WO2020259597A1 - 轨道支撑组件及其装配方法、以及轨道和轨道交通系统 - Google Patents

轨道支撑组件及其装配方法、以及轨道和轨道交通系统 Download PDF

Info

Publication number
WO2020259597A1
WO2020259597A1 PCT/CN2020/098150 CN2020098150W WO2020259597A1 WO 2020259597 A1 WO2020259597 A1 WO 2020259597A1 CN 2020098150 W CN2020098150 W CN 2020098150W WO 2020259597 A1 WO2020259597 A1 WO 2020259597A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
tenon
prefabricated
pier
support assembly
Prior art date
Application number
PCT/CN2020/098150
Other languages
English (en)
French (fr)
Inventor
张广海
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2020259597A1 publication Critical patent/WO2020259597A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B29/00Laying, rebuilding, or taking-up tracks; Tools or machines therefor
    • E01B29/16Transporting, laying, removing, or replacing rails; Moving rails placed on sleepers in the track
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/22Tracks for railways with the vehicle suspended from rigid supporting rails
    • E01B25/24Supporting rails; Auxiliary balancing rails; Supports or connections for rails
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements

Definitions

  • This application relates to the field of rail transit technology, and in particular to a rail support assembly and an assembly method thereof, as well as a rail and a rail transit system.
  • the assembly of the pier column and the cap in the track support assembly usually adopts "socket wet joint connection", “grouting sleeve connection”, “on-site post-tensioned pre-stress connection” and other methods.
  • the site implementation is complicated and the construction is difficult. Large, high precision requirements, long cycle, not conducive to implementation.
  • This application aims to solve at least one of the technical problems existing in the prior art. For this reason, the present application aims to propose a track support assembly, which has high structural strength and fast construction speed.
  • This application also proposes a method for assembling the aforementioned track support assembly.
  • This application also proposes a track with the above-mentioned track support assembly.
  • This application also proposes a rail transit system with the above-mentioned track.
  • the track support assembly includes: a prefabricated platform, the prefabricated platform includes a sink cavity and a socket, the top of the sink cavity is open, the socket includes a cavity and a block, the The Mao cavity is in communication with the sink cavity, and the Mao block is located above the Mao cavity; a prefabricated pier column, the prefabricated pier column includes a pier column and a tenon part, the tenon part is connected with the pier column, the The prefabricated pier is adapted to be pre-configured in the sink cavity and move relative to the socket, so that at least part of the tenon part enters the cavity through the sink cavity and is stopped below the block , In order to achieve the tenon-and-mortise joint of the tenon part and the mortise part.
  • the structural strength is high and the construction speed is fast.
  • the track support assembly further includes a limiting block, which is arranged in the empty space of the sink cavity to limit the position after the tenon part and the tenon and tenon joint of the 90 part are fitted in place.
  • the track support assembly further includes: a filling part, the filling part filling the fit gap of the prefabricated cap, the prefabricated pier and the limit block.
  • the filling part is formed by pressure grouting.
  • the track support assembly further includes: a locking member that vertically locks the mating block and the tenon part that are mated with the tenon and tenon.
  • the tenon portion is rigidly connected to the pier.
  • the bottom surface of the tenon portion is flush with the bottom surface of the pier and both are horizontal planes
  • the bottom wall of the sink cavity is flush with the bottom wall of the 90 cavity and both are horizontal planes.
  • the prefabricated piers are translated relative to the ⁇ part, so that the at least part of the tenon part moves into the ⁇ cavity through the sink cavity and stops below the ⁇ block , In order to achieve the tenon-and-mortise joint of the tenon part and the mortise part.
  • the sink cavity includes an upstream cavity and a downstream cavity.
  • the downstream cavity and the 90 portion are both provided in the cavity.
  • the prefabricated piers are pre-configured in the upstream cavity, and the prefabricated piers are translated relative to the 90 portion, so that part of the piers is translated from the upstream cavity into the downstream Cavity, the at least part of the tenon portion is translated from the upstream cavity into the ⁇ cavity.
  • the two piers are respectively located on both sides of the downstream cavity, and the first direction is perpendicular to the translation direction of the pier. And perpendicular to the vertical direction.
  • the two tenon portions have the same structure and the prefabricated piers are of a center symmetric structure, and the two 90 portions have the same structure and are arranged axisymmetrically about the center line of the downstream cavity.
  • the translation direction of the pier column from the upstream cavity to the downstream cavity is defined as a back-to-front direction, and the front surface of the tenon portion is flush with the front surface of the pier column, The rear surface of the tenon portion is flush with the rear surface of the pier.
  • the extension length of the downstream cavity in the front-rear direction is greater than or equal to the extension length of the pier in the front-rear direction, and the extension length of the cavities in the front-rear direction is greater than or equal to the extension of the tenon in the front-rear direction.
  • the extension in the direction is greater than or equal to the extension length of the pier in the front-rear direction, and the extension length of the cavities in the front-rear direction is greater than or equal to the extension of the tenon in the front-rear direction.
  • the pier is a square column
  • the tenon is a square block
  • the prefabricated platform is provided with a supporting structure for supporting a pushing mechanism and providing a reaction force to the pushing mechanism, and the pushing mechanism is used for driving the prefabricated pier to translate.
  • the supporting structure is a groove formed in the sink cavity with an open top.
  • the track according to the second aspect of the present application includes a track beam and the track support assembly according to the first aspect of the present application, and the track beam is erected on the pier.
  • the structural strength is high and the construction speed is fast.
  • the rail transit system includes a train and the track according to the second aspect of the present application, and the train runs along the track.
  • the construction speed is fast and the traffic safety is high.
  • the track support assembly is the track support assembly according to some embodiments of the first aspect of the present application, and the track support assembly includes a stop block, and the assembly method includes Steps: lowering the prefabricated pier column, so that the prefabricated pier column sinks into the sink cavity; pushing the prefabricated pier column to translate, so that the tenon part translates to the socket, until the tenon part and the socket part The tenon and tenon are fitted in place; and the limit block is filled into the empty space of the sink cavity.
  • the construction difficulty is low and the construction speed is fast.
  • pressure grouting is performed on the matching gap of the prefabricated cap, the prefabricated pier and the limit block .
  • pushing the prefabricated piers to translate, so that the tenon portion translates toward the socket, until the tenon portion and the socket portion are mated in place further comprising: aligning the socket and the socket The matching gap between the tenon parts is pressure grouting to fill the gap.
  • a corbel before pushing the prefabricated pier column to translate, a corbel is installed on the pier column, and a beam with guide wheels is installed on the corbel.
  • a first jack is arranged between the surfaces, and the first jack is used to support the beam to raise the prefabricated pier column, to lower the installation height of the guide wheel on the beam, and to pass the first jack The jack lowers the prefabricated pier column until the guide wheel is supported on the top surface of the prefabricated cap, and the second jack is used to push the prefabricated pier column to translate.
  • Fig. 1 is an exploded view of a track support assembly according to an embodiment of the present application
  • Figure 2 is a cross-sectional view of the prefabricated cap shown in Figure 1;
  • Figure 3 is an assembly process diagram of the track support assembly shown in Figure 1;
  • Figure 4 is an assembly view of the track support assembly shown in Figure 1;
  • Figure 5 is a cross-sectional view of the track support assembly shown in Figure 4.
  • Figure 6 is another assembly process diagram of the track support assembly shown in Figure 1;
  • Figure 7 is an exploded view of a track support assembly according to another embodiment of the present application.
  • Figure 8 is an exploded view of a track support assembly according to another embodiment of the present application.
  • Figure 9 is an exploded view of a track support assembly according to another embodiment of the present application.
  • Figure 10 is an exploded view of a track support assembly according to another embodiment of the present application.
  • Figure 11 is a cross-sectional view of the prefabricated cap shown in Figure 10;
  • Fig. 12 is a schematic diagram of a rail transit system according to an embodiment of the present application.
  • Track 1000 train 2000; track support assembly 100; track beam 200;
  • Mao part 12 Mao cavity 121; Mao block 122; Support structure 13;
  • the track support assembly 100 may include a prefabricated cap 1 and a prefabricated pier 2.
  • the prefabricated platform 1 includes a sink cavity 11 and a socket 12, the top of the cavity 11 is open, the socket 12 includes a cavity 121 and a block 122, the cavity 121 communicates with the cavity 11, and the block 122 is located in the cavity 121 Above.
  • the prefabricated pier column 2 includes a pier column 21 and a tenon portion 22.
  • the tenon portion 22 is connected to the pier column 21.
  • the prefabricated pier column 2 is suitable for pre-distribution to the sink cavity 11 and moves relative to the mortise portion, so that the tenon At least part of the portion 22 enters the 90 cavity 121 through the sink cavity 11 and is stopped below the 90 block 122 to achieve the tenon-and-mortise fit of the tenon portion 22 and the 90 portion 12.
  • the prefabricated pier 2 is pre-configured in the sink cavity 11.
  • the sink cavity 11 enters the 90 cavity 121 and is stopped below the 90 block 122 to achieve the tenon-and-mortise fit between the tenon portion 22 and the mortise portion 12 (for example, the states shown in FIGS. 4 and 5).
  • the prefabricated pier column 2 when assembling the prefabricated cap 1 and the prefabricated pier column 2, the prefabricated pier column 2 is first sunk into the sink cavity 11, and then the prefabricated pier column 2 is driven to move (for example, rotate or move) to make the tenon 22 At least part of it enters into the cavity 121 through the sink cavity 11.
  • the tenon portion 22 can be stopped by the block 122 and cannot move upward, so as to prevent the tenon portion 22 from falling upward from the cavity 121 , So far, the tenon and tenon joints of the tenon part 22 and the mortise part 12 are matched in place, and the prefabricated pier column 2 and the prefabricated cap 1 are connected with the tenon and tenon joint.
  • both the prefabricated cap 1 and the prefabricated pier column 2 can be factory prefabricated parts, and the prefabricated cap 1 and the prefabricated pier column 2 can be assembled by means of tenon-and-mortise cooperation, Thus, the on-site construction time is greatly shortened, and the overall structural strength of the track support assembly 100 is improved.
  • the track support assembly 100 may further include: a limit block 3. After the tenon portion 22 and the mortise portion 12 are mated in place, the limit block 3 is set The free space of the sink cavity 11 (combined with FIG. 4) is limited. That is to say, after the tenon part 22 and the mortise part 12 are mated, that is, after the above-mentioned at least part of the tenon part 22 leaves the sink cavity 11 and enters the mortise cavity 121, there is bound to be a free space in the sink cavity 11, and the limit can be used at this time.
  • the block 3 fills the empty space in the sink cavity 11 (but it is not required to be filled, of course, it can be filled) to limit the position of the prefabricated pier 2 and avoid the movement of the prefabricated pier 2 to cause the tenon 22 and the mortise part 12 Disengagement. Therefore, since the limit block 3 can be a factory prefabricated part, the on-site construction time is further shortened.
  • the track support assembly 100 may also not include the stop block 3. In this case, grouting or other methods may be used to fill the empty space in the sink cavity 11.
  • the track support assembly 100 may further include: a filling part 5, which fills the fit gap of the prefabricated cap 1, the prefabricated pier 2 and the limit block 3. That is to say, after the tenon-and-mortise fit of the tenon part 22 and the mortise part 12 is completed, and after the limit block 3 is filled, the pressure grouting operation can be performed so that the unfilled interstitial space forms the filling part 5. Thereby, the connection reliability of the prefabricated cap 1 and the prefabricated pier column 2 can be further improved, thereby improving the overall structural reliability of the track support assembly 100.
  • the filling part 5 may be formed by pressure grouting to facilitate processing.
  • the present application is not limited to this, and filling may also be realized in other ways, which will not be repeated here.
  • the track support assembly 100 may further include: a locking member 4, which locks the 90 block 122 and the tenon portion 22 that are matched with the tenon and tenon in the vertical direction. It is understandable that after the above-mentioned at least part of the tenon 22 enters the 90 cavity 121, it can be located below the 90 block 122 above the 90 cavity 121.
  • the locking member 4 can be used to penetrate the 90 block 122 from top to bottom and to be located at
  • the tenon portion 22 under the 90 block 122 defines the relative position of the 90 portion 12 and the tenon portion 22, and prevents the above-mentioned at least part of the tenon portion 22 from exiting from the 90 cavity 121, thereby improving the tenon of the prefabricated cap 1 and the prefabricated pier 2
  • the coordination is reliable, and it is convenient for subsequent other construction operations to be carried out reliably.
  • the tenon portion 22 is rigidly connected to the pier column 21, that is, the tenon portion 22 and the pier column 21 are relatively static, and the prefabricated pier column 2 is a factory prefabricated part, not a cast-in-place part at the construction site. . Therefore, on the one hand, the prefabrication of the prefabricated pier column 2 is facilitated, and on the other hand, when the pier column 21 is driven to move, the tenon portion 22 can reliably follow the movement of the pier column 21, which improves the reliability of assembly.
  • a number of tenon portions 22 can be cantilevered along the main force direction at the lower end of the pier column 21, and the longitudinal ribs of the pier column 21 are horizontally bent to form the stressed main ribs or tenon portions of the tenon portion 22. 22 longitudinal bars are anchored into the pier column 21.
  • the pier 21 and the tenon portion 22 may be integrally formed, which further improves the reliability of assembly.
  • the present application is not limited to this.
  • the tongue 22 and the pier 21 may also be movably connected.
  • the tongue 22 may also be rotatably and/or movably connected to the pier 21. Etc., so that the relative positions of the tenon 22 and the pier 21 can be adjusted during the assembly process, so as to meet the assembly requirements for the prefabricated caps 1 of different structural shapes.
  • the bottom surface of the tenon portion 22 and the bottom surface of the pier 21 may be flush and both horizontal planes, and the bottom wall of the sink cavity 11 is flush with the bottom wall of the 90 cavity 121 All are horizontal. Therefore, it is convenient to process and manufacture, and during assembly, the tenon portion 22 can also easily enter the cavity 121 from the sink cavity 11, thereby reducing assembly difficulty and improving assembly efficiency.
  • the present application is not limited to this.
  • the bottom surface of the tenon portion 22 and the bottom surface of the pier 21 may also be uneven.
  • the bottom wall can also be uneven.
  • the bottom surface of the tenon 22 is flush with the bottom of the pier 21” refers to the movement of the tenon 22 relative to the pier 21 At least one moment, the bottom surface of the tenon portion 22 is flush with the bottom surface of the pier 21.
  • the tenon 22 and the mortise 12 can be translated by driving the prefabricated pier 2 to translate.
  • the tenon portion 22 can be matched with the mortise portion 12 by driving the prefabricated pier 2 to rotate (such as the second embodiment below); for another example, the prefabricated pier 2 can be driven along The way of curved movement makes the tenon part 22 cooperate with the mortise part 12; for another example, the tenon part 22 and the mortise part 12 can be matched by driving the prefabricated pier 2 to translate and then rotate (or rotate and then translate), and so on.
  • the prefabricated piers are translated relative to the socket part so that at least part of the tongue part 22 moves into the socket part 121 through the sink cavity 11 and stops below the socket part 122 to realize the tongue part 22 and the socket part. 12 tenon and tenon joints.
  • the prefabricated pier column 2 is configured such that during the translational process of the pier column 21, at least part of the tenon portion 22 is translated into the cavity 121 through the sink cavity 11 and is stopped below the block 122 to The tenon-and-mortise fit of the tenon part 22 and the mortise part 12 is realized.
  • the prefabricated pier column 2 is configured to drive the above-mentioned at least part of the tenon portion 22 to translate into the cavity through the translation of the pier column 21.
  • 121 in other words, by driving the pier 21 to translate, the pier 21 can drive the tongue 22 to translate, and the tongue 22 can enter the cavity 121 from the sinking cavity 11 during the translation process.
  • the assembly can be realized simply and effectively, the assembly difficulty is reduced, and the assembly efficiency is improved.
  • the sink cavity 11 may include an upstream cavity 111 and a downstream cavity 112, in the direction in which the pier 21 moves from the sink cavity 11 to the 90 cavity 121 (as shown in FIG. 1 In the direction from back to front), the downstream cavity 112 and the 90 portion 12 are both located downstream of the upstream cavity 111 (as shown in Figure 1, the front side is downstream and the rear side is upstream), and the prefabricated piers are relative to the 90 portion.
  • the prefabricated pier column 2 is pre-configured in the upstream cavity 111.
  • part of the pier column 21 that is, at least part of the lower end
  • the above-mentioned at least part (ie, part or all) of the tenon 22 is translated from the upstream cavity 111 into the 90 cavity 121. Therefore, the prefabricated pier 2 can be miniaturized, convenient for processing and transportation, and convenient for assembly.
  • the sink cavity 11 may not include the downstream cavity 112.
  • the pier 21 is in the process of translation. It can always be located in the upstream cavity 111, that is, when the pier 21 is translated in the upstream cavity 111, the above-mentioned at least part of the tongue 22 can be translated from the upstream cavity 111 into the 90 cavity 121. In this way, different practical requirements can be met.
  • the two ⁇ portions 12 are respectively located on both sides of the downstream cavity 112, where the first direction is connected to the pier 21
  • the direction of translation is perpendicular and perpendicular to the vertical direction (for example, the left-right direction shown in FIG. 1). Therefore, by increasing the number of the mortise 12, the flexibility of assembly can be improved. For example, when the pier 21 has the mortise 22 on the left or right side, the joint of the mortise 12 and the mortise 22 can be realized.
  • the tenon portions 22 may also be two and are located on both sides of the pier 21, respectively, and the two tenon portions 22 and the two mortise portions 12 may respectively correspond to the tenon-and-mortise joints.
  • the tenon portion 22 on the left side can be matched with the mortise portion 12 on the left side
  • the tenon portion 22 on the right side can be matched with the mortise portion 12 on the right side
  • the number of the tenon-and-mortise portions 22 and the mortise portion 12 can be increased. Therefore, the reliability of the tenon-and-mortise fit between the prefabricated cap 1 and the prefabricated pier column 2 can be improved, and the overall structural reliability of the track support assembly 100 can be improved.
  • the two tenon portions 22 have the same structure and the prefabricated pier 2 is a center symmetric structure, and the two mortise portions 12 have the same structure and are about the centerline L of the downstream cavity 112. Axisymmetric setting. Therefore, it is convenient to process and manufacture, and the prefabricated pier column 2 can be a center-symmetric structure, so that the prefabricated pier column 2 can be quickly adjusted to the assembly orientation, thereby reducing the assembly difficulty and improving the assembly efficiency. That is, the foolproof effect is realized, so that the prefabricated pier 2 can be assembled without anyway.
  • the present application is not limited to this.
  • the number of the 90 portion 12 and the relative positional relationship between the 90 portion 12 and the downstream cavity 112 can also be selected according to actual requirements, for example, as shown in FIG. 9 In the example, there may also be only one 90 portion 12 and it is located on one side of the downstream cavity 112.
  • the direction in which the pier column 21 translates from the upstream cavity 111 to the downstream cavity 112 is defined as the back-to-front direction.
  • the front surface of the tenon portion 22 can be flush with the front surface of the pier column 21.
  • the rear surface is flush with the rear surface of the pier 21.
  • the pier column 21 has a simple structure and is easy to process, and can further realize the miniaturization of the prefabricated pier column 2, which is convenient for processing and transportation, and is convenient for assembly.
  • the tenon-and-mortise fit will not appear too tight. Large gaps can improve the reliability of the tenon-and-mortise fit on the one hand, and on the other hand can reduce the grouting material and air-drying time for subsequent pressure caulking.
  • the structure of the pier column 21 is simple and can be a square column (that is, the cross section of the pier column 21 is rectangular), and the structure of the tenon 22 can be a square block (that is, the cross section of the tenon 22 is rectangular. ), so as to facilitate processing and assembly, and after the pier 21 is translated, there will be no large gaps in the mortise and tenon joints, which can improve the reliability of the tenon and tenon joints on the one hand, and reduce the subsequent pressure filling Pulp and air-drying time.
  • the direction perpendicular to the front-rear direction is defined as the left-right direction
  • the front surface and the rear surface of the pier 21 may both extend in the left-right direction and parallel
  • the front surface and the rear surface of the tenon 22 may both extend in the left-right direction and parallel
