WO2020258469A1 - 电极、钙钛矿发光二极管及其制造方法 - Google Patents

电极、钙钛矿发光二极管及其制造方法 Download PDF

Info

Publication number
WO2020258469A1
WO2020258469A1 PCT/CN2019/101497 CN2019101497W WO2020258469A1 WO 2020258469 A1 WO2020258469 A1 WO 2020258469A1 CN 2019101497 W CN2019101497 W CN 2019101497W WO 2020258469 A1 WO2020258469 A1 WO 2020258469A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite light
carbon material
emitting diode
electrode
surface modifier
Prior art date
Application number
PCT/CN2019/101497
Other languages
English (en)
French (fr)
Inventor
段淼
李佳育
徐君哲
陈书志
江沛
何波
尹勇明
吴永伟
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/609,227 priority Critical patent/US20200411791A1/en
Publication of WO2020258469A1 publication Critical patent/WO2020258469A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • This application relates to the technical field of electroluminescent devices, and in particular to an electrode, a perovskite light-emitting diode and a manufacturing method thereof.
  • the organic-inorganic hybrid perovskite is a compound whose molecular formula is ABX 3 type.
  • B represents a divalent cation cations, such as Pb 2+, Sn 2+ and the like;
  • ABX 3 type compounds have the properties of high fluorescence quantum efficiency, narrow half-value width, high color purity, and adjustable optical band gap, so they are also very attractive in the field of light-emitting display devices.
  • the more mature perovskite LED device structure is indium tin oxide layer/hole transport layer/perovskite light emitting layer/electron transport layer/metal electrode.
  • the indium tin oxide layer serves as the anode and the metal electrode serves as the cathode.
  • metal electrodes are expensive and require high manufacturing equipment, when low-cost and highly conductive carbon materials are used as cathodes, the work function of the carbon materials is higher than that of metals, making it difficult for electrons to be injected into the perovskite light-emitting layer.
  • the purpose of the present application is to provide an electrode, a perovskite light-emitting diode and a manufacturing method thereof to solve the problem that a cathode made of carbon material has a high work function, which causes electrons to be difficult to inject into the perovskite light-emitting layer.
  • An electrode the preparation material of the electrode includes a carbon material and a surface modifier, and the surface modifier includes a polymer having the following structural formula (1) and/or structural formula (2),
  • the x, the y, and the z are all integers greater than or equal to 1, and the a, the b, the c, and the d are all integers greater than or equal to 1.
  • the ratio of the mass of the surface modifier to the carbon material ranges from (0.01-10):100.
  • the ratio of the mass of the surface modifier to the carbon material ranges from (0.1-2):100.
  • the carbon material is selected from at least one of graphene, graphite, carbon nanotubes, and carbon black.
  • the carbon material is selected from graphite.
  • a perovskite light-emitting diode includes a cathode, and the cathode is prepared by a carbon material and a surface modifier, and the surface modifier includes the following structural formula (1) and/or structural formula (2) The polymer shown,
  • the x, the y, and the z are all integers greater than or equal to 1, and the a, the b, the c, and the d are all integers greater than or equal to 1.
  • the ratio of the mass of the surface modifier to the carbon material ranges from (0.01-10):100.
  • the ratio of the mass of the surface modifier to the carbon material ranges from (0.1-2):100.
  • the carbon material is selected from at least one of graphene, graphite, carbon nanotubes, and carbon black.
  • the carbon material is selected from graphite.
  • the perovskite light-emitting diode further includes a perovskite light-emitting layer, and the preparation material of the perovskite light-emitting layer includes CH 3 NH 3 PbBr 3 .
  • a manufacturing method of a perovskite light-emitting diode includes the following steps:
  • the carbon material slurry includes a carbon material and the solvent
  • the surface modifier includes a polymer having the following structural formula (1) and/or structural formula (2)
