CN110658432B - 一种配电网电缆终端受潮程度评估方法 - Google Patents

一种配电网电缆终端受潮程度评估方法 Download PDF

Info

Publication number
CN110658432B
CN110658432B CN201911063531.4A CN201911063531A CN110658432B CN 110658432 B CN110658432 B CN 110658432B CN 201911063531 A CN201911063531 A CN 201911063531A CN 110658432 B CN110658432 B CN 110658432B
Authority
CN
China
Prior art keywords
cable terminal
dielectric constant
moisture
cable
real part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911063531.4A
Other languages
English (en)
Other versions
CN110658432A (zh
Inventor
周利军
白龙雷
杨涵
张靖康
邢立勐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201911063531.4A priority Critical patent/CN110658432B/zh
Publication of CN110658432A publication Critical patent/CN110658432A/zh
Application granted granted Critical
Publication of CN110658432B publication Critical patent/CN110658432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2617Measuring dielectric properties, e.g. constants

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明公开了一种配电网电缆终端受潮程度评估方法,包括步骤:评估数据获取、电缆终端受潮模型建立与受潮因子计算和根据受潮因子评估电缆终端受潮程度。本发明的有益效果在于,可高效、准确、安全、方便地对城市配电网用电力电缆终端受潮程度进行评估,避免因电缆终端内受潮程度过于严重而导致的终端爆炸问题,实现其可靠运行。

Description

一种配电网电缆终端受潮程度评估方法
技术领域
本发明涉及电缆终端故障测评领域,特别是一种配电网电缆终端受潮程度评估方法。
背景技术
随着现代城市功能的不断扩展,交联聚乙烯类型电力电缆作为一种具有优异电气性能和机械性能的电力能源输送设施,得到了越来越广泛的应用。但由于交联聚乙烯电缆的绝缘是挤塑成型的整体,使得该类型电缆在投入之初就以防水、防潮性能而得到用户的青睐,得到了大力的推广和大规模的替代原线路,人们也往往忽略了对其的防水分侵入工作,使得在运交联聚乙烯电缆大面积地长年浸泡于积水严重的城市电缆沟中运行。随着投运时间的延长,交联聚乙烯电缆和终端因水分侵入而逐渐导致受潮,受水分侵蚀后,在强电场作用下产生一系列理化作用,在绝缘中沿电场方向形成“水树枝”的现象越来越严重,导致电缆绝缘的击穿事故,实验证明,当运行环境的湿度达到65%以上时,交联聚乙烯电缆绝缘材料就可能形成水树缺陷,严重影响其绝缘性能。受水汽侵蚀,电缆受潮,电缆额定使用寿命远远达不到,也造成电力系统的安全隐患,但目前例行巡检中,针对该问题,仍缺乏对策。
目前,有关敷设于电缆沟中电力电缆终端受潮程度智能化评估方法仍比较匮乏,目前现场所大量应用的检测手段均不是针对于受潮故障,检测效果非常差,而主要的研究也没有关注到该问题,因此给目前城市配电网电力电缆的安全可靠运行造成了极大的困扰。因此,研究配电网电缆终端受潮程度智能化评估方法,并在电缆运行中进行有效地定期监测,对于保障电力电缆的运行可靠性具有重要的意义。
发明内容
本发明的目的是提供一种配电网电缆终端受潮程度评估方法。
实现本发明目的的技术方案如下:
一种配电网电缆终端受潮程度评估方法,包括步骤:
第一步,评估数据获取:
1.1使用频域介电谱测试仪器依次测试电缆终端多个频率点下的复介电常数实部ε′与虚部ε″,测试频率点fx依次为0.001Hz,0.002Hz,0.005Hz,0.01Hz,0.02Hz,0.05Hz,0.1Hz,0.2Hz,0.5Hz,1Hz;其中,x=1,2,…,10;
1.2进行放电操作;
1.3按照1.1和1.2进行重复测试多次,并取多次测试的平均值,得到测试频率点fx所分别对应的复介电常数实部均值εx′与虚部均值εx″;
第二步:电缆终端受潮模型建立与受潮因子计算,包括
2.1根据频率点fx处电缆终端复介电常数实部均值εx′与虚部均值εx″,建立电缆终端受潮模型,分别求取其基函数Sd(f)和Se(f),如下:
复介电常数实部均值εx′对应基函数Sd(f)为:
Figure GDA0002582782060000021
Figure GDA0002582782060000022
Sd(f)=sd1(f-fd)3+sd2(f-fd)2+sd3(f-fd)+sd4
复介电常数虚部均值εx″对应基函数Se(f)为:
Figure GDA0002582782060000031
Figure GDA0002582782060000032
Se(f)=se1(f-fe)3+se2(f-fe)2+se3(f-fe)+se4
2.2获取介电谱的拟合曲线模型,复介电常数实部ε′-f与虚部ε″-f的模型函数分别为:
Figure GDA0002582782060000033
Figure GDA0002582782060000034
2.3计算受潮因子β,
Figure GDA0002582782060000035
第三步:根据受潮因子β评估电缆终端受潮程度。
本发明的有益效果在于,可高效、准确、安全、方便地对城市配电网用电力电缆终端受潮程度进行评估,避免因电缆终端内受潮程度过于严重而导致的终端爆炸问题,实现其可靠运行。
附图说明
图1为本发明的流程图。
具体实施方式
下面结合实施例对本发明进一步说明。
第一步,评估数据获取
电网公司在进行城市配电网电缆例行检查过程中,选定需进行受潮程度评估的电缆终端,断开终端与其他电气设备的连接,使用频域介电谱测试仪器,分别将高压输出口和低压输入口连接至终端的缆芯金属螺栓处和接地线金属部分,并在高压输出口使用螺母紧密扣紧,连接部位均使用绝缘胶带缠绕;
将所述电缆终端与频域介电谱测试仪器各部分按照上述方式进行连接后,打开频域介电谱测试仪器所配套的计算机,检测电缆终端内部潮湿度情况,计算机每30min测试并记录一次数据,不同测试间间隔10min,持续记录2小时,记录规则为:
①频域介电谱测试仪器依次测试电缆终端多个频率点下的复介电常数实部ε′与虚部ε″,测试频率点fx依次为0.001Hz,0.002Hz,0.005Hz,0.01Hz,0.02Hz,0.05Hz,0.1Hz,0.2Hz,0.5Hz,1Hz,取x=1,2,…,10,并分别得到所对应复介电常数实部εy′与虚部εy″;②将高压输出口和低压输入口与终端的缆芯金属螺栓处和接地线金属部分分别断开连接,接电线就近与电缆沟内的接地装置连接,进行放电操作10min;③继续重复步骤①和②,进行重复测试,共重复测试三次,用时2小时,取三次测试的平均值,即测试频率点fx为0.001Hz,0.002Hz,0.005Hz,0.01Hz,0.02Hz,0.05Hz,0.1Hz,0.2Hz,0.5Hz,1Hz,取x=1,2,…,10,所分别对应的复介电常数实部均值εx′与虚部均值εx″;
第二步:电缆终端受潮模型建立与受潮因子计算
2.1根据上述第一步的步骤,测试出频率点fx处电缆终端复介电常数实部均值εx′与虚部均值εx″,建立电缆终端受潮模型,分别求取其基函数Sd(f)和Se(f),
其中,复介电常数实部均值εx′对应基函数Sd(f)为:
Figure GDA0002582782060000051
Figure GDA0002582782060000052
Sd(f)=sd1(f-fd)3+sd2(f-fd)2+sd3(f-fd)+sd4,d=1,2,...,8(3)
复介电常数虚部均值εx″对应基函数Se(f)为:
Figure GDA0002582782060000053
Figure GDA0002582782060000054
Se(f)=se1(f-fe)3+se2(f-fe)2+se3(f-fe)+se4,e=1,2,...,8 (6)
2.2获取介电谱的拟合曲线模型,复介电常数实部均值ε′-f与虚部均值ε″-f的模型函数分别为:
Figure GDA0002582782060000061
Figure GDA0002582782060000062
2.3定义并计算受潮因子β,估计电缆终端受潮状态或程度:
Figure GDA0002582782060000063
第三步:评估待测电缆终端受潮状态,根据第一步和第二步中所得到的受潮因子β,进行电缆终端受潮程度的判断和评估。可参考使用以下的方法:
设置作为判断依据的阈值b1、b2,
当b1≤β<b2时,电缆终端出现水分侵入,可判定电缆终端受潮程度为中度,需进行实时监测;
当β≥b2时,电缆终端出现较为严重的水分侵入,可判定电缆终端受潮程度为重度,需进行更换或进一步检测处理。
其中,b1取值为5,b2取值为7.5。
根据电力电缆终端运行环境的差异,可调整b1、b2的大小,使之更加适用于指导所有应用电缆现场的电缆终端受潮状态评估工作。

Claims (1)

1.一种配电网电缆终端受潮程度评估方法,其特征在于,包括步骤:
第一步,评估数据获取:
1.1使用频域介电谱测试仪器依次测试电缆终端多个频率点下的复介电常数实部ε′与虚部ε″,测试频率点fx依次为0.001Hz,0.002Hz,0.005Hz,0.01Hz,0.02Hz,0.05Hz,0.1Hz,0.2Hz,0.5Hz,1Hz;其中,x=1,2,…,10;
1.2进行放电操作;
1.3按照1.1和1.2进行重复测试多次,并取多次测试的平均值,得到测试频率点fx所分别对应的复介电常数实部均值εx′与虚部均值εx″;
第二步:电缆终端受潮模型建立与受潮因子计算,包括
2.1根据频率点fx处电缆终端复介电常数实部均值εx′与虚部均值εx″,建立电缆终端受潮模型,分别求取其基函数Sd(f)和Se(f),如下:
复介电常数实部均值εx′对应基函数Sd(f)为:
Figure FDA0002582782050000011
Figure FDA0002582782050000012
Sd(f)=sd1(f-fd)3+sd2(f-fd)2+sd3(f-fd)+sd4
复介电常数虚部均值εx″对应基函数Se(f)为:
Figure FDA0002582782050000013
Figure FDA0002582782050000021
Se(f)=se1(f-fe)3+se2(f-fe)2+se3(f-fe)+se4
2.2获取介电谱的拟合曲线模型,复介电常数实部ε′-f与虚部ε″-f的模型函数分别为:
Figure FDA0002582782050000022
Figure FDA0002582782050000023
2.3计算受潮因子β,
Figure FDA0002582782050000024
第三步:根据受潮因子β评估电缆终端受潮程度。
CN201911063531.4A 2019-11-03 2019-11-03 一种配电网电缆终端受潮程度评估方法 Active CN110658432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911063531.4A CN110658432B (zh) 2019-11-03 2019-11-03 一种配电网电缆终端受潮程度评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911063531.4A CN110658432B (zh) 2019-11-03 2019-11-03 一种配电网电缆终端受潮程度评估方法

Publications (2)

Publication Number Publication Date
CN110658432A CN110658432A (zh) 2020-01-07
CN110658432B true CN110658432B (zh) 2020-09-29

Family

ID=69042886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911063531.4A Active CN110658432B (zh) 2019-11-03 2019-11-03 一种配电网电缆终端受潮程度评估方法

Country Status (1)

Country Link
CN (1) CN110658432B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965446B (zh) * 2020-07-13 2021-05-25 华南理工大学 一种评估电力电缆不同进水受潮状态的实验方法
CN113189443B (zh) * 2021-04-08 2022-03-22 广东工业大学 一种基于频域复介电常数的动车组高压电缆健康状态评估方法
CN113947248B (zh) * 2021-10-21 2024-05-31 广东电网有限责任公司广州供电局 一种电缆受潮老化跳闸的风险预测方法和相关装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137268A (ja) * 1996-11-07 1998-05-26 Kao Corp 歯茎評価方法
DE102004053734B4 (de) * 2004-11-06 2007-01-18 Sartorius Ag Trocknungswaage
US20090001997A1 (en) * 2007-06-29 2009-01-01 Yingjie Lin Systems and methods for determining a total acid number associated with biodiesel in a mixture of biodiesel and petrodiesel
CN101614783B (zh) * 2009-07-31 2011-02-09 西安交通大学 人工模拟强风及沙尘暴的气隙放电试验装置及试验方法
CN102543323B (zh) * 2011-11-29 2014-04-02 河南省电力公司电力科学研究院 一种阶变介电常数复合绝缘子
CN102539964A (zh) * 2011-12-21 2012-07-04 武汉理工大学 Xlpe电力电缆在线绝缘特性判断方法
KR101651536B1 (ko) * 2014-05-29 2016-08-29 한국철도기술연구원 Tdr을 이용한 철도노반 다짐도 평가 시스템 및 그 방법
CN207689577U (zh) * 2018-01-10 2018-08-03 云南电网有限责任公司保山供电局 一种输电线路绝缘材料的多频介电响应测量系统
CN110208662B (zh) * 2019-06-24 2022-04-05 国网上海市电力公司 基于介质谱的超导电缆pplp绝缘检测方法及系统

Also Published As

Publication number Publication date
CN110658432A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
CN110658432B (zh) 一种配电网电缆终端受潮程度评估方法
Dong et al. Implementation and application of practical traveling-wave-based directional protection in UHV transmission lines
Zhang et al. Model-based general arcing fault detection in medium-voltage distribution lines
CN109374995B (zh) 低压配电系统、线路老化和反窃电监测方法及对应系统
CN101915888B (zh) ±800kV直流输电线路雷击干扰的可拓融合识别方法
CN110940886A (zh) 基于差值电流分析的110kV交叉互联电缆故障诊断方法
CN114236288B (zh) 一种基于输电线路故障定位方法
CN110618365A (zh) 一种基于介电响应特性的低压电缆状态评估方法
CN110618364A (zh) 一种评估配电网xlpe电缆终端绝缘可靠性的方法
CN110763957A (zh) 一种中压电缆绝缘故障在线监测新方法
CN117535669A (zh) 一种接地网定点精准阴极保护防腐方法
CN109239547A (zh) 一种测量高压电缆运行状态的方法及装置
CN110726909B (zh) 一种配电网电缆中间接头受潮程度的监测和判断方法
CN116840614A (zh) 基于谐波异动特征的电缆线路缺陷感知预警方法
CN111289837A (zh) 一种配电网设备潜伏性故障的评估方法及系统
CN110658431B (zh) 一种电力电缆终端水分侵入程度监测和评估方法
CN107271775B (zh) 一种电力架空线路相位检查方法
CN211554197U (zh) 一种模拟城市配电网电缆终端受潮状态的实验平台
Yang et al. On-line monitoring and trending analysis of dielectric losses in cross-bonded high voltage cable systems
CN111025091B (zh) 一种城市配电网电缆不均匀受潮状态的智能测评方法
Afotey et al. Investigation into the impact of cable failure localisation methods on the underground cable life time in a medium voltage distribution network
Jurisic et al. Statistical analysis of non-standard overvoltage waveforms measured at 220 kV terminals of a power transformer
CN112649694B (zh) 一种小电流接地系统单相接地故障的判定方法
CN112180191A (zh) 一种电线电缆老化状态评估方法
CN111025098A (zh) 基于泄漏电流时域变化因子的电缆绝缘老化程度判断方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant