WO2020262288A1 - Stretchable circuit board and stretchable circuit assembly - Google Patents

Stretchable circuit board and stretchable circuit assembly Download PDF

Info

Publication number
WO2020262288A1
WO2020262288A1 PCT/JP2020/024350 JP2020024350W WO2020262288A1 WO 2020262288 A1 WO2020262288 A1 WO 2020262288A1 JP 2020024350 W JP2020024350 W JP 2020024350W WO 2020262288 A1 WO2020262288 A1 WO 2020262288A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretchable
circuit board
elastic
opening
insulating layer
Prior art date
Application number
PCT/JP2020/024350
Other languages
French (fr)
Japanese (ja)
Inventor
孝寿 阿部
朋寛 深尾
知昭 澤田
大介 本田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021526967A priority Critical patent/JPWO2020262288A1/ja
Publication of WO2020262288A1 publication Critical patent/WO2020262288A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to an elastic circuit board and an elastic circuit mounted product.
  • a flexible device that can be freely deformed or bent may be required in order to arrange it on a curved surface, an uneven surface, or the like.
  • Such flexible devices include, for example, wearable devices that can be worn on animals such as humans and dogs, and plants, and various interfaces such as displays, sensors, and artificial skin for robots used for digital signage and the like. Examples include devices and conductive materials used.
  • a circuit board provided in a wearable device, digital signage, etc. elasticity is required. In particular, in the case of wearable devices worn by humans and animals, elasticity that can follow the movement of the body is required. Examples of the elastic circuit board include the wiring boards described in Patent Document 1 and Patent Document 2.
  • Patent Document 1 includes a plurality of elastic base materials and a plurality of elastic wiring portions provided on each of the facing main surfaces of the plurality of elastic base materials, and each of the main surfaces thereof. Described is an elastic wiring board in which the elastic wiring portions provided in the above are electrically connected to each other via a connection portion. Further, in Patent Document 1, in the elastic wiring board, a plurality of the elastic base materials include a first elastic base material and a second elastic base material, and the first elastic base material is the first. The first stretchable wiring portion formed on the opening and the first main surface is provided, and the second stretchable base material is the second stretchable wiring portion formed on the second opening and the second main surface. A wiring portion is provided, the first main surface and the second main surface face each other, and at least a part of the first opening and the second elastic wiring portion overlap, and the second opening and the first It is described that at least a part of one elastic wiring portion overlaps.
  • Patent Document 2 describes a wiring board having a stretchable resin layer, a conductor foil provided on the stretchable resin layer and forming a wiring pattern, and a via hole provided on the stretchable resin layer. Has been done.
  • Patent Document 1 it is disclosed that multi-layering is possible while preventing disconnection due to elongation. Further, according to Patent Document 2, it is disclosed that it has high elasticity and can be interconnected between layers at the time of lamination.
  • An object of the present invention is to provide an elastic circuit board and an elastic circuit mount product having excellent breathability.
  • One aspect of the present invention includes an elastic insulating layer and elastic wiring provided on at least one of the surface and the inside of the elastic insulating layer, and the elastic insulating layer is formed from the elastic wiring.
  • the stretchable circuit board is characterized in that it has an opening at an electrically insulated position and a vent hole that allows ventilation in the thickness direction of the stretchable insulating layer is formed.
  • FIG. 1 is a perspective view showing an example of an elastic circuit board according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the elastic circuit board shown in FIG. 1 as viewed from the cut plane lines II-II.
  • FIG. 3A is a diagram showing an example of the shape of the opening of the ventilation hole (state in which the stretchable circuit board is not stretched) in the stretchable circuit board according to the embodiment of the present invention.
  • FIG. 3B is a diagram showing an example of an opening state (a state in which the stretchable circuit board is extended in the X-axis direction) of the opening of the ventilation hole in the stretchable circuit board according to the embodiment of the present invention.
  • FIG. 1 is a perspective view showing an example of an elastic circuit board according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the elastic circuit board shown in FIG. 1 as viewed from the cut plane lines II-II.
  • FIG. 3A is a diagram showing an example of the shape of the opening
  • FIG. 3C is a diagram showing an example of an open state (a state in which the stretchable circuit board is extended in the Y-axis direction) of the opening of the ventilation hole in the stretchable circuit board according to the embodiment of the present invention.
  • FIG. 3D is a diagram for explaining the shape of the opening of the ventilation hole in the stretchable circuit board according to the embodiment of the present invention and the change in the opening state of the opening due to the expansion and contraction of the stretchable circuit board.
  • FIG. 3E is a diagram for explaining the shape of the opening of the ventilation hole in the stretchable circuit board according to the embodiment of the present invention and the change in the opening state of the opening due to the expansion and contraction of the stretchable circuit board.
  • FIG. 3F is a diagram for explaining the shape of the opening of the ventilation hole in the stretchable circuit board according to the embodiment of the present invention and the change in the opening state of the opening due to the expansion and contraction of the stretchable circuit board.
  • FIG. 4 is a diagram showing another example of the shape of the opening of the vent in the elastic circuit board according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing another example of the stretchable circuit board according to the embodiment of the present invention.
  • FIG. 6 is an enlarged cross-sectional view showing a part A of the stretchable circuit board shown in FIG.
  • FIG. 7 is a cross-sectional view showing another example of the stretchable circuit board according to the embodiment of the present invention.
  • FIG. 8 is an enlarged cross-sectional view showing a part A of the stretchable circuit board shown in FIG. 7.
  • FIG. 9 is a diagram for explaining a convex portion in the stretchable circuit board according to the embodiment of the present invention.
  • FIG. 10 is a diagram for explaining elastic wiring in the elastic circuit board according to the embodiment of the present invention.
  • wearable devices that are worn by humans and animals are used in contact with or close to the body, such as by attaching them to clothes or the body. For this reason, when the wearable device is used in a state of being attached to clothes or the like, it is required to be comfortable to wear, and when the wearable device is directly attached to the body and used, the wearing feeling of the wearable device is required. Is required to be good. From these facts, it is required that the circuit board provided in the wearable device can also improve the comfort and wearing feeling of the wearable device.
  • the wearable device equipped with the same does not have good comfort and wearing feeling.
  • discomfort due to sweat may occur. It is presumed that this is because, for example, in the conventional wiring boards and the like described in Patent Document 1 and Patent Document 2, it is difficult for moisture such as sweat to permeate because it has not been studied to improve the air permeability.
  • holes such as vias for interlayer connection may be formed.
  • this hole is for interlayerly connecting a conductor electrically connected to an electronic component mounted on a circuit board or the like, and does not take air permeability into consideration. Therefore, even in a multi-layered substrate, air permeability could not be ensured.
  • the present inventors presumed that the circuit board provided in the wearable device is required to have air permeability in order to suppress the occurrence of the above-mentioned problems.
  • circuit board provided in the digital signage or the like has air permeability similar to the circuit board provided in the wearable device so that the wind or the like hitting the digital signage or the like can pass through. I guessed that it would be required.
  • the present inventors have found that the following objects, such as providing a stretchable circuit board and a stretchable circuit mounted product having excellent breathability, can be achieved by the following invention.
  • the stretchable circuit board 1 is provided on at least one of the stretchable insulating layer 11 and the surface and the inside of the stretchable insulating layer 11. It is provided with a sex wiring 12.
  • the stretchable insulating layer 11 has an opening at a position electrically insulated from the stretchable wiring 12, and is in the thickness direction of the stretchable insulating layer 11 (Z-axis direction in FIGS. 1 and 2).
  • a vent hole 13 that allows ventilation is formed in the air. That is, the ventilation hole 13 is a passage that penetrates from the opening formed on one surface of the elastic insulating layer 11 to the opening formed on the other surface, and both of the openings are open.
  • the ventilation holes 13 are electrically insulated from the elastic wiring 12.
  • the position where the ventilation hole 13 is formed is preferably a position where the stretchable insulating layer 11 does not overlap with the stretchable wiring 12, that is, a position where the stretchable wiring 12 is not formed in a plan view.
  • vias for interlayer connection can be formed in the elastic insulating layer 11 as needed, the vias are electrically connected to the elastic insulating layer 11, whereas the ventilation holes 13 are provided. It can be distinguished by being electrically insulated from the elastic wiring 12.
  • the stretchable circuit mounted product 100 can be obtained. In the stretchable circuit mounting product 100, the electronic component 14 is connected to the stretchable wiring 12.
  • the stretchable circuit board 1 and the stretchable circuit mounting product 100 can, for example, move moisture (moisture) existing on one surface side to the other surface side through the ventilation holes 13. That is, in the stretchable circuit board 1 and the stretchable circuit mounted product 100, since the ventilation holes 13 can allow moisture to escape, the stretchable circuit board 1 is excellent in breathability, and it is possible to prevent the moisture from remaining on one surface.
  • a light emitting sheet provided with an LED element or the like on the elastic circuit board according to the present embodiment is used for a display device such as a huge digital signage used in a stadium or the like, such a communication is used.
  • the presence of pores also has the advantage of being able to prevent breakage and wind fanning.
  • the vents also contribute to cooling the LED element.
  • the stretchable insulating layer 11, the stretchable wiring 12, the stretchable circuit board 1, and the stretchable circuit mount product 100 in the present embodiment each have elasticity.
  • “having elasticity” means that it can be elastically deformed, and more specifically, it has an elongation rate of 10% or more and a tensile elastic modulus at room temperature of 25 ° C. of 0.5 to. It means that it is 500 MPa.
  • the elongation rate is 10% or more, preferably 25% or more, more preferably 50% or more, and even more preferably 100% or more. Further, the higher the elongation rate is, the more preferable it is, but it is preferably 500% or less from the viewpoint that when it is stretched more than necessary, plastic deformation tends to occur and the original shape tends to be impaired.
  • the tensile elastic modulus at room temperature at 25 ° C. is 0.5 to 500 MPa, preferably 1 to 300 MPa, more preferably 2 to 200 MPa, and even more preferably 5 to 100 MPa. When the elongation rate and the tensile elastic modulus are within the above ranges, it is easily deformed into an arbitrary shape.
  • the tensile elastic modulus refers to the storage elastic modulus at 25 ° C. measured by performing a temperature-dependent measurement in a tensile test using a dynamic viscoelasticity measuring device.
  • Examples of the dynamic viscoelasticity measuring device include DMS6100 manufactured by Seiko Instruments Inc.
  • the ventilation hole 13 is a passage that penetrates from the opening formed on one surface of the elastic insulating layer 11 to the opening formed on the other surface, and is elastic. It is provided at a position that does not overlap with the wiring 12.
  • the number of ventilation holes 13 formed in the elastic insulating layer 11 is not particularly limited, but from the viewpoint of improving air permeability, a plurality of ventilation holes 13 are formed in the elastic insulating layer 11 as shown in FIGS. 3A to 3F. It is preferably formed.
  • the shape of the opening is preferably a shape that does not easily break when the elastic insulating layer 11 is expanded and contracted in the plane direction (the direction of the arrows indicated by X and Y in FIGS. 1 and 2), and is further closed. It is preferable that the shape is difficult (it is easy to maintain a wide open state).
  • Examples of the shape of such an opening include a circular shape, an elliptical shape, and a polygonal shape.
  • the shapes of the openings in the respective ventilation holes may be the same shape, or may be a combination of different shapes. Specifically, as the stretchable circuit board 1 and the stretchable circuit mounting product 100, as shown in FIGS.
  • FIGS. 3A to 3F show only the elastic insulating layer 11 and the ventilation holes 13, and the elastic wiring and the like are omitted.
  • 3A to 3F show an example of the ventilation hole 13 in which the shape of the opening is circular (shape 13-1), elliptical (shape 13-2), and polygonal (shape 13-3). ing.
  • FIG. 3A shows a state in which the stretchable circuit board 1 is not stretched.
  • FIG. 3B shows a state in which the stretchable circuit board 1 is extended in the X-axis direction.
  • FIG. 3C shows a state in which the stretchable circuit board 1 is extended in the Y-axis direction.
  • the openings of some of the ventilation holes 13 are almost completely closed. It can be seen that the opening of the other vent hole 13 is maintained in a wide open state.
  • the shape of the opening is the shape of the opening in a state where no stress for expanding and contracting the stretchable circuit board is particularly applied (for example, the state of FIG. 3A). is there.
  • the combination of the shapes of the openings of the ventilation holes 13 of the case 2 increases the opening ratio of the ventilation holes 13 on the surface of the elastic insulating layer 11 when the elastic circuit board 1 expands and contracts more than the case 1. It turns out that it can be kept high. For this reason, it is preferable that the plurality of ventilation holes 13 include ventilation holes 13 having different openings.
  • FIG. 3F Regard the ventilation hole 13 having the shape of the opening 13-2, the stretchable circuit board 1 composed of a combination of a row having the major axis direction as the Y-axis direction and a row having the major axis direction as the X-axis direction.
  • the situation at the time of expansion and contraction is shown in FIG. 3F.
  • the opening of the ventilation hole 13 in the X-axis direction and the opening of the ventilation hole 13 in the Y-axis direction are changed to openings in different opening states.
  • the openings of the ventilation holes 13 in the row whose direction is the Y-axis direction are substantially closed, the openings of the ventilation holes 13 in the row whose major axis direction is the X-axis direction before expansion and contraction have a major axis before expansion and contraction.
  • the open state is maintained. That is, even if the opening of one of the ventilation holes 13 is deformed in the closing direction when the elastic circuit board 1 is extended in the X-axis direction or in the Y-axis direction, the other ventilation hole 13 It is possible to deform the opening in the opening direction.
  • the opening ratio of the ventilation holes 13 on the surface of the stretchable insulating layer 11 can be maintained higher than in the case 1 in a plurality of stretching directions.
  • the plurality of ventilation holes 13 include ventilation holes 13 having different directions of the major axis of the openings, and the ventilation holes 13 having different major axes are arranged in different major directions. It is preferably applied to the stretchable insulating layer 11.
  • the elastic circuit board is similar to the combination of the ventilation holes 13 having the shape of the opening 13-2.
  • the shape of the opening is a polygon represented by a rectangle of shape 13-3
  • the stretchable circuit board 1 expands and contracts, breakage is likely to occur from the corner portion, so that the corner of the polygon is It is preferable that the portion of is R-processed.
  • the degree of R processing may be appropriately selected according to the size and shape of the opening and the expansion / contraction rate of the stretchable circuit board 1.
  • the ventilation holes 13 are expanded and contracted as the elastic circuit board 1 expands and contracts. It is considered that the possibility that all the openings of the above are closed at substantially the same time can be avoided (not shown).
  • the opening of the ventilation hole 13 may have a complicated shape. Specifically, the opening may be polygonal as shown in FIGS. 4 (a) to 4 (c), and may be notched as shown in FIG. 4 (d). Good. Even if the opening is a notch as shown in FIG. 4D, by extending the stretchable circuit board 1, the ventilation hole 13 having the opening is ventilated in the thickness direction of the stretchable insulating layer 11. Become a possible hole.
  • the ventilation hole 13 may have a shape as shown in FIG. In the case of the shape shown in FIG. 5, since the ventilation holes 13 are provided large, sufficient air permeability can be ensured.
  • the aperture ratio of the ventilation holes 13 on the surface of the elastic insulating layer 11 (the total area of the openings of the ventilation holes 13 with respect to the total area of the elastic insulation layer 11 in the surface direction including the total area of the openings of the ventilation holes 13) is As long as breathability can be ensured, there is no particular limitation.
  • the aperture ratio is preferably 0.001 to 45%, more preferably 0.01 to 20%. If the aperture ratio is too low, the air permeability tends to decrease. Further, if the aperture ratio is too high, the strength of the stretchable circuit board tends to decrease even if the air permeability can be ensured.
  • the total area of the openings of the ventilation holes 13 is the area obtained by adding all the areas of the plurality of openings formed in the surface direction of the elastic insulating layer 11.
  • the size of the opening of the ventilation hole 13 is not particularly limited as long as the ventilation hole 13 has a size that allows ventilation in the thickness direction of the elastic insulating layer 11.
  • the maximum diameter of the opening (the maximum diameter of the opening in the plane direction of the elastic insulating layer 11) is preferably 100 nm or more and 30 mm or less, and 500 nm or more and 5 mm or less. Is more preferable.
  • the maximum diameter is the diameter when the shape of the opening is circular as in shape 13-1, and the maximum diameter is the diameter when the shape of the opening is elliptical as in shape 13-2. This is the longest diameter (major diameter) of the diameters of the parts.
  • the shape of the opening is rectangular as in the shape 13-3, it is the length of the long side.
  • the shape of the opening is other than that, it is the length on the line which is the major axis of the ellipse inscribed in the opening.
  • the major axis (maximum diameter) is too short, the air permeability tends to decrease. Further, if the major axis is too long, the strength of the stretchable circuit board tends to decrease even if the air permeability can be ensured. From these facts, if the vent hole of the opening whose major axis is a length within the above range, excellent air permeability can be exhibited while maintaining the strength as an elastic circuit board. Further, since the ventilation through the ventilation holes 13 is easily maintained regardless of the direction in which the stretchable circuit board 1 is extended, more excellent ventilation can be exhibited.
  • the major axis (maximum diameter) are shown by D1 (D2), D3, D5, D7, and D9 in FIG. 3A, and D11 (D12), D13 (D14), and D15 (D16) in FIG. , D17 (D18).
  • the minor axis (length orthogonal to the major axis: D2, D4, D6, D8, D10 in FIG. 3A) is preferably 100 nm or more and 30 mm or less, and more preferably 500 nm or more and 5 mm or less. preferable.
  • the method for forming the ventilation holes 13 is not particularly limited, and examples thereof include a method for forming the ventilation holes 13 in the elastic insulating layer 11 using a drill or a laser.
  • the stretchable circuit board 1 is further provided with a protective portion that covers the peripheral edge of the opening of the ventilation hole 13 on the surface of the stretchable insulating layer 11.
  • the protective portion is for preventing damage to the elastic insulating layer 11 (cracking of the elastic insulating layer 11 generated from the ventilation hole 13 or the like) as shown in FIG. 6A.
  • Protective layer 21 and the like can be mentioned.
  • An enlarged view of the portion A in FIG. 2 is shown in FIG. 6 (a). As shown in FIG.
  • the peripheral edge of the opening of the ventilation hole 13 is, for example, a portion of the elastic insulating layer 11 in contact with the opening of the ventilation hole 13 (a portion where the protective layer 21c is formed) and a passage.
  • the protective layer 21 may include any of the protective layer 21a, the protective layer 21b, and the protective layer 21c, or may include them in combination.
  • the protective layer 21 in which any one of the protective layer 21a, the protective layer 21b, and the protective layer 21c is a separate body may be used, or the protective layer 21 in which all of them are integrated may be used, or any two of them may be integrated and the rest.
  • One of the protective layers 21 may be a separate body from the other two.
  • the size of the protective layer 21c is such that the formation distance D21 (ratio of elastic circuit board (D21 / R13)) on the elastic insulating layer of the protective layer 21c to the diameter R13 of the ventilation hole 13 shown in FIG. 6A is 0. It is preferably in the range of .05 to 20, more preferably in the range of 0.10 to 10. D21 is preferably in the range of 10 ⁇ m to 20 mm, preferably in the range of 20 ⁇ m to 10 mm.
  • the thickness (t211 and t212) of the protective layer 21 is preferably in the range of 2 ⁇ m to 30 ⁇ m, and more preferably in the range of 5 ⁇ m to 15 ⁇ m.
  • the material used for the protective layer 21 is not particularly limited, and can be formed by covering with a resin sheet or using various resin compositions, for example.
  • the resin used in the various resin compositions is preferably one that does not hinder the extensibility and tensile elasticity of the stretchable circuit board 1.
  • the protective layer 21 may be an eyelet or the like. That is, the ventilation holes 13 may be protected by eyelets or the like.
  • the protective portion is not limited to a layered one such as the protective layer 21 as long as it can prevent damage to the elastic insulating layer 11, and is limited to, for example, only the peripheral edge of the opening of the ventilation hole 13. It may be a protective piece provided locally.
  • Examples thereof include a convex portion 22 and the like.
  • the convex portion 22 for separating the object and the stretchable insulating layer 11 is provided on the surface of the stretchable insulating layer 11.
  • the convex portion 22 acts as a spacer, and at least the peripheral portion of the convex portion 22 has a surface of the stretchable insulating layer 11 and an object adherent surface. A space is created between them. If there are a plurality of convex portions 22, the space is preferably formed between the adjacent convex portions 22, 22.
  • the opening of the ventilation hole 13 may be sealed by the object, but the presence of the convex portion 22 secures a space (gap) and allows passage. It is possible to prevent the opening of the pore 13 from being blocked. Therefore, suitable air permeability of the stretchable circuit board 1 is ensured.
  • the convex portion 22 is preferably formed in the vicinity of the opening of the ventilation hole 13. The sealing prevention means is not limited to the convex portion 22 as long as it can prevent the opening of the ventilation hole 13 from being sealed by a contact object.
