的轴线方向,所述升降轴(42)包括相对应的第一端和第二端,所述试件夹(31)设置于所述第一端。
  5. 根据权利要求4所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,所述滑键(421)能够沿所述键槽(411)的延伸方向移动;
    所述升降轴(42)的第二端固接有端面凸轮(5),且所述端面凸轮(5)的凸起部(51)靠近所述试件夹(31);
    所述机架(2)上固接有支撑轮(61),且所述支撑轮(61)设置于所述端面凸轮(5)的下方,且所述支撑轮(61)与所述凸起部(51)配合,配置成令所述升降轴(42)反复升降。
  6. 根据权利要求5所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,还包括配重(62);
    所述配重(62)固接于所述端面凸轮(5)远离所述试件夹(31)的一侧。
  7. 根据权利要求5或6所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,还包括旋转套(63);
    所述旋转套(63)通过轴承组连接于所述升降轴(42)的第一端,能够相对升降轴(42)转动,所述试件夹(31)固接于所述旋转套(63);
    所述旋转套(63)的周面上沿周向均匀固接有多个定位杆(64),且所述定位杆(64)的轴线方向与所述旋转套(63)的轴线方向垂直;
    所述机架(2)上固接有定位板(65);
    所述升降轴(42)下降时,能够通过所述旋转套(63)带动所述定位杆(64)下降,以令所述定位杆(64)与所述定位板(65)抵接,配置成使所述定位杆(64)停转。
  8. 根据权利要求4-7任一项所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,还包括磨盘轴(8);
    所述磨盘轴(8)转动连接于所述机架(2),所述对磨偶件(1)固接于所述磨盘轴(8)。
  9. 根据权利要求8所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,还包括磨盘(811);
    所述磨盘(811)固接于所述磨盘轴(8)上,所述对磨偶件(1)配置成通过所述磨盘(811)与所述磨盘轴(8)固接。
  10. 根据权利要求8或9所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,还包括磨料挡板(81),且所述磨料挡板(81)固接于所述机架(2);
    沿所述磨料挡板(81)的长度方向,所述磨料挡板(81)包括相对应的第一边侧(812)和第二边侧(813);沿所述磨料挡板(81)的长度方向,所述磨料挡板(81)呈螺旋线状延伸,配置成令所述磨料挡板(81)内形成腔体;所述第一边侧(812)和所述第二边侧(813)之间形成入口(82),所述入口(82)与所述腔体连通,且所述第一边侧(812)相比于所述第二边侧(813)更靠近所述腔体的中心;
    所述磨料挡板(81)罩设于所述对磨偶件(1)上,且位于靠近所述对磨偶件(1)边缘的一侧,所述入口(82)与所述试件夹(31)相对;所述对磨偶件(1)转动配置成使所述第一边侧(812)位于所述第二边侧(813)的旋转下游;
    所述磨料挡板(81)靠近所述第一边侧(812)的一侧开设有切口(83),且所述切口(83)与所述试件夹(31)相对设置,所述切口(83)与所述对磨偶件(1)靠近所述磨料挡板(81)的一面平行。
  11. 根据权利要求10所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,所述磨料挡板(81)靠近所述第一边侧(812)的一侧与所述对磨偶件(1)表面具有间距。
  12. 根据权利要求10或11所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,所述磨料挡板(81)的结构呈螺旋锥面形状,所述腔体靠近所述第一边侧(812)的空间小于所述腔体靠近所述第二边侧(813)的空间。
  13. 根据权利要求8-12任一项所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,还包括驱动装置;
    所述驱动装置包括主动轴(91)、齿轮传动组件、棘轮传动组件和驱动部件;
    所述驱动部件驱动连接所述主动轴(91),所述驱动部件配置成令所述主动轴(91)转动;所述主动轴(91)通过所述齿轮传动组件驱动连接所述滑套(41),且所述主动轴(91)通过所述棘轮传动组件驱动连接所述磨盘轴(8)。
  14. 根据权利要求13所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,所述齿轮传动组件包括相啮合的第一齿轮(921)和第二齿轮(922);
    所述第一齿轮(921)与所述主动轴(91)固定连接,所述第二齿轮(922)与所述滑套(41)固定连接,所述驱动部件配置成通过驱动所述主动轴(91)带动所述第一齿轮(921)转动,所述第一齿轮(921)配置成通过所述第二齿轮(922)驱动所述滑套(41)转动。
  15. 根据权利要求13或14所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,所述棘轮传动组件包括相配合的棘爪轮(931)和棘轮(932);
    所述棘爪轮(931)与所述主动轴(91)固定连接,所述棘轮(932)与所述磨盘轴(8)固定连接,所述驱动部件配置成通过驱动所述主动轴(91)带动所述棘爪轮(931)转动,所述棘爪轮(931)配置成拨动所述棘轮(932)驱动所述磨盘轴(8)间歇转动。
  16. 根据权利要求13-15任一项所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,还包括定位盘(71),且所述定位盘(71)固接于所述磨盘轴(8);
    所述机架(2)上固接有下轴承套(72),且所述下轴承套(72)通过第二轴承(73)与所述磨盘轴(8)连接;
    所述定位盘(71)上固接有弹性件(74),所述弹性件(74)靠近所述下轴承套(72)的一侧固接有定位珠(75);所述下轴承套(72)上开设有呈圆锥形的定位孔,且所述定位珠(75)的部分位于所述定位孔内,所述弹性件(74)令所述定位珠(75)始终紧紧地抵接于所述定位孔内;
    所述定位孔有多个,且多个所述定位孔在所述下轴承套(72)上呈圆周均布;
    相邻所述定位孔之间的角度与所述棘轮传动组件的间歇转动角度相等。
  17. 根据权利要求16所述的模拟咀嚼式复合树脂材料磨耗试验机,其特征在于,还包括上轴承套(76),所述上轴承套(76)固接于所述机架(2)上,且所述上轴承套(76)通过第三轴承(77)与所述磨盘轴(8)转动连接。
  18. 一种基于权利要求1-17任一项所述的模拟咀嚼式复合树脂材料磨耗试验机的操作方法,其特征在于,包括以下步骤:
    将试件连接于试件夹上;
    运动装置驱动试件夹下降,令试件与对磨偶件咬合;
    令对磨偶件相对机架旋转,配置成试件与对磨偶件之间摩擦;
    运动装置驱动试件夹上升,令试件逐渐远离对磨偶件,同时通过运动装置驱动试件夹相对机架旋转,令试件旋转一定角度;配置成对磨偶件旋转一定角度,更换与试件咬合的位置;
    重复上述步骤。
PCT/CN2019/125751 2019-07-02 2019-12-16 模拟咀嚼式复合树脂材料磨耗试验机及其操作方法 WO2021000529A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019000100.0T DE112019000100B4 (de) 2019-07-02 2019-12-16 Abriebprüfmaschine zur Prüfung eines Verbundharzmaterials durch Kausimulation und deren Bedienungsverfahren

