WO2020258700A1 - 一种开采可燃冰的绿色工艺 - Google Patents

一种开采可燃冰的绿色工艺 Download PDF

Info

Publication number
WO2020258700A1
WO2020258700A1 PCT/CN2019/120223 CN2019120223W WO2020258700A1 WO 2020258700 A1 WO2020258700 A1 WO 2020258700A1 CN 2019120223 W CN2019120223 W CN 2019120223W WO 2020258700 A1 WO2020258700 A1 WO 2020258700A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
gas
combustible ice
storage tank
mining
Prior art date
Application number
PCT/CN2019/120223
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
门存贵
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2020258700A1 publication Critical patent/WO2020258700A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/285Melting minerals, e.g. sulfur

Definitions

  • the invention relates to a green technology for mining combustible ice, and belongs to the technical field of energy mining.
  • Combustible ice is an ice-like crystalline substance formed by natural gas and water under high-pressure and low-temperature conditions. It is distributed in deep-sea sediments or permafrost on land. Submarine combustible ice has attracted global attention due to its large reserves, wide distribution, and no pollution to the environment after combustion, and countries are competing to develop it.
  • the existing combustible ice mining uses high-pressure water vapor to drive into the ore layer containing combustible ice, which consumes a lot of energy, and the high-pressure water vapor is cooled by pipes during the driving process, and it is easy to condense to form liquid or even solidify and freeze, so that high-pressure water is transported.
  • the steam pipe is blocked and fails to meet the requirements for use.
  • a mixed solution of ethylene glycol and saturated brine is driven into a shaft to lower its freezing point.
  • ethylene glycol has environmental pollution problems, which will pollute the sea water and limit its use in the mining of seabed combustible ice .
  • the purpose of the present invention is to solve the easy condensation phenomenon of heat source fluid in the traditional combustible ice mining process, provide a green technology for mining combustible ice, and achieve the effects of high mining efficiency and low mining cost.
  • a green process for mining combustible ice including the following steps:
  • the natural gas in the first storage tank is pressurized by the compressor to pass into the micro-interface strengthening device;
  • the seawater concentration device prepares seawater into saturated brine and enters the heat exchanger, which is heated by the heat exchanger and enters the micro-interface strengthening device;
  • emulsion an emulsified mixture of microbubbles and/or microdroplets
  • the microbubbles and/or microdroplet emulsions prepared by S3 are driven into the first shaft.
  • the upper end of the first shaft is connected with the micro-interface strengthening device, and the lower end extends into the combustible ice ore layer.
  • the combustible ice ore layer passes through the microbubbles and/ Or the micro-droplet emulsion melts into a gas-liquid mixture, and the gas-liquid mixture is transported to the gas-liquid separation device through the second shaft;
  • the second storage tank stores part of the natural gas, and the remaining natural gas is transported to the first storage tank to complete a cycle of mining.
  • the gas-liquid volume ratio introduced into the micro-interface strengthening device is (10-500):1, and the freezing point temperature range in the first shaft is adjusted by adjusting the gas-liquid mixing ratio.
  • a third storage tank is connected between the heat exchanger and the thickening device, the inlet end of the third storage tank is connected to the outlet end of the thickening device, and the outlet end of the third storage tank is connected to the inlet end of the heat exchanger.
  • the height of the bottom end of the second shaft is lower than that of the first shaft, which facilitates the transportation of the dissolved combustible ice.
  • the micro-interface strengthening device includes a mixer main body, and a micro-interface generator connected to the inlet end of the mixer main body.
  • the mixer body includes at least one of a kettle mixer or a tower mixer.
  • the micro-interface generator is one or more connected in series.
  • the micro-interface generator is at least one of pneumatic, hydraulic or pneumatic-hydraulic linkage.
  • the diameter of the microbubbles and/or microdroplets is greater than or equal to 1 ⁇ m and less than 1000 ⁇ m.
  • the gas-liquid separation device is a kettle-type, cyclone-type or baffle-type gas-liquid separator.
  • the present invention has the following beneficial effects:
  • the natural gas and saturated brine in the entire mining process can be recycled without the addition of toxic chemical substances, and it has the advantages of greenness, environmental protection, and low mining cost;
