WO2021000173A1 - 一种传输线 - Google Patents

一种传输线 Download PDF

Info

Publication number
WO2021000173A1
WO2021000173A1 PCT/CN2019/094073 CN2019094073W WO2021000173A1 WO 2021000173 A1 WO2021000173 A1 WO 2021000173A1 CN 2019094073 W CN2019094073 W CN 2019094073W WO 2021000173 A1 WO2021000173 A1 WO 2021000173A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground layer
blind hole
signal line
line
transmission line
Prior art date
Application number
PCT/CN2019/094073
Other languages
English (en)
French (fr)
Other versions
WO2021000173A9 (zh
Inventor
陈勇利
王建安
许心影
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声精密制造科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声精密制造科技(常州)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/094073 priority Critical patent/WO2021000173A1/zh
Priority to CN201910605901.6A priority patent/CN110265761B/zh
Publication of WO2021000173A1 publication Critical patent/WO2021000173A1/zh
Publication of WO2021000173A9 publication Critical patent/WO2021000173A9/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/18Waveguides; Transmission lines of the waveguide type built-up from several layers to increase operating surface, i.e. alternately conductive and dielectric layers

Definitions

  • the invention relates to the field of signal transmission, in particular to a transmission line.
  • the existing coaxial transmission line layout requires a certain amount of space and has certain limitations for the high-speed development of terminal products.
  • the use of terminal products is becoming more and more widespread.
  • the existing planar transmission lines generally have the problems of sudden change in difference loss and signal leakage.
  • the object of the present invention is to provide a transmission line that reduces the problems of differential loss mutation and signal leakage.
  • the present invention provides a transmission line including a first ground layer, a second ground layer spaced apart from the first ground layer, and between the first ground layer and the second ground layer
  • the transmission line further includes a microstrip signal line for transmitting signals, a conductive blind hole electrically connected to the microstrip signal line, and a stripline signal line, the stripline signal
  • the wire is electrically connected to the microstrip signal line through the conductive blind hole, the first ground layer, the third ground layer, and the second ground layer are sequentially spaced apart, and the second ground layer is
  • An escape groove is provided, the strip line signal line is located in the escape groove, the microstrip signal line is located on the side of the third ground layer away from the first ground layer, and the conductive blind hole It is located between the second ground layer and the third ground layer, and one end of the conductive blind hole extends into the escape groove, and the first ground layer is provided with a conductive blind hole extending toward the conductive blind hole and A tuning blind hole with parasitic capacitance is formed between
  • the transmission line further includes a first substrate connected between the first ground layer and the third ground layer, and the strip line signal line is stacked on the first substrate. A side away from the first ground layer, the blind tuning hole extends into the first substrate.
  • the transmission line further includes a second substrate connected between the second ground layer and the third ground layer, and the microstrip signal line is stacked on the second substrate away from On one side of the third ground layer, the strip line signal line is located between the first substrate and the second substrate, and one end of the conductive blind hole passes through the second substrate and The strip line signal line is connected.
  • the transmission line further includes a plurality of ground vias arranged at intervals, and one end of the ground vias respectively pass through the third ground layer and the first substrate and the first ground layer.
  • the second ground layer is electrically connected to the first ground layer through the ground via.
  • the first ground layer, the second ground layer, and the third ground layer are arranged in parallel with each other at intervals.
  • the blind tuning hole is directly opposite to the conductive blind hole.
  • the transmission line further includes two pads respectively provided at both ends of the conductive blind hole, and the two pads are respectively connected to the microstrip line signal line and the strip line signal line.
  • the beneficial effect of the present invention is that by setting a tuning blind hole on the first ground layer, the tuning blind hole extends toward the conductive blind hole and forms a parasitic capacitance between the conductive blind hole, and the parasitic capacitance is used to adjust the conductive blind hole. Impedance, reducing the problem of differential loss mutation and signal leakage at the conductive blind hole, and improving the reliability of the transmission line.
  • FIG. 1 is a schematic structural diagram of a transmission line provided by an embodiment of the present invention
  • Fig. 2 is a partial structural diagram of Fig. 1;
  • Figure 3 is a sectional view taken along line A-A of Figure 2;
  • Figure 4 is a partial enlarged view of B in Figure 3;
  • FIG. 5 is an exploded schematic diagram of a transmission line provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the relationship between the reflection coefficient and the height of the tuning blind hole provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the relationship between the transmission coefficient and the height of the tuning blind hole provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the relationship between the transmission impedance and the height of the tuning blind hole provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the relationship between the reflection coefficient and the diameter of the tuning blind hole provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the relationship between the transmission coefficient and the diameter of the tuning blind hole provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the relationship between the transmission impedance and the diameter of the tuning blind hole provided by an embodiment of the present invention.
