WO2020261398A1 - 表示装置及び映像処理方法 - Google Patents

表示装置及び映像処理方法 Download PDF

Info

Publication number
WO2020261398A1
WO2020261398A1 PCT/JP2019/025239 JP2019025239W WO2020261398A1 WO 2020261398 A1 WO2020261398 A1 WO 2020261398A1 JP 2019025239 W JP2019025239 W JP 2019025239W WO 2020261398 A1 WO2020261398 A1 WO 2020261398A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
video signal
light emitting
pixel
sub
Prior art date
Application number
PCT/JP2019/025239
Other languages
English (en)
French (fr)
Inventor
古川 浩之
上野 雅史
井上 尚人
智恵 鳥殿
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2019/025239 priority Critical patent/WO2020261398A1/ja
Priority to CN201980097247.0A priority patent/CN113994413B/zh
Priority to US17/616,076 priority patent/US11763732B2/en
Publication of WO2020261398A1 publication Critical patent/WO2020261398A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen

Definitions

  • the present invention relates to a display device and a video processing method.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2000-321559 (published on November 24, 2000)
  • the correction target of the video signal is limited to the adjacent pixels connected to or electrically coupled to the common source wiring and the common gate wiring. There is a problem that the video signal cannot be corrected for the influence of stray light from electrically unrelated pixels as described in the above.
  • FIG. 7 is a diagram showing a schematic configuration of a display device 100, which is an example of a display device provided with a QLED.
  • the display device 100 includes a quantum dot light emitting diode 105R having a red R light emitting layer, a quantum dot light emitting diode 105G having a green G light emitting layer, and a quantum dot light emitting diode 105B having a blue B light emitting layer. I have. Then, each of these quantum dot light emitting diodes 105R, 105G, and 105B constitutes one sub-pixel in the display device 100. Each of these quantum dot light emitting diodes 105R, 105G, and 105B is formed on a substrate (not shown), and is sealed on the light emitting surface side of each of these quantum dot light emitting diodes 105R, 105G, and 105B. Layer 106 is provided.
  • the quantum dot light emitting diodes 105R, 105G, and 105B have two light emitting modes. That is, there are an EL (electroluminescence) mode in which quantum dots are excited by electric energy to emit light, and a PL (photoluminescence) mode in which quantum dots are excited by light to emit light.
  • the display device 100 uses the EL mode, and uses a quantum dot material corresponding to each wavelength of RGB for the light emitting layer, so that the quantum dot light emitting diode 105R emits red light R (EL) in the EL mode.
  • the dot light emitting diode 105G emits green light G (EL) in EL mode, and the quantum dot light emitting diode 105B emits blue light B (EL) in EL mode by controlling them with predetermined electrical energy. It realizes a light emitting display device.
  • EL green light G
  • EL blue light B
  • stray light is included in each color light by the EL mode from the quantum dot light emitting diodes 105R, 105G, and 105B.
  • FIG. 7 only the stray light B (M) contained in the blue light B (EL) by the EL mode from the quantum dot light emitting diode 105B is shown, but the red light R by the EL mode from the quantum dot light emitting diode 105R is shown.
  • Stray light is also included in (EL) and the green light G (EL) from the quantum dot light emitting diode 105G in the EL mode.
  • the quantum dot light emitting diodes 105R and 105G are originally affected by the stray light B (M) contained in the blue light B (EL) due to the EL mode from the quantum dot light emitting diode 105B.
  • M stray light B
  • extra excitation light emission R (PL) and G (PL) in the PL mode due to the stray light B (M) are generated. Therefore, there is a problem that the emission intensity of the quantum dot light emitting diodes 105R and 105G is different from the originally intended one due to the light emission of the nearby quantum dot light emitting diode 105B.
  • the extra excitation light emission R (PL) in the PL mode includes stray light (not shown) contained in the green light G (EL) in the EL mode from the quantum dot light emitting diode 105G. Impact is also included.
  • One aspect of the present invention has been made in view of the above problems, and an object of the present invention is to provide a display device capable of correcting a video signal against the influence of stray light, and a video processing method. And.
  • the display device of the present invention Including the first sub-pixel and the second sub-pixel,
  • the first sub-pixel includes a first light emitting layer that emits a first color.
  • the second sub-pixel includes a second light emitting layer that emits a second color having a wavelength longer than that of the first color.
  • the second light emitting layer is a display device containing quantum dots.
  • a light emitting profile creation circuit that creates a first light emitting profile of the first sub pixel from a first video signal corresponding to the first sub pixel, and
  • a video signal adjusting circuit that adjusts a second video signal corresponding to the second sub-pixel based on the first light emitting profile is provided.
  • the video processing method of the present invention solves the above-mentioned problems.
  • the first sub-pixel includes a first light emitting layer that emits a first color.
  • the second sub-pixel includes a second light emitting layer that emits a wavelength longer than the wavelength of the first color.
  • the second light emitting layer is an image processing method in a display device including quantum dots.
  • a display device capable of correcting a video signal against the influence of stray light and a video processing method.
  • (A) is a schematic plan view showing the structure of the display panel provided in the display device of the first embodiment
  • (b) is a cross-sectional view showing the structure of the display panel provided in the display device of the first embodiment. It is a figure. It is a figure which shows the structural example of the circuit of the display device of Embodiment 1.
  • (A) is a diagram for explaining the image processing performed in the light emission profile creation circuit and the video signal adjustment circuit provided in the display device of the first embodiment, and (b) is used in the light emission profile creation circuit. It is a figure which shows an example of the point spread function (psf), and (c) is a figure which shows an example of PL light correction performed in a video signal adjustment circuit.
  • (A) is a diagram showing a two-dimensional Gaussian distribution of an example of a point spread function (psf), and (b) is a first image after ⁇ conversion used for a convolution calculation performed in a light emission profile creation circuit. It is a figure which shows an example of the data value of a signal, (c) is a figure which shows the data value of the point spread function (PSF) shown in (a) of FIG. 4 used for the convolution calculation performed in the light emission profile making circuit.
  • PSF point spread function
  • FIGS. 1 to 6 An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.
  • the same reference numerals may be added to the configurations having the same functions as the configurations described in the specific embodiments, and the description thereof may be omitted.
  • FIG. 1A is a schematic plan view showing the configuration of the display panel 1 provided in the display device 30 of the first embodiment
  • FIG. 1B is a schematic plan view showing the configuration of the display panel 1 provided in the display device 30 of the first embodiment. It is sectional drawing which shows the structure of the display panel 1.
  • the display panel 1 includes a display area DA and a frame area NDA surrounding the display area DA.
  • the display area DA is provided with a plurality of sub-pixel (sub-pixel) SPs.
  • the adhesive layer 11, the resin layer 12, the barrier layer 3, and the thin film transistor layer (TFT layer) are placed on the base substrate 10.
  • the light emitting elements 5R, 5G, and 5B, and the sealing layer 6 are provided in this order.
  • Examples of the material of the base substrate 10 include, but are not limited to, polyethylene terephthalate (PET) and the like.
  • Examples of the adhesive layer 11 include, but are not limited to, OCA (Optical Clear Adhesive) or OCR (Optical Clear Resin).
  • Examples of the material of the resin layer 12 include, but are not limited to, polyimide resin, epoxy resin, polyamide resin and the like.
  • the barrier layer 3 is a layer that prevents moisture and impurities from reaching the transistor Tr and the light emitting elements 5R, 5G, and 5B.
  • a silicon oxide film, a silicon nitride film, or silicon oxynitride formed by CVD is formed. It can be composed of a film or a laminated film thereof.
  • the transistor Tr and the capacitive element are provided on the upper layers of the resin layer 12 and the barrier layer 3.
  • the thin film layer 4 including the transistor Tr and the capacitive element includes a semiconductor film 15, an inorganic insulating film (gate insulating film) 16 above the semiconductor film 15, a gate electrode GE above the inorganic insulating film 16, and a gate electrode.
  • the capacitive element is the same layer as the counter electrode CE of the capacitive element formed directly above the inorganic insulating film 18, the inorganic insulating film 18, and the layer formed directly below the inorganic insulating film 18 and forming the gate electrode GE. It is composed of a capacitive electrode formed so as to overlap with the counter electrode CE of the capacitive element.
  • a transistor (thin film transistor (TFT)) Tr is configured to include a semiconductor film 15, an inorganic insulating film 16, a gate electrode GE, an inorganic insulating film 18, an inorganic insulating film 20, a source electrode and a drain electrode.
  • the semiconductor film 15 is composed of, for example, low temperature polysilicon (LTPS) or an oxide semiconductor.
  • LTPS low temperature polysilicon
  • oxide semiconductor oxide semiconductor
  • the gate electrode GE, the counter electrode CE of the capacitive element, the source electrode and the drain electrode, and the layer SH forming the wiring thereof are, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), and chromium (Ta). It is composed of a single-layer film or a laminated film of a metal containing at least one of Cr), titanium (Ti), copper (Cu), and silver (Ag).
  • the inorganic insulating films 16/18/20 can be composed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon oxynitride film, or a laminated film thereof formed by a CVD method.
  • the interlayer insulating film 21 can be made of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin.
  • the light emitting elements 5R, 5G, and 5B include a functional layer 24R, 24G, 24B including a first electrode 22 above the interlayer insulating film 21, a light emitting layer of each color above the first electrode 22, and a functional layer 24R. Includes a second electrode 25 that is higher than 24G / 24B.
  • An edge cover (bank) 23 that covers the edge of the first electrode 22 is formed on the interlayer insulating film 21.
  • the subpixel SP that displays red (third color) includes the light emitting element 5R, it has a functional layer 24R that includes a light emitting layer of red (third color), and is a sub that displays green (second color). Since the pixel SP includes a light emitting element 5G, it includes a functional layer 24G including a green (second color) light emitting layer, and the subpixel SP displaying blue (first color) includes a light emitting element 5B. , A functional layer 24B including a blue (first color) light emitting layer is provided.
  • the case where the first color is blue, the second color is green, and the third color is red will be described as an example, but the present invention is not limited to this, and the second color is not limited to this.
  • the color may be light in the visible light region having a wavelength longer than the wavelength of the first color
  • the third color may be light in the visible light region having a wavelength longer than the wavelength of the second color.
  • one pixel is composed of three sub-pixel SPs, a sub-pixel SP that displays red, a sub-pixel SP that displays green, and a sub-pixel SP that displays blue.
  • one pixel may be composed of four or more sub-pixels, in which case, sub-pixels displaying other than red, green and blue are displayed. May include.
  • the display panel 1 includes an island-shaped first electrode 22, functional layers 24R / 24G / 24B including light emitting layers of each color, and a second electrode 25 for each subpixel SP.
  • the edge cover 23 can be made of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin.
  • the functional layers 24R, 24G, and 24B are composed of, for example, laminating a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in order from the lower layer side.
  • the light emitting layer is formed in an island shape for each subpixel SP by a vapor deposition method or an inkjet method, but the other layers may be solid common layers. Further, it is possible to configure the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer so as not to form one or more layers.
  • each light emitting layer included in the functional layers 24R, 24G, and 24B is formed of a light emitting layer containing a quantum dot (nanoparticle) phosphor is described as an example, but the present invention is limited to this. Only the light emitting layer contained in at least one of the functional layer 24R and the functional layer 24G may be formed of a light emitting layer containing a quantum dot (nanoparticle) phosphor.
  • the light emitting layer containing a quantum dot (nanoparticle) phosphor for example, any one of CdSe / CdS, CdSe / ZnS, InP / ZnS and CIGS / ZnS can be used, for example, quantum dots.
  • the particle size of the (nanoparticle) phosphor is about 3 to 10 nm.
  • the first electrode 22 can be formed by, for example, laminating ITO (Indium Tin Oxide) and an alloy containing Ag, but is not particularly limited as long as conductivity and light reflectivity can be ensured.
  • the second electrode 25 can be made of a translucent conductive material such as ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide), but if conductivity and translucency can be ensured, it is possible. There is no particular limitation.