  • the protective portion (protective layer 21 (21b, 21c)) may have a function as a sealing prevention means (convex portion 22). That is, the air permeability of the stretchable circuit board 1 may be maintained by the convex portion 22, the protective layer 21, and the concave portion 23 formed thereby.
  • the thickness t22 (Z-axis direction) of the convex portion 22 is preferably in the range of 10 ⁇ m to 10 mm, and more preferably in the range of 100 ⁇ m to 5 mm. If t22 is too small, it is difficult to obtain the effect of suppressing the opening of the ventilation hole 13 from being blocked by the object, and if t22 is too large, the object and the stretchable circuit board 1 The contact area may be significantly reduced, and the stretchable circuit board 1 may be easily peeled off from the object.
  • the length L22 (X-axis direction and Y-axis direction) of the convex portion 22 in the surface direction (X, Y direction) is not particularly limited, but is preferably in the range of 100 ⁇ m to 10 mm, preferably in the range of 500 ⁇ m to 5 mm. Is more preferable. If L22 is too small, it is difficult to obtain the effect of suppressing the opening of the ventilation hole 13 from being blocked by the object, and if L22 is too large, the convex portion 22 occupying the elastic insulating layer 11. As the ratio of the above increases and the number and area of the ventilation holes 13 that can be formed in the elastic insulating layer 11 decrease due to restrictions, it is expected that the ventilation will decrease.
  • the stretchable circuit mounting product 100 is configured by mounting an electronic component 14 such as a sensor element on a stretchable circuit board 1.
  • the mounting form on the stretchable circuit board 1 is not particularly limited as long as the electronic component 14 connected to the stretchable wiring 12 is mounted.
  • the electronic component 14 is mounted via the land portion 18 and the solder 19. Since FIG. 7 shows the stretchable circuit board 1 on which the electronic component 14 is mounted, both the stretchable circuit board 1 and the stretchable circuit board 100 are shown in FIG. 7. It can be said that.
  • the stretchable circuit board 1 By providing the land portion 18 in which the stretchable circuit board 1 is connected to the stretchable wiring 12, the electronic component 14 and the like can be connected to the land portion 18 with solder 19 and mounted. That is, as shown in FIG. 7, the stretchable circuit board 1 preferably has a land portion 18 in contact with the stretchable wiring 12 on the surface of the stretchable insulating layer 11.
  • the land portion 18 is not particularly limited, and examples thereof include a patterned metal foil and a land portion 18 printed with a conductive ink containing metal particles.
  • the stretchable circuit mounting product 100 may further include other members. As shown in FIG. 7, the stretchable circuit mount product 100 preferably further includes, for example, a coating layer 15 that covers the stretchable wiring 12 and the electronic component 14.
  • the covering layer 15 may cover the elastic wiring 12 and the electronic component 14, may also cover other portions, or may cover the entire surface of the elastic insulating layer 11.
  • the coating layer 15 covers the entire surface of the elastic insulating layer 11, it is preferable that the coating layer 15 is provided with a ventilation hole continuous with the ventilation hole 13 so as not to obstruct the ventilation by the ventilation hole 13.
  • the material used for the coating layer 15 is not particularly limited, and can be formed by covering with a resin sheet or using a resin composition for potting, for example.
  • the stretchable circuit board 1 is further provided with reinforcing means for reinforcing the stretchable circuit board 1.
  • the reinforcing means include a reinforcing layer 16 for reinforcing the stretchable circuit board 1 as shown in FIG. 7.
  • the reinforcing means is not limited to a layered shape such as the reinforcing layer 16, as long as it is a member for reinforcing the stretchable circuit board 1, and may be a reinforcing piece or the like in any other form.
  • the reinforcing layer 16 may cover the entire surface of the stretchable insulating layer 11 or a part thereof. Since the reinforcing layer 16 is provided for reinforcing the stretchable circuit board 1, it is preferable to provide the reinforcing layer 16 in the region where the electronic component 14 is mounted.
  • the reinforcing layer 16 covers the entire surface of the elastic insulating layer 11, it is preferable to provide a ventilation hole continuous with the ventilation hole 13 so as not to obstruct the ventilation by the ventilation hole 13 (not shown). ).
  • the reinforcing layer 16 is provided on the side of the elastic insulating layer 11 provided on the elastic circuit board 1 opposite to the mounting surface on which the electronic component 14 is mounted. By doing so, an elastic circuit board having excellent mechanical strength can be obtained.
  • the material used for the reinforcing layer 16 is not particularly limited, and can be formed by covering with a resin sheet or using a resin composition for potting, for example.
  • the resin used in the resin composition for potting is preferably one that does not hinder the extensibility and tensile elasticity of the stretchable circuit board 1.
  • the stretchable circuit-mounted product 100 has a protective layer 21 of the vent hole 13 for preventing damage such as cracking of the stretchable insulating layer 11 and the coating layer 15 that occur from the vent hole 13. It is preferable to provide it on the peripheral edge of the opening. Further, also in the case of the elastic circuit board 1 having the reinforcing layer 16 and the elastic circuit mounting product 100, cracks in the elastic insulating layer 11 and the reinforcing layer 16 generated from the ventilation holes 13 penetrating the reinforcing layer 16 are generated. It is preferable that the protective layer 21 for preventing damage is provided on the peripheral edge of the opening of the ventilation hole 13 (not shown).
  • the elastic circuit mounting product 100 can be used by bringing the elastic circuit mounting product 100 into contact with an object such as a human body or an article.
  • the convex portion 22 is further provided on the adherend surface of the stretchable insulating layer 11.
  • the convex portion 22 for separating the object and the stretchable insulating layer 11 is provided on the surface of the stretchable insulating layer 11.
  • FIG. 9A An example of the embodiment of the convex portion 22 is shown in FIG.
  • the convex portion 22 is preferably formed on the back surface of the mounting surface of the electronic component 14 of the stretchable insulating layer 11.
  • FIG. 9B when the convex portion 22 is formed on the same surface as the mounting surface of the electronic component 14 of the elastic insulating layer 11, the thickness t22 of the convex portion 22 is such that the convex portion 22 is formed.
  • the heights of the stretchable insulating layer 11 provided from the same plane to a single or a plurality of electronic components 14 it is preferable that the height is larger than the maximum height t14.
  • t22 is preferably 1.1 times or more and 5 times or less of t14, and more preferably 1.3 times or more and 3 times or less.
  • the convex portion 22 may be provided on the surface of the coating layer 15 as shown in FIG. 9C, or may be provided on the surface of the reinforcing layer 16 as shown in FIG. 9D. Further, as shown in FIG. 9E, the convex portion 22 may be provided so as to be buried in the reinforcing layer 16, the covering layer 15 (not shown), and the stretchable insulating layer 11 (not shown).
  • the resin composition used for the stretchable insulating layer 11 is not particularly limited in composition as long as the cured product has properties such as the elongation rate and the tensile elastic modulus.
  • the resin composition contains a thermosetting resin and a curing agent thereof.
  • a resin composition containing a polyrotaxane (A), a thermosetting resin (B) and a curing agent (C) can be mentioned.
  • A polyrotaxane
  • B thermosetting resin
  • C curing agent
  • polyrotaxane (A) examples include polyrotaxane as described in Japanese Patent No. 4482633 or International Publication No. WO2015 / 052853 pamphlet.
  • polyrotaxane (A) a commercially available product may be used, and specifically, Celm Superpolymer A1000 manufactured by Advanced Soft Materials Co., Ltd. can be used.
  • thermosetting resin (B) examples include thermosetting resins such as epoxy resin, phenol resin, polyimide resin, urea resin, melamine resin, unsaturated polyester, and urethane resin without particular limitation. It is preferable to use an epoxy resin.
  • the epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, aralkyl epoxy resin, phenol novolac type epoxy resin, alkylphenol novolac type epoxy resin, biphenol type epoxy resin, and naphthalene type epoxy.
  • examples thereof include resins, dicyclopentadiene type epoxy resins, epoxidized products of condensates of phenols and aromatic aldehydes having phenolic hydroxyl groups, triglycidyl isocyanurate, alicyclic epoxy resins and the like. Depending on the situation, one of these may be used alone, or two or more thereof may be used in combination.
  • an epoxy resin containing two or more epoxy groups in one molecule and having a molecular weight of 500 or more is preferably exemplified.
  • an epoxy resin for example, an epoxy resin containing two or more epoxy groups in one molecule and having a molecular weight of 500 or more is preferably exemplified.
  • an epoxy resin a commercially available one may be used, for example, JER1003 (manufactured by Mitsubishi Chemical Corporation, molecular weight 1300, bifunctional), EXA-4816 (manufactured by DIC Corporation, molecular weight 824, bifunctional). , YP50 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., molecular weight 60,000 to 80,000, bifunctional) and the like.
  • Examples of the epoxy resin different from the epoxy resin include alkylene oxide-modified modifying groups having 2 to 3 carbon atoms and having 4 mol or more of the modifying groups contained in 1 mol molecule of the epoxy, and 2 mol or more. Examples thereof include an epoxy resin having an epoxy group and an epoxy equivalent of 450 eq / mol or more.
  • the epoxy resin as the thermosetting resin (B) and the curing agent (C)
  • the cured product can obtain a resin composition having the extensibility and the tensile elastic modulus. It is possible.
  • an epoxy resin examples include a propylene oxide-added bisphenol A type epoxy resin (made by ADEKA Co., Ltd., EP4003S) and an ethylene oxide-added hydroxyphenylfluorene type epoxy resin (manufactured by Osaka Gas Chemical Co., Ltd., EG). -280) and the like. Further, one type of epoxy resin as described above may be used alone, or two or more types may be used in combination.
  • a resin composition containing any one component of the polyrotaxane (A) and the thermosetting resin (B) and the curing agent (C) may be used, but both components ((A) and (B) )) And the curing agent (C) are preferably used because the cured product can easily obtain the resin composition having the extensibility and the tensile elastic modulus.
  • the curing agent (C) is not particularly limited as long as it works as a curing agent for the thermosetting resin (B).
  • examples of a curing agent that can be preferably used as a curing agent for epoxy resins include curing agents for phenol resins, amine compounds, acid anhydrides, imidazole compounds, sulfide resins, dicyandiamides, and sulfonium salts.
  • the curing agent (C) may be used alone or in combination of two or more.
  • the resin composition may contain a curing accelerator, if necessary. Examples of the curing accelerator include imidazole compounds and the like.
  • the resin composition of the present embodiment is a resin composition containing polyrotaxane
  • a cross-linking agent may be further added, and such a cross-linking agent is at least a part of the cyclic molecule of the polyrotaxane. It can be used without particular limitation as long as it can form a structure that crosslinks with (at least one reactive group of the cyclic molecule of polyrotaxane), and specific examples thereof include isocyanate and cyanuric chloride.
  • the ratio of each component in the resin composition is not particularly limited as long as the effects of the present invention can be exhibited, but for example, when all the components (A), (B) and (C) are included, Taking the total of the components (A) to (C) as 100 parts by mass, the polyrotaxane (A) is about 10 to 80 parts by mass, more preferably about 30 to 50 parts by mass; the thermosetting resin (B) is from 10 to 10 parts by mass. 89.9 parts by mass, more preferably 30 to 50 parts by mass; the curing agent (C) is about 0.1 to 30 parts by mass, more preferably about 0.1 to 20 parts by mass.
  • the resin composition of the present embodiment contains an isocyanate resin as a cross-linking agent
  • 0 to 50 parts by mass of the isocyanate resin can be added to the polyrotaxane (A) component, and further, 10 to 40 parts by mass can be added. It is preferable to add by mass.
  • the component (B) and the component (C) are contained and the component (A) is not contained, the total amount of the resin composition is 100 parts by mass, and the thermosetting resin (B) is 50 to 99 parts by mass. It is preferably about 60 to 80 parts by mass; the curing agent (C) is about 1 to 50 parts by mass, more preferably about 1 to 40 parts by mass.
  • the resin composition may contain other additives such as a curing catalyst (curing accelerator), a flame retardant, a flame retardant aid, a leveling agent, a colorant and the like as necessary, as long as the effects of the present invention are not impaired. May be contained.
  • a curing catalyst curing accelerator
  • flame retardant flame retardant aid
  • leveling agent leveling agent
  • colorant colorant
  • the method for preparing the resin composition containing the epoxy resin is not particularly limited, and for example, the epoxy resin, the curing agent and the solvent are mixed so as to be uniform.
  • the solvent used is not particularly limited, and for example, toluene, xylene, methyl ethyl ketone, acetone and the like can be used. These solvents may be used alone or in combination of two or more. Further, here, if necessary, an organic solvent for adjusting the viscosity and various additives may be blended.
  • the elastic insulating layer of the present embodiment can be obtained by curing while evaporating the solvent.
  • the method, apparatus, and conditions for heating and drying the resin composition may be various means similar to those used in the past, or improved means thereof.
  • the specific heating temperature and time can be appropriately set depending on the cross-linking agent and solvent used, and for example, the resin composition is cured by heating and drying at 50 to 200 ° C. for about 60 to 180 minutes. be able to.
  • the stretchable insulating layer 11 (molded body which is a cured product of the resin composition or the like) thus obtained is surface-treated in order to stably form elastic wiring (conductive layer) on one surface thereof. You may do. Further, various additives such as antioxidants, weather stabilizers, flame retardants, antistatic agents and the like can be added as long as their characteristics are not impaired.
  • the elastic wiring 12 is not particularly limited as long as it is a wiring having elasticity.
  • the elastic wiring 12 formed by using the conductive composition containing the conductive filler and the elastic binder may be formed, or the elastic wiring 12 having a wavy pattern as shown in FIG.
  • the elastic wiring 12 may be composed of a metal layer such as a copper foil formed in a wavy pattern.
  • Examples of the elastic wiring 12 having a wavy pattern include a zigzag wiring as shown in FIG. 10A, a meander wiring as shown in FIG. 10B, and the like.
  • the conductive composition contains a resin (D) serving as a stretchable binder, a curing agent (E) that reacts with the resin (D), and a conductive filler (F), and the resin.
  • (D) has a functional group having a functional group equivalent of 400 g / eq or more and 10000 g / eq or less, and the cured product of the resin (D) and the conductive composition has a glass transition temperature (Tg).
  • Tg glass transition temperature
  • the softening point is 40 ° C or less, or the elastic conductivity at 30 ° C is less than 1.0 GPa
  • the conductive filler (F) has an intrinsic volume resistivity at room temperature of 1 ⁇ 10 -4 ⁇ . Examples thereof include a resin composition composed of a conductive substance having a size of cm or less.
  • the component of the molecular structure of the resin (D) may be a single component, or a plurality of types may be used in combination at an arbitrary ratio. It is preferable that the molecular structure of the resin (D) is a molecular structure containing at least one selected from (meth) acrylic acid ester, styrene, and nitrile as a component. Specific examples thereof are preferably epoxy-modified (meth) acrylic acid ester, hydroxyl group-modified (meth) acrylic acid ester, carboxyl group-modified (meth) acrylic acid ester, and the like.
  • the resin (D) preferably has a weight average molecular weight of 50,000 or more. As a result, it is considered that bleeding is less likely to occur when a conductive pattern is printed using the conductive composition.
  • the upper limit of the weight average molecular weight is not particularly limited, but if the molecular weight exceeds 3 million, the viscosity may increase and the handleability may decrease. Therefore, the weight average molecular weight range of the resin (D) is set. It is preferably 50,000 or more and 3 million or less, and more preferably 100,000 or more and 1 million or less.
  • curing agent (E) various curing agents can be used without particular limitation as long as they have reactivity with the resin (D) as described above.
  • Specific examples of the curing agent (E) include imidazole compounds, amine compounds, phenol compounds, acid anhydride compounds, isocyanate compounds, mercapto compounds, onium salts, radical generators such as peroxides, and light. Examples include acid generators.
  • the conductive filler (F) is made of a conductive substance having an intrinsic volume resistivity of 1 ⁇ 10 -4 ⁇ ⁇ cm or less at room temperature.
  • the volume resistivity of the conductive composition is approximately 1 ⁇ 10 -3 ⁇ ⁇ , although it depends on the blending amount. It is cm to 1 x 10 -2 ⁇ ⁇ cm. Therefore, in the case of a circuit, the resistance value becomes high and the power loss becomes large.
  • Examples of the conductive substance include simple substances composed of metal elements such as silver, copper, and gold, and oxidation containing these elements. Examples include compounds such as substances, nitrides, carbides and alloys.
  • a conductive or semi-conductive conductive auxiliary agent may be added to the conductive composition for the purpose of further improving the conductivity.
  • a conductive or semi-conductive auxiliary agent a conductive polymer, an ionic liquid, carbon black, acetylene black, carbon nanotubes, an inorganic compound used as an antistatic agent, or the like can be used, and only one kind can be used. It may be used or two or more types may be used at the same time.
  • the conductive filler (F) preferably has a flat shape, and preferably has a thickness and an aspect ratio in the in-plane longitudinal direction of 10 or more.
  • the aspect ratio is 10 or more, not only the surface area of the conductive filler with respect to the mass ratio becomes large and the efficiency of conductivity increases, but also the adhesion with the resin component is improved and the elasticity is improved. ..
  • the aspect ratio is 1000 or less, it is preferably 10 or more and 1000 or less, and more preferably 20 or more and 500 or less, from the viewpoint of ensuring better conductivity and printability.
  • Examples of the conductive filler having such an aspect ratio include a conductive filler having a tap density of 6.0 g / cm 3 or less measured by the tap method. Further, when the tap density is 2.0 g / cm 3 or less, the aspect ratio is further increased, which is more preferable.
  • the blending ratio of the conductive filler (F) in the conductive composition is 40 to 95% by mass in terms of mass ratio. It is preferable in terms of conductivity, cost, and printability, and more preferably 60 to 85% by mass.
  • the particle size of the conductive filler (F) is not particularly limited, but the average particle size measured by a laser light scattering method from the viewpoint of printability at the time of screen printing and an appropriate viscosity in kneading of the formulation.
  • Particle size at 50% cumulative volume; D50 is preferably 0.5 ⁇ m or more and 30 ⁇ m or less, and more preferably 1.5 ⁇ m or more and 20 ⁇ m or less.
  • the conductive filler (F) is preferably a conductive filler whose surface is coupled.
  • the conductive composition may contain a coupling agent. This has the advantage that the adhesion between the binder resin and the conductive filler is further improved.
  • the coupling agent added to the conductive composition or for coupling the conductive filler can be used without particular limitation as long as it is adsorbed on the filler surface or reacts with the filler surface.
  • Specific examples of the coupling agent include a silane coupling agent, a titanate-based coupling agent, and an aluminum-based coupling agent.
  • the amount added thereof is preferably about 1 to 20% by mass with respect to the entire resin composition.
  • the ratio of each component in the conductive composition is not particularly limited as long as the effects of the present invention can be exhibited, and the blending ratio of the resin (D): the curing agent (E) is the type of resin and curing agent. Therefore, it can be appropriately determined in consideration of the equivalent ratio and the like.
  • additives and the like can be added to the conductive composition depending on the purpose.
  • additives include elastomers, surfactants, dispersants, colorants, fragrances, plasticizers, pH adjusters, viscosity regulators, ultraviolet absorbers, antioxidants, lubricants and the like.
  • the method for forming the elastic wiring 12 is not particularly limited, and for example, by applying or printing the conductive composition on the elastic insulating layer 11 as described above, a coating film of the conductive composition can be applied. Examples thereof include a method of forming and forming a desired wiring (conductive pattern).
  • the conductive pattern or the like formed by the elastic wiring 12 can be formed on the surface of the elastic insulating layer 11 by the following steps. That is, first, a coating film is formed by applying or printing the conductive composition on the stretchable insulating layer 11, and volatile components contained in the coating film are removed by drying. The resin (D) and the curing agent (E) are cured by the subsequent curing steps such as heating, electron beam, and light irradiation, and the coupling agent and the conductive filler (F) are combined with the resin (D). By the step of reacting with the curing agent (E), a conductive pattern by the elastic wiring 12 can be formed. Each condition in the curing step and the reaction step is not particularly limited, and may be appropriately set depending on the type of resin, curing agent, filler, etc. and the desired form.
  • the step of applying the conductive composition on the substrate (on the elastic insulating layer 11) is not particularly limited, and for example, a coating method such as an applicator, a wire bar, a comma roll, or a gravure roll, a screen, a flat plate offset, or the like.
  • a coating method such as an applicator, a wire bar, a comma roll, or a gravure roll, a screen, a flat plate offset, or the like.
  • a printing method using flexo, inkjet, stamping, dispense, squeegee, or the like can be used.
  • the elastic wiring 12 is composed of a metal layer such as copper foil, the wiring expands and contracts with a change in the shape of the elastic wiring 12, like the wiring formed in the wavy pattern shown in FIG. Therefore, it is preferable that the structure is such that the disconnection of the wiring and the increase of the resistance value can be suppressed.
  • the stretchable circuit board 1 and the stretchable circuit mounted product 100 are operated due to excellent breathability, suppression of damage to the electronic components, moisture passing through the vent holes 13, and the like. It is possible to suppress the occurrence of defects and the like. Further, for example, when a light emitting sheet provided with an LED element or the like on the elastic circuit board according to the present embodiment is used for a display device such as a huge digital signage used in a stadium or the like, the ventilation hole 13 is used. It also has the advantage of being able to prevent it from breaking or being blown by the wind. The vents also contribute to cooling electronic components such as LED elements.
  • an elastic circuit board having excellent breathability and an elastic circuit mounted product are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