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201921024289.5 2019-07-02
CN201910591327.3 2019-07-02
CN201910591327.3A CN110186801A (zh) 2019-07-02 2019-07-02 模拟咀嚼式复合树脂材料磨耗试验机
CN201921024289.5U CN210136148U (zh) 2019-07-02 2019-07-02 模拟咀嚼式复合树脂材料磨耗试验机

Publications (1)

Publication Number Publication Date
WO2021000529A1 true WO2021000529A1 (zh) 2021-01-07

Family

ID=74101069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125751 WO2021000529A1 (zh) 2019-07-02 2019-12-16 模拟咀嚼式复合树脂材料磨耗试验机及其操作方法

Country Status (2)

Country Link
DE (1) DE112019000100B4 (zh)
WO (1) WO2021000529A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697594A (zh) * 2021-01-29 2021-04-23 何顺 一种玻璃球试验设备
CN112964539A (zh) * 2021-01-30 2021-06-15 陈哲 一种齿科用红蜡片检测装置
CN113567285A (zh) * 2021-07-20 2021-10-29 安徽理工大学 一种超磁致伸缩驱动器使用损耗试验装置及其试验方法
CN116399739A (zh) * 2023-06-02 2023-07-07 四川蜀道建筑科技有限公司 混凝土制品强度检测设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113551975A (zh) * 2021-07-29 2021-10-26 苏州热工研究院有限公司 适用于冲蚀性能测试的试样的夹持装置及其制备方法及旋转圆盘式冲蚀设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19614670A1 (de) * 1996-04-13 1997-10-16 Rosentritt Martin Dipl Ing Fh Gerät zur Simulation des Kauorgans (Kausimulator)
CN2708314Y (zh) * 2004-07-06 2005-07-06 林宝山 一种咀嚼模拟疲劳试验机
CN201289449Y (zh) * 2008-11-17 2009-08-12 何姗丹 一种口腔咀嚼磨耗测试机
CN103471944A (zh) * 2013-09-13 2013-12-25 中国人民解放军第四军医大学 口腔修复体疲劳试验机
US20160327537A1 (en) * 2014-01-03 2016-11-10 Korea Food Research Institute Probe device for analyzing physical properties of food, having teeth form
CN106644798A (zh) * 2017-03-09 2017-05-10 吉林大学 一种咀嚼模拟磨损试验机
CN206523390U (zh) * 2017-03-09 2017-09-26 吉林大学 一种咀嚼模拟磨损试验机
CN108072582A (zh) * 2018-01-24 2018-05-25 济南大学 并联式义齿摩擦试验机及测试摩擦磨损的方法
CN108732086A (zh) * 2018-08-28 2018-11-02 南京林业大学 一种仿生咀嚼物料破碎实验检测装置
CN110186801A (zh) * 2019-07-02 2019-08-30 北京大学口腔医学院 模拟咀嚼式复合树脂材料磨耗试验机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210136148U (zh) 2019-07-02 2020-03-10 北京大学口腔医学院 模拟咀嚼式复合树脂材料磨耗试验机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19614670A1 (de) * 1996-04-13 1997-10-16 Rosentritt Martin Dipl Ing Fh Gerät zur Simulation des Kauorgans (Kausimulator)
CN2708314Y (zh) * 2004-07-06 2005-07-06 林宝山 一种咀嚼模拟疲劳试验机
CN201289449Y (zh) * 2008-11-17 2009-08-12 何姗丹 一种口腔咀嚼磨耗测试机
CN103471944A (zh) * 2013-09-13 2013-12-25 中国人民解放军第四军医大学 口腔修复体疲劳试验机
US20160327537A1 (en) * 2014-01-03 2016-11-10 Korea Food Research Institute Probe device for analyzing physical properties of food, having teeth form
CN106644798A (zh) * 2017-03-09 2017-05-10 吉林大学 一种咀嚼模拟磨损试验机
CN206523390U (zh) * 2017-03-09 2017-09-26 吉林大学 一种咀嚼模拟磨损试验机
CN108072582A (zh) * 2018-01-24 2018-05-25 济南大学 并联式义齿摩擦试验机及测试摩擦磨损的方法
CN108732086A (zh) * 2018-08-28 2018-11-02 南京林业大学 一种仿生咀嚼物料破碎实验检测装置
CN110186801A (zh) * 2019-07-02 2019-08-30 北京大学口腔医学院 模拟咀嚼式复合树脂材料磨耗试验机

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697594A (zh) * 2021-01-29 2021-04-23 何顺 一种玻璃球试验设备
CN112697594B (zh) * 2021-01-29 2024-04-05 南京智悟智能科技有限责任公司 一种玻璃球试验设备
CN112964539A (zh) * 2021-01-30 2021-06-15 陈哲 一种齿科用红蜡片检测装置
CN113567285A (zh) * 2021-07-20 2021-10-29 安徽理工大学 一种超磁致伸缩驱动器使用损耗试验装置及其试验方法
CN113567285B (zh) * 2021-07-20 2024-01-26 安徽理工大学 一种超磁致伸缩驱动器使用损耗试验装置及其试验方法
CN116399739A (zh) * 2023-06-02 2023-07-07 四川蜀道建筑科技有限公司 混凝土制品强度检测设备
CN116399739B (zh) * 2023-06-02 2023-09-22 四川蜀道建筑科技有限公司 混凝土制品强度检测设备

Also Published As

Publication number Publication date
DE112019000100B4 (de) 2023-05-17
DE112019000100T5 (de) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2021000529A1 (zh) 模拟咀嚼式复合树脂材料磨耗试验机及其操作方法
Kelly Fatigue failure in denture base polymers
CN104833603B (zh) 一种复合运动式人工髋关节摩擦磨损实验装置
CN210136148U (zh) 模拟咀嚼式复合树脂材料磨耗试验机
CN110186801A (zh) 模拟咀嚼式复合树脂材料磨耗试验机
JP5406193B2 (ja) 哺乳動物の咀嚼動作を擬態する装置
CN106644798A (zh) 一种咀嚼模拟磨损试验机
US20190096288A1 (en) Food Swallowing Simulating Device
CN104749012A (zh) 烟煤样品块高效制作设备
Maier et al. Evaluation of wear behavior of dental restorative materials against zirconia in vitro
CN206523390U (zh) 一种咀嚼模拟磨损试验机
CN217091435U (zh) 一种用于中草药原料的揉搓装置
CN113925535B (zh) 一种能便于调节功率的无线超声骨密度仪
WO2021000480A1 (zh) 一种食物模拟吞咽装置和食物模拟吞咽方法
CN109374461B (zh) 一种婴儿纸尿裤的耐磨性测试装置
DE19614670A1 (de) Gerät zur Simulation des Kauorgans (Kausimulator)
DE202020100966U1 (de) Abriebprüfmaschine zur Prüfung eines Verbundharzmaterials durch Kausimulation
CN210014734U (zh) 一种内径测量装置
CN207923636U (zh) 并联式义齿摩擦试验机
CN206696138U (zh) 连续型砼贯入阻力仪
CN205412831U (zh) 一种血站化验用便捷式血液混匀机
Li et al. Wear resistance of bulk-fill dental resins cured by different light-curing settings
CN103226911B (zh) 一种用于口腔修复材料耐磨性测试的模拟刷牙装置
CN212658529U (zh) 一种混凝土试块压力检测装置
CN210571377U (zh) 一种自动化扭矩测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935793

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19935793

Country of ref document: EP

Kind code of ref document: A1