  • the first electrode 22 is provided for each subpixel SP and is electrically connected to the drain electrode of the transistor Tr. Further, the second electrode 25 is provided in common to all the subpixel SPs. Further, the transistor Tr is driven for each subpixel SP.
  • the sealing layer 6 is translucent, and has a first inorganic sealing film 26 that covers the second electrode 25, an organic sealing film 27 that is formed above the first inorganic sealing film 26, and an organic sealing. It includes a second inorganic sealing film 28 that covers the film 27.
  • the sealing layer 6 covering the light emitting elements 5R, 5G, and 5B prevents foreign substances such as water and oxygen from penetrating into the light emitting elements 5R, 5G, and 5B.
  • the first inorganic sealing film 26 and the second inorganic sealing film 28 may each be composed of, for example, a silicon oxide film, a silicon nitride film, a silicon nitride film, or a laminated film thereof formed by CVD. it can.
  • the organic sealing film 27 is a translucent organic film thicker than the first inorganic sealing film 26 and the second inorganic sealing film 28, and is made of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin. can do.
  • an organic sealing film 27 is provided between the first inorganic sealing film 26 and the second inorganic sealing film 28, and the sealing is composed of one layer of organic film and two layers of inorganic film.
  • the stop layer 6 has been described as an example, the present invention is not limited to this, and the sealing layer 6 may be formed of only one or more inorganic films or one or more organic films, and two layers. It may be formed of the above inorganic film and two or more organic films.
  • the display panel 1 is a flexible display panel and the base substrate 10 which is a flexible substrate is attached to the resin layer 12 via the adhesive layer 11
  • the step of attaching the base substrate 10 which is a flexible substrate via the adhesive layer 11 may be omitted, and the resin layer 12 may be used as it is as the flexible substrate.
  • the display panel 1 may be a non-flexible display panel. In this case, for example, the base substrate 10, the adhesive layer 11 and the resin layer 12 are omitted, and the glass substrate is a non-flexible substrate.
  • the barrier layer 3 may be formed directly on the barrier layer 3.
  • FIG. 2 is a diagram showing a configuration example of the circuit of the display device 30 of the first embodiment.
  • FIG. 3A is a diagram for explaining video processing performed in the light emission profile creation circuit 32 and the video signal adjustment circuit 33 provided in the display device 30, and FIG. 3B is a diagram for explaining light emission. It is a figure which shows an example of the point spread function (PSF) about blue color used in a profile making circuit 32, and FIG. 3C is a figure which shows an example of PL light correction performed in a video signal adjustment circuit 33.
  • PSF point spread function
  • FIG. 4A is a diagram showing a two-dimensional Gaussian distribution of an example of a point spread function (psf) relating to blue
  • FIG. 4B is used for a convolution calculation performed in the light emission profile creation circuit 32. It is a figure which shows an example of the data value of the 1st video signal ⁇ (B) after ⁇ conversion, and (c) of FIG. 4 is (c) of FIG. 4 used for the convolution calculation performed in the light emission profile creation circuit 32. It is a figure which shows the data value of the point spread function (psf) with respect to blue shown in a).
  • the display device 30 includes the above-mentioned display panel 1, an input image processing circuit 31, a light emission profile creation circuit 32, a video signal adjustment circuit 33, a source drive circuit 34, and a gate drive circuit. (Not shown).
  • the display panel 1 is provided with a plurality of pixels P, and each of the plurality of pixels P has a sub-pixel SP that displays red, a sub-pixel SP that displays green, and a sub-pixel SP that displays blue. included.
  • the subpixel SP that displays red includes a light emitting element 5R
  • the subpixel SP that displays green includes a light emitting element 5G
  • the subpixel SP that displays blue includes a light emitting element 5B.
  • the input image processing circuit 31 includes a first video signal B, which is data relating to the brightness of the subpixel SP that displays blue based on the input image, and green.
  • the second video signal G which is data related to the brightness of the subpixel SP that displays red
  • the third video signal R which is data related to the brightness of the subpixel SP that displays red
  • each of the light emission profile creating circuit 32 and the video signal adjusting circuit 33 may include an input image processing circuit 31 that performs ⁇ conversion of the input video signal.
  • the emission profile creation circuit 32 the first video signal ⁇ (B) after ⁇ conversion and the point spread related to blue shown in FIG. 3B are spread.
  • a convolution operation with a function (psf: point spread function) is performed, and the first light emission profile p (B), which is the result value of the operation, is output to the video signal adjustment circuit 33.
  • the first emission profile p (B) shows a two-dimensional distribution of blue stray light.
  • the emission profile creation circuit 32 for creating the first emission profile p (B) showing the two-dimensional distribution of blue stray light, for example, the two-dimensional Gaussian distribution as shown in FIG. 4A.
  • the point spread function (psf) for blue color was used.
  • the point spread function (psf) for blue is a function that expresses the spread of the brightness of a certain blue point light source in the two-dimensional direction, and is most simply a curve that decays exponentially with the square of the distance from the point light source. It has a two-dimensional Gaussian distribution that is symmetrical vertically and horizontally.
  • a case where a point spread function (psf) relating to blue color showing a two-dimensional Gaussian distribution as shown in FIG. 4A is used will be described as an example, but the present embodiment is limited to this.
  • the attenuation rate and distribution change depending on the electrode structure, shape, material, etc. of the display panel 1, so it is preferable to determine the value of the point spread function (psf) for blue by actual measurement, for example, in pixel design.
  • the value of the point spread function (psf) for blue may be determined by simulating ray tracking using parameters (determined by properties such as distance to the reflective layer and material).
  • the data of the point spread function (psf) relating to blue for example, only the subpixel SP that displays blue is turned on, it is measured with a two-dimensional luminance meter, and the obtained data is shaped (for example, noise removal, etc.). It may be obtained by (smoothing).
  • the first video signal ⁇ (B) after ⁇ conversion is subjected to a convolution operation with the point spread function (psf) related to blue. ), It is preferable that the first video signal B is ⁇ -converted and converted into an optical linear region.
  • FIG. 4B is a diagram showing an example of the data value of the first video signal ⁇ (B) after the ⁇ conversion used in the convolution calculation performed in the light emission profile creation circuit 32, and is shown in FIG. c) is a diagram showing the data value of the point spread function (psf) related to blue color shown in FIG. 4 (a) used for the convolution calculation performed in the light emission profile creation circuit 32.
  • psf point spread function
  • the data value of the first video signal ⁇ (B) after the ⁇ conversion shown in FIG. 4B has a gradation value of 0 to 255, and is a part of the display area DA of the display panel 1.
  • the brightness distribution of blue light in (7 ⁇ 7 pixel region) is shown.
  • the data value of the point spread function (psf) for blue shown in FIG. 4 (c) is the data value of the point spread function (psf) for blue showing the two-dimensional Gaussian distribution shown in FIG. 4 (a). It corresponds to a part area (7 ⁇ 7 pixel area) of the display area DA of the display panel 1 shown in FIG. 4 (b).
  • the point spread function (psf) relating to blue shown in FIG. 4 (c) is that when a pixel whose brightness level is “16” is lit at the brightness level “16” in the figure, the periphery of the pixel is lit. It shows how the brightness is distributed.
  • the data value of the point spread function (psf) related to blue can be normalized as needed.
  • the data value of the first video signal ⁇ (B) after the ⁇ conversion has a gradation value of 0 to 255 will be described as an example, but the ⁇ conversion has been performed.
  • the data value of the first video signal ⁇ (B) later is not limited to the gradation value in this range, and may have a larger data amount or a smaller data amount.
  • the data value of the point spread function (psf) relating to blue uses the data value when the central pixel is lit at the luminance level “16”, but the data value is not limited to this. However, the brightness level of the central pixel can be appropriately determined.
  • the pixel in the middle of the region surrounded by the black frame (7 ⁇ 7 pixel region) is set as the pixel of interest of the input image, and the point spread function (psf) relating to blue shown in FIG. 4C is By using the data value, the convolution calculation can be performed in the area of three pixels above, below, left and right around the pixel of interest.
  • the convolution operation can be performed using the following formula. That is, the convolution operation is performed on the data value of the first video signal ⁇ (B) after the ⁇ conversion shown in FIG. 4 (b) and the point spread function (psf) related to blue shown in FIG. 4 (c). ) Can be performed by multiply-accumulate operation between the corresponding coordinates with the data value.
  • This value is the first emission profile p (B) with respect to the coordinate position of the pixel of interest due to each blue emission in the 7 ⁇ 7 pixel region, which is a region of three pixels up, down, left, and right around the pixel of interest.
  • the value of 140 in the above formula is the sum of the data values of the point spread function (psf) related to blue shown in FIG. 4 (c).
  • the case where the convolution operation is performed with the 7 ⁇ 7 pixel area as one block has been described as an example, but the present invention is not limited to this, and the pixel area to be one block is used.
  • the range can be determined as appropriate.
  • the first emission profile p (B) can be created.
  • the second video signal ⁇ (G) and ⁇ conversion after ⁇ conversion are performed based on the first light emission profile p (B).
  • PL (photoluminescence) light correction of the later third video signal ⁇ (R) is performed, and the second video signal ⁇ (G') after PL light correction and the third video signal ⁇ (R') after PL light correction are performed.
  • the second video signal ⁇ (G') after PL light correction and the third video signal ⁇ (R') after PL light correction are returned to the original digital data area by ⁇ inverse conversion.
  • the adjusted second video signal G'and the adjusted third video signal R' are output to the source drive circuit 34.
  • the source drive circuit 34 is input with a first video signal B in the same digital data area as the first video signal B, which is data related to the brightness of the subpixel SP displaying blue color input to the input image processing circuit 31. Will be done.
  • the first emission profile p (B) shows the two-dimensional distribution of blue stray light. Therefore, based on the first emission profile p (B), the second video signal ⁇ (G) after ⁇ conversion and Performing PL light correction of the third video signal ⁇ (R) after ⁇ conversion specifically means performing correction (subtraction processing) for dimming so as to cancel the photoexcitation caused by blue stray light.
  • ⁇ (Rp (B)) which is the amount of PL emission due to the influence of blue stray light in the subpixel SP displaying red, is proportional to the first emission profile p (B). Then, the third video signal ⁇ (R') after PL light correction can be obtained from the following (Equation B).
  • the light emitting layer that emits blue light contained in the light emitting element 5B emits light by electroluminescence based on the first video signal B, and the light emitting layer that emits green light contained in the light emitting element 5G is adjusted.
  • Electroluminescence based on the adjusted third video signal R' photoluminescence from the light emitting layer that emits blue light contained in the light emitting element 5B, and photoluminescence from the light emitting layer that emits green light contained in the light emitting element 5G. It emits light with photoluminescence by light.
  • the third video after PL light correction is based on the first light emission profile p (B) and the second light emission profile p (G). It differs from the first embodiment in that the signal ⁇ (R') is obtained, and the other points are as described in the first embodiment.
  • members having the same functions as the members shown in the drawings of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 5 is a diagram showing a configuration example of the circuit of the display device 40 of the second embodiment.
  • the display device 40 includes a display panel (not shown) described in the first embodiment, an input image processing circuit 31, a light emitting profile creating circuit 32', and a video signal adjusting circuit 33'.
  • the output image processing circuit 35, the source drive circuit (not shown) described in the first embodiment, and the gate drive circuit (not shown) are provided.
  • the first video signal ⁇ (B) after ⁇ conversion and the point spread function (psf) related to blue shown in FIG. 3 (b) : Point spread function) and the convolution operation are performed, and the first light emission profile p (B), which is the result value of the operation, is output to the video signal adjustment circuit 33'.
  • the first emission profile p (B) shows a two-dimensional distribution of blue stray light.
  • the PL light-corrected second video signal ⁇ (G') creation unit 33G provided in the video signal adjustment circuit 33' is based on the first light emission profile p (B) obtained in the first light emission profile creation circuit 32B. Then, the PL emission amount ⁇ (Gp (B)) due to the influence of the blue stray light in the subpixel SP displaying green, that is, the Blue PL light Green correction amount is calculated by the following (Equation C).