One aspect of the present invention is a stretchable circuit board comprising a stretchable insulation layer and stretchable wiring provided on the stretchable insulation layer, wherein: the stretchable insulation layer has an opening at a position that is electrically insulated from the stretchable wiring; and a breathable ventilation hole is formed in the through-thickness direction of the stretchable insulation layer.

Description

伸縮性回路基板、及び伸縮性回路実装品Elastic circuit board and elastic circuit mounting product
 本発明は、伸縮性回路基板、及び伸縮性回路実装品に関する。 The present invention relates to an elastic circuit board and an elastic circuit mounted product.
 エレクトロニクス分野の発展に伴い、電子機器等の、小型化、薄型化、軽量化、及び高密度化に関する要求がさらに高まっている。さらに、用途に応じて、曲面及び凹凸面等に配置するために、自由に変形させることや折り曲げることを可能とする柔軟なデバイスが要求されることもある。このような柔軟なデバイスとしては、例えば、人、犬等の動物、及び植物に着用可能なウェアラブル機器、及び、デジタルサイネージ等に用いられるディスプレイ、センサ、及びロボット用人工皮膚等の様々なインターフェイスに用いられるデバイスや導電材料等が挙げられる。ウェアラブル機器及びデジタルサイネージ等に備えられる回路基板としては、伸縮性が求められる。特に、人及び動物に着用するウェアラブル機器の場合には、身体の動きに追従可能な伸縮性が求められる。伸縮性を有する回路基板としては、例えば、特許文献1及び特許文献2に記載の配線基板が挙げられる。 With the development of the electronics field, there are increasing demands for miniaturization, thinning, weight reduction, and high density of electronic devices and the like. Further, depending on the application, a flexible device that can be freely deformed or bent may be required in order to arrange it on a curved surface, an uneven surface, or the like. Such flexible devices include, for example, wearable devices that can be worn on animals such as humans and dogs, and plants, and various interfaces such as displays, sensors, and artificial skin for robots used for digital signage and the like. Examples include devices and conductive materials used. As a circuit board provided in a wearable device, digital signage, etc., elasticity is required. In particular, in the case of wearable devices worn by humans and animals, elasticity that can follow the movement of the body is required. Examples of the elastic circuit board include the wiring boards described in Patent Document 1 and Patent Document 2.
 特許文献1には、複数の伸縮性基材と、前記複数の伸縮性基材の対向する各主面に少なくとも一つそれぞれ設けられている複数の伸縮性配線部とを備え、前記各主面に設けられた前記伸縮性配線部同士が、接続部を介して互いに導通している伸縮性配線基板が記載されている。また、特許文献1には、前記伸縮性配線基板において、複数の前記伸縮性基材が第一伸縮性基材及び第二伸縮性基材を含み、前記第一伸縮性基材は、第一開口部及び第一主面に形成された第一の前記伸縮性配線部を備え、前記第二伸縮性基材は、第二開口部及び第二主面に形成された第二の前記伸縮性配線部を備え、前記第一主面と前記第二主面とが対向し、前記第一開口部と前記第二の伸縮性配線部の少なくとも一部が重なり、前記第二開口部と前記第一の伸縮性配線部の少なくとも一部が重なることが記載されている。 Patent Document 1 includes a plurality of elastic base materials and a plurality of elastic wiring portions provided on each of the facing main surfaces of the plurality of elastic base materials, and each of the main surfaces thereof. Described is an elastic wiring board in which the elastic wiring portions provided in the above are electrically connected to each other via a connection portion. Further, in Patent Document 1, in the elastic wiring board, a plurality of the elastic base materials include a first elastic base material and a second elastic base material, and the first elastic base material is the first. The first stretchable wiring portion formed on the opening and the first main surface is provided, and the second stretchable base material is the second stretchable wiring portion formed on the second opening and the second main surface. A wiring portion is provided, the first main surface and the second main surface face each other, and at least a part of the first opening and the second elastic wiring portion overlap, and the second opening and the first It is described that at least a part of one elastic wiring portion overlaps.
 特許文献2には、伸縮性樹脂層と、前記伸縮性樹脂層上に設けられ、配線パターンを形成している導体箔と、前記伸縮性樹脂層に設けられたビアホールとを有する配線基板が記載されている。 Patent Document 2 describes a wiring board having a stretchable resin layer, a conductor foil provided on the stretchable resin layer and forming a wiring pattern, and a via hole provided on the stretchable resin layer. Has been done.
 特許文献1によれば、伸長に伴う断線を防ぎつつ多層化を可能とする旨が開示されている。また、特許文献2によれば、高い伸縮性を有すると共に、積層時に層間接続が可能である旨が開示されている。 According to Patent Document 1, it is disclosed that multi-layering is possible while preventing disconnection due to elongation. Further, according to Patent Document 2, it is disclosed that it has high elasticity and can be interconnected between layers at the time of lamination.
特開2017-152687号公報JP-A-2017-152687 国際公開第2018/123732号International Publication No. 2018/123732
 本発明は、通気性に優れた伸縮性回路基板及び伸縮性回路実装品を提供することを目的とする。 An object of the present invention is to provide an elastic circuit board and an elastic circuit mount product having excellent breathability.
 本発明の一局面は、伸縮性絶縁層と、前記伸縮性絶縁層の表面及び内部の少なくとも何れかに設けられた伸縮性配線とを備え、前記伸縮性絶縁層には、前記伸縮性配線から電気的に絶縁された位置に開口部を有し、且つ、前記伸縮性絶縁層の厚さ方向に通気可能な通気孔が形成されていることを特徴とする伸縮性回路基板である。 One aspect of the present invention includes an elastic insulating layer and elastic wiring provided on at least one of the surface and the inside of the elastic insulating layer, and the elastic insulating layer is formed from the elastic wiring. The stretchable circuit board is characterized in that it has an opening at an electrically insulated position and a vent hole that allows ventilation in the thickness direction of the stretchable insulating layer is formed.
図1は、本発明の実施形態に係る伸縮性回路基板の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of an elastic circuit board according to an embodiment of the present invention. 図2は、図1に示す伸縮性回路基板の、切断面線II-IIから見た断面図である。FIG. 2 is a cross-sectional view of the elastic circuit board shown in FIG. 1 as viewed from the cut plane lines II-II. 図3Aは、本発明の実施形態に係る伸縮性回路基板における通気孔の開口部の形状(伸縮性回路基板を伸縮させていない状態)の例を示す図である。FIG. 3A is a diagram showing an example of the shape of the opening of the ventilation hole (state in which the stretchable circuit board is not stretched) in the stretchable circuit board according to the embodiment of the present invention. 図3Bは、本発明の実施形態に係る伸縮性回路基板における通気孔の開口部の開口状態(伸縮性回路基板をX軸方向に伸ばしている状態)の例を示す図である。FIG. 3B is a diagram showing an example of an opening state (a state in which the stretchable circuit board is extended in the X-axis direction) of the opening of the ventilation hole in the stretchable circuit board according to the embodiment of the present invention. 図3Cは、本発明の実施形態に係る伸縮性回路基板における通気孔の開口部の開口状態(伸縮性回路基板をY軸方向に伸ばしている状態)の例を示す図である。FIG. 3C is a diagram showing an example of an open state (a state in which the stretchable circuit board is extended in the Y-axis direction) of the opening of the ventilation hole in the stretchable circuit board according to the embodiment of the present invention. 図3Dは、本発明の実施形態に係る伸縮性回路基板における通気孔の開口部の形状と伸縮性回路基板の伸縮による開口部の開口状態の変化とを説明するための図である。FIG. 3D is a diagram for explaining the shape of the opening of the ventilation hole in the stretchable circuit board according to the embodiment of the present invention and the change in the opening state of the opening due to the expansion and contraction of the stretchable circuit board. 図3Eは、本発明の実施形態に係る伸縮性回路基板における通気孔の開口部の形状と伸縮性回路基板の伸縮による開口部の開口状態の変化とを説明するための図である。FIG. 3E is a diagram for explaining the shape of the opening of the ventilation hole in the stretchable circuit board according to the embodiment of the present invention and the change in the opening state of the opening due to the expansion and contraction of the stretchable circuit board. 図3Fは、本発明の実施形態に係る伸縮性回路基板における通気孔の開口部の形状と伸縮性回路基板の伸縮による開口部の開口状態の変化とを説明するための図である。FIG. 3F is a diagram for explaining the shape of the opening of the ventilation hole in the stretchable circuit board according to the embodiment of the present invention and the change in the opening state of the opening due to the expansion and contraction of the stretchable circuit board. 図4は、本発明の実施形態に係る伸縮性回路基板における通気孔の開口部の形状の他の例を示す図である。FIG. 4 is a diagram showing another example of the shape of the opening of the vent in the elastic circuit board according to the embodiment of the present invention. 図5は、本発明の実施形態に係る伸縮性回路基板の他の一例を示す断面図である。FIG. 5 is a cross-sectional view showing another example of the stretchable circuit board according to the embodiment of the present invention. 図6は、図2に示す伸縮性回路基板の一部Aを拡大して示す断面図である。FIG. 6 is an enlarged cross-sectional view showing a part A of the stretchable circuit board shown in FIG. 図7は、本発明の実施形態に係る伸縮性回路基板の他の一例を示す断面図である。FIG. 7 is a cross-sectional view showing another example of the stretchable circuit board according to the embodiment of the present invention. 図8は、図7に示す伸縮性回路基板の一部Aを拡大して示す断面図である。FIG. 8 is an enlarged cross-sectional view showing a part A of the stretchable circuit board shown in FIG. 7. 図9は、本発明の実施形態に係る伸縮性回路基板における凸部を説明するための図である。FIG. 9 is a diagram for explaining a convex portion in the stretchable circuit board according to the embodiment of the present invention. 図10は、本発明の実施形態に係る伸縮性回路基板における伸縮性配線を説明するための図である。FIG. 10 is a diagram for explaining elastic wiring in the elastic circuit board according to the embodiment of the present invention.
 ウェアラブル機器の中でも、特に人及び動物に着用するウェアラブル機器は、衣服等や身体に貼り付けて使用される等、身体に接触又は近接した状態で使用される。このため、ウェアラブル機器を衣服等に貼り付けた状態で使用する場合には、その着心地が良いことが求められ、ウェアラブル機器を身体に直接貼り付けて使用する場合には、ウェアラブル機器の着用感が良いことが求められる。これらのことから、ウェアラブル機器に備えられる回路基板にも、ウェアラブル機器の着心地及び着用感等を向上させることができることが求められる。 Among wearable devices, wearable devices that are worn by humans and animals are used in contact with or close to the body, such as by attaching them to clothes or the body. For this reason, when the wearable device is used in a state of being attached to clothes or the like, it is required to be comfortable to wear, and when the wearable device is directly attached to the body and used, the wearing feeling of the wearable device is required. Is required to be good. From these facts, it is required that the circuit board provided in the wearable device can also improve the comfort and wearing feeling of the wearable device.
 本発明者等の検討によれば、従来の回路基板は、伸縮性があって、身体の動きに追従可能であったとしても、これを備えるウェアラブル機器では、着心地及び着用感等が良くない場合があった。具体的には、従来の回路基板を備えるウェアラブル機器では、汗による不快感が生じる場合があった。これは、例えば、特許文献1及び特許文献2に記載の従来の配線基板等では、通気性を向上させることが検討されていないため、汗等の水分が透過しにくいことによると推察した。 According to the study by the present inventors, even if the conventional circuit board has elasticity and can follow the movement of the body, the wearable device equipped with the same does not have good comfort and wearing feeling. There was a case. Specifically, in a wearable device provided with a conventional circuit board, discomfort due to sweat may occur. It is presumed that this is because, for example, in the conventional wiring boards and the like described in Patent Document 1 and Patent Document 2, it is difficult for moisture such as sweat to permeate because it has not been studied to improve the air permeability.
 また、このような回路基板を、ウェアラブル機器に備えて使用すると、上述したような汗等の水分及び油分等が、人や植物に着用したウェアラブル機器の周辺に充満することがある。このことは、回路基板に実装された電子部品等の故障又は動作不良の発生の原因となり得るおそれがあった。 Further, when such a circuit board is used in a wearable device, water and oil such as sweat as described above may fill the periphery of the wearable device worn by a person or a plant. This may cause a failure or malfunction of the electronic components mounted on the circuit board.
 一方で、特許文献1及び特許文献2に記載の従来の配線基板等では、例えば、層間接続をさせるためのビア等の孔が形成されていることがある。しかしながら、この孔は、回路基板に実装された電子部品等と電気的に接続された導体を層間接続するためのものであり、通気性を考慮したものではない。そのため、多層化された基板においても、通気性を確保できなかった。 On the other hand, in the conventional wiring boards and the like described in Patent Document 1 and Patent Document 2, for example, holes such as vias for interlayer connection may be formed. However, this hole is for interlayerly connecting a conductor electrically connected to an electronic component mounted on a circuit board or the like, and does not take air permeability into consideration. Therefore, even in a multi-layered substrate, air permeability could not be ensured.
 本発明者等は、上記のような不具合の発生を抑制するためには、ウェアラブル機器に備えられる回路基板には、通気性が求められると推察した。 The present inventors presumed that the circuit board provided in the wearable device is required to have air permeability in order to suppress the occurrence of the above-mentioned problems.
 また、大画面のデジタルサイネージ等には、風に煽られて、破断しにくいこと等が求められる。このことを実現するためには、デジタルサイネージ等に備えられる回路基板には、デジタルサイネージ等にあたった風等を通過させることができるように、ウェアラブル機器に備えられる回路基板と同様、通気性が求められると推察した。 In addition, large-screen digital signage, etc. are required to be hard to break due to the wind. In order to realize this, the circuit board provided in the digital signage or the like has air permeability similar to the circuit board provided in the wearable device so that the wind or the like hitting the digital signage or the like can pass through. I guessed that it would be required.
 本発明者等は、種々検討した結果、以下の本発明により、通気性に優れた伸縮性回路基板及び伸縮性回路実装品を提供するといった上記目的は達成されることを見出した。 As a result of various studies, the present inventors have found that the following objects, such as providing a stretchable circuit board and a stretchable circuit mounted product having excellent breathability, can be achieved by the following invention.
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。なお、本明細書及び図面において、実質的に同一の構成要素については、同一の符号を付することにより重複説明を省略することがある。また、以下の説明及び図面において、伸縮性回路基板をXY平面に配置した場合を仮定し、XY平面と直交するZ軸方向(鉛直方向)を上下方向としている。 Hereinafter, embodiments according to the present invention will be described, but the present invention is not limited thereto. In the present specification and the drawings, substantially the same components may be designated by the same reference numerals to omit duplicate description. Further, in the following description and drawings, it is assumed that the stretchable circuit board is arranged on the XY plane, and the Z-axis direction (vertical direction) orthogonal to the XY plane is the vertical direction.
 本発明の一実施形態に係る伸縮性回路基板1は、図1及び図2に示すように、伸縮性絶縁層11と、伸縮性絶縁層11の表面及び内部の少なくとも何れかに設けられた伸縮性配線12とを備える。伸縮性絶縁層11には、伸縮性配線12から電気的に絶縁された位置に開口部を有し、且つ、伸縮性絶縁層11の厚さ方向(図1及び図2における、Z軸方向)に通気可能な通気孔13が形成されている。すなわち、通気孔13は伸縮性絶縁層11の一方の面に形成された開口部から、他方の面に形成された開口部まで貫通する通路であり、その開口部はともに解放されている。通気孔13は、伸縮性配線12から電気的に絶縁されている。通気孔13の形成位置は、伸縮性絶縁層11において伸縮性配線12とはと重複しない位置、すなわち、平面視において伸縮性配線12が形成されていない位置が好ましい。なお、伸縮性絶縁層11には必要に応じて層間接続用のビアを形成することができるが、前記ビアが伸縮性絶縁層11と電気的に接続されるのに対して、通気孔13は伸縮性配線12から電気的に絶縁されている点で区別されうる。また、伸縮性回路基板1に電子部品14を実装することによって、伸縮性回路実装品100が得られる。伸縮性回路実装品100において、電子部品14は伸縮性配線12に接続される。 As shown in FIGS. 1 and 2, the stretchable circuit board 1 according to the embodiment of the present invention is provided on at least one of the stretchable insulating layer 11 and the surface and the inside of the stretchable insulating layer 11. It is provided with a sex wiring 12. The stretchable insulating layer 11 has an opening at a position electrically insulated from the stretchable wiring 12, and is in the thickness direction of the stretchable insulating layer 11 (Z-axis direction in FIGS. 1 and 2). A vent hole 13 that allows ventilation is formed in the air. That is, the ventilation hole 13 is a passage that penetrates from the opening formed on one surface of the elastic insulating layer 11 to the opening formed on the other surface, and both of the openings are open. The ventilation holes 13 are electrically insulated from the elastic wiring 12. The position where the ventilation hole 13 is formed is preferably a position where the stretchable insulating layer 11 does not overlap with the stretchable wiring 12, that is, a position where the stretchable wiring 12 is not formed in a plan view. Although vias for interlayer connection can be formed in the elastic insulating layer 11 as needed, the vias are electrically connected to the elastic insulating layer 11, whereas the ventilation holes 13 are provided. It can be distinguished by being electrically insulated from the elastic wiring 12. Further, by mounting the electronic component 14 on the stretchable circuit board 1, the stretchable circuit mounted product 100 can be obtained. In the stretchable circuit mounting product 100, the electronic component 14 is connected to the stretchable wiring 12.
 伸縮性回路基板1及び伸縮性回路実装品100は、例えばその一方の表面側に存在する水分(湿気)を、通気孔13を通じて他方の表面側に移動させることが可能である。つまり、伸縮性回路基板1及び伸縮性回路実装品100は、通気孔13が水分を逃がすことができるので、通気性に優れ、片側の表面に水分が滞留したままになることを防止できる。 The stretchable circuit board 1 and the stretchable circuit mounting product 100 can, for example, move moisture (moisture) existing on one surface side to the other surface side through the ventilation holes 13. That is, in the stretchable circuit board 1 and the stretchable circuit mounted product 100, since the ventilation holes 13 can allow moisture to escape, the stretchable circuit board 1 is excellent in breathability, and it is possible to prevent the moisture from remaining on one surface.
 したがって、伸縮性回路基板1及び伸縮性回路実装品100は、何かの対象物に被着させて用いるウェアラブルデバイス、特に人の生体に直接あるいは衣服等に貼り付けて使用するパッチデバイスに適用すると、汗等の水分を発散させることができるため、有用性が高い。 Therefore, the stretchable circuit board 1 and the stretchable circuit mounting product 100 are applied to a wearable device used by being adhered to an object, particularly a patch device used by being directly attached to a human living body or attached to clothes or the like. It is highly useful because it can dissipate water such as sweat.
 また、例えば、本実施形態に係る伸縮性回路基板にLED素子等を備えた発光シートを、競技場等で用いられる巨大なデジタルサイネージ等の表示装置に使用する場合等には、このような通気孔があることによって、破断したり、風に煽られたりすることを抑制できるといった利点もある。また、この通気孔は、LED素子の冷却にも寄与する。 Further, for example, when a light emitting sheet provided with an LED element or the like on the elastic circuit board according to the present embodiment is used for a display device such as a huge digital signage used in a stadium or the like, such a communication is used. The presence of pores also has the advantage of being able to prevent breakage and wind fanning. The vents also contribute to cooling the LED element.
 [伸縮性の定義]
 本実施形態における伸縮性絶縁層11、伸縮性配線12、伸縮性回路基板1、及び伸縮性回路実装品100は、それぞれ伸縮性を有する。ここで「伸縮性を有する」とは、弾性変形可能であることを指し、より具体的には、10%以上の伸張率を有し、且つ、25℃室温における引張弾性率が0.5~500MPaであることを指す。
[Definition of elasticity]
The stretchable insulating layer 11, the stretchable wiring 12, the stretchable circuit board 1, and the stretchable circuit mount product 100 in the present embodiment each have elasticity. Here, "having elasticity" means that it can be elastically deformed, and more specifically, it has an elongation rate of 10% or more and a tensile elastic modulus at room temperature of 25 ° C. of 0.5 to. It means that it is 500 MPa.
 前記伸張率は、10%以上であり、25%以上であることが好ましく、50%以上であることがより好ましく、100%以上であることがさらに好ましい。また、前記伸張率は、高ければ高いほど好ましいが、必要以上に伸張した場合、塑性変形が発生し、元の形状を損なう傾向があるという観点から、500%以下であることが好ましい。また、25℃室温における引張弾性率は、0.5~500MPaであり、1~300MPaであることが好ましく、2~200MPaであることがより好ましく、5~100MPaであることがさらに好ましい。前記伸張率及び前記引張弾性率が前記範囲内であれば、任意の形へ変形しやすく、例えば、伸縮性回路基板を衣服等に貼り付けた場合、衣服の変形に対する追従性に優れている。なお、前記引張弾性率は、動的粘弾性測定装置を用いて引張試験で温度依存性測定を行うことにより測定された25℃における貯蔵弾性率を指す。前記動的粘弾性測定装置としては、例えば、セイコーインスツル株式会社製のDMS6100等が挙げられる。 The elongation rate is 10% or more, preferably 25% or more, more preferably 50% or more, and even more preferably 100% or more. Further, the higher the elongation rate is, the more preferable it is, but it is preferably 500% or less from the viewpoint that when it is stretched more than necessary, plastic deformation tends to occur and the original shape tends to be impaired. The tensile elastic modulus at room temperature at 25 ° C. is 0.5 to 500 MPa, preferably 1 to 300 MPa, more preferably 2 to 200 MPa, and even more preferably 5 to 100 MPa. When the elongation rate and the tensile elastic modulus are within the above ranges, it is easily deformed into an arbitrary shape. For example, when the stretchable circuit board is attached to clothes or the like, it is excellent in followability to the deformation of clothes. The tensile elastic modulus refers to the storage elastic modulus at 25 ° C. measured by performing a temperature-dependent measurement in a tensile test using a dynamic viscoelasticity measuring device. Examples of the dynamic viscoelasticity measuring device include DMS6100 manufactured by Seiko Instruments Inc.
 [構造的特徴]
 通気孔13は、図1及び図2に示すように、伸縮性絶縁層11の一方の面に形成された開口部から、他方の面に形成された開口部まで貫通する通路であり、伸縮性配線12とは重複しない位置に設けられている。伸縮性絶縁層11に形成される通気孔13の個数は、特には限定されないが、通気孔13は通気性向上の観点から、図3A~図3Fに示すように、伸縮性絶縁層11に複数形成されていることが好ましい。
[Structural features]
As shown in FIGS. 1 and 2, the ventilation hole 13 is a passage that penetrates from the opening formed on one surface of the elastic insulating layer 11 to the opening formed on the other surface, and is elastic. It is provided at a position that does not overlap with the wiring 12. The number of ventilation holes 13 formed in the elastic insulating layer 11 is not particularly limited, but from the viewpoint of improving air permeability, a plurality of ventilation holes 13 are formed in the elastic insulating layer 11 as shown in FIGS. 3A to 3F. It is preferably formed.