  • an element when an element is referred to as being “fixed on” or “disposed on” another element, the element may be directly on the other element or there may be a centering element at the same time.
  • an element When an element is referred to as being “connected” to another element, it can be directly connected to the other element or an intermediate element may also exist.
  • a transmission line 100 provided in accordance with an embodiment of the present invention includes a first ground layer 10, a second ground layer 20, a third ground layer 30, a microstrip signal line 40, and The shape line signal line 50, the conductive blind hole 60, the first base material 70 and the second base material 80, the first ground layer 10 and the second ground layer 20 are arranged in parallel at intervals, and the third ground layer 30 is located between the first ground layer 10 and Between the second ground layer 20 and parallel to the first ground layer 10, the first substrate 70 is located between the first ground layer 10 and the third ground layer 30, and the second substrate 80 is located between the second ground layer 20 and the third ground layer.
  • the length of the second ground layer 20 is less than the length of the second substrate 80, and the second ground layer 20 and the microstrip signal line 40 are both connected to the second substrate 80 away from the third ground layer 30.
  • the conductive blind hole 60 penetrates the second substrate 80 and the two ends are respectively electrically connected to the microstrip signal line 40 and the strip line signal line 50, and the microstrip signal line 40 and the strip line signal line 50 are spaced and parallel up and down.
  • the blind tuning hole 11 can form a parasitic capacitance between the blind tuning hole 11 and the conductive blind hole 60.
  • the parasitic capacitance can adjust the impedance near the conductive blind hole 60, thereby reducing the difference and signal leakage at the conductive blind hole 60. The problem has improved the reliability of the transmission line 100.
  • the transmission line 100 is divided from top to bottom into a first layer composed of a microstrip signal line 40 and a second ground layer 20, a second layer formed by a second substrate 80, and a second layer.
  • the third layer composed of the three ground layers 30 and the strip line signal line 50, the fourth layer formed by the first substrate 70, and the fifth layer formed by the first ground layer 10, the microstrip line signal line 40 and the microstrip line
  • the third ground layer 30 forms the microstrip line part of the transmission line 100
  • the strip line signal line 50 forms the strip line part of the transmission line 100 with the first ground layer 10 below it and the second ground layer 20 above it.
  • the microstrip line part is electrically connected to the strip line part through the conductive blind hole 60.
  • the material of the first substrate 70 and the second substrate 80 may be PI (Polyimide), PTFE (Poly tetra fluoroethylene, polytetrafluoroethylene), PEEK (Polyetherether ketone, Polyetheretherketone) and LCP (Liquid Crystal Polymer, liquid crystal polymer).
  • PI Polyimide
  • PTFE Poly tetra fluoroethylene, polytetrafluoroethylene
  • PEEK Polyetherether ketone, Polyetheretherketone
  • LCP Liquid Crystal Polymer, liquid crystal polymer
  • the conductive blind hole 60 is provided with a pad 61 at both ends, the microstrip signal line 40 and the strip line signal line 50 are electrically connected to the two pads 61, the conductive blind hole
  • Both the blind tuning hole 60 and the blind tuning hole 11 are preferably blind holes, and both are cylindrical in shape.
  • the blind tuning hole 11 is located directly below the conductive blind hole 60, and the end of the tuning blind hole 11 away from the first ground layer 10 is connected to the conductive blind hole. There is a gap between the end of the hole 60 away from the microstrip signal line 40, so that a parasitic capacitance is formed between the conductive blind hole 60 and the tuning blind hole 11.
  • the position of the blind tuning hole 11 is not limited to directly below the blind conductive hole 60, and the position, height, and diameter of the blind tuning hole 11 can be adjusted according to actual conditions, so that the blind conductive hole 60 and the blind tuning hole
  • the parasitic capacitance between 11 is more controllable, which is more conducive to the adjustment of the impedance at the conductive blind hole 60, and improves the reliability and practicability of the transmission line 100.
  • the pad 61 can also play a role in adjusting impedance to a certain extent, further improving the reliability of the transmission line 100.
  • the third ground layer 30 is provided with an escape groove 31 at the center, the escape groove 31 penetrates the opposite sides of the third ground layer 30 and one end of the escape groove 31 extends to one end of the third ground layer 30.
  • the end of the conductive blind hole 60 away from the microstrip signal line 40 and the strip line signal line 50 are both located in the avoiding groove 31.
  • the transmission line 100 also includes a plurality of ground vias 90.
  • the ground vias 90 are preferably through holes.
  • the plurality of ground vias 90 are divided into two groups and are symmetrically arranged on the microstrip signal line 40 and the stripline signal.
  • one end of the ground via 90 passes through the third ground layer 30 and the first substrate 70 and is electrically connected to the first ground layer 10, and the second ground layer 20 is electrically connected to the ground via 90 One end away from the first ground layer 10.

Landscapes

  • Structure Of Printed Boards (AREA)
  • Waveguides (AREA)

Abstract

一种传输线(100),包括第一接地层(10)、与第一接地层(10)间隔设置的第二接地层(20)及位于第一接地层(10)与第二接地层(20)之间的第三接地层(30),传输线(100)还包括用于传输信号的微带线信号线(40)、与微带线信号线(40)电性连接的导电盲孔(60)以及带状线信号线(50),带状线信号线(50)通过导电盲孔(60)与微带线信号线(40)电性连接,第三接地层(30)上设有避让槽(31),带状线信号线(50)位于避让槽(31)内,微带线信号线(40)位于第三接地层(30)之远离第一接地层(10)的一侧,导电盲孔(60)位于第二接地层(20)与第三接地层(30)之间且导电盲孔(60)的一端延伸至避让槽(31)内,第一接地层(10)上设有朝导电盲孔(60)延伸并与导电盲孔(60)之间形成寄生电容的调谐盲孔(11)。该传输线(100),通过设置调谐盲孔(11)可减少导电盲孔(60)处出现差损突变和信号泄露的问题。

Description

一种传输线 技术领域
本发明涉及信号传输领域,尤其涉及一种传输线。
背景技术
现有的同轴传输线布局上需要一定的空间,对于高速发展的终端产品内部有一定的局限性,而平面传输线由于具有低剖面的特点,因此在终端产品内的使用也越来越广泛。但现有的平面传输线普遍存在差损突变和信号泄漏的问题。
因此,有必要提供一种改善上述问题的传输线。
技术问题
本发明的目的在于提供一种减少差损突变和信号泄漏问题的传输线。
技术解决方案
为实现上述目的,本发明提供了一种传输线,包括第一接地层、与所述第一接地层间隔设置的第二接地层及位于所述第一接地层与所述第二接地层之间的第三接地层,所述传输线还包括用于传输信号的微带线信号线、与所述微带线信号线电性连接的导电盲孔以及带状线信号线,所述带状线信号线通过所述导电盲孔与所述微带线信号线电性连接,所述第一接地层、所述第三接地层及所述第二接地层依次间隔设置,所述第二接地层上设有避让槽,所述带状线信号线位于所述避让槽内,所述微带线信号线位于所述第三接地层之远离所述第一接地层的一侧,所述导电盲孔位于所述第二接地层与所述第三接地层之间且所述导电盲孔的一端延伸至所述避让槽内,所述第一接地层上设有朝所述导电盲孔延伸并与所述导电盲孔之间形成寄生电容的调谐盲孔。
作为一种改进,所述传输线还包括连接于所述第一接地层与所述第三接地层之间的第一基材,所述带状线信号线叠设于所述第一基材之远离所述第一接地层的一侧,所述调谐盲孔延伸至所述第一基材内。
作为一种改进,所述传输线还包括连接于所述第二接地层与所述第三接地层之间的第二基材,所述微带线信号线叠设于所述第二基材远离所述第三接地层的一侧,所述带状线信号线位于所述第一基材和所述第二基材之间,所述导电盲孔的一端穿过所述第二基材与所述带状线信号线连接。
作为一种改进,所述传输线还包括若干个间隔设置的接地过孔,所述接地过孔的一端分别穿过所述第三接地层和所述第一基材与所述第一接地层电性连接,所述第二接地层通过所述接地过孔与所述第一接地层电性连接。
作为一种改进,所述第一接地层、所述第二接地层及所述第三接地层两两相互间隔平行设置。
作为一种改进,所述调谐盲孔与所述导电盲孔正相对。
作为一种改进,所述调谐盲孔远离所述第一接地层的一端与所述导电盲孔靠近所述第一接地层的一端之间存在间距。
作为一种改进,所述传输线还包括两个分别设于所述导电盲孔两端的焊盘,所述两个焊盘分别与所述微带线信号线和所述带状线信号线连接。
有益效果
本发明的有益效果在于:通过在第一接地层上设置调谐盲孔,调谐盲孔朝向导电盲孔延伸并与导电盲孔之间形成寄生电容,通过所述寄生电容来调节导电盲孔处的阻抗,减少导电盲孔处出现差损突变和信号泄露的问题,提高了传输线的可靠性。
附图说明
图1为本发明实施例提供的传输线的结构示意图;
图2为图1的局部结构示意图;
图3为沿图2的A-A线的剖视图;
图4为图3中B处的局部放大图;
图5为本发明实施例提供的传输线的分解示意图;
图6为本发明实施例提供的反射系数与调谐盲孔高度关系的示意图;
图7为本发明实施例提供的传输系数与调谐盲孔高度关系的示意图;
图8为本发明实施例提供的传输阻抗与调谐盲孔高度关系的示意图;
图9为本发明实施例提供的反射系数与调谐盲孔直径关系的示意图;
图10为本发明实施例提供的传输系数与调谐盲孔直径关系的示意图;
图11为本发明实施例提供的传输阻抗与调谐盲孔直径关系的示意图。
