WO2020258835A1 - 超导电缆pplp绝缘老化程度的检测方法及系统 - Google Patents

超导电缆pplp绝缘老化程度的检测方法及系统 Download PDF

Info

Publication number
WO2020258835A1
WO2020258835A1 PCT/CN2020/071086 CN2020071086W WO2020258835A1 WO 2020258835 A1 WO2020258835 A1 WO 2020258835A1 CN 2020071086 W CN2020071086 W CN 2020071086W WO 2020258835 A1 WO2020258835 A1 WO 2020258835A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
test product
test
dielectric loss
frequency
Prior art date
Application number
PCT/CN2020/071086
Other languages
English (en)
French (fr)
Inventor
李红雷
刘家妤
焦婷
张智勇
陆小虹
Original Assignee
国网上海市电力公司
华东电力试验研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网上海市电力公司, 华东电力试验研究院有限公司 filed Critical 国网上海市电力公司
Priority to AU2020203291A priority Critical patent/AU2020203291B2/en
Publication of WO2020258835A1 publication Critical patent/WO2020258835A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2688Measuring quality factor or dielectric loss, e.g. loss angle, or power factor
    • G01R27/2694Measuring dielectric loss, e.g. loss angle, loss factor or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements

Definitions

  • This application relates to the technical field of insulation detection of power equipment, for example, to a method and system for insulation detection of superconducting cables PPLP based on dielectric spectrum.
  • High-Temperature Superconducting (HTS) cable is a cutting-edge technology with the characteristics of large current, low loss, and small size.
  • the transmission capacity is 3 to 5 times that of conventional cables, which can better meet the needs of power energy transmission and urban
  • the demand for power grid construction, but its relevant tests and operating experience at home and abroad are very small, and the overall technology is in the stage of demonstration and a small number of commercial applications on a global scale.
  • HTS cable insulation testing basically refers to the test items of conventional cables, such as capacitance testing, dielectric loss testing, etc. There is a lack of relevant testing for the aging degree of PPLP insulation performance.
  • This application provides a method and system for detecting the aging degree of the PPLP insulation of a superconducting cable.
  • a method for detecting the aging degree of the PPLP insulation of a superconducting cable including:
  • calculating the tangent of the dielectric loss angle corresponding to the test product at different frequencies by measuring the voltage and current of the test product includes: calculating the test product at the different frequencies by measuring the voltage and current of the test product Corresponding complex capacitance; calculate the dielectric loss tangent corresponding to the test article at the different frequency according to the complex capacitance corresponding to the test article at the different frequency.
  • I( ⁇ ) iC * ( ⁇ )U( ⁇ ), where ⁇ is the angular frequency, U( ⁇ ) is the voltage of the test sample at frequency ⁇ , and I( ⁇ ) is the test at frequency ⁇ The current of the product, C * ( ⁇ ) is the complex capacitance.
  • C * ( ⁇ ) C′( ⁇ )-iC′′( ⁇ );
  • C'( ⁇ ) is the real part of the complex capacitor, reflecting the actual capacitance of the medium
  • C"( ⁇ ) is the imaginary part of the complex capacitor, reflecting the magnitude of the dielectric loss
  • tg ⁇ is the dielectric loss tangent.
  • obtaining the test result of the insulation aging degree of the test product according to the corresponding dielectric loss tangent of the test product at the different frequencies includes:
  • the frequency characteristic curve is fitted and compared with a plurality of corresponding preset curves, and the test result of the insulation aging degree of the test product is obtained.
  • the test result of the insulation aging degree of the test sample is obtained by traversing the residuals of the frequency characteristic curve and a plurality of preset curves, and obtaining the smallest residual value and the second residual value among the residuals.
  • a small residual value determine the first preset curve corresponding to the minimum residual value and the second preset curve corresponding to the second small residual value; use linear interpolation to calculate the first preset curve
  • the corresponding aging degree and the aging degree corresponding to the second preset curve are interpolated to obtain the insulation aging degree of the test product.
  • a detection system for the insulation aging degree of superconducting cable PPLP includes a controllable voltage source, a voltmeter, an ammeter, an industrial control computer, and a test product.
  • the output end of the industrial control computer is connected to the input end of the controllable voltage source.
  • the computer is set to control the controllable voltage source to output AC voltages of different frequencies;
  • the industrial control computer is set to calculate the dielectric loss tangent of the test product according to the measured current and the test product voltage, and to adjust the dielectric loss tangent according to the dielectric loss angle
  • the test product is analyzed for the degree of insulation aging;
  • the first output end of the controllable voltage source is connected to the first end of the test product to apply AC voltages of different frequencies to the test product, and the second output of the controllable voltage source
  • the second end of the test sample is grounded through the first and second measurement terminals of the ammeter in turn.
  • the output end of the ammeter is connected to the industrial control computer.
  • the ammeter is set to measure the current of the sample and the The current data is transmitted to the industrial control computer, the first measuring terminal of the voltmeter is connected to the first output terminal of the controllable voltage source and the first terminal of the sample, the second measuring terminal of the voltmeter is grounded, and the output of the voltmeter is grounded.
  • the terminal is connected to an industrial control computer, and the voltmeter is set to measure the voltage of the sample and transmit the voltage data to the industrial control computer.
  • the industrial control computer includes a first calculation module, and the first calculation module is configured to calculate the dielectric loss tangent.
  • the industrial control computer includes a curve drawing module and a second calculation module; the curve drawing module is configured to draw a frequency characteristic curve of the dielectric loss tangent and a corresponding frequency value; the second calculation module , It is set to perform a fitting comparison between the frequency characteristic curve and a plurality of corresponding preset curves to obtain the test result of the insulation aging degree of the test product.
  • the output frequency range of the controllable voltage source is 0.0001 to 1000 Hz.
  • Figure 1 is a schematic flow chart of the PPLP insulation detection method for superconducting cables of this application
  • Figure 2 is a schematic structural diagram of the PPLP insulation detection system for superconducting cables according to the application;
  • a superconducting cable PPLP insulation detection method based on dielectric spectrum includes step S1 and step S2.
  • calculating the tangent of the dielectric loss angle corresponding to the sample under different frequencies by measuring the voltage and current of the sample includes: calculating the corresponding complex capacitance of the sample under the different frequencies by measuring the voltage and current of the sample Calculate the dielectric loss tangent corresponding to the test product at the different frequency according to the complex capacitance corresponding to the test product at the different frequency.
  • is the angular frequency
  • U( ⁇ ) is the sample voltage at frequency ⁇
  • I( ⁇ ) is the sample current at frequency ⁇
  • C * ( ⁇ ) is the complex capacitance
  • C'( ⁇ ) complex capacitance C * ( ⁇ ) reflects the actual capacitance of the medium
  • C"( ⁇ ) is the imaginary part of the complex capacitance, reflecting the loss of the medium
  • tg ⁇ is the dielectric loss tangent
  • the frequency characteristic curve of the dielectric loss tangent and the corresponding frequency is drawn, and the frequency characteristic curve is fitted and compared with the corresponding multiple preset curves, and the test is calculated.
  • the degree of aging of the product insulation is calculated.
  • the detection result of the insulation aging degree of the test sample is obtained by the following method: traversing the residuals of the frequency characteristic curve and the plurality of preset curves, and finding the middle of the residuals Determine the first preset curve corresponding to the smallest residual value and the second preset curve corresponding to the second smallest residual value; using linear interpolation Interpolation calculation is performed on the aging degree corresponding to the first preset curve and the aging degree corresponding to the second preset curve to obtain the insulation aging degree of the sample.
  • the real part of the complex capacitance does not change much with frequency, so the insulation aging degree is mainly determined according to the frequency characteristic curve of the dielectric loss angle.
  • a superconducting cable insulation aging detection system adopting the above method, its structure is shown in Figure 2, including a controllable voltage source 1, a voltmeter 2, an ammeter 3, an industrial control computer 4 and a test product 5, the industrial control computer 4
  • the output terminal is connected to the input terminal of the controllable voltage source 1 and is set to control the controllable voltage source 1 to output AC voltages of different frequencies.
  • the first output terminal of the controllable voltage source 1 is connected to the first terminal of the test product 5 to apply alternating voltages of different frequencies to the test product 5, and the second output terminal of the controllable voltage source 1 is grounded.
  • the second terminal of the sample 5 is grounded through the first and second measuring terminals of the ammeter 3 in turn, and the output terminal of the ammeter 3 is connected to the industrial control computer 4, which is set to measure the current of the sample 5 and transmit the current data to the industrial control Computer 4.
  • the first measuring terminal of the voltmeter 2 is connected to the first output terminal of the controllable voltage source 1 and the first terminal of the sample 5, the second measuring terminal of the voltmeter 2 is grounded, and the output terminal of the voltmeter 2 is connected to the industrial computer 4 , Is set to measure the voltage of the sample 5 and transmit the voltage data to the industrial control computer 4.
  • the industrial control computer 4 calculates the dielectric loss tangent of the test product 5 according to the measured current and voltage data, and analyzes the insulation aging degree of the test product 5 according to the dielectric loss tangent.
  • the industrial control computer includes a first calculation module, and the first calculation module is configured to calculate the dielectric loss tangent.
  • the industrial control computer includes a curve drawing module and a second calculation module; the curve drawing module is configured to draw a frequency characteristic curve of the dielectric loss tangent and a corresponding frequency value; the second calculation module , It is set to perform a fitting comparison between the frequency characteristic curve and a plurality of corresponding preset curves to obtain the test result of the insulation aging degree of the test product.
  • the IDAX series automatic dielectric loss frequency characteristic tester IDAX-206 produced by Swedish Pax Diagnostics is used for PPLP dielectric spectrum testing.
  • IDAX-206 can integrate the functions of the above-mentioned controllable voltage source, voltmeter and current meter. High degree of automation, simple test wiring, easy to implement on site, IDAX-206 measurement frequency band is 0.0001 ⁇ 1000Hz.
  • the industrial control computer of this embodiment uses software to calculate the complex capacitance and dielectric loss tangent of the sample, and draws the calculated complex capacitance and dielectric loss tangent and their corresponding frequency values into a frequency characteristic curve, and then according to the industrial control computer
  • the preset experience curve can be used for comparative analysis, or the MODS analysis software of IDAX-206 can be used for curve fitting to calculate the aging degree of the tested product.
  • the method and system proposed in this application are used to perform PPLP insulation testing on single-core HTS cables, three-core HTS cables, and three-coaxial HTS cables.
  • the wiring method is:
  • the dielectric spectrum of the 3-phase cable can be measured separately, or the total dielectric spectrum of the three-phase cable can be measured at the same time:
  • the same method as measuring the dielectric spectrum of single-core HTS cable is to measure the dielectric spectrum of three single-core HTS cables in sequence; when measuring one-phase cable, the conductors and shielding layers of the other two non-test phases are grounded.
  • the structure of three identical shafts is not used in conventional cables, but only used in HTS cables.
  • the design of three identical shafts will make it have different electrical parameters on each phase, so the dielectric spectrum measurement of each phase should be carried out separately, HTS
  • the three-coaxial cable has the first phase, the second phase, the third phase conductor, and the shielding layer from the inside to the outside. Therefore, it can be tested from the inside to the outside in sequence (the test sequence can be reversed).
  • first phase conductor to the high voltage electrode of the dielectric spectrum tester, short-circuit the second phase conductor, the third phase conductor, and the shielding layer, and connect the low voltage electrode and ground electrode of the dielectric spectrum tester to measure the first phase conductor and the first phase conductor.
  • the PPLP insulation detection method for superconducting cables proposed in this application measures characteristic parameters such as dielectric complex capacitance and dielectric loss tangent under excitation voltages of different frequencies, and then analyzes the overall state of the insulation by analyzing the changes in the characteristic parameters in each frequency band. diagnosis. Whether conducting PPLP insulation test pieces, short-length HTS cable aging and dielectric spectrum research in the laboratory, or conducting dielectric spectrum testing of HTS cable systems with different operating hours in the field, various mathematical tools can be used to analyze the data, and The characteristic quantity can be extracted from the measured curve.
  • characteristic parameters and analysis methods of some media spectrum curves are listed below.
  • the parameters that can be analyzed include: the tangent of the dielectric loss angle, the real part of the complex capacitance, etc. with frequency.
  • Integrating the area enclosed by the frequency domain dielectric spectrum measurement curve in a specific frequency range can obtain a characteristic value that reflects the degree of aging of the insulating material.
  • the residual value of the curve A1 closest to the curve X to be analyzed in the database is M
  • the residual value of the curve A2 that is the second closest to the curve X is N.
  • the aging degree corresponding to the A1 curve is a1 year
  • the aging degree corresponding to the A2 curve is a2 year
  • a1 is less than a2.
  • the linear interpolation method is used to calculate the degree of aging of the curve to be tested, which can be carried out as follows: Calculate the interpolation coefficient between the aging age a1 and the aging age a2 Determine the aging degree corresponding to the curve to be tested as That is, the age limit of the site HTS cable is year.
  • this embodiment uses PPLP to make a coaxial cylindrical sample, immersed in liquid nitrogen, and applies a power frequency AC voltage of 21kV. In 13 days, the total withstand voltage The aging time was 46h, and the dielectric spectrum test was carried out before and after aging.
  • Table 1 shows the dielectric loss tangent data before and after aging. It can be seen that in general, the dielectric loss tangent of PPLP insulation has increased after aging, and it is more obvious in the low frequency range, that is, after aging, the dielectric loss tangent of the medium and low frequency increases significantly:
  • Table 2 shows the real part and imaginary part data of the complex capacitor before and after aging.
  • the real part of the PPLP insulated complex capacitor decreases to a certain extent in the entire frequency range.
  • the imaginary part of the complex capacitor does not change much in the high frequency band, but in the middle and low frequency bands. , There is a significant increase after aging:
  • this application measures and calculates the PPLP's complex capacitance and dielectric loss tangent at different frequency points. Through frequency curve drawing and fitting comparison, the aging degree of the sample is evaluated, which can be fully effective To test the insulation performance of PPLP.
  • This application is based on the principle of the medium spectrum and adopts the detection method of applying different frequency AC voltages to the medium PPLP, which can effectively obtain the test data.
  • the test data By calculating and analyzing the relationship between the complex capacitance, the dielectric loss tangent and the corresponding frequency, it can be compared with the traditional power frequency medium. The more abundant information of loss tangent test is helpful for comprehensive and effective testing of PPLP insulation performance.
  • This application calculates the complex capacitance and dielectric loss tangent of dielectric materials at different frequencies, the calculation process is simple and reliable, and the analysis method of drawing frequency curves and fitting and comparing frequency curves can be used to obtain the aging degree of the test product, which is The analysis of conducting cable PPLP insulation detection provides reliable data.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

一种超导电缆PPLP绝缘检测方法及系统,其中的检测方法包括:对试品施加不同频率的激励电压,通过测量试品的电压和电流,计算不同频率下试品对应的介损角正切(S1);根据不同频率下试品对应的介损角正切,获取试品绝缘老化程度的检测结果(S2)。

Description

超导电缆PPLP绝缘老化程度的检测方法及系统
本申请要求在2019年06月24日提交中国专利局、申请号为201910549193.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力设备绝缘检测技术领域,例如涉及一种基于介质谱的超导电缆PPLP绝缘检测方法及系统。
背景技术
高温超导(High-Temperature Superconducting,HTS)电缆是前沿尖端技术,具有大电流、低损耗、小体积的特点,传输容量是常规电缆的3~5倍,能够更好地满足电力能源传输和城市电网建设的需求,但其在国内外的相关试验和运行经验非常少,整体技术在全球范围内处于挂网示范、少量商业应用的阶段。国际上缺少面向HTS电缆的相关试验与运行标准,2013年由9个国家完成了CIGRE《超导电缆推荐试验》的工作报告,但目前尚未发布HTS电缆统一试验标准。
绝缘结构是HTS电缆不可或缺的组成部分,目前HTS电缆的主流绝缘结构为液氮浸渍聚丙烯层压纸(Polypropylene Laminated Paper,PPLP),PPLP是由多孔的纸浆材料同聚丙烯膜压制而成。PPLP的性能对超导电缆的安全运行至关重要,PPLP长期在运行电压下工作,绝缘性能会逐渐老化、劣化;HTS电缆成本高昂,一旦由于PPLP老化发生绝缘击穿,会造成整段HTS电缆损坏,导致巨大的经济损失,所以需要对HTS电缆的PPLP绝缘老化程度进行检测和评估。国际上现有的HTS电缆工程中,对HTS电缆绝缘检测基本上参照常规电缆的试验项目进行,比如电容测试、介损测试等,缺少针对PPLP绝缘性能老化程度的相关检测。
发明内容
本申请提供一种超导电缆PPLP绝缘老化程度的检测方法及系统。
本申请可以通过以下技术方案来实现:一种超导电缆PPLP绝缘老化程度的检测方法,包括:
S1、对试品施加不同频率的激励电压,通过测量试品的电压和电流,计算不同频率下试品的复电容,以及所述不同频率下试品对应的介损角正切;
S2、根据所述不同频率下试品对应的复电容实部、所述不同频率下试品对应的介损角正切,获取试品绝缘老化程度的检测结果。
在一实施例中,通过测量试品的电压和电流,计算所述不同频率下试品对应的介损角的正切,包括:通过测量试品的电压和电流,计算所述不同频率下试品对应的复电容;根据所述不同频率下试品对应的复电容,计算所述不同频率下试品对应的介损角正切。
在一实施例中,I(ω)=iC *(ω)U(ω),其中,ω是角频率,U(ω)是频率ω下试品的电压,I(ω)是频率ω下试品的电流,C *(ω)是复电容。
在一实施例中,C *(ω)=C′(ω)-iC″(ω);
Figure PCTCN2020071086-appb-000001
其中,C'(ω)是复电容的实部,反映介质的实际电容量,C″(ω)是复电容的虚部,反映介质损耗大小,tgδ是介损角正切。
在一实施例中,根据所述不同频率下试品对应介损角正切,获取所述试品绝缘老化程度的检测结果,包括:
绘制介损角正切与对应频率值的频率特性曲线;
将所述频率特性曲线与对应的多条预设曲线进行拟合对比,并获取试品绝缘老化程度的检测结果。
在一实施例中,试品绝缘老化程度的检测结果通过以下方式获取:遍历所述频率特性曲线与多条预设曲线的残差,求出所述残差中的最小残差值和第二小的残差值,确定所述最小残差值对应的第一预设曲线和所述第二小的残差值对应的第二预设曲线;采用线性插值法对所述第一预设曲线对应的老化程度和所述第二预设曲线对应的老化程度进行插值计算,得到试品绝缘老化程度。
一种超导电缆PPLP绝缘老化程度的检测系统,包括可控电压源、电压表、电流表、工控计算机以及试品,所述工控计算机的输出端连接到可控电压源的输入端,所述工控计算机设置为控制可控电压源输出不同频率的交流电压;所述工控计算机设置为根据测量的试品电流和试品电压计算所述试品的介损角正切,根据所述介损角正切对所述试品进行绝缘老化程度的分析;所述可控电压源的第一输出端连接至试品的第一端,以给试品施加不同频率的交流电压,可控电压源的第二输出端接地,所述试品的第二端依次通过电流表的第一测量端 和第二测量端接地,所述电流表的输出端连接至工控计算机,所述电流表设置为测量试品的电流并将该电流数据传输给工控计算机,所述电压表的第一测量端连接至可控电压源的第一输出端和所述试品的第一端,电压表的第二测量端接地,电压表的输出端连接至工控计算机,所述电压表设置为测量试品的电压并将该电压数据传输给工控计算机。
在一实施例中,所述工控计算机包括第一计算模块,所述第一计算模块设置为计算所述介损角正切。
在一实施例中,所述工控计算机包括曲线绘制模块和第二计算模块;所述曲线绘制模块,设置为绘制所述介损角正切与对应频率值的频率特性曲线;所述第二计算模块,设置为将所述频率特性曲线与对应的多条预设曲线进行拟合对比,获取试品绝缘老化程度的检测结果。
在一实施例中,所述可控电压源的输出频率范围为0.0001~1000Hz。
附图说明
图1为本申请的超导电缆PPLP绝缘检测方法流程示意图;
图2为本申请的超导电缆PPLP绝缘检测系统结构示意图;