 開口部の形状は、伸縮性絶縁層11を面方向(図1及び図2におけるX及びYで指示された矢印の方向)に伸縮した際に、破断しにくい形状であることが好ましく、さらに閉じにくい(大きく開いた状態を維持しやすい)形状であることが好ましい。そのような開口部の形状(伸縮性絶縁層11の面方向における形状)としては、円形、楕円形、及び多角形等が挙げられる。通気孔13が複数形成される場合、それぞれの通気孔における開口部の形状が、全て同じ形状でもよいが、異なる形状の組合せであってもよい。伸縮性回路基板1及び伸縮性回路実装品100としては、具体的には、図3A~図3Fに示すように、様々な形状の開口部が前記伸縮性絶縁層11に複数形成されている伸縮性回路基板1及び伸縮性回路実装品100が挙げられる。なお、図3A~図3Fには、前記伸縮性絶縁層11及び前記通気孔13のみを示し、伸縮性配線等は省略する。図3A~図3Fには、開口部の形状が、円形(形状13-1)、楕円形(形状13-2)、及び多角形(形状13-3)である通気孔13の一例が示されている。 The shape of the opening is preferably a shape that does not easily break when the elastic insulating layer 11 is expanded and contracted in the plane direction (the direction of the arrows indicated by X and Y in FIGS. 1 and 2), and is further closed. It is preferable that the shape is difficult (it is easy to maintain a wide open state). Examples of the shape of such an opening (the shape of the elastic insulating layer 11 in the plane direction) include a circular shape, an elliptical shape, and a polygonal shape. When a plurality of ventilation holes 13 are formed, the shapes of the openings in the respective ventilation holes may be the same shape, or may be a combination of different shapes. Specifically, as the stretchable circuit board 1 and the stretchable circuit mounting product 100, as shown in FIGS. 3A to 3F, a plurality of openings having various shapes are formed in the stretchable insulating layer 11. Examples include the sex circuit board 1 and the stretchable circuit mounted product 100. Note that FIGS. 3A to 3F show only the elastic insulating layer 11 and the ventilation holes 13, and the elastic wiring and the like are omitted. 3A to 3F show an example of the ventilation hole 13 in which the shape of the opening is circular (shape 13-1), elliptical (shape 13-2), and polygonal (shape 13-3). ing.
 図3Aは、伸縮性回路基板1を伸縮させていない状態を示す。図3Bは、伸縮性回路基板1をX軸方向に伸ばしている状態を示す。図3Cは、伸縮性回路基板1をY軸方向に伸ばしている状態を示す。図3A~図3Cに示されたように、X軸方向及びY軸方向に伸縮性回路基板1を伸縮させた時に、いくつかの通気孔13の開口部は略完全に閉じているが、いくつか他方の通気孔13の開口部は大きく開いた状態を維持していることがわかる。なお、本実施形態において、開口部の形状とは、伸縮性回路基板を、伸縮させるための応力を、特に付与していない状態(例えば、図3Aの状態)での開口部の形状のことである。 FIG. 3A shows a state in which the stretchable circuit board 1 is not stretched. FIG. 3B shows a state in which the stretchable circuit board 1 is extended in the X-axis direction. FIG. 3C shows a state in which the stretchable circuit board 1 is extended in the Y-axis direction. As shown in FIGS. 3A to 3C, when the stretchable circuit board 1 is expanded and contracted in the X-axis direction and the Y-axis direction, the openings of some of the ventilation holes 13 are almost completely closed. It can be seen that the opening of the other vent hole 13 is maintained in a wide open state. In the present embodiment, the shape of the opening is the shape of the opening in a state where no stress for expanding and contracting the stretchable circuit board is particularly applied (for example, the state of FIG. 3A). is there.
 [開口部の形状と伸縮性回路基板の伸縮による開口部の開口状態の変化]
 (ケース1)
 図3Dに示したように、開口部の形状が形状13-1である通気孔13が複数並んだ伸縮性回路基板1は、X軸方向にもY軸方向にも伸長していない状態(例として、図3Dの(1)の状態:伸縮前の状態)であれば、通気孔13によって、通気性が確保されている。しかしながら、X軸方向又はY軸方向へ伸縮した時、伸縮性回路基板1の伸長率に応じて全ての通気孔13の開口部が同じように閉じ、最終的に、例として、図3Dの(2)及び(3)に示された状態のように、通気孔13の開口部の全てが略同時に完全に閉じる可能性があると考えられる。
[Change in opening state due to expansion and contraction of the shape and elasticity of the circuit board]
(Case 1)
As shown in FIG. 3D, the stretchable circuit board 1 in which a plurality of vent holes 13 having an opening shape of 13-1 are arranged is not extended in the X-axis direction or the Y-axis direction (example). As a result, in the case of (1) in FIG. 3D (state before expansion and contraction), air permeability is ensured by the ventilation holes 13. However, when expanded and contracted in the X-axis direction or the Y-axis direction, the openings of all the ventilation holes 13 are closed in the same manner according to the expansion rate of the elastic circuit board 1, and finally, as an example, (1) in FIG. It is considered that all the openings of the ventilation holes 13 may be completely closed at substantially the same time as in the states shown in 2) and (3).
 (ケース2)
 次に、開口部の形状が形状13-1である通気孔13と、開口部の形状が形状13-2である通気孔13との組み合わせからなる伸縮性回路基板1について、伸縮時の状況を図3Eに示す。伸縮性回路基板1をX軸方向に伸長した時、図3Eの(1)の状態(伸縮前)から図3Eの(2)の状態への伸長による変化に見られるように、形状13-1の開口部と形状13-2の開口部とが、異なる開口状態の開口部に変化する。図3Eの(2)に示されたように、形状13-1の開口部が略閉じた状態となっても、形状13-2の開口部は、形状13-1の通気孔13の開口部に比べて、大きく開いた状態を維持している。つまり、ケース2の通気孔13の開口部の形状の組み合わせの方が、ケース1よりも、伸縮性回路基板1が伸縮した場合に、伸縮性絶縁層11の表面における通気孔13の開口率を高く維持できることがわかる。このことから、複数の通気孔13には、開口部の形状が異なる通気孔13が含まれていることが好ましい。
(Case 2)
Next, regarding the stretchable circuit board 1 composed of a combination of the ventilation holes 13 having the shape of the opening 13-1 and the ventilation holes 13 having the shape of the opening 13-2, the situation at the time of expansion and contraction is examined. It is shown in FIG. 3E. When the stretchable circuit board 1 is stretched in the X-axis direction, the shape 13-1 can be seen in the change due to the stretching from the state (1) in FIG. 3E (before stretching) to the state (2) in FIG. 3E. The opening of the shape 13-2 and the opening of the shape 13-2 are changed to openings having different opening states. As shown in (2) of FIG. 3E, even if the opening of shape 13-1 is substantially closed, the opening of shape 13-2 is the opening of the ventilation hole 13 of shape 13-1. Compared to, it maintains a wide open state. That is, the combination of the shapes of the openings of the ventilation holes 13 of the case 2 increases the opening ratio of the ventilation holes 13 on the surface of the elastic insulating layer 11 when the elastic circuit board 1 expands and contracts more than the case 1. It turns out that it can be kept high. For this reason, it is preferable that the plurality of ventilation holes 13 include ventilation holes 13 having different openings.
 (ケース3)
 次に、開口部の形状が形状13-2である通気孔13について、長径方向をY軸方向とした列と、長径方向をX軸方向とした列との組み合わせからなる伸縮性回路基板1について、伸縮時の状況を図3Fに示す。伸縮性回路基板1をX軸方向に伸長した時、図3Fの(1)の状態(伸縮前)から図3Fの(2)への変化に見られるように、伸縮前の状態において、長径方向をX軸方向とした通気孔13の開口部と、Y軸方向とした通気孔13の開口部とが、異なる開口状態の開口部に変化する。また、図3Fの(2)に示されたように、伸縮前の状態において、長径方向をX軸方向とした列の通気孔13の開口部が略閉じた状態となっても、伸縮前の状態において、長径方向をY軸方向とした列の通気孔13の開口部は、伸縮前の状態において、長径方向をX軸方向とした列の通気孔13の開口部に比べて、大きく開いた状態を維持している。さらに、図3Fの(1)の状態から図3Fの(3)への変化にも同様の状態変化が見られ、図3Fの(3)に示されたように、伸縮前の状態において、長径方向をY軸方向とした列の通気孔13の開口部が略閉じた状態となっても、伸縮前に長径方向をX軸方向とした列の通気孔13の開口部は、伸縮前に長径方向をX軸方向とした列の通気孔13の開口部に比べて、大きく開いた状態を維持している。つまり、伸縮性回路基板1をX軸方向に伸長した時や、Y軸方向に伸長した時に、いずれかの通気孔13の開口部が閉じる方向に変形しても、いずれか他方の通気孔13の開口部が開らく方向に変形させることが可能となる。それによって、ケース1よりも複数の伸縮方向に対して伸縮性絶縁層11の表面における通気孔13の開口率を高く維持できることがわかる。このことから、複数の通気孔13には、開口部の長径の向きが異なる通気孔13が含まれていることが好ましく、前記長径の異なる通気孔13は、長径方向を異なる方向に配列させて伸縮性絶縁層11に施されていることが好ましい。
(Case 3)
Next, regarding the ventilation hole 13 having the shape of the opening 13-2, the stretchable circuit board 1 composed of a combination of a row having the major axis direction as the Y-axis direction and a row having the major axis direction as the X-axis direction. The situation at the time of expansion and contraction is shown in FIG. 3F. When the stretchable circuit board 1 is stretched in the X-axis direction, as can be seen in the change from the state (1) in FIG. 3F (before stretching) to (2) in FIG. 3F, in the state before stretching, the major axis direction. The opening of the ventilation hole 13 in the X-axis direction and the opening of the ventilation hole 13 in the Y-axis direction are changed to openings in different opening states. Further, as shown in (2) of FIG. 3F, even if the openings of the ventilation holes 13 in the row whose major axis direction is the X-axis direction are substantially closed in the state before expansion and contraction, before expansion and contraction In the state, the openings of the ventilation holes 13 in the row whose major axis direction is the Y-axis direction are wider than the openings of the ventilation holes 13 in the row whose major axis direction is the X-axis direction before expansion and contraction. Maintaining the state. Further, a similar state change was observed in the change from the state (1) in FIG. 3F to (3) in FIG. 3F, and as shown in (3) in FIG. 3F, the major axis was in the state before expansion and contraction. Even if the openings of the ventilation holes 13 in the row whose direction is the Y-axis direction are substantially closed, the openings of the ventilation holes 13 in the row whose major axis direction is the X-axis direction before expansion and contraction have a major axis before expansion and contraction. Compared to the openings of the ventilation holes 13 in the row whose direction is the X-axis direction, the open state is maintained. That is, even if the opening of one of the ventilation holes 13 is deformed in the closing direction when the elastic circuit board 1 is extended in the X-axis direction or in the Y-axis direction, the other ventilation hole 13 It is possible to deform the opening in the opening direction. As a result, it can be seen that the opening ratio of the ventilation holes 13 on the surface of the stretchable insulating layer 11 can be maintained higher than in the case 1 in a plurality of stretching directions. For this reason, it is preferable that the plurality of ventilation holes 13 include ventilation holes 13 having different directions of the major axis of the openings, and the ventilation holes 13 having different major axes are arranged in different major directions. It is preferably applied to the stretchable insulating layer 11.
 (ケース4)
 開口部の形状が形状13-3である通気孔13の場合は、ケース3で示したように、開口部の形状が形状13-2である通気孔13の組み合わせと同様に、伸縮性回路基板1が伸縮した場合の伸縮性絶縁層11の表面における通気孔13の開口率を高く維持しやすい。開口部の形状が形状13-3の矩形に代表される多角形である場合には、伸縮性回路基板1が伸縮する際に、角の部位から破断が起きやすくなるため、前記多角形の角の部位にはR加工が施されていることが好ましい。これによって、伸縮性回路基板1が伸縮した場合にも通気孔13の特定箇所(特に、多角形の角)に応力が集中することを低減できるため、破断に対する強度を向上することができると考えられる。R加工の度合いについては、開口部の大きさ、形状、伸縮性回路基板1の伸縮率に応じて、適宜選択してもよい。
(Case 4)
In the case of the ventilation hole 13 having the shape of the opening 13-3, as shown in Case 3, the elastic circuit board is similar to the combination of the ventilation holes 13 having the shape of the opening 13-2. When 1 expands and contracts, it is easy to maintain a high opening ratio of the ventilation holes 13 on the surface of the elastic insulating layer 11. When the shape of the opening is a polygon represented by a rectangle of shape 13-3, when the stretchable circuit board 1 expands and contracts, breakage is likely to occur from the corner portion, so that the corner of the polygon is It is preferable that the portion of is R-processed. As a result, even when the stretchable circuit board 1 expands and contracts, it is possible to reduce the concentration of stress on a specific portion (particularly, the corner of a polygon) of the ventilation hole 13, and thus it is considered that the strength against breaking can be improved. Be done. The degree of R processing may be appropriately selected according to the size and shape of the opening and the expansion / contraction rate of the stretchable circuit board 1.
 その他、先に示したケース1(形状13-1の開口部の場合)であっても、大きさが異なる開口部の組み合わせであれば、伸縮性回路基板1の伸縮に伴って、通気孔13の開口部の全てが略同時に閉口する可能性を回避できると考えられる(図示無)。 In addition, even in the case 1 shown above (in the case of the opening of shape 13-1), if the combination of openings having different sizes is used, the ventilation holes 13 are expanded and contracted as the elastic circuit board 1 expands and contracts. It is considered that the possibility that all the openings of the above are closed at substantially the same time can be avoided (not shown).
 [通気孔13の他の実施形態]
 通気孔13の開口部は、図4に示すように、複雑な形状であってもよい。具体的には、開口部は、図4(a)~(c)に示すように、多角形であってもよいし、さらには、図4(d)に示すように、切り込みであってもよい。開口部が、図4(d)に示すような切り込みであっても、伸縮性回路基板1を伸ばすことにより、その開口部を有する通気孔13は、伸縮性絶縁層11の厚さ方向に通気可能な孔になる。
[Other Embodiments of Vent 13]
As shown in FIG. 4, the opening of the ventilation hole 13 may have a complicated shape. Specifically, the opening may be polygonal as shown in FIGS. 4 (a) to 4 (c), and may be notched as shown in FIG. 4 (d). Good. Even if the opening is a notch as shown in FIG. 4D, by extending the stretchable circuit board 1, the ventilation hole 13 having the opening is ventilated in the thickness direction of the stretchable insulating layer 11. Become a possible hole.
 通気孔13は、図5に示すような形状であってもよい。図5に示すような形状の場合には、通気孔13が大きく施されているため、通気性を十分に確保することができる。 The ventilation hole 13 may have a shape as shown in FIG. In the case of the shape shown in FIG. 5, since the ventilation holes 13 are provided large, sufficient air permeability can be ensured.
 [開口部の開口率]
 伸縮性絶縁層11の表面における通気孔13の開口率(通気孔13の開口部の総面積を含む伸縮性絶縁層11の面方向の総面積に対する、通気孔13の開口部の総面積)は、通気性が確保できていれば、特には限定されない。前記開口率は、0.001~45%であることが好ましく、0.01~20%であることがより好ましい。前記開口率が低すぎると、通気性が低下する傾向がある。また、前記開口率が高すぎると、通気性が確保できても、伸縮性回路基板としての強度が低下する傾向がある。前記開口率が、上記のような割合であると、伸縮性回路基板としての強度を維持しつつ、優れた通気性を発揮できるため、より優れた通気性を発揮できる。なお、通気孔13の開口部の総面積は、伸縮性絶縁層11の面方向において、複数形成されている開口部の面積を全て加算した面積である。
[Aperture ratio of opening]
The aperture ratio of the ventilation holes 13 on the surface of the elastic insulating layer 11 (the total area of the openings of the ventilation holes 13 with respect to the total area of the elastic insulation layer 11 in the surface direction including the total area of the openings of the ventilation holes 13) is As long as breathability can be ensured, there is no particular limitation. The aperture ratio is preferably 0.001 to 45%, more preferably 0.01 to 20%. If the aperture ratio is too low, the air permeability tends to decrease. Further, if the aperture ratio is too high, the strength of the stretchable circuit board tends to decrease even if the air permeability can be ensured. When the aperture ratio is as described above, excellent air permeability can be exhibited while maintaining the strength of the stretchable circuit board, so that more excellent air permeability can be exhibited. The total area of the openings of the ventilation holes 13 is the area obtained by adding all the areas of the plurality of openings formed in the surface direction of the elastic insulating layer 11.
 [開口部の大きさ]
 通気孔13の開口部の大きさは、通気孔13が伸縮性絶縁層11の厚さ方向に通気可能な大きさであれば、特に限定されない。開口部の大きさとしては、例えば、開口部の最大径(開口部の、伸縮性絶縁層11の面方向における最大径)が、100nm以上30mm以下であることが好ましく、500nm以上5mm以下であることがより好ましい。なお、ここで、最大径とは、開口部の形状が形状13-1のように円形であるときは直径であり、開口部の形状が形状13-2のような楕円形であるときは開口部の径のうち最も長くなる径(長径)である。また、開口部の形状が形状13-3のように矩形であるときは、長辺の長さである。開口部の形状がそれ以外のときは、開口部に内接させた楕円の長径となる線上の長さである。
[Size of opening]
The size of the opening of the ventilation hole 13 is not particularly limited as long as the ventilation hole 13 has a size that allows ventilation in the thickness direction of the elastic insulating layer 11. As for the size of the opening, for example, the maximum diameter of the opening (the maximum diameter of the opening in the plane direction of the elastic insulating layer 11) is preferably 100 nm or more and 30 mm or less, and 500 nm or more and 5 mm or less. Is more preferable. Here, the maximum diameter is the diameter when the shape of the opening is circular as in shape 13-1, and the maximum diameter is the diameter when the shape of the opening is elliptical as in shape 13-2. This is the longest diameter (major diameter) of the diameters of the parts. Further, when the shape of the opening is rectangular as in the shape 13-3, it is the length of the long side. When the shape of the opening is other than that, it is the length on the line which is the major axis of the ellipse inscribed in the opening.
 前記長径(最大径)が短すぎると、通気性が低下する傾向がある。また、前記長径が長すぎると、通気性が確保できても、伸縮性回路基板としての強度が低下する傾向がある。これらのことから、長径が上記範囲内の長さである開口部の通気孔であれば、伸縮性回路基板としての強度を維持しつつ、優れた通気性を発揮できる。また、伸縮性回路基板1を伸ばした方向にかかわらず、通気孔13による通気が維持されやすいため、より優れた通気性を発揮できる。 If the major axis (maximum diameter) is too short, the air permeability tends to decrease. Further, if the major axis is too long, the strength of the stretchable circuit board tends to decrease even if the air permeability can be ensured. From these facts, if the vent hole of the opening whose major axis is a length within the above range, excellent air permeability can be exhibited while maintaining the strength as an elastic circuit board. Further, since the ventilation through the ventilation holes 13 is easily maintained regardless of the direction in which the stretchable circuit board 1 is extended, more excellent ventilation can be exhibited.
 長径(最大径)の具体例としては、図3Aにおいては、D1(D2)、D3、D5、D7、D9で示し、図4においては、D11(D12)、D13(D14)、D15(D16)、D17(D18)で示す。なお、短径(長径に直交する長さ:例えば、図3Aにおいては、D2、D4、D6、D8、D10)は、100nm以上30mm以下であることが好ましく、500nm以上5mm以下であることがより好ましい。 Specific examples of the major axis (maximum diameter) are shown by D1 (D2), D3, D5, D7, and D9 in FIG. 3A, and D11 (D12), D13 (D14), and D15 (D16) in FIG. , D17 (D18). The minor axis (length orthogonal to the major axis: D2, D4, D6, D8, D10 in FIG. 3A) is preferably 100 nm or more and 30 mm or less, and more preferably 500 nm or more and 5 mm or less. preferable.
 [通気孔13の形成方法]
 前記通気孔13の形成方法は、特に限定されないが、例えば、前記伸縮性絶縁層11にドリルやレーザーを用いて前記通気孔13を形成する方法等が挙げられる。
[Method of forming ventilation holes 13]
The method for forming the ventilation holes 13 is not particularly limited, and examples thereof include a method for forming the ventilation holes 13 in the elastic insulating layer 11 using a drill or a laser.
 [通気孔13の保護]
 伸縮性回路基板1には、伸縮性絶縁層11の表面において、通気孔13の開口部の周縁を覆う保護部をさらに備えることが好ましい。具体的には、前記保護部としては、図6(a)に示すような、伸縮性絶縁層11の損傷(通気孔13を起点として発生する伸縮性絶縁層11の割れ等)を防ぐための保護層21等が挙げられる。図2のAの部分の拡大図を図6(a)に示す。通気孔13の開口部の周縁とは、例えば、図6(a)に示すように、伸縮性絶縁層11の通気孔13の開口部に接する部分(保護層21cが形成された部分)、通気孔13の通路の周面(保護層21aが形成された部分)、及び保護層21aと保護層21cを繋ぐ部分(保護層21bが形成された部分)である。前記保護部が保護層21である場合、保護層21は、保護層21a、保護層21b及び保護層21cのいずれかを備えてもよいし、それらを組み合わせて備えていてもよい。保護層21a、保護層21b、及び保護層21cのいずれかが別体である保護層21でもよいし、全てが一体となった保護層21でもよいし、いずれか2つが一体であって、残りの1つが他の2つとは別体である保護層21であってもよい。上記のような保護層21を備えることによって、伸縮性回路基板1は、通気孔13による優れた通気性を発揮しつつ、伸縮性回路基板1の伸縮による伸縮性絶縁層11の損傷の発生を抑制することができる。保護層21cの大きさは、図6(a)に示す通気孔13の径R13に対する、保護層21cの伸縮性絶縁層上の形成距離D21(伸縮性回路基板の割合(D21/R13)が0.05~20の範囲であることが好ましく、0.10~10の範囲であることがより好ましい。D21は、10μm~20mmの範囲であることが好ましく、20μm~10mmの範囲であることが好ましい。保護層21の厚み(t211、t212)は、2μm~30μmの範囲であることが好ましく、5μm~15μmの範囲であることがより好ましい。
[Protection of ventilation holes 13]
It is preferable that the stretchable circuit board 1 is further provided with a protective portion that covers the peripheral edge of the opening of the ventilation hole 13 on the surface of the stretchable insulating layer 11. Specifically, the protective portion is for preventing damage to the elastic insulating layer 11 (cracking of the elastic insulating layer 11 generated from the ventilation hole 13 or the like) as shown in FIG. 6A. Protective layer 21 and the like can be mentioned. An enlarged view of the portion A in FIG. 2 is shown in FIG. 6 (a). As shown in FIG. 6A, the peripheral edge of the opening of the ventilation hole 13 is, for example, a portion of the elastic insulating layer 11 in contact with the opening of the ventilation hole 13 (a portion where the protective layer 21c is formed) and a passage. The peripheral surface of the passage of the pore 13 (the portion where the protective layer 21a is formed) and the portion connecting the protective layer 21a and the protective layer 21c (the portion where the protective layer 21b is formed). When the protective portion is the protective layer 21, the protective layer 21 may include any of the protective layer 21a, the protective layer 21b, and the protective layer 21c, or may include them in combination. The protective layer 21 in which any one of the protective layer 21a, the protective layer 21b, and the protective layer 21c is a separate body may be used, or the protective layer 21 in which all of them are integrated may be used, or any two of them may be integrated and the rest. One of the protective layers 21 may be a separate body from the other two. By providing the protective layer 21 as described above, the stretchable circuit board 1 exhibits excellent breathability due to the ventilation holes 13, and damage to the stretchable insulating layer 11 due to the expansion and contraction of the stretchable circuit board 1 occurs. It can be suppressed. The size of the protective layer 21c is such that the formation distance D21 (ratio of elastic circuit board (D21 / R13)) on the elastic insulating layer of the protective layer 21c to the diameter R13 of the ventilation hole 13 shown in FIG. 6A is 0. It is preferably in the range of .05 to 20, more preferably in the range of 0.10 to 10. D21 is preferably in the range of 10 μm to 20 mm, preferably in the range of 20 μm to 10 mm. The thickness (t211 and t212) of the protective layer 21 is preferably in the range of 2 μm to 30 μm, and more preferably in the range of 5 μm to 15 μm.
 保護層21に用いる材料は、特に限定されず、例えば、樹脂シートで覆うことで形成したり、各種の樹脂組成物を用いて形成することができる。前記各種の樹脂組成物に用いる樹脂としては、伸縮性回路基板1の伸長性や引張弾性を阻害しないものであることが好ましい。また、保護層21は、ハトメ等であってもよい。すなわち、通気孔13は、ハトメ等で保護されていてもよい。 The material used for the protective layer 21 is not particularly limited, and can be formed by covering with a resin sheet or using various resin compositions, for example. The resin used in the various resin compositions is preferably one that does not hinder the extensibility and tensile elasticity of the stretchable circuit board 1. Further, the protective layer 21 may be an eyelet or the like. That is, the ventilation holes 13 may be protected by eyelets or the like.