  • the left surface and the right surface of the pier 21 may also extend in the front-rear direction and be parallel
  • the left surface of the left-side tenon portion 22 and the right surface of the right-side tenon portion 22 may also extend in the front-rear direction and are parallel.
  • the bottom surface of the pier 21 may be a horizontal plane, and the top and bottom surfaces of the tenon portion 22 may also be both horizontal planes. Therefore, the structure of the pier column 21 is simple, easy to process, and easy to assemble, and after the pier column 21 is translated, there will be no large gaps in the tenon-and-mortise fit, which can improve the reliability of the tenon-and-mortise fit on the one hand, and on the other It can reduce the grouting material and air-drying time for subsequent pressure caulking.
  • the extension length of the downstream cavity 112 in the front-rear direction can also be greater than or equal to the extension length of the pier 21 in the front-rear direction, and the extension length of the 90 cavity 121 in the front-rear direction can also be greater than or equal to the tenon 22 in the front-rear direction.
  • the present application is not limited to this, and the prefabricated pier 2 can also be processed into other shapes as required, which will not be repeated here.
  • the present application is not limited to this.
  • the pier 21 may not be a square column (for example, as shown in FIG. 8), and the tongue 22 may not be a square block (for example, as shown in FIG. 8), for example
  • the pier 21 can be a circular column, an elliptical column, an irregular column, etc.
  • the prefabricated pier column 2 can be driven by a pushing mechanism 82 (for example, the second jack 820, etc.) to translate.
  • the prefabricated platform 1 has a supporting structure 13, and the supporting structure 13 is concave. Slots or brackets, the pushing mechanism 82 is supported on the supporting structure 13, and the supporting structure 13 is used to support the pushing mechanism 82 to provide a reaction force to the pushing mechanism 82. Therefore, there is no need to use support members other than the prefabricated cap 1 to exert a reaction force, thereby facilitating construction and reducing construction difficulty and construction cost.
  • the supporting structure 13 may be a groove and formed in the sink cavity 11 with an open top. Therefore, the processing is convenient, and the distance between the supporting structure 13 and the prefabricated pier column 2 can be shortened, which is beneficial to the pushing mechanism 82 to apply force, and the construction difficulty and construction cost are reduced.
  • the limit block 3 can also be set as a special-shaped structure that can fill the grooves together, so that the construction can be further accelerated. Speed, and improve the overall structural reliability of the track support assembly 100.
  • the assembly method may include the following steps: lowering the prefabricated pier column 2 to sink the prefabricated pier column 2 into the sink cavity 11 (that is, hoisting the prefabricated pier column 2 into the initial position of the reserved hole of the prefabricated cap 1); The prefabricated pier column 2 is pushed to translate, so that the tenon portion 22 is translated toward the cavity 121 until the tenon portion 22 and the mortise portion 12 fit in place (that is, the prefabricated pier column 2 is moved to the design position by horizontal push). Then, the limit block 3 is filled into the empty space of the sink cavity 11 (that is, the limit block 3 is then hoisted and filled at the initial position). Therefore, the assembly accuracy is low, the assembly method is simple, and the construction speed is fast.
  • the first pressure grouting and joint filling can be carried out, and after the limit block 3 is filled into the empty space of the sink cavity 11, the second pressure can be carried out Grouting and filling, so that the matching gap between the prefabricated cap 1, the prefabricated pier column 2 and the limit block 3 forms a filling part 5 (that is, after the limit block 3 is in place, the prefabricated pier column 2, the prefabricated cap is sealed by pressure grouting 1 and the matching gap between the limit blocks 3).
  • the upstream cavity 111 (that is, the initial position where the prefabricated pier column 2 is located) observes the caulking quality of the first pressure grouting to ensure that the gap is filled by the pressure grouting and improve the structural strength of the track support assembly 100.
  • the present application is not limited to this.
  • the first pressure grouting and joint filling step may also be omitted, that is, only the second pressure grouting and joint filling step may be provided.
  • the steps of the first pressure grouting and the second pressure grouting can be omitted.
  • the assembly method may further include the step of: before pushing the prefabricated pier column 2 to translate (that is, after the prefabricated pier column 2 is hoisted into the initial position of the prefabricated cap 1 hole), installing corbels on the pier column 21 6 (Reusable installation corbels, for example, the corbel 6 can be bolted to the bolt holes reserved on the pier 21, but it is not limited to this).
  • the cross beam 7 with guide wheels 71 to the corbel 6 (for example, bolt connection can be used).
  • the guide wheels 71 on the cross beam 7 are in the high hole position relative to the cross beam 7.
  • the cross beam 7 and the prefabricated cap 1 A first jack 81 is provided between the upper surfaces of the pier, and the first jack 81 is used to support the beam 7 to raise the prefabricated pier column 2 (that is, the first jack 81 is used to lift the installation beam 7 to make the prefabricated pier column 2 rise to the design elevation), after that, the installation height of the guide wheel 71 on the beam 7 can be lowered, so that the guide wheel 71 on the beam 7 is lowered to the lower hole position relative to the beam 7, and the first jack 81 makes The prefabricated pier column 2 descends (even if the first jack 81 releases pressure and returns to the oil) until the guide wheel 71 is supported on the upper surface of the prefabricated platform 1 (that is, the bottom of the guide wheel 71 contacts the top surface
  • the second jack 820 is used to push the prefabricated pier column 2 to translate.
  • the device and the second jack 820 can be directly used to push the prefabricated pier column 2 to the designed position of the tenon and tenon joint; if there is no reliable on site
  • the horizontal reaction device can be provided with the above-mentioned supporting structure 13 (for example, the supporting structure 13 can be a groove structure that is widened by about 100 mm along the translation direction of the prefabricated pier column 2, and the groove structure is suitable for accommodating an ultra-thin jack for pushing, That is, the second jack 820), the second jack 820 is installed on the support structure 13, and the second jack 820 uses the reaction force provided by the support structure 13 (that is, the reaction force provided by the precast cap 1) to push the precast Pier 2 translates.
  • the installation corbel 6 and beam 7 can be removed, and the lifting device used for lifting can be removed (of course, the lifting device can also be removed earlier, for example, in After supporting the first jack 81, you can choose to remove the hoisting device).
  • the above-mentioned locking member 4 can be added to increase the rigidity of the connection between the prefabricated cap 1 and the prefabricated pier column 2.
  • the track support assembly 100 basically realizes the dry joint connection, the construction process is simple, the amount of filling material in the filling part is small, and the application is early
  • the strong and high-performance grouting material can be realized within 6 hours (that is, the total time for the entire process of the above-mentioned rail support assembly 100 assembly method can be less than 6 hours) to form strength, restore traffic, increase the construction speed, and avoid the traditional wet joint process
  • the long-term traffic occupation caused by the long maintenance cycle, the cast-in-situ concrete is greatly affected by the weather, the noise is large, and the quality is unstable, and the environmental protection level is improved.
  • both the prefabricated cap 1 and the prefabricated pier column 2 can be factory prefabricated parts, the entire structural system is fully assembled, with a high degree of industrialization, controllable and reliable component production quality, and full use of the compressive strength of concrete materials The strength fully exerts the bending and tensile strength of the prefabricated cap 1 and the prefabricated pier column 2 itself, and the bearing capacity of the structural materials is fully reflected.
  • the prefabricated pier column 2 is configured such that when the pier column 2 rotates, at least part of the tenon 22 is transferred into the cavity 121 through the sink cavity 11 and is stopped at Below the 90 block 122, the tenon-and-mortise joint between the tenon part 22 and the tenon part 12 is realized. That is to say, when assembling the prefabricated cap 1 and the prefabricated pier column 2, the prefabricated pier column 2 is first sunk into the sink cavity 11, and then the prefabricated pier column 2 is driven to rotate so that at least part of the tenon 22 passes through the sink cavity 11.
  • the tenon 22 can be stopped by the 90 block 122 and cannot move upward, so as to prevent the tenon 22 from coming out of the 90 cavity 121 upwards, so far, the tenon 22 and
  • the tenon and tenon joints of the mortise part 12 fit in place, and the prefabricated pier column 2 and the prefabricated cap 1 are connected by tenon and tenon joints.
  • both the prefabricated cap 1 and the prefabricated pier column 2 can be factory prefabricated parts, and the prefabricated cap 1 and the prefabricated pier column 2 can be assembled by means of tenon-and-mortise cooperation, Thus, the on-site construction time is greatly shortened, and the overall structural strength of the track support assembly 100 is improved.
  • the pier column 21 and the tenon portion 22 rotate synchronously around the same pivot axis (for example, the central axis of the pier column 21). Therefore, when the pier column 21 is driven to rotate, The pier 21 drives the tenon 22 to rotate synchronously, so that at least part of the tenon 22 is transferred into the cavity 121. As a result, the assembly can be realized simply and effectively, the assembly difficulty is reduced, and the assembly efficiency is improved.
  • the sink cavity 11 may include a central cavity 113 and a peripheral cavity 114.
  • the peripheral cavity 114 and the 90 portion 12 are both arranged around the central cavity 113, and the pier 21 is fitted in the central cavity 113.
  • the tenon 22 rotates from the peripheral cavity 114 into the 90 cavity 121 and stops under the 90 block 122.
  • the movement space of the prefabricated pier column 2 can be reduced, so that the size of the sink cavity 11 can be smaller, which facilitates subsequent filling operations and shortens the construction time.
  • the sink cavity 11 can also be configured in other shapes, and the pivot axis of the prefabricated pier column 2 may not penetrate the pier column 21, so that Meet different actual requirements.
  • the rail 1000 may include a rail beam 200 and a rail support assembly 100 according to the embodiment of the first aspect of the present application.
  • the rail beam 200 is erected on the pier 21 to be supported by the rail
  • the support assembly 100 supports the rail beam 200.
  • due to the high structural strength of the track support assembly 100 the overall structural reliability of the track 1000 can be improved, and because the construction speed of the track support assembly 100 is fast, the track 1000 can be quickly laid.
  • a rail transit system 10000 may include a train 2000 and a track 1000 according to the embodiment of the second aspect of the present application, and the train 2000 runs along the track 1000.
  • the safety of the train 2000 operation can be improved, and the rapid laying of the track 1000 can realize rapid opening to traffic and restore traffic.

Abstract

一种轨道支撑组件(100)及其装配方法、以及轨道(1000)和轨道交通系统(10000),轨道支撑组件(100)包括:预制承台(1)和预制墩柱(2),预制承台(1)包括沉腔(11)和卯部(12),沉腔(11)的顶部敞开,卯部(12)包括卯腔(121)和卯块(122),卯腔(121)与沉腔(11)连通,卯块(122)位于卯腔(121)的上方,预制墩柱(2)包括墩柱(21)和榫部(22),榫部(22)与墩柱(21)相连,预制墩柱(2)适于预配于沉腔(11)且相对于卯部(12)运动,以使榫部(22)的至少部分通过沉腔(11)进入卯腔(121)且止挡在卯块(122)的下方,以实现榫部(22)和卯部(12)的榫卯配合。

Description

轨道支撑组件及其装配方法、以及轨道和轨道交通系统
相关申请的交叉引用
本申请基于申请号为201910574280.X、申请日为2019-06-28的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及轨道交通技术领域,尤其是涉及一种轨道支撑组件及其装配方法、以及轨道和轨道交通系统。
背景技术
相关技术中,轨道支撑组件中墩柱与承台的装配通常采用“承插式湿接头连接”、“灌浆套筒连接”、“现场后张预应力连接”等方式,现场实施复杂,施工难度大,精度要求高,周期长,不利于实施。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请在于提出一种轨道支撑组件,所述轨道支撑组件的结构强度高、施工速度快。
本申请还提出一种上述轨道支撑组件的装配方法。
本申请还提出一种具有上述轨道支撑组件的轨道。
本申请还提出一种具有上述轨道的轨道交通系统。
根据本申请第一方面的轨道支撑组件,包括:预制承台,所述预制承台包括沉腔和卯部,所述沉腔的顶部敞开,所述卯部包括卯腔和卯块,所述卯腔与所述沉腔连通,所述卯块位于所述卯腔的上方;预制墩柱,所述预制墩柱包括墩柱和榫部,所述榫部与所述墩柱相连,所述预制墩柱适于预配于所述沉腔且相对于所述卯部运动,以使所述榫部的至少部分通过所述沉腔进入所述卯腔且止挡在所述卯块的下方,以实现所述榫部和所述卯部的榫卯配合。
根据本申请的轨道支撑组件,结构强度高、施工速度快。
在一些实施例中,轨道支撑组件还包括:限位块,在所述榫部和所述卯部榫卯配合到位后,所述限位块设置于所述沉腔的空余空间以限位。
在一些实施例中,轨道支撑组件还包括:填充部,所述填充部填充所述预制承台、所述 预制墩柱和所述限位块的配合间隙。
在一些实施例中,所述填充部以压力注浆的方式形成。
在一些实施例中,轨道支撑组件还包括:锁位件,所述锁位件沿竖向锁紧榫卯配合的所述卯块和所述榫部。
在一些实施例中,所述榫部与所述墩柱刚性连接。
在一些实施例中,所述榫部的底面与所述墩柱的底面平齐且均为水平面,所述沉腔的底壁与所述卯腔的底壁平齐且均为水平面。
在一些实施例中,所述预制墩柱相对于所述卯部平移,以使所述榫部的所述至少部分通过所述沉腔移入所述卯腔且止挡在所述卯块的下方,以实现所述榫部和所述卯部的榫卯配合。
在一些实施例中,所述沉腔包括上游腔和下游腔,在所述墩柱从所述沉腔向所述卯腔平移的方向上,所述下游腔和所述卯部均设在所述上游腔的下游,所述预制墩柱预配于所述上游腔,所述预制墩柱相对于所述卯部平移,以使所述墩柱的部分由所述上游腔平移入所述下游腔,所述榫部的所述至少部分从所述上游腔平移入所述卯腔。
在一些实施例中,所述卯部为两个,在第一方向上,两个所述卯部分别位于所述下游腔的两侧,所述第一方向与所述墩柱平移的方向垂直且与竖直方向垂直。
在一些实施例中,所述榫部为两个且分别位于所述墩柱的两侧,两个所述榫部与两个所述卯部分别对应榫卯配合。
在一些实施例中,两个所述榫部的结构相同且所述预制墩柱为中心对称结构,两个所述卯部的结构相同且关于所述下游腔的中心线轴对称设置。
在一些实施例中,定义所述墩柱从所述上游腔向所述下游腔平移的方向为自后向前的方向,所述榫部的前表面与所述墩柱的前表面平齐,所述榫部的后表面与所述墩柱的后表面平齐。
在一些实施例中,所述下游腔在前后方向上的延伸长度大于等于所述墩柱在前后方向上的延伸长度,所述卯腔在前后方向上的延伸长度大于等于所述榫部在前后方向上的延伸长度。
在一些实施例中,所述墩柱为方形柱,所述榫部为方形块。
在一些实施例中,所述预制承台上具有支撑结构,所述支撑结构用于支撑推动机构并向所述推动机构提供反作用力,所述推动机构用于驱动所述预制墩柱平移。
在一些实施例中,所述支撑结构为凹槽且形成在所述沉腔内且顶部敞开。
根据本申请第二方面的轨道,包括:轨道梁和根据本申请第一方面的轨道支撑组件,所述轨道梁架设在所述墩柱上。
根据本申请的轨道,结构强度高、施工速度快。
根据本申请第三方面的轨道交通系统,包括:列车和根据本申请第二方面的轨道,所述列车沿所述轨道运行。
根据本申请的轨道交通系统,建设速度快,通车安全性高。
根据本申请第四方面的轨道支撑组件的装配方法,所述轨道支撑组件为根据本申请第一方面一些实施例的轨道支撑组件,且所述轨道支撑组件包括限位块,所述装配方法包括步骤:降落所述预制墩柱,使所述预制墩柱沉入所述沉腔;推动所述预制墩柱平移,使所述榫部向所述卯腔平移,直至榫部和所述卯部榫卯配合到位;向所述沉腔的空余空间填入所述限位块。
根据本申请的轨道支撑组件的装配方法,施工难度低,施工速度快。
在一些实施例中,向所述沉腔的空余空间填入所述限位块后,对所述预制承台、所述预制墩柱和所述限位块的配合间隙进行压力注浆填缝。
在一些实施例中,推动所述预制墩柱平移,使所述榫部向所述卯腔平移,直至榫部和所述卯部榫卯配合到位后,还包括:对所述卯部和所述榫部之间的配合间隙进行压力注浆填缝。
在一些实施例中,在推动所述预制墩柱平移之前,在所述墩柱上安装梁托,向所述梁托安装具有导向轮的横梁,在所述横梁与所述预制承台的上表面之间设置第一千斤顶,利用所述第一千斤顶支撑所述横梁抬高所述预制墩柱,调低所述导向轮在所述横梁上的安装高度,通过所述第一千斤顶使所述预制墩柱下降,直至所述导向轮支撑于所述预制承台的顶面,采用第二千斤顶推动所述预制墩柱平移。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请一个实施例的轨道支撑组件的爆炸图;
图2是图1中所示的预制承台的截面图;
图3是图1中所示的轨道支撑组件的一个装配过程图;
图4是图1中所示的轨道支撑组件的装配图;
图5是图4中所示的轨道支撑组件的截面图;
图6是图1中所示的轨道支撑组件的另一个装配过程图;
图7是根据本申请另一个实施例的轨道支撑组件的爆炸图;
图8是根据本申请另一个实施例的轨道支撑组件的爆炸图;
图9是根据本申请另一个实施例的轨道支撑组件的爆炸图;
图10是根据本申请另一个实施例的轨道支撑组件的爆炸图;
图11是图10中所示的预制承台的截面图;
图12是根据本申请一个实施例的轨道交通系统的示意图。
附图标记:
轨道交通系统10000;
轨道1000;列车2000;轨道支撑组件100;轨道梁200;
预制承台1;沉腔11;上游腔111;下游腔112;
中央腔113;周边腔114;
卯部12;卯腔121;卯块122;支撑结构13;
预制墩柱2;墩柱21;榫部22;
限位块3;锁位件4;填充部5;
梁托6;横梁7;导向轮71;
第一千斤顶81;推动机构82;第二千斤顶820;
吊装装置9。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
下面,描述根据本申请第一方面实施例的轨道支撑组件100。
如图1和图2所示,根据本申请第一方面实施例的轨道支撑组件100,可以包括预制承台1和预制墩柱2。其中,预制承台1包括沉腔11和卯部12,沉腔11的顶部敞开,卯部12包括卯腔121和卯块122,卯腔121与沉腔11连通,卯块122位于卯腔121的上方。
如图1所示,预制墩柱2包括墩柱21和榫部22,榫部22与墩柱21相连,预制墩柱2适于预配于沉腔11且相对于卯部运动,以使榫部22的至少部分通过沉腔11进入卯腔121且止挡在卯块122的下方,以实现榫部22和卯部12的榫卯配合。例如,结合图3,装配时,使预制墩柱2预配于沉腔11,在预制墩柱2运动(例如转动或移动)的过程中,榫部22的至少部分(即一部分或全部)通过沉腔11进入卯腔121且止挡在卯块122的下方,以实现榫部22和卯部12的榫卯配合(例如图4和图5所示状态)。
也就是说,在装配预制承台1和预制墩柱2时,先将预制墩柱2沉入沉腔11内,然后通过驱动预制墩柱2运动(例如转动或移动),使得榫部22的至少部分通过沉腔11进入卯腔121内,由于卯腔121的上方具有卯块122,从而榫部22可以受到卯块122的止挡不能向上运动,以避免榫部22从卯腔121向上脱出,至此榫部22和卯部12的榫卯配合到位,预制墩柱2与预制承台1之间榫卯连接。可以理解的是,当榫部22和卯部12的榫卯配合到位时,虽然卯块122止挡在榫部22的上方,但是卯块122的底面与榫部22的顶面之间可以具有间隙(即不接触),从而使得榫部22可以顺利进入卯腔121。
由此,根据本申请实施例的轨道支撑组件100,由于预制承台1和预制墩柱2都可以为工厂预制件,并且可以通过榫卯配合的方式装配预制承台1和预制墩柱2,从而极大地缩短了现场施工时间,且提高了轨道支撑组件100的整体结构强度。
在本申请的一些实施例中,如图1和图4所示,轨道支撑组件100还可以包括:限位块3,在榫部22和卯部12榫卯配合到位后,限位块3设置于沉腔11的空余空间(结合图4)以限位。也就是说,在榫部22和卯部12榫卯配合之后,即榫部22的上述至少部分离开沉腔11进入卯腔121之后,沉腔11内势必存在空余空间,此时可以利用限位块3填充沉腔11内的空余空间(但是不要求填满,当然,填满也可以),以对预制墩柱2起到限位作用,避免预制墩柱2移动造成榫部22和卯部12脱离配合。由此,由于限位块3可以为工厂预制件,从而进一步缩短了现场施工时间。当然,本申请不限于此,在本申请的其他实施例中,轨道支撑组件100还可以不包括限位块3,此时,可以采用灌浆等方式填补沉腔11内的空余空间。
在本申请的一些实施例中,如图5所示,轨道支撑组件100还可以包括:填充部5,填 充部5填充预制承台1、预制墩柱2和限位块3的配合间隙。也就是说,在完成榫部22和卯部12的榫卯配合之后,以及在填充完限位块3之后,都可以进行压力注浆操作,以使没有被填充的间隙空间形成填充部5,从而可以进一步提高预制承台1和预制墩柱2的连接可靠性,从而提高轨道支撑组件100的整体结构可靠性。例如在一些具体示例中,填充部5可以以压力注浆的方式形成,从而方便加工,当然,本申请不限于此,还可以通过其他方式实现填充,这里不作赘述。
在本申请的一些实施例中,如图6所示,轨道支撑组件100还可以包括:锁位件4,锁位件4沿竖向锁紧榫卯配合的卯块122和榫部22。可以理解的是,在榫部22的上述至少部分进入卯腔121之后可以位于卯腔121上方的卯块122的下方,此时,可以利用锁位件4自上向下贯穿卯块122和位于卯块122下方的榫部22,以限定卯部12和榫部22的相对位置,避免榫部22的上述至少部分从卯腔121退出,从而提高了预制承台1和预制墩柱2的榫卯配合可靠性,且方便后续其他的施工作业可靠进行。
在本申请的一些实施例中,榫部22与墩柱21刚性连接,也就是说,榫部22与墩柱21相对静止,预制墩柱2为工厂预制件、而非施工现场的现场浇筑件。由此,一方面方便预制墩柱2的预制加工,另一方面在驱动墩柱21运动时,榫部22可以可靠地跟随墩柱21运动,提高装配的可靠性。例如在本申请的一些具体示例中,可以在墩柱21的下端沿主要受力方向悬挑出若干榫部22,墩柱21的纵筋水平弯折成榫部22的受力主筋或榫部22纵筋锚固入墩柱21。又例如在本申请的一些具体示例中,墩柱21与榫部22可以一体成型,进一步提高了装配的可靠性。
当然,本申请不限于此,例如在本申请的其他实施例中,榫部22与墩柱21还可以活动连接,例如榫部22还可以可转动地和/或可移动地连接于墩柱21等,以在装配的过程中可以对榫部22和墩柱21的相对位置实施调节,从而满足对于不同结构形状的预制承台1的装配需求。
在本申请的一些实施例中,如图5所示,榫部22的底面与墩柱21的底面可以平齐且均为水平面,沉腔11的底壁与卯腔121的底壁平齐且均为水平面。由此,方便加工和制造,而且在装配时,榫部22还可以很容易地从沉腔11进入卯腔121,从而降低装配难度,提高装配效率。
当然,本申请不限于此,在本申请的其他实施例中,例如图7所示,榫部22的底面与墩柱21的底面还可以不平齐,沉腔11的底壁与卯腔121的底壁也可以不平齐。此外,需要说明的是,当榫部22可运动地连接于墩柱21时,“榫部22的底面与墩柱21的底面平齐” 指的是:在榫部22相对墩柱21运动的至少一个时刻,榫部22的底面与墩柱21的底面平齐。
这里,需要说明的是,使榫部22的上述至少部分(即一部分或全部)进入卯腔121的方式有很多,例如,可以通过驱动预制墩柱2平移的方式使榫部22与卯部12配合(例如下文实施例一);又例如,可以通过驱动预制墩柱2转动的方式使榫部22与卯部12配合(例如下文实施例二);再例如,可以通过驱动预制墩柱2沿曲线移动的方式使榫部22与卯部12配合;再例如,可以通过驱动预制墩柱2平移之后再转动(或者转动之后再平移)的方式使榫部22与卯部12配合,等等。
为了简化描述,下面仅以两个具体实施例为例进行展开说明,在本领域技术人员阅读了下面的技术方案之后,显然能够理解其他的驱动方案,因此不对其他方案进行赘述。
实施例一
在本实施例一中,预制墩柱相对于卯部平移,以使榫部22的至少部分通过沉腔11移入卯腔121且止挡在卯块122的下方,以实现榫部22和卯部12的榫卯配合。例如图1和图3所示,预制墩柱2构造成在墩柱21平移的过程中,榫部22的至少部分通过沉腔11平移入卯腔121且止挡在卯块122的下方,以实现榫部22和卯部12的榫卯配合。可以理解的是,预制墩柱2平移的过程中,墩柱21和榫部22同步平移,因此,预制墩柱2构造成通过墩柱21的平移带动榫部22的上述至少部分平移入卯腔121,或者说,通过驱动墩柱21的平移,可以使得墩柱21带动榫部22平移,榫部22平移的过程中,可以从沉腔11进入卯腔121。由此,可以简单且有效地实现装配,降低了装配难度,提高了装配效率。
在本实施例一中,如图1所示,沉腔11可以包括上游腔111和下游腔112,在墩柱21从沉腔11向卯腔121平移的方向上(如图1中所示的从后到前的方向上),下游腔112和卯部12均设在上游腔111的下游(如图1中所示,前侧为下游,后侧为上游),预制墩柱相对于卯部平移,以使墩柱21的部分由上游腔111平移入下游腔112,榫部22的至少部分从上游腔111平移入卯腔121。例如结合图3-图4,预制墩柱2预配于上游腔111,在预制墩柱2平移的过程中,墩柱21的部分(即下端的至少部分)由上游腔111平移入下游腔112,榫部22的上述至少部分(即一部分或全部)从上游腔111平移入卯腔121。由此,可以实现预制墩柱2的小型化,方便加工和运输,而且方便装配。
当然,本申请不限于此,在本实施例一的其他具体示例中,例如图8所示,沉腔11还可以不包括下游腔112,例如图8所示,墩柱21在平移的过程中可以始终位于上游腔111内,也就是说,墩柱21在上游腔111内平移的过程中,榫部22的上述至少部分可以从上游 腔111平移入卯腔121。由此,可以满足不同的实际要求。
在本实施例一中,如图1所示,卯部12可以为两个,在第一方向上,两个卯部12分别位于下游腔112的两侧,其中,第一方向与墩柱21平移的方向垂直且与竖直方向垂直(例如图1中所示的左右方向)。由此,通过增加卯部12的数量,可以提高装配灵活度,例如,当墩柱21的左侧或者右侧具有榫部22时,都可以实现卯部12与榫部22的榫卯配合。
而且,在本示例中,如图1所示,榫部22也可以为两个且分别位于墩柱21的两侧,且两个榫部22与两个卯部12可以分别对应榫卯配合,例如左侧的榫部22可以与左侧的卯部12配合,且右侧的榫部22可以与右侧的卯部12配合时,可以提高榫卯配合的榫部22和卯部12的数量,从而可以提高预制承台1和预制墩柱2的榫卯配合的可靠性,提高轨道支撑组件100的整体结构可靠性。
在一些具体示例中,如图1-图2所示,两个榫部22的结构相同且预制墩柱2为中心对称结构,两个卯部12的结构相同且关于下游腔112的中心线L轴对称设置。由此,方便加工和制造,而且,预制墩柱2可以为中心对称结构,从而可以快速将预制墩柱2调整至装配朝向,进而降低了装配难度,提高了装配效率。即实现了防呆效果,使得预制墩柱2可以无反正装配。
当然,本申请不限于此,例如在本申请的其他实施例中,卯部12的数量,以及卯部12和下游腔112的相对位置关系还可以根据实际要求选择,例如在图9所示的示例中,卯部12还可以仅为一个且位于下游腔112的一侧。
如图1所示,定义墩柱21从上游腔111向下游腔112平移的方向为自后向前的方向,榫部22的前表面可以与墩柱21的前表面平齐,榫部22的后表面与墩柱21的后表面平齐。由此,墩柱21的结构简单,便于加工,且可以进一步实现预制墩柱2的小型化,方便加工和运输,而且方便装配,且在墩柱21平移之后,榫卯配合处不会出现较大缝隙,从而一方面可以提高榫卯配合的可靠性,另一方面可以减少后续压力填缝的注浆用料和风干用时。
此外,如图1所示,墩柱21的结构简单可以为方形柱(即墩柱21的横截面为矩形),榫部22的结构简单可以为方形块(即榫部22的横截面为矩形),从而方便加工和装配,且在墩柱21平移之后,榫卯配合处不会出现较大缝隙,从而一方面可以提高榫卯配合的可靠性,另一方面可以减少后续压力填缝的注浆用料和风干用时。
此外,定义与前后方向垂直的方向为左右方向,墩柱21的前表面和后表面可以均沿左右方向延伸且平行,榫部22的前表面和后表面可以均沿左右方向延伸且平行。墩柱21的左表面和右表面还可以均沿前后方向延伸且平行,左侧的榫部22的左表面和右侧的榫部22 的右表面也可以均沿前后方向延伸且平行。
另外,如图5所示,墩柱21的底面可以为水平面,榫部22的顶面和底面也可以均为水平面。由此,墩柱21的结构简单,便于加工,方便装配,且在墩柱21平移之后,榫卯配合处不会出现较大缝隙,从而一方面可以提高榫卯配合的可靠性,另一方面可以减少后续压力填缝的注浆用料和风干用时。
如图1所示,下游腔112在前后方向上的延伸长度还可以大于等于墩柱21在前后方向上的延伸长度,卯腔121在前后方向上的延伸长度还可以大于等于榫部22在前后方向上的延伸长度。由此,榫部22可以全部都平移到卯腔121内,墩柱21也可以全部都平移到下游腔112内。由此,方便限位块3的加工和装配。当然,本申请不限于此,预制墩柱2还可以根据需要加工为其他形状,这里不再一一赘述。
当然,本申请不限于此,在本实施例的其他具体示例中,墩柱21可以不是方形柱(例如图8所示),榫部22也可以不是方形块(例如图8所示),例如墩柱21可以是圆形柱、椭圆形柱、不规则柱形等等,此时,在设计的过程中,只要保证沉腔11和卯腔121的空间足够预制墩柱2平移即可。
在本实施例一中,如图3所示,预制墩柱2可以由推动机构82(例如第二千斤顶820等)驱动平移,预制承台1上具有支撑结构13,支撑结构13为凹槽或支架,推动机构82支撑在支撑结构13上,支撑结构13用于支撑推动机构82以向推动机构82提供反作用力。由此,无需利用预制承台1以外的支撑件施加反作用力,从而方便施工,降低施工难度和施工成本。
例如在图3所示的具体示例中,支撑结构13可以为凹槽且形成在沉腔11内且顶部敞开。由此,方便加工,而且还可以拉近支撑结构13与预制墩柱2之间的距离,有利于推动机构82施力,降低施工难度和施工成本。此外,需要说明的是,在本实施例中,当轨道支撑组件100包括限位块3时,还可以将限位块3设置为能够将凹槽一并填充的异形结构,从而可以进一步加快施工速度,并提高轨道支撑组件100的整体结构可靠性。
下面,描述上述实施例一的轨道支撑组件100的装配方法。
如图3所示,装配方法可以包括如下步骤:降落预制墩柱2,使预制墩柱2沉入沉腔11(即将预制墩柱2吊装入预制承台1预留孔洞中的初始位置);推动预制墩柱2平移,使榫部22向卯腔121平移,直至榫部22和卯部12榫卯配合到位(即对预制墩柱2采用水平顶推的方式移动至设计位置)。接着,向沉腔11的空余空间填入限位块3(即随后在初始位置处吊装入限位块3填实)。由此,装配精度要求低,装配方法简单,施工速度快。
此外,在榫部22和卯部12榫卯配合到位后,可以进行第一次压力注浆填缝,并且在向沉腔11的空余空间填入限位块3后,可以进行第二次压力注浆填缝,使预制承台1、预制墩柱2和限位块3的配合间隙形成填充部5(即限位块3就位后,以压力注浆封闭预制墩柱2、预制承台1以及限位块3之间的配合缝隙)。
由此,在进行第一次压力注浆填缝时,由于还未填充限位块3,从而具有观察空间,有利于观察第一次压力注浆填缝的效果,即可在沉腔11的上游腔111(即预制墩柱2所在的初始位置)观察第一次压力注浆填缝的填缝质量,确保缝隙被压力灌浆料填实,提高轨道支撑组件100的结构强度。
当然,本申请不限于此,在本申请的其他一些实施例中,第一次压力注浆填缝的步骤还可以省略,也就是说,可以仅具有第二次压力注浆填缝的步骤。或者,第一次压力注浆填缝和第二次压力注浆填缝的步骤均可以省略。
参照图3,该装配方法还可以包括步骤:在推动预制墩柱2平移之前(即将预制墩柱2吊装入预制承台1预留孔洞中的初始位置后),在墩柱21上安装梁托6(即可反复使用的安装用牛腿,例如可以将梁托6采用螺栓连接于墩柱21上预留的螺栓孔,但不限于此)。
之后,向梁托6安装具有导向轮71的横梁7(例如可以采用螺栓连接),此时横梁7上的导向轮71相对横梁7处于高孔位位置,接着,在横梁7与预制承台1的上表面之间设置第一千斤顶81,利用第一千斤顶81支撑横梁7抬高预制墩柱2(即用第一千斤顶81将安装用横梁7顶升,使预制墩柱2上升到设计标高),之后,可以调低导向轮71在横梁7上的安装高度,以使横梁7上的导向轮71相对横梁7降低到低孔位位置,通过第一千斤顶81使预制墩柱2下降(即使第一千斤顶81卸压回油),直至导向轮71支撑于预制承台1的上表面(即导向轮71的轮底接触预制承台1的顶面受力,支承预制墩柱2的重量)。
之后,采用第二千斤顶820推动预制墩柱2平移。这里,需要说明的是,若现场有牢靠的水平反力装置,则可以直接利用该装置和第二千斤顶820将预制墩柱2顶推至榫卯配合的设计位置;若现场无牢靠的水平反力装置,可以设置上述支撑结构13(例如支撑结构13可以是沿预制墩柱2平移方向加宽100mm左右留出的凹槽结构,该凹槽结构适于容纳顶推用超薄千斤顶,即第二千斤顶820),将第二千斤顶820安装于支撑结构13,第二千斤顶820利用支撑结构13提供的反作用力(也就是预制承台1提供的反作用力)推动预制墩柱2平移。
待第一次压力注浆填缝的灌浆料凝固达到设计强度后,可以拆除安装用梁托6和横梁7,并撤除用于起吊的吊装装置(当然,也可以早一些撤除吊装装置,例如在支撑好第一千斤 顶81后,可以选择撤除吊装装置)。此外,若荷载较大,可增设上述锁位件4,以增加预制承台1与预制墩柱2之间的连接刚度。
由此,根据本申请实施例的轨道支撑组件100,相比于相关技术中的湿接头连接,基本实现了干接头连接,施工工艺简单,填充部的填缝材料用量少,且在采用早强高性能灌浆料可实现6小时以内(即上述轨道支撑组件100的装配方法的全部过程的总耗时可以小于6小时)形成强度、恢复交通,提升了施工速度,避免了传统湿接头工艺的长养护周期导致的长期交通占道,现浇混凝土受气候影响大、噪音量大且质量不稳定等缺陷,并提升了环保水平。
此外,由于预制承台1与预制墩柱2都可以为工厂预制件,实现了整个结构体系的全装配式,工业化程度高,构件生产质量可控、可靠,且可以充分利用混凝土材料的抗压强度,充分发挥了预制承台1和预制墩柱2自身的弯拉强度,结构材料的承载力得以充分体现。
实施例二
在本实施例二中,如图10-图11所示,预制墩柱2构造成在墩柱2转动的过程中,榫部22的至少部分通过沉腔11转入卯腔121且止挡在卯块122的下方,以实现榫部22和卯部12的榫卯配合。也就是说,在装配预制承台1和预制墩柱2时,先将预制墩柱2沉入沉腔11内,然后通过驱动预制墩柱2转动,使得榫部22的至少部分通过沉腔11进入卯腔121内,由于卯腔121的上方具有卯块122,从而榫部22可以受到卯块122的止挡不能向上运动,以避免榫部22从卯腔121向上脱出,至此榫部22和卯部12的榫卯配合到位,预制墩柱2与预制承台1之间榫卯连接。
由此,根据本申请实施例的轨道支撑组件100,由于预制承台1和预制墩柱2都可以为工厂预制件,并且可以通过榫卯配合的方式装配预制承台1和预制墩柱2,从而极大地缩短了现场施工时间,且提高了轨道支撑组件100的整体结构强度。
需要说明的是,预制墩柱2转动的过程中,墩柱21和榫部22绕同一枢转轴线(例如可以是墩柱21的中心轴线)同步转动,因此,当驱动墩柱21转动时,墩柱21带动榫部22同步转动,以使榫部22的上述至少部分转入卯腔121。由此,可以简单且有效地实现装配,降低了装配难度,提高了装配效率。
在本实施例中,如图10-图11所示,沉腔11可以包括中央腔113和周边腔114,周边腔114和卯部12均围绕中央腔113设置,墩柱21配合在中央腔113内且绕沿竖向贯穿墩柱21的枢转轴线自转,榫部22从周边腔114转入卯腔121且止挡在卯块122的下方。由此,可以减小预制墩柱2的运动空间,使得沉腔11的尺寸可以较小,便于后续填实操作,缩短 了施工时间。当然,本申请不限于此,在本实施例一的其他具体示例中,沉腔11还可以构造为其他形状,而且,预制墩柱2的枢转轴线可以不贯穿墩柱21,由此,可以满足不同的实际要求。
下面,描述根据本申请第二方面实施例的轨道1000。
如图12所示,根据本申请第二方面实施例的轨道1000,可以包括轨道梁200和根据本申请第一方面实施例轨道支撑组件100,轨道梁200架设在墩柱21上,以由轨道支撑组件100支撑轨道梁200。其中,由于轨道支撑组件100的结构强度好,从而可以提高轨道1000的整体结构可靠性,而且由于轨道支撑组件100的施工速度快,从而可以实现轨道1000的快速铺设。
下面,描述根据本申请第三方面实施例的轨道交通系统10000。
如图12所示,根据本申请第三方面实施例的轨道交通系统10000,可以包括列车2000和根据本申请第二方面实施例的轨道1000,列车2000沿轨道1000运行。其中,由于轨道1000的结构强度好,从而可以提高列车2000运行的安全性,而且由于轨道1000的快速铺设快,从而可以实现快速通车及恢复交通。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (23)

  1. 一种轨道支撑组件(100),其特征在于,包括:
    预制承台(1),所述预制承台(1)包括沉腔(11)和卯部(12),所述沉腔(11)的顶部敞开,所述卯部(12)包括卯腔(121)和卯块(122),所述卯腔(121)与所述沉腔(11)连通,所述卯块(122)位于所述卯腔(121)的上方;
    预制墩柱(2),所述预制墩柱(2)包括墩柱(21)和榫部(22),所述榫部(22)与所述墩柱(21)相连,所述预制墩柱(2)适于预配于所述沉腔(11)且相对于所述卯部(12)运动,以使所述榫部(22)的至少部分通过所述沉腔(11)进入所述卯腔(121)且止挡在所述卯块(122)的下方,以实现所述榫部(22)和所述卯部(12)的榫卯配合。
  2. 根据权利要求1所述的轨道支撑组件(100),其特征在于,还包括:
    限位块(3),在所述榫部(22)和所述卯部(12)榫卯配合到位后,所述限位块(3)设置于所述沉腔(11)的空余空间以限位。
  3. 根据权利要求2所述的轨道支撑组件(100),其特征在于,还包括:
    填充部(5),所述填充部(5)填充所述预制承台(1)、所述预制墩柱(2)和所述限位块(3)的配合间隙。
  4. 根据权利要求3所述的轨道支撑组件(100),其特征在于,所述填充部(5)以压力注浆的方式形成。
  5. 根据权利要求1-4中任一项所述的轨道支撑组件(100),其特征在于,还包括:
    锁位件(4),所述锁位件(4)沿竖向锁紧榫卯配合的所述卯块(122)和所述榫部(22)。
  6. 根据权利要求1-5中任一项所述的轨道支撑组件(100),其特征在于,所述榫部(22)与所述墩柱(21)刚性连接。
  7. 根据权利要求1-6中任一项所述的轨道支撑组件(100),其特征在于,所述榫部(22)的底面与所述墩柱(21)的底面平齐且均为水平面,所述沉腔(11)的底壁与所述卯腔(121)的底壁平齐且均为水平面。
  8. 根据权利要求1-7中任一项所述的轨道支撑组件(100),其特征在于,所述预制墩柱(2)相对于所述卯部(12)平移,以使所述榫部(22)的所述至少部分通过所述沉腔(11)移入所述卯腔(121)且止挡在所述卯块(122)的下方,以实现所述榫部(22)和所述卯部(12)的榫卯配合。
  9. 根据权利要求8所述的轨道支撑组件(100),其特征在于,所述沉腔(11)包括上游腔(111)和下游腔(112),在所述墩柱(21)从所述沉腔(11)向所述卯腔(121)平移的方向上,所述下 游腔(112)和所述卯部(12)均设在所述上游腔(111)的下游,所述预制墩柱(2)预配于所述上游腔(111),所述预制墩柱(2)相对于所述卯部(12)平移,以使所述墩柱(21)的部分由所述上游腔(111)平移入所述下游腔(112),所述榫部(22)的所述至少部分从所述上游腔(111)平移入所述卯腔(121)。
  10. 根据权利要求9所述的轨道支撑组件(100),其特征在于,所述卯部(12)为两个,在第一方向上,两个所述卯部(12)分别位于所述下游腔(112)的两侧,所述第一方向与所述墩柱(21)平移的方向垂直且与竖直方向垂直。
  11. 根据权利要求10所述的轨道支撑组件(100),其特征在于,所述榫部(22)为两个且分别位于所述墩柱(21)的两侧,两个所述榫部(22)与两个所述卯部(12)分别对应榫卯配合。
  12. 根据权利要求11所述的轨道支撑组件(100),其特征在于,两个所述榫部(22)的结构相同且所述预制墩柱(2)为中心对称结构,两个所述卯部(12)的结构相同且关于所述下游腔(112)的中心线(L)轴对称设置。
  13. 根据权利要求8-12中任一项所述的轨道支撑组件(100),其特征在于,定义所述墩柱(21)从所述上游腔(111)向所述下游腔(112)平移的方向为自后向前的方向,所述榫部(22)的前表面与所述墩柱(21)的前表面平齐,所述榫部(22)的后表面与所述墩柱(21)的后表面平齐。
  14. 根据权利要求13所述的轨道支撑组件(100),其特征在于,所述下游腔(112)在前后方向上的延伸长度大于等于所述墩柱(21)在前后方向上的延伸长度,所述卯腔(121)在前后方向上的延伸长度大于等于所述榫部(22)在前后方向上的延伸长度。
  15. 根据权利要求13或14所述的轨道支撑组件(100),其特征在于,所述墩柱(21)为方形柱,所述榫部(22)为方形块。
  16. 根据权利要求8-15中任一项所述的轨道支撑组件(100),其特征在于,所述预制承台(1)上具有支撑结构(13),所述支撑结构(13)用于支撑推动机构(82)并向所述推动机构(82)提供反作用力,所述推动机构(82)用于驱动所述预制墩柱(2)平移。
  17. 根据权利要求16所述的轨道支撑组件(100),其特征在于,所述支撑结构(13)为凹槽且形成在所述沉腔(11)内且顶部敞开。
  18. 一种轨道(1000),其特征在于,包括:轨道梁(200)和根据权利要求1-17中任一项所述的轨道支撑组件(100),所述轨道梁(200)架设在所述墩柱(21)上。
  19. 一种轨道交通系统(10000),其特征在于,包括:列车(2000)和根据权利要求18所述的轨道(1000),所述列车(2000)沿所述轨道(1000)运行。
  20. 一种轨道支撑组件(100)的装配方法,其特征在于,所述轨道支撑组件(100)为根据 权利要求8-17中任一项所述的轨道支撑组件(100),且所述轨道支撑组件(100)包括限位块(3),所述装配方法包括步骤:
    降落所述预制墩柱(2),使所述预制墩柱(2)沉入所述沉腔(11);
    推动所述预制墩柱(2)平移,使所述榫部(22)向所述卯腔(121)平移,直至榫部(22)和所述卯部(12)榫卯配合到位;
    向所述沉腔(11)的空余空间填入所述限位块(3)。
  21. 根据权利要求20所述的轨道支撑组件(100)的装配方法,其特征在于,向所述沉腔(11)的空余空间填入所述限位块(3)后,对所述预制承台(1)、所述预制墩柱(2)和所述限位块(3)的配合间隙进行压力注浆填缝。
  22. 根据权利要求20所述的轨道支撑组件(100)的装配方法,其特征在于,推动所述预制墩柱(2)平移,使所述榫部(22)向所述卯腔(121)平移,直至榫部(22)和所述卯部(12)榫卯配合到位后,还包括:进行压力注浆填缝,对所述卯部(12)和所述榫部(22)之间的配合间隙进行压力注浆填缝。
  23. 根据权利要求20-22中任一项所述的轨道支撑组件(100)的装配方法,其特征在于,在推动所述预制墩柱(2)平移之前,在所述墩柱(21)上安装梁托(6),向所述梁托(6)安装具有导向轮(71)的横梁(7),在所述横梁(7)与所述预制承台(1)的上表面之间设置第一千斤顶(81),利用所述第一千斤顶(81)支撑所述横梁(7)抬高所述预制墩柱(2),调低所述导向轮(71)在所述横梁(7)上的安装高度,通过所述第一千斤顶(81)使所述预制墩柱(2)下降,直至所述导向轮(71)支撑于所述预制承台(1)的顶面,采用第二千斤顶(820)推动所述预制墩柱(2)平移。
PCT/CN2020/098150 2019-06-28 2020-06-24 轨道支撑组件及其装配方法、以及轨道和轨道交通系统 WO2020259597A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910574280.X 2019-06-28
CN201910574280.XA CN112144328B (zh) 2019-06-28 2019-06-28 轨道支撑组件及其装配方法、以及轨道和轨道交通系统

Publications (1)

Publication Number Publication Date
WO2020259597A1 true WO2020259597A1 (zh) 2020-12-30

Family

ID=73869190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098150 WO2020259597A1 (zh) 2019-06-28 2020-06-24 轨道支撑组件及其装配方法、以及轨道和轨道交通系统

Country Status (2)

Country Link
CN (1) CN112144328B (zh)
WO (1) WO2020259597A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113732626A (zh) * 2021-08-19 2021-12-03 上海建工(江苏)钢结构有限公司 一种x型腰圆柱结构制作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517535B (zh) * 2022-01-18 2022-09-06 中交第四公路工程局有限公司 装配式柱脚节点快接结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2264930A1 (en) * 1974-03-20 1975-10-17 Francon Jean Prefabricated building pieces - has foundation with supports for uprights; cross-pieces and vert panels
CN106215365A (zh) * 2016-07-29 2016-12-14 重庆舵龙文化旅游发展有限公司 蹦床改进结构
CN206000826U (zh) * 2016-08-03 2017-03-08 韩笑 一种旋转榫卯结构及家具
CN206916609U (zh) * 2017-03-31 2018-01-23 比亚迪股份有限公司 用于轨道支撑组件的调节支撑组件及轨道支撑组件
CN207017144U (zh) * 2017-07-19 2018-02-16 中铁上海设计院集团有限公司 一种用于全预制拼装桥墩的连接结构
CN108660912A (zh) * 2017-03-31 2018-10-16 比亚迪股份有限公司 预制桥墩、轨道支撑组件及其制造安装方法
US20180347179A1 (en) * 2017-05-31 2018-12-06 Meadow Burke, Llc Connector for precast concrete structures
KR101959210B1 (ko) * 2018-01-02 2019-03-18 황두영 방진형 송전탑

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823790B2 (ja) * 2006-07-18 2011-11-24 株式会社奥村組 柱ユニットおよび柱ユニットを用いた建物の施工方法
ES2319953B1 (es) * 2008-10-21 2010-07-07 Tecsa Empresa Constructora, S.A. Dispositivo para descarga y colocacion de carriles en una via paralela a otra existente.
CA2791536C (en) * 2011-10-04 2015-09-22 Sps New England Bridge beam placement system and apparatus
CN202954289U (zh) * 2012-10-16 2013-05-29 上海城建市政工程(集团)有限公司 用于连续刚构桥在中跨合龙后顶推起拱的墩底布设结构
JP6786808B2 (ja) * 2016-02-03 2020-11-18 株式会社大林組 コンクリート構造物
CN106906906B (zh) * 2017-03-30 2018-12-28 西南科技大学 用于木结构建筑梁柱的竖向半燕尾榫节点连接结构
CN107100078B (zh) * 2017-05-19 2019-01-08 中国五冶集团有限公司 一种装配式桥梁预制墩柱构件安装方法
CN107227685B (zh) * 2017-08-07 2019-11-19 上海应用技术大学 一种旋转卡扣拼接式桥墩结构的拼接方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2264930A1 (en) * 1974-03-20 1975-10-17 Francon Jean Prefabricated building pieces - has foundation with supports for uprights; cross-pieces and vert panels
CN106215365A (zh) * 2016-07-29 2016-12-14 重庆舵龙文化旅游发展有限公司 蹦床改进结构
CN206000826U (zh) * 2016-08-03 2017-03-08 韩笑 一种旋转榫卯结构及家具
CN206916609U (zh) * 2017-03-31 2018-01-23 比亚迪股份有限公司 用于轨道支撑组件的调节支撑组件及轨道支撑组件
CN108660912A (zh) * 2017-03-31 2018-10-16 比亚迪股份有限公司 预制桥墩、轨道支撑组件及其制造安装方法
US20180347179A1 (en) * 2017-05-31 2018-12-06 Meadow Burke, Llc Connector for precast concrete structures
CN207017144U (zh) * 2017-07-19 2018-02-16 中铁上海设计院集团有限公司 一种用于全预制拼装桥墩的连接结构
KR101959210B1 (ko) * 2018-01-02 2019-03-18 황두영 방진형 송전탑

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113732626A (zh) * 2021-08-19 2021-12-03 上海建工(江苏)钢结构有限公司 一种x型腰圆柱结构制作方法
CN113732626B (zh) * 2021-08-19 2024-03-15 上海建工(江苏)钢结构有限公司 一种x型腰圆柱结构制作方法

Also Published As

Publication number Publication date
CN112144328A (zh) 2020-12-29
CN112144328B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2020259597A1 (zh) 轨道支撑组件及其装配方法、以及轨道和轨道交通系统
WO2009094912A1 (fr) Structure de caisson et sa méthode précise de descente dans le sol
CN109723140A (zh) 一种预制楼梯间的施工方法
CN104552576A (zh) 卧式侧翻可调预制楼梯模具
CN106640138A (zh) 廊道分离式钢模板台车
CN202157534U (zh) 工具型建筑竖井/电梯井爬升模架
CN106914973A (zh) 基于提高预制楼梯生产效率的模具系统及其制备方法
CN102425140B (zh) 一种用于高空封拱的施工方法
CN201648971U (zh) 曲线箱梁滑移模架
CN104989422B (zh) 一种隧道用半预制速成中隔墙施工工艺
CN204487770U (zh) 卧式侧翻可调预制楼梯模具
CN104948202B (zh) 一种隧道中隔墙速成拼装预制构件
CN109371851B (zh) 多底模头罩支撑架造槽机
CN203514207U (zh) 一种用于双矩形水利渡槽施工的自行式移动模架
CN111893899B (zh) 一种升降式桥梁转体系统
CN104164920A (zh) 一种键槽节点预制框架梁的底部钢筋连接结构
CN210262729U (zh) 一种桥梁护栏模板移除装置
CN207620793U (zh) 一种多孔竖井滑模同步滑升施工装置
CN107338734B (zh) 一种预制便梁支墩预制顶进施工方法
CN111733874A (zh) 装配式地铁车站顶层组件的拼装设备
CN211498794U (zh) 一种亲水平台梁板结构
CN203066033U (zh) 一种弧形坡面混凝土滑升模板
CN218970644U (zh) 一种100m高出线竖井施工结构
CN112144327A (zh) 轨道支撑组件及其装配方法、以及轨道和轨道交通系统
CN219931051U (zh) 一种内支撑装配式车站拼装台车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20830966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20830966

Country of ref document: EP

Kind code of ref document: A1