附图标记:100、传输线;10、第一接地层;20、第二接地层;30、第三接地层;40、微带线信号线;50、带状线信号线;60、导电盲孔;70、第一基材;80、第二基材;11、调谐盲孔;61、焊盘;31、避让槽;90、接地过孔。
本发明的实施方式
下面结合附图1-11和实施方式对本发明作进一步说明。
需要说明的是,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后、内、外、顶部、底部……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
还需要说明的是,当元件被称为“固定于”或“设置于”另一个元件上时,该元件可以直接在另一个元件上或者可能同时存在居中元件。当一个元件被称为“连接”另一个元件,它可以是直接连接另一个元件或者可能同时存在居中元件。
请参阅图1、图2及图3,依照本发明实施例提供的一种传输线100,包括第一接地层10、第二接地层20、第三接地层30、微带线信号线40、带状线信号线50、导电盲孔60、第一基材70以及第二基材80,第一接地层10与第二接地层20间隔平行设置,第三接地层30位于第一接地层10与第二接地层20之间且与第一接地层10平行,第一基材70位于第一接地层10与第三接地层30之间,第二基材80位于第二接地层20与第三接地层30之间,第二接地层20的长度小于第二基材80的长度,第二接地层20与微带线信号线40均连接于第二基材80远离第三接地层30的一侧,导电盲孔60贯穿第二基材80且两端分别与微带线信号线40和带状线信号线50电性连接,微带线信号线40与带状线信号线50上下间隔平行且位于导电盲孔60的相对两侧,带状线信号线50的两相对侧分别与第一基材70和第二基材80连接,第一接地层10上设有朝导电盲孔60延伸的调谐盲孔11,调谐盲孔11可与导电盲孔60之间形成寄生电容,通过寄生电容可以调节导电盲孔60附近的阻抗,从而减少了导电盲孔60处出现差损突变或者信号泄露的问题,提升了传输线100的可靠性。
请参阅图3、图4及图5,传输线100从上至下分为由微带线信号线40和第二接地层20组成的第一层、第二基材80形成的第二层、第三接地层30与带状线信号线50组成的第三层、第一基材70形成的第四层以及由第一接地层10形成的第五层,微带线信号线40和位于其下方的第三接地层30形成传输线100的微带线部分,带状线信号线50与位于其下方的第一接地层10和位于其上方的第二接地层20形成传输线100的带状线部分,微带线部分通过导电盲孔60与带状线部分电性连接。
在一实施例中,所述第一基材70和第二基材80的材质可以为PI(Polyimide,聚酰亚胺)、PTFE(Poly tetra fluoroethylene,聚四氟乙烯)、PEEK(Polyetherether ketone,聚醚醚酮)和LCP(Liquid Crystal Polymer,液晶聚合物)中的一种。
请参阅图3和图4,导电盲孔60的两端分别设有一个焊盘61,微带线信号线40和带状线信号线50分别和两个焊盘61电性连接,导电盲孔60与调谐盲孔11都优选为盲孔,且两者的形状都为圆柱形,调谐盲孔11位于导电盲孔60的正下方,调谐盲孔11远离第一接地层10的一端与导电盲孔60远离微带线信号线40的一端之间存在间距,从而在导电盲孔60与调谐盲孔11之间形成寄生电容。可以理解地,调谐盲孔11的位置并不局限于导电盲孔60的正下方,且调谐盲孔11的位置、高度以及直径都可以根据实际情况进行调节,使导电盲孔60与调谐盲孔11之间的寄生电容更加可控,更有利于对导电盲孔60处阻抗的调节,提高了传输线100的可靠性与实用性。同时焊盘61也可以在一定程度上起到调节阻抗的作用,进一步提高了传输线100的可靠性。
请参阅图5,第三接地层30的中央位置设有一避让槽31,避让槽31贯穿第三接地层30的相对两侧且避让槽31的一端延伸至第三接地层30的一个端部,导电盲孔60远离微带线信号线40的一端与带状线信号线50均位于避让槽31内。
请参阅图5,传输线100还包括若干个接地过孔90,接地过孔90优选为通孔,若干个接地过孔90分为两组且对称设置于微带线信号线40与带状线信号线50的相对两侧,接地过孔90的一端穿过第三接地层30和第一基材70后与第一接地层10电性连接,第二接地层20电性连接于接地过孔90远离第一接地层10的一端。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (8)