 なお、前記保護部は、伸縮性絶縁層11の損傷を防ぐことができるものであれば、保護層21のような層状のものに限定されず、例えば、通気孔13の開口部の周縁だけに局所的に設けられる保護片であってもよい。 The protective portion is not limited to a layered one such as the protective layer 21 as long as it can prevent damage to the elastic insulating layer 11, and is limited to, for example, only the peripheral edge of the opening of the ventilation hole 13. It may be a protective piece provided locally.
 [通気性を確保するのに好適な伸縮性回路基板の構造]
 伸縮性回路基板1は、ウェアラブルデバイスに適用する場合、人体や物品等の対象物と接触させて用いることとなる。このような場合、対象物が伸縮性回路基板1に対する接触物となる。このような対象物が伸縮性回路基板1に接触する際、伸縮性回路基板1の表面には、伸縮性回路基板1への接触物によって通気孔13の開口部が密封されるのを防止するための密閉防止手段が設けられていることが好ましい。前記密閉防止手段の具体例としては、図6(a)に示すような、伸縮性絶縁層11の人体や物品等の対象物(接触物)に被着させる側の表面(被着面)に備えられる、凸部22等が挙げられる。具体的には、前記対象物と伸縮性絶縁層11とを離間させるための凸部22を、伸縮性絶縁層11の表面上に備えることが好ましい。それによって、伸縮性回路基板1を対象物と接触させて用いる場合に、凸部22がスペーサーの役割となり、少なくとも凸部22周辺部には伸縮性絶縁層11の表面と対象物被着面との間に空間が生まれる。凸部22が複数あれば、隣り合う凸部22、22の間には上記空間が好適に形成される。仮に伸縮性回路基板1の被着面が平坦であれば、通気孔13の開口部が対象物により密閉されてしまう恐れがあるが、凸部22の存在により空間(隙間)が確保され、通気孔13の開口部が塞がれることを抑制できる。したがって、伸縮性回路基板1の好適な通気性が確保される。凸部22は通気孔13の開口部の近傍に形成されるのが好ましい。なお、前記密閉防止手段としては、接触物によって通気孔13の開口部が密封されるのを防止することができるものであれば、前記凸部22に限定されない。
[Structure of elastic circuit board suitable for ensuring breathability]
When the elastic circuit board 1 is applied to a wearable device, it is used in contact with an object such as a human body or an article. In such a case, the object becomes a contact with the stretchable circuit board 1. When such an object comes into contact with the elastic circuit board 1, the surface of the elastic circuit board 1 is prevented from being sealed with the opening of the ventilation hole 13 by the contact with the elastic circuit board 1. It is preferable that a sealing prevention means for this purpose is provided. As a specific example of the sealing prevention means, as shown in FIG. 6A, on the surface (adhesion surface) of the elastic insulating layer 11 on the side to be adhered to an object (contact object) such as a human body or an article. Examples thereof include a convex portion 22 and the like. Specifically, it is preferable that the convex portion 22 for separating the object and the stretchable insulating layer 11 is provided on the surface of the stretchable insulating layer 11. As a result, when the stretchable circuit board 1 is used in contact with the object, the convex portion 22 acts as a spacer, and at least the peripheral portion of the convex portion 22 has a surface of the stretchable insulating layer 11 and an object adherent surface. A space is created between them. If there are a plurality of convex portions 22, the space is preferably formed between the adjacent convex portions 22, 22. If the adherend surface of the stretchable circuit board 1 is flat, the opening of the ventilation hole 13 may be sealed by the object, but the presence of the convex portion 22 secures a space (gap) and allows passage. It is possible to prevent the opening of the pore 13 from being blocked. Therefore, suitable air permeability of the stretchable circuit board 1 is ensured. The convex portion 22 is preferably formed in the vicinity of the opening of the ventilation hole 13. The sealing prevention means is not limited to the convex portion 22 as long as it can prevent the opening of the ventilation hole 13 from being sealed by a contact object.
 なお、保護部(保護層21(21b、21c))が密閉防止手段(凸部22)としての機能を有してもよい。すなわち、凸部22及び保護層21と、それによって形成される凹部23とによって、伸縮性回路基板1の通気性を維持してもよい。 The protective portion (protective layer 21 (21b, 21c)) may have a function as a sealing prevention means (convex portion 22). That is, the air permeability of the stretchable circuit board 1 may be maintained by the convex portion 22, the protective layer 21, and the concave portion 23 formed thereby.
 [凸部22の大きさ]
 凸部22の厚みt22(Z軸方向)は、10μm~10mmの範囲であることが好ましく、100μmから5mmの範囲であることがより好ましい。t22が小さすぎる場合には、通気孔13の開口部が前記対象物によって塞がれることを抑制する効果が得られにくく、t22が大きすぎる場合には、前記対象物と伸縮性回路基板1の接触面積が著しく低下して、伸縮性回路基板1が対象物から剥がれやすくなる恐れがある。また、凸部22の面方向(X,Y方向)の長さL22(X軸方向及びY軸方向)は、特に限定されないが、100μm~10mmの範囲であることが好ましく、500μm~5mmの範囲であることがより好ましい。L22が小さすぎる場合には、通気孔13の開口部が前記対象物によって塞がれることを抑制する効果が得られにくく、L22が大きすぎる場合には、伸縮性絶縁層11を占める凸部22の割合が大きくなり、伸縮性絶縁層11に形成できる通気孔13の数及び面積が制約を受けて減少するため、通気性が低下することが想定される。
[Size of convex portion 22]
The thickness t22 (Z-axis direction) of the convex portion 22 is preferably in the range of 10 μm to 10 mm, and more preferably in the range of 100 μm to 5 mm. If t22 is too small, it is difficult to obtain the effect of suppressing the opening of the ventilation hole 13 from being blocked by the object, and if t22 is too large, the object and the stretchable circuit board 1 The contact area may be significantly reduced, and the stretchable circuit board 1 may be easily peeled off from the object. The length L22 (X-axis direction and Y-axis direction) of the convex portion 22 in the surface direction (X, Y direction) is not particularly limited, but is preferably in the range of 100 μm to 10 mm, preferably in the range of 500 μm to 5 mm. Is more preferable. If L22 is too small, it is difficult to obtain the effect of suppressing the opening of the ventilation hole 13 from being blocked by the object, and if L22 is too large, the convex portion 22 occupying the elastic insulating layer 11. As the ratio of the above increases and the number and area of the ventilation holes 13 that can be formed in the elastic insulating layer 11 decrease due to restrictions, it is expected that the ventilation will decrease.
 [伸縮性回路実装品100]
 伸縮性回路実装品100は、伸縮性回路基板1にセンサ素子等の電子部品14を実装することで構成される。伸縮性回路基板1への実装形態としては、伸縮性配線12に接続された電子部品14を実装されていればよく、特に限定されない。伸縮性回路実装品100において、図7に示すように、電子部品14がランド部18及びはんだ19を介して実装されていることが好ましい。なお、図7には、電子部品14が実装された伸縮性回路基板1が示されているので、図7には、伸縮性回路基板1及び伸縮性回路実装品100の両方が示されているとも言える。
[Expandable circuit mounting product 100]
The stretchable circuit mounting product 100 is configured by mounting an electronic component 14 such as a sensor element on a stretchable circuit board 1. The mounting form on the stretchable circuit board 1 is not particularly limited as long as the electronic component 14 connected to the stretchable wiring 12 is mounted. In the stretchable circuit mounted product 100, as shown in FIG. 7, it is preferable that the electronic component 14 is mounted via the land portion 18 and the solder 19. Since FIG. 7 shows the stretchable circuit board 1 on which the electronic component 14 is mounted, both the stretchable circuit board 1 and the stretchable circuit board 100 are shown in FIG. 7. It can be said that.
 伸縮性回路基板1が伸縮性配線12に接続されるランド部18を備えることによって、電子部品14等をはんだ19でランド部18に接続して実装することができる。すなわち、伸縮性回路基板1は、図7に示すように、伸縮性配線12と接しているランド部18を伸縮性絶縁層11の表面に備えることが好ましい。ランド部18は、特に限定されないが、例えば、パターニングされた金属箔、金属粒子を含む導電性インクで印刷されたもの等が挙げられる。 By providing the land portion 18 in which the stretchable circuit board 1 is connected to the stretchable wiring 12, the electronic component 14 and the like can be connected to the land portion 18 with solder 19 and mounted. That is, as shown in FIG. 7, the stretchable circuit board 1 preferably has a land portion 18 in contact with the stretchable wiring 12 on the surface of the stretchable insulating layer 11. The land portion 18 is not particularly limited, and examples thereof include a patterned metal foil and a land portion 18 printed with a conductive ink containing metal particles.
 伸縮性回路実装品100は、他の部材をさらに備えていてもよい。伸縮性回路実装品100は、例えば、図7に示すように、伸縮性配線12と、電子部品14とを被覆する被覆層15をさらに備えることが好ましい。被覆層15は、伸縮性配線12と、電子部品14とを被覆していればよく、他の部分も被覆してもよく、伸縮性絶縁層11全面を被覆してもよい。被覆層15は、伸縮性絶縁層11の全面を被覆する場合等のときは、通気孔13による通気を阻害しないように、通気孔13と連続する通気孔が設けられていることが好ましい。このように被覆層15を設けることによって、電子部品14の損傷等を抑制することができる。また、被覆層15に用いる材料は、特に限定されず、例えば、樹脂シートで覆うことで形成したり、ポッティング用の樹脂組成物を用いて形成することができる。 The stretchable circuit mounting product 100 may further include other members. As shown in FIG. 7, the stretchable circuit mount product 100 preferably further includes, for example, a coating layer 15 that covers the stretchable wiring 12 and the electronic component 14. The covering layer 15 may cover the elastic wiring 12 and the electronic component 14, may also cover other portions, or may cover the entire surface of the elastic insulating layer 11. When the coating layer 15 covers the entire surface of the elastic insulating layer 11, it is preferable that the coating layer 15 is provided with a ventilation hole continuous with the ventilation hole 13 so as not to obstruct the ventilation by the ventilation hole 13. By providing the coating layer 15 in this way, damage to the electronic component 14 and the like can be suppressed. The material used for the coating layer 15 is not particularly limited, and can be formed by covering with a resin sheet or using a resin composition for potting, for example.
 伸縮性回路基板1には、伸縮性回路基板1を補強する補強手段をさらに備えることが好ましい。前記補強手段としては、例えば、図7に示すような、伸縮性回路基板1を補強する補強層16等が挙げられる。前記補強手段としては、伸縮性回路基板1を補強するための部材であれば、前記補強層16のような層状に限定されず、それ以外の形態の補強片等であってもよい。前記補強手段が補強層16である場合、補強層16は、伸縮性絶縁層11の全面を被覆してもよいし、一部を被覆してもよい。補強層16は、前記伸縮性回路基板1の補強のために設けるので、電子部品14が実装されている領域に設けることが好ましい。 It is preferable that the stretchable circuit board 1 is further provided with reinforcing means for reinforcing the stretchable circuit board 1. Examples of the reinforcing means include a reinforcing layer 16 for reinforcing the stretchable circuit board 1 as shown in FIG. 7. The reinforcing means is not limited to a layered shape such as the reinforcing layer 16, as long as it is a member for reinforcing the stretchable circuit board 1, and may be a reinforcing piece or the like in any other form. When the reinforcing means is the reinforcing layer 16, the reinforcing layer 16 may cover the entire surface of the stretchable insulating layer 11 or a part thereof. Since the reinforcing layer 16 is provided for reinforcing the stretchable circuit board 1, it is preferable to provide the reinforcing layer 16 in the region where the electronic component 14 is mounted.
 また、補強層16は、伸縮性絶縁層11の全面を被覆する場合等のときは、通気孔13による通気を阻害しないように、通気孔13と連続する通気孔を設けることが好ましい(図示無)。補強層16は、伸縮性回路基板1に備えられる伸縮性絶縁層11の、電子部品14が実装される実装面とは反対側に設けられる。そうすることによって、機械的強度にも優れた伸縮性回路基板が得られる。補強層16に用いる材料は、特に限定されず、例えば、樹脂シートで覆うことで形成したり、ポッティング用の樹脂組成物を用いて形成することができる。 Further, when the reinforcing layer 16 covers the entire surface of the elastic insulating layer 11, it is preferable to provide a ventilation hole continuous with the ventilation hole 13 so as not to obstruct the ventilation by the ventilation hole 13 (not shown). ). The reinforcing layer 16 is provided on the side of the elastic insulating layer 11 provided on the elastic circuit board 1 opposite to the mounting surface on which the electronic component 14 is mounted. By doing so, an elastic circuit board having excellent mechanical strength can be obtained. The material used for the reinforcing layer 16 is not particularly limited, and can be formed by covering with a resin sheet or using a resin composition for potting, for example.
 ポッティング用の樹脂組成物に用いる樹脂としては、伸縮性回路基板1の伸長性や引張弾性を阻害しないものであることが好ましい。 The resin used in the resin composition for potting is preferably one that does not hinder the extensibility and tensile elasticity of the stretchable circuit board 1.
 [電子部品を実装している場合の通気孔13の保護]
 図7のAの部分の拡大図を図8に示す。伸縮性回路実装品100は、図8に示すように、通気孔13を起点として発生する伸縮性絶縁層11や被覆層15の割れ等の損傷を防ぐための保護層21を、通気孔13の開口部の周縁に備えることが好ましい。また、補強層16を有する伸縮性回路基板1及び伸縮性回路実装品100の場合も、補強層16を貫通する通気孔13を起点として発生する伸縮性絶縁層11や補強層16の割れ等の損傷を防ぐための保護層21を、通気孔13の開口部の周縁に備えることが好ましい(図示無)。
[Protection of ventilation holes 13 when electronic components are mounted]
An enlarged view of the part A in FIG. 7 is shown in FIG. As shown in FIG. 8, the stretchable circuit-mounted product 100 has a protective layer 21 of the vent hole 13 for preventing damage such as cracking of the stretchable insulating layer 11 and the coating layer 15 that occur from the vent hole 13. It is preferable to provide it on the peripheral edge of the opening. Further, also in the case of the elastic circuit board 1 having the reinforcing layer 16 and the elastic circuit mounting product 100, cracks in the elastic insulating layer 11 and the reinforcing layer 16 generated from the ventilation holes 13 penetrating the reinforcing layer 16 are generated. It is preferable that the protective layer 21 for preventing damage is provided on the peripheral edge of the opening of the ventilation hole 13 (not shown).
 [伸縮性回路実装品の、人体又は物品と伸縮性回路基板を離間させる構造]
 伸縮性回路実装品100は、伸縮性回路基板1と同様に、伸縮性回路実装品100を人体や物品等の対象物と接触させて用いることができる。この場合、伸縮性絶縁層11の被着面に、凸部22をさらに備えることが好ましい。具体的には、前記対象物と伸縮性絶縁層11とを離間させるための凸部22を、伸縮性絶縁層11の表面上に備えることが好ましい。それによって、通気孔13の開口部が閉塞されるのが防止され好適な通気性を確保することができる。
[Structure of the stretchable circuit mount product that separates the stretchable circuit board from the human body or article]
Similar to the elastic circuit board 1, the elastic circuit mounting product 100 can be used by bringing the elastic circuit mounting product 100 into contact with an object such as a human body or an article. In this case, it is preferable that the convex portion 22 is further provided on the adherend surface of the stretchable insulating layer 11. Specifically, it is preferable that the convex portion 22 for separating the object and the stretchable insulating layer 11 is provided on the surface of the stretchable insulating layer 11. As a result, the opening of the ventilation hole 13 is prevented from being blocked, and suitable ventilation can be ensured.
 [凸部22と電子部品との位置関係]
 凸部22の実施形態の一例を図9に示す。図9(a)に示したように、凸部22は、伸縮性絶縁層11の電子部品14の実装面の背面に形成されることが好ましい。図9(b)に示したように、凸部22を、伸縮性絶縁層11の電子部品14の実装面と同じ面に形成する場合には、凸部22の厚みt22は、凸部22を備える伸縮性絶縁層11の同一平面から単数又は複数の電子部品14までの高さの内、最大である高さt14よりも大きいことが好ましい。それによって、伸縮性回路実装品100における伸縮性絶縁層11の電子部品14の実装面を対象物に接触させて用いる場合であっても、通気孔13の開口部が対象物によって塞がれることを抑制し、且つ、電子部品14が対象物に直接接触することを抑制することができる。t22は、好ましくはt14の1.1倍以上5倍以下であることが好ましく、1.3倍以上3倍以下であることがより好ましい。
[Positional relationship between convex portion 22 and electronic components]
An example of the embodiment of the convex portion 22 is shown in FIG. As shown in FIG. 9A, the convex portion 22 is preferably formed on the back surface of the mounting surface of the electronic component 14 of the stretchable insulating layer 11. As shown in FIG. 9B, when the convex portion 22 is formed on the same surface as the mounting surface of the electronic component 14 of the elastic insulating layer 11, the thickness t22 of the convex portion 22 is such that the convex portion 22 is formed. Among the heights of the stretchable insulating layer 11 provided from the same plane to a single or a plurality of electronic components 14, it is preferable that the height is larger than the maximum height t14. As a result, even when the mounting surface of the electronic component 14 of the stretchable insulating layer 11 in the stretchable circuit mounting product 100 is used in contact with the object, the opening of the ventilation hole 13 is closed by the target. It is possible to suppress the electronic component 14 from coming into direct contact with the object. t22 is preferably 1.1 times or more and 5 times or less of t14, and more preferably 1.3 times or more and 3 times or less.
 凸部22は、図9(c)に示したように、被覆層15の表面に備えてもよいし、図9(d)に示したように補強層16の表面に備えてもよい。さらに、図9(e)に示したように、凸部22は、補強層16や被覆層15(図示無)、並びに伸縮性絶縁層11(図示無)に埋没するように備えてもよい。 The convex portion 22 may be provided on the surface of the coating layer 15 as shown in FIG. 9C, or may be provided on the surface of the reinforcing layer 16 as shown in FIG. 9D. Further, as shown in FIG. 9E, the convex portion 22 may be provided so as to be buried in the reinforcing layer 16, the covering layer 15 (not shown), and the stretchable insulating layer 11 (not shown).
 [本実施形態に係る伸縮性回路基板の各部材に用いる材料]
 (伸縮性絶縁層)
 伸縮性絶縁層11に使用する樹脂組成物は、その硬化物が、前記伸張率及び前記引張弾性率のような特性を備えていれば、その組成について特に限定されるものではない。
[Material used for each member of the elastic circuit board according to this embodiment]
(Elastic insulation layer)
The resin composition used for the stretchable insulating layer 11 is not particularly limited in composition as long as the cured product has properties such as the elongation rate and the tensile elastic modulus.
 好ましくは、前記樹脂組成物は、熱硬化性樹脂及びその硬化剤を含む。より具体的な前記樹脂組成物の一例として、例えば、ポリロタキサン(A)、熱硬化性樹脂(B)及び硬化剤(C)を含む樹脂組成物が挙げられる。以下に、各成分についてより具体的に説明する。 Preferably, the resin composition contains a thermosetting resin and a curing agent thereof. As a more specific example of the resin composition, for example, a resin composition containing a polyrotaxane (A), a thermosetting resin (B) and a curing agent (C) can be mentioned. Each component will be described in more detail below.
 前記ポリロタキサン(A)は、具体的には、例えば、特許第4482633号又は国際公開WO2015/052853号パンフレットに記載されているようなポリロタキサンが挙げられる。前記ポリロタキサン(A)としては、市販のものを使用してもよく、具体的には、アドバンスト・ソフトマテリアルズ株式会社製のセルムスーパーポリマーA1000等を使用することができる。 Specific examples of the polyrotaxane (A) include polyrotaxane as described in Japanese Patent No. 4482633 or International Publication No. WO2015 / 052853 pamphlet. As the polyrotaxane (A), a commercially available product may be used, and specifically, Celm Superpolymer A1000 manufactured by Advanced Soft Materials Co., Ltd. can be used.
 前記熱硬化性樹脂(B)としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル、ウレタン樹脂等の熱硬化性樹脂が特に制限なく挙げられるが、なかでもエポキシ樹脂を用いることが好ましい。 Examples of the thermosetting resin (B) include thermosetting resins such as epoxy resin, phenol resin, polyimide resin, urea resin, melamine resin, unsaturated polyester, and urethane resin without particular limitation. It is preferable to use an epoxy resin.
 前記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、アラルキルエポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂等が挙げられる。これらは、状況に応じて、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, aralkyl epoxy resin, phenol novolac type epoxy resin, alkylphenol novolac type epoxy resin, biphenol type epoxy resin, and naphthalene type epoxy. Examples thereof include resins, dicyclopentadiene type epoxy resins, epoxidized products of condensates of phenols and aromatic aldehydes having phenolic hydroxyl groups, triglycidyl isocyanurate, alicyclic epoxy resins and the like. Depending on the situation, one of these may be used alone, or two or more thereof may be used in combination.
 前記エポキシ樹脂としては、例えば、1つの分子中に2つ以上のエポキシ基を含み、かつ分子量が500以上であるエポキシ樹脂が好適に例示される。このようなエポキシ樹脂としては、市販のものを使用してもよく、例えば、JER1003(三菱化学株式会社製、分子量1300、2官能)、EXA-4816(DIC株式会社製、分子量824、2官能)、YP50(新日鉄住金化学株式会社製、分子量60000~80000、2官能)等が挙げられる。 As the epoxy resin, for example, an epoxy resin containing two or more epoxy groups in one molecule and having a molecular weight of 500 or more is preferably exemplified. As such an epoxy resin, a commercially available one may be used, for example, JER1003 (manufactured by Mitsubishi Chemical Corporation, molecular weight 1300, bifunctional), EXA-4816 (manufactured by DIC Corporation, molecular weight 824, bifunctional). , YP50 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., molecular weight 60,000 to 80,000, bifunctional) and the like.
 前記エポキシ樹脂とは別のエポキシ樹脂としては、例えば、炭素数が2~3のアルキレンオキサイド変性された変性基を有し且つその変性基がエポキシ1mol分子中に4mol以上含まれること、2mol以上のエポキシ基を有すること、及びエポキシ当量が450eq/mol以上であるエポキシ樹脂等が挙げられる。前記熱硬化性樹脂(B)として、このエポキシ樹脂を含み、前記硬化剤(C)を含むことによっても、その硬化物が、前記伸張性及び前記引張弾性率を有する樹脂組成物を得ることが可能である。このようなエポキシ樹脂としては、具体的には、プロピレンオキサイド付加型ビスフェノールA型エポキシ樹脂(株式会社ADEKA製、EP4003S)、エチレンオキサイド付加型ヒドロキシフェニルフルオレン型エポキシ樹脂(大阪ガスケミカル株式会社製、EG-280)等が挙げられる。また、上述するようなエポキシ樹脂は、1種類を単独で用いてもよいが、2種以上を併用してもよい。 Examples of the epoxy resin different from the epoxy resin include alkylene oxide-modified modifying groups having 2 to 3 carbon atoms and having 4 mol or more of the modifying groups contained in 1 mol molecule of the epoxy, and 2 mol or more. Examples thereof include an epoxy resin having an epoxy group and an epoxy equivalent of 450 eq / mol or more. By including the epoxy resin as the thermosetting resin (B) and the curing agent (C), the cured product can obtain a resin composition having the extensibility and the tensile elastic modulus. It is possible. Specific examples of such an epoxy resin include a propylene oxide-added bisphenol A type epoxy resin (made by ADEKA Co., Ltd., EP4003S) and an ethylene oxide-added hydroxyphenylfluorene type epoxy resin (manufactured by Osaka Gas Chemical Co., Ltd., EG). -280) and the like. Further, one type of epoxy resin as described above may be used alone, or two or more types may be used in combination.
 前記ポリロタキサン(A)と前記熱硬化性樹脂(B)との、いずれか単独の成分と前記硬化剤(C)とを含む樹脂組成物としてもよいが、両方の成分((A)且つ(B))と前記硬化剤(C)とを含む樹脂組成物とすることが、その硬化物が、前記伸張性及び前記引張弾性率を有する樹脂組成物を得やすい点で好ましい。 A resin composition containing any one component of the polyrotaxane (A) and the thermosetting resin (B) and the curing agent (C) may be used, but both components ((A) and (B) )) And the curing agent (C) are preferably used because the cured product can easily obtain the resin composition having the extensibility and the tensile elastic modulus.
 前記硬化剤(C)としては、前記熱硬化性樹脂(B)の硬化剤として働くものであれば、特に制限はない。特に、エポキシ樹脂の硬化剤として好ましく使用できるとしては、フェノール樹脂、アミン系化合物、酸無水物、イミダゾール系化合物、スルフィド樹脂、ジシアンジアミド、スルホニウム塩の硬化剤等が例として挙げられる。前記硬化剤(C)は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、前記樹脂組成物は、必要に応じて、硬化促進剤を含有してもよい。前記硬化促進剤としては、例えば、イミダゾール系化合物等が挙げられる。 The curing agent (C) is not particularly limited as long as it works as a curing agent for the thermosetting resin (B). In particular, examples of a curing agent that can be preferably used as a curing agent for epoxy resins include curing agents for phenol resins, amine compounds, acid anhydrides, imidazole compounds, sulfide resins, dicyandiamides, and sulfonium salts. The curing agent (C) may be used alone or in combination of two or more. In addition, the resin composition may contain a curing accelerator, if necessary. Examples of the curing accelerator include imidazole compounds and the like.
 また、本実施形態の樹脂組成物が、ポリロタキサンを含む樹脂組成物である場合には、さらに架橋剤を添加してもよく、そのような架橋剤としては、前記ポリロタキサンの環状分子の少なくとも一部(ポリロタキサンの環状分子が有する少なくとも一つの反応基)と架橋する構造を作ることができるものであれば特に限定なく用いることができ、具体的には、例えば、イソシアネート、塩化シアヌル等が挙げられる。 Further, when the resin composition of the present embodiment is a resin composition containing polyrotaxane, a cross-linking agent may be further added, and such a cross-linking agent is at least a part of the cyclic molecule of the polyrotaxane. It can be used without particular limitation as long as it can form a structure that crosslinks with (at least one reactive group of the cyclic molecule of polyrotaxane), and specific examples thereof include isocyanate and cyanuric chloride.
 前記樹脂組成物中の各成分の割合は、本発明の効果を発揮し得る限り特に制限はないが、例えば、(A)成分、(B)成分及び(C)成分を全て含む場合には、前記(A)~(C)成分の合計を100質量部として、前記ポリロタキサン(A)は10~80質量部、より好ましくは30~50質量部程度;前記熱硬化性樹脂(B)は10~89.9質量部、より好ましくは30~50質量部;前記硬化剤(C)は0.1~30質量部、より好ましくは0.1~20質量部程度である。なお、本実施形態の樹脂組成物が架橋剤としてイソシアネート樹脂を含む場合、イソシアネート樹脂は前記ポリロタキサン(A)成分に対して、0~50質量部を添加することができ、さらには、10~40質量部添加することが好ましい。(B)成分及び(C)成分を含み、(A)成分を含まない場合には、前記樹脂組成物全量を100質量部として、前記熱硬化性樹脂(B)は50~99質量部、より好ましくは60~80質量部程度;前記硬化剤(C)は1~50質量部、より好ましくは1~40質量部程度である。 The ratio of each component in the resin composition is not particularly limited as long as the effects of the present invention can be exhibited, but for example, when all the components (A), (B) and (C) are included, Taking the total of the components (A) to (C) as 100 parts by mass, the polyrotaxane (A) is about 10 to 80 parts by mass, more preferably about 30 to 50 parts by mass; the thermosetting resin (B) is from 10 to 10 parts by mass. 89.9 parts by mass, more preferably 30 to 50 parts by mass; the curing agent (C) is about 0.1 to 30 parts by mass, more preferably about 0.1 to 20 parts by mass. When the resin composition of the present embodiment contains an isocyanate resin as a cross-linking agent, 0 to 50 parts by mass of the isocyanate resin can be added to the polyrotaxane (A) component, and further, 10 to 40 parts by mass can be added. It is preferable to add by mass. When the component (B) and the component (C) are contained and the component (A) is not contained, the total amount of the resin composition is 100 parts by mass, and the thermosetting resin (B) is 50 to 99 parts by mass. It is preferably about 60 to 80 parts by mass; the curing agent (C) is about 1 to 50 parts by mass, more preferably about 1 to 40 parts by mass.
 さらに、前記樹脂組成物は、本発明の効果を損なわない範囲でその他の添加剤、例えば、硬化触媒(硬化促進剤)、難燃剤、難燃助剤、レベリング剤、着色剤等を必要に応じて含有してもよい。 Further, the resin composition may contain other additives such as a curing catalyst (curing accelerator), a flame retardant, a flame retardant aid, a leveling agent, a colorant and the like as necessary, as long as the effects of the present invention are not impaired. May be contained.
 前記エポキシ樹脂を含む樹脂組成物の調製方法については、特に限定はなく、例えば、エポキシ樹脂、硬化剤及び溶媒を均一になるように混合する。使用する溶媒に特に限定はなく、例えば、トルエン、キシレン、メチルエチルケトン、アセトン等を使用することができる。これらの溶媒は単独で用いてもよいし2種以上を組み合わせて用いてもよい。さらにここで、必要に応じて、粘度を調整するための有機溶剤や、各種添加剤を配合してもよい。 The method for preparing the resin composition containing the epoxy resin is not particularly limited, and for example, the epoxy resin, the curing agent and the solvent are mixed so as to be uniform. The solvent used is not particularly limited, and for example, toluene, xylene, methyl ethyl ketone, acetone and the like can be used. These solvents may be used alone or in combination of two or more. Further, here, if necessary, an organic solvent for adjusting the viscosity and various additives may be blended.
 上述のようにして得られた樹脂組成物を加熱乾燥することによって、溶媒を蒸発させながら、硬化させて、本実施形態の伸縮性絶縁層を得ることができる。 By heating and drying the resin composition obtained as described above, the elastic insulating layer of the present embodiment can be obtained by curing while evaporating the solvent.
 前記樹脂組成物を加熱乾燥するための方法、装置、それらの条件については、従来と同様の各種手段、あるいはその改良された手段であってよい。具体的な加熱温度と時間は、使用する架橋剤や溶媒等によって適宜設定することができるが、例えば、50~200℃で60~180分間程度加熱乾燥することによって、前記樹脂組成物を硬化させることができる。 The method, apparatus, and conditions for heating and drying the resin composition may be various means similar to those used in the past, or improved means thereof. The specific heating temperature and time can be appropriately set depending on the cross-linking agent and solvent used, and for example, the resin composition is cured by heating and drying at 50 to 200 ° C. for about 60 to 180 minutes. be able to.
 このようにして得られた伸縮性絶縁層11(前記樹脂組成物等の硬化物である成形体)は、その一方の表面に伸縮性配線(導電層)を安定的に形成するために表面処理をしてもよい。また、各種添加剤、例えば、酸化防止剤、耐候安定剤、難燃剤、帯電防止剤等、その特性を損なわない範囲で添加することができる。 The stretchable insulating layer 11 (molded body which is a cured product of the resin composition or the like) thus obtained is surface-treated in order to stably form elastic wiring (conductive layer) on one surface thereof. You may do. Further, various additives such as antioxidants, weather stabilizers, flame retardants, antistatic agents and the like can be added as long as their characteristics are not impaired.
 (伸縮性配線)
 伸縮性配線12は、伸縮性を有する配線であれば、特に限定されない。導電性フィラーと、伸縮性バインダーとを含む導電性組成物を用いて形成される伸縮性配線12を構成してもよいし、図10に示したような、波形状パターンを有する伸縮性配線12、例えば、波形状パターンに形成された銅箔等の金属層で伸縮性配線12を構成してもよい。波形状パターンを有する伸縮性配線12としては、図10(a)に示すようなジグザク配線、及び図10(b)に示すようなミアンダ配線等が挙げられる。
(Elastic wiring)
The elastic wiring 12 is not particularly limited as long as it is a wiring having elasticity. The elastic wiring 12 formed by using the conductive composition containing the conductive filler and the elastic binder may be formed, or the elastic wiring 12 having a wavy pattern as shown in FIG. For example, the elastic wiring 12 may be composed of a metal layer such as a copper foil formed in a wavy pattern. Examples of the elastic wiring 12 having a wavy pattern include a zigzag wiring as shown in FIG. 10A, a meander wiring as shown in FIG. 10B, and the like.
 前記導電性組成物は、具体的には、伸縮性バインダーとなる樹脂(D)と、前記樹脂(D)と反応する硬化剤(E)と、導電性フィラー(F)とを含み、前記樹脂(D)は、官能基当量が400g/eq以上で10000g/eq以下である官能基を有し、且つ、前記樹脂(D)及び前記導電性組成物の硬化物は、そのガラス転移温度(Tg)又は軟化点が40℃以下、あるいは30℃での弾性率が1.0GPa未満であること、並びに、導電性フィラー(F)が、室温での固有体積抵抗率が1×10-4Ω・cm以下の導電物質からなる樹脂組成物等が挙げられる。 Specifically, the conductive composition contains a resin (D) serving as a stretchable binder, a curing agent (E) that reacts with the resin (D), and a conductive filler (F), and the resin. (D) has a functional group having a functional group equivalent of 400 g / eq or more and 10000 g / eq or less, and the cured product of the resin (D) and the conductive composition has a glass transition temperature (Tg). ) Or the softening point is 40 ° C or less, or the elastic conductivity at 30 ° C is less than 1.0 GPa, and the conductive filler (F) has an intrinsic volume resistivity at room temperature of 1 × 10 -4 Ω. Examples thereof include a resin composition composed of a conductive substance having a size of cm or less.
 以下では、その各成分について説明する。 Below, each component will be described.
 前記樹脂(D)の分子構造の構成要素は、単一でもよいし、複数の種類を任意の割合で併用してもよい。樹脂(D)の分子構造が、(メタ)アクリル酸エステル、スチレン、及びニトリルのうちから選択される少なくとも1つを構成要素として含む分子構造であることが好ましい。具体例としては、エポキシ変性(メタ)アクリル酸エステル、ヒドロキシル基変性(メタ)アクリル酸エステル、カルボキシル基変性(メタ)アクリル酸エステル等が好ましく例示される。 The component of the molecular structure of the resin (D) may be a single component, or a plurality of types may be used in combination at an arbitrary ratio. It is preferable that the molecular structure of the resin (D) is a molecular structure containing at least one selected from (meth) acrylic acid ester, styrene, and nitrile as a component. Specific examples thereof are preferably epoxy-modified (meth) acrylic acid ester, hydroxyl group-modified (meth) acrylic acid ester, carboxyl group-modified (meth) acrylic acid ester, and the like.
 前記樹脂(D)は、重量平均分子量が5万以上であることが好ましい。これにより、前記導電性組成物を用いて導電パターンを印刷した場合等ににじみが発生しにくくなると考えられる。一方、重量平均分子量の上限値については特に限定はないが、分子量が300万を超える場合には粘度が高くなり取り扱い性が低下するおそれがあるため、前記樹脂(D)の重量平均分子量範囲として好ましくは5万以上300万以下、より好ましくは10万以上100万以下である。 The resin (D) preferably has a weight average molecular weight of 50,000 or more. As a result, it is considered that bleeding is less likely to occur when a conductive pattern is printed using the conductive composition. On the other hand, the upper limit of the weight average molecular weight is not particularly limited, but if the molecular weight exceeds 3 million, the viscosity may increase and the handleability may decrease. Therefore, the weight average molecular weight range of the resin (D) is set. It is preferably 50,000 or more and 3 million or less, and more preferably 100,000 or more and 1 million or less.
 前記硬化剤(E)としては、上述したような樹脂(D)との反応性を有している限り、特に制限なく様々な硬化剤を用いることができる。硬化剤(E)の具体例としては、イミダゾール系化合物、アミン系化合物、フェノール系化合物、酸無水物系化合物、イソシアネート系化合物、メルカプト系化合物、オニウム塩、過酸化物等のラジカル発生剤、光酸発生剤等が挙げられる。 As the curing agent (E), various curing agents can be used without particular limitation as long as they have reactivity with the resin (D) as described above. Specific examples of the curing agent (E) include imidazole compounds, amine compounds, phenol compounds, acid anhydride compounds, isocyanate compounds, mercapto compounds, onium salts, radical generators such as peroxides, and light. Examples include acid generators.
 前記導電性フィラー(F)は、室温での固有体積抵抗率が1×10-4Ω・cm以下である導電物質からなる。室温での固有体積抵抗率が1×10-4Ω・cmを超える材料を用いる場合、導電性組成物とした時に、その体積抵抗率は配合量にもよるが概ね1×10-3Ω・cm~1×10-2Ω・cmとなる。このため、回路にした場合、抵抗値が高くなり電力のロスが大きくなる。 The conductive filler (F) is made of a conductive substance having an intrinsic volume resistivity of 1 × 10 -4 Ω · cm or less at room temperature. When a material having an intrinsic volume resistivity exceeding 1 × 10 -4 Ω · cm at room temperature is used, the volume resistivity of the conductive composition is approximately 1 × 10 -3 Ω ·, although it depends on the blending amount. It is cm to 1 x 10 -2 Ω · cm. Therefore, in the case of a circuit, the resistance value becomes high and the power loss becomes large.
 前記導電物質(室温での固有体積抵抗率が1×10-4Ω・cm以下である導電物質)としては、例えば、銀、銅、金等の金属元素から成る単体やこれらの元素を含む酸化物、窒化物、炭化物や合金といった化合物等が挙げられる。前記導電性組成物には、導電性フィラー(F)以外にも、導電性をより改善する目的で、導電性あるいは半導電性の導電助剤を加えることもできる。このような導電性あるいは半導電性の助剤としては、導電性高分子、イオン液体、カーボンブラック、アセチレンブラック、カーボンナノチューブや帯電防止剤に用いられる無機化合物等を用いることができ、1種類で使用しても2種類以上を同時に用いても構わない。 Examples of the conductive substance (conductive substance having an intrinsic volume resistivity of 1 × 10 -4 Ω · cm or less at room temperature) include simple substances composed of metal elements such as silver, copper, and gold, and oxidation containing these elements. Examples include compounds such as substances, nitrides, carbides and alloys. In addition to the conductive filler (F), a conductive or semi-conductive conductive auxiliary agent may be added to the conductive composition for the purpose of further improving the conductivity. As such a conductive or semi-conductive auxiliary agent, a conductive polymer, an ionic liquid, carbon black, acetylene black, carbon nanotubes, an inorganic compound used as an antistatic agent, or the like can be used, and only one kind can be used. It may be used or two or more types may be used at the same time.
 前記導電性フィラー(F)は、その形状が扁平形状であることが好ましく、厚みと面内長手方向のアスペクト比が10以上であることが好ましい。前記アスペクト比が10以上である場合には、導電性フィラーの質量比に対する表面積が大きくなり導電性の効率が上がるだけでなく、樹脂成分との密着性もよくなり伸縮性が向上する効果もある。前記アスペクト比は1000以下であれば、より良好な導電性及び印刷性が確保できるという観点から、10以上1000以下であることが好ましく、20以上500以下であることがより好ましい。このようなアスペクト比を有する導電性フィラーの例としては、タップ法により測定したタップ密度で6.0g/cm以下である導電性フィラーが挙げられる。さらに、タップ密度が2.0g/cm以下である場合にはさらにアスペクト比が大きくなるためより好ましい。 The conductive filler (F) preferably has a flat shape, and preferably has a thickness and an aspect ratio in the in-plane longitudinal direction of 10 or more. When the aspect ratio is 10 or more, not only the surface area of the conductive filler with respect to the mass ratio becomes large and the efficiency of conductivity increases, but also the adhesion with the resin component is improved and the elasticity is improved. .. When the aspect ratio is 1000 or less, it is preferably 10 or more and 1000 or less, and more preferably 20 or more and 500 or less, from the viewpoint of ensuring better conductivity and printability. Examples of the conductive filler having such an aspect ratio include a conductive filler having a tap density of 6.0 g / cm 3 or less measured by the tap method. Further, when the tap density is 2.0 g / cm 3 or less, the aspect ratio is further increased, which is more preferable.
 前記導電性組成物中の導電性フィラー(F)の配合割合については、前記導電性組成物全量に対し、導電性フィラー(F)の配合割合が質量比で40~95質量%であることが導電性、コスト、印刷性において好ましく、より好ましくは60~85質量%である。 Regarding the blending ratio of the conductive filler (F) in the conductive composition, the blending ratio of the conductive filler (F) to the total amount of the conductive composition is 40 to 95% by mass in terms of mass ratio. It is preferable in terms of conductivity, cost, and printability, and more preferably 60 to 85% by mass.
 前記導電性フィラー(F)は、その粒子サイズに特に制限はないが、スクリーン印刷時の印刷性や配合物の混練において適度な粘度となるという観点から、レーザー光散乱方によって測定した平均粒径(体積累積50%における粒径;D50)が0.5μm以上30μm以下であることが好ましく、1.5μm以上20μm以下であることがより好ましい。 The particle size of the conductive filler (F) is not particularly limited, but the average particle size measured by a laser light scattering method from the viewpoint of printability at the time of screen printing and an appropriate viscosity in kneading of the formulation. (Particle size at 50% cumulative volume; D50) is preferably 0.5 μm or more and 30 μm or less, and more preferably 1.5 μm or more and 20 μm or less.
 前記導電性フィラー(F)は、表面をカップリング処理された導電性フィラーであることが好ましい。あるいは、前記導電性組成物にカップリング剤を含有させてもよい。これにより、バインダー樹脂と導電性フィラーの密着性がより向上するという利点がある。 The conductive filler (F) is preferably a conductive filler whose surface is coupled. Alternatively, the conductive composition may contain a coupling agent. This has the advantage that the adhesion between the binder resin and the conductive filler is further improved.
 前記導電性組成物に添加する、あるいは、前記導電性フィラーをカップリング処理するためのカップリング剤としては、フィラー表面に吸着又はフィラー表面と反応するものであれば特に制限なく用いることができる。前記カップリング剤としては、具体的には、シランカップリング剤、チタネート系カップリング剤、アルミ系カップリング剤等が挙げられる。 The coupling agent added to the conductive composition or for coupling the conductive filler can be used without particular limitation as long as it is adsorbed on the filler surface or reacts with the filler surface. Specific examples of the coupling agent include a silane coupling agent, a titanate-based coupling agent, and an aluminum-based coupling agent.
 前記導電性組成物において、前記カップリング剤を使用する場合、その添加量は、樹脂組成物全体に対し、1~20質量%程度とすることが好ましい。 When the coupling agent is used in the conductive composition, the amount added thereof is preferably about 1 to 20% by mass with respect to the entire resin composition.
 前記導電性組成物中の各成分の割合は、本発明の効果を発揮し得る限り特に制限はなく、前記樹脂(D):前記硬化剤(E)の配合割合は、樹脂と硬化剤の種類によって、当量比などを考慮して適宜決めることが可能である。 The ratio of each component in the conductive composition is not particularly limited as long as the effects of the present invention can be exhibited, and the blending ratio of the resin (D): the curing agent (E) is the type of resin and curing agent. Therefore, it can be appropriately determined in consideration of the equivalent ratio and the like.
 前記導電性組成物には、上記成分以外にも、目的に応じて添加剤等を加えることができる。添加剤等については、例えばエラストマー、界面活性剤、分散剤、着色剤、芳香剤、可塑剤、pH調整剤、粘性調整剤、紫外線吸収剤、酸化防止剤、滑剤等が挙げられる。 In addition to the above components, additives and the like can be added to the conductive composition depending on the purpose. Examples of additives include elastomers, surfactants, dispersants, colorants, fragrances, plasticizers, pH adjusters, viscosity regulators, ultraviolet absorbers, antioxidants, lubricants and the like.
 伸縮性配線12を形成する方法は、特に限定されず、例えば、前記導電性組成物を、上述したような伸縮性絶縁層11上に塗布又は印刷することによって、導電性組成物の塗膜を形成し、所望の配線(導電パターン)を形成する方法等が挙げられる。 The method for forming the elastic wiring 12 is not particularly limited, and for example, by applying or printing the conductive composition on the elastic insulating layer 11 as described above, a coating film of the conductive composition can be applied. Examples thereof include a method of forming and forming a desired wiring (conductive pattern).
 伸縮性配線12による導電パターン等は、以下のような工程によって伸縮性絶縁層11の表面に形成することができる。すなわち、まず、前記導電性組成物を前記伸縮性絶縁層11上に塗布又は印刷することで塗膜を形成し、乾燥により塗膜に含まれる揮発成分を除去する。その後の加熱や電子線、光照射といった硬化工程により、樹脂(D)と硬化剤(E)を硬化させる工程、並びに、カップリング剤と導電性フィラー(F)とを、及び、樹脂(D)と硬化剤(E)とを反応させる工程により、伸縮性配線12による導電性パターンを形成することができる。前記硬化工程や反応工程における各条件は特に限定されず、樹脂、硬化剤、フィラー等の種類や所望の形態によって適宜設定すればよい。 The conductive pattern or the like formed by the elastic wiring 12 can be formed on the surface of the elastic insulating layer 11 by the following steps. That is, first, a coating film is formed by applying or printing the conductive composition on the stretchable insulating layer 11, and volatile components contained in the coating film are removed by drying. The resin (D) and the curing agent (E) are cured by the subsequent curing steps such as heating, electron beam, and light irradiation, and the coupling agent and the conductive filler (F) are combined with the resin (D). By the step of reacting with the curing agent (E), a conductive pattern by the elastic wiring 12 can be formed. Each condition in the curing step and the reaction step is not particularly limited, and may be appropriately set depending on the type of resin, curing agent, filler, etc. and the desired form.
 前記導電性組成物を基材上(伸縮性絶縁層11上)に塗布する工程は、特に限定されないが、例えば、アプリケーター、ワイヤーバー、コンマロール、グラビアロールなどのコーティング法やスクリーン、平板オフセット、フレキソ、インクジェット、スタンピング、ディスペンス、スキージ等を用いた印刷法を用いることができる。 The step of applying the conductive composition on the substrate (on the elastic insulating layer 11) is not particularly limited, and for example, a coating method such as an applicator, a wire bar, a comma roll, or a gravure roll, a screen, a flat plate offset, or the like. A printing method using flexo, inkjet, stamping, dispense, squeegee, or the like can be used.
 伸縮性配線12が銅箔等の金属層によって構成される場合には、その配線が図10に示す波形状パターンに形成された配線のように、伸縮性配線12の形状変化を伴って伸縮することによって、配線の断線や抵抗値の上昇を抑制できる構造であることが好ましい。 When the elastic wiring 12 is composed of a metal layer such as copper foil, the wiring expands and contracts with a change in the shape of the elastic wiring 12, like the wiring formed in the wavy pattern shown in FIG. Therefore, it is preferable that the structure is such that the disconnection of the wiring and the increase of the resistance value can be suppressed.
 [まとめ]
 このような構成によれば、通気性に優れ、さらに、前記電子部品の損傷等を抑制したり、通気孔13を通過する水分等による、伸縮性回路基板1及び伸縮性回路実装品100の動作不良等の発生を抑制することができる。また、例えば、本実施形態に係る伸縮性回路基板にLED素子等を備えた発光シートを、競技場等で用いられる巨大なデジタルサイネージ等の表示装置に使用する場合等には、前記通気孔13によって、破断したり、風に煽られたりすることを抑制できるといった利点もある。また、この通気孔は、LED素子等の電子部品の冷却にも寄与する。
[Summary]
According to such a configuration, the stretchable circuit board 1 and the stretchable circuit mounted product 100 are operated due to excellent breathability, suppression of damage to the electronic components, moisture passing through the vent holes 13, and the like. It is possible to suppress the occurrence of defects and the like. Further, for example, when a light emitting sheet provided with an LED element or the like on the elastic circuit board according to the present embodiment is used for a display device such as a huge digital signage used in a stadium or the like, the ventilation hole 13 is used. It also has the advantage of being able to prevent it from breaking or being blown by the wind. The vents also contribute to cooling electronic components such as LED elements.
 この出願は、2019年6月27日に出願された日本国特許出願特願2019-120080を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2019-12080 filed on June 27, 2019, the contents of which are included in the present application.
 本発明を表現するために、上述において実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been appropriately and sufficiently described through the embodiments above, but those skilled in the art can easily modify and / or improve the above embodiments. Should be recognized. Therefore, unless the modified or improved form implemented by a person skilled in the art is at a level that deviates from the scope of rights of the claims stated in the claims, the modified form or the improved form is the scope of rights of the claims. It is interpreted as being included in.
 本発明によれば、通気性に優れた伸縮性回路基板及び伸縮性回路実装品が提供される。 According to the present invention, an elastic circuit board having excellent breathability and an elastic circuit mounted product are provided.

Claims (13)

  1.  伸縮性絶縁層と、
     前記伸縮性絶縁層の表面及び内部の少なくとも何れかに設けられた伸縮性配線とを備え、
     前記伸縮性絶縁層には、前記伸縮性配線から電気的に絶縁された位置に開口部を有し、且つ、前記伸縮性絶縁層の厚さ方向に通気可能な通気孔が形成されていることを特徴とする伸縮性回路基板。
    With elastic insulation layer,
    It is provided with elastic wiring provided on at least one of the surface and the inside of the elastic insulating layer.
    The stretchable insulating layer has an opening at a position electrically insulated from the stretchable wiring, and is formed with a vent hole that allows ventilation in the thickness direction of the stretchable insulating layer. An elastic circuit board characterized by.
  2.  前記通気孔は、前記伸縮性絶縁層に複数形成されている請求項1に記載の伸縮性回路基板。 The stretchable circuit board according to claim 1, wherein a plurality of the vent holes are formed in the stretchable insulating layer.
  3.  前記通気孔の開口部は、円形、楕円形、及び多角形から選ばれる少なくとも1つの形状を有する請求項1又は請求項2に記載の伸縮性回路基板。 The stretchable circuit board according to claim 1 or 2, wherein the opening of the vent has at least one shape selected from a circular shape, an elliptical shape, and a polygonal shape.
  4.  前記伸縮性絶縁層の表面における前記通気孔の開口率が、0.001~45%である請求項1~3のいずれか1項に記載の伸縮性回路基板。 The stretchable circuit board according to any one of claims 1 to 3, wherein the opening ratio of the ventilation holes on the surface of the stretchable insulating layer is 0.001 to 45%.
  5.  前記開口部の最大径が、100nm以上30mm以下である請求項1~4のいずれか1項に記載の伸縮性回路基板。 The stretchable circuit board according to any one of claims 1 to 4, wherein the maximum diameter of the opening is 100 nm or more and 30 mm or less.
  6.  前記伸縮性絶縁層の表面において、前記通気孔の開口部の周縁を覆う保護部をさらに備える請求項1~5のいずれか1項に記載の伸縮性回路基板。 The stretchable circuit board according to any one of claims 1 to 5, further comprising a protective portion that covers the peripheral edge of the opening of the vent on the surface of the stretchable insulating layer.
  7.  前記伸縮性回路基板の表面には、前記通気孔の開口部が前記伸縮性回路基板の表面への接触物によって密封されるのを防止するための密閉防止手段が設けられている請求項1~6のいずれか1項に記載の伸縮性回路基板。 Claims 1 to 1 to claim 1, wherein the surface of the stretchable circuit board is provided with a sealing prevention means for preventing the opening of the ventilation hole from being sealed by an object of contact with the surface of the stretchable circuit board. 6. The elastic circuit board according to any one of 6.
  8.  前記伸縮性絶縁層の表面に前記伸縮性配線と電気的に接続されたランド部をさらに備える請求項1~7のいずれか1項に記載の伸縮性回路基板。 The stretchable circuit board according to any one of claims 1 to 7, further comprising a land portion electrically connected to the stretchable wiring on the surface of the stretchable insulating layer.
  9.  前記伸縮性回路基板を補強する補強手段をさらに備える請求項1~8のいずれか1項に記載の伸縮性回路基板。 The stretchable circuit board according to any one of claims 1 to 8, further comprising a reinforcing means for reinforcing the stretchable circuit board.
  10.  前記伸縮性配線は、導電性組成物を用いて形成されている請求項1~9のいずれか1項に記載の伸縮性回路基板。 The stretchable circuit board according to any one of claims 1 to 9, wherein the stretchable wiring is formed by using a conductive composition.
  11.  前記伸縮性配線は、波形状パターンを有する請求項1~10のいずれか1項に記載の伸縮性回路基板。 The stretchable circuit board according to any one of claims 1 to 10, wherein the stretchable wiring has a wavy pattern.
  12.  請求項1~11のいずれか1項に記載の伸縮性回路基板に電子部品が実装された伸縮性回路実装品。 A stretchable circuit-mounted product in which electronic components are mounted on the stretchable circuit board according to any one of claims 1 to 11.
  13.  前記伸縮性配線と前記電子部品とを被覆する被覆層をさらに備える請求項12に記載の伸縮性回路実装品。 The stretchable circuit-mounted product according to claim 12, further comprising a coating layer that covers the stretchable wiring and the electronic component.
PCT/JP2020/024350 2019-06-27 2020-06-22 Stretchable circuit board and stretchable circuit assembly WO2020262288A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021526967A JPWO2020262288A1 (en) 2019-06-27 2020-06-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019120080 2019-06-27
JP2019-120080 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020262288A1 true WO2020262288A1 (en) 2020-12-30