  • the second video signal ⁇ (G') creation unit 33G after PL light correction the second video signal ⁇ (G) after ⁇ conversion from the input image processing circuit 31 and the subpixel SP that displays green are displayed.
  • the second video signal ⁇ (G') after PL light correction can be obtained from the following (formula D) based on ⁇ (Gp (B)), which is the amount of PL light emitted due to the influence of blue stray light.
  • the second video signal ⁇ (G) after ⁇ conversion from the input image processing circuit 31 and the second image signal ⁇ (G) after PL light correction are added.
  • ⁇ (Gp (B)) which is the amount of PL emission due to the influence of blue stray light in the subpixel SP that displays green from the video signal ⁇ (G') creation unit 33G, is added, and ⁇ (G) + ⁇ (Gp) It is supplied as (B)).
  • the ⁇ (G) + ⁇ (Gp (B)) and the point spread function (psf) related to green are as shown in the following (Equation E).
  • Point spread function) and a convolution operation are performed, and the second light emission profile p (G), which is the result value of the operation, is output to the video signal adjustment circuit 33'.
  • the second emission profile p (G) shows a two-dimensional distribution of green stray light.
  • G (G) [ ⁇ (G) + ⁇ (Gp (B))] * G (psf) (Formula E) In (Equation E), * means a convolution operator, and G (psf) means a point spread function for green.
  • the point spread function G (psf) for green is a function that expresses the spread of the brightness of a certain green point light source in the two-dimensional direction, and is most simply exponentially attenuated by the square of the distance from the point light source. It has a two-dimensional Gaussian distribution that shows a curve and is symmetrical vertically and horizontally.
  • the point spread function related to blue and the point spread function G (psf) related to green are a subpixel SP that displays red and a subpixel SP that displays green, as in the display panel 1 described in the first embodiment. And the subpixel SP that displays blue have the same shape and are regularly repeated, the same one can be used. Therefore, in this embodiment, the point spread function for blue is used as the point spread function G (psf) for green.
  • the point spread function for blue is used as the point spread function G (psf) for green.
  • the area, shape, arrangement, etc. of the subpixel SP of each color are different, it is necessary to use an appropriate function for the calculation.
  • the third video signal ⁇ (R') creation unit 33R after PL light correction provided in the video signal adjustment circuit 33' is based on the first light emission profile p (B) obtained in the first light emission profile creation circuit 32B. Then, the PL emission amount ⁇ (Rp (B)) due to the influence of the blue stray light in the subpixel SP displaying red, that is, the Blue PL light Red correction amount is calculated by the following (Equation F).
  • ⁇ (Rp (G)) which is the amount of PL light emitted due to the influence of green stray light in the above, that is, the amount of Green PL light Red correction is calculated by the following (Equation G).
  • the third video signal ⁇ (R') creation unit 33R after PL light correction provided in the video signal adjustment circuit 33' the third video signal ⁇ (R) after ⁇ conversion from the input image processing circuit 31 ), ⁇ (Rp (B)), which is the amount of PL emission due to the influence of blue stray light in the subpixel SP that displays the red color obtained by the above (Equation F), and the red color obtained by the above (Equation G).
  • ⁇ (Rp (G) which is the amount of PL light emitted due to the influence of green stray light in the subpixel SP
  • the third video signal ⁇ (R') after PL light correction is obtained by the following (Equation H). Can be done.
  • ⁇ (R') ⁇ (R)-[ ⁇ (Rp (B)) + ⁇ (Rp (G))] (Formula H)
  • the third video signal ⁇ (R') after PL optical correction is ⁇ -inversely converted in the output image processing circuit 35, and then output to the source drive circuit (not shown) as the adjusted third video signal R'. Will be done.
  • the source drive circuit (not shown), the first video in the same digital data area as the first video signal B, which is data related to the brightness of the subpixel SP that displays blue input to the input image processing circuit 31.
  • the signal B is input.
  • each of the light emission profile creation circuit 32'and the video signal adjustment circuit 33' may include an input image processing circuit 31 that performs ⁇ conversion of the input video signal. ..
  • the video signal adjustment circuit 33' may include an output image processing circuit 35 that performs ⁇ inverse conversion.
  • the first emission profile p (B) shows the two-dimensional distribution of blue stray light, so that the second video signal ⁇ (G) after ⁇ conversion is based on the first emission profile p (B).
  • performing PL light correction means performing correction (subtraction processing) for dimming so as to cancel the photoexcitation caused by blue stray light.
  • the second emission profile p (G) shows a two-dimensional distribution of green stray light as described above
  • ⁇ conversion is performed based on the first emission profile p (B) and the second emission profile p (G).
  • Performing the PL light correction of the third video signal ⁇ (R) later specifically means performing a correction (subtraction process) for dimming so as to cancel the optical excitation by the blue stray light and the green stray light. ..
  • the light emitting layer that emits blue light contained in the light emitting element 5B emits light by electroluminescence based on the first video signal B, and the light emitting layer that emits green light contained in the light emitting element 5G is adjusted.
  • Electroluminescence based on the adjusted third video signal R' photoluminescence from the light emitting layer that emits blue light contained in the light emitting element 5B, and photoluminescence from the light emitting layer that emits green light contained in the light emitting element 5G. It emits light with photoluminescence by light.
  • Embodiment 3 of the present invention will be described with reference to FIG.
  • the display device 50 of the present embodiment is provided with a Blue luminance sensor 37, and the video signal adjusting circuit 36 can correct the video signal by reflecting the influence of the blue light component in the external light.
  • the others are as described in the first embodiment.
  • members having the same functions as the members shown in the drawings of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 6 is a diagram showing a configuration example of the circuit of the display device 50 of the third embodiment.
  • the display device 50 includes a display panel 1, an input image processing circuit 31, a light emission profile creation circuit 32, a video signal adjustment circuit 36, a Blue luminance sensor 37, and a source drive circuit 34. , With a gate drive circuit (not shown).
  • the Blue luminance sensor 37 is a sensor that acquires the intensity of the blue light component in the outside light, that is, the brightness component of Blue.
  • the Blue luminance sensor 37 can be realized, for example, by combining a photodiode and a color filter.
  • the position where the Blue brightness sensor 37 is provided is not particularly limited, but the amount of PL emitted in the subpixel SP that displays red and the subpixel SP that displays green due to the blue light component in the outside light, that is, the brightness component of Blue. Since it is for correcting the amount of PL light emitted in, it is preferable to provide it in the display area DA of the display panel 1, and to provide it near the subpixel SP that displays red and the subpixel SP that displays green. More preferred.
  • the Blue luminance sensor 37 in the display area DA of the display panel 1 there is also an advantage that the amount of external light entering can be reduced due to the influence of members such as polarizing plates provided on the surface of the display panel 1. is there.
  • the display panel 1 is uniformly irradiated with external light, one Blue luminance sensor 37 is provided on the display panel 1, but when the size of the display panel 1 is large, etc. May be provided in plurality.
  • the Blue luminance sensor 37 acquires the intensity of the blue light component in the outside light, that is, the intensity of the Blue luminance component, calculates the external light value V (eX) according to the intensity of the Blue luminance component, and is a video signal adjustment circuit. Output to 36.
  • an example is a case where the Blue luminance sensor 37 is used to acquire the intensity of the Blue luminance component and calculate the external light value V (eX) according to the intensity of the Blue luminance component.
  • the present invention is not limited to this, and instead of the Blue luminance sensor 37, a luminance sensor capable of acquiring the intensity of external light may be used. In this case, the outside according to the intensity of external light is used. The light value V (eX) may be calculated.
  • the intensity of the luminance component of Blue or the magnitude of the external light value V (eX) according to the intensity of the external light can be appropriately adjusted according to the necessity of correction for the external light.
  • the first light emission profile p (B) from the light emission profile creation circuit 32, the external light value V (eX) from the Blue luminance sensor 37, and the input image processing circuit 31 the first light emission profile p (B) from the light emission profile creation circuit 32, the external light value V (eX) from the Blue luminance sensor 37, and the input image processing circuit 31.
  • the third video signal ⁇ (R') after PL light correction can be obtained based on the third video signal ⁇ (R) after ⁇ conversion.
  • Equation J the third video signal ⁇ (R') after PL light correction can be obtained from the following (Equation J).
  • the first emission profile p (B) shows the two-dimensional distribution of blue stray light, and the external light value V (eX) indicates the blue light component in the external light. Therefore, the first emission profile p (B) It is concrete that the PL light correction of the second video signal ⁇ (G) after ⁇ conversion and the third video signal ⁇ (R) after ⁇ conversion is performed based on B) and the external light value V (eX). Specifically, it means performing a correction (subtraction process) for dimming so as to cancel the photoexcitation by the blue stray light and the blue light component in the external light.
  • the display device 50 capable of correcting the video signal against the influence of the blue stray light and the blue light component in the external light.
  • the light emitting layer that emits blue light contained in the light emitting element 5B emits light by electroluminescence based on the first video signal B, and the light emitting layer that emits green light contained in the light emitting element 5G is adjusted.
  • Electroluminescence based on the adjusted third video signal R' photoluminescence from the light emitting layer that emits blue light contained in the light emitting element 5B, and photoluminescence from the light emitting layer that emits green light contained in the light emitting element 5G. It emits light with photoluminescence by light.
  • the first sub-pixel includes a first light emitting layer that emits a first color.
  • the second sub-pixel includes a second light emitting layer that emits a second color having a wavelength longer than that of the first color.
  • the second light emitting layer is a display device containing quantum dots.
  • a light emitting profile creation circuit that creates a first light emitting profile of the first sub pixel from a first video signal corresponding to the first sub pixel
  • a display device including a video signal adjusting circuit that adjusts a second video signal corresponding to the second sub-pixel based on the first light emitting profile.
  • the light emission profile creation circuit creates a second light emission profile of the second sub-pixel from the second video signal.
  • the display device according to aspect 6, wherein the video signal adjusting circuit adjusts the third video signal based on the second light emitting profile.
  • the first color is blue, the second color is green, and the third color is red.
  • the first light emitting layer of the first sub pixel emits light by electroluminescence based on the first video signal corresponding to the first sub pixel.
  • the second light emitting layer of the second sub pixel emits light by electroluminescence based on the adjusted second video signal corresponding to the second sub pixel and photoluminescence by the light from the first light emitting layer.
  • the third light emitting layer of the third subpixel includes electroluminescence based on the adjusted third video signal corresponding to the third subpixel, photoluminescence by light from the first light emitting layer, and the second.
  • Aspect 12 It also has a brightness sensor that measures outside light.
  • the brightness sensor measures the intensity of external light and
  • the video signal adjustment circuit adjusts the second video signal based on the external light value according to the intensity of the external light and the first light emission profile, according to any one of aspects 1 to 11.
  • Aspect 13 It also has a brightness sensor that measures outside light.
  • the brightness sensor measures the intensity of external light and
  • the video signal adjusting circuit adjusts the third video signal based on the external light value according to the intensity of the external light and the first light emitting profile, according to any one of aspects 6 to 11.
  • the first sub-pixel includes a first light emitting layer that emits a first color.
  • the second sub-pixel includes a second light emitting layer that emits a wavelength longer than the wavelength of the first color.
  • the second light emitting layer is an image processing method in a display device including quantum dots.
  • the present invention can be used for a display device or a video processing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

