WO2020258311A1 - 一种马达非线性参数的测试方法及装置 - Google Patents

一种马达非线性参数的测试方法及装置 Download PDF

Info

Publication number
WO2020258311A1
WO2020258311A1 PCT/CN2019/093887 CN2019093887W WO2020258311A1 WO 2020258311 A1 WO2020258311 A1 WO 2020258311A1 CN 2019093887 W CN2019093887 W CN 2019093887W WO 2020258311 A1 WO2020258311 A1 WO 2020258311A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
motor
linear
parameter
linear parameter
Prior art date
Application number
PCT/CN2019/093887
Other languages
English (en)
French (fr)
Inventor
向征
郭璇
路翔
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/093887 priority Critical patent/WO2020258311A1/zh
Priority to CN201910590932.9A priority patent/CN110346720B/zh
Priority to US16/995,746 priority patent/US20210025940A1/en
Publication of WO2020258311A1 publication Critical patent/WO2020258311A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2611Measuring inductance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors

Definitions

  • This application relates to the field of micro-electromechanical technology, in particular to a method and device for testing nonlinear parameters of a motor.
  • the most commonly used motor is a magnetic steel array linear motor based on Lorentz force (ie electromagnetic force).
  • Lorentz force ie electromagnetic force
  • the characteristic of this motor is that the system model conforms to the traditional second-order linear model, and it has special features in parameter determination and system control. The advantages.
  • this kind of motor is only suitable for the situation with low vibration intensity. When vibration with high vibration intensity is required, the motor based solely on Lorentz force is no longer applicable.
  • the present application provides a method and device for testing nonlinear parameters of a motor, which is used to solve the problem of large nonlinear modeling error of the motor in the prior art, resulting in low control accuracy of the motor and unable to achieve the expected effect. .
  • the first aspect of the embodiments of the present application proposes a method for testing nonlinear parameters of a motor, including:
  • adaptive filtering is used to calculate the non-linear parameter target value of the motor.
  • the non-linear parameter target of the motor is calculated by adaptive filtering based on the voltage measurement value, the current measurement value, the linear parameter target value, and the non-linear parameter initial value Values include:
  • the coefficient update is calculated according to the voltage measurement value, the current measurement value, the linear parameter target value, the nonlinear parameter update value, and the coefficient initial value Value, the coefficient update value is taken as the initial value of the coefficient, the non-linear parameter update value is taken as the initial value of the non-linear parameter, re-enter according to the voltage measurement value, the current measurement value, the linear parameter target value, and the The step of calculating the updated value of the nonlinear parameter with the initial value of the nonlinear parameter and the initial value of the coefficient.
  • the calculating the non-linear parameter update value based on the voltage measurement value, the current measurement value, the linear parameter target value, the non-linear parameter initial value and the coefficient initial value includes :
  • a nonlinear parameter update value is calculated according to the linear parameter target value, the displacement of the motor vibrator, and the initial value of the coefficient.
  • the calculation of the coefficient update value based on the voltage measurement value, the current measurement value, the linear parameter target value, the nonlinear parameter update value, and the coefficient initial value includes:
  • a coefficient update value is calculated according to the error value and the initial value of the coefficient.
  • the calculating the error value based on the voltage measurement value, the current measurement value, the linear parameter target value, and the nonlinear parameter update value includes:
  • An error value is calculated according to the first speed and the second speed.
  • the calculating the linear parameter target value of the motor based on the voltage measurement value, the current measurement value, and the linear parameter initial value includes:
  • Data fitting is performed on the current measurement value and the current calculation value to obtain the linear parameter target value.
  • using an excitation signal to excite the motor to vibrate includes:
  • the filtered excitation signal is used to excite the motor to vibrate.
  • a second aspect of the embodiments of the present application provides a testing device for non-linear parameters of a motor, including:
  • Excitation module used to excite motor vibration with excitation signal
  • the acquisition module is used to synchronously collect information of the motor in a vibration state to obtain the voltage measurement value and the current measurement value;
  • the acquisition module is used to acquire the initial values of linear parameters and non-linear parameters of the motor
  • a calculation module configured to calculate a linear parameter target value of the motor according to the voltage measurement value, the current measurement value, and the linear parameter initial value
  • the calculation module is further configured to calculate the target value of the nonlinear parameter of the motor using adaptive filtering according to the measured voltage value, the measured current value, the linear parameter target value, and the initial value of the nonlinear parameter. .
  • a third aspect of the embodiments of the present application provides a terminal device, including:
  • the fourth aspect of the embodiments of the present application provides a computer-readable storage medium, including:
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the method for testing the non-linear parameters of the motor as described above are realized.
  • the embodiments of the present application provide a method and device for testing nonlinear parameters of a motor.
  • the method includes: using an excitation signal to excite the motor to vibrate, and synchronously collecting information on the motor in a vibrating state to obtain voltage measurement values and current measurement values, Acquire the linear parameter initial value and the nonlinear parameter initial value of the motor, calculate the linear parameter target value of the motor according to the voltage measurement value, the current measurement value, and the linear parameter initial value, and according to the voltage measurement value , The current measurement value, the linear parameter target value, and the nonlinear parameter initial value are calculated using adaptive filtering to obtain the non-linear parameter target value of the motor. By measuring the non-linear parameter of the motor, the use of non-linear parameters is realized.
  • the linear model accurately controls the motor vibration, improves the control accuracy of the motor, thus improves the performance of the motor, and solves the problem of the large nonlinear modeling error of the motor in the prior art, which leads to the low control accuracy of the motor and cannot achieve the expected effect. problem.
  • FIG. 1 is a schematic diagram of the implementation process of a method for testing nonlinear parameters of a motor provided by Embodiment 1 of the present application;
  • Figure 2 is a schematic diagram of the modeling of the motor linear system
  • FIG. 3 is a schematic diagram of the implementation process of another method for testing nonlinear parameters of a motor provided in the second embodiment of the present application;
  • FIG. 4 is a schematic diagram of a testing device for non-linear parameters of a motor provided in the third embodiment of the present application;
  • FIG. 5 is a schematic diagram of a terminal device provided in Embodiment 4 of the present application.
  • the nonlinear model is used to model the motor, which can avoid the problem of ignoring the nonlinear characteristics of the motor when modeling the motor with the traditional second-order physical model, which leads to inaccurate modeling and affects the accuracy of motor control , And obtaining the non-linear parameters of the motor is a prerequisite for modeling the motor using a non-linear model. Based on this, this application provides a method for testing the non-linear parameters of the motor.
  • FIG. 1 is a schematic diagram of the implementation process of a method for testing nonlinear parameters of a motor provided in the first embodiment of the present application. As shown in FIG. 1, the method for testing nonlinear parameters of a motor provided in this embodiment includes the following steps:
  • Step 11 Use the excitation signal to excite the motor to vibrate.
  • the execution subject of this embodiment is a testing device for non-linear parameters of a motor
  • the testing device for non-linear parameters of a motor may specifically be a testing terminal, such as a computer.
  • the testing device for the non-linear parameters of the motor sends an excitation signal to the motor system to drive the motor to vibrate, including:
  • the testing device for the non-linear parameters of the motor generates excitation signals according to the test requirements.
  • the excitation signal generated in this embodiment uses a non-linear test signal whose peak voltage is less than a preset value, which can avoid using large-scale test signals to damage the motor while realizing accurate testing of non-linear parameters.
  • S112 Perform filtering processing on the excitation signal.
  • this embodiment performs filtering processing on the generated excitation signal to obtain an excitation signal with a certain bandwidth, and the motor is excited by the excitation signal.
  • the generated excitation signal is a full-bandwidth white noise signal, which is filtered by a band-pass filter to obtain an excitation signal with a certain bandwidth.
  • the filtered excitation signal is sent to a signal acquisition device connected to the motor, and the excitation signal is digital-to-analog converted by the signal acquisition device, converted into an analog signal, amplified by a power amplifier, and transmitted to the motor to drive it to vibrate.
  • the signal acquisition device may be NI USB-4431.
  • NI USB-4431 is a 5-channel USB dynamic signal acquisition device for high-precision sound and vibration measurement through integrated circuit piezoelectric and non-integrated circuit piezoelectric sensors.
  • the signal acquisition device in this embodiment may also be other types of signal acquisition devices, which is not specifically limited here.
  • Step 12 Synchronously collect information on the motor in a vibrating state to obtain a voltage measurement value and a current measurement value.
  • the testing device for the non-linear parameters of the motor collects the voltage and current of the motor through the signal acquisition device.
  • a high-precision resistor is added between the power amplifier and the motor, and the current obtained from the high-precision resistor is The current of the motor.
  • the method of obtaining the current of the high-precision resistance can directly obtain the current, or obtain the voltage and resistance, and calculate the current indirectly.
  • the current is obtained by indirectly calculating the current. Specifically: the voltage across the high-precision resistor is collected by a signal acquisition device, and the resistance of the high-precision resistor is known (for example, a resistance value of 1 ⁇ (ohm) is used). High-precision resistance), the current is calculated by voltage and resistance.
  • the signal acquisition device When the voltage across the high-precision resistor is collected by the signal acquisition device, the voltage across the motor is synchronously collected. After the signal acquisition device obtains the voltage and current of the motor, it performs analog-to-digital conversion to obtain the voltage measurement value and the current measurement value.
  • the specific models of the power amplifier, signal amplifier, motor and other devices used are not specifically limited.
  • Step 13 Obtain initial values of linear parameters and initial values of nonlinear parameters of the motor.
  • the initial values of the test parameters of the motor including the initial values of linear parameters and the initial values of nonlinear parameters.
  • the initial value of the linear parameter and the initial value of the non-linear parameter can be the initial value set at the factory of the motor, or the initial value preset by the user.
  • Step 14 The target value of the linear parameter of the motor is calculated according to the measured voltage value, the measured current value, and the initial value of the linear parameter.
  • the nonlinear parameters of the motor are predicted, the linear parameters of the motor are measured first, and the linear parameter target value of the motor is calculated according to the voltage measurement value, the current measurement value, and the initial value of the linear parameter, which specifically includes:
  • u e is the voltage across the motor
  • R e is a voice coil motor impedance
  • i is the current across the motor
  • L e is the voice coil inductance
  • v is the speed of the sub-Mada Zhen
  • m t is the mass Ma Dazhen sub
  • A is the acceleration of the motor vibrator
  • R m is the mechanical damping of the damper
  • k t is the spring stiffness coefficient
  • x is the displacement of the motor vibrator
  • t is the time.
  • Laplace transform processing is selected from the time domain to the frequency domain.
  • Laplace transform processing is performed on the above equations (1) and (2) respectively, and the transformed equations (3) and (4) are obtained respectively:
  • s is the frequency.
  • the least square method is used to perform data fitting on the current measurement value and the current calculation value.
  • the least square method (also known as the least square method) is a mathematical optimization technique that finds the optimal test result of the motor test parameters by minimizing the square sum of the error.
  • the least square method can be used to easily obtain unknown data, and minimize the sum of squares of errors between the obtained data and the actual data.
  • the least square method is directly used by the existing algorithm, and will not be repeated in this embodiment.
  • other methods can also be used for data fitting, such as the method of approximating discrete data with analytical expressions, etc., which is not specifically limited in this embodiment.
  • the linear parameter target value is obtained.
  • the linear parameter is obtained by fitting according to formula (6): mechanical damping of the damper R m , spring stiffness coefficient k is a target value t, the voice coil motor impedance R e, and voice coil inductance L e of the electromagnetic force coefficient Bl.
  • Step 15 According to the voltage measurement value, the current measurement value, the linear parameter target value, and the non-linear parameter initial value, adaptive filtering is used to calculate the non-linear parameter target value of the motor.
  • Adaptive filtering is to use the filter parameters obtained at the previous moment to automatically adjust the current filter parameters to adapt to the unknown or time-varying statistical characteristics of the signal and noise, thereby achieving optimal filtering.
  • Commonly used adaptive filtering techniques include: least mean square (LMS) adaptive filter, recursive least squares (RLS) filter lattice filter and infinite impulse response (IIR) filter.
  • This embodiment provides a method for testing non-linear parameters of a motor, which includes: using an excitation signal to excite the motor to vibrate, synchronously collecting information on the motor in a vibrating state, obtaining the voltage measurement value and the current measurement value, and obtaining the initial linear parameter of the motor
  • the linear parameter target value of the motor is calculated according to the voltage measurement value, the current measurement value, and the linear parameter initial value, and the linear parameter target value of the motor is calculated according to the voltage measurement value and the current measurement value.
  • the target value of the linear parameter and the initial value of the non-linear parameter are calculated by adaptive filtering to obtain the target value of the non-linear parameter of the motor.
  • Vibration improves the control accuracy of the motor, thereby improving the performance of the motor, and solves the problem of large nonlinear modeling errors of the motor in the prior art, resulting in low control accuracy of the motor and unable to achieve the expected effect.
  • FIG. 3 is a schematic diagram of the implementation process of another method for testing nonlinear parameters of a motor provided in the second embodiment of the present application, and specifically relates to a possible implementation of step 15 in the first embodiment.
  • this embodiment The provided testing method for the nonlinear parameters of the motor includes the following steps:
  • Step 31 Use the excitation signal to excite the motor to vibrate.
  • Step 32 Synchronously collect information on the motor in a vibrating state to obtain a voltage measurement value and a current measurement value.
  • Step 33 Obtain initial values of linear parameters and initial values of nonlinear parameters of the motor.
  • Step 34 Calculate the target value of the linear parameter of the motor according to the measured voltage value, the measured current value, and the initial value of the linear parameter.
  • Steps 31 to 34 respectively correspond to steps 11 to 14 in the first embodiment, please refer to the corresponding descriptions in the steps 11 to 14 in the first embodiment, and will not be repeated here.
  • Steps 35 to 38 are a possible implementation of step 15 in the first embodiment, and the details are as follows:
  • Step 35 Obtain initial values of coefficients that affect the nonlinear parameters.
  • u e is the voltage across the motor
  • R e is a voice coil motor impedance
  • i is the current across the motor
  • L e (x) is a voice coil inductance
  • Bl (x) is the coefficient of electromagnetic force
  • m is mass sub Mada Zhen
  • R ms (x) is the mechanical damping of the damper
  • k ms (x) is the spring stiffness coefficient
  • x is the displacement of the motor vibrator
  • t is the time.
  • this embodiment takes the accuracy to the fourth order as an example to obtain the electromagnetic force coefficient Bl(x) expression (9), the voice coil inductance Le (x) expression (10), and the damper mechanical damping R ms (x) expression (11), spring stiffness coefficient k ms (x) expression (12):
  • K ms (x) K 0 +K 1 x+K 2 x 2 +K 3 x 3 +K 4 x 4 (11)
  • R ms (x) R 0 + R 1 x + R 2 x 2 + R 3 x 3 + R 4 x 4 (12)
  • Bl 0 , L 0 , K 0 and R 0 are the linear parameter target values obtained in step 34.
  • Obtain the initial values of the coefficients that affect the nonlinear parameters that is, obtain the initial values of Bl 1 to Bl 4 , L 1 to L 4 , K 1 to K 4 , and R 1 to R 4 in equations (9) to (12).
  • the initial value can be obtained by a user preset method.
  • Step 36 Calculate a non-linear parameter update value according to the voltage measurement value, the current measurement value, the linear parameter target value, the non-linear parameter initial value, and the coefficient initial value.
  • S362 Calculate an update value of a nonlinear parameter according to the target value of the linear parameter, the displacement of the motor vibrator and the initial value of the coefficient.
  • Step 37 Calculate the difference between the non-linear parameter update value and the initial value of the non-linear parameter, and when the difference is less than a preset threshold, use the non-linear parameter update value as the non-linear parameter target value.
  • the non-linear parameter update value is taken as the non-linear parameter target value.
  • the preset threshold is a fixed value preset by the user according to the required accuracy.
  • Step 38 When the difference value is not less than the preset threshold value, according to the voltage measurement value, the current measurement value, the linear parameter target value, the nonlinear parameter update value, and the coefficient initial value Calculate the coefficient update value, use the coefficient update value as the initial value of the coefficient and the update value of the nonlinear parameter as the initial value of the nonlinear parameter, and re-enter according to the voltage measurement value, the current measurement value, and the linear parameter target The step of calculating an updated value of the nonlinear parameter with the initial value of the nonlinear parameter and the initial value of the coefficient.
  • the difference is not less than the preset threshold, it indicates that the current non-linear parameter update value has not reached the accuracy requirement, and the current non-linear parameter update value is used as the new non-linear parameter initial value, and the calculation is continued. Specifically include the following steps:
  • the least mean square (LMS) adaptive filter is taken as an example, the error function of the LMS is constructed according to the electrical equation (7) and the mechanical equation (8) of the motor nonlinear system, and the error value is calculated according to the error function. specific:
  • J(s) ms 2 +R 0 s+K 0
  • L -1 ⁇ represents the inverse Laplace transform.
  • This embodiment provides a method for testing non-linear parameters of a motor, which includes: using an excitation signal to excite the motor to vibrate, synchronously collecting information on the motor in a vibrating state, obtaining the voltage measurement value and the current measurement value, and obtaining the initial linear parameter of the motor Value and the initial value of the nonlinear parameter, the target value of the linear parameter of the motor is calculated according to the measured voltage value, the measured current value, and the initial value of the linear parameter, the initial value of the coefficient affecting the nonlinear parameter is obtained, and the The voltage measurement value, the current measurement value, the linear parameter target value, the non-linear parameter initial value, and the coefficient initial value calculate the non-linear parameter update value, and the non-linear parameter update value and the non-linear parameter update value are calculated.
  • the updated value of the nonlinear parameter is used as the initial value of the nonlinear parameter, and the calculation is re-entered based on the voltage measurement value, the current measurement value, the linear parameter target value, the nonlinear parameter initial value and the coefficient initial value
  • the non-linear model is used to accurately control the vibration of the motor, which improves the control accuracy of the motor, thereby improving the performance of the motor, and solving the problem of the large nonlinear modeling error of the motor in the prior art. This leads to the problem that the control accuracy of the motor is low and the expected effect cannot be achieved.
  • Fig. 4 is a schematic diagram of a testing device for non-linear parameters of a motor provided in the third embodiment of the present application. As shown in Fig. 4, the testing device for non-linear parameters of a motor provided in this embodiment includes the following modules:
  • the excitation module 41 is used to excite the motor to vibrate by using an excitation signal
  • the acquisition module 42 is used for synchronously acquiring information of the motor in a vibration state to obtain a voltage measurement value and a current measurement value;
  • the obtaining module 43 is used to obtain the initial value of the linear parameter and the initial value of the nonlinear parameter of the motor;
  • the calculation module 44 is configured to calculate the target value of the linear parameter of the motor according to the measured voltage value, the measured current value, and the initial value of the linear parameter;
  • the calculation module 44 is further configured to calculate the non-linear parameter target of the motor using adaptive filtering according to the voltage measurement value, the current measurement value, the linear parameter target value, and the non-linear parameter initial value. value.
  • the third embodiment provides a motor non-linear parameter test device, which is used to implement the motor non-linear parameter test method described in the first embodiment.
  • the function of each module can be referred to the corresponding description in the method embodiment. The principle and technical effect are similar, and will not be repeated here.
  • FIG. 5 is a schematic diagram of a terminal device provided in Embodiment 4 of the present application.
  • the terminal device 5 of this embodiment includes: a processor 50, a memory 51, and a computer program 52 stored in the memory 51 and running on the processor 50, such as a motor nonlinear parameter test program.
  • the processor 50 executes the computer program 52, the steps in the above-mentioned method for testing the nonlinear parameters of the motors are implemented, such as steps 11 to 15 shown in FIG. 1.
  • the processor 50 executes the computer program 52
  • the functions of the modules in the foregoing device embodiments are implemented, for example, the functions of the modules 41 to 44 shown in FIG. 4.
  • the computer program 52 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 51 and executed by the processor 50 to complete This application.
  • the one or more modules/units may be a series of computer program instruction segments capable of completing specific functions, and the instruction segments are used to describe the execution process of the computer program 52 in the terminal device 5.
  • the computer program 52 may be divided into an excitation module, an acquisition module, an acquisition module, and a calculation module (unit modules in a virtual device), and the specific functions of each module are as follows:
  • Excitation module used to excite motor vibration with excitation signal
  • the acquisition module is used to synchronously acquire information of the motor in a vibration state to obtain the voltage measurement value and the current measurement value;
  • the acquisition module is used to acquire the initial values of linear parameters and non-linear parameters of the motor
  • a calculation module configured to calculate a linear parameter target value of the motor according to the voltage measurement value, the current measurement value, and the linear parameter initial value
  • the calculation module is further configured to calculate the target value of the nonlinear parameter of the motor using adaptive filtering according to the measured voltage value, the measured current value, the linear parameter target value, and the initial value of the nonlinear parameter. .
  • the terminal device 5 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the terminal device 5 may include, but is not limited to, a processor 50 and a memory 51.
  • FIG. 5 is only an example of the terminal device 5, and does not constitute a limitation on the terminal device 5. It may include more or less components than shown in the figure, or a combination of certain components, or different components.
  • the terminal device 5 may also include input and output devices, network access devices, buses, and the like.
  • the so-called processor 50 may be a central processing unit (Central Processing Unit, CPU), other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory 51 may be an internal storage unit of the terminal device 5, such as a hard disk or a memory of the terminal device 5.
  • the memory 51 may also be an external storage device of the terminal device 5, such as a plug-in hard disk equipped on the terminal device 5, a smart memory card (Smart Media Card, SMC), and a Secure Digital (SD) Card, Flash Card, etc. Further, the memory 51 may also include both an internal storage unit of the terminal device 5 and an external storage device.
  • the memory 51 is used to store the computer program and other programs and data required by the terminal device 5.
  • the memory 51 can also be used to temporarily store data that has been output or will be output.
  • the disclosed device/terminal device and method may be implemented in other ways.
  • the device/terminal device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation, such as multiple units.
  • components can be combined or integrated into another system, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated module/unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • this application implements all or part of the processes in the above-mentioned embodiments and methods, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium. When the program is executed by the processor, the steps of the foregoing method embodiments can be implemented.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (Read-Only Memory, ROM) , Random Access Memory (RAM), electrical carrier signal, telecommunications signal, and software distribution media.
  • the content contained in the computer-readable medium can be appropriately added or deleted according to the requirements of the legislation and patent practice in the jurisdiction.
  • the computer-readable medium Does not include electrical carrier signals and telecommunication signals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本申请公开了一种马达非线性参数的测试方法及装置,所述方法包括:采用激励信号激励马达振动,对处于振动状态的马达进行信息同步采集,得到电压测量值和电流测量值,获取马达的线性参数初始值和非线性参数初始值,根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值,根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值采用自适应滤波计算得到所述马达的非线性参数目标值,通过对马达非线性参数进行测量,实现了采用非线性模型准确的控制马达振动,提高了马达的控制精度,从而提高了马达的性能。

Description

一种马达非线性参数的测试方法及装置 【技术领域】
本申请涉及微机电技术领域,尤其涉及一种马达非线性参数的测试方法及装置。
【背景技术】
随着科技的发展,人们对电子产品的智能化、多样化要求越来越高,需要更加丰富的人体感知和人机交互体验。触感是人体感知中重要的一部分,而线性谐振激励器(Linear Resonance Actuator,LRA,俗称马达)正是体现触感的关键器件。因此,在智能手机、智能手表和平板电脑等电子设备中,马达的应用越来越普及。马达的技术参数的准确性、完整性,对建模的准确性至关重要,直接决定着马达的性能。
目前使用较多的马达是基于洛伦兹力(即电磁力)的磁钢阵列线性马达,这种马达的特点是系统模型符合传统的二阶线性模型,在参数确定和系统控制方面有其特别的优势。但该种马达仅适用于振动强度较小的情况,当需要振动强度较大的振动时,单纯的基于洛伦兹力的马达不再适用。
现有技术中,为获得振动强度较大的马达,基于磁吸力或其他作用力的新型马达逐渐开始应用。但基于磁吸力或其他作用力的马达所受的力为非线性力,若仍采用传统的二阶线性模型,建模误差较大,进而影响马达的控制精度,无法达到预期效果。
【发明内容】
有鉴于此,本申请提供了一种马达非线性参数的测试方法及装置,用于解决现有技术中马达非线性建模误差较大,导致马达的控制精度较低,无法达到预期效果的问题。
为达上述之一或部分或全部目的或是其他目的,本申请实施例的第一方面提出了一种马达非线性参数的测试方法,包括:
采用激励信号激励马达振动;
对处于振动状态的马达进行信息同步采集,得到电压测量值和电流测量值;
获取马达的线性参数初始值和非线性参数初始值;
根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值;
根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值采用自适应滤波计算得到所述马达的非线性参数目标值。
在其中一个实施例中,所述根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值采用自适应滤波计算得到所述马达的非线性参数目标值,包括:
获取影响非线性参数的系数初始值;
根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数初始值和所述系数初始值计算非线性参数更新值;
计算所述非线性参数更新值和所述非线性参数初始值的差值,当所述差值小于预设阈值时,则将所述非线性参数更新值作为所述非线性参数目标值;
当所述差值不小于所述预设阈值时,根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数更新值和所述系数初始值计算系数更新值,将所述系数更新值作为系数初始值、所述非线性参数更新值作为非线性参数初始值,重新进入根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数初始值和所述系数初始值计算非线性参数更新值的步骤。
在其中一个实施例中,所述根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数初始值和所述系数初始值计算非线性参数更新值,包括:
根据所述电压测量值、所述电流测量值和所述非线性参数初始值计算马达振子位移;
根据所述线性参数目标值、所述马达振子位移和所述系数初始值计算 非线性参数更新值。
在其中一个实施例中,所述根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数更新值和所述系数初始值计算系数更新值,包括:
根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数更新值计算误差值;
根据所述误差值和所述系数初始值计算系数更新值。
在其中一个实施例中,所述根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数更新值计算误差值,包括:
输入所述电压测量值、所述电流测量值和所述非线性参数初始值至马达振动电学方程,计算得到第一速度;
输入所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值至马达振动力学方程,计算得到第二速度;
根据所述第一速度和所述第二速度计算得到误差值。
在其中一个实施例中,所述根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值,包括:
根据马达振动的电学方程和力学方程,推导电压到电流的传递函数;
输入所述电压测量值和所述线性参数初始值至所述传递函数,计算所述电流计算值;
对所述电流测量值和所述电流计算值进行数据拟合,得到所述线性参数目标值。
在其中一个实施例中,所述采用激励信号激励马达振动,包括:
生成激励信号;
对所述激励信号进行滤波处理;
采用滤波处理后的激励信号激励马达振动。
本申请实施例的第二方面提供了一种马达非线性参数的测试装置,包括:
激励模块,用于采用激励信号激励马达振动;
采集模块,用于对处于振动状态的马达进行信息同步采集,得到电压 测量值和电流测量值;
获取模块,用于获取马达的线性参数初始值和非线性参数初始值;
计算模块,用于根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值;
所述计算模块,还用于根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值采用自适应滤波计算得到所述马达的非线性参数目标值。
本申请实施例的第三方面提供了一种终端设备,包括:
存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述所述的马达非线性参数的测试方法的步骤。
本申请实施例的第四方面提供了一种计算机可读存储介质,包括:
所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述所述的马达非线性参数的测试方法的步骤。
本申请实施例提供了一种马达非线性参数的测试方法及装置,所述方法包括:采用激励信号激励马达振动,对处于振动状态的马达进行信息同步采集,得到电压测量值和电流测量值,获取马达的线性参数初始值和非线性参数初始值,根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值,根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值采用自适应滤波计算得到所述马达的非线性参数目标值,通过对马达非线性参数进行测量,实现了采用非线性模型准确的控制马达振动,提高了马达的控制精度,从而提高了马达的性能,解决了现有技术中马达非线性建模误差较大,导致马达的控制精度较低,无法达到预期效果的问题。
【附图说明】
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附 图。
图1是本申请实施例一提供的一种马达非线性参数的测试方法的实现流程示意图;
图2为马达线性系统建模示意图;
图3是本申请实施例二提供的另一种马达非线性参数的测试方法的实现流程示意图;
图4是本申请实施例三提供的一种马达非线性参数的测试装置的示意图;
图5是本申请实施例四提供的终端设备的示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
当马达为非线性马达时,采用非线性模型对马达进行建模,可以避免采用传统二阶物理模型对马达建模时忽略马达的非线性特征,导致建模不准确,影响马达控制精度的问题,而获取马达的非线性参数是采用非线性模型对马达进行建模的前提,本申请基于此,提供了一种马达非线性参数的测试方法。
图1是本申请实施例一提供的一种马达非线性参数的测试方法的实现流程示意图,如图1所示,本实施例提供的马达非线性参数的测试方法,包括以下步骤:
步骤11、采用激励信号激励马达振动。
本实施例的执行主体为马达非线性参数的测试装置,该马达非线性参数的测试装置可具体为测试终端,如计算机。马达非线性参数的测试装置,向马达系统发送一激励信号,驱使马达开始振动,具体包括:
S111、生成激励信号。
马达非线性参数的测试装置根据测试需求生成激励信号。可选的,本 实施例中生成的激励信号使用峰值电压小于预设值的非线性测试信号,在实现精确测试非线性参数的同时,可避免采用大幅值的测试信号损坏马达。
S112、对所述激励信号进行滤波处理。
为了准确建模,对各种位移处的马达进行激励,本实施例对生成的激励信号进行滤波处理,得到一定带宽的激励信号,以此激励信号激励马达。例如,生成的激励信号为全带宽的白噪声信号,采用带通滤波器对其进行滤波处理,得到一定带宽的激励信号。
S113、采用滤波处理后的激励信号激励马达振动。
将滤波处理后的激励信号发送至与马达连接的信号采集装置,通过信号采集装置将激励信号进行数模转换,转为模拟信号经过功率放大器进行放大,传输到马达上驱使其振动。
可选的,所述信号采集装置可以为NI USB-4431。NI USB-4431是一款5通道USB动态信号采集装置,用于通过集成电路压电式与非集成电路压电式传感器进行高精度声音和振动测量。当然,本实施例中的信号采集装置也可以为其他类型的信号采集装置,此处不作具体限定。
步骤12、对处于振动状态的马达进行信息同步采集,得到电压测量值和电流测量值。
马达非线性参数的测试装置通过信号采集装置采集马达的电压和电流。
由于串联电路中电流处处相等且等于回路电流,为了方便获取处于振动状态的马达的电流,本实施例中,在功率放大器与马达之间增设一高精度电阻,获取的高精度电阻的电流即为马达的电流。获取高精度电阻的电流的方式可以直接获取电流,也可以获取电压和电阻,间接计算电流。本实施例中,采用间接计算电流的方式获取,具体的:通过信号采集装置采集高精度电阻两端的电压,该高精度电阻的阻值为已知的(例如采用阻值为1Ω(欧姆)的高精度电阻),通过电压和电阻计算得到电流。
通过信号采集装置采集高精度电阻两端的电压时,同步采集马达两端的电压。信号采集装置得到马达的电压和电流后,对其进行模数转换,从而得到电压测量值和电流测量值。
本实施例中获取马达的电压测量值和电流测量值时,对采用的功率放大器、信号放大器以及马达等装置的具体型号不做具体限定。
步骤13、获取马达的线性参数初始值和非线性参数初始值。
获取马达的测试参数的初始值,包括线性参数初始值和非线性参数初始值。线性参数初始值和非线性参数初始值可以为马达出厂时设置的初始值,也可以为用户预设的初始值。
步骤14、根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值。
由于马达非线性模型和线性模型相关,预测量马达非线性参数,先测量马达线性参数,根据电压测量值、电流测量值、线性参数初始值计算马达的线性参数目标值,具体包括:
S141、根据马达振动的电学方程和力学方程,推导电压到电流的传递函数。
首先,根据图2所示马达系统特征,建立马达电学方程和力学方程。
具体的,在时域上根据马达的电系统的电压平衡,参见图2所示马达系统的左半部分,建立电学方程,得到表达式(1):
Figure PCTCN2019093887-appb-000001
在时域上根据马达的力学系统的转矩平衡,参见图2所示马达系统的右半部分,建立力学方程,得到表达式(2):
Bl(x)i(t)=m ta(t)+R m(x)v(t)+k t(x)x(t)      (2)
其中,u e为马达两端的电压,R e为马达音圈阻抗,i为马达两端的电流,L e为音圈电感,Bl为电磁力系数,v为马达振子速度,m t为马达振子质量,a为马达振子加速度,R m为阻尼器机械阻尼,k t为弹簧劲度系数,x为马达振子位移,t为时间。
然后,对电学方程和力学方程进行变换处理。
上述电学方程(1)和力学方程(2)是在时域上对马达线性系统建模,进行分析时,需要将时域变换到频域上,从时域到频域具体可以通过傅立叶变换、拉普拉斯变换等变换处理实现。
本实施例中,从时域到频域选用拉普拉斯变换处理。对上述式(1)和式(2)分别进行拉普拉斯变换处理,分别得到变换后的式(3)和式(4):
u e(s)=R ei(s)+L esi(s)+Blsx(s)     (3)
Bli(s)=m ts 2x(s)+R msx(s)+k tx(s)      (4)
其中,s为频率。
最后,根据变换处理后的电学方程和力学方程,推导电压到电流的传递函数。
具体的,组合式(3)和式(4),消除式中的x(s),得到式(5):
Figure PCTCN2019093887-appb-000002
对式(5)进行变形,将其变形为马达的电压u e到电流i的传递函数,如式(6)所示:
Figure PCTCN2019093887-appb-000003
该模型中,阻尼器机械阻尼R m,弹簧劲度系数k t,马达音圈阻抗R e,音圈电感L e和电磁力系数Bl为测量的线性参数,马达振子质量m t为常量。
S142、输入所述电压测量值和所述线性参数初始值至所述传递函数,计算所述电流计算值。
将电压测量值和线性参数初始值代入上式(6),得到电流计算值。
S143、对所述电流测量值和所述电流计算值进行数据拟合,得到所述线性参数目标值。
首先,对电流测量值和电流计算值进行数据拟合。
可选的,本实施例中,采用最小二乘法对电流测量值和电流计算值进行数据拟合。最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找马达测试参数的最优测试结果。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法为现有的算法直接使用,本实施例中不再赘述。当然,还可以采用其他方法进行数据拟合,例如用解析表达式逼近 离散数据方法等,本实施例不做具体限定。
其次,判断当前拟合结果是否满足预设条件,若满足,确定当前拟合结果为线性参数目标值。若不满足,根据当前拟合结果更新线性参数初始值,将更新得到的线性参数更新值作为新的线性参数初始值,返回执行S142、输入所述电压测量值和所述线性参数初始值至所述传递函数,计算所述电流计算值的步骤。
当当前拟合结果满足预设条件时,确定当前拟合结果即为最终的拟合结果,得到线性参数目标值,如根据式(6)拟合得到线性参数:阻尼器机械阻尼R m,弹簧劲度系数k t,马达音圈阻抗R e,音圈电感L e和电磁力系数Bl的目标值。
步骤15、根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值采用自适应滤波计算得到所述马达的非线性参数目标值。
构造马达非线性参数的计算表达式,将电压测量值、电流测量值、线性参数目标值和非线性参数初始值代入马达非线性参数的计算表达式,采用自适应滤波计算得到马达的非线性参数目标值。
自适应滤波,就是利用前一时刻以获得的滤波参数的结果,自动的调节现时刻的滤波参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。常用的自适应滤波技术有:最小均方(LMS)自适应滤波器、递推最小二乘(RLS)滤波器格型滤波器和无限冲激响应(IIR)滤波器等。
本实施例提供了一种马达非线性参数的测试方法,包括:采用激励信号激励马达振动,对处于振动状态的马达进行信息同步采集,得到电压测量值和电流测量值,获取马达的线性参数初始值和非线性参数初始值,根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值,根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值采用自适应滤波计算得到所述马达的非线性参数目标值,通过对马达非线性参数进行测量,实现了采用非线性模型准确的控制马达振动,提高了马达的控制精度,从而提高了马达的 性能,解决了现有技术中马达非线性建模误差较大,导致马达的控制精度较低,无法达到预期效果的问题。
图3是本申请实施例二提供的另一种马达非线性参数的测试方法的实现流程示意图,具体涉及实施例一中步骤15的一种可能的实现方式,如图3所示,本实施例提供的马达非线性参数的测试方法,包括以下步骤:
步骤31、采用激励信号激励马达振动。
步骤32、对处于振动状态的马达进行信息同步采集,得到电压测量值和电流测量值。
步骤33、获取马达的线性参数初始值和非线性参数初始值。
步骤34、根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值。
上述步骤31至步骤34,分别对应实施例一中的步骤11至步骤14,参见实施例一中步骤11至步骤14中相应的阐述,此处不再赘述。步骤35至步骤38是实施例一中步骤15的一种可能的实现方式,具体如下:
步骤35、获取影响非线性参数的系数初始值。
由于马达非线性模型和线性模型的系统特征不变,仅是在其中加入了非线性参数,参见实施例一步骤14中S141测试线性参数时的阐述,建立马达非线性系统的电学方程,得到表达式(7):
Figure PCTCN2019093887-appb-000004
建立马达非线性系统的力学方程,得到表达式(8):
Figure PCTCN2019093887-appb-000005
其中,u e为马达两端的电压,R e为马达音圈阻抗,i为马达两端的电流,L e(x)为音圈电感,Bl(x)为电磁力系数,m为马达振子质量,R ms(x)为阻尼器机械阻尼,k ms(x)为弹簧劲度系数,x为马达振子位移,t为时间。电磁力系数Bl(x)、音圈电感L e(x)、阻尼器机械阻尼R ms(x)和弹簧劲度系数k ms(x)为本实施例测试的非线性参数。
根据需求确定对非线性参数音圈电感L e(x)、电磁力系数Bl(x)、阻尼器机械阻尼R ms(x),弹簧劲度系数k ms(x)的精度要求,构造非线性参数的计算表 达式,本实施例以精度到四阶为例,得到电磁力系数Bl(x)表达式(9)、音圈电感L e(x)表达式(10)、阻尼器机械阻尼R ms(x)表达式(11)、弹簧劲度系数k ms(x)表达式(12):
Bl(x)=Bl 0+Bl 1x+Bl 2x 2+Bl 3x 3+Bl 4x 4    (9)
L e(x)=L 0+L 1x+L 2x 2+L 3x 3+L 4x 4      (10)
K ms(x)=K 0+K 1x+K 2x 2+K 3x 3+K 4x 4    (11)
R ms(x)=R 0+R 1x+R 2x 2+R 3x 3+R 4x 4    (12)
式(9)至式(12)中,Bl 0、L 0、K 0和R 0为步骤34中得到的线性参数目标值。获取影响非线性参数的系数初始值,即获取式(9)至式(12)中Bl 1至Bl 4、L 1至L 4、K 1至K 4、R 1至R 4的初始值,这些初始值可以通过用户预先设定的方式获取。
步骤36、根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数初始值和所述系数初始值计算非线性参数更新值。
将电压测量值、电流测量值、线性参数目标值、非线性参数初始值和系数初始值代入式(9)至式(12),分别计算各非线性参数更新值。具体步骤如下:
S361、根据所述电压测量值、所述电流测量值和所述非线性参数初始值计算马达振子位移。
将表达式(7)、(8)改写成状态空间的形式,得到位移x的计算表达式,该表达式与测量值电压和电流、非线性参数电磁力系数、音圈电感、阻尼器机械阻尼和弹簧劲度系数这些参数相关的表达式。根据电压测量值、电流测量值、电磁力系数初始值、音圈电感初始值、阻尼器机械阻尼初始值和弹簧劲度系数初始值计算马达振子位移x。
S362、根据所述线性参数目标值、所述马达振子位移和所述系数初始值计算非线性参数更新值。
将S361得到的马达振子位移x、步骤34得到的线性参数目标值Bl 0、L 0、 K 0和R 0,步骤35得到的系数初始值Bl 1至Bl 4、L 1至L 4、K 1至K 4、R 1至R 4输入式(9)至式(12),计算得到非线性参数更新值。
步骤37、计算所述非线性参数更新值和所述非线性参数初始值的差值,当所述差值小于预设阈值时,则将所述非线性参数更新值作为所述非线性参数目标值。
根据非线性参数更新值和非线性参数初始值,判断非线性参数的更新值是否达到需求精度,具体的,将非线性参数更新值减去非线性参数初始值,得到差值,判断该差值与预设阈值的大小关系,当差值小于预设阈值时,满足精度要求,则将非线性参数更新值作为非线性参数目标值。通过对马达非线性参数进行测量,实现了采用非线性模型准确的控制马达振动,提高了马达的控制精度,从而提高了马达的性能,解决了现有技术中马达非线性建模误差较大,导致马达的控制精度较低,无法达到预期效果的问题。
其中,预设阈值是用户根据需求精度预先设置的定值。
步骤38、当所述差值不小于所述预设阈值时,根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数更新值和所述系数初始值计算系数更新值,将所述系数更新值作为系数初始值、所述非线性参数更新值作为非线性参数初始值,重新进入根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数初始值和所述系数初始值计算非线性参数更新值的步骤。
当差值不小于预设阈值时,表明当前非线性参数更新值还没有达到精度要求,将当前非线性参数更新值作为新的非线性参数初始值,继续计算。具体包括以下步骤:
S381、根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数更新值计算误差值。
本实施例以最小均方(LMS)自适应滤波器为例,根据马达非线性系统的电学方程(7)和力学方程(8)构造LMS的误差函数,根据误差函数计算误差值。具体的:
S3811、输入所述电压测量值、所述电流测量值和所述非线性参数初始 值至马达振动电学方程,计算得到第一速度。
根据电学方程表达式(7),得到第一速度v 1的的表达式(13):
Figure PCTCN2019093887-appb-000006
将电压测量值u e(t)、电流测量值i和非线性参数初始值代入式(13),得到第一速度值。
S3812、输入所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值至马达振动力学方程,计算得到第二速度。
根据力学方程表达式(8),得到第二速度v 2的的表达式(14):
Figure PCTCN2019093887-appb-000007
其中,式(14)中,J(s)=ms 2+R 0s+K 0,L -1{}表示拉普拉斯逆变换。
将电压测量值u e(t)、电流测量值i、线性参数目标值R 0、K 0和非线性参数初始值代入式(14),得到第二速度值。
S3813、根据所述第一速度和所述第二速度计算得到误差值。
将第一速度的表达式(13)与第二速度的表达式(14)求差,得到误差函数,如表达式(15):
Figure PCTCN2019093887-appb-000008
将第一速度值和第二速度值代入表达式(15),得到误差值。
S382、根据所述误差值和所述系数初始值计算系数更新值。
仍以上述举例说明,得到LMS的误差值后,根据误差值更新系数初始值,构造的更新公式如表达式(16)、(17)、(18)、(19)所示:
Figure PCTCN2019093887-appb-000009
Figure PCTCN2019093887-appb-000010
Figure PCTCN2019093887-appb-000011
Figure PCTCN2019093887-appb-000012
其中,Bl′ j、L′ j、K′ j、R′ j为更新得到的系数更新值,j=1,2,3,4,μ为LMS的迭代步长,迭代步长具体的取值可由用户预先设置。
S383、将所述系数更新值作为系数初始值、所述非线性参数更新值作为非线性参数初始值,重新进入根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数初始值和所述系数初始值计算非线性参数更新值的步骤。
将当前计算得到的更新值,更新下次计算的初始值,重新执行步骤36至步骤38,直至得到非线性参数目标值为止。
本实施例提供了一种马达非线性参数的测试方法,包括:采用激励信号激励马达振动,对处于振动状态的马达进行信息同步采集,得到电压测量值和电流测量值,获取马达的线性参数初始值和非线性参数初始值,根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值,获取影响非线性参数的系数初始值,根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数初始值和所述系数初始值计算非线性参数更新值,计算所述非线性参数更新值和所述非线性参数初始值的差值,当所述差值小于预设阈值时,则将所述非线性参数更新值作为所述非线性参数目标值,当所述差值不小于所述预设阈值时,根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数更新值和所述系数初始值计算系数更新值,将所述系数更新值作为系数初始值、所述非线性参数更新值作为非线性参数初始值,重新进入根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数初始值和所述系数初始值计算非线性参数更新值的步骤,从而得到了马达非线性参数目标值。通过对马达非线性参数进行测量,实现了采用非线性模型准确的控制马达振动,提高了马达的控制精度,从而提高了马达的性能,解决了现有技术中马达非线性建模误差较大,导致马达的控制精度较低,无法达到预期效果的问题。
图4是本申请实施例三提供的一种马达非线性参数的测试装置的示意 图,如图4所示,本实施例提供的马达非线性参数的测试装置,包括以下模块:
激励模块41,用于采用激励信号激励马达振动;
采集模块42,用于对处于振动状态的马达进行信息同步采集,得到电压测量值和电流测量值;
获取模块43,用于获取马达的线性参数初始值和非线性参数初始值;
计算模块44,用于根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值;
所述计算模块44,还用于根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值采用自适应滤波计算得到所述马达的非线性参数目标值。
本实施例三提供的一种马达非线性参数的测试装置,用于实现实施例一所述的马达非线性参数的测试方法,其中各个模块的功能可以参考方法实施例中相应的描述,其实现原理和技术效果类似,此处不再赘述。
图5是本申请实施例四提供的终端设备的示意图。如图5所示,该实施例的终端设备5包括:处理器50、存储器51以及存储在所述存储器51中并可在所述处理器50上运行的计算机程序52,例如马达非线性参数的测试程序。所述处理器50执行所述计算机程序52时实现上述各个马达非线性参数的测试方法实施例中的步骤,例如图1所示的步骤11至15。或者,所述处理器50执行所述计算机程序52时实现上述各装置实施例中各模块的功能,例如图4所示模块41至44的功能。
示例性的,所述计算机程序52可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器51中,并由所述处理器50执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序52在所述终端设备5中的执行过程。例如,所述计算机程序52可以被分割成激励模块、采集模块、获取模块和计算模块(虚拟装置中的单元模块),各模块具体功能如下:
激励模块,用于采用激励信号激励马达振动;
采集模块,用于对处于振动状态的马达进行信息同步采集,得到电压测量值和电流测量值;
获取模块,用于获取马达的线性参数初始值和非线性参数初始值;
计算模块,用于根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值;
所述计算模块,还用于根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值采用自适应滤波计算得到所述马达的非线性参数目标值。
所述终端设备5可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述终端设备5可包括,但不仅限于,处理器50、存储器51。本领域技术人员可以理解,图5仅仅是终端设备5的示例,并不构成对终端设备5的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端设备5还可以包括输入输出设备、网络接入设备、总线等。
所称处理器50可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器51可以是所述终端设备5的内部存储单元,例如终端设备5的硬盘或内存。所述存储器51也可以是所述终端设备5的外部存储设备,例如所述终端设备5上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器51还可以既包括所述终端设备5的内部存储单元也包括外部存储设备。所述存储器51用于存储所述计算机程序以及所述终端设备5所需的其他程序和数据。所述存储器51还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅 以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述终端设备的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元 中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种马达非线性参数的测试方法,其特征在于,包括:
    采用激励信号激励马达振动;
    对处于振动状态的马达进行信息同步采集,得到电压测量值和电流测量值;
    获取马达的线性参数初始值和非线性参数初始值;
    根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值;
    根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值采用自适应滤波计算得到所述马达的非线性参数目标值。
  2. 根据权利要求1所述的马达非线性参数的测试方法,其特征在于,所述根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值采用自适应滤波计算得到所述马达的非线性参数目标值,包括:
    获取影响非线性参数的系数初始值;
    根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数初始值和所述系数初始值计算非线性参数更新值;
    计算所述非线性参数更新值和所述非线性参数初始值的差值,当所述差值小于预设阈值时,则将所述非线性参数更新值作为所述非线性参数目标值;
    当所述差值不小于所述预设阈值时,根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数更新值和所述系数初始值计算系数更新值,将所述系数更新值作为系数初始值、所述非线性参数更新值作为非线性参数初始值,重新进入根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数初始值和所述系数初始值计算非线性参数更新值的步骤。
  3. 根据权利要求2所述的马达非线性参数的测试方法,其特征在于, 所述根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数初始值和所述系数初始值计算非线性参数更新值,包括:
    根据所述电压测量值、所述电流测量值和所述非线性参数初始值计算马达振子位移;
    根据所述线性参数目标值、所述马达振子位移和所述系数初始值计算非线性参数更新值。
  4. 根据权利要求2所述的马达非线性参数的测试方法,其特征在于,所述根据所述电压测量值、所述电流测量值、所述线性参数目标值、所述非线性参数更新值和所述系数初始值计算系数更新值,包括:
    根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数更新值计算误差值;
    根据所述误差值和所述系数初始值计算系数更新值。
  5. 根据权利要求4所述的马达非线性参数的测试方法,其特征在于,所述根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数更新值计算误差值,包括:
    输入所述电压测量值、所述电流测量值和所述非线性参数初始值至马达振动电学方程,计算得到第一速度;
    输入所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值至马达振动力学方程,计算得到第二速度;
    根据所述第一速度和所述第二速度计算得到误差值。
  6. 根据权利要求1所述的马达非线性参数的测试方法,其特征在于,所述根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值,包括:
    根据马达振动的电学方程和力学方程,推导电压到电流的传递函数;
    输入所述电压测量值和所述线性参数初始值至所述传递函数,计算所述电流计算值;
    对所述电流测量值和所述电流计算值进行数据拟合,得到所述线性参数目标值。
  7. 根据权利要求1至6任一项所述的马达非线性参数的测试方法,其 特征在于,所述采用激励信号激励马达振动,包括:
    生成激励信号;
    对所述激励信号进行滤波处理;
    采用滤波处理后的激励信号激励马达振动。
  8. 一种马达非线性参数的测试装置,其特征在于,包括:
    激励模块,用于采用激励信号激励马达振动;
    采集模块,用于对处于振动状态的马达进行信息同步采集,得到电压测量值和电流测量值;
    获取模块,用于获取马达的线性参数初始值和非线性参数初始值;
    计算模块,用于根据所述电压测量值、所述电流测量值、所述线性参数初始值计算得到所述马达的线性参数目标值;
    所述计算模块,还用于根据所述电压测量值、所述电流测量值、所述线性参数目标值和所述非线性参数初始值采用自适应滤波计算得到所述马达的非线性参数目标值。
  9. 一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述的马达非线性参数的测试方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现如权利要求1至7任一项所述的马达非线性参数的测试方法的步骤。
PCT/CN2019/093887 2019-06-28 2019-06-28 一种马达非线性参数的测试方法及装置 WO2020258311A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/093887 WO2020258311A1 (zh) 2019-06-28 2019-06-28 一种马达非线性参数的测试方法及装置
CN201910590932.9A CN110346720B (zh) 2019-06-28 2019-07-02 一种马达非线性参数的测试方法及装置
US16/995,746 US20210025940A1 (en) 2019-06-28 2020-08-17 Method And Apparatus For Testing Nonlinear Parameter of Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/093887 WO2020258311A1 (zh) 2019-06-28 2019-06-28 一种马达非线性参数的测试方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/995,746 Continuation US20210025940A1 (en) 2019-06-28 2020-08-17 Method And Apparatus For Testing Nonlinear Parameter of Motor

Publications (1)

Publication Number Publication Date
WO2020258311A1 true WO2020258311A1 (zh) 2020-12-30

Family

ID=68177281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093887 WO2020258311A1 (zh) 2019-06-28 2019-06-28 一种马达非线性参数的测试方法及装置

Country Status (3)

Country Link
US (1) US20210025940A1 (zh)
CN (1) CN110346720B (zh)
WO (1) WO2020258311A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110502111B (zh) * 2019-08-09 2021-02-26 瑞声科技(新加坡)有限公司 马达信号补偿方法、电子设备及存储介质
CN111106783B (zh) * 2019-12-18 2024-05-17 瑞声科技(新加坡)有限公司 一种信号制作方法、信号制作装置、振动马达及触屏设备
WO2021128077A1 (zh) * 2019-12-25 2021-07-01 瑞声声学科技(深圳)有限公司 激励电压生成方法、装置、设备及介质、测试方法及系统
CN111552371B (zh) * 2019-12-25 2023-11-03 瑞声科技(新加坡)有限公司 激励电压生成方法、装置、设备及介质、测试方法及系统
WO2021134315A1 (zh) * 2019-12-30 2021-07-08 瑞声声学科技(深圳)有限公司 马达非线性失真补偿方法、装置及计算机可读存储介质
WO2021134342A1 (zh) * 2019-12-30 2021-07-08 瑞声声学科技(深圳)有限公司 马达体验失真指标的测试方法、电子设备及存储介质
WO2021134329A1 (zh) * 2019-12-30 2021-07-08 瑞声声学科技(深圳)有限公司 马达振子质量的估算方法、存储介质、测试终端及系统
CN111551847B (zh) * 2019-12-30 2022-06-28 瑞声科技(新加坡)有限公司 马达振子质量的估算方法、存储介质、测试终端及系统
CN111486779B (zh) * 2020-04-14 2022-08-16 瑞声科技(新加坡)有限公司 信号处理方法、装置和电子设备
CN111617985B (zh) * 2020-06-03 2021-12-14 瑞声科技(新加坡)有限公司 马达单体寻找方法
WO2021243616A1 (zh) * 2020-06-03 2021-12-09 瑞声声学科技(深圳)有限公司 马达单体寻找方法
CN111965537B (zh) * 2020-06-30 2021-10-08 瑞声新能源发展(常州)有限公司科教城分公司 马达参数测试方法
CN112528473A (zh) * 2020-11-30 2021-03-19 瑞声新能源发展(常州)有限公司科教城分公司 确定马达非线性参数的方法、装置、设备和存储介质
CN112650388B (zh) * 2020-12-22 2022-06-28 瑞声新能源发展(常州)有限公司科教城分公司 马达振动信号生成方法、装置、计算机设备及存储介质
CN113406495B (zh) * 2021-06-28 2022-06-21 歌尔股份有限公司 振动电机的扫频特性曲线生成方法、装置及存储介质
CN113296551B (zh) * 2021-06-28 2022-06-10 徐工集团工程机械股份有限公司道路机械分公司 一种摊铺机分料双斜率非线性控制装置和控制方法
CN113344977B (zh) * 2021-06-29 2022-05-27 河北工业大学 一种基于图像处理的触头压力测量模型构建方法
EP4120044A1 (en) * 2021-07-15 2023-01-18 ABB Schweiz AG A method and an arrangement for controlling vibration of a variable frequency drive controlled electric machine
CN113959320A (zh) * 2021-10-22 2022-01-21 歌尔股份有限公司 振动装置的振子位移检测方法、装置、设备及存储介质
CN113992106A (zh) * 2021-10-29 2022-01-28 歌尔股份有限公司 马达控制方法、装置、设备及计算机可读存储介质
CN115622475A (zh) * 2022-11-07 2023-01-17 歌尔股份有限公司 线性马达的保护方法、终端设备及计算机可读存储介质
CN116577716B (zh) * 2023-07-06 2023-10-20 西安高压电器研究院股份有限公司 一种电流传感器振动特性测试方法、相关设备及相关系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106068007A (zh) * 2016-06-07 2016-11-02 瑞声科技(新加坡)有限公司 扬声器非线性系统辨识方法
US20170256145A1 (en) * 2014-02-13 2017-09-07 Nxp B.V. Multi-tone haptic pattern generator
CN109274308A (zh) * 2018-08-13 2019-01-25 瑞声科技(新加坡)有限公司 马达参数控制系统及马达参数控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345638B (zh) * 2014-10-09 2017-06-27 南京理工大学 一种液压马达位置伺服系统的自抗扰自适应控制方法
CN106817054B (zh) * 2016-07-12 2019-02-05 华北电力大学(保定) 一种基于参数辨识的机械弹性储能用pmsg控制方法
CN106773678B (zh) * 2016-11-30 2019-06-11 西安交通大学 用于多非线性参数耦合系统的参数辨识方法及其辨识设备
CN107276440B (zh) * 2017-06-23 2019-05-03 华中科技大学 一种逆变器的非线性补偿装置、系统及控制方法
CN107943121B (zh) * 2017-11-14 2020-08-04 南京邮电大学 一种考虑非线性特性的永磁同步电动机模拟器及其控制方法
CN107729706B (zh) * 2017-11-29 2020-02-21 湖南科技大学 一种非线性机械系统的动力学模型构建方法
US10349195B1 (en) * 2017-12-21 2019-07-09 Harman International Industries, Incorporated Constrained nonlinear parameter estimation for robust nonlinear loudspeaker modeling for the purpose of smart limiting
CN108398637B (zh) * 2018-01-29 2020-04-21 合肥工业大学 一种非线性机电系统的故障诊断方法
CN109212413B (zh) * 2018-08-14 2021-02-26 瑞声科技(新加坡)有限公司 线性马达带宽测量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170256145A1 (en) * 2014-02-13 2017-09-07 Nxp B.V. Multi-tone haptic pattern generator
CN106068007A (zh) * 2016-06-07 2016-11-02 瑞声科技(新加坡)有限公司 扬声器非线性系统辨识方法
CN109274308A (zh) * 2018-08-13 2019-01-25 瑞声科技(新加坡)有限公司 马达参数控制系统及马达参数控制方法

Also Published As

Publication number Publication date
US20210025940A1 (en) 2021-01-28
CN110346720B (zh) 2021-08-10
CN110346720A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2020258311A1 (zh) 一种马达非线性参数的测试方法及装置
CN110146810B (zh) 一种线性马达测试参数的确定方法及装置
CN110247631B (zh) 一种马达非线性失真补偿方法及装置
CN106301137B (zh) 主动控制线性马达振动的方法、装置、系统及电子设备
WO2022110413A1 (zh) 确定马达非线性参数的方法、装置、设备和存储介质
CN111679735A (zh) 激励信号的生成方法、装置、终端及存储介质
US20130231894A1 (en) Method and apparatus for providing battery information
CN112506341B (zh) 一种振动效果的生成方法、装置、终端设备及存储介质
CN111106783A (zh) 一种信号制作方法、信号制作装置、振动马达及触屏设备
CN111478630A (zh) 一种马达稳态单频失真补偿方法及装置
WO2022000600A1 (zh) 马达参数测试方法
CN111486779B (zh) 信号处理方法、装置和电子设备
US9668075B2 (en) Estimating parameter values for a lumped parameter model of a loudspeaker
WO2022110502A1 (zh) 车载触控装置的线性参数的测试方法及装置
CN110874635A (zh) 一种深度神经网络模型压缩方法及装置
CN116124279A (zh) 一种确定谐振频率的方法、装置、设备及存储介质
WO2022006788A1 (zh) 马达振动位移估测方法、装置及介质
CN116384031A (zh) 一种马达振动效果的仿真方法及装置
CN110704798B (zh) 多自由度系统的数据处理方法、装置和存储介质
WO2021134359A1 (zh) 一种马达稳态单频失真补偿方法及装置
CN111310896A (zh) 用于训练神经网络的方法和装置
CN111880092B (zh) Chirp信号Hammerstein模型系统辨识方法
US20230169754A1 (en) Information processing device and program
JP2019203912A (ja) 模倣音信号生成装置、電子楽器、非線形システム同定方法
WO2021128077A1 (zh) 激励电压生成方法、装置、设备及介质、测试方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935630

Country of ref document: EP

Kind code of ref document: A1