  1. 一种传输线,包括第一接地层、与所述第一接地层间隔设置的第二接地层及位于所述第一接地层与所述第二接地层之间的第三接地层,其特征在于,所述传输线还包括用于传输信号的微带线信号线、与所述微带线信号线电性连接的导电盲孔以及带状线信号线,所述带状线信号线通过所述导电盲孔与所述微带线信号线电性连接,所述第一接地层、所述第三接地层及所述第二接地层依次间隔设置,所述第三接地层上设有避让槽,所述带状线信号线位于所述避让槽内,所述微带线信号线位于所述第三接地层之远离所述第一接地层的一侧,所述导电盲孔位于所述第二接地层与所述第三接地层之间且所述导电盲孔的一端延伸至所述避让槽内,所述第一接地层上设有朝所述导电盲孔延伸并与所述导电盲孔之间形成寄生电容的调谐盲孔。
  2. 根据权利要求1所述的传输线,其特征在于,所述传输线还包括连接于所述第一接地层与所述第三接地层之间的第一基材,所述带状线信号线叠设于所述第一基材之远离所述第一接地层的一侧,所述调谐盲孔延伸至所述第一基材内。
  3. 根据权利要求2所述的传输线,其特征在于,所述传输线还包括连接于所述第二接地层与所述第三接地层之间的第二基材,所述微带线信号线叠设于所述第二基材远离所述第三接地层的一侧,所述带状线信号线位于所述第一基材和所述第二基材之间,所述导电盲孔的一端穿过所述第二基材与所述带状线信号线连接。
  4. 根据权利要求3所述的传输线,其特征在于,所述传输线还包括若干个间隔设置的接地过孔,所述接地过孔的一端分别穿过所述第三接地层和所述第一基材与所述第一接地层电性连接,所述第二接地层通过所述接地过孔与所述第一接地层电性连接。
  5. 根据权利要求1所述的传输线,其特征在于,所述第一接地层、所述第二接地层及所述第三接地层两两相互间隔平行设置。
  6. 根据权利要求1-5任一项所述的传输线,其特征在于,所述调谐盲孔与所述导电盲孔正相对。
  7. 根据权利要求1-5任一项所述的传输线,其特征在于,所述调谐盲孔远离所述第一接地层的一端与所述导电盲孔靠近所述第一接地层的一端之间存在间距。
  8. 根据权利要求1-5任一项所述的传输线,其特征在于,所述传输线还包括两个分别设于所述导电盲孔两端的焊盘,所述两个焊盘分别与所述微带线信号线和所述带状线信号线连接。
PCT/CN2019/094073 2019-06-30 2019-06-30 一种传输线 WO2021000173A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/094073 WO2021000173A1 (zh) 2019-06-30 2019-06-30 一种传输线
CN201910605901.6A CN110265761B (zh) 2019-06-30 2019-07-05 一种传输线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/094073 WO2021000173A1 (zh) 2019-06-30 2019-06-30 一种传输线

Publications (2)

Publication Number Publication Date
WO2021000173A1 true WO2021000173A1 (zh) 2021-01-07
WO2021000173A9 WO2021000173A9 (zh) 2021-02-18

Family

ID=67924713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094073 WO2021000173A1 (zh) 2019-06-30 2019-06-30 一种传输线

Country Status (2)

Country Link
CN (1) CN110265761B (zh)
WO (1) WO2021000173A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021120194A1 (zh) * 2019-12-20 2021-06-24 瑞声声学科技(深圳)有限公司 传输线以及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050077985A1 (en) * 2002-09-19 2005-04-14 Stefan Gaier High frequency signal transmitter
CN102065632A (zh) * 2009-11-18 2011-05-18 三星电机株式会社 电磁带隙结构和包括该电磁带隙结构的印刷电路板
CN102686011A (zh) * 2011-03-15 2012-09-19 鸿富锦精密工业(深圳)有限公司 印刷电路板
US20150222003A1 (en) * 2013-06-11 2015-08-06 Panasonic Intellectual Property Management Co., Ltd. Microwave circuit
CN206005002U (zh) * 2016-09-14 2017-03-08 索尔思光电(成都)有限公司 印刷电路板
CN108054505A (zh) * 2017-12-08 2018-05-18 华为技术有限公司 电路板组件和天线装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9596749B2 (en) * 2014-12-11 2017-03-14 Intel Corporation Circuit board having a signal layer with signal traces and a reference plane with an additional signal trace larger than the signal traces
CN105517327A (zh) * 2015-12-18 2016-04-20 山东海量信息技术研究院 一种用盲埋孔工艺实现过孔阻抗匹配的方法
CN105792508A (zh) * 2016-05-18 2016-07-20 浪潮(北京)电子信息产业有限公司 一种提高信号完整性的pcb
CN106159404B (zh) * 2016-09-29 2019-10-11 上海航天测控通信研究所 一种非均匀微带线至带状线过渡结构
CN206365144U (zh) * 2017-01-12 2017-07-28 深圳市众一贸泰电路板有限公司 印刷电路板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050077985A1 (en) * 2002-09-19 2005-04-14 Stefan Gaier High frequency signal transmitter
CN102065632A (zh) * 2009-11-18 2011-05-18 三星电机株式会社 电磁带隙结构和包括该电磁带隙结构的印刷电路板
CN102686011A (zh) * 2011-03-15 2012-09-19 鸿富锦精密工业(深圳)有限公司 印刷电路板
US20150222003A1 (en) * 2013-06-11 2015-08-06 Panasonic Intellectual Property Management Co., Ltd. Microwave circuit
CN206005002U (zh) * 2016-09-14 2017-03-08 索尔思光电(成都)有限公司 印刷电路板
CN108054505A (zh) * 2017-12-08 2018-05-18 华为技术有限公司 电路板组件和天线装置

Also Published As

Publication number Publication date
WO2021000173A9 (zh) 2021-02-18
CN110265761B (zh) 2022-06-03
CN110265761A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
US6573801B1 (en) Electromagnetic coupler
US6856210B2 (en) High-frequency multilayer circuit substrate
US9264010B2 (en) Via structure having open stub and printed circuit board having the same
US20100134376A1 (en) Wideband rf 3d transitions
US8854152B2 (en) High-frequency module including a conductor with a slot therein and a conductive wire crossing over the slot and physically contacting the conductor
US9496594B2 (en) Printed circuit board and printed circuit board for camera module
WO2021000173A1 (zh) 一种传输线
JP6760540B2 (ja) 伝送線路及びその実装構造
US7532085B2 (en) Electronic device
US10129974B2 (en) Multi-layer circuit structure
US10123407B2 (en) Transmission line structure having orthogonally oriented transmission line segments connected by vias extending through a substrate body
JP4198912B2 (ja) 対称ストリップラインと非対称ストリップラインの間の遷移構造
WO2018078215A1 (en) Method and arrangement for an elliptical dipole antenna
JP2018117173A (ja) 90度ハイブリッド回路
US10992015B2 (en) Coupling comprising a guide member embedded within a blind via of a post-wall waveguide and extending into a hollow tube waveguide
JP2002043810A (ja) マイクロストリップ線路
CN100365864C (zh) 改进的定向耦合器
CN114518476A (zh) 信号测量电路装置
JP2012009573A (ja) 回路基板
WO2023155109A1 (zh) 移相器、天线及电子设备
TWI773417B (zh) 耦合式陣列天線及其裝置
TWI684245B (zh) 差動訊號傳輸電路板
JP5701367B1 (ja) 伝送路
WO2023109676A1 (zh) 耦合器及信号检测系统
JP3972045B2 (ja) 積層型ランゲカプラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936527

Country of ref document: EP

Kind code of ref document: A1