  • the green technology for mining combustible ice of the present invention strengthens the mass transfer efficiency by installing a micro-interface strengthening device, and breaks natural gas and saturated brine through mechanical microstructures and/or turbulent microstructures into microbubbles and microbubbles with a diameter of micrometers. / Or the micro-droplet emulsion, which reduces the freezing point of the fluid in the molten combustible ice ore layer and improves the mining efficiency;
  • Figure 1 is a flow chart of the green process for mining combustible ice of the present invention
  • FIG. 2 is a schematic diagram of the structure of the micro-interface strengthening device of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the micro-interface strengthening device of the present invention.
  • the mixer body 2. The micro-interface generator.
  • a green process for mining combustible ice of the present invention includes the following steps:
  • the natural gas in the first storage tank is pressurized by the compressor to pass into the micro-interface strengthening device;
  • the seawater concentration device desalinates part of the seawater into drinking water, and the remaining seawater is prepared into saturated brine and enters the heat exchanger, which is heated by the heat exchanger and enters the micro interface strengthening device;
  • the microbubbles and/or microdroplet emulsions prepared by S3 are driven into the first shaft.
  • the upper end of the first shaft is connected with the micro-interface strengthening device, and the lower end extends into the combustible ice ore layer.
  • the combustible ice ore layer passes through the microbubbles and/ Or the micro-droplet emulsion melts into a gas-liquid mixture, and the gas-liquid mixture is transported to the gas-liquid separation device through the second shaft;
  • the second storage tank stores part of the natural gas, and the remaining natural gas is transported to the first storage tank to complete a cycle of mining.
  • the natural gas and saturated brine in the entire mining process can be recycled without the addition of toxic chemical substances, and the natural gas and saturated brine are broken into diameters by mechanical microstructure and/or turbulent microstructure Micron-level micro-bubbles and/or micro-droplet emulsions reduce the freezing point of the fluid in the molten combustible ice ore layer, making it difficult to condense, and can achieve high mining efficiency and low mining costs.
  • the green process for mining combustible ice of the present invention includes the following steps:
  • the natural gas in the first storage tank is pressurized into the micro-interface strengthening device through the compressor, and the pressure in the compressor is 10Mpa;
  • the seawater concentration device prepares seawater into saturated brine and enters the heat exchanger, which is heated to 100°C and enters the micro-interface strengthening device;
  • the natural gas and saturated brine are mixed through the micro-interface strengthening device to form micro-bubbles and/or micro-droplet emulsions.
  • the gas-liquid volume ratio introduced into the micro-interface strengthening device is 10:1.
  • the micro-interface strengthening device includes a mixer main body 1, and a micro-interface generator 2 connected to the inlet end of the mixer main body 1, one micro-interface generator 2 and the mixer main body 1 a kettle mixer;
  • the micro-interface generator 2 is a bubble breaker Before the natural gas and saturated brine enter the mixer body 1, they are broken into micro bubbles and/or micro-droplet emulsions with a diameter greater than or equal to 1 ⁇ m and less than 1000 ⁇ m by a bubble breaker.
  • the bubble breaker is pneumatic and adopts Gas driven, the input gas volume is much larger than the liquid volume;
  • the microbubbles and/or microdroplet emulsions prepared by S3 flow out from the lower end of the kettle mixer, are pumped and driven into the first shaft, and the upper end of the first shaft is connected to the kettle mixer of the micro-interface strengthening device ,
  • the lower end extends into the combustible ice ore layer, the combustible ice ore layer is melted by micro-bubbles and/or micro-droplet emulsions and transported to the cyclone gas-liquid separation device through the second shaft.
  • the bottom of the second shaft is lower than the first shaft.
  • the second storage tank stores part of the natural gas, and the remaining natural gas is transported to the first storage tank to complete a cycle of mining.
  • the green process for mining combustible ice of the present invention includes the following steps:
  • the natural gas in the first storage tank is pressurized by the compressor to pass into the micro-interface strengthening device, and the pressure in the compressor is 15Mpa;
  • the seawater concentration device prepares seawater into saturated salt water and enters the heat exchanger, which is heated to 120°C and enters the micro-interface strengthening device;
