WO2020259377A1 - 一种开采可燃冰的装置 - Google Patents

一种开采可燃冰的装置 Download PDF

Info

Publication number
WO2020259377A1
WO2020259377A1 PCT/CN2020/096674 CN2020096674W WO2020259377A1 WO 2020259377 A1 WO2020259377 A1 WO 2020259377A1 CN 2020096674 W CN2020096674 W CN 2020096674W WO 2020259377 A1 WO2020259377 A1 WO 2020259377A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
gas
combustible ice
mining
natural gas
Prior art date
Application number
PCT/CN2020/096674
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
门存贵
孟为民
黄传峰
王宝荣
杨高东
罗华勋
张锋
李磊
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2020259377A1 publication Critical patent/WO2020259377A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection

Definitions

  • the invention relates to the field of mining combustible ice, and more specifically, it relates to a device for mining combustible ice.
  • Natural gas hydrate also known as “flammable ice” is a solid substance formed by mixing water and natural gas under high-pressure and low-temperature conditions. It looks very much like ice and snow or solid alcohol. It can burn when exposed to fire. It is easy to use and has burning value.
  • High, clean and pollution-free, combustible ice as the preferred alternative energy source for the "post-oil generation", is a strategic resource with commercial development prospects in the 21st century. As an important new energy deposit in my country in the future, "combustible ice” will be included in the energy plan for the first time.
  • the Chinese patent with publication number CN102817596A discloses a marine combustible ice mining device, which includes the following components: drill bit, drilling rig, mixture channel, sediment separation device, decomposition tank, seawater heating equipment, seawater input pipeline, hot water output pipeline , Natural gas input pipelines, natural gas output pipelines, seawater output pipelines, pumps, pumps, pumps and pipelines; its operation mode is: extend the drill bit into the combustible ice layer in the ocean for mining, and pump the mixture of combustible ice, silt and decomposition gas To the sediment separation device located on the ground, the separated combustible ice, decomposed gas and water mixture will be transported through the pipeline to the decomposition tank located on the floating base on the sea surface.
  • the pump will use the thermoton effect hydrogen gas to support the heater, and the heated
  • the combustible ice is fed into the decomposition tank through the pipeline, and the natural gas that is decomposed is exported through the pipeline, and part of the natural gas is exported through the pipeline.
  • the seawater heating equipment is used as the seawater heating center.
  • the pipeline is a gas-water two-phase mixed transmission pump.
  • the hot water output pipe is in the process of feeding hot water to the seabed, if the hot water output pipe passes through the frozen soil layer, the hot water in the hot water output pipe will easily cool down, increase the viscosity, increase the flow resistance, and even solidify and block the hot water.
  • the output pipeline is not conducive to the mining of combustible ice at this time.
  • the purpose of the present invention is to provide a device for mining combustible ice, which achieves the advantages of lowering the freezing point of water and facilitating the mining of combustible ice.
  • a device for mining combustible ice including an offshore platform set on the sea, a seawater desalination device set on the offshore platform, and a seawater desalination device set on the offshore platform.
  • the device is connected with a heat exchanger through a first connecting pipe, a first pump arranged on the first connecting pipe, and a second connecting pipe arranged at the outlet of the heat exchanger.
  • the second connecting pipe is provided with natural gas for heating
  • a micro-interface strengthening device in the water, the outlet of the micro-interface strengthening device is provided with a drainage pipe extending to the seabed mining location;
  • the offshore platform is provided with a natural gas output pipeline extending to a subsea mining location, the natural gas output pipeline is provided with a second pump, and the outlet of the natural gas output pipeline is connected with a gas-liquid separator.
  • the seawater desalination device transports the brine through the first connecting pipe to the heat exchanger for heating, and the heated brine is delivered to the micro-interface strengthening device through the second connecting pipe.
  • the natural gas passes through the micro-interface strengthening device.
  • microbubbles are generated.
  • the microbubbles are filled with saturated brine, making the saturated brine appear as an emulsified solution, which reduces the freezing point of the water.
  • the emulsified hot saturated brine is input to the seabed combustible ice mining location through the drainage pipe.
  • the micro-interface strengthening device includes a gas tank storing natural gas arranged on an offshore platform, a compressor connected to the gas tank through a third connecting pipe, and a micro-bubble generating device connected to the compressor through a fourth connecting pipe.
  • the output port of the device for generating microbubbles is connected with a drain pipe, and a third pump is provided on the third connecting pipe.
  • the third pump pumps out the natural gas in the gas tank and sends it to the compressor.
  • the compressor makes the natural gas generate high pressure and enters the microbubble generating device.
  • the microbubble generating device fills the natural gas into saturated brine. in.
  • the gas output port of the gas-liquid separator is provided with a first exhaust pipe and a second exhaust pipe, the first exhaust pipe is connected to a gas tank provided on an offshore platform, and the second The exhaust pipe is connected to the gas tank;
  • the liquid output port of the gas-liquid separator is provided with a first discharge pipe and a second discharge pipe extending into the sea.
  • the first discharge pipe is connected to the seawater desalination device, and the first discharge pipe is provided with There is a fourth pump.
  • the natural gas separated from the gas-liquid separator enters the gas storage tank through the first exhaust pipe for storage, and the other part enters the gas tank through the second exhaust pipe, realizing the reuse of natural gas and saving resources ,
  • a part of the liquid output from the gas-liquid separator is directly discharged into the sea through the second discharge pipe, and the other part is input into the seawater desalination device through the first discharge pipe, which is convenient for the seawater desalination device to produce saturated brine.
  • the second exhaust pipe is provided with a detection component at a position close to the gas tank for detecting whether there is a leak of natural gas at the connection position between the second exhaust pipe and the gas tank.
  • the arrangement of the detection component enables the third connecting pipe to be detected in time when the natural gas leaks, which increases the safety of the device and reduces the waste of natural gas.
  • the detection component includes a detection cylinder threadedly connected to the second exhaust pipe near the gas tank, and one end of the detection cylinder far from the second exhaust pipe is embedded in the inner wall of the gas tank and is threadedly connected with the gas tank.
  • a number of through holes are opened on the wall of the detection cylinder, and an elastic membrane that closes the through holes is provided on the detection cylinder.
  • a transparent cover is provided on the outer wall of the detection cylinder, and one end of the transparent cover away from the detection cylinder is in contact with the gas tank.
  • the transparent cover is provided to protect the elastic film, which reduces the influence of the external environment on the elastic film and reduces the service life.
  • the outer wall of the drainage pipe is slidingly connected with a polyurethane prefabricated thermal insulation pipe, and the polyurethane prefabricated thermal insulation pipe is provided with a fixing member for fixing the position of the polyurethane prefabricated thermal insulation pipe on the drainage pipe.
  • the polyurethane prefabricated insulation pipe has strong water resistance and corrosion resistance. It is fixed on the outer wall of the drain pipe, which reduces the rate of decrease in the temperature of saturated salt water in the drain pipe. When moving to a lower temperature area in the water, fix the position of the polyurethane prefabricated insulation pipe on the drain pipe.
  • the fixing member includes a U-shaped clamping plate hinged on the upper and lower ends of the polyurethane prefabricated thermal insulation pipe through a hinge shaft, and the hinge shaft is provided with a torsion spring that makes the clamping plate interfere with the outer wall of the drain pipe.
  • the torsion spring increases the friction between the U-shaped chuck and the outer wall of the drain pipe, which is convenient for the U-shaped chuck to fix the polyurethane prefabricated heat preservation pipe on the drain pipe.
  • the polyurethane prefabricated thermal insulation pipe is divided into two connecting pipes with a semi-arc cross-section along the vertical axis, and the fixing member includes a connecting plate arranged on the opposite side walls of the two connecting pipes.
  • the plates are connected by locking bolts.
  • the two connecting plates are provided with positioning plates embedded in the opposite connecting plates on opposite sides.
  • the positioning plate is arranged so that the two connecting plates can be quickly aligned, and the locking bolts are used to connect the two connecting plates, and the polyurethane prefabricated thermal insulation pipe can be quickly installed.
  • the present invention has the following beneficial effects: natural gas passes through the micro-interface strengthening device and generates micro-bubbles under its action.
  • the micro-bubbles are filled with saturated brine, making the saturated brine appear as an emulsified solution, and reducing the freezing point of water.
  • the hot saturated brine in the emulsified state is input to the seafloor combustible ice mining location through the drainage pipe, so that the combustible ice on the seafloor is melted.
  • the setting of the micro-interface strengthening device reduces the freezing point of water, thereby increasing the use of the device for mining combustible ice range.
  • Figure 1 is a schematic structural diagram of this embodiment
  • Fig. 2 is a schematic diagram of an enlarged structure of part A in Fig. 1;
  • FIG. 3 is a schematic diagram of the structure of the present embodiment for embodying the detection element
  • Figure 4 is a schematic diagram of the structure of the embodiment for embodying the fixing member
  • FIG. 5 is a schematic diagram of the structure of the connecting pipe of this embodiment.
  • Fig. 6 is a schematic diagram of the structure of the positioning plate in this embodiment.
  • First drain pipe; 165 The second discharge pipe; 166, the fourth pump; 17, the gas tank; 171, the third connecting pipe; 172, the compressor; 173, the fourth connecting pipe; 174, the device for generating microbubbles; 175, the third pump 18, detection part; 181, detection tube; 182, through hole; 183, elastic membrane; 184, transparent cover.
  • a device for mining combustible ice includes an offshore platform 1 installed on the sea, a seawater desalination device 11 installed on the offshore platform 1, and a first connecting pipe that is installed on the offshore platform 1 and the seawater desalination device 11 12 connected to the heat exchanger 13, the first pump 121 arranged on the first connecting pipe 12, the second connecting pipe 131 arranged at the outlet of the heat exchanger 13, the second connecting pipe 131 is provided with natural gas filled with hot water
  • the outlet of the micro-interface strengthening device 14 is provided with a drainage pipe 141 extending to the subsea mining location, the offshore platform 1 is provided with a natural gas output pipeline 15 extending to the subsea mining location, and the natural gas output pipeline 15 is provided There is a second pump 151, and the outlet of the natural gas output pipeline 15 is connected with a gas-liquid separator 16; before the drainage pipe 141 extends to the seabed combustible ice mining location, the drilling rig on the offshore platform 1 connects the drainage pipe
  • the desalination device 11 delivers saturated brine through the first connecting pipe 12 to the heat exchanger 13 for heating, and the heated brine is delivered to the micro-interface strengthening device 14 through the second connecting pipe 131.
  • natural gas passes through the micro-interface strengthening device 14 and generates microbubbles under its action.
  • the microbubbles are filled with saturated brine, making the saturated brine appear as an emulsified solution, reducing the freezing point of water, and passing the emulsified hot saturated brine through the drain
  • the pipe 141 is input to the submarine combustible ice mining location to melt the combustible ice on the seabed, and then the second pump 151 pumps up the natural gas and water produced by the melted combustible ice through the natural gas output pipeline 15, and passes through the gas-liquid separator 16 to realize the natural gas and water.
  • the separation of water realizes the extraction of combustible ice.
  • no other impurities are generated. Therefore, the gas-liquid mixture extracted from the natural gas output pipeline 15 only needs to pass through the gas-liquid separator 16, so that Combustible ice has high efficiency, the whole process is environmentally friendly, low cost, and simple operation.
  • the micro-interface strengthening device 14 includes a gas tank 17 storing natural gas arranged on the offshore platform 1, a compressor 172 connected to the gas tank 17 through a third connecting pipe 171, and a fourth connecting pipe with the compressor 172.
  • the device 174 for generating microbubbles connected to 173.
  • the device 174 for generating microbubbles can be a device for generating microbubbles disclosed in the publication number CN102781561B.
  • the outlet of the device 174 for generating microbubbles is connected to the drain pipe 141.
  • a third pump 175 is provided on the three connecting pipe 171.
  • the third pump 175 pumps out the natural gas in the gas tank 17 and sends it to the compressor 172.
  • the compressor 172 causes the natural gas to generate high pressure and enters the microbubble generating device 174. At this time, the microbubble generating device 174 fills the natural gas into saturated brine. in.
  • the micro-interface strengthening device 14 includes a mixer main body and a micro-interface generator connected to the mixer main body.
  • the mixer main body is connected to the fourth connecting pipe 173 and the second connecting pipe 131.
  • the mixer The main body is a mixing chamber of gas-liquid medium, and the main body of the mixer includes one or a combination of a kettle type mixer, a tube type mixer, and a tower type mixer.
  • the micro-interface generator includes mechanical microstructures and/or turbulent microstructures. Through microchannel action, field force action, and mechanical energy action, or any combination of these three methods, the multiphase reaction medium The gas phase and/or liquid phase are broken into micro bubbles and/or micro droplets with a diameter of micrometers.
  • the microchannel action mode is to construct the microstructure of the flow channel to break the gas and/or liquid phase passing through the microchannel into microbubbles and/or droplets;
  • the field force action mode is to use the external field force to non-contact
  • the method is to input energy from the fluid to break it into microbubbles or microdroplets;
  • the mechanism of mechanical energy is to use the mechanical energy of the fluid to convert it into the surface energy of bubbles or droplets to break the bubbles or droplets into microbubbles or microliquids drop.
  • the micro-interface generator is any physical plane with holes penetrating it.
  • Each hole includes a gas inlet and a gas outlet.
  • the width of the gas outlet is greater than the width of the gas inlet. If you want to generate micron-level bubbles, the average width of the gas outlet is 5 to 90 microns, and the average width of the gas inlet is 1 to 5 microns. And the hole gradually becomes smaller from the gas inlet to the gas outlet.
  • the micro-interface generator is connected to the inlet end of the mixer body, and the number of micro-interface generators is at least one set.
  • the micro-interface generator can be set in multiple groups.
  • the gas output port of the gas-liquid separator 16 is provided with a first exhaust pipe 161 and a second exhaust pipe 162.
  • the first exhaust pipe 161 is connected to the gas storage provided on the offshore platform 1.
  • the tank 163 is connected, and the second exhaust pipe 162 is in communication with the gas tank 17.
  • the natural gas separated from the gas-liquid separator 16 enters the gas storage tank 163 through the first exhaust pipe 161 for storage, and the other part passes through the second exhaust pipe 162 enters the gas tank 17 to realize the reuse of natural gas and save resources;
  • the liquid output port of the gas-liquid separator 16 is provided with a first discharge pipe 164 and a second discharge pipe 165 extending into the sea.
  • the first discharge pipe 164 is connected to the seawater desalination device 11.
  • a fourth pump 166 is provided on the first discharge pipe 164; a part of the liquid output from the gas-liquid separator 16 is directly discharged into the sea through the second discharge pipe 165, and the other part passes through the first discharge pipe 165.
  • the drain pipe 164 is input into the seawater desalination device 11 to facilitate the seawater desalination device 11 to produce saturated brine.
  • the first exhaust pipe 161, the second exhaust pipe 162, the first drain pipe 164, and the second drain pipe 165 may also be provided with shut-off valves, which can be opened and closed at any time as needed.
  • the second exhaust pipe 162 is provided with a detection element 18 at a position close to the gas tank 17 to detect whether there is a leak of natural gas at the connection position of the second exhaust pipe 162 and the gas tank 17.
  • the arrangement of the detecting element 18 enables the second exhaust pipe 162 to detect the leakage of natural gas in time, which increases the safety of the device and reduces the waste of natural gas.
  • the detection member 18 includes a detection tube 181 threadedly connected to the second exhaust pipe 162 near the gas tank 17, and the end of the detection tube 181 far from the second exhaust pipe 162 is embedded in the gas tank 17
  • the inner wall is threadedly connected with the gas tank 17.
  • a number of through holes 182 are opened on the wall of the detection cylinder 181, and the detection cylinder 181 is provided with an elastic membrane 183 that closes the through holes 182.
  • the material of the elastic membrane 183 can be the material of a balloon; when formaldehyde gas leaks from the connection between the second exhaust pipe 162 and the gas tank 17, the leaked gas enters the detection tube 181, and the gas in the detection tube 181 makes the elastic membrane 183 is bulging, which is convenient for the operator to view. At this time, the operator rotates the detection tube 181 to move the detection tube 181 away from the gas tank 17 to repair the leak in time.
  • the detection element 18 can also be installed near the third connecting pipe 171 The gas tank 17 or the first exhaust pipe 161 is close to the gas tank 163.
  • a transparent cover 184 is provided on the outer wall of the detection tube 181, and the end of the transparent cover 184 away from the detection tube 181 collides with the gas tank 17.
  • the setting of the transparent cover 184 protects the elastic film 183, reduces the elastic film 183 from the external environment and reduces the service life.
  • the outer wall of the drain pipe 141 is slidingly connected to the polyurethane prefabricated insulation pipe 142 so that the operator can move the polyurethane prefabricated insulation pipe 142 to the drain pipe 141.
  • the polyurethane prefabricated thermal insulation pipe 142 moves to a desired position in a location with a low temperature in the sea, the polyurethane prefabricated thermal insulation pipe 142 is provided with a fixing member 143 for fixing the position of the polyurethane prefabricated thermal insulation pipe 142 on the drain pipe 141.
  • the polyurethane prefabricated insulation pipe 142 has strong waterproof and corrosion resistance. Fixing it on the outer wall of the drain pipe 141 reduces the rate of decrease in the temperature of saturated salt water in the drain pipe 141.
  • the fixing part 143 is set It is convenient to fix the position of the polyurethane prefabricated thermal insulation pipe 142 on the drain pipe 141 when the polyurethane prefabricated thermal insulation pipe 142 moves to a lower temperature area in the water.
  • the fixing member 143 includes a U-shaped clamping plate 1432 hinged on the upper and lower ends of the polyurethane prefabricated insulation pipe 142 through a hinge shaft 1431.
  • the hinge shaft 1431 is provided with a torsion spring that makes the clamping plate 1432 contact the outer wall of the drain pipe 141 1433.
  • the torsion spring 1433 increases the friction between the U-shaped chuck 1432 and the outer wall of the drain pipe 141, so that the U-shaped chuck 1432 polyurethane prefabricated insulation pipe 142 is fixed on the drain pipe 141, and the polyurethane prefabricated insulation pipe 142 needs to be moved to drain the water.
  • the fixing member 143 includes connecting plates 1435 arranged on opposite side walls of the two connecting pipes 1434 ,
  • the two connecting plates 1435 are connected by locking bolts 1436.
  • the two connecting plates 1435 can be connected by the locking bolt 1436 to fix the polyurethane prefabricated thermal insulation pipe 142 on the drain pipe 141, and the structure is simple.
  • the two connecting plates 1435 are provided with positioning plates 1437 embedded in the opposite connecting plates 1435 on opposite sides.
  • the arrangement of the positioning plate 1437 facilitates the quick alignment of the two connecting plates 1435, thereby facilitating the locking bolt 1436 to connect the two connecting plates 1435, and facilitating the quick installation of the polyurethane prefabricated insulation pipe 142.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明公开了一种开采可燃冰的装置,达到降低水的凝固点,便于可燃冰开采的优点,涉及可燃冰的开采领域,其技术方案要点是:包括设置在海上的海上平台、设置在海上平台上的海水淡化装置、设置在海上平台上且与海水淡化装置通过第一连接管连接的换热器、设置在第一连接管上的第一泵、设置在换热器出口的第二连接管,第二连接管上设有将天然气充入热水中的微界面强化装置,微界面强化装置的出口设有延伸至海底开采位置的排水管;海上平台上设有延伸至海底开采位置的天然气输出管道,天然气输出管道上设有第二泵,所述天然气输出管道的出口连接有气液分离器。

Description

一种开采可燃冰的装置 技术领域
本发明涉及可燃冰的开采领域,更具体地说,它涉及一种开采可燃冰的装置。
背景技术
天然气水合物又称“可燃冰”,是由水和天然气在高压、低温条件下混合而成的一种固态物质,外貌极像冰雪或固体酒精,遇火即可燃烧,具有使用方便、燃烧值高、清洁无污染等特点,可燃冰作为“后石油代”首选替代能源,是21世纪具有商业开发前景的战略资源。在我国作为未来重要的新型能源矿藏——“可燃冰”将首次纳入到能源规划之中。
公告号为CN102817596A的中国专利公开了一种海洋可燃冰开采装置,该装置包括如下部件:钻头,钻机,混合物通道,泥沙分离装置,分解罐,海水加热设备,海水输入管道,热水输出管道,天然气输入管道,天然气输出管道,海水输出管道,泵,泵,泵和管道;其运转方式为:在海洋可燃冰层伸入钻头进行开采,将可燃冰、泥沙以及分解气体的混合物泵排到位于地面的泥沙分离装置,分离后的可燃冰、分解气体和水的混合物过管道被输送到位于海面浮动基地上的分解罐,泵将用热子效应氢化气助燃加热器,加热后的可燃冰经管道输入分解罐,分解出的天然气经管道导出,另有部分天然气经管道导出,海水加热设备作为海水加热中心,管道为气水两相混输泵,其余管道和泵备用。
但是热水输出管道在将热水输入海底的过程中,热水输出管道若经过冻土层,热水输出管道中的热水容易降温,粘度增大,流动阻力增大,甚至凝固堵塞热水输出管道,此时不利于可燃冰的开采。
发明内容
本发明的目的是提供一种开采可燃冰的装置,达到降低水的凝固点,便于可燃冰开采的优点。
本发明的上述技术目的是通过以下技术方案得以实现的:一种开采可燃冰的装置,包括设置在海上的海上平台、设置在海上平台上的海水淡化装置、设置在海上平台上且与海水淡化装置通过第一连接管连接的换热器、设置在第一连接管上的第一泵、设置在换热器出口的第二连接管,所述第二连接管上设有将天然气充入热水中的微界面强化装置,所述微界面强化装置的出口设有延伸至海底开采位置的排水管;
所述海上平台上设有延伸至海底开采位置的天然气输出管道,所述天然气输出管道上设有第二泵,所述天然气输出管道的出口连接有气液分离器。
通过采用上述技术方案,海水淡化装置将盐水通过第一连接管输送至换热器内进行加热,经过加热后的盐水通过第二连接管输送至微界面强化装置,此时天然气通过微界面强化装置并在其作用下生成微气泡,微气泡充满饱和盐水,使饱和盐水呈现为乳化态溶液,降低了水的凝固点,此时将乳化态的热的饱和盐水通过排水管输入到海底可燃冰开采位置,使得在海底的可燃冰融化,随后第二泵通过天然气输出管道将融化的可燃冰产生的天然气以及水抽上来,经过气液分离器实现天然气和水的分离,实现了可燃冰的开采,在此融化可燃冰的过程中并未有其余的杂质产生,因此只需要通过气液分离器即可,使得可燃冰采取效率高,整个过程绿色环保,成本低,且操作简单。
优选地,所述微界面强化装置包括设置在海上平台上的储存有天然气的气罐、与气罐通过第三连接管连接的压缩机、与压缩机通过第四连接管连接的产生微气泡的装置,所述产生微气泡的装置的输出口与排水管连接,所述第三连接管上设有第三泵。
通过采用上述技术方案,第三泵将气罐内的天然气抽出并输送到压缩机内,压缩机使得天然气产生高压进而进入产生微气泡的装置,此时产生微气泡的装置将天然气充入饱和盐水中。
优选地,所述气液分离器的气体输出口设有第一排气管和第二排气管,所述第一排气管与设置在海上平台上的储气罐连接,所述第二排气管与气罐连通;
所述气液分离器的液体输出口设有第一排液管和延伸至海中的第二排液管,所述第一排液管与海水淡化装置连通,所述第一排液管上设有第四泵。
通过采用上述技术方案,从气液分离器内分离出来的天然气经过第一排气管进入储气罐进行存储,另一部分经过第二排气管进入气罐内,实现天然气的重复利用,节约资源,从气液分离器中输出的液体一部分经过第二排液管直接排入海中,另一部分经过第一排液管输入海水淡化装置里面,便于海水淡化装置产生饱和盐水。
优选地,所述第二排气管在靠近气罐的位置设有检测第二排气管与气罐连接位置是否有泄露天然气的检测件。
通过采用上述技术方案,检测件的设置使得第三连接管在天然气泄漏时能够及时的检测到,增加装置使用的安全性,且减小天然气的浪费。
优选地,所述检测件包括螺纹连接在第二排气管靠近气罐位置的检测筒,所述检测筒远离第二排气管的一端嵌入气罐的内壁,且与气罐螺纹连接,所述检测筒筒壁上开设有若干通孔,所述检测筒上设有封闭通孔的弹性膜。
通过采用上述技术方案,当第二排气管与气罐之间连接出现甲醛气体的泄漏时,泄 漏的气体进入检测筒内,检测筒内的气体使得弹性膜鼓起,便于操作人员查看,以及时的修复泄漏处。
优选地,当所述检测筒与气罐连接后,所述检测筒外壁周向设有透明罩,所述透明罩远离检测筒的一端与气罐抵触。
通过采用上述技术方案,透明罩的设置保护弹性膜,减小弹性膜受到外界环境的影响而减小使用寿命。
优选地,所述排水管外壁滑移连接有聚氨酯预制保温管,所述聚氨酯预制保温管上设有固定聚氨酯预制保温管在排水管上位置的固定件。
通过采用上述技术方案,聚氨酯预制保温管具有很强的防水和耐腐蚀能力,将其固定在排水管外壁,减小了排水管内饱和盐水的温度降低速度,固定件的设置便于聚氨酯预制保温管在移动到水中较低温度的区域时固定聚氨酯预制保温管在排水管上的位置。
优选地,所述固定件包括通过铰接轴铰接在聚氨酯预制保温管上下两端的U型卡板,所述铰接轴上设有使得卡板与排水管外壁抵触的扭簧。
通过采用上述技术方案,扭簧增大了U型卡板与排水管外壁之间的摩擦力,便于U型卡板将聚氨酯预制保温管固定在排水管上,在需要移动聚氨酯预制保温管在排水管上的位置时,只需要将卡板向远离排水管方向推离,进而解除卡板对排水管外壁的抵触力,便于移动聚氨酯预制保温管在排水管上的位置,操作方便。
优选地,所述聚氨酯预制保温管沿竖直轴线分为两个截面为半弧形的连接管,所述固定件包括设置在两个连接管相对侧壁上的连接板,两个所述连接板通过锁紧螺栓连接。
通过采用上述技术方案,通过锁紧螺栓可以连接两个连接板进而将聚氨酯预制保温管固定在排水管上,结构简单。
优选地,两个所述连接板在相对的一侧均设有嵌入相对连接板的定位板。
通过采用上述技术方案,定位板的设置便于两个连接板能够快速对齐,进而便于锁紧螺栓连接两个连接板,便于聚氨酯预制保温管的快速安装。
综上所述,本发明具有以下有益效果:天然气通过微界面强化装置并在其作用下生成微气泡,微气泡充满饱和盐水,使饱和盐水呈现为乳化态溶液,降低了水的凝固点,此时将乳化态的热的饱和盐水通过排水管输入到海底可燃冰开采位置,使得在海底的可燃冰融化,微界面强化装置的设置降低了水的凝固点,进而增大了开采可燃冰的装置的使用范围。
附图说明
图1是本实施例的结构示意图;
图2是图1中A部的放大结构示意图;
图3是本实施例的用于体现检测件的结构示意图;
图4是本实施例的用于体现固定件的结构示意图;
图5是本实施例的用于体现连接管的结构示意图;
图6是本实施例的用于体现定位板的结构示意图。
图中:1、海上平台;11、海水淡化装置;12、第一连接管;121、第一泵;13、换热器;131、第二连接管;14、微界面强化装置;141、排水管;142、聚氨酯预制保温管;143、固定件;1431、铰接轴;1432、卡板;1433、扭簧;1434、连接管;1435、连接板;1436、锁紧螺栓;1437、定位板;15、天然气输出管道;151、第二泵;16、气液分离器;161、第一排气管;162、第二排气管;163、储气罐;164、第一排液管;165、第二排液管;166、第四泵;17、气罐;171、第三连接管;172、压缩机;173、第四连接管;174、产生微气泡的装置;175、第三泵;18、检测件;181、检测筒;182、通孔;183、弹性膜;184、透明罩。
具体实施方式
以下结合附图对本发明作进一步详细说明。
一种开采可燃冰的装置,如图1,包括设置在海上的海上平台1、设置在海上平台1上的海水淡化装置11、设置在海上平台1上且与海水淡化装置11通过第一连接管12连接的换热器13、设置在第一连接管12上的第一泵121、设置在换热器13出口的第二连接管131,第二连接管131上设有将天然气充入热水中的微界面强化装置14,微界面强化装置14的出口设有延伸至海底开采位置的排水管141,海上平台1上设有延伸至海底开采位置的天然气输出管道15,天然气输出管道15上设有第二泵151,天然气输出管道15的出口连接有气液分离器16;排水管141在延伸至海底可燃冰开采位置之前,海上平台1上的钻机将排水管141、天然气输出管道15在海底放置的位置钻出来,便于排水管141、天然气输出管道15直接延伸至开采位置。当排水管141、天然气输出管道15移动到海底开采位置后再将排水管141、天然气输出管道15分别连接到微界面强化装置14和气液分离器16上。
如图1,操作过程:海水淡化装置11将饱和盐水通过第一连接管12输送至换热器13内进行加热,经过加热后的盐水通过第二连接管131输送至微界面强化装置14,此时天然气通过微界面强化装置14并在其作用下生成微气泡,微气泡充满饱和盐水,使饱和盐水呈现为乳化态溶液,降低了水的凝固点,此时将乳化态的热的饱和盐水通过排水管141输入到海底可燃冰开采位置,使得在海底的可燃冰融化,随后第二泵151通过天然气输出管道15 将融化的可燃冰产生的天然气以及水抽上来,经过气液分离器16实现天然气和水的分离,实现了可燃冰的开采,在此融化可燃冰的过程中并未有其余的杂质产生,因此从天然气输出管道15抽出的气液混合物只需要通过气液分离器16即可,使得可燃冰采取效率高,整个过程绿色环保,成本低,且操作简单。
如图1,微界面强化装置14包括设置在海上平台1上的储存有天然气的气罐17、与气罐17通过第三连接管171连接的压缩机172、与压缩机172通过第四连接管173连接的产生微气泡的装置174,产生微气泡的装置174可以为公告号为CN102781561B公开的一种用于产生微气泡的装置,产生微气泡的装置174的输出口与排水管141连接,第三连接管171上设有第三泵175。第三泵175将气罐17内的天然气抽出并输送到压缩机172内,压缩机172使得天然气产生高压进而进入产生微气泡的装置174,此时产生微气泡的装置174将天然气充入饱和盐水中。
如图1,或者微界面强化装置14包括混合器主体以及与混合器主体连接的微界面发生器,混合器主体与第四连接管173连接以及第二连接管131连接,一般来讲,混合器主体为气-液介质的混合腔室,混合器主体包括釜式混合器、管式混合器、塔式混合器中的一种或者几种的组合。
如图1,微界面发生器包括机械微结构和/或湍流微结构,通过微通道作用方式、场力作用方式以及机械能作用方式,或者这三种方式的任意组合,将多相反应介质中的气相和/或液相破碎成直径为微米级的微气泡和/或微液滴。其中,微通道作用方式是通过构造流道的微结构,使通过微流道的气相和/或液相破碎成微气泡和/或液滴;场力作用方式是利用外场力作用以非接触的方式为流体输入能量,使其破碎成微气泡或微液滴;机械能作用方式是利用流体的机械能,将其转换成气泡或液滴的表面能,使气泡或液滴破碎成微气泡或微液滴。
如图1,作为实施例方式之一地,微界面发生器为任意的一个实物平面,平面上具有贯穿其的孔,每个孔包括气体入口和气体出口,气体出口的宽度大于气体入口的宽度,若想要生成微米级的气泡,气体出口的平均宽度为5微米到90微米,气体入口的平均宽度为1微米到5微米。并且孔从气体入口向气体出口的方向逐渐变小。
如图1,微界面发生器连接在混合器主体的进口端,其设置数量至少为一组。需要生成大量的微气泡/微液滴时,微界面发生器可设置多组。
如图1,继上述技术方案,气液分离器16的气体输出口设有第一排气管161和第二排气管162,第一排气管161与设置在海上平台1上的储气罐163连接,第二排气管162与气罐17连通,从气液分离器16内分离出来的天然气经过第一排气管161进入储气罐163进 行存储,另一部分经过第二排气管162进入气罐17内,实现天然气的重复利用,节约资源;气液分离器16的液体输出口设有第一排液管164和延伸至海中的第二排液管165,第一排液管164与海水淡化装置11连通,第一排液管164上设有第四泵166;从气液分离器16中输出的液体一部分经过第二排液管165直接排入海中,另一部分经过第一排液管164输入海水淡化装置11里面,便于海水淡化装置11产生饱和盐水。第一排气管161、第二排气管162、第一排液管164、第二排液管165上也可以均设有截止阀,根据需要随时打开关闭截止阀。
如图1、图2和图3,第二排气管162在靠近气罐17的位置设有检测第二排气管162与气罐17连接位置是否有泄露天然气的检测件18。检测件18的设置使得第二排气管162在天然气泄漏时能够及时的检测到,增加装置使用的安全性,且减小天然气的浪费。
如图1、图2和图3,检测件18包括螺纹连接在第二排气管162靠近气罐17位置的检测筒181,检测筒181远离第二排气管162的一端嵌入气罐17的内壁,且与气罐17螺纹连接,检测筒181筒壁上开设有若干通孔182,检测筒181上设有封闭通孔182的弹性膜183。弹性膜183的材质可以为气球的材质;当第二排气管162与气罐17之间连接出现甲醛气体的泄漏时,泄漏的气体进入检测筒181内,检测筒181内的气体使得弹性膜183鼓起,便于操作人员查看,此时操作人员转动检测筒181使得检测筒181向远离气罐17方向移动,以及时的修复泄漏处,也可以将检测件18安装在第三连接管171靠近气罐17处,或者第一排气管161靠近储气罐163处。
如图1和图2,当检测筒181与气罐17连接后,检测筒181外壁周向设有透明罩184,透明罩184远离检测筒181的一端与气罐17抵触。透明罩184的设置保护弹性膜183,减小弹性膜183受到外界环境的影响而减小使用寿命。
如图1和图4,为了进一步减小排水管141内水的降温速度,排水管141外壁滑移连接有聚氨酯预制保温管142,以便于操作者将聚氨酯预制保温管142移动至排水管141位于海中温度较低的位置,当聚氨酯预制保温管142移动至所需位置时,聚氨酯预制保温管142上设有固定聚氨酯预制保温管142在排水管141上位置的固定件143。
如图1和图4,聚氨酯预制保温管142具有很强的防水和耐腐蚀能力,将其固定在排水管141外壁,减小了排水管141内饱和盐水的温度降低速度,固定件143的设置便于聚氨酯预制保温管142在移动到水中较低温度的区域时固定聚氨酯预制保温管142在排水管141上的位置。
如图1和图4,固定件143包括通过铰接轴1431铰接在聚氨酯预制保温管142上下 两端的U型卡板1432,铰接轴1431上设有使得卡板1432与排水管141外壁抵触的扭簧1433。扭簧1433增大了U型卡板1432与排水管141外壁之间的摩擦力,便于U型卡板1432聚氨酯预制保温管142固定在排水管141上,在需要移动聚氨酯预制保温管142在排水管141上的位置时,只需要将卡板1432向远离排水管141方向推离,进而解除卡板1432对排水管141外壁的抵触力,便于移动聚氨酯预制保温管142在排水管141上的位置,操作方便。
如图5和图6,或者聚氨酯预制保温管142沿竖直轴线分为两个截面为半弧形的连接管1434,固定件143包括设置在两个连接管1434相对侧壁上的连接板1435,两个连接板1435通过锁紧螺栓1436连接。通过锁紧螺栓1436可以连接两个连接板1435进而将聚氨酯预制保温管142固定在排水管141上,结构简单。
如图5和图6,两个连接板1435在相对的一侧均设有嵌入相对连接板1435的定位板1437。定位板1437的设置便于两个连接板1435能够快速对齐,进而便于锁紧螺栓1436连接两个连接板1435,便于聚氨酯预制保温管142的快速安装。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种开采可燃冰的装置,其特征是:包括设置在海上的海上平台(1)、设置在海上平台(1)上的海水淡化装置(11)、设置在海上平台(1)上且与海水淡化装置(11)通过第一连接管(12)连接的换热器(13)、设置在第一连接管(12)上的第一泵(121)、设置在换热器(13)出口的第二连接管(131),所述第二连接管(131)上设有将天然气充入热水中的微界面强化装置(14),所述微界面强化装置(14)的出口设有延伸至海底开采位置的排水管(141);
    所述海上平台(1)上设有延伸至海底开采位置的天然气输出管道(15),所述天然气输出管道(15)上设有第二泵(151),所述天然气输出管道(15)的出口连接有气液分离器(16)。
  2. 根据权利要求1所述的一种开采可燃冰的装置,其特征是:所述微界面强化装置(14)包括设置在海上平台(1)上的储存有天然气的气罐(17)、与气罐(17)通过第三连接管(171)连接的压缩机(172)、与压缩机(172)通过第四连接管(173)连接的产生微气泡的装置(174),所述产生微气泡的装置(174)的输出口与排水管(141)连接,所述第三连接管(171)上设有第三泵(175)。
  3. 根据权利要求1所述的一种开采可燃冰的装置,其特征是:所述气液分离器(16)的气体输出口设有第一排气管(161)和第二排气管(162),所述第一排气管(161)与设置在海上平台(1)上的储气罐(163)连接,所述第二排气管(162)与气罐(17)连通;
    所述气液分离器(16)的液体输出口设有第一排液管(164)和延伸至海中的第二排液管(165),所述第一排液管(164)与海水淡化装置(11)连通,所述第一排液管(164)上设有第四泵(166)。
  4. 根据权利要求3所述的一种开采可燃冰的装置,其特征是:所述第二排气管(162)在靠近气罐(17)的位置设有检测第二排气管(162)与气罐(17)连接位置是否有泄露天然气的检测件(18)。
  5. 根据权利要求3所述的一种开采可燃冰的装置,其特征是:所述检测件(18)包括螺纹连接在第二排气管(162)靠近气罐(17)位置的检测筒(181),所述检测筒(181)远离第二排气管(162)的一端嵌入气罐(17)的内壁,且与气罐(17)螺纹连接,所述检测筒(181)筒壁上开设有若干通孔(182),所述检测筒(181)上设有封闭通孔(182)的弹性膜(183)。
  6. 根据权利要求5所述的一种开采可燃冰的装置,其特征是:当所述检测筒(181)与气罐(17)连接后,所述检测筒(181)外壁周向设有透明罩(184),所述透明罩(184)远离检测筒(181)的一端与气罐(17)抵触。
  7. 根据权利要求1所述的一种开采可燃冰的装置,其特征是:所述排水管(141)外壁滑移连接有聚氨酯预制保温管(142),所述聚氨酯预制保温管(142)上设有固定聚氨酯预制保温管(142)在排水管(141)上位置的固定件(143)。
  8. 根据权利要求7所述的一种开采可燃冰的装置,其特征是:所述固定件(143)包括通过铰接轴(1431)铰接在聚氨酯预制保温管(142)上下两端的U型卡板(1432),所述铰接轴(1431)上设有使得卡板(1432)与排水管(141)外壁抵触的扭簧(1433)。
  9. 根据权利要求7所述的一种开采可燃冰的装置,其特征是:所述聚氨酯预制保温管(142)沿竖直轴线分为两个截面为半弧形的连接管(1434),所述固定件(143)包括设置在两个连接管(1434)相对侧壁上的连接板(1435),两个所述连接板(1435)通过锁紧螺栓(1436)连接。
  10. 根据权利要求9所述的一种开采可燃冰的装置,其特征是:两个所述连接板(1435)在相对的一侧均设有嵌入相对连接板(1435)的定位板(1437)。
PCT/CN2020/096674 2019-06-24 2020-06-18 一种开采可燃冰的装置 WO2020259377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910547203.5 2019-06-24
CN201910547203.5A CN112127847A (zh) 2019-06-24 2019-06-24 一种开采可燃冰的装置

Publications (1)

Publication Number Publication Date
WO2020259377A1 true WO2020259377A1 (zh) 2020-12-30

Family

ID=73850110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096674 WO2020259377A1 (zh) 2019-06-24 2020-06-18 一种开采可燃冰的装置

Country Status (2)

Country Link
CN (1) CN112127847A (zh)
WO (1) WO2020259377A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101016841A (zh) * 2007-02-13 2007-08-15 中国科学院广州能源研究所 一种开采天然气水合物的方法及装置
CN101033087A (zh) * 2007-02-09 2007-09-12 中国科学院广州能源研究所 一种海水淡化与海洋天然气水合物开采联产方法
US20080268300A1 (en) * 2007-04-30 2008-10-30 Pfefferle William C Method for producing fuel and power from a methane hydrate bed using a fuel cell
CN102781561A (zh) * 2010-03-02 2012-11-14 Acal能源公司 气泡产生装置和方法
KR20130075055A (ko) * 2011-12-27 2013-07-05 삼성중공업 주식회사 메탄 하이드레이트 층의 메탄 채굴 시스템 및 이를 갖는 선박
CN103510926A (zh) * 2013-04-15 2014-01-15 李贤明 一种海底可燃冰的开采方法及系统
CN104179757A (zh) * 2014-07-17 2014-12-03 常州大学 一种微气泡管道流动减阻方法及微气泡减阻管道
US20160090828A1 (en) * 2014-09-30 2016-03-31 Elwha Llc Systems and methods for releasing methane from clathrates
CN106370391A (zh) * 2016-08-25 2017-02-01 常州大学 一种气泡减阻特性测试的实验装置
CN106703813A (zh) * 2016-12-20 2017-05-24 武汉理工大学 一种气泡减阻式的海洋采矿立管
CN106930740A (zh) * 2017-05-13 2017-07-07 西南石油大学 一种注入饱和热盐水开采天然气水合物的方法
CN210660046U (zh) * 2019-06-24 2020-06-02 南京延长反应技术研究院有限公司 一种开采可燃冰的装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033087A (zh) * 2007-02-09 2007-09-12 中国科学院广州能源研究所 一种海水淡化与海洋天然气水合物开采联产方法
CN101016841A (zh) * 2007-02-13 2007-08-15 中国科学院广州能源研究所 一种开采天然气水合物的方法及装置
US20080268300A1 (en) * 2007-04-30 2008-10-30 Pfefferle William C Method for producing fuel and power from a methane hydrate bed using a fuel cell
CN102781561A (zh) * 2010-03-02 2012-11-14 Acal能源公司 气泡产生装置和方法
KR20130075055A (ko) * 2011-12-27 2013-07-05 삼성중공업 주식회사 메탄 하이드레이트 층의 메탄 채굴 시스템 및 이를 갖는 선박
CN103510926A (zh) * 2013-04-15 2014-01-15 李贤明 一种海底可燃冰的开采方法及系统
CN104179757A (zh) * 2014-07-17 2014-12-03 常州大学 一种微气泡管道流动减阻方法及微气泡减阻管道
US20160090828A1 (en) * 2014-09-30 2016-03-31 Elwha Llc Systems and methods for releasing methane from clathrates
CN106370391A (zh) * 2016-08-25 2017-02-01 常州大学 一种气泡减阻特性测试的实验装置
CN106703813A (zh) * 2016-12-20 2017-05-24 武汉理工大学 一种气泡减阻式的海洋采矿立管
CN106930740A (zh) * 2017-05-13 2017-07-07 西南石油大学 一种注入饱和热盐水开采天然气水合物的方法
CN210660046U (zh) * 2019-06-24 2020-06-02 南京延长反应技术研究院有限公司 一种开采可燃冰的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOUICHIRO SOGABE; HISATO MINAGAWA; TAKAHIRO YASUDA: "S055014 Drag reduction effect of milky bubble flow with micro bubbles in a vertical pipe", PROCEEDINGS OF 2011 MECHANICAL ENGINEERING CONGRESS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS; 2011.09.11−14, vol. 2011, 201109011, pages 1 - 3, XP009525535 *

Also Published As

Publication number Publication date
CN112127847A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
JP7218147B2 (ja) 地中熱交換器を用いた地熱発電システム
CN105625998B (zh) 一种海底天然气水合物稳定层逆向开采方法及其开采设备
US20120155964A1 (en) Universal Subsea Oil Containment System and Method
WO2020113914A1 (zh) 提高地热井产热能力的工艺
LT5472B (lt) Giluminių geoterminių rezervuarų įrengimo ir naudojimo būdas
TW201402943A (zh) 用於開採能源的單井、自流地熱系統
EA011377B1 (ru) Способ ингибирования образования гидратов
JPH0144878B2 (zh)
WO2011163239A1 (en) Universal subsea oil containment system and method
WO2020259377A1 (zh) 一种开采可燃冰的装置
CN210660046U (zh) 一种开采可燃冰的装置
US4273189A (en) Method and apparatus for recovering natural gas from geopressured salt water
CN109252833B (zh) 一种天然气水合物开采方法
CN205470829U (zh) 柔性水下储罐
CN116263084A (zh) 一种海上天然气水合物开发的钻采系统及方法
CN203285371U (zh) 氮气泡沫钻井的钻井液循环系统
RU2293214C2 (ru) Способ воздействия на призабойную зону скважины на месторождении углеводородов с подошвенной водой и добычи нефти и воды насос-компрессорами с раздельным приемом для бесконусной эксплуатации скважины
JP6016173B2 (ja) 水平井及び生石灰を用いたメタンハイドレート採取法
CA2510758C (en) Apparatus for the cooling of drilling liquids
CN102050414B (zh) 水下储油舱的油气置换工艺
WO2022227837A1 (zh) 分段式空气供给的超临界多元热流体发生系统及方法
RU2382141C1 (ru) Морская буровая платформа
RU2808504C1 (ru) Система отбора и утилизации пластовой жидкости
US9016981B2 (en) Aquatic recovery and repair system
CN112127856B (zh) 一种陆地开采可燃冰的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832604

Country of ref document: EP

Kind code of ref document: A1