表示装置(30)は、第1映像信号(B)から、第1発光プロファイル(p(B))を作成する発光プロファイル作成回路(32)と、第1発光プロファイル(p(B))に基づいて、第2映像信号(R・G)を調整する映像信号調整回路(33)と、を備える。

Description

表示装置及び映像処理方法
 本発明は、表示装置及び映像処理方法に関する。
 近年、さまざまな表示装置が開発されており、特に、QLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えた表示装置は、低消費電力化、薄型化および高画質化などを実現できる点から、高い注目を浴びている。そして、これらの表示装置においては、更なる高画質化を実現するため、映像信号の補正などの映像処理を行うのが一般的になっている。
 平面ディスプレイに対する映像信号の補正処理に関しては、例えば、特許文献1には、液晶表示装置において、絶縁層の厚みと画素の大きさとの関係により発生するクロストークを、隣接画素に印加される信号からクロストーク量を算出し、映像信号の補正を行う技術について開示されている。
日本国公開特許公報「特開2000-321559」公報(2000年11月24日公開)
 しかしながら、特許文献1に開示されている技術の場合、その映像信号の補正の対象が、共通のソース配線や共通のゲート配線に接続されたあるいは電気的に結合した隣接画素に限られるため、以下で説明するような、電気的に無関係な画素からの迷光の影響に対しては、映像信号の補正を行うことができないという問題がある。
 図7は、QLEDを備えた表示装置の一例である表示装置100の概略構成を示す図である。
 表示装置100は、赤色Rの発光層を備えた量子ドット発光ダイオード105Rと、緑色Gの発光層を備えた量子ドット発光ダイオード105Gと、青色Bの発光層を備えた量子ドット発光ダイオード105Bとを備えている。そして、これらの量子ドット発光ダイオード105R・105G・105Bのそれぞれは、表示装置100において、一つのサブ画素を構成する。これらの量子ドット発光ダイオード105R・105G・105Bのそれぞれは、図示していない基板上に形成されており、これらの量子ドット発光ダイオード105R・105G・105Bのそれぞれの光出射面側には、封止層106が備えられている。
 量子ドット発光ダイオード105R・105G・105Bには、2つの発光モードが存在する。すなわち、電気エネルギーで量子ドットを励起し発光するEL(エレクトロルミネッセンス)モードと、光で量子ドットを励起し発光するPL(フォトルミネッセンス)モードである。表示装置100は、前記ELモードを使用し、RGBの各波長に対応した量子ドットの材料を発光層に用いることで、量子ドット発光ダイオード105RからはELモードによる赤色光R(EL)を、量子ドット発光ダイオード105GからはELモードによる緑色光G(EL)を、量子ドット発光ダイオード105BからはELモードによる青色光B(EL)を、それぞれ所定の電気エネルギーで制御して発光させることで、自発光表示装置を実現している。
 しかしながら、量子ドット発光ダイオード105R・105G・105BからのELモードによる各色光には、迷光が含まれる。図7においては、量子ドット発光ダイオード105BからのELモードによる青色光B(EL)に含まれる迷光B(M)のみを図示しているが、量子ドット発光ダイオード105RからのELモードによる赤色光R(EL)及び量子ドット発光ダイオード105GからのELモードによる緑色光G(EL)にも迷光が含まれる。
 図7に図示しているように、量子ドット発光ダイオード105BからのELモードによる青色光B(EL)に含まれる迷光B(M)の影響で、量子ドット発光ダイオード105R・105Gにおいては、本来のELモードでの発光以外に迷光B(M)によるPLモードでの余分な励起発光R(PL)・G(PL)が生じてしまう。このため、近傍の量子ドット発光ダイオード105Bの発光によって、量子ドット発光ダイオード105R・105Gにおいては、その発光強度が本来意図していたものと異なったものになってしまうという問題がある。
 また、量子ドット発光ダイオード105Rにおける、PLモードでの余分な励起発光R(PL)には、量子ドット発光ダイオード105GからのELモードによる緑色光G(EL)に含まれる迷光(図示せず)の影響も含まれる。
 本発明の一態様は、前記の問題点に鑑みてなされたものであり、迷光の影響に対して、映像信号の補正を行うことができる表示装置と、映像処理方法とを提供することを目的とする。
 本発明の表示装置は、前記の課題を解決するために、
 第1サブ画素と第2サブ画素とを含み、
 前記第1サブ画素は、第1色を発光する第1発光層を備え、
 前記第2サブ画素は、前記第1色の波長より長い波長の第2色を発光する第2発光層を備え、
 前記第2発光層は、量子ドットを含む表示装置であって、
 前記第1サブ画素に対応する第1映像信号から、前記第1サブ画素の第1発光プロファイルを作成する発光プロファイル作成回路と、
 前記第1発光プロファイルに基づいて、前記第2サブ画素に対応する第2映像信号を調整する映像信号調整回路と、を備える。
 本発明の映像処理方法は、前記の課題を解決するために、
 第1サブ画素と第2サブ画素とを含み、
 前記第1サブ画素は、第1色を発光する第1発光層を備え、
 前記第2サブ画素は、前記第1色における波長より長い波長を発光する第2発光層と、を備え、
 前記第2発光層は、量子ドットを含む表示装置における映像処理方法であって、
 前記第1サブ画素に対応する第1映像信号から、前記第1サブ画素の第1発光プロファイルを作成する発光プロファイル作成ステップと、
 前記第1発光プロファイルに基づいて、前記第2サブ画素に対応する第2映像信号を調整する映像信号調整ステップと、を含む。
 本発明の一態様によれば、迷光の影響に対して、映像信号の補正を行うことができる表示装置と、映像処理方法とを提供できる。
(a)は、実施形態1の表示装置に備えられた表示パネルの構成を示す模式的平面図であり、(b)は、実施形態1の表示装置に備えられた表示パネルの構成を示す断面図である。 実施形態1の表示装置の回路の構成例を示す図である。 (a)は、実施形態1の表示装置に備えられた、発光プロファイル作成回路及び映像信号調整回路において行われる映像処理を説明するための図であり、(b)は、発光プロファイル作成回路において用いられる点広がり関数(psf)の一例を示す図であり、(c)は、映像信号調整回路において行われるPL光補正の一例を示す図である。 (a)は、点広がり関数(psf)の一例の2次元ガウス分布を示す図であり、(b)は、発光プロファイル作成回路において行われる畳み込み演算に用いられるγ変換された後の第1映像信号のデータ値の一例を示す図であり、(c)は、発光プロファイル作成回路において行われる畳み込み演算に用いられる図4の(a)に図示した点広がり関数(PSF)のデータ値を示す図である。 実施形態2の表示装置の回路の構成例を示す図である。 実施形態3の表示装置の回路の構成例を示す図である。 QLEDを備えた表示装置の一例を示す図である。
 本発明の実施の形態について、図1から図6に基づいて説明すれば、次の通りである。以下、説明の便宜上、特定の実施形態にて説明した構成と同一の機能を有する構成については、同一の符号を付記し、その説明を省略する場合がある。
 〔実施形態1〕
 図1の(a)は、実施形態1の表示装置30に備えられた表示パネル1の構成を示す模式的平面図であり、図1の(b)は、実施形態1の表示装置30に備えられた表示パネル1の構成を示す断面図である。
 図1の(a)に図示するように、表示パネル1は、表示領域DAと、表示領域DAを囲む額縁領域NDAとを備えている。表示領域DAには、複数のサブピクセル(サブ画素)SPが備えられている。
 図1の(b)に図示するように、表示パネル1の表示領域DAにおいては、ベース基板10上には、接着剤層11と、樹脂層12と、バリア層3と、薄膜トランジスタ層(TFT層)4と、発光素子5R・5G・5Bと、封止層6とがこの順に備えられている。
 ベース基板10の材料としては、例えば、ポリエチレンテレフタレート(PET)等を挙げることができるが、これに限定されることはない。
 接着剤層11としては、例えば、OCA(Optical Clear Adhesive)またはOCR(Optical Clear Resin)を挙げることができるが、これに限定されることはない。
 樹脂層12の材料としては、例えば、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂等を挙げることができるが、これに限定されることはない。
 バリア層3は、水分や不純物が、トランジスタTrや発光素子5R・5G・5Bに到達することを防ぐ層であり、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。
 トランジスタTr及び容量素子は、樹脂層12及びバリア層3の上層に設けられている。トランジスタTr及び容量素子を含む薄膜トランジスタ層4は、半導体膜15と、半導体膜15よりも上層の無機絶縁膜(ゲート絶縁膜)16と、無機絶縁膜16よりも上層のゲート電極GEと、ゲート電極GEよりも上層の無機絶縁膜(第1絶縁膜)18と、無機絶縁膜18よりも上層の容量素子の対向電極CEと、容量素子の対向電極CEよりも上層の無機絶縁膜(第2絶縁膜)20と、無機絶縁膜20よりも上層の、ソース電極、ドレイン電極及びその配線を形成する層SHと、ソース電極とドレイン電極とその配線を形成する層SHよりも上層の層間絶縁膜21とを含む。
 なお、容量素子は、無機絶縁膜18の直上に形成された容量素子の対向電極CEと、無機絶縁膜18と、無機絶縁膜18の直下に形成され、ゲート電極GEを形成する層と同一層で、容量素子の対向電極CEと重畳するように形成された容量電極と、で構成される。
 半導体膜15、無機絶縁膜16、ゲート電極GE、無機絶縁膜18、無機絶縁膜20、ソース電極及びドレイン電極を含むように、トランジスタ(薄膜トランジスタ(TFT))Trが構成される。
 半導体膜15は、例えば低温ポリシリコン(LTPS)あるいは酸化物半導体で構成される。
 ゲート電極GE、容量素子の対向電極CE、ソース電極とドレイン電極とその配線を形成する層SHは、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)、及び銀(Ag)の少なくとも1つを含む金属の単層膜あるいは積層膜によって構成される。
 無機絶縁膜16・18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜、窒化シリコン(SiNx)膜あるいは酸窒化シリコン膜またはこれらの積層膜によって構成することができる。
 層間絶縁膜21は、例えば、ポリイミド樹脂やアクリル樹脂等の塗布可能な感光性有機材料によって構成することができる。
 発光素子5R・5G・5Bは、層間絶縁膜21よりも上層の第1電極22と、第1電極22よりも上層の各色の発光層を含む機能層24R・24G・24Bと、機能層24R・24G・24Bよりも上層の第2電極25とを含む。層間絶縁膜21上には、第1電極22のエッジを覆うエッジカバー(バンク)23が形成されている。
 赤色(第3色)を表示するサブピクセルSPは、発光素子5Rを含むので、赤色(第3色)の発光層を含む機能層24Rを備えており、緑色(第2色)を表示するサブピクセルSPは、発光素子5Gを含むので、緑色(第2色)の発光層を含む機能層24Gを備えており、青色(第1色)を表示するサブピクセルSPは、発光素子5Bを含むので、青色(第1色)の発光層を含む機能層24Bを備えている。
 なお、本実施形態においては、第1色が青色で、第2色が緑色で、第3色が赤色である場合を一例に挙げて説明するが、これに限定されることはなく、第2色は第1色の波長より長い波長の可視光領域の光であればよく、第3色は第2色の波長より長い波長の可視光領域の光であればよい。
 また、本実施形態においては、1画素が、赤色を表示するサブピクセルSPと、緑色を表示するサブピクセルSPと、青色を表示するサブピクセルSPとの3つのサブピクセルSPで構成される場合を一例挙げて説明するが、これに限定されることはなく、1画素は、4つ以上のサブピクセルで構成されていてもよく、この場合には、赤色、緑色及び青色以外を表示するサブピクセルを含んでいてもよい。