图中标记说明:1、可控电压源,2、电压表,3、电流表,4、工控计算机,5、试品。
具体实施方式
下面结合附图和具体实施例对本申请进行详细说明。
如图1所示,一种基于介质谱的超导电缆PPLP绝缘检测方法,包括步骤S1和步骤S2。
S1、对试品施加不同频率的激励电压,通过测量试品的电压和电流,计算不同频率下试品的介损角正切。
S2、根据所述不同频率下试品对应的介损角正切,获取试品绝缘老化程度。
其中,通过测量试品的电压和电流,计算所述不同频率下试品对应的介损角的正切,包括:通过测量试品的电压和电流,计算所述不同频率下试品对应的复电容;根据所述不同频率下试品对应的复电容,计算所述不同频率下试品对应的介损角正切。
上述步骤中电流,电压,复电容满足以下公式:I(ω)=iC *(ω)U(ω)
式中,ω是角频率,U(ω)是频率ω下的试品电压,I(ω)是频率ω下的试品电流,C *(ω)是复电容。
上述步骤中,C *(ω)=C′(ω)-iC″(ω);
Figure PCTCN2020071086-appb-000002
其中,C'(ω)复电容C *(ω)的实部,反映介质的实际电容量,C″(ω)是复电容的虚部,反映介质的损耗大小,tgδ是介损角正切。
在计算得到试品的介损角正切数据后,通过绘制介损角正切与对应频率的频率特性曲线,并将所述频率特性曲线与对应的多条预设曲线进行拟合对比,计算得到试品绝缘的老化程度。
在一实施例中,其中,所述试品绝缘老化程度的检测结果通过以下方式获取:遍历所述频率特性曲线与多条所述预设的曲线的残差,求出所述残差的中的最小残差值和第二小的残差值,确定所述最小残差值对应的第一预设曲线和所述第二小的残差值对应的第二预设曲线;采用线性插值法对所述第一预设曲线对应的老化程度和所述第二预设曲线对应的老化程度进行插值计算,得到所述试品绝缘老化程度。
通常复电容实部随频率变化不大,所以主要根据介损角正切频率特性曲线确定绝缘老化程度。
采用上述方法的一种超导电缆绝缘老化程度的检测系统,其结构如图2所示,包括可控电压源1、电压表2、电流表3、工控计算机4以及试品5,工控计算机4的输出端连接到可控电压源1的输入端,设置为控制可控电压源1输出不同频率的交流电压。
可控电压源1的第一输出端连接至试品5的第一端,以给试品5施加不同频率的交流电压,可控电压源1的第二输出端接地。
试品5的第二端依次通过电流表3的第一测量端和第二测量端接地,电流表3的输出端连接至工控计算机4,设置为测量试品5的电流并将该电流数据传输给工控计算机4。
电压表2的第一测量端连接至可控电压源1的第一输出端和试品5的第一端,电压表2的第二测量端接地,电压表2的输出端连接至工控计算机4,设置为测量试品5的电压并将该电压数据传输给工控计算机4。
工控计算机4根据测量的电流和电压数据计算试品5的介损角正切,根据介损角正切对所述试品5进行绝缘老化程度的分析。
在一实施例中,所述工控计算机包括第一计算模块,所述第一计算模块设置为计算所述介损角正切。
在一实施例中,所述工控计算机包括曲线绘制模块和第二计算模块;所述曲线绘制模块,设置为绘制所述介损角正切与对应频率值的频率特性曲线;所述第二计算模块,设置为将所述频率特性曲线与对应的多条预设曲线进行拟合对比,获取试品绝缘老化程度的检测结果。
本实施例中,采用瑞典Pax Diagnostics公司生产的IDAX系列自动介损频率特性测试仪IDAX-206进行PPLP的介质谱测试,IDAX-206能集成上述可控电压源、电压表和电流表的功能,其自动化程度高、测试接线简单,便于现场实施,IDAX-206的测量频段为0.0001~1000Hz。
本实施例的工控计算机利用软件计算出试品的复电容和介损角正切,并将所计算得出的复电容和介损角正切与其对应的频率值绘制成频率特性曲线,再根据工控计算机内预设的经验曲线进行对比分析,或者利用IDAX-206配套的MODS分析软件进行曲线拟合,便可以计算出被试品的老化程度。
在实际应用中,采用本申请提出的方法与系统分别对单芯HTS电缆、三芯HTS电缆以及三相同轴HTS电缆进行PPLP绝缘检测,接线方法为:
I、单芯HTS电缆的测试接线
将介质谱测试仪的高压电极接HTS电缆的导体,低压电极及接地极接HTS电缆的屏蔽层;将电缆对端的屏蔽层接地,导体悬空,测量导体和屏蔽层之间绝缘的介质谱。
II、三芯HTS电缆的测试接线
可以分别测量3相电缆的介质谱,也可以同时测量三相总的介质谱:
1)分别测量3相电缆的介质谱
与测量单芯HTS电缆介质谱的方法相同,依次测量3个单芯HTS电缆的介质谱;测量一相电缆时,另2个非试验相的导体和屏蔽层均接地。
2)测量三相电缆总的介质谱
将试验侧电缆的三相导体短路,并接入介质谱测试仪的高压电极;将试验侧电缆的三相屏蔽层短路,并接入介质谱测试仪的低压电极及接地极;将电缆对端的三相电缆导体悬空,三相电缆屏蔽层接地。
III、三相同轴HTS电缆的测试接线
三相同轴的结构在常规电缆中不采用,仅在HTS电缆中采用,三相同轴的 设计会使其在每一相上有不同的电气参数,所以应对每一相分别进行介质谱测量,HTS三相同轴电缆,从内到外依次第一相、第二相、第三相导体、屏蔽层,因此,可采用从内到外依次进行测试(测试顺序可反向进行)。
将第一相导体接入介质谱测试仪的高压电极,将第二相导体、第三相导体、屏蔽层短路,并接入介质谱测试仪低压电极及接地极,测量第一相导体和第二相导体之间绝缘的介质谱。
然后,将第一相导体和第二相导体短路,并接入介质谱测试仪的高压电极,将第三相和屏蔽层短路,并接入介质谱测试仪低压电极及接地极,测量第二相导体和第三相导体之间绝缘的介质谱。
最后,将三相导体均短路,并接入介质谱测试仪的高压电极,将屏蔽层接入介质谱测试仪低压电极及接地极,测量第三相导体和屏蔽层之间绝缘的介质谱。
本申请提出的超导电缆PPLP绝缘检测方法是在不同频率的激励电压下测量介质复电容、介损角正切等特征参量,然后通过分析特征参量在各频段内的变化情况对绝缘的整体状态进行诊断。不论在实验室进行PPLP绝缘试件、短段HTS电缆的老化及介质谱研究,还是在现场开展不同运行时间的HTS电缆系统的介质谱测试,都可以运用各种数学工具对数据进行分析,还可以对测得的曲线提取特征量。下面列举了部分介质谱曲线特征参量及分析方法。
(1)可分析的参量包括:介损角正切、复电容实部等随频率的变化曲线。
(2)观察在不同频段(低频、中频、高频),老化前后各参量数值的变化:往往中低频的数值变化对老化较为敏感。
(3)观察老化前后曲线峰值频率的移动:一般来说,介损角正切的峰值频率越低,老化程度越严重。
(4)观察曲线的斜率:整个曲线的斜率会随着老化而发生变化,对于介损角正切频率特性曲线,低频段较大、高频段较小,同时曲线在最低频率和最高频率附近均呈现上翘的趋势。
(5)对特定频率范围(通常为0.01~1Hz)内的频域介质谱测量曲线所围面积进行积分,能得出反应绝缘材料老化程度的特征值。
(6)典型曲线拟合方法:
(6.1)建立老化曲线库:在实验室制作PPLP绝缘的典型简化模型,并进行电老化,对不同老化状态的PPLP模型进行介质谱测试,得到不同老化状态下 的频域特性曲线,整理成数据库。
(6.2)现场测试HTS电缆的介质谱,获得待分析曲线。
(6.3)在数据库中寻找与待分析曲线最接近的曲线,并认为此曲线对应的老化程度即为待分析曲线的老化程度。在实现过程中,遍历比较待分析曲线与数据库中每组曲线的残差,求出其中的最小值,然后再用线性插值法对相应曲线的老化程度进行计算,求得现场HTS电缆的老化程度。
在一实施例中,确定数据库中与待分析曲线X最接近的一条曲线A1的残差值为M,和第二接近的一条曲线A2的残差值为N。A1曲线对应的老化程度为a1年,A2曲线对应的老化程度为a2年,a1小于a2。采用线性插值法,计算待检测曲线的老化程度,可按照如下步骤进行:计算老化年限a1和老化年限a2之间的插值系数
Figure PCTCN2020071086-appb-000003
确定待检测曲线对应的老化程度为
Figure PCTCN2020071086-appb-000004
即现场HTS电缆的老化年限为
Figure PCTCN2020071086-appb-000005
年。
利用本申请提出的超导电缆PPLP绝缘检测方法及系统,本实施例采用PPLP制成同轴圆柱试样,浸在液氮中,施加工频交流电压21kV,在13天时间里,总计耐压老化时间46h,在老化前后进行了介质谱测试。
表1为老化前后的介损角正切数据,可见总体上,老化后PPLP绝缘介损角正切有所增加,在低频段更为明显,即老化后,中低频时介损角正切明显增加:
表1 老化前后介损角正切数据
频率(Hz) 老化前tgδ 老化后tgδ
1000 0.0010844 0.001277
470 0.00098881 0.001386
220 0.0010046 0.001551
110 0.0013145 0.0018497
70 0.0012698 0.0019465
40 0.001274 0.0021195
20 0.001342 0.0023901
10 0.0016337 0.0027928
4.6416 0.0016419 0.0033028
2.1544 0.0015851 0.0041918
1 0.0016848 0.0058128
0.46416 0.0015133 0.0084952
0.21544 0.0014738 0.012435
0.1 0.0018195 0.015495
0.046416 0.0016663 0.013066
0.021544 0.0018875 0.016574
0.01 0.0028981 0.0195
0.004642 0.0049366 0.02575
0.002154 0.0091021 0.033464
0.001 0.024675 0.045641
表2为老化前后的复电容实部及虚部数据,老化后PPLP绝缘的复电容实部在整个频率范围里均有一定程度减少,复电容虚部在高频段变化不大,在中低频段,老化后有明显增加:
表2 老化前后复电容数据
Figure PCTCN2020071086-appb-000006
Figure PCTCN2020071086-appb-000007
与相关技术相比,本申请是在不同的频率点上对PPLP的复电容、介损角正切进行测量计算,通过频率曲线的绘制以及拟合比对,评估试品的老化程度,能全面有效的对PPLP绝缘性能进行检测。
本申请基于介质谱原理,采用给介质PPLP施加不同频率交流电压的检测手段,能有效获取测试数据,通过计算并分析复电容、介损角正切与对应频率的关系,能获得比传统工频介损角正切测试更丰富的信息,有助于全面有效地对PPLP绝缘性能进行检测。
本申请通过计算不同频率下电介质材料的复电容和介损角正切,计算过程简单可靠,并且采用绘制频率曲线以及拟合比对频率曲线的分析方法,能获取试品的老化程度,从而为超导电缆PPLP绝缘检测的分析提供可靠数据。

Claims (10)

  1. 一种超导电缆聚丙烯层压纸PPLP绝缘老化程度的检测方法,包括:
    对试品施加不同频率的激励电压,通过测量试品的电压和电流,计算所述不同频率下试品对应的介损角正切;
    根据所述不同频率下试品对应的介损角正切,获取所述试品绝缘老化程度的检测结果。
  2. 根据权利要求1所述的方法,其中,通过测量试品的电压和电流,计算所述不同频率下试品对应的介损角的正切,包括:
    通过测量试品的电压和电流,计算所述不同频率下试品对应的复电容;
    根据所述不同频率下试品对应的复电容,计算所述不同频率下试品对应的介损角正切。
  3. 根据权利要求2所述的方法,其中,所述电压,所述电流,所述复电容满足以下公式:
    I(ω)=iC *(ω)U(ω)
    其中,ω是角频率,U(ω)是频率ω下试品的电压,I(ω)是频率ω下试品的电流,C *(ω)是复电容。
  4. 根据权利要求3所述的方法,其中,
    C *(ω)=C′(ω)-iC″(ω);
    Figure PCTCN2020071086-appb-100001
    其中,C'(ω)是复电容的实部,反映介质的实际电容量;C”(ω)是复电容的虚部,反映介质的损耗大小;tgδ是介损角正切。
  5. 根据权利要求1所述的方法,其中,根据所述不同频率下试品对应的介损角正切,获取所述试品绝缘老化程度的检测结果,包括:
    绘制所述介损角正切与对应频率值的频率特性曲线;
    将所述频率特性曲线与对应的多条预设曲线进行拟合对比,获取试品绝缘老化程度的检测结果。
  6. 根据权利要求5所述的方法,其中,所述试品绝缘老化程度的检测结果通过以下方式获取:
    遍历所述频率特性曲线与多条所述预设的曲线的残差,求出所述残差中的最小残差值和第二小的残差值,确定所述最小残差值对应的第一预设曲线和所述第二小的残差值对应的第二预设曲线;
    采用线性插值法对所述第一预设曲线对应的老化程度和所述第二预设曲线对应的老化程度进行插值计算,得到所述试品绝缘老化程度。
  7. 一种超导电缆聚丙烯层压纸PPLP绝缘老化程度的检测系统,包括可控电压源、电压表、电流表、工控计算机以及试品;
    所述工控计算机的输出端连接到所述可控电压源的输入端,所述工控计算机设置为控制所述可控电压源输出不同频率的交流电压;所述工控计算机设置为根据测量的试品电流和试品电压计算所述试品的介损角正切,根据所述介损角正切对所述试品进行绝缘老化程度的分析;
    所述可控电压源的第一输出端连接至所述试品的第一端,以给所述试品施加不同频率的交流电压,所述可控电压源的第二输出端接地;
    所述试品的第二端依次通过所述电流表的第一测量端和第二测量端接地;
    所述电流表的输出端连接至所述工控计算机,所述电流表设置为测量所述试品电流并将所述试品电流传输至所述工控计算机;
    所述电压表的第一测量端连接至所述可控电压源的第一输出端和所述试品,所述电压表的第二测量端接地,所述电压表的输出端连接至所述工控计算机,所述电压表设置为测量所述试品电压并将所述试品电压传输至所述工控计算机。
  8. 根据权利要求7所述的系统,其中,所述工控计算机包括第一计算模块,所述第一计算模块设置为计算所述介损角正切。
  9. 根据权利要求7所述的系统,其中,所述工控计算机包括曲线绘制模块和第二计算模块;
    所述曲线绘制模块,设置为绘制所述介损角正切与对应频率值的频率特性曲线;
    所述第二计算模块,设置为将所述频率特性曲线与对应的多条预设曲线进行拟合对比,获取试品绝缘老化程度的检测结果。
  10. 根据权利要求7所述的系统,其中,所述可控电压源的输出频率范围为0.0001~1000Hz。
PCT/CN2020/071086 2019-06-24 2020-01-09 超导电缆pplp绝缘老化程度的检测方法及系统 WO2020258835A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020203291A AU2020203291B2 (en) 2019-06-24 2020-01-09 Method and system for detecting insulation aging degree of PPLP of superconducting cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910549193.9 2019-06-24
CN201910549193.9A CN110208662B (zh) 2019-06-24 2019-06-24 基于介质谱的超导电缆pplp绝缘检测方法及系统

Publications (1)

Publication Number Publication Date
WO2020258835A1 true WO2020258835A1 (zh) 2020-12-30

Family

ID=67794246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071086 WO2020258835A1 (zh) 2019-06-24 2020-01-09 超导电缆pplp绝缘老化程度的检测方法及系统

Country Status (3)

Country Link
CN (1) CN110208662B (zh)
AU (1) AU2020203291B2 (zh)
WO (1) WO2020258835A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447537A (zh) * 2021-06-25 2021-09-28 海南电网有限责任公司电力科学研究院 油纸绝缘频域介电谱测量方法、装置、存储介质和终端
CN114186392A (zh) * 2021-11-09 2022-03-15 西南交通大学 一种xlpe电缆老化程度评估方法
CN114184904A (zh) * 2021-11-05 2022-03-15 西南交通大学 一种动车组乙丙橡胶电缆绝缘损伤程度的评估方法
CN114325182A (zh) * 2021-12-17 2022-04-12 西南交通大学 一种基于温电变化率的10kVXLPE电缆热氧老化程度的评估方法
CN114910703A (zh) * 2022-03-28 2022-08-16 国网上海市电力公司 基于介质谱的超导电缆预冷过程监测方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208662B (zh) * 2019-06-24 2022-04-05 国网上海市电力公司 基于介质谱的超导电缆pplp绝缘检测方法及系统
CN110658432B (zh) * 2019-11-03 2020-09-29 西南交通大学 一种配电网电缆终端受潮程度评估方法
CN110618364A (zh) * 2019-11-03 2019-12-27 西南交通大学 一种评估配电网xlpe电缆终端绝缘可靠性的方法
GB2591439B (en) * 2019-11-19 2023-11-01 Viper Innovations Ltd Cable insulation testing method
CN111239655B (zh) * 2020-01-17 2022-05-20 扬州大学 一种测量材料超导特性的谐振频率电路结构
CN111736043A (zh) * 2020-06-19 2020-10-02 西安交通大学 一种基于低频介电谱的xlpe电缆脱气状态评价方法
CN112100809B (zh) * 2020-08-10 2022-06-14 华南理工大学 一种基于多物理场耦合仿真三相同轴超导电缆设计的方法
CN113189443B (zh) * 2021-04-08 2022-03-22 广东工业大学 一种基于频域复介电常数的动车组高压电缆健康状态评估方法
CN113358939B (zh) * 2021-05-20 2022-10-25 西安交通大学 一种高场高频下聚合物绝缘介质损耗计算方法
CN113391134B (zh) * 2021-07-07 2023-04-07 国家电网有限公司 电缆缺陷判定方法
CN113671237A (zh) * 2021-08-17 2021-11-19 国网上海市电力公司 高温超导电缆的交接试验和评价方法
CN114062807B (zh) * 2021-11-08 2024-02-23 广东电网有限责任公司广州供电局 一种用于固体绝缘材料的老化检测方法
CN114814375A (zh) * 2022-03-28 2022-07-29 国网上海市电力公司 超导电缆预冷过程的介损及电容监测方法
CN114895151A (zh) * 2022-03-28 2022-08-12 国网上海市电力公司 基于介质谱的超导电缆回温过程监测方法
CN114814376A (zh) * 2022-03-28 2022-07-29 国网上海市电力公司 超导电缆回温过程的介损及电容监测方法
CN116381347B (zh) * 2022-12-05 2023-10-24 哈尔滨理工大学 基于峰值特性的大截面电缆导体交流等效电阻获取方法
CN117554766B (zh) * 2024-01-09 2024-03-26 成都瑞讯物联科技有限公司 一种绝缘在线监测方法及监测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018639A (zh) * 2012-11-21 2013-04-03 深圳供电局有限公司 一种基于频域介电谱的油纸绝缘电力设备绝缘老化状态评估方法
CN105137349A (zh) * 2015-07-22 2015-12-09 广东电网有限责任公司电力科学研究院 基于频域介电谱法的大型发电机定子绕组主绝缘老化状态测评方法
US20160124036A1 (en) * 2014-10-29 2016-05-05 Hsi-Chuan Chen Real-Time Insulation Detector for Feeding High-Frequency Low-Voltage Signal of Power System
JP2016109474A (ja) * 2014-12-03 2016-06-20 富士電機株式会社 非接触電圧センサ及び電力測定装置
CN108896894A (zh) * 2018-09-25 2018-11-27 国网江西省电力有限公司南昌供电分公司 一种基于频谱分析法的高压油纸频域介电测试仪及测试方法
CN110208662A (zh) * 2019-06-24 2019-09-06 国网上海市电力公司 基于介质谱的超导电缆pplp绝缘检测方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976613A (zh) * 2017-10-17 2018-05-01 广西电网有限责任公司电力科学研究院 一种变压器油纸绝缘状态的定量评估方法
CN108828413B (zh) * 2018-04-04 2020-12-11 国网天津市电力公司电力科学研究院 基于介电响应特性的变压器绝缘纸板老化定量评估方法
CN108828416B (zh) * 2018-06-08 2021-01-19 西安交通大学 一种基于对导数分析方法的交联聚乙烯电缆绝缘老化状态评估方法
CN109659088A (zh) * 2019-01-23 2019-04-19 深圳供电局有限公司 一种内置光纤的新型高温超导电缆及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018639A (zh) * 2012-11-21 2013-04-03 深圳供电局有限公司 一种基于频域介电谱的油纸绝缘电力设备绝缘老化状态评估方法
US20160124036A1 (en) * 2014-10-29 2016-05-05 Hsi-Chuan Chen Real-Time Insulation Detector for Feeding High-Frequency Low-Voltage Signal of Power System
JP2016109474A (ja) * 2014-12-03 2016-06-20 富士電機株式会社 非接触電圧センサ及び電力測定装置
CN105137349A (zh) * 2015-07-22 2015-12-09 广东电网有限责任公司电力科学研究院 基于频域介电谱法的大型发电机定子绕组主绝缘老化状态测评方法
CN108896894A (zh) * 2018-09-25 2018-11-27 国网江西省电力有限公司南昌供电分公司 一种基于频谱分析法的高压油纸频域介电测试仪及测试方法
CN110208662A (zh) * 2019-06-24 2019-09-06 国网上海市电力公司 基于介质谱的超导电缆pplp绝缘检测方法及系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447537A (zh) * 2021-06-25 2021-09-28 海南电网有限责任公司电力科学研究院 油纸绝缘频域介电谱测量方法、装置、存储介质和终端
CN114184904A (zh) * 2021-11-05 2022-03-15 西南交通大学 一种动车组乙丙橡胶电缆绝缘损伤程度的评估方法
CN114184904B (zh) * 2021-11-05 2022-07-08 西南交通大学 一种动车组乙丙橡胶电缆绝缘损伤程度的评估方法
CN114186392A (zh) * 2021-11-09 2022-03-15 西南交通大学 一种xlpe电缆老化程度评估方法
CN114186392B (zh) * 2021-11-09 2022-07-19 西南交通大学 一种xlpe电缆老化程度评估方法
CN114325182A (zh) * 2021-12-17 2022-04-12 西南交通大学 一种基于温电变化率的10kVXLPE电缆热氧老化程度的评估方法
CN114910703A (zh) * 2022-03-28 2022-08-16 国网上海市电力公司 基于介质谱的超导电缆预冷过程监测方法

Also Published As

Publication number Publication date
AU2020203291A1 (en) 2021-01-28
CN110208662B (zh) 2022-04-05
CN110208662A (zh) 2019-09-06
AU2020203291B2 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
WO2020258835A1 (zh) 超导电缆pplp绝缘老化程度的检测方法及系统
CN106446426B (zh) 一种基于健康指数的电力变压器评估方法
CN105277857B (zh) 一种在线监测变压器套管受潮缺陷的方法
CN114019309B (zh) 一种基于频域反射技术的电缆缺陷定位方法
CN103149452A (zh) 一种评估油纸绝缘的老化状态的方法
CN103645425A (zh) 一种高压电缆绝缘缺陷局部放电在线监测诊断方法
CN107860894B (zh) 一种基于频域复介电常数初始斜率的变压器绝缘油中糠醛含量预测方法
CN106443307B (zh) 变电设备绝缘在线监测系统
CN104914364A (zh) 电容式油纸变压器套管绝缘状态评估的方法
CN106771895A (zh) 一种基于磁场谐波检测的电缆老化检测方法
CN109521391A (zh) 发电机电压互感器绕组匝间短路故障的检测装置及方法
CN202141752U (zh) 一种金属氧化锌避雷器在线监测装置
CN103487665B (zh) 测量高压断路器均压电容试验方法
CN107219415A (zh) 一种用于干式空心电抗器综合电气性能参数测试的系统及方法
CN113466607B (zh) 一种三相电缆中间接头受潮状态分析方法
CN102645574A (zh) 基于网络传递函数计算的现场暂态过电压测量方法
CN114062852B (zh) 电缆中间接头故障诊断方法、装置、设备及可读存储介质
Kostiukov Measurement of dissipation factor of inner layers of insulation in three-core belted cables
CN112595939B (zh) 一种低温环境下油纸绝缘频域介电谱温度效应消除方法
CN215728764U (zh) 一种变电设备绝缘在线监测装置集成校验系统
CN101576611A (zh) 基于核独立分量分析的电流传感器角差在线监测方法
Song et al. Ultra-Low Frequency Dielectric Loss Detection and Aging State Evaluation of 10kV XLPE Cable
CN113075268B (zh) 一种基于fds的绝缘套管x蜡缺陷检测方法及系统
CN111025091B (zh) 一种城市配电网电缆不均匀受潮状态的智能测评方法
Yuan et al. Transformer bushing insulation defect detection method based on 3D surface map

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020203291

Country of ref document: AU

Date of ref document: 20200109

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832634

Country of ref document: EP

Kind code of ref document: A1