WO2020259376A1 - 一种开采可燃冰的控制系统 - Google Patents

一种开采可燃冰的控制系统 Download PDF

Info

Publication number
WO2020259376A1
WO2020259376A1 PCT/CN2020/096673 CN2020096673W WO2020259376A1 WO 2020259376 A1 WO2020259376 A1 WO 2020259376A1 CN 2020096673 W CN2020096673 W CN 2020096673W WO 2020259376 A1 WO2020259376 A1 WO 2020259376A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
liquid
control
gas
combustible ice
Prior art date
Application number
PCT/CN2020/096673
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
门存贵
孟为民
王宝荣
杨高东
罗华勋
张峰
李磊
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2020259376A1 publication Critical patent/WO2020259376A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature

Definitions

  • the present disclosure relates to the field of intelligent control systems, in particular to a control system for mining combustible ice.
  • Combustible ice is distributed in deep-sea sediments or permafrost on land. It is an ice-like crystalline material formed by natural gas and water under high pressure and low temperature conditions. At present, the world's proven combustible ice resources are equivalent to twice the total carbon of traditional fossil fuels, and its natural gas content is 60 times that of natural gas resources, which has significant mining value. Because the formation conditions of combustible ice are high pressure and low temperature, once the pressure is lost or the temperature rises, combustible ice will turn into gas. The characteristic of combustible ice decomposing when it rises up is used to decompose natural gas vapor from solid state and transport it to the ground collection platform. , So as to complete the mining of combustible ice, generally called "pyrolysis”.
  • “Pyrolysis” mining combustible ice generally uses heated saturated brine containing glycol, injected into the mining well, and finally separated the glycol.
  • ethylene glycol is expensive and expensive for commercial mining.
  • the processing after the use of ethylene glycol is complicated, and a little carelessness will cause great environmental pollution.
  • the purpose of the present disclosure is to provide a control system for mining combustible ice to realize the adjustment and control of the combustible ice mining process.
  • a control system for mining combustible ice including a control module, a monitoring module, a communication module, and a display module, the control module and the monitoring module, the communication module and The display module is connected, and the control module includes:
  • a main control circuit including a heating tube control signal output terminal, a gas control signal output terminal, a liquid control signal output terminal and a temperature signal input terminal;
  • the heating tube power supply circuit is connected to the temperature signal input terminal;
  • a gas control circuit connected to the gas control signal output terminal
  • a liquid control circuit connected to the liquid control signal output terminal
  • the monitoring module includes a gas flow meter, a gas concentration sensor, a liquid flow meter, a temperature sensor, and a pressure sensor, and is connected to the processor module.
  • the communication module, the monitoring module and the display module are all bidirectionally connected with the control module.
  • the communication module is connected to the control module in two directions, and the monitoring module and the display module are connected to the control module and the communication module in one direction, respectively.
  • the gas control circuit and the liquid control circuit both include a delay timing circuit, and the delay timing circuit is mainly set up to relieve the pressure of the control system.
  • control system further includes a micro interface module, and the micro interface module includes a micro interface generator and a mixer body.
  • the micro-interface generator is a bubble breaker and/or a droplet breaker; it includes a mechanical microstructure and/or a turbulent flow microstructure for breaking the gas phase and/or liquid phase in the multiphase reaction medium Emulsion into micro bubbles and/or micro droplets with a diameter of micrometers;
  • the main body of the mixer is a mixing chamber of gas-liquid, liquid-liquid, liquid-solid, gas-liquid-liquid, gas-liquid-solid and liquid-liquid-solid multiphase reaction medium.
  • micro-interface generator is connected to the gas control circuit, and the mixer body is connected to the liquid control circuit.
  • the communication module includes a submarine optical cable and an optical modulator.
  • the optical modulator includes an electro-optical modulator, an acousto-optical modulator and/or a waveguide optical modulator.
  • the display module is an OLED module.
  • the beneficial effects of the present disclosure are: the control system described in the present disclosure is composed of a control module, a communication module, a monitoring module, a display module, and a micro interface module.
  • the control module realizes the regulation of the flow, temperature and pressure of the entire system.
  • the communication module realizes the communication between the modules of the system, and the monitoring module monitors the changes in the flow, temperature and pressure in the system and feeds them back to the control Module
  • the display module can display the current data situation of the system in real time, and each module cooperates with each other to complete the control of the entire combustible ice mining process.
  • Figure 1 is a flowchart of system communication mode
  • FIG. 2 is a flowchart of system communication mode
  • Figure 3 shows the control module
  • combustible ice When pyrolysis is used to mine combustible ice, it mainly uses the characteristic of combustible ice to heat up and turn into gas. Therefore, the saturated salt water must be heated before being injected into the well. Since combustible ice exists at least 3000 meters from the sea level, the temperature of the heated saturated brine will gradually decrease when it gradually descends in the drilling. In order to maintain the temperature and state of the saturated brine, the micro-interface strengthening technology is used, that is, the saturated brine Micron-sized natural gas bubbles are injected into the medium to make it emulsified, so that it is not easy to freeze at low temperatures.
  • the control system for mining combustible ice using the above method includes a control module, a monitoring module, a communication module, a display module and a micro interface module, wherein the control module is connected with other modules.
  • the control module includes a main control circuit, a processor module, a heating tube power supply circuit, a gas control circuit and a liquid control circuit.
  • the main control circuit includes a heating tube control signal output terminal, a gas control signal output terminal, a liquid control signal output terminal and a temperature signal input terminal.
  • the gas control signal output terminal and the liquid control signal output terminal output signals to the gas control circuit and the liquid control circuit.
  • the gas control circuit and the liquid control circuit control and adjust the flow of gas and liquid.
  • the flow of gas and liquid is adjusted to form a gas-liquid mixture and temperature
  • the signal input terminal inputs the signal to the heating tube control signal output terminal, and the heating tube control signal output terminal outputs the signal to the heating tube power supply circuit.
  • the heating tube power supply circuit will start to work to heat the gas-liquid mixture to the control system preset Set the temperature to inject the gas-liquid mixture into the well.
  • the micro-interface module includes a micro-interface generator and a mixer body.
  • the mixer body is a mixing chamber of gas-liquid, liquid-liquid, liquid-solid, gas-liquid-liquid, gas-liquid-solid, and liquid-liquid-solid multiphase reaction medium, and the mixer body includes Kettle mixer, tube mixer, tower mixer, fixed bed mixer or fluidized bed mixer, etc.
  • the micro-interface generator is a bubble breaker and/or a droplet breaker, including mechanical microstructures and/or turbulent microstructures, through microchannel action, field force action, and mechanical energy action, or any combination of these three methods , Breaking the gas phase and/or liquid phase in the multiphase reaction medium into micro-bubbles and/or micro-droplet emulsions with a diameter of micrometers.
  • the microchannel action mode is to construct the microstructure of the flow channel to break the gas and/or liquid phase passing through the microchannel into microbubbles and/or droplets;
  • the field force action mode is to use the external field force to non-contact
  • the method is to input energy from the fluid to break it into microbubbles or micro-droplet emulsions;
  • the mechanical energy action method is to use the mechanical energy of the fluid to convert it into the surface energy of bubbles or droplets, so that the bubbles or droplets are broken into microbubbles or Micro-droplet emulsion.
  • the micro-interface generator is any physical plane with holes penetrating it.
  • Each hole includes a gas inlet and a gas outlet.
  • the width of the gas outlet is greater than the width of the gas inlet.
  • Micron-sized bubbles are generated, the average width of the gas outlet is 5 to 90 microns, and the average width of the gas inlet is 1 to 5 microns.
  • the hole gradually becomes smaller from the gas inlet to the gas outlet.
  • the micro-interface generator is connected with a gas control circuit.
  • the gas control circuit controls the content and time of the gas entering the micro-interface generator, and controls the process of breaking the gas into micro-bubbles and/or micro-droplet emulsions.
  • the main body of the mixer is connected with a liquid control circuit, and the liquid control circuit controls the content of the liquid entering the main body of the mixer and controls the reaction process of the liquid and the microbubbles and/or the microdroplet emulsion emulsion.
  • the monitoring module includes gas flow meter, gas concentration sensor, liquid flow meter, temperature sensor and pressure sensor. It is used to monitor the gas and liquid concentration flow in the well and the internal temperature and pressure. When there is any change in the monitored data, the monitoring module Just communicating with the processor module, the processor module analyzes and processes the information and determines whether the control module needs to issue instructions for further changes in the flow of gas or liquid, so as to realize the data control of the entire system.
  • the communication module can adopt two communication methods. One is the two-way connection between the communication module and the control module.
  • the monitoring module and the display module are also two-way connected with the control module. If the monitoring module needs to communicate with the display module, the monitoring module first sends a signal to the control module , The control module then transmits the signal to the communication module, the communication module receives the signal and gives feedback to the control module, and the control module finally transmits the signal to the display module. In this way, the control module can directly communicate with the monitoring module and the display module, as shown in Figure 1.
  • the communication module is connected to the control module in two directions, the monitoring module and the display module are connected to the control module in one direction, and the monitoring module, display module and communication module are also connected in one direction, and the communication between the modules can be directly Contact the communication module for information.
  • communication modules include submarine optical cables and optical modulators.
  • Optical modulators include electro-optical modulators, acousto-optic modulators and/or waveguide optical modulators.
  • the electro-optic modulator uses the refractive index of an electro-optic crystal (such as lithium niobate) to change with the applied electric field, that is, the electro-optic effect to achieve optical modulation;
  • the acousto-optic modulator uses materials (such as lithium niobate) to produce strain under the action of sound waves to cause refraction
  • the rate change is the photoelastic effect to achieve optical modulation;
  • the waveguide type optical modulator uses integrated optical technology to make a thin film optical waveguide on the substrate to achieve electro-optical, magneto-optical or acousto-optical modulation.
  • the communication module transmits electrical signals to the control module, receives signals from gas flow meters, gas concentration sensors, and liquid flow meters, and converts these signals into optical signals through optical modulators, and establishes communication with land through submarine optical cables, and acoustic signals
  • the modulation is the same.
  • the display module is an OLED module or the like.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本发明公开了一种可燃冰开采的控制系统,所述的控制系统由控制模块、通信模块、监测模块、显示模块和微界面模块组成,控制模块实现对整个系统流量、温度和压力的调控,且通过气体控制电路和液体控制电路来控制微界面模块气相和液相的混合过程,通信模块实现系统各模块之间的通信,监测模块监测系统内流量、温度和压力的变化并反馈给控制模块,显示模块可以实时显示系统当前的各个数据情况,各个模块相互协作配合完成对整个可燃冰开采过程的控制。

Description

一种开采可燃冰的控制系统 技术领域
本公开涉及智能控制系统领域,尤其涉及一种开采可燃冰的控制系统。
背景技术
可燃冰分布在深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。目前全球已探明可燃冰的资源量相当于传统石燃料碳总量的两倍,且其天然气含量是天然气资源量的60倍,具有重大的开采价值。因可燃冰的形成条件为高压低温,一旦失压或温度升高,可燃冰就会变成气体,利用可燃冰在升温时分解的特性,使其由固态分解出天然气蒸汽再输送至地面收集平台,从而完成对可燃冰的开采,一般称为“热解法”。
“热解法”开采可燃冰一般使用加热后的含有乙二醇的饱和盐水,注入到开采钻井中,最后再将乙二醇分离出来。一方面,乙二醇价格昂贵,用于商业开采成本较高,另一方面,乙二醇使用完成后的处理复杂,稍有不慎对环境污染很大。
长远来看,采用新的方法对海底可燃冰进行开采是必然的,对开采的控制系统也会提出更高的要求。
发明内容
本公开的目的是提供一种开采可燃冰的控制系统,以实现对可燃冰开采过程的调整和控制。
本公开的上述技术目的是通过以下技术方案得以实现的:一种开采可燃冰的控制系统,包括控制模块、监测模块、通信模块和显示模块,所述控制模块与所述监测模块、通信模块和显示模块连接,所述控制模块包括:
主控电路,所述主控电路包括加热管控制信号输出端、气体控制信号输出端、液体控制信号输出端和温度信号输入端;
处理器模块;
加热管电源电路,与所述温度信号输入端连接;
气体控制电路,与所述气体控制信号输出端连接;
液体控制电路,与所述液体控制信号输出端连接;
所述监测模块包括气体流量计、气体浓度传感器、液体流量计、温度传感器和压力传感器,与所述处理器模块连接。
进一步地,所述通信模块、监测模块和显示模块均与控制模块双向连接。
进一步地,所述通信模块与控制模块双向连接,所述监测模块和显示模块与控制模块和通信模块分别单向连接。
进一步地,所述气体控制电路和液体控制电路都包括一个延时定时电路,延时定时电路的设置主要是为了缓解控制系统的压力。
进一步地,所述控制系统还包括微界面模块,所述微界面模块包括微界面发生器和混合器主体。
优选地,所述微界面发生器为气泡破碎器和/或液滴破碎器;包括机械微结构和/或湍流微结构,用于将所述多相反应介质中的气相和/或液相破碎成直径为微米级的微气泡和/或微液滴乳化液;
所述混合器主体为气-液、液-液、液-固、气-液-液、气-液-固以及液-液-固多相反应介质的混合腔室。
进一步地,所述微界面发生器与所述气体控制电路连接,所述混合器主体与所述液体控制电路连接。
优选地,所述通信模块包括海底光缆和光调制器。
优选地,所述光调制器包括电光调制器、声光调制器和/或波导性光调制器。
优选地,所述显示模块为OLED模块。
综上所述,本公开的有益效果在于:本公开所述的控制系统由控制模块、通信模块、监测模块、显示模块和微界面模块组成,控制模块实现对整个系统流量、温度和压力的调控,且通过气体控制电路和液体控制电路来控制微界面模块气相和液相的混合过程,通信模块实现系统各模块之间的通信,监测模块监测系统内流量、温度和压力的变化并反馈给控制模块,显示模块可以实时显示系统当前的各个数据情况,各个模块相互协作配合完成对整个可燃冰开采过程的控制。
附图说明
图1为系统通信方式流程图;
图2为系统通信方式流程图;
图3为控制模块。
具体实施方式
以下结合附图对本公开作进一步详细说明。
采用热解法开采可燃冰时,主要是利用可燃冰升温变为气体的特性,因此将饱和盐 水注入钻井前必须经过加热的过程。由于可燃冰至少在距离海平面3000米处存在,被加热的饱和盐水在钻井中逐步向下时,温度会逐步降低,为了使饱和盐水保持温度和状态,采用微界面强化技术,即在饱和盐水中注入微米级天然气气泡使其呈乳化液状,从而在低温下不易冻结。
使用上述方法开采可燃冰的控制系统,包括控制模块、监测模块、通信模块、显示模块和微界面模块,其中控制模块与其他模块均连接。控制模块包括主控电路、处理器模块、加热管电源电路、气体控制电路和液体控制电路。
主控电路包括加热管控制信号输出端、气体控制信号输出端、液体控制信号输出端和温度信号输入端。气体控制信号输出端和液体控制信号输出端输出信号给气体控制电路和液体控制电路,气体控制电路和液体控制电路控制调整气体和液体的流量,气体与液体的流量调整好形成气液混合物,温度信号输入端将信号输入到加热管控制信号输出端,加热管控制信号输出端再输出信号给加热管电源电路,加热管电源电路就会启动工作,对气液混合物进行加热,加热到控制系统预设的温度就将气液混合物注入到钻井中。
微界面模块包括微界面发生器和混合器主体。一般来讲,混合器主体为气-液、液-液、液-固、气-液-液、气-液-固以及液-液-固多相反应介质的混合腔室,混合器主体包括釜式混合器、管式混合器、塔式混合器、固定床混合器或流化床混合器等。
微界面发生器为气泡破碎器和/或液滴破碎器,包括机械微结构和/或湍流微结构,通过微通道作用方式、场力作用方式以及机械能作用方式,或者这三种方式的任意组合,将多相反应介质中的气相和/或液相破碎成直径为微米级的微气泡和/或微液滴乳化液。其中,微通道作用方式是通过构造流道的微结构,使通过微流道的气相和/或液相破碎成微气泡和/或液滴;场力作用方式是利用外场力作用以非接触的方式为流体输入能量,使其破碎成微气泡或微液滴乳化液;机械能作用方式是利用流体的机械能,将其转换成气泡或液滴的表面能,使气泡或液滴破碎成微气泡或微液滴乳化液。
作为实施例方式之一地,微界面发生器为任意的一个实物平面,平面上具有贯穿其的孔,每个孔包括气体入口和气体出口,气体出口的宽度大于气体入口的宽度,若想要生成微米级的气泡,气体出口的平均宽度为5微米到90微米,气体入口的平均宽度为1微米到5微米。并且孔从气体入口向气体出口的方向逐渐变小。
微界面发生器与气体控制电路连接,气体控制电路控制进入微界面发生器的气体含量及时间,并控制气体破碎成微气泡和/或微液滴乳化液乳化液的进程。混合器主体与液体控制电路连接,液体控制电路控制进入混合器主体内的液体含量,并控制液体和微气泡和/ 或微液滴乳化液乳化液的反应过程。
监测模块包括气体流量计、气体浓度传感器、液体流量计、温度传感器和压力传感器,用来监测钻井内的气体和液体浓度流量及内部的温度和压力,当监测的数据有任何变动时,监测模块就与处理器模块通信,处理器模块则对信息进行分析处理并判断是否需要控制模块发出指令做进一步气体或液体等的流量改变,以实现整个系统的数据调控。
通信模块可采用两种通信方式,其一是通信模块与控制模块双向连接,监测模块和显示模块也都与控制模块双向连接,若监测模块需要与显示模块通讯,监测模块先发信号给控制模块,控制模块再传输信号给通信模块,通信模块接收信号给出反馈到控制模块,控制模块最终将信号传输给显示模块。此种方式中控制模块可与监测模块和显示模块直接通讯,如图1所示。
其二,如图2,通信模块与控制模块双向连接,监测模块和显示模块与控制模块单向连接,监测模块和显示模块与通信模块也为单向连接,各模块之间的通讯都可以直接与通信模块联系获得信息。
一般,通信模块包括海底光缆和光调制器。
光调制器包括电光调制器、声光调制器和/或波导性光调制器。电光调制器是利用电光晶体(如铌酸锂)的折射率随外加电场而变即电光效应实现光调制;声光调制器是利用材料(如铌酸锂)在声波作用下产生应变而引起折射率变化即光弹效应实现光调制;波导型光调制器是用集成光学技术在基片上制成薄膜光波导实现电光、磁光或声光调制。
通信模块将电信号传给控制模块,接收来自气体流量计、气体浓度传感器和液体流量计等的信号,并通过光调制器将这些信号转换为光信号,通过海底光缆与陆地建立通信,声信号的调制同此。
显示模块为OLED模块等。
以上所述仅是本公开的优选实施方式,本公开的保护范围并不仅局限于上述实施例,本公开的保护范围由权利要求书及其等效物确定。

Claims (9)

  1. 一种开采可燃冰的控制系统,包括控制模块、监测模块、通信模块和显示模块,所述控制模块与所述监测模块、通信模块和显示模块连接,其特征在于,所述控制模块包括:
    主控电路,所述主控电路包括加热管控制信号输出端、气体控制信号输出端、液体控制信号输出端和温度信号输入端;
    处理器模块;
    加热管电源电路,与所述温度信号输入端连接;
    气体控制电路,与所述气体控制信号输出端连接;
    液体控制电路,与所述液体控制信号输出端连接;
    所述监测模块包括气体流量计、液体流量计、气体浓度传感器、温度传感器和压力传感器,与所述处理器模块连接。
  2. 如权利要求1所述的一种开采可燃冰的控制系统,其特征在于,所述通信模块、监测模块和显示模块均与控制模块双向连接。
  3. 如权利要求1所述的一种开采可燃冰的控制系统,其特征在于,所述通信模块与控制模块双向连接,所述监测模块和显示模块与控制模块和通信模块分别单向连接。
  4. 如权利要求1-3任一所述的一种开采可燃冰的控制系统,其特征在于,所述控制系统还包括微界面模块,所述微界面模块包括微界面发生器和混合器主体。
  5. 如权利要求4所述的一种开采可燃冰的控制系统,其特征在于,所述微界面发生器为气泡破碎器和/或液滴破碎器;
    所述混合器主体为气-液、液-液、液-固、气-液-液、气-液-固以及液-液-固多相反应介质的混合腔室。
  6. 如权利要求5所述的一种开采可燃冰的控制系统,其特征在于,所述微界面发生器与所述气体控制电路连接,所述混合器主体与所述液体控制电路连接。
  7. 如权利要求1-3任一所述的一种开采可燃冰的控制系统,其特征在于,所述通信模块包括海底光缆和光调制器。
  8. 如权利要求7所述的一种开采可燃冰的控制系统,其特征在于,所述光调制器包括电光调制器、声光调制器和/或波导性光调制器。
  9. 如权利要求1-3任一所述的一种开采可燃冰的控制系统,其特征在于,所述显示模块为OLED模块。
PCT/CN2020/096673 2019-06-24 2020-06-18 一种开采可燃冰的控制系统 WO2020259376A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910547212.4 2019-06-24
CN201910547212.4A CN112127849B (zh) 2019-06-24 2019-06-24 一种开采可燃冰的控制系统

Publications (1)

Publication Number Publication Date
WO2020259376A1 true WO2020259376A1 (zh) 2020-12-30

Family

ID=73849677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096673 WO2020259376A1 (zh) 2019-06-24 2020-06-18 一种开采可燃冰的控制系统

Country Status (2)

Country Link
CN (1) CN112127849B (zh)
WO (1) WO2020259376A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201953359U (zh) * 2011-02-23 2011-08-31 中国地质科学院勘探技术研究所 一种天然气水合物自动开采系统
US20150198023A1 (en) * 2014-01-14 2015-07-16 Bp Corporation North America Inc. Systems and methods for producing viscous hydrocarbons
CN106930740A (zh) * 2017-05-13 2017-07-07 西南石油大学 一种注入饱和热盐水开采天然气水合物的方法
CN206650861U (zh) * 2016-10-14 2017-11-17 吉林大学 一种井内流体电加热器
CN108005626A (zh) * 2017-11-27 2018-05-08 华南理工大学 一种基于热管技术的天然气水合物开采装置及方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013203259B2 (en) * 2012-05-08 2016-09-22 Release Energy Pty Ltd Inline Non-targeted Component Removal
US9896902B2 (en) * 2012-05-25 2018-02-20 Exxonmobil Upstream Research Company Injecting a hydrate slurry into a reservoir
CN202755954U (zh) * 2012-08-17 2013-02-27 山东大学 一种开采深海可燃冰的装置
US10228325B2 (en) * 2013-10-04 2019-03-12 Schlumberger Technology Corporation Downhole fluid analysis method and apparatus for determining viscosity
CN103571557B (zh) * 2013-11-12 2014-12-24 北京化工大学 一种制造天然气水合物的方法
CN104133021A (zh) * 2014-08-16 2014-11-05 东北石油大学 钻进过程中天然气水合物形成的监测方法及监测装置
CN104612642B (zh) * 2015-02-17 2017-05-10 吉林大学 一种井内油页岩层燃烧加热系统
DE102015107252A1 (de) * 2015-05-08 2016-11-10 Geomar Helmholtz-Zentrum Für Ozeanforschung Kiel - Stiftung Des Öffentlichen Rechts Mechanisches Tiefseesedimente-, marine Rohstofflagerstätten- und/oder Unterseehang- Stabilisierungsverfahren und/oder Regulierungs-/Konditionierungsverfahren der hydraulischen Eigenschaften von Tiefseesedimenten
CN206731075U (zh) * 2016-05-06 2017-12-12 西南石油大学 一种水合物合成气液循环控制回路系统
CN106761498B (zh) * 2016-12-20 2018-11-30 中国科学院广州能源研究所 一种用于对天然气水合物钻井液进行多相分离的实验装置及方法
FR3060749B1 (fr) * 2016-12-21 2022-02-11 Ifp Energies Now Dispositif simplifie de detection de la formation d'hydrates de gaz
CN106928954A (zh) * 2016-12-30 2017-07-07 北京浩博万维科技有限公司 一种天然气水合物防控剂及其应用方法
CN107035968B (zh) * 2017-03-29 2019-07-16 哈尔滨工程大学 一种用于可燃冰制备开采试验装置的多功能供液系统
CN108035700B (zh) * 2017-11-30 2023-04-18 青岛海洋地质研究所 海洋天然气水合物生产井井筒携砂规律仿真系统及方法
CN109557253B (zh) * 2018-11-02 2019-07-23 广州海洋地质调查局 一种综合性水合物模拟系统及其实验方法
CN109252833B (zh) * 2018-11-05 2021-10-15 西南石油大学 一种天然气水合物开采方法
CN109611086B (zh) * 2018-12-06 2019-11-05 青岛海洋地质研究所 基于多分支井的二次水合物形成监测与抑制系统及其方法
CN109655373B (zh) * 2018-12-25 2024-05-10 国家地质实验测试中心 天然气水合物储层原位性质参数模拟测试方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201953359U (zh) * 2011-02-23 2011-08-31 中国地质科学院勘探技术研究所 一种天然气水合物自动开采系统
US20150198023A1 (en) * 2014-01-14 2015-07-16 Bp Corporation North America Inc. Systems and methods for producing viscous hydrocarbons
CN206650861U (zh) * 2016-10-14 2017-11-17 吉林大学 一种井内流体电加热器
CN106930740A (zh) * 2017-05-13 2017-07-07 西南石油大学 一种注入饱和热盐水开采天然气水合物的方法
CN108005626A (zh) * 2017-11-27 2018-05-08 华南理工大学 一种基于热管技术的天然气水合物开采装置及方法

Also Published As

Publication number Publication date
CN112127849B (zh) 2021-07-23
CN112127849A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
US9227168B1 (en) Wind-powered vessel for removal of carbon dioxide from seawater
WO2020259376A1 (zh) 一种开采可燃冰的控制系统
Newell et al. Rough sea foam
MX2011007680A (es) Metodo de electrolisis, dispositivo y sistema.
CN106800073B (zh) 一种无人自动定位搭载浮体及实现方法
JP2008168221A (ja) 微細気泡発生方法及び微細気泡発生装置
CN103482026A (zh) 一种用于超深水浮式结构物的混合式系泊系统及系泊方法
EP0421815A1 (en) Use of ultrasonic energy in the transfer of waxy crude oil
DE60121606D1 (de) Vortriebseinrichtung
Maimun et al. A mathematical model on manoeuvrability of a LNG tanker in vicinity of bank in restricted water
KR20160046311A (ko) 선박의 엔진으로부터 배기 가스를 스크러빙하기 위한 방법 및 시스템
CN109814547B (zh) 风浪干扰作用下的无人艇航向保持装置和方法
CN110212992A (zh) 基于光纤通信的水下数据传输系统
Yun et al. Design and implementation of cooperative turning control for the towing system of unpowered facilities
Chenguang et al. CFD numerical simulations of stopping maneuver of ship model using overset grid technology
CN112127872B (zh) 一种可燃冰开采过程中的安全监测系统
CN102698641B (zh) 一种空泡发生装置及其制造方法
Li et al. An experimental study on oil droplet size distribution in subsurface oil releases
CN206954453U (zh) 一种无人自动定位搭载浮体
Castro et al. Coupled computational fluid mechanics/multibody dynamics approach for naval applications
NO20042051L (no) Fremgangsmate og anordning for a danne et skum av en gass og en vaeske
RU2726214C1 (ru) Способ спуска отделяющейся части ступени ракеты-носителя и устройство для его осуществления
Tannuri et al. Comparing two different control algorithms applied to dynamic positioning of a pipeline launching barge
JP2002070720A (ja) 水素生産用水上風力発電設備
Luo et al. Controlling-strategy design and working-principle demonstration of novel anti-winding marine propulsion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20830737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20830737

Country of ref document: EP

Kind code of ref document: A1