 表示パネル1においては、サブピクセルSPごとに、島状の第1電極22と、各色の発光層を含む機能層24R・24G・24Bと、第2電極25とを含む。エッジカバー23は、例えば、ポリイミド樹脂、アクリル樹脂等の塗布可能な感光性有機材料によって構成することができる。
 機能層24R・24G・24Bは、例えば、下層側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層を積層することで構成される。発光層は、蒸着法あるいはインクジェット法によって、サブピクセルSPごとに島状に形成されるが、その他の層はベタ状の共通層とすることもできる。また、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層のうち1以上の層を形成しない構成も可能である。
 本実施形態においては、機能層24R・24G・24Bに含まれるそれぞれの発光層を、量子ドット(ナノ粒子)蛍光体を含む発光層で形成した場合を一例に挙げて説明するが、これに限定されることはなく、機能層24R及び機能層24Gの少なくとも一方に含まれる発光層のみを、量子ドット(ナノ粒子)蛍光体を含む発光層で形成してもよい。量子ドット(ナノ粒子)蛍光体を含む発光層の具体的な材料としては、例えば、CdSe/CdS、CdSe/ZnS、InP/ZnS及びCIGS/ZnSの何れかを用いることができ、例えば、量子ドット(ナノ粒子)蛍光体の粒径は3~10nm程度である。なお、機能層24Rに含まれる量子ドット(ナノ粒子)蛍光体を含む発光層と、機能層24Gに含まれる量子ドット(ナノ粒子)蛍光体を含む発光層と、機能層24Bに含まれる量子ドット(ナノ粒子)蛍光体を含む発光層とで、互いに発光する光の中心波長を異なるようにするため、それぞれの発光層において、量子ドット(ナノ粒子)蛍光体の粒径を異なるようにしてもよく、互いに異なる種類の量子ドット(ナノ粒子)蛍光体を用いてもよい。
 第1電極22は、例えばITO(Indium Tin Oxide)とAgを含む合金との積層によって構成することができるが、導電性及び光反射性を確保できるのであれば、特に限定されない。また、第2電極25は、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の透光性の導電材で構成することができるが、導電性及び透光性を確保できるのであれば、特に限定されない。
 第1電極22は、サブピクセルSP毎に設けられ、トランジスタTrのドレイン電極に電気的に接続されている。また、第2電極25は、全てのサブピクセルSPに共通して設けられている。また、トランジスタTrは、サブピクセルSP毎に駆動される。
 封止層6は透光性であり、第2電極25を覆う第1無機封止膜26と、第1無機封止膜26よりも上側に形成される有機封止膜27と、有機封止膜27を覆う第2無機封止膜28とを含む。発光素子5R・5G・5Bを覆う封止層6は、水、酸素等の異物の発光素子5R・5G・5Bへの浸透を防いでいる。
 第1無機封止膜26及び第2無機封止膜28はそれぞれ、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機封止膜27は、第1無機封止膜26及び第2無機封止膜28よりも厚い、透光性有機膜であり、ポリイミド樹脂、アクリル樹脂等の塗布可能な感光性有機材料によって構成することができる。
 本実施形態においては、第1無機封止膜26と第2無機封止膜28との間に有機封止膜27を備えた、1層の有機膜と2層の無機膜から構成される封止層6を一例に挙げて説明したが、これに限定されることはなく、封止層6は、1層以上の無機膜または1層以上の有機膜のみで形成されてもよく、2層以上の無機膜と2層以上の有機膜とで形成されてもよい。
 本実施形態においては、表示パネル1がフレキシブル表示パネルであり、樹脂層12に接着剤層11を介してフレキシブル基板であるベース基板10を貼り付ける場合を一例に挙げて説明したが、これに限定されることはない。例えば、接着剤層11を介してフレキシブル基板であるベース基板10を貼り付ける工程を省き、フレキシブル基板として樹脂層12をそのまま用いてもよい。また、表示パネル1は、非可撓性表示パネルであってもよく、この場合には、例えば、ベース基板10、接着剤層11及び樹脂層12を省き、非可撓性基板であるガラス基板上に直接バリア層3を形成してもよい。
 図2は、実施形態1の表示装置30の回路の構成例を示す図である。
 図3の(a)は、表示装置30に備えられた、発光プロファイル作成回路32及び映像信号調整回路33において行われる映像処理を説明するための図であり、図3の(b)は、発光プロファイル作成回路32において用いられる青色に関する点広がり関数(PSF)の一例を示す図であり、図3の(c)は、映像信号調整回路33において行われるPL光補正の一例を示す図である。
 図4の(a)は、青色に関する点広がり関数(psf)の一例の2次元ガウス分布を示す図であり、図4の(b)は、発光プロファイル作成回路32において行われる畳み込み演算に用いられるγ変換された後の第1映像信号γ(B)のデータ値の一例を示す図であり、図4の(c)は、発光プロファイル作成回路32において行われる畳み込み演算に用いられる図4の(a)に図示した青色に関する点広がり関数(psf)のデータ値を示す図である。
 図2に図示するように、表示装置30は、上述した表示パネル1と、入力画像処理回路31と、発光プロファイル作成回路32と、映像信号調整回路33と、ソース駆動回路34と、ゲート駆動回路(図示せず)とを備える。
 表示パネル1には、複数の画素Pが備えられ、複数の画素Pのそれぞれには、赤色を表示するサブピクセルSPと、緑色を表示するサブピクセルSPと、青色を表示するサブピクセルSPとが含まれる。そして、赤色を表示するサブピクセルSPは、発光素子5Rを含み、緑色を表示するサブピクセルSPは発光素子5Gを含み、青色を表示するサブピクセルSPは、発光素子5Bを含む。
 図2及び図3の(a)に図示するように、入力画像処理回路31には、入力画像に基づいて、青色を表示するサブピクセルSPの輝度に関するデータである第1映像信号Bと、緑色を表示するサブピクセルSPの輝度に関するデータである第2映像信号Gと、赤色を表示するサブピクセルSPの輝度に関するデータである第3映像信号Rとが、入力される。そして、入力画像処理回路31においては、入力された、第1映像信号B、第2映像信号G及び第3映像信号Rのそれぞれについてγ変換を行い、γ変換後の第1映像信号γ(B)を発光プロファイル作成回路32に出力し、γ変換後の第2映像信号γ(G)及びγ変換後の第3映像信号γ(R)を映像信号調整回路33に出力する。本実施形態においては、入力された映像信号のγ変換を行う入力画像処理回路31を、発光プロファイル作成回路32及び映像信号調整回路33とは別に設けた場合を一例に挙げて説明するが、これに限定されることはなく、例えば、発光プロファイル作成回路32及び映像信号調整回路33のそれぞれが、入力された映像信号のγ変換を行う入力画像処理回路31を備えていてもよい。
 図2及び図3の(a)に図示するように、発光プロファイル作成回路32においては、γ変換後の第1映像信号γ(B)と、図3の(b)に図示する青色に関する点広がり関数(psf:point spread function)との畳み込み演算が行われ、その演算の結果値である第1発光プロファイルp(B)が映像信号調整回路33に出力される。なお、第1発光プロファイルp(B)は、青色迷光の2次元分布を示す。
 本実施形態においては、発光プロファイル作成回路32において、青色迷光の2次元分布を示す第1発光プロファイルp(B)の作成に、例えば、図4の(a)に図示するような2次元ガウス分布を示す青色に関する点広がり関数(psf)を用いた。青色に関する点広がり関数(psf)とは、ある青色の点光源の2次元方向への輝度の広がりを表す関数であり、最も単純には点光源からの距離の2乗で指数的に減衰する曲線を示す、上下左右対称な2次元ガウス分布となる。
 本実施形態においては、図4の(a)に図示するような2次元ガウス分布を示す青色に関する点広がり関数(psf)を用いた場合を一例に挙げて説明するが、これに限定されることはなく、実際には、表示パネル1の電極構造や形状、素材等によって減衰率や分布が変わるため、実測をもって青色に関する点広がり関数(psf)の値を決めることが好ましく、例えば、画素設計のパラメータ(反射層との距離や材料等の特性によって決定される)を使用し、光線追尾のシミュレーションを行い、青色に関する点広がり関数(psf)の値を決めてもよい。また、青色に関する点広がり関数(psf)のデータは、例えば、青色を表示するサブピクセルSPのみ点灯させ、それを2次元輝度計で測定し、得られたデータを整形(例えば、ノイズ除去等の平滑化)することによって得てもよい。
 また、青色に関する点広がり関数(psf)は光学的に線形な領域で定義されているため、青色に関する点広がり関数(psf)との畳み込み演算が行われるγ変換後の第1映像信号γ(B)についても、第1映像信号Bをγ変換して光学線形領域に変換することが好ましい。
 図4の(b)は、発光プロファイル作成回路32において行われる畳み込み演算に用いられるγ変換された後の第1映像信号γ(B)のデータ値の一例を示す図であり、図4の(c)は、発光プロファイル作成回路32において行われる畳み込み演算に用いられる図4の(a)に図示した青色に関する点広がり関数(psf)のデータ値を示す図である。
 図4の(b)に図示するγ変換された後の第1映像信号γ(B)のデータ値は、0~255の階調値を有し、表示パネル1の表示領域DAの一部領域(7×7画素領域)における青色光の輝度分布を示す。
 図4の(c)に図示した青色に関する点広がり関数(psf)のデータ値は、図4の(a)に図示した2次元ガウス分布を示す青色に関する点広がり関数(psf)のデータ値であり、図4の(b)に図示した表示パネル1の表示領域DAの一部領域(7×7画素領域)に対応するものである。図4の(c)に図示した青色に関する点広がり関数(psf)は、図中において、輝度レベルを「16」と示した画素を、輝度レベル「16」で点灯させた時に、その画素の周囲にどのように輝度が分布するのかを示すものである。なお、青色に関する点広がり関数(psf)のデータ値は、必要に応じて正規化することができる。
 なお、本実施形態においては、γ変換された後の第1映像信号γ(B)のデータ値が、0~255の階調値を有する場合を一例に挙げて説明するが、γ変換された後の第1映像信号γ(B)のデータ値は、この範囲の階調値に限定されることはなく、より大きいデータ量またはより小さいデータ量を有していてもよい。また、本実施形態においては、青色に関する点広がり関数(psf)のデータ値は、中心画素を輝度レベル「16」で点灯させた時のデータ値を用いているが、これに限定されることはなく、中心画素の輝度レベルは適宜決定することができる。
 図4の(b)において、黒枠で囲った領域(7×7画素領域)の真ん中の画素を入力画像の着目画素とし、図4の(c)に図示した青色に関する点広がり関数(psf)のデータ値を用いると、前記着目画素の周囲の上下左右3画素の領域で畳み込み演算を行うことができる。
 畳み込み演算は、下記式を用いて行うことができる。すなわち、畳み込み演算は、図4の(b)に図示するγ変換された後の第1映像信号γ(B)のデータ値と、図4の(c)に図示した青色に関する点広がり関数(psf)のデータ値との、対応する座標同士の積和演算で行うことができる。
Figure JPOXMLDOC01-appb-M000001
 上記式から得られる値は、[(0×1+0×1+0×2+0×2+119×2+220×1+0×1)+(1×1+133×2+0×2+128×4+49×2+77×2+4×1)+・・・・+(0×1+0×1+192×2+50×2+0×2+0×1+0×1)]÷140=70.6である。この値は、前記着目画素の周囲の上下左右3画素の領域である7×7画素領域におけるそれぞれの青色発光による、前記着目画素の座標位置に対する第1発光プロファイルp(B)である。
 また、上記式中における140という値は、図4の(c)に図示した青色に関する点広がり関数(psf)のデータ値の総和である。
 なお、本実施形態においては、7×7画素領域を一つのブロックとして、畳み込み演算を行う場合を一例に挙げて説明したが、これに限定されることはなく、一つのブロックとする画素領域の範囲は適宜決定することができる。