  • S3, natural gas and saturated brine are mixed through the micro-interface strengthening device to form micro-bubbles and/or micro-droplet emulsions.
  • the gas-liquid volume ratio introduced into the micro-interface strengthening device is 200:1.
  • the micro-interface strengthening device includes a mixer main body 1, and a micro-interface generator 2 connected to the inlet end of the mixer main body 1.
  • the micro-interface generators 2 are two in series, the mixer main body 1 is a kettle mixer; the micro-interface generator 2 is Two bubble breakers are connected in series, used before the natural gas and saturated brine enter the mixer body 1, through the two bubble breakers to break into micro bubbles and/or micro droplet emulsions with a diameter greater than or equal to 1 ⁇ m and less than 1000 ⁇ m, wherein One bubble breaker is pneumatic, and the other bubble breaker is hydraulic;
  • the microbubbles and/or microdroplet emulsions prepared by S3 flow out from the lower end of the kettle mixer, are pumped and driven into the first shaft, and the upper end of the first shaft is connected to the kettle mixer of the micro-interface strengthening device ,
  • the lower end extends into the combustible ice ore layer, the combustible ice ore layer is melted by microbubbles and/or microdroplet emulsions, and transported to the cyclone gas-liquid separation device through the second shaft.
  • the height of the bottom of the second shaft is lower than that of the first shaft.
  • the second storage tank stores part of the natural gas, and the remaining natural gas is transported to the first storage tank to complete a cycle of mining.
  • the green process for mining combustible ice of the present invention includes the following steps:
  • the natural gas in the first storage tank is pressurized by the compressor to pass into the micro-interface strengthening device, and the pressure in the compressor is 10Mpa;
  • the seawater concentration device prepares seawater into saturated brine and enters the heat exchanger, which is heated to 100°C and enters the micro-interface strengthening device;
  • S3, natural gas and saturated brine are mixed through the micro-interface strengthening device to form micro-bubbles and/or micro-droplet emulsions.
  • the gas-liquid volume ratio introduced into the micro-interface strengthening device is 500:1.
  • the micro-interface strengthening device includes a mixer main body 1, and a micro-interface generator 2 connected to the inlet end of the mixer main body 1, one micro-interface generator 2 and the mixer main body 1 a kettle mixer;
  • the micro-interface generator 2 is a bubble breaker Before the natural gas and saturated brine enter the mixer body 1, they are broken into micro bubbles and/or micro-droplet emulsions with a diameter greater than or equal to 1 ⁇ m and less than 1000 ⁇ m by a bubble breaker.
  • the bubble breaker is pneumatic and adopts Gas driven, the input gas volume is much larger than the liquid volume;
  • the microbubbles and/or microdroplet emulsions prepared by S3 flow out from the lower end of the kettle mixer, are pumped and driven into the first shaft, and the upper end of the first shaft is connected to the kettle mixer of the micro-interface strengthening device ,
  • the lower end extends into the combustible ice ore layer, the combustible ice ore layer is melted by microbubbles and/or microdroplet emulsions, and transported to the cyclone gas-liquid separation device through the second shaft.
  • the height of the bottom of the second shaft is lower than that of the first shaft.
  • the second storage tank stores part of the natural gas, and the remaining natural gas is transported to the first storage tank to complete a cycle of mining.
  • the natural gas and saturated brine in the entire mining process can be recycled without the addition of toxic chemical substances, and it has the advantages of being green, environmentally friendly, and low mining cost;
  • the natural gas and saturated brine are broken into micro-bubbles and/or micro-droplet emulsions with a diameter of micrometers through mechanical microstructures and/or turbulent microstructures, thereby reducing melting
  • the freezing point of the fluid in the combustible ice ore layer improves the mining efficiency;
  • the green process for mining combustible ice of the present invention is driven into the shaft through the mixing of saturated brine and natural gas without introducing other impurity gases, and the subsequent sections do not require gas separation ,
  • the mining cost is low.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种开采可燃冰的绿色工艺,包括以下步骤:天然气与饱和盐水经微界面强化装置混合形成微气泡和/或微液滴乳化液;将制备的微气泡和/或微液滴乳化液打入第一竖井,第一竖井上端连接微界面强化装置,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/或微液滴乳化液融化为气液混合物,气液混合物经第二竖井输送到气液分离装置;经气液分离装置分离后,天然气气体输送至第二储罐,盐水输送至浓缩装置;第二储罐将一部分天然气储存,剩余天然气输送至第一储罐,完成一次循环开采。该开采可燃冰的绿色工艺解决了开采可燃冰过程中的热源流体易凝结现象,达到了开采效率高、开采成本低的效果。

Description

一种开采可燃冰的绿色工艺 技术领域
本发明涉及一种开采可燃冰的绿色工艺,属于能源开采技术领域。
背景技术
随着传统能源的减少以及环境保护要求的提高,开发和利用新型的清洁能源迫在眉睫。可燃冰是天然气与水在高压低温条件下形成的类冰状的结晶物质,分布于深海沉积物或陆域的永久冻土中。海底可燃冰因其储量大、分布广、燃烧后对环境无污染,引起了全球的重视,各国竞相开发。
现有的可燃冰开采是利用高压水蒸气打入含有可燃冰的矿层,其能量消耗大,而且高压水蒸气在打入过程中经管道冷却,容易冷凝形成液体甚至凝固结冰,使得输送高压水蒸气的管道堵塞,达不到使用要求。现有技术通过乙二醇和饱和食盐水的混合溶液,打入竖井内,来降低其凝固点,但是乙二醇存在环境污染问题,会对海水造成污染,限制了其在开采海底可燃冰中的使用。
发明内容
本发明的目的是解决传统可燃冰开采过程中的热源流体易凝结现象,提供了一种开采可燃冰的绿色工艺,达到开采效率高、开采成本低的效果。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种开采可燃冰的绿色工艺,包括以下步骤:
S1,第一储罐中的天然气经压缩机加压通入到微界面强化装置中;
S2,海水浓缩装置将海水制备成饱和盐水进入换热器,经换热器加热进入微界面强化装置中;
S3,天然气与饱和盐水经微界面强化装置混合形成微气泡和/或微液滴乳化状混合液(简称乳化液);
S4,将S3制备的微气泡和/或微液滴乳化液打入第一竖井,所述第一竖井上端连接微界面强化装置,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/或微液滴乳化液融化为气液混合物,气液混合物经第二竖井输送到气液分离装置;
S5,经气液分离装置分离后,天然气气体输送至第二储罐,盐水输送至浓缩装置;
S6,第二储罐将一部分天然气储存,剩余天然气输送至第一储罐,完成一次循环开采。
优选地,所述微界面强化装置中通入的气液体积比为(10~500):1,通过调控气液混合的比例,调控第一竖井内的凝固点温度范围。
优选地,所述换热器与浓缩装置之间连接有第三储罐,所述第三储罐入口端连接浓缩装置出口端,所述第三储罐出口端连接换热器入口端。
优选地,所述第二竖井底端高度低于第一竖井,便于溶解后的可燃冰输送。
优选地,所述微界面强化装置包括混合器主体,和连接混合器主体进口端的微界面发生器。
优选地,所述混合器主体包括釜式混合器或塔式混合器中的至少一种。
优选地,所述微界面发生器为一个或多个串联。
优选地,所述微界面发生器为气动式、液动式或气液动联动式中的至少一种。
优选地,所述微气泡和/或微液滴的直径为大于等于1μm且小于1000μm。
优选地,所述气液分离装置为釜式、旋风式或挡板式气液分离器。
综上所述,本发明具有以下有益效果:
(1)本发明的开采可燃冰的绿色工艺,整个开采工艺过程中的天然气及饱和盐水可以循环使用,且无有毒化学物质添加,具有绿色、环保、开采成本低等优点;
(2)本发明的开采可燃冰的绿色工艺,通过设置微界面强化装置,强化传质效率,将天然气和饱和盐水通过机械微结构和/或湍流微结构破碎成直径为微米级别的微气泡和/或微液滴乳化液,降低了熔融可燃冰矿层的流体的凝固点,提高了开采效率;
(3)本发明的开采可燃冰的绿色工艺,通过饱和盐水和天然气混合后打入竖井内,并不引入其它杂质气体,后续工段不需要进行气体的分离,开采成本低。
附图说明
图1是本发明的开采可燃冰的绿色工艺流程图;
图2是本发明的微界面强化装置的结构示意图;
图3是本发明的微界面强化装置的结构示意图;
图中:1、混合器主体;2、微界面发生器。
具体实施方式
以下结合附图对本发明作进一步详细说明。
如图1所示,本发明的一种开采可燃冰的绿色工艺,包括以下步骤:
S1,第一储罐中的天然气经压缩机加压通入到微界面强化装置中;
S2,海水浓缩装置将海水一部分淡化成饮用水,剩余海水制备成饱和盐水进入换热器,经换热器加热进入微界面强化装置中;
S3,天然气与饱和盐水经微界面强化装置混合形成微气泡和/或微液滴乳化液;
S4,将S3制备的微气泡和/或微液滴乳化液打入第一竖井,所述第一竖井上端连接微界面强化装置,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/或微液滴乳化液融化为气液混合物,气液混合物经第二竖井输送到气液分离装置;
S5,经气液分离装置分离后,天然气气体输送至第二储罐,盐水输送至浓缩装置;
S6,第二储罐将一部分天然气储存,剩余天然气输送至第一储罐,完成一次循环开采。
本发明的开采可燃冰的绿色工艺,整个开采工艺过程中的天然气及饱和盐水可以循环使用,且无有毒化学物质添加,将天然气和饱和盐水通过机械微结构和/或湍流微结构破碎成直径为微米级别的微气 泡和/或微液滴乳化液,降低了熔融可燃冰矿层的流体的凝固点,使其不易凝结,可以实现开采效率高、开采成本低。
实施例1
如图1、图2所示,本发明的一种开采可燃冰的绿色工艺,包括以下步骤:
S1,第一储罐中的天然气经压缩机加压通入到微界面强化装置中,压缩机内的压力为10Mpa;
S2,海水浓缩装置将海水制备成饱和盐水进入换热器,经换热器加热到100℃进入微界面强化装置中;
S3,天然气与饱和盐水经微界面强化装置混合形成微气泡和/或微液滴乳化液,微界面强化装置中通入的气液体积比为10:1,通过调控气液混合的比例,可以调控气液混合的比例,调控第一竖井内的凝固点温度范围为-30℃;
微界面强化装置包括混合器主体1,和连接混合器主体1进口端的微界面发生器2,微界面发生器2为一个,混合器主体1为釜式混合器;微界面发生器2为气泡破碎器,用在天然气与饱和盐水进入所述混合器主体1之前,通过气泡破碎器破碎成直径大于等于1μm且小于1000μm的微气泡和/或微液滴乳化液,气泡破碎器为气动式,采用气体驱动,输入气量远大于液体量;
S4,将S3制备的微气泡和/或微液滴乳化液从釜式混合器下端流出,经泵传送,打入第一竖井,所述第一竖井上端连接微界面强化装置的釜式混合器,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/ 或微液滴乳化液融化,经第二竖井输送到旋风式气液分离装置,第二竖井底端高度低于第一竖井,便于溶解后的可燃冰输送;
S5,经旋风式气液分离器分离后,天然气气体输送至第二储罐,盐水输送至海水浓缩装置,换热器与浓缩装置之间连接有第三储罐,第三储罐入口端连接浓缩装置出口端,第三储罐出口端连接换热器入口端;
S6,第二储罐将一部分天然气储存,剩余天然气输送至第一储罐,完成一次循环开采。
实施例2
如图1、图3所示,本发明的一种开采可燃冰的绿色工艺,包括以下步骤:
S1,第一储罐中的天然气经压缩机加压通入到微界面强化装置中,压缩机内的压力为15Mpa;
S2,海水浓缩装置将海水制备成饱和盐水进入换热器,经换热器加热到120℃进入微界面强化装置中;
S3,天然气与饱和盐水经微界面强化装置混合形成微气泡和/或微液滴乳化液,微界面强化装置中通入的气液体积比为200:1,通过调控气液混合的比例,可以调控气液混合的比例,调控第一竖井内的凝固点温度范围为-45℃;
微界面强化装置包括混合器主体1,和连接混合器主体1进口端的微界面发生器2,微界面发生器2为两个串联,混合器主体1为釜式混合器;微界面发生器2为两个气泡破碎器串联,用在天然气与饱 和盐水进入所述混合器主体1之前,通过两个气泡破碎器破碎成直径大于等于1μm且小于1000μm的微气泡和/或微液滴乳化液,其中一个气泡破碎器为气动式,另一个气泡破碎器为液动式;
S4,将S3制备的微气泡和/或微液滴乳化液从釜式混合器下端流出,经泵传送,打入第一竖井,所述第一竖井上端连接微界面强化装置的釜式混合器,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/或微液滴乳化液融化,经第二竖井输送到旋风式气液分离装置,第二竖井底端高度低于第一竖井,便于溶解后的可燃冰输送;
S5,经釜式气液分离器分离后,天然气气体输送至第二储罐,盐水输送至海水浓缩装置,换热器与浓缩装置之间连接有第三储罐,第三储罐入口端连接浓缩装置出口端,第三储罐出口端连接换热器入口端;
S6,第二储罐将一部分天然气储存,剩余天然气输送至第一储罐,完成一次循环开采。
实施例3
如图1、图2所示,本发明的一种开采可燃冰的绿色工艺,包括以下步骤:
S1,第一储罐中的天然气经压缩机加压通入到微界面强化装置中,压缩机内的压力为10Mpa;
S2,海水浓缩装置将海水制备成饱和盐水进入换热器,经换热器加热到100℃进入微界面强化装置中;
S3,天然气与饱和盐水经微界面强化装置混合形成微气泡和/或 微液滴乳化液,微界面强化装置中通入的气液体积比为500:1,通过调控气液混合的比例,可以调控气液混合的比例,调控第一竖井内的凝固点温度范围为-55℃;
微界面强化装置包括混合器主体1,和连接混合器主体1进口端的微界面发生器2,微界面发生器2为一个,混合器主体1为釜式混合器;微界面发生器2为气泡破碎器,用在天然气与饱和盐水进入所述混合器主体1之前,通过气泡破碎器破碎成直径大于等于1μm且小于1000μm的微气泡和/或微液滴乳化液,气泡破碎器为气动式,采用气体驱动,输入气量远大于液体量;
S4,将S3制备的微气泡和/或微液滴乳化液从釜式混合器下端流出,经泵传送,打入第一竖井,所述第一竖井上端连接微界面强化装置的釜式混合器,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/或微液滴乳化液融化,经第二竖井输送到旋风式气液分离装置,第二竖井底端高度低于第一竖井,便于溶解后的可燃冰输送;
S5,经挡板式气液分离器分离后,天然气气体输送至第二储罐,盐水输送至海水浓缩装置,换热器与浓缩装置之间连接有第三储罐,第三储罐入口端连接浓缩装置出口端,第三储罐出口端连接换热器入口端;
S6,第二储罐将一部分天然气储存,剩余天然气输送至第一储罐,完成一次循环开采。
本发明的开采可燃冰的绿色工艺,整个开采工艺过程中的天然气及饱和盐水可以循环使用,且无有毒化学物质添加,具有绿色、环保、 开采成本低等优点;本发明的开采可燃冰的绿色工艺,通过设置微界面强化装置,强化传质效率,将天然气和饱和盐水通过机械微结构和/或湍流微结构破碎成直径为微米级别的微气泡和/或微液滴乳化液,降低了熔融可燃冰矿层的流体的凝固点,提高了开采效率;本发明的开采可燃冰的绿色工艺,通过饱和盐水和天然气混合后打入竖井内,并不引入其它杂质气体,后续工段不需要进行气体的分离,开采成本低。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种开采可燃冰的绿色工艺,其特征是,包括以下步骤:
    S1,第一储罐中的天然气经压缩机加压通入到微界面强化装置中;
    S2,海水浓缩装置将海水制备成饱和盐水进入换热器,经换热器加热进入微界面强化装置中;
    S3,天然气与饱和盐水经微界面强化装置混合形成微气泡和/或微液滴乳化液;
    S4,将S3制备的微气泡和/或微液滴乳化液打入第一竖井,所述第一竖井上端连接微界面强化装置,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/或微液滴乳化液融化为气液混合物,气液混合物经第二竖井输送到气液分离装置;
    S5,经气液分离装置分离后,天然气气体输送至第二储罐,盐水输送至浓缩装置;
    S6,第二储罐将一部分天然气储存,剩余天然气输送至第一储罐,完成一次循环开采。
  2. 根据权利要求1所述的一种开采可燃冰的绿色工艺,其特征是,所述微界面强化装置中通入的气液体积比为(10~500):1。
  3. 根据权利要求1所述的一种开采可燃冰的绿色工艺,其特征是,所述换热器与浓缩装置之间连接有第三储罐,所述第三储罐入口端连接浓缩装置出口端,所述第三储罐出口端连接换热器入口端。
  4. 根据权利要求1所述的一种开采可燃冰的绿色工艺,其特征是,所述第二竖井底端高度低于第一竖井。
  5. 根据权利要求1所述的一种开采可燃冰的绿色工艺,其特征 是,所述微界面强化装置包括混合器主体,和连接混合器主体进口端的微界面发生器。
  6. 根据权利要求5所述的一种开采可燃冰的绿色工艺,其特征是,所述混合器主体包括釜式混合器或塔式混合器中的至少一种。
  7. 根据权利要求5所述的一种开采可燃冰的绿色工艺,其特征是,所述微界面发生器为一个或多个串联。
  8. 根据权利要求7所述的一种开采可燃冰的绿色工艺,其特征是,所述微界面发生器为气动式、液动式或气液动联动式中的至少一种。
  9. 根据权利要求1所述的一种开采可燃冰的绿色工艺,其特征是,所述微气泡和/或微液滴的直径为大于等于1μm且小于1000μm。
  10. 根据权利要求1所述的一种开采可燃冰的绿色工艺,其特征是,所述气液分离装置为釜式、旋风式或挡板式气液分离器。
PCT/CN2019/120223 2019-06-24 2019-11-22 一种开采可燃冰的绿色工艺 WO2020258700A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910547215.8A CN112127850B (zh) 2019-06-24 2019-06-24 一种开采可燃冰的绿色工艺
CN201910547215.8 2019-06-24

Publications (1)

Publication Number Publication Date
WO2020258700A1 true WO2020258700A1 (zh) 2020-12-30

Family

ID=73850160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120223 WO2020258700A1 (zh) 2019-06-24 2019-11-22 一种开采可燃冰的绿色工艺

Country Status (2)

Country Link
CN (1) CN112127850B (zh)
WO (1) WO2020258700A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030136585A1 (en) * 2002-01-18 2003-07-24 Tobishima Corporation & Fuji Research Institute Corp. Device and method for extracting a gas hydrate
CN101016841A (zh) * 2007-02-13 2007-08-15 中国科学院广州能源研究所 一种开采天然气水合物的方法及装置
CN106930740A (zh) * 2017-05-13 2017-07-07 西南石油大学 一种注入饱和热盐水开采天然气水合物的方法
CN206562925U (zh) * 2017-02-20 2017-10-17 华南理工大学 一种烟气辅热置换开采天然气水合物的装置
CN107654219A (zh) * 2017-11-03 2018-02-02 西南石油大学 一种蒸汽吞吐法开采天然气水合物系统及工艺
CN108661605A (zh) * 2017-03-30 2018-10-16 梁嘉麟 用于海底可燃冰矿藏碎块的甲烷生成改进a型发生装置
US20180355674A1 (en) * 2015-09-10 2018-12-13 Cameron International Corporation Subsea Hydrocarbon Extraction System

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9601030D0 (en) * 1996-01-18 1996-03-20 British Gas Plc a method of producing gas hydrate
JP2003138279A (ja) * 2001-10-31 2003-05-14 Mitsubishi Heavy Ind Ltd ガスハイドレート生成装置
CN101513600B (zh) * 2009-03-23 2012-01-18 江苏工业学院 一种气体水合物生产方法及装置
CN101555784B (zh) * 2009-06-01 2013-04-17 李向东 一种洁净的天然气开采方法
CN102817596A (zh) * 2012-09-05 2012-12-12 韩中枢 海洋可燃冰开采装置和开采方法
CN103603638B (zh) * 2013-11-13 2016-06-22 大连理工大学 一种结合降压法的天然气水合物co2置换开采方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030136585A1 (en) * 2002-01-18 2003-07-24 Tobishima Corporation & Fuji Research Institute Corp. Device and method for extracting a gas hydrate
CN101016841A (zh) * 2007-02-13 2007-08-15 中国科学院广州能源研究所 一种开采天然气水合物的方法及装置
US20180355674A1 (en) * 2015-09-10 2018-12-13 Cameron International Corporation Subsea Hydrocarbon Extraction System
CN206562925U (zh) * 2017-02-20 2017-10-17 华南理工大学 一种烟气辅热置换开采天然气水合物的装置
CN108661605A (zh) * 2017-03-30 2018-10-16 梁嘉麟 用于海底可燃冰矿藏碎块的甲烷生成改进a型发生装置
CN106930740A (zh) * 2017-05-13 2017-07-07 西南石油大学 一种注入饱和热盐水开采天然气水合物的方法
CN107654219A (zh) * 2017-11-03 2018-02-02 西南石油大学 一种蒸汽吞吐法开采天然气水合物系统及工艺

Also Published As

Publication number Publication date
CN112127850B (zh) 2021-12-17
CN112127850A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
US6991722B2 (en) Hydrate desalination for water purification
RU2425860C2 (ru) Способ получения не образующей пробки суспензии гидрата
AU2001287128A1 (en) Improved hydrate desalination for water purification
CN1382107A (zh) 用正漂浮或负漂浮/助漂浮水化物脱盐同时捕获二氧化碳产生液态二氧化碳
US6830682B2 (en) Controlled cooling of input water by dissociation of hydrate in an artificially pressurized assisted desalination fractionation apparatus
CN107140772A (zh) 一种基于液化天然气冷能的复合海水淡化方法及系统
WO2020258700A1 (zh) 一种开采可燃冰的绿色工艺
CN103626364A (zh) 高含固率城市污泥的超临界水氧化处理及发电系统
Zhang et al. A comprehensive review on the characteristics and kinetics of freshwater separation by hydrate-based method: Current progress, challenges and perspectives
WO2020258701A1 (zh) 一种微界面强化系统在开采可燃冰中的应用
KR101555158B1 (ko) 오니 처리 방법 및 오니 처리 시스템
CN1843948A (zh) 海水淡化,污水净化及发电的方法及装置
CN114797169A (zh) 一种水力空化辅助的液-液萃取装置和萃取方法
CN108386175A (zh) 一种超稠油注天然气与稀油复合降粘方法
Behaien et al. Application of water scrubbing technique for biogas upgrading in a microchannel
CN112127856B (zh) 一种陆地开采可燃冰的装置
CN214360798U (zh) 一种新型乳化蒸发系统
CN210660046U (zh) 一种开采可燃冰的装置
CN101384323B (zh) 用于从包含至少一种溶解的固体物的水流中提取馏分流的方法
CN202250275U (zh) 油田中低温产出液发电装置
WO2020259377A1 (zh) 一种开采可燃冰的装置
CN115925040B (zh) 一种基于旋流强化的高盐水处理工艺及系统
CN109589654B (zh) 一种基于气浮与虹吸协同作用的气体水合物浆分离装置和方法
CN206858344U (zh) 基于液化天然气冷能的海水淡化系统
CN203043579U (zh) 组合式双效浓缩器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934858

Country of ref document: EP

Kind code of ref document: A1