WO2020258701A1 - 一种微界面强化系统在开采可燃冰中的应用 - Google Patents

一种微界面强化系统在开采可燃冰中的应用 Download PDF

Info

Publication number
WO2020258701A1
WO2020258701A1 PCT/CN2019/120237 CN2019120237W WO2020258701A1 WO 2020258701 A1 WO2020258701 A1 WO 2020258701A1 CN 2019120237 W CN2019120237 W CN 2019120237W WO 2020258701 A1 WO2020258701 A1 WO 2020258701A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
strengthening system
mining
combustible ice
gas
Prior art date
Application number
PCT/CN2019/120237
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
门存贵
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2020258701A1 publication Critical patent/WO2020258701A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium

Definitions

  • the invention relates to the application of a micro-interface strengthening system in the mining of combustible ice, and belongs to the technical field of energy mining.
  • Combustible ice is an ice-like crystalline substance formed by natural gas and water under high-pressure and low-temperature conditions. It is distributed in deep-sea sediments or permafrost on land. Combustible ice has attracted global attention due to its large reserves, wide distribution, and relatively cleanliness, and countries are racing to develop it.
  • the existing combustible ice mining uses high-pressure water vapor to drive into the ore layer containing combustible ice, which consumes a lot of energy, and the high-pressure water vapor is cooled by pipes during the driving process, and it is easy to condense to form liquid or even solidify and freeze, so that high-pressure water is transported.
  • the steam pipe is blocked and fails to meet the requirements for use.
  • the purpose of the present invention is to solve the easy condensation phenomenon of the heat source fluid in the traditional combustible ice mining process, and to provide an application of the micro-interface strengthening system in the combustible ice mining.
  • the invention provides an application of a micro-interface strengthening system in the mining of combustible ice.
  • the micro-interface strengthening system includes a mixer main body, and a micro-interface generator connected to the inlet end of the mixer main body.
  • the micro-interface generator is a bubble breaker and/or a droplet breaker.
  • the bubble breaker is at least one of a pneumatic bubble breaker, a hydraulic bubble breaker, or a gas-liquid linkage bubble breaker.
  • the present invention also provides an application of the micro-interface strengthening system in the mining of combustible ice, and the method for applying the micro-interface strengthening system in the mining of combustible ice is as follows:
  • the inlet end of the micro-interface strengthening system is provided with a first inlet and a second inlet.
  • the first inlet is fed with natural gas
  • the second inlet is fed with salt water heated by the heat exchanger, natural gas and heated salt water.
  • emulsion an emulsified mixture of microbubbles and/or microdroplets
  • step (2) The microbubbles and/or microdroplet emulsions obtained in step (1) are pumped into the first shaft.
  • the upper end of the first shaft is connected to the micro-interface strengthening system, and the lower end extends into the combustible ice deposit.
  • the ore layer is melted into a gas-liquid mixture by microbubbles and/or micro-droplet emulsions, and the gas-liquid mixture is transported to the gas-liquid separation device through the second shaft, and natural gas is separated by the gas-liquid separation device and stored in the first storage tank.
  • the diameter of the microbubbles and/or microdroplets is greater than or equal to 1 ⁇ m and less than 1000 ⁇ m.
  • the heating temperature of the brine is 80-120°C.
  • the liquid outlet end of the gas-liquid separation device is connected to the inlet end of the concentration device, the outlet end of the concentration device is connected to the inlet end of the second storage tank, and the outlet end of the second storage tank is connected to the heat exchanger.
  • the concentration device is an evaporation type or a membrane filtration type.
  • the gas-liquid separation device is a kettle-type, cyclone-type or baffle-type gas-liquid separator.
  • the present invention has the following beneficial effects:
  • the present invention applies the micro-interface strengthening device to the process of mining combustible ice.
  • the freezing point of the fluid in the molten combustible ice ore layer is reduced to make it difficult to condense, thereby improving mining effectiveness;
  • the micro-interface strengthening device is applied to the process of mining combustible ice.
  • the gas-liquid separation device and the concentration device can be set to make the saturated salt water recyclable;
  • the present invention applies the micro-interface strengthening device to the process of mining combustible ice. It is driven into the shaft through the mixture of saturated brine and natural gas without introducing other impurity gases. The subsequent sections do not require gas separation, and the mining cost is low. .
  • Fig. 1 is a process flow diagram of the application of a micro-interface strengthening system in embodiment 1 and embodiment 2 of the present invention in the mining of combustible ice;
  • FIG. 2 is a process flow diagram of the application of a micro-interface strengthening system in the mining of combustible ice according to Embodiment 3 and Embodiment 4 of the present invention
  • FIG. 3 is a schematic diagram of the structure of the micro-interface strengthening system of the present invention.
  • the mixer body 2. The micro-interface generator.
  • micro-interface strengthening system of the present invention in the mining of combustible ice.
  • the method for applying the micro-interface strengthening system of the present invention to combustible ice mining is:
  • the inlet end of the micro-interface strengthening system is provided with a first inlet and a second inlet.
  • the first inlet is fed with natural gas
  • the second inlet is fed with salt water heated by the heat exchanger, natural gas and heated salt water.
  • step (2) The microbubbles and/or microdroplet emulsions obtained in step (1) are pumped into the first shaft.
  • the upper end of the first shaft is connected to the micro-interface strengthening system, and the lower end extends into the combustible ice deposit.
  • the ore layer is melted into a gas-liquid mixture by microbubbles and/or micro-droplet emulsions, and the gas-liquid mixture is transported to the gas-liquid separation device through the second shaft, and natural gas is separated by the gas-liquid separation device and stored in the first storage tank.
  • the micro-interface strengthening device is applied in the process of mining combustible ice, by forming micro-bubbles and/or micro-droplet emulsions, reducing the freezing point of the fluid in the molten combustible ice ore layer, making it difficult to condense, thereby improving mining efficiency.
  • the micro-interface strengthening system includes a mixer main body 1, and a micro-interface generator 2 connected to the inlet end of the mixer main body 1, and the micro-interface generator 2 is bubble breaker
  • the air bubble breaker is a pneumatic air bubble breaker, which is driven by gas, and the input air volume is much larger than the liquid volume.
  • the method for applying the micro-interface strengthening system of the present invention to combustible ice mining is as follows:
  • the inlet end of the micro-interface strengthening system is provided with a first inlet and a second inlet.
  • the first inlet is fed with natural gas, and the second inlet is heated with brine.
  • the temperature of the brine is 80°C.
  • step (2) The microbubbles and/or microdroplet emulsions obtained in step (1) are pumped into the first shaft.
  • the upper end of the first shaft is connected to the micro-interface strengthening system, and the lower end extends into the combustible ice deposit.
  • the ore layer is melted into a gas-liquid mixture by microbubbles and/or micro-droplet emulsions.
  • the gas-liquid mixture is transported to the kettle-type gas-liquid separator through the second shaft, and the natural gas is separated by the kettle-type gas-liquid separator and stored in the first storage.
  • the liquid outlet end of the kettle-type gas-liquid separator is connected to the inlet end of the evaporative concentration device, the outlet end of the concentration device is connected to the inlet end of the second storage tank, and the outlet end of the second storage tank is connected to the heat exchanger.
  • the micro-interface strengthening system includes a mixer main body 1, and a micro-interface generator 2 connected to the inlet end of the mixer main body 1, and the micro-interface generator 2 is bubble breaker
  • the bubble breaker is a hydraulic bubble breaker.
  • the hydraulic bubble breaker is driven by liquid, and the input gas volume is generally less than the liquid volume.
  • the method for applying the micro-interface strengthening system of the present invention to combustible ice mining is:
  • the inlet end of the micro-interface strengthening system is provided with a first inlet and a second inlet.
  • the first inlet is fed with natural gas, and the second inlet is fed with heated brine.
  • the temperature of the brine is 120°C.
  • step (2) The microbubbles and/or microdroplet emulsions obtained in step (1) are pumped into the first shaft.
  • the upper end of the first shaft is connected to the micro-interface strengthening system, and the lower end extends into the combustible ice deposit.
  • the ore layer is melted by microbubbles and/or microdroplet emulsions, transported to the baffle gas-liquid separator through the second shaft, and separated by the baffle gas-liquid separator to obtain natural gas, which is stored in the first storage tank;
  • the liquid outlet end of the gas-liquid separator is connected to the inlet end of the membrane filtration type thickening device, the outlet end of the thickening device is connected to the inlet end of the second storage tank, and the outlet end of the second storage tank is connected to the heat exchanger.
  • the micro-interface strengthening system includes a mixer main body 1, and a micro-interface generator 2 connected to the inlet end of the mixer main body 1, and the micro-interface generator 2 is bubble breaker
  • the bubble breaker is a hydraulic bubble breaker.
  • the hydraulic bubble breaker is driven by liquid, and the input gas volume is generally less than the liquid volume.
  • the method for applying the micro-interface strengthening system of the present invention to combustible ice mining is as follows:
  • the natural gas in the gas tank is pressurized to 10 MPa by the compressor, and the natural gas is introduced through the first inlet of the micro-interface strengthening system; the thickening device passes the concentrated brine into the heat exchanger, and the system is set through the micro-interface strengthening system.
  • the second inlet is fed with brine heated by the heat exchanger.
  • the heating temperature of the brine is 100°C.
  • step (2) The microbubbles and/or microdroplet emulsions obtained in step (1) are pumped into the first shaft.
  • the upper end of the first shaft is connected to the micro-interface strengthening system, and the lower end extends into the combustible ice deposit.
  • the ore layer is melted into a gas-liquid mixture by microbubbles and/or micro-droplet emulsions.
  • the gas-liquid mixture is transported to the cyclone gas-liquid separator through the second shaft, and the natural gas is obtained by the cyclone gas-liquid separator.
  • the cyclone gas-liquid separation The liquid outlet end of the device is connected to the inlet end of the evaporative concentration device, the separated natural gas is stored in the first storage tank, a part of which is stored, and the remaining part is transported to the natural gas tank; the liquid outlet end of the cyclone gas-liquid separator is connected to a multi-effect evaporation type
  • the inlet end of the thickening device, the outlet end of the thickening device are connected to the inlet end of the second storage tank, and the outlet end of the second storage tank is connected to the heat exchanger to complete a mining cycle.
  • the present invention applies the micro-interface strengthening device to the process of mining combustible ice, by forming microbubbles and/or micro-droplet emulsions, reducing the freezing point of the fluid in the molten combustible ice ore layer, making it difficult to condense, thereby improving mining efficiency;
  • the invention applies the micro-interface strengthening device to the process of mining combustible ice, and the gas-liquid separation device and the concentrating device can be set to make saturated brine recyclable;
  • the present invention applies the micro-interface strengthening device to the process of mining combustible ice, After the saturated brine and natural gas are mixed, they are driven into the shaft without introducing other impurity gases. The subsequent sections do not require gas separation and the production cost is low.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

一种微界面强化系统在开采可燃冰中的应用,微界面强化系统应用于开采可燃冰中的方法为:微界面强化系统的第一入口通入天然气,第二入口通入经换热器加热的盐水,天然气和加热后的盐水经微界面强化系统混合后,得到微气泡和/或微液滴乳化液;得到的微气泡和/或微液滴乳化液通过泵打入第一竖井,第一竖井上端连接微界面强化系统,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/或微液滴乳化液融化为气液混合物,气液混合物经第二竖井输送到气液分离装置,经气液分离装置分离得到天然气。通过形成微气泡和/或微液滴乳化液,降低熔融可燃冰矿层的流体的凝固点,使其不易凝结,从而提高开采效率。

Description

一种微界面强化系统在开采可燃冰中的应用 技术领域
本发明涉及一种微界面强化系统在开采可燃冰中的应用,属于能源开采技术领域。
背景技术
随着传统能源的减少以及环境保护要求的提高,开发和利用新型的清洁能源迫在眉睫。可燃冰是天然气与水在高压低温条件下形成的类冰状的结晶物质,分布于深海沉积物或陆域的永久冻土中。可燃冰因储量大、分布广、相对比较清洁等优点,引起了全球的重视,各国竞相开发。
现有的可燃冰开采是利用高压水蒸气打入含有可燃冰的矿层,其能量消耗大,而且高压水蒸气在打入过程中经管道冷却,容易冷凝形成液体甚至凝固结冰,使得输送高压水蒸气的管道堵塞,达不到使用要求。
发明内容
本发明的目的是解决传统可燃冰开采过程中的热源流体易凝结现象,提供一种微界面强化系统在开采可燃冰中的应用,通过降低熔融可燃冰矿层的流体的凝固点,使其不易凝结,从而提高开采效率。
本发明提供了一种微界面强化系统在开采可燃冰中的应用。
优选地,所述微界面强化系统包括混合器主体,和连接混合器主体进口端的微界面发生器。
优选地,微界面发生器为气泡破碎器和/或液滴破碎器。
所述气泡破碎器为气动式气泡破碎器、液动式气泡破碎器或气液联动式气泡破碎器中的至少一种。
同时,本发明还提供了一种微界面强化系统在开采可燃冰中的应用,所述微界面强化系统应用于开采可燃冰中的方法为:
(1)微界面强化系统的入口端设有第一入口和第二入口,所述第一入口通入天然气,所述第二入口通入经换热器加热的盐水,天然气和加热后的盐水经微界面强化系统混合后,得到微气泡和/或微液滴乳化状混合液(简称乳化液);
(2)将步骤(1)得到的微气泡和/或微液滴乳化液通过泵打入第一竖井,所述第一竖井上端连接微界面强化系统,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/或微液滴乳化液融化为气液混合物,气液混合物经第二竖井输送到气液分离装置,经气液分离装置分离得到天然气,存储到第一储罐中。
优选地,所述微气泡和/或微液滴的直径为大于等于1μm且小于1000μm。
优选地,所述盐水的加热温度为80~120℃。
优选地,所述气液分离装置液体出口端连接浓缩装置入口端,所述浓缩装置出口端连接第二储罐入口端,所述第二储罐出口端连接所述换热器。
优选地,所述浓缩装置为蒸发式或膜过滤式。
优选地,所述气液分离装置为釜式、旋风式或挡板式气液分离器。
综上所述,本发明具有以下有益效果:
(1)本发明将微界面强化装置应用于开采可燃冰的过程中,通过形成微气泡和/或微液滴乳化液,降低熔融可燃冰矿层的流体的凝固点,使其不易凝结,从而提高开采效率;
(2)本发明将微界面强化装置应用于开采可燃冰的过程中,可以通过气液分离装置、浓缩装置的设置,使得饱和盐水可循环使用;
(3)本发明将微界面强化装置应用于开采可燃冰的过程中,通过饱和盐水和天然气混合后打入竖井内,并不引入其它杂质气体,后续工段不需要进行气体的分离,开采成本低。
附图说明
图1是本发明实施例1、实施例2的一种微界面强化系统在开采可燃冰中的应用的工艺流程图;
图2是本发明实施例3、实施例4的一种微界面强化系统在开采可燃冰中的应用的工艺流程图;
图3是本发明的微界面强化系统结构示意图;
图中:1、混合器主体;2、微界面发生器。
具体实施方式
以下结合附图对本发明作进一步详细说明。
本发明的一种微界面强化系统在开采可燃冰中的应用。
如图所示,本发明的一种微界面强化系统应用于开采可燃冰中的方法为:
(1)微界面强化系统的入口端设有第一入口和第二入口,所述第一入口通入天然气,所述第二入口通入经换热器加热的盐水,天然气和加热后的盐水经微界面强化系统混合后,得到微气泡和/或微液滴乳化液;
(2)将步骤(1)得到的微气泡和/或微液滴乳化液通过泵打入第一竖井,所述第一竖井上端连接微界面强化系统,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/或微液滴乳化液融化为气液混合物,气液混合物经第二竖井输送到气液分离装置,经气液分离装置分离得到天然气,存储到第一储罐中。
将微界面强化装置应用于开采可燃冰的过程中,通过形成微气泡和/或微 液滴乳化液,降低熔融可燃冰矿层的流体的凝固点,使其不易凝结,从而提高开采效率。
实施例1
一种微界面强化系统在开采可燃冰中的应用,所述微界面强化系统包括混合器主体1,和连接混合器主体1进口端的微界面发生器2,所述微界面发生器2为气泡破碎器,所述气泡破碎器为气动式气泡破碎器,气动式气泡破碎器采用气体驱动,输入气量远大于液体量。
如图1、图3所示,本发明的一种微界面强化系统应用于开采可燃冰中的方法为:
(1)微界面强化系统的入口端设有第一入口和第二入口,所述第一入口通入天然气,所述第二入口加热的盐水,所述盐水温度为80℃,天然气和加热后的盐水经微界面强化系统混合后,得到微气泡和/或微液滴乳化液,微气泡和/或微液滴的直径大于等于1μm且小于1000μm;
(2)将步骤(1)得到的微气泡和/或微液滴乳化液通过泵打入第一竖井,所述第一竖井上端连接微界面强化系统,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/或微液滴乳化液融化为气液混合物,气液混合物经第二竖井输送到釜式气液分离器,经釜式气液分离器分离得到天然气,存储到第一储罐中;釜式气液分离器液体出口端连接蒸发式浓缩装置入口端,浓缩装置出口端连接第二储罐入口端,所述第二储罐出口端连接所述换热器。
实施例2
一种微界面强化系统在开采可燃冰中的应用,所述微界面强化系统包括混合器主体1,和连接混合器主体1进口端的微界面发生器2,所述微界面发 生器2为气泡破碎器,所述气泡破碎器为液动式气泡破碎器,液动式气泡破碎器采用液体驱动,输入气量一般小于液体量。
如图1、图3所示,本发明的一种微界面强化系统应用于开采可燃冰中的方法为:
(1)微界面强化系统的入口端设有第一入口和第二入口,所述第一入口通入天然气,所述第二入口通入加热的盐水,所述盐水温度为120℃,天然气和盐水经微界面强化系统混合后,得到微气泡和/或微液滴乳化液,微气泡和/或微液滴的直径大于等于1μm且小于1000μm;
(2)将步骤(1)得到的微气泡和/或微液滴乳化液通过泵打入第一竖井,所述第一竖井上端连接微界面强化系统,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/或微液滴乳化液融化,经第二竖井输送到挡板式气液分离器,经挡板式气液分离器分离得到天然气,存储到第一储罐中;挡板式气液分离器液体出口端连接膜过滤式浓缩装置入口端,浓缩装置出口端连接第二储罐入口端,所述第二储罐出口端连接所述换热器。
实施例3
一种微界面强化系统在开采可燃冰中的应用,所述微界面强化系统包括混合器主体1,和连接混合器主体1进口端的微界面发生器2,所述微界面发生器2为气泡破碎器,所述气泡破碎器为液动式气泡破碎器,液动式气泡破碎器采用液体驱动,输入气量一般小于液体量。
如图2、图3所示,本发明的一种微界面强化系统应用于开采可燃冰中的方法为:
(1)气柜中的天然气经压缩机加压到10MPa,通过微界面强化系统设 置的第一入口通入天然气;浓缩装置将浓缩后的盐水通入换热器,通过微界面强化系统设置的第二入口通入经换热器加热的盐水,所述盐水的加热温度为100℃,天然气和加热后的盐水经微界面强化系统混合后,得到微气泡和/或微液滴乳化液,微气泡和/或微液滴的直径大于等于1μm且小于1000μm;
(2)将步骤(1)得到的微气泡和/或微液滴乳化液通过泵打入第一竖井,所述第一竖井上端连接微界面强化系统,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/或微液滴乳化液融化为气液混合物,气液混合物经第二竖井输送到旋风式气液分离器,经旋风式气液分离器分离得到天然气,旋风式气液分离器液体出口端连接蒸发式浓缩装置入口端,分离得到的天然气气体存储到第一储罐中,一部分存储,剩余部分输送至天然气气柜;旋风式气液分离器液体出口端连接多效蒸发式浓缩装置入口端,浓缩装置出口端连接第二储罐入口端,所述第二储罐出口端连接所述换热器完成一次开采循环。
本发明将微界面强化装置应用于开采可燃冰的过程中,通过形成微气泡和/或微液滴乳化液,降低熔融可燃冰矿层的流体的凝固点,使其不易凝结,从而提高开采效率;本发明将微界面强化装置应用于开采可燃冰的过程中,可以通过气液分离装置、浓缩装置的设置,使得饱和盐水可循环使用;本发明将微界面强化装置应用于开采可燃冰的过程中,通过饱和盐水和天然气混合后打入竖井内,并不引入其它杂质气体,后续工段不需要进行气体的分离,开采成本低。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下 的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种微界面强化系统在开采可燃冰中的应用。
  2. 根据权利要求1所述的一种微界面强化系统在开采可燃冰中的应用,其特征是,所述微界面强化系统包括混合器主体,和连接混合器主体进口端的微界面发生器。
  3. 根据权利要求2所述的一种微界面强化系统在开采可燃冰中的应用,其特征是,所述微界面发生器为气泡破碎器和/或液滴破碎器。
  4. 根据权利要求3所述的一种微界面强化系统在开采可燃冰中的应用,其特征是,所述气泡破碎器为气动式气泡破碎器、液动式气泡破碎器或气液联动式气泡破碎器中的至少一种。
  5. 根据权利要求1~4任一项所述的一种微界面强化系统在开采可燃冰中的应用,其特征是,所述微界面强化系统应用于开采可燃冰中的方法为:
    (1)微界面强化系统的入口端设有第一入口和第二入口,所述第一入口通入天然气,所述第二入口通入经换热器加热的盐水,天然气和加热后的盐水经微界面强化系统混合后,得到微气泡和/或微液滴乳化液;
    (2)将步骤(1)得到的微气泡和/或微液滴乳化液通过泵打入第一竖井,所述第一竖井上端连接微界面强化系统,下端伸入到可燃冰矿层,可燃冰矿层经微气泡和/或微液滴乳化液融化为气液混合物,气液混合物经第二竖井输送到气液分离装置,经气液分离装置分离得到天然气,存储到第一储罐中。
  6. 根据权利要求5所述的一种微界面强化系统在开采可燃冰过程中的应用,其特征是,所述微气泡和/或微液滴的直径为大于等于1μm且小于1000μm。
  7. 根据权利要求5所述的一种微界面强化系统在开采可燃冰过程中的应用,其特征是,所述盐水的加热温度为80~120℃。
  8. 根据权利要求5所述的一种微界面强化系统在开采可燃冰中的应用,其特征是,所述气液分离装置液体出口端连接浓缩装置入口端,所述浓缩装置出口端连接第二储罐入口端,所述第二储罐出口端连接所述换热器。
  9. 根据权利要求8所述的一种微界面强化系统在开采可燃冰中的应用,其特征是,所述浓缩装置为蒸发式或膜过滤式。
  10. 根据权利要求5所述的一种微界面强化系统在开采可燃冰中的应用,其特征是,所述气液分离装置为釜式、旋风式或挡板式气液分离器。
PCT/CN2019/120237 2019-06-24 2019-11-22 一种微界面强化系统在开采可燃冰中的应用 WO2020258701A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910547227.0 2019-06-24
CN201910547227.0A CN112127851B (zh) 2019-06-24 2019-06-24 一种微界面强化系统在开采可燃冰中的应用

Publications (1)

Publication Number Publication Date
WO2020258701A1 true WO2020258701A1 (zh) 2020-12-30

Family

ID=73849678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120237 WO2020258701A1 (zh) 2019-06-24 2019-11-22 一种微界面强化系统在开采可燃冰中的应用

Country Status (2)

Country Link
CN (1) CN112127851B (zh)
WO (1) WO2020258701A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1659358A (zh) * 2002-06-13 2005-08-24 英国石油勘探运作有限公司 微型颗粒的制备方法
JP2009046882A (ja) * 2007-08-20 2009-03-05 Hamamatsu Photonics Kk メタンハイドレート採掘方法およびメタンハイドレート採掘装置
US20120222870A1 (en) * 2011-03-03 2012-09-06 Schaef Herbert T Downhole Fluid Injection Systems, CO2 Sequestration Methods, and Hydrocarbon Material Recovery Methods
CN102817596A (zh) * 2012-09-05 2012-12-12 韩中枢 海洋可燃冰开采装置和开采方法
CN106837258A (zh) * 2017-03-28 2017-06-13 中国石油大学(华东) 一种天然气水合物开采装置和方法
CN106930740A (zh) * 2017-05-13 2017-07-07 西南石油大学 一种注入饱和热盐水开采天然气水合物的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625527B1 (fr) * 1987-12-30 1995-12-01 Inst Francais Du Petrole Procede de transport d'un fluide formant des hydrates
CN100587227C (zh) * 2007-02-13 2010-02-03 中国科学院广州能源研究所 一种开采天然气水合物的方法及装置
CN101555784B (zh) * 2009-06-01 2013-04-17 李向东 一种洁净的天然气开采方法
CN106310986B (zh) * 2016-09-12 2017-12-05 中国石油大学(华东) 一种循环微泡式气液混合装置
CN207713477U (zh) * 2017-12-13 2018-08-10 珠海市清川环保科技有限公司 一种微纳气泡发生器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1659358A (zh) * 2002-06-13 2005-08-24 英国石油勘探运作有限公司 微型颗粒的制备方法
JP2009046882A (ja) * 2007-08-20 2009-03-05 Hamamatsu Photonics Kk メタンハイドレート採掘方法およびメタンハイドレート採掘装置
US20120222870A1 (en) * 2011-03-03 2012-09-06 Schaef Herbert T Downhole Fluid Injection Systems, CO2 Sequestration Methods, and Hydrocarbon Material Recovery Methods
CN102817596A (zh) * 2012-09-05 2012-12-12 韩中枢 海洋可燃冰开采装置和开采方法
CN106837258A (zh) * 2017-03-28 2017-06-13 中国石油大学(华东) 一种天然气水合物开采装置和方法
CN106930740A (zh) * 2017-05-13 2017-07-07 西南石油大学 一种注入饱和热盐水开采天然气水合物的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, ZHIBING: "Overview of Microinterface Intensification in Multiphase Reaction Systems", CIESC JOURNAL, vol. 69, no. 1,, 31 January 2018 (2018-01-31), ISSN: 0438-1157, DOI: 20200305182544Y *

Also Published As

Publication number Publication date
CN112127851A (zh) 2020-12-25
CN112127851B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
US8425666B2 (en) Back pressure-matched, integrated, environmental-remediation apparatus and method
US10258899B2 (en) Mobile mechanical vapor recompression evaporator
CN103613155B (zh) 热管式低温两效海水淡化装置
AU2010357340A1 (en) Concentration plant, plant for producing fresh water by concentration and for generating electric power, concentration method, and method for operating plant for producing fresh water by concentration and for generating electric power
CN106219647A (zh) 一种高效海水淡化装置
CN100450572C (zh) 一种界面渐进冷冻浓缩方法
CN106315717A (zh) 一种mvr废水蒸发浓缩系统
CN109867401A (zh) 一种利用深海低温水冷凝制取水源系统装置及方法
CN204151180U (zh) 一种高效机械蒸汽再压缩海水淡化装置
CN104310514A (zh) 一种高效机械蒸汽再压缩海水淡化方法
WO2020258701A1 (zh) 一种微界面强化系统在开采可燃冰中的应用
CN113429055A (zh) 一种自重负压下的低温闪蒸海水淡化装置及方法
CN202342918U (zh) 一种超声雾化浓缩装置
CN104724776A (zh) 压力蒸发二次蒸汽掺入压力水中的装置及其方法
WO2020258700A1 (zh) 一种开采可燃冰的绿色工艺
CN203750417U (zh) 一种利用射流循环减压的膜蒸馏装置
CN105085900B (zh) 一种过热蒸汽回收及余热利用装置
CN208711379U (zh) 一种利用高沸点溶剂吸收voc并再生利用装置
CN201971641U (zh) 磷酸一铵生产中低温蒸汽的回收利用装置
CN206609156U (zh) 一种油田回注水余热回收热泵机组及其系统
CN103818976A (zh) 直燃式喷雾脱盐方法及装置
CN1828135B (zh) 用间接加热式锅炉产生蒸汽的装置
US20220410029A1 (en) Tubeless, multi-effect distillation system and method
CN203653284U (zh) 热管式低温两效海水淡化装置
CN108970488A (zh) 一种混酸方法及其混酸装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934416

Country of ref document: EP

Kind code of ref document: A1