 以上と同様にして、表示パネル1の表示領域DAの全画素の座標(画素)毎に、すなわち、着目画素を変えながら、畳み込み演算を行うことで、表示パネル1の表示領域DAの全画素に対しての第1発光プロファイルp(B)を作成できる。
 図2及び図3の(a)に図示するように、映像信号調整回路33においては、第1発光プロファイルp(B)に基づいて、γ変換後の第2映像信号γ(G)及びγ変換後の第3映像信号γ(R)のPL(フォトルミネッセンス)光補正を行い、PL光補正後の第2映像信号γ(G’)及びPL光補正後の第3映像信号γ(R’)を得ることができる。そして、PL光補正後の第2映像信号γ(G’)及びPL光補正後の第3映像信号γ(R’)は、γ逆変換されることで、もとのデジタルデータ領域に戻され、調整後の第2映像信号G’及び調整後の第3映像信号R’として、ソース駆動回路34に出力される。また、ソース駆動回路34には、入力画像処理回路31に入力される青色を表示するサブピクセルSPの輝度に関するデータである第1映像信号Bと同一のデジタルデータ領域の第1映像信号Bが入力される。
 第1発光プロファイルp(B)は、上述したように、青色迷光の2次元分布を示すため、第1発光プロファイルp(B)に基づいて、γ変換後の第2映像信号γ(G)及びγ変換後の第3映像信号γ(R)のPL光補正を行うということは、具体的には、青色迷光による光励起を相殺するよう減光する補正(減算処理)を行うことを意味する。
 図3の(c)に図示するように、第1発光プロファイルp(B)の値が小さければ、γ(R’)/γ(R)は1に近くなる。すなわち、青色迷光が少なければ、PL光補正量も減るので、γ(R’)の値とγ(R)の値とは近似した値となる。一方、第1発光プロファイルp(B)の値が大きければ、PL光補正量も大きくなり、PL光補正においては、青色迷光による光励起を相殺するよう減光する補正が行われるので、γ(R’)の値は、PL光補正量に応じて、γ(R)の値より小さくなる。なお、図示してないが、第1発光プロファイルp(B)と、γ(G’)/γ(G)との関係も、図3の(c)に図示する場合と同様である。
 なお、PL(フォトルミネッセンス)発光は、青色迷光により引き起こされるため、発光プロファイル作成回路32において求めた第1発光プロファイルp(B)と、緑色を表示するサブピクセルSPにおける青色迷光の影響によるPL発光量であるγ(Gp(B))とは、γ(Gp(B))=α×p(B)の関係を満たす(αは、緑色を表示するサブピクセルSPの青色光励起特性を示す係数である)。すなわち、緑色を表示するサブピクセルSPにおける青色迷光の影響によるPL発光量であるγ(Gp(B))は、第1発光プロファイルp(B)に比例する。そして、PL光補正後の第2映像信号γ(G’)は、下記(式A)から求めることができる。
 γ(G’)=γ(G)-γ(Gp(B))=γ(G)-α×p(B)  (式A)
 同様に、発光プロファイル作成回路32において求めた第1発光プロファイルp(B)と、赤色を表示するサブピクセルSPにおける青色迷光の影響によるPL発光量であるγ(Rp(B))とは、γ(Rp(B))=β×p(B)の関係を満たす(βは、赤色を表示するサブピクセルSPの青色光励起特性を示す係数である)。すなわち、赤色を表示するサブピクセルSPにおける青色迷光の影響によるPL発光量であるγ(Rp(B))は、第1発光プロファイルp(B)に比例する。そして、PL光補正後の第3映像信号γ(R’)は、下記(式B)から求めることができる。
 γ(R’)=γ(R)-γ(Rp(B))=γ(R)-β×p(B)  (式B)
 以上のように、迷光の影響に対して、映像信号の補正を行うことができる表示装置30を実現できる。
 なお、表示装置30においては、発光素子5Bに含まれる青色を発光する発光層は、第1映像信号Bに基づくエレクトロルミネッセンスで発光し、発光素子5Gに含まれる緑色を発光する発光層は、調整後の第2映像信号G’に基づくエレクトロルミネッセンスと、発光素子5Bに含まれる青色を発光する発光層からの光によるフォトルミネッセンスとで発光し、発光素子5Rに含まれる赤色を発光する発光層は、調整後の第3映像信号R’に基づくエレクトロルミネッセンスと、発光素子5Bに含まれる青色を発光する発光層からの光によるフォトルミネッセンスと、発光素子5Gに含まれる緑色を発光する発光層からの光によるフォトルミネッセンスとで発光する。
 〔実施形態2〕
 次に、図5に基づき、本発明の実施形態2について説明する。本実施形態の表示装置40に備えられた映像信号調整回路33’においては、第1発光プロファイルp(B)と第2発光プロファイルp(G)とに基づいて、PL光補正後の第3映像信号γ(R’)を得ている点において、実施形態1とは異なり、その他については実施形態1において説明したとおりである。説明の便宜上、実施形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図5は、実施形態2の表示装置40の回路の構成例を示す図である。
 図5に図示するように、表示装置40は、実施形態1で説明した表示パネル(図示せず)と、入力画像処理回路31と、発光プロファイル作成回路32’と、映像信号調整回路33’と、出力画像処理回路35と、実施形態1で説明したソース駆動回路(図示せず)と、ゲート駆動回路(図示せず)とを備える。
 発光プロファイル作成回路32’に備えられた第1発光プロファイル作成回路32Bにおいては、γ変換後の第1映像信号γ(B)と、図3の(b)に図示する青色に関する点広がり関数(psf:point spread function)との畳み込み演算が行われ、その演算の結果値である第1発光プロファイルp(B)が映像信号調整回路33’に出力される。なお、第1発光プロファイルp(B)は、青色迷光の2次元分布を示す。
 映像信号調整回路33’に備えられたPL光補正後の第2映像信号γ(G’)作成部33Gにおいては、第1発光プロファイル作成回路32Bにおいて求めた第1発光プロファイルp(B)に基づいて、緑色を表示するサブピクセルSPにおける青色迷光の影響によるPL発光量であるγ(Gp(B))、すなわち、Blue PL光Green補正量算出を下記(式C)によって行う。
 γ(Gp(B))=α×p(B)  (式C)
 なお、αは、緑色を表示するサブピクセルSPの青色光励起特性を示す係数である。
 さらに、PL光補正後の第2映像信号γ(G’)作成部33Gにおいては、入力画像処理回路31からのγ変換後の第2映像信号γ(G)と、緑色を表示するサブピクセルSPにおける青色迷光の影響によるPL発光量であるγ(Gp(B))とに基づいて、PL光補正後の第2映像信号γ(G’)を、下記(式D)から求めることができる。
 γ(G’)=γ(G)-γ(Gp(B))=γ(G)-α×p(B)  (式D)
 PL光補正後の第2映像信号γ(G’)は、出力画像処理回路35においてγ逆変換された後、調整後の第2映像信号G’として、ソース駆動回路(図示せず)に出力される。
 また、発光プロファイル作成回路32’に備えられた第2発光プロファイル作成回路32Gには、入力画像処理回路31からのγ変換後の第2映像信号γ(G)と、PL光補正後の第2映像信号γ(G’)作成部33Gからの緑色を表示するサブピクセルSPにおける青色迷光の影響によるPL発光量であるγ(Gp(B))とが足されて、γ(G)+γ(Gp(B))として供給される。
 発光プロファイル作成回路32’に備えられた第2発光プロファイル作成回路32Gにおいては、下記(式E)のように、前記γ(G)+γ(Gp(B))と、緑色に関する点広がり関数(psf:point spread function)との畳み込み演算が行われ、その演算の結果値である第2発光プロファイルp(G)が映像信号調整回路33’に出力される。なお、第2発光プロファイルp(G)は、緑色迷光の2次元分布を示す。
 p(G)=[γ(G)+γ(Gp(B))]* G(psf)   (式E)
 (式E)中において、*は畳み込み演算子を意味し、G(psf)は、緑色に関する点広がり関数を意味する。緑色に関する点広がり関数G(psf)とは、ある緑色の点光源の2次元方向への輝度の広がりを表す関数であり、最も単純には点光源からの距離の2乗で指数的に減衰する曲線を示す、上下左右対称な2次元ガウス分布となる。
 なお、青色に関する点広がり関数と、緑色に関する点広がり関数G(psf)とは、実施形態1において説明した表示パネル1のように、赤色を表示するサブピクセルSPと、緑色を表示するサブピクセルSPと、青色を表示するサブピクセルSPとが、同形状であり、かつ、規則的に繰り返しで構成されている場合、同じものを利用できる。したがって、本実施形態においては、緑色に関する点広がり関数G(psf)として、青色に関する点広がり関数を用いた。一方、各色のサブピクセルSPの面積や形状や配置等が異なる場合は、夫々適切な関数を演算に用いる必要がある。
 映像信号調整回路33’に備えられたPL光補正後の第3映像信号γ(R’)作成部33Rにおいては、第1発光プロファイル作成回路32Bにおいて求めた第1発光プロファイルp(B)に基づいて、赤色を表示するサブピクセルSPにおける青色迷光の影響によるPL発光量であるγ(Rp(B))、すなわち、Blue PL光Red補正量算出を下記(式F)によって行う。
 γ(Rp(B))=ε×p(B)  (式F)
 なお、εは、赤色を表示するサブピクセルSPの青色光励起特性を示す係数である。
 さらに、PL光補正後の第3映像信号γ(R’)作成部33Rにおいては、第2発光プロファイル作成回路32Gからの第2発光プロファイルp(G)に基づいて、赤色を表示するサブピクセルSPにおける緑色迷光の影響によるPL発光量であるγ(Rp(G))、すなわち、Green PL光Red補正量算出を下記(式G)によって行う。
 γ(Rp(G))=η×p(G)  (式G)
 なお、ηは、赤色を表示するサブピクセルSPの緑色光励起特性を示す係数である。
 それから、映像信号調整回路33’に備えられたPL光補正後の第3映像信号γ(R’)作成部33Rにおいては、入力画像処理回路31からのγ変換後の第3映像信号γ(R)と、上記(式F)によって求めた赤色を表示するサブピクセルSPにおける青色迷光の影響によるPL発光量であるγ(Rp(B))と、上記(式G)によって求めた赤色を表示するサブピクセルSPにおける緑色迷光の影響によるPL発光量であるγ(Rp(G))とに基づいて、下記(式H)によって、PL光補正後の第3映像信号γ(R’)を求めることができる。
 γ(R’)=γ(R)-[γ(Rp(B))+γ(Rp(G))]   (式H)
 PL光補正後の第3映像信号γ(R’)は、出力画像処理回路35においてγ逆変換された後、調整後の第3映像信号R’として、ソース駆動回路(図示せず)に出力される。また、ソース駆動回路(図示せず)には、入力画像処理回路31に入力される青色を表示するサブピクセルSPの輝度に関するデータである第1映像信号Bと同一のデジタルデータ領域の第1映像信号Bが入力される。
 本実施形態においては、入力された映像信号のγ変換を行う入力画像処理回路31を、発光プロファイル作成回路32’及び映像信号調整回路33’とは別に設けた場合を一例に挙げて説明するが、これに限定されることはなく、例えば、発光プロファイル作成回路32’及び映像信号調整回路33’のそれぞれが、入力された映像信号のγ変換を行う入力画像処理回路31を備えていてもよい。
 また、本実施形態においては、γ逆変換を行う出力画像処理回路35を、映像信号調整回路33’とは別に設けた場合を一例に挙げて説明するが、これに限定されることはなく、例えば、映像信号調整回路33’が、γ逆変換を行う出力画像処理回路35を備えていてもよい。
 第1発光プロファイルp(B)は、上述したように、青色迷光の2次元分布を示すため、第1発光プロファイルp(B)に基づいて、γ変換後の第2映像信号γ(G)のPL光補正を行うということは、具体的には、青色迷光による光励起を相殺するよう減光する補正(減算処理)を行うことを意味する。
 また、第2発光プロファイルp(G)は、上述したように、緑色迷光の2次元分布を示すため、第1発光プロファイルp(B)及び第2発光プロファイルp(G)に基づいて、γ変換後の第3映像信号γ(R)のPL光補正を行うということは、具体的には、青色迷光及び緑色迷光による光励起を相殺するよう減光する補正(減算処理)を行うことを意味する。
 以上のように、青色迷光及び緑色迷光の影響に対して、映像信号の補正を行うことができる表示装置40を実現できる。