Family

ID=74060571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024350 WO2020262288A1 (en) 2019-06-27 2020-06-22 Stretchable circuit board and stretchable circuit assembly

Country Status (2)

Country Link
JP (1) JPWO2020262288A1 (en)
WO (1) WO2020262288A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260014A1 (en) * 2021-06-11 2022-12-15 パナソニックIpマネジメント株式会社 Method for manufacturing substrate with conductive pattern attached thereto
WO2023089897A1 (en) * 2021-11-19 2023-05-25 株式会社村田製作所 Expansion device
WO2023238754A1 (en) * 2022-06-08 2023-12-14 株式会社村田製作所 Stretchable device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008151A (en) * 2001-06-21 2003-01-10 Optrex Corp Flexible wiring board and manufacturing method therefor
JP2006093562A (en) * 2004-09-27 2006-04-06 Fujikura Ltd Flexible printed circuit board and its installation structure
US20120106095A1 (en) * 2010-10-29 2012-05-03 Palo Alto Research Center Incorporated Stretchable electronics modules and circuits
US20160026213A1 (en) * 2014-07-25 2016-01-28 VivaLnk Limited (Cayman Islands) Highly compliant wearable wireless patch having stress-relief capability
WO2016114298A1 (en) * 2015-01-14 2016-07-21 東洋紡株式会社 Stretchable electrode and wiring sheet, and biological information measurement interface
JP2017118109A (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 substrate
US20180028069A1 (en) * 2016-07-29 2018-02-01 VivaLnk Inc. Wearable thermometer patch for accurate measurement of human skin temperature

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008151A (en) * 2001-06-21 2003-01-10 Optrex Corp Flexible wiring board and manufacturing method therefor
JP2006093562A (en) * 2004-09-27 2006-04-06 Fujikura Ltd Flexible printed circuit board and its installation structure
US20120106095A1 (en) * 2010-10-29 2012-05-03 Palo Alto Research Center Incorporated Stretchable electronics modules and circuits
US20160026213A1 (en) * 2014-07-25 2016-01-28 VivaLnk Limited (Cayman Islands) Highly compliant wearable wireless patch having stress-relief capability
WO2016114298A1 (en) * 2015-01-14 2016-07-21 東洋紡株式会社 Stretchable electrode and wiring sheet, and biological information measurement interface
JP2017118109A (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 substrate
US20180028069A1 (en) * 2016-07-29 2018-02-01 VivaLnk Inc. Wearable thermometer patch for accurate measurement of human skin temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260014A1 (en) * 2021-06-11 2022-12-15 パナソニックIpマネジメント株式会社 Method for manufacturing substrate with conductive pattern attached thereto
WO2023089897A1 (en) * 2021-11-19 2023-05-25 株式会社村田製作所 Expansion device
WO2023238754A1 (en) * 2022-06-08 2023-12-14 株式会社村田製作所 Stretchable device

Also Published As

Publication number Publication date
JPWO2020262288A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
WO2020262288A1 (en) Stretchable circuit board and stretchable circuit assembly
JP7065349B2 (en) Sheet-like structure, flexible display device and resin sheet
US10450407B2 (en) Coated particles
WO2017010101A1 (en) Conductive adhesive layer, conductive adhesive sheet, printed wiring board and electronic device
US10485093B2 (en) Flexible printed board and method for manufacturing flexible printed board
JP7426587B2 (en) Stretchable circuit board and patch device using it
JP2017147276A (en) Electromagnetic wave shield sheet, electromagnetic wave shield wiring circuit board and electronic apparatus
WO2020129985A1 (en) Electronic component mounting substrate and electronic apparatus
US11864310B2 (en) Stretchable laminate, material for stretchable device, and stretchable device
JP2020115582A (en) Electronic component mounting substrate and electronic apparatus
US20220167497A1 (en) Stretchable circuit board
KR20240113761A (en) Protective sheet, electronic device package, and method of manufacturing the same
WO2022220276A1 (en) Elastic resin sheet having light-diffusing portion, and light-emitting sheet using same
JP7056723B2 (en) Parts set
US11963558B2 (en) Circuit mounted article and device
TWI720356B (en) Electromagnetic wave shield film and shield printed circuit board
JP2022114804A (en) circuit board
KR101582492B1 (en) Adhesive composition and coverlay film using the same
US20220183154A1 (en) Fiber sheet, and layered body, circuit board and electronic board using same
WO2021241532A1 (en) Light emission sheet, and display device and sterilization device using same
KR20230163499A (en) Manufacturing method of printed wiring board with metal reinforcement plate, member set, and printed wiring board with metal reinforcement plate
JP2023159447A (en) Electronic component mounting substrate and electronic apparatus using the same
KR20190130485A (en) Resin composition layer for sealing, resin sheet attached with support, resin cured layer for sealing, semiconductor package and semiconductor device
JP2006160994A (en) Adhesive composition, metal laminated plate and flexible printed-wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526967

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832055

Country of ref document: EP

Kind code of ref document: A1