  • the x, the y, and the z are all integers greater than or equal to 1, and the a, the b, the c, and the d are all integers greater than or equal to 1.
  • the ratio of the mass of the surface modifier to the carbon material ranges from (0.01-10):100.
  • the ratio of the mass of the surface modifier to the carbon material ranges from (0.1-2):100.
  • the carbon material is selected from at least one of graphene, graphite, carbon nanotubes, and carbon black.
  • the carbon material is selected from graphite.
  • the material for preparing the perovskite light-emitting layer includes CH 3 NH 3 PbBr 3 .
  • This application provides an electrode, a perovskite light-emitting diode and a manufacturing method thereof.
  • the carbon material is modified with a specific polymer-based surface modifier PEIE and/or PEI to prepare an electrode with a low work function.
  • PEIE polymer-based surface modifier
  • PEI polymer-based surface modifier
  • the electrode is used as a perovskite
  • the cathode of the mineral light emitting diode is more conducive to the injection of electrons into the perovskite light-emitting layer.
  • FIG. 1 is a schematic diagram of the structure of a perovskite light-emitting diode according to an embodiment of the application.
  • PEIE Ethoxylated polyethyleneimine
  • x, y, and z are all integers greater than or equal to 1.
  • PEI Branched polyethyleneimine
  • a, b, c, and d are all integers greater than or equal to 1.
  • PEI was purchased from Sigma-Aldrich Company, and the average molecular weight of PEIE was about 25,000.
  • the electrodes of Examples 1 to 7 were prepared using surface modifiers and carbon materials, and the electrodes of Comparative Example 1 and Comparative Example 2 were prepared using graphite and graphene, and measured in Example 1 to Example 7 under the same test conditions.
  • the work function and sheet resistance of the electrodes of Comparative Example 1 to Comparative Example 2 are shown in Table 1:
  • the quality of graphite does not change.
  • the absolute value of the work function of the electrode gradually decreases, and the sheet resistance of the electrode gradually increases.
  • the mass of PEIE is 0.01g
  • the work function of the electrode is -4.48ev, which is no significant drop compared to the work function of the graphite electrode;
  • the mass of PEIE is 9g
  • the work function of the electrode is -4.3
  • the sheet resistance is 50ohm /sq, although the work function of the electrode is small, the conductivity of the electrode is significantly lower than that of the graphite electrode.
  • Comparative Example 1 and Example 3 Comparative Example 2 and Example 6, it can be seen that the difference between the work function of the electrode composed of 1gPEIE and 100g graphite and the work function of the electrode composed of 101g graphite is 0.4ev, 1gPEIE and 100g graphite The difference between the work function of the electrode composed of ene and the work function of the electrode composed of 101 g graphene is 0.3 eV. It can be seen that, compared with graphene, PEIE reduces the work function of graphite more significantly. In addition, compared to graphene, PEIE makes graphite sheet resistance increase less.
  • the perovskite light emitting diode includes a substrate 100, an anode 101, a hole transport layer 102, a perovskite light emitting layer 103, an electron transport layer 104, and a cathode 105.
  • the anode 101 is formed on a surface of the substrate 100, the hole transport layer 102 is formed on a surface of the anode away from the substrate 100, the perovskite light-emitting layer 103 is formed on the surface of the hole transport layer 102 away from the anode 101, and the electron transport layer 104
  • the cathode 105 is formed on the surface of the perovskite light-emitting layer 103 away from the hole transport layer 102, and the cathode 105 is formed on the surface of the electron transport layer 104 away from the perovskite light-emitting layer 103.
  • Table 2 The composition of the perovskite light-emitting diode is shown in Table 2 below:
  • the work function of the anode 101 is -4.8ev
  • the work function of the hole transport layer 102 is -5.2ev
  • the conduction band energy level of the perovskite light-emitting layer 103 is -3.4ev
  • the valence band of the perovskite light-emitting layer 103 The energy level is -5.6ev
  • the conduction band energy level of the electron transport layer 104 is -2.7ev
  • the valence band energy level of the electron transport layer 104 is -6.2ev.
  • the work function of the electrode is -4.48ev ⁇ -3.5ev, that is, the work function of the electrode is smaller than the conduction band energy level of the perovskite light-emitting layer 103.
  • the cathode 105 and the perovskite The energy level difference between the luminescent layer 103 is smaller than the energy level difference between the carbon material cathode and the perovskite luminescent layer 103, that is, the surface modifier PEIE and/or PEI modify the carbon material, so that the two are composed of
  • the work function of the cathode is more matched with the energy level of the perovskite luminescent layer, which is more conducive to the injection of electrons into the perovskite luminescent layer.
  • This embodiment is the manufacturing method of the perovskite light-emitting diode shown in the eighth embodiment, including the following steps:
  • S11 Provide a substrate 100 with an anode 101 formed thereon.
  • a glass substrate with an indium tin oxide layer formed on the surface is provided.
  • UV light and ozone are used to treat the glass substrate with the indium tin oxide layer, and the PEDOT:PSS aqueous solution is spin-coated on the indium tin oxide layer at a rate of 3000 r/min for 1 minute, and the PEDOT:PSS aqueous solution is coated
  • the glass was transferred to a heating stage at 150° C. and annealed for 10 minutes to form a hole transport layer.
  • PEDOT: PSS aqueous solution is commercially available.
  • the precursor solution of the perovskite was dropped on the surface of the hole transport layer away from the anode 101, and the coating was applied at a rate of 4000r/min for 30s, and 250 ⁇ L of the anti-solvent chlorobenzene was added dropwise for about 10s after spin coating. After the spin coating is completed, it is placed on a heating stage for annealing at 90° C. to obtain the perovskite luminescent layer 103.
  • the precursor solution of the perovskite mainly includes CH 3 NH 3 PbBr 3 .
  • the substrate 100 on which the perovskite light-emitting layer 103 is formed is placed in a vacuum coater, and TBPI is evaporated on the surface of the perovskite light-emitting layer 103 away from the hole transport layer 102 to form the electron transport layer 104.
  • x, y, and z are all integers greater than or equal to 1
  • a, b, c, and d are all integers greater than or equal to 1.
  • the surface modifier and the carbon material slurry are mixed, a ball mill is used for ball milling to obtain a mixture of the surface modifier and the carbon material slurry, and the surface modifier and the carbon material slurry are combined by a simple blade coating process.
  • the mixture is coated on the surface of the electron transport layer 104 away from the perovskite light-emitting layer 103 and annealed at a preset temperature to remove the solvent in the carbon material slurry to form the cathode 105.
  • the carbon slurry is a commercial grade carbon material slurry, which mainly includes carbon materials and solvents for dissolving carbon materials.
  • the carbon material may be a micro-scale carbon material or a nano-scale carbon material.
  • the carbon material is selected from at least one of graphene, graphite, carbon nanotubes, and carbon black. Specifically, the carbon material is selected from graphite.
  • the ratio of the mass of the surface modifier to the carbon material ranges from (0.01-10):100. Further, the range of the mass ratio of the surface modifier to the carbon material is (0.1-2):100.
  • the manufacturing method of the perovskite light-emitting diode of this embodiment uses a specific polymer-based surface modifier PEIE and/or PEI to modify the carbon material to prepare a cathode with a low work function, which is more conducive to electron injection into the perovskite In the luminescent layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请提供一种电极、钙钛矿发光二极管及其制造方法,采用特定聚合物基表面改性剂PEIE和/或PEI改性碳材料,制得具有低功函数的电极,该电极作为钙钛矿发光二极管的阴极更有利于电子注入至钙钛矿发光层中。

Description

电极、钙钛矿发光二极管及其制造方法 技术领域
本申请涉及电致发光器件技术领域,尤其涉及一种电极、钙钛矿发光二极管及其制造方法。
背景技术
目前,有机-无机杂化钙钛矿是一种分子式为ABX 3型化合物,A代表一价阳离子,如CH 3NH 3 +、NH 2-CH=NH 2 +、Cs +等;B代表二价阳离子,如Pb 2+、Sn 2+等;X代表一价阴离子,如I -、Br -、Cl -等。ABX 3型化合物具有荧光量子效率高、半峰宽较窄、色纯度高、光学带隙可调等性质,因此在发光显示器件领域也非常具有吸引力。特别地,随着绿光和红光钙钛矿发光二极管(Light Emitting Diode,LED)的外量子效率接连突破20%,使钙钛矿发光二极管得到了学术界和产业界的广泛关注。因此,研究钙钛矿LED对先进显示技术意义重大。
通常而言,较为成熟的钙钛矿LED器件结构为氧化铟锡层/空穴传输层/钙钛矿发光层/电子传输层/金属电极。其中,氧化铟锡层作为阳极,金属电极作为阴极。由于金属电极的价格昂贵且制造设备要求高,采用低成本高导电的碳材料作为阴极时,碳材料的功函数高于金属使得电子难以注入至钙钛矿发光层。
因此,有必要提出一种技术方案以解决碳材料制得的阴极功函数较高而导致电子难以注入至钙钛矿发光层的问题。
技术问题
本申请的目的在于提供一种电极、钙钛矿发光二极管及其制造方法,以解决碳材料制得的阴极功函数较高而导致电子难以注入至钙钛矿发光层的问题。
技术解决方案
一种电极,所述电极的制备材料包括碳材料以及表面改性剂,所述表面改性剂包括具有如下结构式(1)和/或结构式(2)所示聚合物,
Figure PCTCN2019101497-appb-000001
其中,所述x、所述y以及所述z均为大于或等于1的整数,所述a、 所述b、所述c以及所述d均为大于或等于1的整数。
在上述电极中,所述表面改性剂与所述碳材料的质量之比的取值范围为(0.01-10):100。
在上述电极中,所述表面改性剂与所述碳材料的质量之比的取值范围为(0.1-2):100。
在上述电极中,所述碳材料选自石墨烯、石墨、碳纳米管以及炭黑中的至少一种。
在上述电极中,所述碳材料选自石墨。
一种钙钛矿发光二极管,所述钙钛矿发光二极管包括阴极,所述阴极的制备材料包括碳材料以及表面改性剂,所述表面改性剂包括具有如下结构式(1)和/或结构式(2)所示聚合物,
Figure PCTCN2019101497-appb-000002
Figure PCTCN2019101497-appb-000003
其中,所述x、所述y以及所述z均为大于或等于1的整数,所述a、所述b、所述c以及所述d均为大于或等于1的整数。
在上述钙钛矿发光二极管中,所述表面改性剂与所述碳材料的质量之比的取值范围为(0.01-10):100。
在上述钙钛矿发光二极管中,所述表面改性剂与所述碳材料的质量之比的取值范围为(0.1-2):100。
在上述钙钛矿发光二极管中,所述碳材料选自石墨烯、石墨、碳纳米管以及炭黑中的至少一种。
在上述钙钛矿发光二极管中,所述碳材料选自石墨。
在上述钙钛矿发光二极管中,所述钙钛矿发光二极管还包括钙钛矿发光层,所述钙钛矿发光层的制备材料包括CH 3NH 3PbBr 3
一种钙钛矿发光二极管的制造方法,所述钙钛矿发光二极管的制造方法包括如下步骤:
提供一形成有阳极的衬底;
于所述阳极的一表面形成空穴传输层;
于所述空穴传输层远离所述阳极的表面形成钙钛矿发光层;
于所述钙钛矿发光层远离所述空穴传输层的表面形成电子传输层;于所述电子传输层远离所述钙钛矿发光层的表面涂布表面改性剂与碳材料浆料的混合物,经预设温度退火去除所述碳材料浆料中的溶剂以形成阴极;
其中,所述碳材料浆料包括碳材料和所述溶剂,所述表面改性剂包括具有如下结构式(1)和/或结构式(2)所示聚合物,
Figure PCTCN2019101497-appb-000004
其中,所述x、所述y以及所述z均为大于或等于1的整数,所述a、所述b、所述c以及所述d均为大于或等于1的整数。
在上述钙钛矿发光二极管的制造方法中,所述表面改性剂与所述碳材料的质量之比的取值范围为(0.01-10):100。
在上述钙钛矿发光二极管的制造方法中,所述表面改性剂与所述碳材料的质量之比的取值范围为(0.1-2):100。
在上述钙钛矿发光二极管的制造方法中,所述碳材料选自石墨烯、石墨、碳纳米管以及炭黑中的至少一种。
在上述钙钛矿发光二极管的制造方法中,所述碳材料选自石墨。
在上述钙钛矿发光二极管的制造方法中,所述钙钛矿发光层的制备材料包括CH 3NH 3PbBr 3
有益效果
本申请提供一种电极、钙钛矿发光二极管及其制造方法,采用特定聚合物基表面改性剂PEIE和/或PEI改性碳材料,制得具有低功函数的电极,该电极作为钙钛矿发光二极管的阴极更有利于电子注入至钙钛矿发光层中。
附图说明
图1为本申请实施例钙钛矿发光二极管的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属 于本申请保护的范围。
以下对表面改性剂描述如下:
乙氧基化聚乙烯亚胺,简称PEIE,具有如下(1)所示的结构式,
Figure PCTCN2019101497-appb-000005
其中,x、y以及z均为大于或等于1的整数。
在以下实施例中,PEIE来源于PEIE溶液,纯度为80%的PEIE(Mw=110000)水溶液购于Sigma-Aldrich公司,PEIE的重量分数为37%。
分支聚乙烯亚胺,简称PEI,具有如下(2)所示结构式,
Figure PCTCN2019101497-appb-000006
其中,a、b、c以及d均为大于或等于1的整数。
在以下实施例中,PEI购于Sigma-Aldrich公司,PEIE的平均数均分 子量约为25000。
以下以表面改性剂以及碳材料制备实施例一至实施例七的电极,以石墨以及石墨烯制备对比例一和对比例二的电极,并在相同测试条件下测得实施例一至实施例七、对比例一至对比例二的电极的功函数以及方块电阻,具体如表1所示:
表1 实施例一至实施例七、对比例一至对比例二的电极的组成、功函数以及方块电阻
Figure PCTCN2019101497-appb-000007
由表1可知,以石墨和石墨烯制得的电极的功函数分别为-4.5ev和-4.6ev。101g石墨的方块电阻为1ohm/sq,101g石墨烯的方块电阻为6ohm/sq,故相同条件下,石墨的导电性比石墨烯的导电性更佳。
以石墨和PEIE为电极的制备材料时,石墨的质量不变,随着PEIE的质量逐渐增加,电极的功函数的绝对值逐渐减小,电极的方块电阻 逐渐增加。PEIE的质量为0.01g时,电极的功函数为-4.48ev,相对于石墨电极的功函数,无明显下降;而PEIE的质量为9g时,电极的功函数为-4.3,且方块电阻为50ohm/sq,尽管电极的功函数较小,但电极的导电性相对于石墨电极的导电性下降明显。PEIE与石墨的质量比为0.1-2:100时,电极的功函数和导电性之间达到平衡,更有利于电极应用于发光二极管等。另外,由实施例六和对比例二可知,以石墨烯和PEIE为电极的制备材料时,相对于石墨烯制得的电极,石墨烯和PEIE制得的电极的功函数增加0.3ev,即在石墨烯中加入PEIE使得石墨烯的功函数下降。由实施例七可知,以PEI作为表面改性剂改性石墨,也能获得低功函数的电极。
由上述可知,碳材料中含有的表面改性剂PEI或PEIE越多,制得电极的功函数增加越明显,电极的功函数的绝对值越小。主要原因在于表面改性剂附着于碳材料的表面,会改变碳材料表面的电子云状态,进而降低碳材料的功函数。然而,碳材料中加入过多的表面改性剂,会导致碳材料的导电性下降明显,不利于电极的导电性。
此外,由对比例一和实施例三、对比例二和实施例六可知,1gPEIE和100g石墨组成的电极的功函数与101g石墨组成的电极的功函数的差值为0.4ev,1gPEIE和100g石墨烯组成的电极的功函数与101g石墨烯组成的电极的功函数的差值为0.3ev。由此可知,相对于石墨烯,PEIE使石墨的功函数下降得更明显。另外,相对于石墨烯,PEIE使得石墨的方块电阻增加较少。
实施例八
如图1所示,其为本实施例钙钛矿发光二极管的结构示意图。钙钛矿发光二极管包括衬底100、阳极101、空穴传输层102、钙钛矿发光层103、电子传输层104以及阴极105。阳极101形成于衬底100的一表面,空穴传输层102形成于阳极远离衬底100的一表面,钙钛矿发光层103形成于空穴传输层102远离阳极101的表面,电子传输层104形成于钙钛矿发光层103远离空穴传输层102的表面,阴极105形成于电子传输层104远离钙钛矿发光层103的表面。钙钛矿发光二极管的组成如下表2所示:
表2 钙钛矿发光二极管的组成
Figure PCTCN2019101497-appb-000008
其中,阳极101的功函数为-4.8ev,空穴传输层102的功函数为-5.2ev,钙钛矿发光层103的导带能级为-3.4ev,钙钛矿发光层103的价带能级为-5.6ev,电子传输层104的导带能级为-2.7ev,电子传输层104的价带能级为-6.2ev。
电子从阴极105流出,由于电子传输层104的厚度较薄(约为 2nm),对能级匹配作用微小,故主要考虑钙钛矿发光层103的导带能级。实施例一至实施例七中,电极的功函数为-4.48ev~-3.5ev,即电极的功函数小于钙钛矿发光层103的导带能级,该电极作为阴极时,阴极105与钙钛矿发光层103之间的能级差相对于碳材料阴极与钙钛矿发光层103之间的能级差更小,即由于表面改性剂PEIE和/或PEI改性碳材料,使得两者组成的阴极的功函数与钙钛矿发光层的能级更加匹配,更有利于电子注入至钙钛矿发光层中。
实施例九
本实施例为实施例八所示钙钛矿发光二极管的制造方法,包括如下步骤:
S11:提供一形成有阳极101的衬底100。
具体地,提供一表面形成有氧化铟锡层的玻璃衬底。
S12:于阳极101的一表面形成空穴传输层102。
具体地,采用紫外光以及臭氧处理形成有氧化铟锡层的玻璃衬底,于氧化铟锡层上以3000r/min的速率旋涂PEDOT:PSS水溶液1分钟,将涂布有PEDOT:PSS水溶液的玻璃转移至150℃的加热台上退火处理10min,以形成空穴传输层。PEDOT:PSS水溶液为市购。
S13:于空穴传输层102远离阳极101的表面形成钙钛矿发光层103。
具体地,将钙钛矿的前驱体溶液滴加在空穴传输层远离阳极101的表面,以4000r/min的速率涂布30s,自旋涂开始约10s滴加250 μL的反溶剂氯苯,旋涂完成后置于加热台上90℃退火处理以得到钙钛矿发光层103。其中,钙钛矿的前驱体溶液主要包括CH 3NH 3PbBr 3
S14:于钙钛矿发光层103远离空穴传输层102的表面形成电子传输层104。
具体地,将形成有钙钛矿发光层103的衬底100置于真空镀膜机中,在钙钛矿发光层103远离空穴传输层102的表面蒸镀TBPI,以形成电子传输层104。
S15:于电子传输层104远离钙钛矿发光层103的表面涂布表面改性剂与碳材料浆料的混合物,以预设温度去除碳材料浆料中的溶剂以形成阴极105,碳材料浆料包括碳材料和溶剂,表面改性剂包括具有如下结构式(1)和/或结构式(2)所示聚合物,
Figure PCTCN2019101497-appb-000009
Figure PCTCN2019101497-appb-000010
其中,x、y以及z均为大于或等于1的整数,a、b、c以及d均为大于或等于1的整数。
具体地,将表面改性剂和碳材料浆料进行混合,采用球磨机球磨以得表面改性剂和碳材料浆料的混合物,采用简单的刮涂工艺将表面改性剂和碳材料浆料的混合物涂布在电子传输层104远离钙钛矿发光层103的表面,经预设温度退火以去除碳材料浆料中的溶剂,以形成阴极105。
其中,碳浆料为商业级碳材料浆料,主要包括碳材料以及溶解碳材料的溶剂。碳材料可以为微米级碳材料或纳米级碳材料。碳材料选自石墨烯、石墨、碳纳米管以及炭黑中的至少一种。具体地,碳材料选自石墨。
在本实施例中,表面改性剂与碳材料的质量之比的取值范围为(0.01-10):100。进一步地,表面改性剂与碳材料的质量之比的取值范围为(0.1-2):100。
本实施例钙钛矿发光二极管的制造方法通过采用特定聚合物基表面改性剂PEIE和/或PEI改性碳材料,制得具有低功函数的阴极, 该阴极更有利于电子注入至钙钛矿发光层中。
以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (17)

  1. 一种电极,其中,所述电极的制备材料包括碳材料以及表面改性剂,所述表面改性剂包括具有如下结构式(1)和/或结构式(2)所示聚合物,
    Figure PCTCN2019101497-appb-100001
    其中,所述x、所述y以及所述z均为大于或等于1的整数,所述a、所述b、所述c以及所述d均为大于或等于1的整数。
  2. 根据权利要求1所述的电极,其中,所述表面改性剂与所述碳材料的质量之比的取值范围为(0.01-10):100。
  3. 根据权利要求2所述的电极,其中,所述表面改性剂与所述碳材料的质量之比的取值范围为(0.1-2):100。
  4. 根据权利要求1所述的电极,其中,所述碳材料选自石墨烯、石墨、碳纳米管以及炭黑中的至少一种。
  5. 根据权利要求4所述的电极,其中,所述碳材料选自石墨。
  6. 一种钙钛矿发光二极管,其中,所述钙钛矿发光二极管包括阴极,所述阴极的制备材料包括碳材料以及表面改性剂,所述表面改性剂包括具有如下结构式(1)和/或结构式(2)所示聚合物,
    Figure PCTCN2019101497-appb-100002
    其中,所述x、所述y以及所述z均为大于或等于1的整数,所述a、所述b、所述c以及所述d均为大于或等于1的整数。
  7. 根据权利要求6所述的钙钛矿发光二极管,其中,所述表面改性剂与所述碳材料的质量之比的取值范围为(0.01-10):100。
  8. 根据权利要求7所述的钙钛矿发光二极管,其中,所述表面改性剂与所述碳材料的质量之比的取值范围为(0.1-2):100。
  9. 根据权利要求6所述的钙钛矿发光二极管,其中,所述碳材料选自石墨烯、石墨、碳纳米管以及炭黑中的至少一种。
  10. 根据权利要求9所述的钙钛矿发光二极管,其中,所述碳材料选自石墨。
  11. 根据权利要求6所述的钙钛矿发光二极管,其中,所述钙钛矿发光二极管还包括钙钛矿发光层,所述钙钛矿发光层的制备材料包括CH 3NH 3PbBr 3
  12. 一种钙钛矿发光二极管的制造方法,其中,所述钙钛矿发光二极管的制造方法包括如下步骤:
    提供一形成有阳极的衬底;
    于所述阳极的一表面形成空穴传输层;
    于所述空穴传输层远离所述阳极的表面形成钙钛矿发光层;
    于所述钙钛矿发光层远离所述空穴传输层的表面形成电子传输层;
    于所述电子传输层远离所述钙钛矿发光层的表面涂布表面改性剂与碳材料浆料的混合物,以预设温度去除所述碳材料浆料中的溶剂以形成阴极,所述碳材料浆料包括碳材料和所述溶剂,所述表面改性剂包括具有如下结构式(1)和/或结构式(2)所示聚合物,
    Figure PCTCN2019101497-appb-100003
    其中,所述x、所述y以及所述z均为大于或等于1的整数,所述a、所述b、所述c以及所述d均为大于或等于1的整数。
  13. 根据权利要求12所述钙钛矿发光二极管的制造方法,其中,所述表面改性剂与所述碳材料的质量之比的取值范围为(0.01-10):100。
  14. 根据权利要求13所述钙钛矿发光二极管的制造方法,其中,所述表面改性剂与所述碳材料的质量之比的取值范围为(0.1-2):100。
  15. 根据权利要求12所述的钙钛矿发光二极管的制造方法,其中,所述碳材料选自石墨烯、石墨、碳纳米管以及炭黑中的至少一种。
  16. 根据权利要求15所述的钙钛矿发光二极管的制造方法,其中,所述碳材料选自石墨。
  17. 根据权利要求12所述的钙钛矿发光二极管的制造方法,其中,所述钙钛矿发光层的制备材料包括CH 3NH 3PbBr 3
PCT/CN2019/101497 2019-06-26 2019-08-20 电极、钙钛矿发光二极管及其制造方法 WO2020258469A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/609,227 US20200411791A1 (en) 2019-06-26 2019-08-20 Electrode, perovskite light-emitting diode and preparing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910561268.5A CN110335965B (zh) 2019-06-26 2019-06-26 电极、钙钛矿发光二极管及其制造方法
CN201910561268.5 2019-06-26

Publications (1)

Publication Number Publication Date
WO2020258469A1 true WO2020258469A1 (zh) 2020-12-30

Family

ID=68142408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101497 WO2020258469A1 (zh) 2019-06-26 2019-08-20 电极、钙钛矿发光二极管及其制造方法

Country Status (2)

Country Link
CN (1) CN110335965B (zh)
WO (1) WO2020258469A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140411A (zh) * 2015-08-17 2015-12-09 Tcl集团股份有限公司 不含ito的qled及其制备方法
CN105778619A (zh) * 2014-12-17 2016-07-20 中国科学院苏州纳米技术与纳米仿生研究所 聚合物-纳米金属氧化物复合墨水及其制备方法与应用
WO2019036093A2 (en) * 2017-06-14 2019-02-21 Nutech Ventures, Inc. COATING OF PEROVSKITE GRAINS WITH SILICA SHELLS TO IMPROVE THE STABILITY AND EFFICIENCY OF ELECTRONIC DEVICES BASED ON PEROVSKITE
US20190097144A1 (en) * 2016-03-15 2019-03-28 Nutech Ventures Insulating tunneling contact for efficient and stable perovskite solar cells
CN109742244A (zh) * 2018-12-13 2019-05-10 东莞理工学院 一种钙钛矿太阳能电池碳背电极的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247697A (zh) * 2013-07-31 2016-01-13 沙特基础工业全球技术公司 用于制造具有微米或纳米结构导电层的材料的方法
CN109825132A (zh) * 2019-03-13 2019-05-31 苏州科技大学 一种pedot/石墨烯/金纳米粒子墨水及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778619A (zh) * 2014-12-17 2016-07-20 中国科学院苏州纳米技术与纳米仿生研究所 聚合物-纳米金属氧化物复合墨水及其制备方法与应用
CN105140411A (zh) * 2015-08-17 2015-12-09 Tcl集团股份有限公司 不含ito的qled及其制备方法
US20190097144A1 (en) * 2016-03-15 2019-03-28 Nutech Ventures Insulating tunneling contact for efficient and stable perovskite solar cells
WO2019036093A2 (en) * 2017-06-14 2019-02-21 Nutech Ventures, Inc. COATING OF PEROVSKITE GRAINS WITH SILICA SHELLS TO IMPROVE THE STABILITY AND EFFICIENCY OF ELECTRONIC DEVICES BASED ON PEROVSKITE
CN109742244A (zh) * 2018-12-13 2019-05-10 东莞理工学院 一种钙钛矿太阳能电池碳背电极的制备方法

Also Published As

Publication number Publication date
CN110335965B (zh) 2021-05-07
CN110335965A (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
JP5682877B2 (ja) 有機電子デバイス及びその製造方法
WO2020078099A1 (zh) 电致发光器件及其制作方法、显示装置
CN104064690B (zh) 具有双层结构电子传输层的有机发光二极管及其制备方法
CN106654016B (zh) 一种有机光电器件及其制备方法和具有空穴传输性能的组合物
WO2018192334A1 (zh) 丙烯酸酯共聚物修饰的金属氧化物及制备方法与量子点发光二极管
CN105576139A (zh) 一种量子点电致发光二极管及其制备方法、显示器
CN111883679B (zh) 一种基于全溴配比的蓝光钙钛矿发光二极管及其制备方法
WO2021248877A1 (zh) 复合材料、复合材料的制备方法和发光二极管
CN105895829A (zh) 一种Cu:NiO纳米粒子、发光二极管及其制备方法
WO2020108071A1 (zh) 一种量子点发光二极管及其制备方法
CN111211248A (zh) 基于无铅钙钛矿薄膜的led器件及其制备方法
Feng et al. Towards efficient perovskite light-emitting diodes: A multi-step spin-coating method for a dense and uniform perovskite film
Zhu et al. All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer
WO2020258469A1 (zh) 电极、钙钛矿发光二极管及其制造方法
CN103840048A (zh) 反式全无机纳米氧化物量子点发光二极管及其制备方法
CN211700337U (zh) 多层发光量子点器件
CN109326743B (zh) 一种基于纳米钨青铜的发光二极管的制备方法
JP6156797B2 (ja) 有機電子デバイス
CN111244298B (zh) 一种发光器件及显示器
CN114039002B (zh) 电子传输墨水、电子传输薄膜、电致发光二极管及显示器件
US20230217808A1 (en) Perovskite layer
US20200411791A1 (en) Electrode, perovskite light-emitting diode and preparing method thereof
WO2022143568A1 (zh) 复合电子传输材料及其制备方法和发光二极管
CN110752302B (zh) 复合材料及其制备方法和量子点发光二极管
CN109119542A (zh) 量子点电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934608

Country of ref document: EP

Kind code of ref document: A1