 なお、表示装置40においては、発光素子5Bに含まれる青色を発光する発光層は、第1映像信号Bに基づくエレクトロルミネッセンスで発光し、発光素子5Gに含まれる緑色を発光する発光層は、調整後の第2映像信号G’に基づくエレクトロルミネッセンスと、発光素子5Bに含まれる青色を発光する発光層からの光によるフォトルミネッセンスとで発光し、発光素子5Rに含まれる赤色を発光する発光層は、調整後の第3映像信号R’に基づくエレクトロルミネッセンスと、発光素子5Bに含まれる青色を発光する発光層からの光によるフォトルミネッセンスと、発光素子5Gに含まれる緑色を発光する発光層からの光によるフォトルミネッセンスとで発光する。
 〔実施形態3〕
 次に、図6に基づき、本発明の実施形態3について説明する。本実施形態の表示装置50には、Blue輝度センサー37が備えられ、映像信号調整回路36において、外光中の青色光成分の影響も反映させた、映像信号の補正を行うことができる点において、実施形態1とは異なり、その他については実施形態1において説明したとおりである。説明の便宜上、実施形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図6は、実施形態3の表示装置50の回路の構成例を示す図である。
 図6に図示するように、表示装置50は、表示パネル1と、入力画像処理回路31と、発光プロファイル作成回路32と、映像信号調整回路36と、Blue輝度センサー37と、ソース駆動回路34と、ゲート駆動回路(図示せず)とを備える。
 Blue輝度センサー37は、外光中の青色光成分、すなわち、Blueの輝度成分の強度を取得するセンサーである。Blue輝度センサー37は、例えば、フォトダイオードとカラーフィルターとを組み合わせで実現できる。なお、Blue輝度センサー37を設ける位置は特に限定されないが、外光中の青色光成分、すなわち、Blueの輝度成分による、赤色を表示するサブピクセルSPにおけるPL発光量及び緑色を表示するサブピクセルSPにおけるPL発光量の補正を行うためのものであるため、表示パネル1の表示領域DA内に設けることが好ましく、赤色を表示するサブピクセルSP及び緑色を表示するサブピクセルSPの近くに設けることがさらに好ましい。Blue輝度センサー37を表示パネル1の表示領域DA内に設けることで、表示パネル1の表面に設けられた偏光板などの部材の影響により外光の入光量が低減されることも考慮できるメリットもある。
 また、本実施形態においては、外光が表示パネル1に対して一様に照射されるため、Blue輝度センサー37を表示パネル1上に一つ設けたが、表示パネル1のサイズが大きい場合などには、複数個設けてもよい。
 Blue輝度センサー37は、外光中の青色光成分、すなわち、Blueの輝度成分の強度を取得し、Blueの輝度成分の強度に応じた外光値V(eX)を算出し、映像信号調整回路36に出力する。
 なお、本実施形態においては、Blue輝度センサー37を用いて、Blueの輝度成分の強度を取得し、Blueの輝度成分の強度に応じた外光値V(eX)を算出する場合を一例に挙げて説明するが、これに限定されることはなく、Blue輝度センサー37の代わりに、外光の強度を取得できる輝度センサーを用いてもよく、この場合には、外光の強度に応じた外光値V(eX)を算出すればよい。
 また、Blueの輝度成分の強度または、外光の強度に応じた外光値V(eX)の大きさは、外光に対する補正の必要性に応じて、適宜調整することができる。
 映像信号調整回路36においては、発光プロファイル作成回路32からの第1発光プロファイルp(B)と、Blue輝度センサー37からの外光値V(eX)と、入力画像処理回路31からのγ変換後の第2映像信号γ(G)と、に基づいて、PL光補正後の第2映像信号γ(G’)を求めることができる。緑色を表示するサブピクセルSPにおける青色迷光の影響及び外光中の青色光成分の影響によるPL発光量であるγ(Gp(B))は、γ(Gp(B))=α×p(B)+V(eX)となる(αは、緑色を表示するサブピクセルSPの青色光励起特性を示す係数である)。そして、PL光補正後の第2映像信号γ(G’)は、下記(式I)から求めることができる。
 γ(G’)=γ(G)-γ(Gp(B))=γ(G)-[α×p(B)+V(eX)]   (式I)
 同様に、映像信号調整回路36においては、発光プロファイル作成回路32からの第1発光プロファイルp(B)と、Blue輝度センサー37からの外光値V(eX)と、入力画像処理回路31からのγ変換後の第3映像信号γ(R)と、に基づいて、PL光補正後の第3映像信号γ(R’)を求めることができる。赤色を表示するサブピクセルSPにおける青色迷光の影響及び外光中の青色光成分の影響によるPL発光量であるγ(Rp(B))は、γ(Rp(B))=β×p(B)+V(eX)となる(βは、赤色を表示するサブピクセルSPの青色光励起特性を示す係数である)。そして、PL光補正後の第3映像信号γ(R’)は、下記(式J)から求めることができる。
 γ(R’)=γ(R)-γ(Rp(B))=γ(R)-[β×p(B)+V(eX)]   (式J)
 第1発光プロファイルp(B)は、上述したように、青色迷光の2次元分布を示し、外光値V(eX)は、外光中の青色光成分を示すため、第1発光プロファイルp(B)及び外光値V(eX)に基づいて、γ変換後の第2映像信号γ(G)及びγ変換後の第3映像信号γ(R)のPL光補正を行うということは、具体的には、青色迷光及び外光中の青色光成分による光励起を相殺するよう減光する補正(減算処理)を行うことを意味する。
 以上のように、青色迷光及び外光中の青色光成分の影響に対して、映像信号の補正を行うことができる表示装置50を実現できる。
 なお、表示装置50においては、発光素子5Bに含まれる青色を発光する発光層は、第1映像信号Bに基づくエレクトロルミネッセンスで発光し、発光素子5Gに含まれる緑色を発光する発光層は、調整後の第2映像信号G’に基づくエレクトロルミネッセンスと、発光素子5Bに含まれる青色を発光する発光層からの光によるフォトルミネッセンスとで発光し、発光素子5Rに含まれる赤色を発光する発光層は、調整後の第3映像信号R’に基づくエレクトロルミネッセンスと、発光素子5Bに含まれる青色を発光する発光層からの光によるフォトルミネッセンスと、発光素子5Gに含まれる緑色を発光する発光層からの光によるフォトルミネッセンスとで発光する。
 なお、本実施形態においては、上述した実施形態1の構成に、Blue輝度センサー37を組み合わせた場合を一例に挙げた説明したが、これに限定されることはなく、上述した実施形態2の構成に、Blue輝度センサー37を組み合わせてもよい。
 〔まとめ〕
 〔態様1〕
 第1サブ画素と第2サブ画素とを含み、
 前記第1サブ画素は、第1色を発光する第1発光層を備え、
 前記第2サブ画素は、前記第1色の波長より長い波長の第2色を発光する第2発光層を備え、
 前記第2発光層は、量子ドットを含む表示装置であって、
 前記第1サブ画素に対応する第1映像信号から、前記第1サブ画素の第1発光プロファイルを作成する発光プロファイル作成回路と、
 前記第1発光プロファイルに基づいて、前記第2サブ画素に対応する第2映像信号を調整する映像信号調整回路と、を備える表示装置。
 〔態様2〕
 前記発光プロファイル作成回路は、前記第1映像信号と第1の関数とに基づいて演算を行い、前記第1発光プロファイルを作成する、態様1に記載の表示装置。
 〔態様3〕
 前記第1の関数は、前記第1サブ画素が点灯された時、前記第1サブ画素を中心にした輝度分布を表す点広がり関数である、態様2に記載の表示装置。
 〔態様4〕
 前記映像信号調整回路は、前記第1発光プロファイルに基づいて、前記第2映像信号に対して減算処理を行う、態様1から3の何れかに記載の表示装置。
 〔態様5〕
 第3サブ画素をさらに含み、
 前記第3サブ画素は、前記第2色の波長より長い波長の第3色を発光するとともに、量子ドットを含む第3発光層を備える、態様1から4の何れかに記載の表示装置。
 〔態様6〕
 前記映像信号調整回路は、前記第1発光プロファイルに基づいて、前記第3サブ画素に対応する第3映像信号を調整する、態様5に記載の表示装置。
 〔態様7〕
 前記発光プロファイル作成回路は、前記第2映像信号から、前記第2サブ画素の第2発光プロファイルを作成し、
 前記映像信号調整回路は、前記第2発光プロファイルに基づいて、前記第3映像信号を調整する、態様6に記載の表示装置。
 〔態様8〕
 前記映像信号調整回路は、前記第2発光プロファイルに基づいて、前記第3映像信号に対して減算処理を行う、態様7に記載の表示装置。
 〔態様9〕
 前記発光プロファイル作成回路は、前記第2映像信号と第2の関数とに基づいて演算を行い、前記第2発光プロファイルを作成する、態様7または8に記載の表示装置。
 〔態様10〕
 前記第2の関数は、前記第2サブ画素が点灯された時、前記第2サブ画素を中心にした輝度分布を表す点広がり関数である、態様9に記載の表示装置。
 〔態様11〕
 前記第1色は青色であり、前記第2色は緑色であり、前記第3色は赤色であって、
 前記第1サブ画素の前記第1発光層は、前記第1サブ画素に対応する前記第1映像信号に基づくエレクトロルミネッセンスで発光し、
 前記第2サブ画素の前記第2発光層は、前記第2サブ画素に対応する調整後の第2映像信号に基づくエレクトロルミネッセンスと、前記第1発光層からの光によるフォトルミネッセンスとで発光し、
 前記第3サブ画素の前記第3発光層は、前記第3サブ画素に対応する調整後の第3映像信号に基づくエレクトロルミネッセンスと、前記第1発光層からの光によるフォトルミネッセンスと、前記第2発光層からの光によるフォトルミネッセンスとで発光する態様6から10の何れかに記載の表示装置。
 〔態様12〕
 外光を測定する輝度センサーをさらに備えており、
 前記輝度センサーは、外光の強度を測定し、
 前記映像信号調整回路は、前記外光の強度に応じた外光値と、前記第1発光プロファイルとに基づいて、前記第2映像信号に対して調整を行う、態様1から11の何れかに記載の表示装置。
 〔態様13〕
 外光を測定する輝度センサーをさらに備えており、
 前記輝度センサーは、外光の強度を測定し、
 前記映像信号調整回路は、前記外光の強度に応じた外光値と、前記第1発光プロファイルとに基づいて、前記第3映像信号に対して調整を行う、態様6から11の何れかに記載の表示装置。
 〔態様14〕
 前記映像信号調整回路は、前記第1発光プロファイル及び前記外光値に基づいて、前記第2映像信号に対して減算処理を行う、態様12に記載の表示装置。
 〔態様15〕
 前記映像信号調整回路は、前記第1発光プロファイル及び前記外光値に基づいて、前記第3映像信号に対して減算処理を行う、態様13に記載の表示装置。
 〔態様16〕
 第1サブ画素と第2サブ画素とを含み、
 前記第1サブ画素は、第1色を発光する第1発光層を備え、
 前記第2サブ画素は、前記第1色における波長より長い波長を発光する第2発光層と、を備え、
 前記第2発光層は、量子ドットを含む表示装置における映像処理方法であって、
 前記第1サブ画素に対応する第1映像信号から、前記第1サブ画素の第1発光プロファイルを作成する発光プロファイル作成ステップと、
 前記第1発光プロファイルに基づいて、前記第2サブ画素に対応する第2映像信号を調整する映像信号調整ステップと、を含む、映像処理方法。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、表示装置または映像処理方法に利用することができる。
 1           表示パネル
 5R、5G、5B    発光素子
 24R、24G、24B 発光層を含む機能層
 30          表示装置
 31          入力画像処理回路
 32、32’      発光プロファイル作成回路
 33、33’      映像信号調整回路
 34          ソース駆動回路
 35          出力画像処理回路
 36          映像信号調整回路
 37          Blue輝度センサー(輝度センサー)
 40          表示装置
 50          表示装置
 B、G、R       第1~第3映像信号
 γ(B)、γ(G)、γ(R) γ変換後の第1~第3映像信号
 γ(B’)、γ(G’)、γ(R’) PL光補正後の第1~第3映像信号
 G’          調整後の第2映像信号
 R’          調整後の第3映像信号
 SP          サブピクセル(第1サブ画素~第3サブ画素)
 V(eX)       外光値

Claims (16)

  1.  第1サブ画素と第2サブ画素とを含み、
     前記第1サブ画素は、第1色を発光する第1発光層を備え、
     前記第2サブ画素は、前記第1色の波長より長い波長の第2色を発光する第2発光層を備え、
     前記第2発光層は、量子ドットを含む表示装置であって、
     前記第1サブ画素に対応する第1映像信号から、前記第1サブ画素の第1発光プロファイルを作成する発光プロファイル作成回路と、
     前記第1発光プロファイルに基づいて、前記第2サブ画素に対応する第2映像信号を調整する映像信号調整回路と、を備える表示装置。
  2.  前記発光プロファイル作成回路は、前記第1映像信号と第1の関数とに基づいて演算を行い、前記第1発光プロファイルを作成する、請求項1に記載の表示装置。
  3.  前記第1の関数は、前記第1サブ画素が点灯された時、前記第1サブ画素を中心にした輝度分布を表す点広がり関数である、請求項2に記載の表示装置。
  4.  前記映像信号調整回路は、前記第1発光プロファイルに基づいて、前記第2映像信号に対して減算処理を行う、請求項1から3の何れか1項に記載の表示装置。
  5.  第3サブ画素をさらに含み、
     前記第3サブ画素は、前記第2色の波長より長い波長の第3色を発光するとともに、量子ドットを含む第3発光層を備える、請求項1から4の何れか1項に記載の表示装置。
  6.  前記映像信号調整回路は、前記第1発光プロファイルに基づいて、前記第3サブ画素に対応する第3映像信号を調整する、請求項5に記載の表示装置。
  7.  前記発光プロファイル作成回路は、前記第2映像信号から、前記第2サブ画素の第2発光プロファイルを作成し、
     前記映像信号調整回路は、前記第2発光プロファイルに基づいて、前記第3映像信号を調整する、請求項6に記載の表示装置。
  8.  前記映像信号調整回路は、前記第2発光プロファイルに基づいて、前記第3映像信号に対して減算処理を行う、請求項7に記載の表示装置。
  9.  前記発光プロファイル作成回路は、前記第2映像信号と第2の関数とに基づいて演算を行い、前記第2発光プロファイルを作成する、請求項7または8に記載の表示装置。
  10.  前記第2の関数は、前記第2サブ画素が点灯された時、前記第2サブ画素を中心にした輝度分布を表す点広がり関数である、請求項9に記載の表示装置。
  11.  前記第1色は青色であり、前記第2色は緑色であり、前記第3色は赤色であって、
     前記第1サブ画素の前記第1発光層は、前記第1サブ画素に対応する前記第1映像信号に基づくエレクトロルミネッセンスで発光し、
     前記第2サブ画素の前記第2発光層は、前記第2サブ画素に対応する調整後の第2映像信号に基づくエレクトロルミネッセンスと、前記第1発光層からの光によるフォトルミネッセンスとで発光し、
     前記第3サブ画素の前記第3発光層は、前記第3サブ画素に対応する調整後の第3映像信号に基づくエレクトロルミネッセンスと、前記第1発光層からの光によるフォトルミネッセンスと、前記第2発光層からの光によるフォトルミネッセンスとで発光する請求項6から10の何れか1項に記載の表示装置。
  12.  外光を測定する輝度センサーをさらに備えており、
     前記輝度センサーは、外光の強度を測定し、
     前記映像信号調整回路は、前記外光の強度に応じた外光値と、前記第1発光プロファイルとに基づいて、前記第2映像信号に対して調整を行う、請求項1から11の何れか1項に記載の表示装置。
  13.  外光を測定する輝度センサーをさらに備えており、
     前記輝度センサーは、外光の強度を測定し、
     前記映像信号調整回路は、前記外光の強度に応じた外光値と、前記第1発光プロファイルとに基づいて、前記第3映像信号に対して調整を行う、請求項6から11の何れか1項に記載の表示装置。
  14.  前記映像信号調整回路は、前記第1発光プロファイル及び前記外光値に基づいて、前記第2映像信号に対して減算処理を行う、請求項12に記載の表示装置。
  15.  前記映像信号調整回路は、前記第1発光プロファイル及び前記外光値に基づいて、前記第3映像信号に対して減算処理を行う、請求項13に記載の表示装置。
  16.  第1サブ画素と第2サブ画素とを含み、
     前記第1サブ画素は、第1色を発光する第1発光層を備え、
     前記第2サブ画素は、前記第1色における波長より長い波長を発光する第2発光層と、を備え、
     前記第2発光層は、量子ドットを含む表示装置における映像処理方法であって、
     前記第1サブ画素に対応する第1映像信号から、前記第1サブ画素の第1発光プロファイルを作成する発光プロファイル作成ステップと、
     前記第1発光プロファイルに基づいて、前記第2サブ画素に対応する第2映像信号を調整する映像信号調整ステップと、を含む、映像処理方法。
PCT/JP2019/025239 2019-06-25 2019-06-25 表示装置及び映像処理方法 WO2020261398A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/025239 WO2020261398A1 (ja) 2019-06-25 2019-06-25 表示装置及び映像処理方法
CN201980097247.0A CN113994413B (zh) 2019-06-25 2019-06-25 显示装置以及影像处理方法
US17/616,076 US11763732B2 (en) 2019-06-25 2019-06-25 Display device and image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025239 WO2020261398A1 (ja) 2019-06-25 2019-06-25 表示装置及び映像処理方法

Publications (1)

Publication Number Publication Date
WO2020261398A1 true WO2020261398A1 (ja) 2020-12-30

Family

ID=74060814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025239 WO2020261398A1 (ja) 2019-06-25 2019-06-25 表示装置及び映像処理方法

Country Status (3)

Country Link
US (1) US11763732B2 (ja)
CN (1) CN113994413B (ja)
WO (1) WO2020261398A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233639A1 (ja) * 2022-06-03 2023-12-07 シャープ株式会社 制御装置、表示装置及び制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024009483A (ja) * 2022-07-11 2024-01-23 セイコーエプソン株式会社 回路装置及び表示システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138916A (ja) * 2002-10-18 2004-05-13 Sharp Corp 色補正装置、色補正方法、色補正プログラム、色補正プログラムを記録したコンピュータ読み取り可能な記録媒体、iccプロファイル、iccプロファイルの設定方法、iccプロファイルを記録したコンピュータ読み取り可能な記録媒体
JP2008176115A (ja) * 2007-01-19 2008-07-31 Sony Corp 表示装置、制御演算装置、表示駆動方法
JP2010145894A (ja) * 2008-12-22 2010-07-01 Sony Corp 表示装置および電子機器
WO2019008624A1 (ja) * 2017-07-03 2019-01-10 シャープ株式会社 表示装置およびその画素回路

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321559A (ja) 1999-05-14 2000-11-24 Sony Corp プラズマアドレス型表示装置のクロストーク補正装置およびプラズマアドレス型表示装置
JP4884744B2 (ja) * 2005-10-07 2012-02-29 シャープ株式会社 バックライト装置及びこれを備える表示装置
KR101198374B1 (ko) * 2006-02-23 2012-11-07 삼성디스플레이 주식회사 발광 다이오드 기판 및 그 제조 방법과 그를 이용한 액정표시 장치
US7847764B2 (en) * 2007-03-15 2010-12-07 Global Oled Technology Llc LED device compensation method
CN101960508B (zh) * 2007-07-11 2013-07-31 索尼公司 显示设备、影像信号处理方法
US8040041B2 (en) * 2008-01-21 2011-10-18 Nichia Corporation Light emitting apparatus
CN101620844B (zh) * 2008-06-30 2012-07-04 索尼株式会社 图像显示面板、图像显示装置的驱动方法、图像显示装置组件及其驱动方法
TWI611215B (zh) * 2012-05-09 2018-01-11 半導體能源研究所股份有限公司 顯示裝置及電子裝置
WO2014196638A1 (ja) * 2013-06-06 2014-12-11 富士フイルム株式会社 光学シート部材及びそれを用いた画像表示装置
WO2015132693A1 (en) * 2014-03-07 2015-09-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
KR102261422B1 (ko) * 2015-01-26 2021-06-09 삼성디스플레이 주식회사 표시 장치
US20160267834A1 (en) * 2015-03-12 2016-09-15 Microsoft Technology Licensing, Llc Display diode relative age
JP6603564B2 (ja) * 2015-12-09 2019-11-06 株式会社Nttドコモ 映像表示装置
CN107025451B (zh) * 2017-04-27 2019-11-08 上海天马微电子有限公司 一种显示面板及显示装置
CN107275514B (zh) * 2017-06-15 2018-12-18 京东方科技集团股份有限公司 一种oled器件及其制备方法、显示装置
US10607549B2 (en) * 2017-09-01 2020-03-31 Apple Inc. Data signal adjustment for displays
KR102027186B1 (ko) * 2017-09-11 2019-10-01 서울대학교산학협력단 광변조 양자점 컬러 디스플레이 및 이의 제조방법
KR102532972B1 (ko) * 2017-12-29 2023-05-16 엘지디스플레이 주식회사 표시장치의 보상 방법 및 보상값 저장부를 포함하는 표시장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138916A (ja) * 2002-10-18 2004-05-13 Sharp Corp 色補正装置、色補正方法、色補正プログラム、色補正プログラムを記録したコンピュータ読み取り可能な記録媒体、iccプロファイル、iccプロファイルの設定方法、iccプロファイルを記録したコンピュータ読み取り可能な記録媒体
JP2008176115A (ja) * 2007-01-19 2008-07-31 Sony Corp 表示装置、制御演算装置、表示駆動方法
JP2010145894A (ja) * 2008-12-22 2010-07-01 Sony Corp 表示装置および電子機器
WO2019008624A1 (ja) * 2017-07-03 2019-01-10 シャープ株式会社 表示装置およびその画素回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233639A1 (ja) * 2022-06-03 2023-12-07 シャープ株式会社 制御装置、表示装置及び制御方法

Also Published As

Publication number Publication date
US11763732B2 (en) 2023-09-19
CN113994413A (zh) 2022-01-28
CN113994413B (zh) 2023-08-01
US20220319402A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
TWI619247B (zh) Display device
KR102193091B1 (ko) 낮은 반사율을 갖는 블랙 매트릭스를 구비한 평판 표시장치 및 그 제조 방법
KR102334953B1 (ko) 표시장치 및 그 구동방법
US9356077B2 (en) Light-emitting element display device
WO2016140130A1 (ja) エレクトロルミネッセンス装置、及び製造方法
JP2017049336A (ja) 表示装置
JP2016161763A (ja) 表示装置
KR20170100404A (ko) 표시 장치
JP6170421B2 (ja) 有機el表示装置
US11222931B2 (en) Display device
KR20160082760A (ko) 양자점을 포함하는 유기발광 다이오드 표시장치
US9184416B2 (en) Organic electro luminescent display device
JP6749160B2 (ja) 表示装置
JP2013008663A (ja) 表示装置
KR20170031023A (ko) 표시 장치 및 이의 제조 방법
WO2020261398A1 (ja) 表示装置及び映像処理方法
JP2016119185A (ja) 画像表示装置
JP2014154354A (ja) 発光素子表示装置
CN113053966B (zh) 显示面板、亮度补偿方法和显示装置
US20210193759A1 (en) Pixel array substrate and display device including the same
JP2008034591A (ja) 有機el表示装置
US20240194155A1 (en) Display device
JP2014220121A (ja) 表示装置
JP6325318B2 (ja) 表示装置
KR20150078392A (ko) 유기전계발광 표시장치 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP