WO2020255749A1 - Composition for sealing, semiconductor device, and method for producing semiconductor device - Google Patents

Composition for sealing, semiconductor device, and method for producing semiconductor device Download PDF

Info

Publication number
WO2020255749A1
WO2020255749A1 PCT/JP2020/022267 JP2020022267W WO2020255749A1 WO 2020255749 A1 WO2020255749 A1 WO 2020255749A1 JP 2020022267 W JP2020022267 W JP 2020022267W WO 2020255749 A1 WO2020255749 A1 WO 2020255749A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
sealing
resin
sealing composition
semiconductor device
Prior art date
Application number
PCT/JP2020/022267
Other languages
French (fr)
Japanese (ja)
Inventor
絵美 岩谷
小川 和人
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020255749A1 publication Critical patent/WO2020255749A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • C08L83/12Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect

Definitions

  • the present disclosure relates to a sealing composition, a semiconductor device, and a method for manufacturing a semiconductor device.
  • the present disclosure comprises a sealing composition containing an epoxy resin, and a semiconductor device including a sealing resin prepared from the sealing composition. , And a method for manufacturing this semiconductor device.
  • Patent Document 1 discloses a solid-sealing resin composition for compression molding suitable for sealing a semiconductor device for FO-WLP (fan-out-wafer level package), and the solid-sealing resin composition for compression molding. Consists of an epoxy resin, a curing agent, and an addition reaction product of a phosphine compound and a quinone compound.
  • An object of the present disclosure is to provide a sealing composition capable of producing a cured product which is less likely to warp during molding, a semiconductor device including a sealing resin prepared from the sealing composition, and a method for manufacturing the semiconductor device. Is.
  • the encapsulating composition according to one embodiment of the present disclosure includes an epoxy resin (A) containing an epoxy resin (a) having a condensed ring hydrocarbon skeleton, a curing agent (B), and modification of both terminal acid anhydrides. It contains a copolymer (C) obtained by polymerizing a polymerizable component containing polysiloxane and polyalkylene glycol.
  • the semiconductor device includes a semiconductor chip and a sealing resin for sealing the semiconductor chip, and the sealing resin is a cured product of the sealing composition.
  • the method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device including a semiconductor chip and a sealing resin for sealing the semiconductor chip, and the sealing from the sealing composition. This includes producing a stop resin by a direct pressure molding method.
  • 1A, 1B, 1C, 1D and 1E are schematic cross-sectional views showing a process of a first example of a method of manufacturing a semiconductor device according to an embodiment of the present disclosure.
  • 2A, 2B, 2C, 2D, 2E and 2F are schematic cross-sectional views showing the steps of a second example of the method of manufacturing a semiconductor device according to an embodiment of the present disclosure.
  • 3A, 3B, 3C, 3D and 3E are schematic cross-sectional views showing a process of a third example of a method of manufacturing a semiconductor device according to an embodiment of the present disclosure.
  • FO-WLP for example, semiconductor chips such as a plurality of dies are supported by carriers made of an inorganic substrate such as silica and glass, and in this state, the semiconductor chips are sealed with a sealing resin and intermediate. Make a product. A plurality of FO-WLPs are manufactured by peeling the carrier from the intermediate product and then cutting the intermediate product. The FO-WLP is provided with a rewiring layer and bumps connected to the rewiring layer.
  • the chips supported by the carrier are sealed with the sealing resin, so that the intermediate product is warped due to the difference in the coefficient of linear expansion between the carrier and the sealing resin.
  • the sealing resin sometimes.
  • warpage tends to occur. Warpage in the intermediate product deteriorates the handleability of the intermediate product and causes deterioration in the manufacturing efficiency of the FO-WLP.
  • the inventor aims to obtain a sealing composition capable of producing a cured product which is less likely to warp during molding, a semiconductor device provided with a sealing resin prepared from the sealing composition, and a method for manufacturing the semiconductor device. As a result of diligent research and development, this disclosure has been completed.
  • the sealing composition according to the present embodiment includes an epoxy resin (A) containing an epoxy resin (a) having a condensed ring hydrocarbon skeleton, a curing agent (B), and both terminal acid anhydride-modified polysiloxanes. It contains a copolymer (C) in which a polymerizable component containing a polyalkylene glycol is polymerized.
  • the epoxy resin (a) tends to lower the coefficient of linear expansion of the cured product produced from the sealing composition. Further, the epoxy resin (a) tends to increase the elastic modulus of the cured product, but since the sealing composition contains the copolymer (C), the elastic modulus of the cured product caused by the epoxy resin (a) It is possible to reduce the increase in the elastic modulus of the cured product. Further, the copolymer (C) can further reduce the coefficient of linear expansion of the cured product. As a result, it is possible to achieve both a low linear expansion coefficient and a low elastic modulus of the cured product.
  • the sealing composition is molded on the inorganic base material to produce a cured product means that not only the cured product in contact with the inorganic base material is produced on the inorganic base material but also the inorganic base material is produced. It also includes the formation of a cured product in contact with this layer on a layer other than the inorganic substrate (adhesive layer, rewiring layer, etc.) that is overlaid on top of it.
  • the copolymer (C) tends to lower the surface tension of the cured product, and therefore, the wettability of the cured product with the polyimide resin precursor solution can be improved.
  • silicone lowers the wettability with the polyimide resin precursor solution, but in the present embodiment, the copolymer (C) reacts with the epoxy resin (A) to improve the wettability with the polyimide resin precursor solution. It is presumed that it is difficult to lower it. Therefore, it is easy to form an insulating layer made of polyimide resin on the surface of the cured product. Therefore, the sealing composition (X) can be easily applied to produce a semiconductor device having a rewiring layer provided with an insulating layer made of polyimide.
  • the index (Stress index) defined as the product of the linear expansion coefficient and the flexural modulus of the cured product obtained by curing the sealing composition is preferably 180 or less. In this case, the cured product is less likely to warp. This index is more preferably 150 or less, and even more preferably 100 or less. The value of such an index can be realized within the composition of the sealing composition described in detail below.
  • the method for measuring the coefficient of linear expansion and the flexural modulus is the same as the evaluation test in the examples described later.
  • the unit of linear expansion coefficient is ppm / K, and the unit of flexural modulus is GPa.
  • the composition of the sealing composition will be described in more detail.
  • the sealing composition contains the epoxy resin (A).
  • the percentage of the epoxy resin (A) to the entire sealing composition is, for example, 4% by mass or more and 15% by mass or less.
  • the epoxy resin (A) contains an epoxy resin (a) having a fused cyclic hydrocarbon skeleton. Therefore, the epoxy resin (A) can reduce the coefficient of linear expansion of the cured product by introducing a rigid structure with a fused ring hydrocarbon skeleton into the cured product.
  • the percentage of the epoxy resin (a) to the entire epoxy resin (A) is preferably 20% by mass or more. In this case, the epoxy resin (a) tends to reduce the coefficient of linear expansion of the cured product.
  • the percentage of the epoxy resin (a) to the entire epoxy resin (A) may be 100% by mass.
  • the percentage of the epoxy resin (a) is more preferably 30% by mass or more and 70% by mass or less.
  • the epoxy resin (a) is at least one epoxy resin selected from the group consisting of an epoxy resin having a naphthalene skeleton (a1), an epoxy resin having an anthracene skeleton (a2), and an epoxy resin having a dihydroanthracene skeleton (a3). Is preferably contained. In this case, the coefficient of linear expansion of the cured product can be particularly reduced.
  • the epoxy resin (a) preferably contains an epoxy resin (a11) having a naphthylene ether skeleton, among the epoxy resins (a1) having a naphthalene skeleton.
  • the epoxy resin (a11) can enhance the fluidity of the sealing composition during molding, and can easily impart good fluidity to the sealing composition even if the heating temperature during molding is low.
  • the epoxy resin (a11) can make the cured product less likely to warp. It is presumed that this is because the linear expansion coefficient of the cured product tends to decrease due to the rigidity derived from the naphthalene-ether skeleton being imparted to the skeleton of the cured product. Further, since the epoxy resin (a11) can lower the heating temperature at the time of molding, the epoxy resin (a11) can also make it difficult for the cured product to warp due to the difference in linear expansion coefficient.
  • the number of glucidyl ether groups per molecule of the epoxy resin (a11) is preferably in the range of 2.1 to 3.9. In this case, the heat resistance of the cured product is improved by increasing the cross-linking density of the cured product.
  • the epoxy resin (a11) particularly preferably contains a compound (a12) having a structure represented by the following formula (1) and having an ICI viscosity at 150 ° C. of 0.1 Pa ⁇ s or less.
  • R 1 in formula (1) are each independently a hydrogen atom or a methyl group. It is clear that changing R 1 from hydrogen to a methyl group or changing from a methyl group to hydrogen does not significantly affect the physical properties and reactivity of compound (a12).
  • the plurality of R 2s are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, aralkyl groups, naphthalene groups, glycidyl ether group-containing naphthalene groups, or glycidyl ether group-containing phenyl groups.
  • the aralkyl group is, for example, a methylphenyl group.
  • the structure of R 2 affects the melt viscosity of compound (a12).
  • N in the formula (1) is a number of 1 or more.
  • the ICI viscosity of compound (a12) at 150 ° C. can be easily adjusted by appropriately selecting the type of substituent, the number of n in the formula (1), the molecular weight and the like.
  • the ICI viscosity of the entire compound (a12) at 150 ° C. may be adjusted by including a plurality of types of compounds having different structures in the compound (a12).
  • the compound (a12) contains, for example, a compound having a structure represented by the following formula (1-1).
  • the epoxy resin (A) may further contain an epoxy resin (b) other than the epoxy resin (a).
  • the epoxy resin (b) can contain an appropriate component applicable to encapsulation resin applications in semiconductor devices.
  • the epoxy resin (b) includes bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, alkylphenol novolac type epoxy resin, aralkyl type epoxy resin, biphenol type epoxy resin, and dicyclo.
  • biphenyl type epoxy resin From pentadiene type epoxy resin, biphenyl type epoxy resin, epoxidized product of condensate of phenols and aromatic aldehyde having phenolic hydroxyl group, triglycidyl isocyanurate, alicyclic epoxy resin, and epoxy resin having naphthylene ether skeleton Can contain at least one component selected from the group.
  • the components that can be contained in the epoxy resin (b) are not limited to the above.
  • the epoxy resin (b) preferably contains a crystalline epoxy resin (b1) that is solid at any temperature of 40 ° C. or lower.
  • the sealing composition can be easily molded by a compression molding method (direct pressure molding method).
  • the melting point of the epoxy resin (b1) is preferably 40 ° C. or higher and 110 ° C. or lower.
  • the sealing composition tends to be solid, and therefore the sealing composition can be easily molded by a compression molding method. Further, since the melting point of the epoxy resin (b1) is 110 ° C. or lower, kneadability is easy and unmelted residue is unlikely to occur when the sealing composition is prepared.
  • the melting point of the epoxy resin (b1) is more preferably 60 ° C. or higher and 110 ° C. or lower, and further preferably 70 ° C. or higher and 100 ° C. or lower.
  • the melting point of the epoxy resin (b1) can be measured by the ring-and-ball method defined by JIS K 7231.
  • the melt viscosity of the epoxy resin (b1) at 150 ° C. is preferably 0.01 Pa ⁇ s or more and 20 Pa ⁇ s or less. In this case, it is possible to facilitate the flow of the sealing composition during molding of the sealing composition and to prevent unfilling.
  • the melt viscosity is more preferably 1.0 Pa ⁇ s or less, and even more preferably 0.5 Pa ⁇ s or less.
  • the melt viscosity is measured by an ICI viscometer.
  • the weight average molecular weight of the epoxy resin (b1) is preferably 200 or more and 5000 or less.
  • the weight average molecular weight is more preferably 250 or more and 2000 or less, and further preferably 300 or more and 1000 or less.
  • This weight average molecular weight is a value measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent and converted into polystyrene.
  • the epoxy resin (b1) is a product number YX4000H, which is a crystalline biphenyl type epoxy resin manufactured by Mitsubishi Chemical Co., Ltd., and a product number YL6121H, which is a crystalline biphenyl type epoxy resin manufactured by Mitsubishi Chemical Co., Ltd. , Nippon Kayaku Co., Ltd., product number NC3000, and Printec Co., Ltd., product number VG3101L, etc., can contain at least one component selected from the group.
  • the percentage of the epoxy resin (b1) to the entire epoxy resin (A) is preferably 20% by mass or more and 80% by mass or less.
  • the sealing composition contains a curing agent (B).
  • the curing agent (B) cures the epoxy resin (A) by reacting with the epoxy resin (A).
  • the curing agent (B) is preferably solid at any temperature of 35 ° C. or lower. In this case, the curing agent (B1) can easily keep the sealing composition in a solid state, and thus can easily mold the sealing composition by a compression molding method.
  • the curing agent (B) contains at least one component selected from the group consisting of, for example, a phenol compound, an acid anhydride and an imidazole compound.
  • the components that the curing agent (B) can contain are not limited to the above.
  • the phenol compound contains, for example, at least one component selected from the group consisting of monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule. ..
  • the phenolic compound contains at least one component selected from the group consisting of phenol novolac resin, cresol novolac resin, biphenyl novolac resin, triphenylmethane type phenol resin, naphthol novolac resin, phenol aralkyl resin, and biphenyl aralkyl resin. it can.
  • the components that can be contained in the phenol compound are not limited to the above.
  • the acid anhydride is, for example, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, benzophenone tetracarboxylic anhydride, hexahydrophthalic anhydride, tetrahydro. It can contain at least one component selected from the group consisting of phthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride and polyazelineic anhydride.
  • the imidazole compound is selected from the group consisting of, for example, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 2-phenyl-4,5-dihydroxymethylimidazole. Contains at least one ingredient.
  • the imidazole compound can be a component of the curing agent (B), but can also be a component of the curing accelerator.
  • the sealing composition contains a curing agent (B) containing an imidazole compound, it may further contain a curing accelerator containing no imidazole compound, or may not contain a curing accelerator.
  • the total amount of the curing agent (B) with respect to 1 equivalent of the epoxy group of the epoxy resin (A) is, for example, 0.5 equivalent or more and 1.5 equivalent or less.
  • the sealing composition contains a copolymer (C) obtained by polymerizing a polymerizable component containing both terminal acid anhydride-modified polysiloxane (c1) and polyalkylene glycol (c2).
  • the copolymer (C) has a structural unit derived from polysiloxane (c1) and a structural unit derived from polyalkylene glycol (c2).
  • the percentage of the structural unit derived from polysiloxane (c1) with respect to the entire copolymer (C) is preferably 20% by mass or more and 90% by mass or less.
  • the copolymer (C) can be synthesized by reacting a polymerizable component.
  • the polymerizable component may contain only polysiloxane (c1) and polyalkylene glycol (c2), and in addition to polysiloxane (c1) and polyalkylene glycol (c2), at least one of a hydroxyl group and an acid anhydride group. It may further contain a copolymerization component (c3) that reacts with.
  • the percentage of polysiloxane (c1) is preferably 20% by mass or more and 90% by mass or less with respect to the total of the polymerizable components. When this percentage is 20% by mass or more, the cured product tends to have a particularly low elastic modulus. Further, when the percentage is 90% by mass or less, the copolymer (C) can be easily dispersed in the sealing composition. This percentage is more preferably 30% by mass or more. Further, the percentage is more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the copolymer (C) has a carboxyl group formed by the reaction of polysiloxane (c1) and polyalkylene glycol (c2). Therefore, the copolymer (C) has dispersibility in the epoxy resin (A), and the bleed-out of the copolymer (C) from the cured product is suppressed. Further, as described above, the reaction between the copolymer (C) and the epoxy resin (A) is considered to be one of the reasons why the wettability of the cured product with the polyimide resin precursor solution is enhanced.
  • Polysiloxane (c1) contains, for example, a compound having a structure represented by the following formula (2).
  • n is a number from 5 to 100.
  • X is a carboxylic acid anhydride group.
  • the carboxylic acid anhydride group may be a cyclic group such as a maleic anhydride group, a phthalic anhydride group, or a succinic anhydride group.
  • R 1 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
  • R 2 is a group independently selected from a single bond, a divalent aliphatic or aromatic hydrocarbon group having 1 to 10 carbon atoms, and a divalent hydrocarbon ether group having 1 to 10 carbon atoms.
  • R 1 is preferably any of a propyl group, an ethyl group and a methyl group, more preferably an ethyl group or a methyl group, and most preferably a methyl group.
  • the weight average molecular weight of the polysiloxane (c1) is preferably 500 or more, more preferably 800 or more, and even more preferably 1000 or more.
  • the weight average molecular weight is preferably 8000 or less, more preferably 5000 or less, further preferably 4000 or less, and particularly preferably 3000 or less.
  • the weight average molecular weight is a value measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent and converted into polymethyl methacrylate.
  • the polyalkylene glycol (c2) contains, for example, a compound represented by the following formula (3).
  • m represents a number from 3 to 300.
  • R 3 is a linear or branched alkyl group having 2 to 10 carbon atoms.
  • the carbon number of R 3 is preferably 3 or 4.
  • the polyalkylene glycol (c2) preferably contains at least one of polytetramethylene glycol and polypropylene glycol.
  • the weight average molecular weight of the polyalkylene glycol (c2) is preferably 300 or more, more preferably 500 or more, and even more preferably 1000 or more.
  • the weight average molecular weight is preferably 20000 or less, more preferably 10000 or less, further preferably 5000 or less, and particularly preferably 3000 or less.
  • the weight average molecular weight is a value measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent and converted into polymethylmethacrylate.
  • the copolymer (C) may further have a structural unit derived from the copolymerization component (c3) other than the polysiloxane (c1) and the polyalkylene glycol (c2).
  • the copolymerization component (c3) contains, for example, at least one compound selected from the group consisting of monovalent or divalent carboxylic acid anhydrides, diols, alcohols and phenols.
  • the percentage of the copolymer component (c3) to the copolymer (C) is preferably 40% by mass or less, more preferably 30% by mass or less. It is preferable, more preferably 20% by mass or less, and particularly preferably 10% by mass or less.
  • the copolymer (C) contains, for example, a copolymer (C1) of both terminal acid anhydride-modified polysiloxane and polytetramethylene glycol, which contains a structure represented by the following formula (4).
  • n is a number of 5 to 100
  • m is a number of 3 to 300
  • p is a number of 5 to 100
  • R is a linear or branched alkyl group having 4 or 5 carbon atoms.
  • the weight average molecular weight of the copolymer (C) is preferably 5,000 or more, more preferably 10,000 or more, further preferably 15,000 or more, particularly preferably 20,000 or more, and most preferably 30,000 or more.
  • the weight average molecular weight is preferably 500,000 or less, more preferably 200,000 or less, further preferably 150,000 or less, particularly preferably 100,000 or less, and most preferably 80,000 or less.
  • the weight average molecular weight is a value measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent and converted into polymethyl methacrylate.
  • the functional group content of the copolymer (C) is preferably 0.1 mmol / g or more and 3.0 mmol / g or less.
  • the functional group content is more preferably 0.2 mmol / g or more, further preferably 0.3 mmol / g or more.
  • the functional group content is more preferably 3.0 mmol / g or less, further preferably 2.8 mmol / g or less, and particularly preferably 2.5 mmol / g or less.
  • the functional group content can be determined by a known titration method.
  • the copolymer (C) can be synthesized by reacting a polymerizable component containing polysiloxane (c1) and polyalkylene glycol (c2).
  • the copolymer (C) can be synthesized by mixing and heating the polysiloxane (c1) and the polyalkylene glycol (c2) in a ratio according to the composition of the copolymer (C) under a reduced pressure nitrogen atmosphere. ..
  • This reaction may proceed in an organic solvent.
  • the heating temperature during the reaction is, for example, 70 ° C. or higher and 220 ° C. or lower, and the reaction time is, for example, 20 hours or less.
  • the percentage of the copolymer (C) with respect to the entire sealing composition is preferably 0.3% by mass or more. In this case, the copolymer (C) can particularly reduce the elastic modulus of the cured product.
  • the copolymer (C) is also preferably 5% by mass or less. In this case, the melt viscosity of the sealing composition is less likely to increase due to the influence of the copolymer (C), and the moldability of the sealing composition is less likely to deteriorate.
  • the percentage of the copolymer (C) is more preferably 0.5% by mass or more and 5.0% by mass or less, and further preferably 1.0% by mass or more and 4.0% by mass or less.
  • the sealing composition may further contain an inorganic filler.
  • Inorganic fillers include, for example, fused silica, spherical fused silica, and silica such as crystalline silica; high dielectric constant fillers such as aluminum oxide, magnesium oxide, boron nitride, aluminum hydroxide, high dielectric constant barium titanate, and titanium oxide; Magnetic fillers such as hard ferrite; Inorganic flame retardants such as magnesium hydroxide, aluminum hydroxide, antimony trioxide, antimony pentoxide, guanidine salts, zinc borate, molybdenum compounds, and zinc stannate; talc; barium sulfate; carbon dioxide It can contain at least one material selected from the group consisting of calcium; as well as mica flour.
  • the inorganic filler preferably contains spherical fused silica.
  • the fluidity of the sealing composition during molding becomes particularly high.
  • the filling property of the inorganic filler in the sealing resin can be easily improved.
  • the average particle size of the inorganic filler is preferably 2 ⁇ m or more and 20 ⁇ m or less. In this case, the fluidity of the sealing composition during molding becomes particularly good.
  • the average particle size is a volume-based cumulative medium diameter (median diameter d50) based on the measured value of the particle size distribution by the laser diffraction / scattering method using a laser diffraction / scattering type particle size distribution measuring device. It is more preferable that the average particle size of the inorganic filler is 5 ⁇ m or more and 15 ⁇ m or less.
  • the percentage of the inorganic filler to the total amount of the sealing composition is preferably 50% by mass or more and 93% by mass or less. In this case, the fluidity of the sealing composition during molding becomes particularly good.
  • the percentage of the inorganic filler is more preferably 80% by mass or more and 93% by mass or less.
  • the sealing composition may contain a curing accelerator. If the encapsulating composition contains a cure accelerator, the cure accelerators are, for example, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, and 2-phenyl-4.
  • -Imidazoles such as hydroxymethyl-5-methylimidazole; 1,8-diazabicyclo [5.4.0] undecene-7, and 1,5-diazabicyclo [4.3.0] nonen-5,5,6- Cycloamidins such as dibutylamino-1,8-diazabicyclo [5.4.0] undecene-7; 2- (dimelaminomethyl) phenol, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, and Tertiary amines such as tris (dimethylaminomethyl) phenol; tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, addition reactants of triphenylphosphine and parabenzoquinone, and Organic phosphines such as phenylphosphine; tetra-sub
  • the sealing composition may contain a release agent.
  • the mold release agent can contain, for example, one or more components selected from the group consisting of carnauba wax, stearic acid, montanic acid, and carboxyl group-containing polyolefins. ..
  • the encapsulating composition is a group consisting of silane coupling agents such as ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -mercaptopropyltrimethoxysilane, flame retardants, colorants, and silicone flexible agents, if necessary. It can also contain at least one component selected from.
  • the sealing composition may contain a solvent, but preferably does not.
  • the above raw materials are mixed with a mixer, a blender, etc., and then melt-kneaded with a kneader, a heating roll, etc., and the resulting mixture is cooled and then pulverized into a powder. You can get it. If necessary, a tablet-shaped sealing composition may be obtained by locking the powder-shaped sealing composition.
  • the sealing composition At the time of preparing the sealing composition, first, at least a part of the epoxy resin (A) and the copolymer (C) of the sealing composition are mixed to prepare a mixture (master batch), and this mixture is prepared. You may mix with the rest of the raw materials. In this case, the copolymer (C) can be easily dispersed in the sealing composition.
  • the sealing composition according to this embodiment is suitable for producing a sealing resin in a semiconductor device.
  • the encapsulating composition is particularly suitable for producing encapsulating resins in single-sided molded semiconductor devices, especially FO-WLP.
  • the semiconductor device 9 includes a semiconductor chip 1 and a sealing resin 4 that covers the semiconductor chip 1.
  • the sealing composition In order to produce the sealing resin 4, it is preferable to mold the sealing composition by a compression molding method (direct pressure molding method).
  • a compression molding method direct pressure molding method
  • the single-sided mold type semiconductor device 9, particularly the sealing resin 4 in FO-WLP can be easily manufactured.
  • the sealing composition may be molded by a known molding method such as a low-pressure transfer molding method instead of the compression molding method.
  • the heating temperature when molding the sealing composition is, for example, 120 ° C. or higher and 180 ° C. or lower.
  • This temperature is particularly preferably 150 ° C. or lower.
  • this temperature is 130 ° C. or higher and 150 ° C. or lower.
  • the sealing resin 4 can be produced from the sealing composition under such temperature conditions.
  • the thickness of the sealing resin 4 is preferably 1.2 mm or less. In this case, the warp of the semiconductor device 9 is particularly suppressed. It is more preferable that the thickness of the sealing resin 4 is 0.2 mm or more and 1.2 mm or less.
  • FO-WLP which is a semiconductor device 9, and a manufacturing method thereof will be described.
  • the first example, the second example, and the third example, which are specific examples of the manufacturing method of the semiconductor device 9, will be described.
  • the semiconductor device 9 is manufactured by a method called die-first (chip first).
  • a plurality of semiconductor chips 1 are manufactured by dicing a wafer on which a circuit is formed.
  • a plurality of semiconductor chips 1 are placed on a carrier 2 made of an inorganic base material via an adhesive layer 3.
  • the adhesive layer 3 is made of, for example, a double-sided adhesive tape for temporary fixing.
  • the carrier 2 is made to support the plurality of semiconductor chips 1.
  • the plurality of semiconductor chips 1 are arranged on the carrier 2 so that there is a gap between the adjacent semiconductor chips 1.
  • a sealing resin 4 is produced on the carrier 2 so that the sealing resin 4 covers the semiconductor chip 1.
  • a powdery sealing composition is placed on a carrier 2 so that the semiconductor chip 1 is embedded in the sealing composition, and in that state, the sealing composition is placed in a mold by a compression molding method (direct pressure molding). Mold by method).
  • the sealing composition can be cured to produce the sealing resin 4.
  • an intermediate product 5 including the semiconductor chip 1 and the sealing resin 4 is produced, and the intermediate product 5 is placed on the carrier 2 via the adhesive layer 3.
  • the adhesive layer 3 is peeled off from the intermediate product 5.
  • the rewiring layer 7 is provided on the surface 6 (hereinafter referred to as the wiring surface 6) that was in contact with the adhesive layer 3 in the intermediate product 5.
  • the rewiring layer 7 includes, for example, an insulating layer made of polyimide and a conductor made of a metal such as copper.
  • the insulating layer is produced, for example, by applying a polyimide precursor solution to the wiring surface 6, curing it, and further patterning it by a photolithography method or the like, if necessary.
  • a bump 8 is provided on the rewiring layer 7 so as to be electrically connected to the conductor in the rewiring layer 7.
  • the bump 8 is made of, for example, solder.
  • a plurality of semiconductor devices 9 including the semiconductor chip 1, the sealing resin 4 covering the semiconductor chip 1, the rewiring layer 7, and the bump 8 can be obtained. ..
  • the bump 8 may be provided after cutting the intermediate product 5.
  • a plurality of semiconductor chips 1 similar to those in the first example are mounted on the carrier 2 made of an inorganic base material via the adhesive layer 3.
  • the carrier 2 is made to support the plurality of semiconductor chips 1.
  • the plurality of semiconductor chips 1 are arranged on the carrier 2 so that there is a gap between the adjacent semiconductor chips 1.
  • a plurality of conductor pillars 10 are provided on the surface of each semiconductor chip 1 facing the side opposite to the carrier 2.
  • a sealing resin 4 is produced on the carrier 2 so as to cover the semiconductor chip 1 and the pillar 10 with the sealing resin 4.
  • a powdery encapsulating composition is placed on the carrier 2 so that the semiconductor chip 1 and the pillar 10 are embedded in the encapsulating composition, and in that state, the encapsulating composition is placed in a mold by a compression molding method. Mold.
  • the sealing composition can be cured to produce the sealing resin 4.
  • an intermediate product 5 including the semiconductor chip 1, the pillar 10, and the sealing resin 4 is manufactured, and the intermediate product 5 is placed on the carrier 2 via the adhesive layer 3.
  • the surface of the sealing resin 4 in the intermediate product 5 facing the opposite side to the carrier 2 is polished.
  • the polishing sealing resin 4 has a surface 6 (hereinafter referred to as a wiring surface 6) facing the side opposite to the carrier 2 newly formed by polishing, and the pillar on the wiring surface 6. 10 is exposed.
  • the rewiring layer 7 is provided on the wiring surface 6 of the intermediate product 5.
  • the adhesive layer 3 is peeled from the intermediate product 5.
  • a bump 8 is provided on the rewiring layer 7 so as to be electrically connected to the conductor in the rewiring layer 7.
  • a plurality of semiconductor devices 9 including the semiconductor chip 1, the sealing resin 4 covering the semiconductor chip 1, the rewiring layer 7, and the bump 8 can be obtained. ..
  • the bump 8 may be provided after cutting the intermediate product 5.
  • the semiconductor device 9 is created by a method called die-last (chip-last).
  • the adhesive layer 3 is provided on the carrier 2 made of an inorganic base material, and the rewiring layer 7 is produced on the adhesive layer 3.
  • the rewiring layer 7 includes, for example, an insulating layer made of polyimide and a conductor made of a metal such as copper.
  • a plurality of semiconductor chips 1 similar to those in the first example are placed on the carrier 2 made of an inorganic base material via the adhesive layer 3 and the rewiring layer 7.
  • the semiconductor chip 1 is electrically connected to the conductor of the rewiring layer 7 via the bump 11.
  • the carrier 2 is made to support the plurality of semiconductor chips 1.
  • the plurality of semiconductor chips 1 are arranged on the rewiring layer 7 so that there is a gap between the adjacent semiconductor chips 1.
  • a sealing resin 4 is produced on the carrier 2 (above the rewiring layer 7) so as to cover the semiconductor chip 1 with the sealing resin 4.
  • a powdery sealing composition is placed on the rewiring layer 7 so that the semiconductor chip 1 is embedded in the composition, and in that state, the sealing composition is placed in a mold by a compression molding method (direct pressure molding method). ). Thereby, the sealing composition can be cured to produce the sealing resin 4.
  • an intermediate product 5 including the semiconductor chip 1, the rewiring layer 7, and the sealing resin 4 is manufactured, and the intermediate product 5 is placed on the carrier 2 via the adhesive layer 3.
  • the adhesive layer 3 is peeled from the intermediate product 5.
  • a bump 8 is provided on the rewiring layer 7 so as to be electrically connected to the conductor in the rewiring layer 7.
  • a plurality of semiconductor devices 9 including the semiconductor chip 1, the sealing resin 4 covering the semiconductor chip 1, the rewiring layer 7, and the bump 8 can be obtained. ..
  • the bump 8 may be provided after cutting the intermediate product 5.
  • the sealing composition according to the present embodiment is suitable for producing a semiconductor device 9, particularly a sealing resin 4 for FO-WLP.
  • the configuration and manufacturing method of the semiconductor device 9 including the sealing resin 4 produced from the sealing composition are not limited to the above.
  • the semiconductor device 9 includes a lead frame, a semiconductor chip mounted on the lead frame, and a sealing resin that covers the entire semiconductor chip, and the sealing resin is a cured product of the composition according to the present embodiment. May be good.
  • -HP6000-L Epoxy resin having a naphthylene ether skeleton having a structure represented by the formula (1), epoxy equivalent 218 g / eq, ICI viscosity 0.05 Pa ⁇ s at 150 ° C., manufactured by DIC, product number HP6000-L.
  • -YX8800UH Dihydroanthracene type epoxy resin, manufactured by Mitsubishi Chemical Corporation, product number YX8800UH.
  • -WHR-991S N-Phenylphenol Phenyldiglycidyl ether, manufactured by Nippon Kayaku Co., Ltd., product number WHR-991S.
  • -YL6121H Biphenyl type epoxy resin, manufactured by Mitsubishi Chemical Corporation, product number YL6121H. -YX4000H: Biphenyl type epoxy resin, manufactured by Mitsubishi Chemical Corporation, product number YX4000H. -NC3000: Made by Nippon Kayaku Co., Ltd., product number NC3000. -VG3101L: Made by Printec Co., Ltd., product number VG3101L. -MEH7500-3S: Triphenol methane type phenol resin, manufactured by Meiwa Kasei Co., Ltd., product number MEH7500-3S. -2PHZ: 2-Phenyl-4,5-dihydroxymethylimidazole, manufactured by Shikoku Chemicals Corporation, product number 2PHZ.
  • -Copolymer of both end acid anhydride-modified polysiloxane and polytetramethylene glycol Copolymer containing the structure represented by the formula (4), functional group equivalent 1000 g / mol.
  • -X22-163C Epoxy-modified silicone at both ends, manufactured by Shin-Etsu Chemical Co., Ltd., product number X22-163C.
  • -AY42-119 Epoxy-modified silicone resin, manufactured by Toray Dow Corning Co., Ltd., product number AY42-119.
  • -MA600 Carbon black, manufactured by Mitsubishi Chemical Corporation, product number MA600.
  • -MBN Made by Dainichi Chemical Industry Co., Ltd., product number WAX-MBN.
  • -FB5FDC Spherical fused silica, manufactured by Denki Kagaku Kogyo, product number FB5FDC.
  • -KBM-573 N-Phenyl-3-aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., product number KBM-573.
  • the sealing composition was subjected to a transfer molding method using a transfer molding machine ETA-30D manufactured by Shinto Metal Industry Co., Ltd., and the molding pressure was about 6.9 MPa (70 kgf / cm 2 ), gold Molding was performed under the conditions of a mold temperature of 175 ° C. and a curing time of 150 seconds. The obtained molded product was post-cured by heating at 175 ° C. for 4 hours. As a result, a test piece having a diameter of 20 mm and a thickness of 5 mm was obtained.
  • thermomechanical analyzer (Thermo plus TMA8310) manufactured by Rigaku Co., Ltd.
  • the temperature of the test piece was raised from 50 ° C to 100 ° C in an air atmosphere, and the amount of dimensional change of the evaluation sample during this period was used to determine the evaluation sample.
  • the coefficient of linear expansion was calculated.
  • a three-point bending test of the test piece was performed at 25 ° C. using a universal material testing machine (model 5965 type) manufactured by Instron. From the result, the flexural modulus was calculated. Further, in this three-point bending test, the value of the bending stress at the time when the test piece was broken was defined as the bending strength of the test piece.
  • the sealing composition was molded under the same conditions as in (1) above to obtain a test piece having a diameter of 60 mm and a thickness of 2 mm.
  • One side of this test piece was ground 100 ⁇ m with wheel # 4000 using a grinder (DAG810 Disco Acoustic Grinder) manufactured by Disco Corporation.
  • the test piece was subjected to oxygen plasma treatment using a plasma dry cleaner (model number PX-250) manufactured by MARCH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

The present disclosure provides a composition for sealing capable of manufacturing a cured product less likely to warp during molding. The composition for sealing contains an epoxy resin (A) including an epoxy resin (a) having a fused-ring hydrocarbon skeleton, a curing agent (B), and a copolymer (C) of a polysiloxane modified at both ends by an acid anhydride, and a polyalkylene glycol.

Description

封止用組成物、半導体装置及び半導体装置の製造方法Encapsulation composition, semiconductor device and method for manufacturing semiconductor device
 本開示は、封止用組成物、半導体装置及び半導体装置の製造方法に関し、詳しくはエポキシ樹脂を含有する封止用組成物、この封止用組成物から作製された封止樹脂を備える半導体装置、及びこの半導体装置の製造方法に関する。 The present disclosure relates to a sealing composition, a semiconductor device, and a method for manufacturing a semiconductor device. Specifically, the present disclosure comprises a sealing composition containing an epoxy resin, and a semiconductor device including a sealing resin prepared from the sealing composition. , And a method for manufacturing this semiconductor device.
 特許文献1には、FO-WLP(ファンアウト-ウエハレベルパッケージ)用半導体装置の封止に適した、圧縮成形用固形封止樹脂組成物が開示され、この圧縮成形用固形封止樹脂組成物は、エポキシ樹脂と、硬化剤と、ホスフィン化合物及びキノン化合物の付加反応物とを成分とする。 Patent Document 1 discloses a solid-sealing resin composition for compression molding suitable for sealing a semiconductor device for FO-WLP (fan-out-wafer level package), and the solid-sealing resin composition for compression molding. Consists of an epoxy resin, a curing agent, and an addition reaction product of a phosphine compound and a quinone compound.
特開2018-188667号公報JP-A-2018-188667
 本開示の課題は、成形時に反りの生じにくい硬化物を作製できる封止用組成物及びこの封止用組成物から作製された封止樹脂を備える半導体装置及び半導体装置の製造方法を提供することである。 An object of the present disclosure is to provide a sealing composition capable of producing a cured product which is less likely to warp during molding, a semiconductor device including a sealing resin prepared from the sealing composition, and a method for manufacturing the semiconductor device. Is.
 本開示の一実施形態に係る封止用組成物は、縮合環式炭化水素骨格を有するエポキシ樹脂(a)を含むエポキシ樹脂(A)と、硬化剤(B)と、両末端酸無水物変性ポリシロキサンとポリアルキレングリコールとを含む重合性成分が重合した共重合体(C)とを含有する。 The encapsulating composition according to one embodiment of the present disclosure includes an epoxy resin (A) containing an epoxy resin (a) having a condensed ring hydrocarbon skeleton, a curing agent (B), and modification of both terminal acid anhydrides. It contains a copolymer (C) obtained by polymerizing a polymerizable component containing polysiloxane and polyalkylene glycol.
 本開示の一実施形態に係る半導体装置は、半導体チップと、前記半導体チップを封止する封止樹脂とを備え、前記封止樹脂は前記封止用組成物の硬化物である。 The semiconductor device according to the embodiment of the present disclosure includes a semiconductor chip and a sealing resin for sealing the semiconductor chip, and the sealing resin is a cured product of the sealing composition.
 本開示の一実施形態に係る半導体装置の製造方法は、半導体チップと、前記半導体チップを封止する封止樹脂とを備える半導体装置を製造する方法であり、前記封止用組成物から前記封止樹脂を、直圧成型法で作製することを含む。 The method for manufacturing a semiconductor device according to an embodiment of the present disclosure is a method for manufacturing a semiconductor device including a semiconductor chip and a sealing resin for sealing the semiconductor chip, and the sealing from the sealing composition. This includes producing a stop resin by a direct pressure molding method.
図1A、図1B、図1C、図1D及び図1Eは、本開示の一実施形態における半導体装置の製造方法の第1の例の工程を示す、模式的な断面図である。1A, 1B, 1C, 1D and 1E are schematic cross-sectional views showing a process of a first example of a method of manufacturing a semiconductor device according to an embodiment of the present disclosure. 図2A、図2B、図2C、図2D、図2E及び図2Fは、本開示の一実施形態における半導体装置の製造方法の第2の例の工程を示す、模式的な断面図である。2A, 2B, 2C, 2D, 2E and 2F are schematic cross-sectional views showing the steps of a second example of the method of manufacturing a semiconductor device according to an embodiment of the present disclosure. 図3A、図3B、図3C、図3D及び図3Eは、本開示の一実施形態における半導体装置の製造方法の第3の例の工程を示す、模式的な断面図である。3A, 3B, 3C, 3D and 3E are schematic cross-sectional views showing a process of a third example of a method of manufacturing a semiconductor device according to an embodiment of the present disclosure.
 発明者が本開示の完成に至るまでの経緯の概略を説明する。FO-WLPを製造する場合、例えば複数個のダイなどの半導体チップを、シリカ、ガラスなどの無機質基材からなるキャリアに支持させ、この状態で、半導体チップを封止樹脂で封止して中間製品を作製する。この中間製品からキャリアを剥がした後、中間製品を切断することで、複数のFO-WLPを製造する。FO-WLPには、再配線層及び再配線層に接続されるバンプが設けられる。 The inventor will outline the process leading up to the completion of this disclosure. When manufacturing FO-WLP, for example, semiconductor chips such as a plurality of dies are supported by carriers made of an inorganic substrate such as silica and glass, and in this state, the semiconductor chips are sealed with a sealing resin and intermediate. Make a product. A plurality of FO-WLPs are manufactured by peeling the carrier from the intermediate product and then cutting the intermediate product. The FO-WLP is provided with a rewiring layer and bumps connected to the rewiring layer.
 FO-WLPの製造時には、キャリアに支持された状態のチップを封止樹脂で封止するので、中間製品には、キャリアと封止樹脂との間の線膨張係数の差に起因する反りが生じることがある。特に中間製品が大型化すると、反りが生じやすくなってしまう。中間製品における反りは、中間製品の取扱性を悪化させてしまい、FO-WLPの製造効率の悪化を招いてしまう。 During the production of FO-WLP, the chips supported by the carrier are sealed with the sealing resin, so that the intermediate product is warped due to the difference in the coefficient of linear expansion between the carrier and the sealing resin. Sometimes. In particular, when the size of the intermediate product becomes large, warpage tends to occur. Warpage in the intermediate product deteriorates the handleability of the intermediate product and causes deterioration in the manufacturing efficiency of the FO-WLP.
 しかし、線膨張係数の小さい樹脂は剛直な構造を有するため、封止樹脂の線膨張係数を小さくすると封止樹脂の曲げ弾性率が高くなってしまい、かえって反りが生じやすくなることがある。 However, since a resin having a small linear expansion coefficient has a rigid structure, if the linear expansion coefficient of the sealing resin is reduced, the bending elastic modulus of the sealing resin becomes high, and warpage may occur more easily.
 そこで、発明者は、成形時に反りの生じにくい硬化物を作製できる封止用組成物、この封止用組成物から作製された封止樹脂を備える半導体装置、及び半導体装置の製造方法を得るべく、鋭意研究開発を行った結果、本開示の完成に至った。 Therefore, the inventor aims to obtain a sealing composition capable of producing a cured product which is less likely to warp during molding, a semiconductor device provided with a sealing resin prepared from the sealing composition, and a method for manufacturing the semiconductor device. As a result of diligent research and development, this disclosure has been completed.
 以下、本開示の実施形態について説明する。なお、以下に説明する実施形態は、本開示の様々な実施形態の一つに過ぎない。以下の実施形態は、本開示の目的を達成できれば設計に応じて種々の変更が可能である。 Hereinafter, embodiments of the present disclosure will be described. It should be noted that the embodiments described below are merely one of the various embodiments of the present disclosure. The following embodiments can be modified in various ways depending on the design as long as the object of the present disclosure can be achieved.
 本実施形態に係る封止用組成物は、縮合環式炭化水素骨格を有するエポキシ樹脂(a)を含むエポキシ樹脂(A)と、硬化剤(B)と、両末端酸無水物変性ポリシロキサンとポリアルキレングリコールとを含む重合性成分が重合した共重合体(C)とを含有する。 The sealing composition according to the present embodiment includes an epoxy resin (A) containing an epoxy resin (a) having a condensed ring hydrocarbon skeleton, a curing agent (B), and both terminal acid anhydride-modified polysiloxanes. It contains a copolymer (C) in which a polymerizable component containing a polyalkylene glycol is polymerized.
 エポキシ樹脂(a)は、封止用組成物から作製される硬化物の線膨張係数を低めやすい。また、エポキシ樹脂(a)は硬化物の弾性率を増大させやすいが、封止用組成物が共重合体(C)を含有することで、エポキシ樹脂(a)に起因する硬化物の弾性率の増大を生じにくくし、或いは硬化物の弾性率を低めることができる。また、共重合体(C)は、硬化物の線膨張係数を更に低減することができる。これにより、硬化物の低線膨張係数化と低弾性率化とを両立させることができる。このため、例えば封止用組成物が無機質基材上で成形されることで硬化物が作製されても、硬化物には、無機質基材と硬化物との間の線膨張係数の差に起因する反りが生じにくい。なお、封止用組成物が無機質基材上で成形されて硬化物が作製されることには、無機質基材上で無機質基材に接する硬化物が作製されることだけでなく、無機質基材上に重なっている無機質基材以外の層(接着層、再配線層など)の上でこの層に接する硬化物が作製されることも含まれる。 The epoxy resin (a) tends to lower the coefficient of linear expansion of the cured product produced from the sealing composition. Further, the epoxy resin (a) tends to increase the elastic modulus of the cured product, but since the sealing composition contains the copolymer (C), the elastic modulus of the cured product caused by the epoxy resin (a) It is possible to reduce the increase in the elastic modulus of the cured product. Further, the copolymer (C) can further reduce the coefficient of linear expansion of the cured product. As a result, it is possible to achieve both a low linear expansion coefficient and a low elastic modulus of the cured product. Therefore, for example, even if a cured product is produced by molding the sealing composition on an inorganic base material, the cured product is caused by the difference in linear expansion coefficient between the inorganic base material and the cured product. Warpage is unlikely to occur. The fact that the sealing composition is molded on the inorganic base material to produce a cured product means that not only the cured product in contact with the inorganic base material is produced on the inorganic base material but also the inorganic base material is produced. It also includes the formation of a cured product in contact with this layer on a layer other than the inorganic substrate (adhesive layer, rewiring layer, etc.) that is overlaid on top of it.
 また、共重合体(C)は、硬化物の表面張力を低めやすく、そのため硬化物のポリイミド樹脂前駆体溶液との濡れ性を高めることができる。一般に、シリコーンはポリイミド樹脂前駆体溶液との濡れ性を低めるが、本実施形態では、共重合体(C)がエポキシ樹脂(A)と反応することで、ポリイミド樹脂前駆体溶液との濡れ性を低めにくいと、推察される。このため、硬化物の表面上にポリイミド樹脂製の絶縁層を作製することが容易である。このため、封止用組成物(X)を、ポリイミド製の絶縁層を備える再配線層を有する半導体装置を作製するために適用しやすい。 Further, the copolymer (C) tends to lower the surface tension of the cured product, and therefore, the wettability of the cured product with the polyimide resin precursor solution can be improved. Generally, silicone lowers the wettability with the polyimide resin precursor solution, but in the present embodiment, the copolymer (C) reacts with the epoxy resin (A) to improve the wettability with the polyimide resin precursor solution. It is presumed that it is difficult to lower it. Therefore, it is easy to form an insulating layer made of polyimide resin on the surface of the cured product. Therefore, the sealing composition (X) can be easily applied to produce a semiconductor device having a rewiring layer provided with an insulating layer made of polyimide.
 封止用組成物を硬化して得られる硬化物の線膨張係数と曲げ弾性率との積として規定される指標(Stress index)は、180以下であることが好ましい。この場合、硬化物に反りが特に生じにくくなる。この指標は、150以下であればより好ましく、100以下であれば更に好ましい。このような指標の値は、下記に詳細に示す封止用組成物の組成の範囲内で実現可能である。なお、線膨張係数と曲げ弾性率の測定方法は、後掲の実施例における評価試験の通りである。線膨張係数の単位はppm/Kであり、曲げ弾性率の単位はGPaである。 The index (Stress index) defined as the product of the linear expansion coefficient and the flexural modulus of the cured product obtained by curing the sealing composition is preferably 180 or less. In this case, the cured product is less likely to warp. This index is more preferably 150 or less, and even more preferably 100 or less. The value of such an index can be realized within the composition of the sealing composition described in detail below. The method for measuring the coefficient of linear expansion and the flexural modulus is the same as the evaluation test in the examples described later. The unit of linear expansion coefficient is ppm / K, and the unit of flexural modulus is GPa.
 封止用組成物の組成について、更に詳しく説明する。 The composition of the sealing composition will be described in more detail.
 上述のとおり、封止用組成物は、エポキシ樹脂(A)を含有する。封止用組成物全体に対するエポキシ樹脂(A)の百分比は、例えば4質量%以上15質量%以下である。 As described above, the sealing composition contains the epoxy resin (A). The percentage of the epoxy resin (A) to the entire sealing composition is, for example, 4% by mass or more and 15% by mass or less.
 エポキシ樹脂(A)は、縮合環式炭化水素骨格を有するエポキシ樹脂(a)を含有する。このため、エポキシ樹脂(A)は、縮合環式炭化水素骨格による剛直な構造を硬化物に導入することで、硬化物の線膨張係数を低減できる。 The epoxy resin (A) contains an epoxy resin (a) having a fused cyclic hydrocarbon skeleton. Therefore, the epoxy resin (A) can reduce the coefficient of linear expansion of the cured product by introducing a rigid structure with a fused ring hydrocarbon skeleton into the cured product.
 エポキシ樹脂(A)全体に対するエポキシ樹脂(a)の百分比は、20質量%以上であることが好ましい。この場合、エポキシ樹脂(a)は、硬化物の線膨張係数を特に低減しやすい。エポキシ樹脂(A)全体に対するエポキシ樹脂(a)の百分比が100質量%であってもよい。このエポキシ樹脂(a)の百分比は30質量%以上70質量%以下であれば更に好ましい。 The percentage of the epoxy resin (a) to the entire epoxy resin (A) is preferably 20% by mass or more. In this case, the epoxy resin (a) tends to reduce the coefficient of linear expansion of the cured product. The percentage of the epoxy resin (a) to the entire epoxy resin (A) may be 100% by mass. The percentage of the epoxy resin (a) is more preferably 30% by mass or more and 70% by mass or less.
 エポキシ樹脂(a)は、ナフタレン骨格を有するエポキシ樹脂(a1)、アントラセン骨格を有するエポキシ樹脂(a2)、及びジヒドロアントラセン骨格を有するエポキシ樹脂(a3)からなる群から選択される少なくとも一種のエポキシ樹脂を含有することが好ましい。この場合、硬化物の線膨張係数を特に低減できる。 The epoxy resin (a) is at least one epoxy resin selected from the group consisting of an epoxy resin having a naphthalene skeleton (a1), an epoxy resin having an anthracene skeleton (a2), and an epoxy resin having a dihydroanthracene skeleton (a3). Is preferably contained. In this case, the coefficient of linear expansion of the cured product can be particularly reduced.
 エポキシ樹脂(a)は、ナフタレン骨格を有するエポキシ樹脂(a1)のうち、特にナフチレンエーテル骨格を有するエポキシ樹脂(a11)を含有することが好ましい。エポキシ樹脂(a11)は、封止用組成物の成形時の流動性を高めることができ、かつ成形時の加熱温度が低くても封止用組成物に良好な流動性を付与しやすい。 The epoxy resin (a) preferably contains an epoxy resin (a11) having a naphthylene ether skeleton, among the epoxy resins (a1) having a naphthalene skeleton. The epoxy resin (a11) can enhance the fluidity of the sealing composition during molding, and can easily impart good fluidity to the sealing composition even if the heating temperature during molding is low.
 また、エポキシ樹脂(a11)は、硬化物に反りを更に生じにくくできる。これは、硬化物の骨格にナフチレン-エーテル骨格に由来する剛直性が付与されることで、硬化物の線膨張係数が低下しやすいためであると推察される。また、エポキシ樹脂(a11)は、成形時の加熱温度を低めることができるので、この点でも、エポキシ樹脂(a11)は、線膨張係数差に起因する硬化物の反りを生じにくくできる。 Further, the epoxy resin (a11) can make the cured product less likely to warp. It is presumed that this is because the linear expansion coefficient of the cured product tends to decrease due to the rigidity derived from the naphthalene-ether skeleton being imparted to the skeleton of the cured product. Further, since the epoxy resin (a11) can lower the heating temperature at the time of molding, the epoxy resin (a11) can also make it difficult for the cured product to warp due to the difference in linear expansion coefficient.
 エポキシ樹脂(a11)の一分子当たりのグルシジルエーテル基の数は、2.1~3.9の範囲内であることが好ましい。この場合、硬化物の架橋密度が上がることで硬化物の耐熱性が向上する。 The number of glucidyl ether groups per molecule of the epoxy resin (a11) is preferably in the range of 2.1 to 3.9. In this case, the heat resistance of the cured product is improved by increasing the cross-linking density of the cured product.
 エポキシ樹脂(a11)は、特に下記式(1)で示される構造を有し、150℃でのICI粘度が0.1Pa・s以下である化合物(a12)を含有することが好ましい。 The epoxy resin (a11) particularly preferably contains a compound (a12) having a structure represented by the following formula (1) and having an ICI viscosity at 150 ° C. of 0.1 Pa · s or less.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中の二つのR1はそれぞれ独立的に水素原子又はメチル基である。なお、R1を水素からメチル基に変更し、或いはメチル基から水素に変更しても、化合物(a12)の物性及び反応性に大きな影響は与えられないことは明らかである。複数のR2はそれぞれ独立的に水素原子、炭素原子数1~4のアルキル基、アラルキル基、ナフタレン基、グリシジルエーテル基含有ナフタレン基、又はグリシジルエーテル基含有フェニル基である。アラルキル基は、例えばメチルフェニル基である。R2の構造は、化合物(a12)の溶融粘度に影響を与える。R2が嵩高いほど、化合物(a12)の溶融粘度が高くなる傾向がある。また、R2にグリシジルエーテル基含有ナフタレン基が含まれると、化合物(a12)の反応性が高くなると共に化合物(a12)の硬化物のガラス転移点が高くなる。式(1)中のnは1以上の数である。nの値が大きいほど、化合物(a12)の溶融粘度が高くなる傾向がある。化合物(a12)の150℃でのICI粘度は、置換基の種類、式(1)中のnの数、分子量などを適宜選択することで、容易に調整される。化合物(a12)が構造の異なる複数種の化合物を含むことで、化合物(a12)全体の150℃でのICI粘度が調整されていてもよい。 Two R 1 in formula (1) are each independently a hydrogen atom or a methyl group. It is clear that changing R 1 from hydrogen to a methyl group or changing from a methyl group to hydrogen does not significantly affect the physical properties and reactivity of compound (a12). The plurality of R 2s are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, aralkyl groups, naphthalene groups, glycidyl ether group-containing naphthalene groups, or glycidyl ether group-containing phenyl groups. The aralkyl group is, for example, a methylphenyl group. The structure of R 2 affects the melt viscosity of compound (a12). The higher the volume of R 2 , the higher the melt viscosity of compound (a12) tends to be. Further, when R 2 contains a glycidyl ether group-containing naphthalene group, the reactivity of the compound (a12) is increased and the glass transition point of the cured product of the compound (a12) is increased. N in the formula (1) is a number of 1 or more. The larger the value of n, the higher the melt viscosity of compound (a12) tends to be. The ICI viscosity of compound (a12) at 150 ° C. can be easily adjusted by appropriately selecting the type of substituent, the number of n in the formula (1), the molecular weight and the like. The ICI viscosity of the entire compound (a12) at 150 ° C. may be adjusted by including a plurality of types of compounds having different structures in the compound (a12).
 化合物(a12)は、例えば下記の式(1-1)に示す構造を有する化合物を含有する。 The compound (a12) contains, for example, a compound having a structure represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 エポキシ樹脂(A)は、エポキシ樹脂(a)以外のエポキシ樹脂(b)を更に含有してもよい。エポキシ樹脂(b)は、半導体装置における封止樹脂用途に適用可能な適宜の成分を含有できる。例えばエポキシ樹脂(b)は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂、及びナフチレンエーテル骨格を有するエポキシ樹脂からなる群から選択される少なくとも一種の成分を含有できる。なお、エポキシ樹脂(b)が含有しうる成分は、前記に限定されない。 The epoxy resin (A) may further contain an epoxy resin (b) other than the epoxy resin (a). The epoxy resin (b) can contain an appropriate component applicable to encapsulation resin applications in semiconductor devices. For example, the epoxy resin (b) includes bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, alkylphenol novolac type epoxy resin, aralkyl type epoxy resin, biphenol type epoxy resin, and dicyclo. From pentadiene type epoxy resin, biphenyl type epoxy resin, epoxidized product of condensate of phenols and aromatic aldehyde having phenolic hydroxyl group, triglycidyl isocyanurate, alicyclic epoxy resin, and epoxy resin having naphthylene ether skeleton Can contain at least one component selected from the group. The components that can be contained in the epoxy resin (b) are not limited to the above.
 エポキシ樹脂(b)は、40℃以下のいかなる温度においても固体である結晶性のエポキシ樹脂(b1)を含有することが好ましい。この場合、封止用組成物を圧縮成形法(直圧成形法)で成形しやすくなる。 The epoxy resin (b) preferably contains a crystalline epoxy resin (b1) that is solid at any temperature of 40 ° C. or lower. In this case, the sealing composition can be easily molded by a compression molding method (direct pressure molding method).
 エポキシ樹脂(b1)の融点は、40℃以上110℃以下であることが好ましい。エポキシ樹脂(b1)の融点が40℃以上であると、封止用組成物が固形状になりやすく、そのため、封止用組成物を圧縮成形法で成形しやすくなる。また、エポキシ樹脂(b1)の融点が110℃以下であることで、封止用組成物の作成時に混練性が容易で融け残りが発生しにくい。エポキシ樹脂(b1)の融点は60℃以上110℃以下であればより好ましく、70℃以上100℃以下であれば更に好ましい。なお、エポキシ樹脂(b1)の融点はJIS K 7231で規定される環球法で測定できる。 The melting point of the epoxy resin (b1) is preferably 40 ° C. or higher and 110 ° C. or lower. When the melting point of the epoxy resin (b1) is 40 ° C. or higher, the sealing composition tends to be solid, and therefore the sealing composition can be easily molded by a compression molding method. Further, since the melting point of the epoxy resin (b1) is 110 ° C. or lower, kneadability is easy and unmelted residue is unlikely to occur when the sealing composition is prepared. The melting point of the epoxy resin (b1) is more preferably 60 ° C. or higher and 110 ° C. or lower, and further preferably 70 ° C. or higher and 100 ° C. or lower. The melting point of the epoxy resin (b1) can be measured by the ring-and-ball method defined by JIS K 7231.
 エポキシ樹脂(b1)の150℃における溶融粘度は、0.01Pa・s以上20Pa・s以下であることが好ましい。この場合、封止用組成物の成形時に封止用組成物を流動しやすくして、未充填を生じにくくできる。この溶融粘度は、1.0Pa・s以下であればより好ましく、0.5Pa・s以下であれば更に好ましい。なお、溶融粘度は、ICI粘度計により測定される。 The melt viscosity of the epoxy resin (b1) at 150 ° C. is preferably 0.01 Pa · s or more and 20 Pa · s or less. In this case, it is possible to facilitate the flow of the sealing composition during molding of the sealing composition and to prevent unfilling. The melt viscosity is more preferably 1.0 Pa · s or less, and even more preferably 0.5 Pa · s or less. The melt viscosity is measured by an ICI viscometer.
 エポキシ樹脂(b1)の重量平均分子量は、200以上5000以下であることが好ましい。この重量平均分子量は、250以上2000以下であればより好ましく、300以上1000以下であれば更に好ましい。この重量平均分子量は、溶媒としてテトラヒドロフラン(THF)を用いたゲルパーミエーションクロマトグラフィで測定し、ポリスチレンで換算した値である。 The weight average molecular weight of the epoxy resin (b1) is preferably 200 or more and 5000 or less. The weight average molecular weight is more preferably 250 or more and 2000 or less, and further preferably 300 or more and 1000 or less. This weight average molecular weight is a value measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent and converted into polystyrene.
 エポキシ樹脂(b1)は、より具体的には、三菱ケミカル株式会社製の結晶性を有するビフェニル型エポキシ樹脂である品番YX4000H、三菱ケミカル株式会社製の結晶性を有するビフェニル型エポキシ樹脂である品番YL6121H、日本化薬株式会社製の品番NC3000、及び株式会社プリンテック製の品番VG3101L等からなる群から選択される少なくとも一種の成分を含有できる。 More specifically, the epoxy resin (b1) is a product number YX4000H, which is a crystalline biphenyl type epoxy resin manufactured by Mitsubishi Chemical Co., Ltd., and a product number YL6121H, which is a crystalline biphenyl type epoxy resin manufactured by Mitsubishi Chemical Co., Ltd. , Nippon Kayaku Co., Ltd., product number NC3000, and Printec Co., Ltd., product number VG3101L, etc., can contain at least one component selected from the group.
 エポキシ樹脂(A)全体に対するエポキシ樹脂(b1)の百分比は、20質量%以上80質量%以下であることが好ましい。 The percentage of the epoxy resin (b1) to the entire epoxy resin (A) is preferably 20% by mass or more and 80% by mass or less.
 封止用組成物は、硬化剤(B)を含有する。硬化剤(B)は、エポキシ樹脂(A)と反応することでエポキシ樹脂(A)を硬化させる。硬化剤(B)は、35℃以下のいかなる温度においても固体であることが好ましい。この場合、硬化剤(B1)は、封止用組成物を固体状に保ちやすく、そのため封止用組成物を圧縮成形法で成形しやすくできる。 The sealing composition contains a curing agent (B). The curing agent (B) cures the epoxy resin (A) by reacting with the epoxy resin (A). The curing agent (B) is preferably solid at any temperature of 35 ° C. or lower. In this case, the curing agent (B1) can easily keep the sealing composition in a solid state, and thus can easily mold the sealing composition by a compression molding method.
 硬化剤(B)は、例えばフェノール化合物、酸無水物及びイミダゾール化合物からなる群から選択される少なくとも一種の成分を含有する。なお、硬化剤(B)が含みうる成分は前記のみには制限されない。 The curing agent (B) contains at least one component selected from the group consisting of, for example, a phenol compound, an acid anhydride and an imidazole compound. The components that the curing agent (B) can contain are not limited to the above.
 硬化剤(B)がフェノール化合物を含有する場合、フェノール化合物は、例えば1分子内に2個以上のフェノール性水酸基を有するモノマー、オリゴマー及びポリマーからなる群から選択される少なくとも一種の成分を含有する。例えばフェノール化合物は、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビフェニル型ノボラック樹脂、トリフェニルメタン型フェノール樹脂、ナフトールノボラック樹脂、フェノールアラルキル樹脂、及びビフェニルアラルキル樹脂からなる群から選択される少なくとも一種の成分を含有できる。なお、フェノール化合物が含有しうる成分は、前記には限定されない。 When the curing agent (B) contains a phenol compound, the phenol compound contains, for example, at least one component selected from the group consisting of monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule. .. For example, the phenolic compound contains at least one component selected from the group consisting of phenol novolac resin, cresol novolac resin, biphenyl novolac resin, triphenylmethane type phenol resin, naphthol novolac resin, phenol aralkyl resin, and biphenyl aralkyl resin. it can. The components that can be contained in the phenol compound are not limited to the above.
 硬化剤(B)が酸無水物を含有する場合、酸無水物は、例えば無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、無水ベンゾフェノンテトラカルボン酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸及びポリアゼライン酸無水物からなる群から選択される少なくとも一種の成分を含有できる。 When the curing agent (B) contains an acid anhydride, the acid anhydride is, for example, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, benzophenone tetracarboxylic anhydride, hexahydrophthalic anhydride, tetrahydro. It can contain at least one component selected from the group consisting of phthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride and polyazelineic anhydride.
 硬化剤(B)がイミダゾール化合物を含有する場合、イミダゾール化合物は、例えば2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、及び2-フェニル-4,5-ジヒドロキシメチルイミダゾールからなる群から選択される少なくとも一種の成分を含有する。なお、イミダゾール化合物は、公知の通り、硬化剤(B)の成分となることもできるが、硬化促進剤の成分となることもできる。封止用組成物は、イミダゾール化合物を含む硬化剤(B)を含有する場合、イミダゾール化合物を含まない硬化促進剤を更に含有してもよく、硬化促進剤を含有しなくてもよい。 When the curing agent (B) contains an imidazole compound, the imidazole compound is selected from the group consisting of, for example, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 2-phenyl-4,5-dihydroxymethylimidazole. Contains at least one ingredient. As is known, the imidazole compound can be a component of the curing agent (B), but can also be a component of the curing accelerator. When the sealing composition contains a curing agent (B) containing an imidazole compound, it may further contain a curing accelerator containing no imidazole compound, or may not contain a curing accelerator.
 エポキシ樹脂(A)のエポキシ基1当量に対する硬化剤(B)の合計量は、例えば0.5当量以上1.5当量以下である。 The total amount of the curing agent (B) with respect to 1 equivalent of the epoxy group of the epoxy resin (A) is, for example, 0.5 equivalent or more and 1.5 equivalent or less.
 封止用組成物は、両末端酸無水物変性ポリシロキサン(c1)とポリアルキレングリコール(c2)とを含む重合性成分が重合した共重合体(C)を含有する。共重合体(C)は、ポリシロキサン(c1)由来の構成単位とポリアルキレングリコール(c2)由来の構成単位とを有する。 The sealing composition contains a copolymer (C) obtained by polymerizing a polymerizable component containing both terminal acid anhydride-modified polysiloxane (c1) and polyalkylene glycol (c2). The copolymer (C) has a structural unit derived from polysiloxane (c1) and a structural unit derived from polyalkylene glycol (c2).
 共重合体(C)全体に対する、ポリシロキサン(c1)由来の構造単位の百分比は、20質量%以上90質量%以下であることが好ましい。 The percentage of the structural unit derived from polysiloxane (c1) with respect to the entire copolymer (C) is preferably 20% by mass or more and 90% by mass or less.
 共重合体(C)は、重合性成分を反応させることで、合成できる。重合性成分は、ポリシロキサン(c1)及びポリアルキレングリコール(c2)のみを含んでもよく、ポリシロキサン(c1)及びポリアルキレングリコール(c2)に加えて、水酸基と酸無水物基とのうち少なくとも一方と反応する共重合成分(c3)を更に含んでもよい。 The copolymer (C) can be synthesized by reacting a polymerizable component. The polymerizable component may contain only polysiloxane (c1) and polyalkylene glycol (c2), and in addition to polysiloxane (c1) and polyalkylene glycol (c2), at least one of a hydroxyl group and an acid anhydride group. It may further contain a copolymerization component (c3) that reacts with.
 重合性成分の合計に対して、ポリシロキサン(c1)の百分比は20質量%以上90質量%以下であることが好ましい。この百分比が20質量%以上であると、硬化物が特に低弾性率化しやすい。また、この百分比が90質量%以下であると、封止用組成物中で共重合体(C)を良好に分散させやすい。この百分比は30質量%以上がより好ましい。また、この百分比は、80質量%以下がより好ましく、70質量%以下が更に好ましい。 The percentage of polysiloxane (c1) is preferably 20% by mass or more and 90% by mass or less with respect to the total of the polymerizable components. When this percentage is 20% by mass or more, the cured product tends to have a particularly low elastic modulus. Further, when the percentage is 90% by mass or less, the copolymer (C) can be easily dispersed in the sealing composition. This percentage is more preferably 30% by mass or more. Further, the percentage is more preferably 80% by mass or less, and further preferably 70% by mass or less.
 共重合体(C)は、ポリシロキサン(c1)とポリアルキレングリコール(c2)とが反応することで生成するカルボキシル基を有する。このため、共重合体(C)は、エポキシ樹脂(A)への分散性を有し、かつ硬化物からの共重合体(C)のブリードアウトが抑制される。また、上述のとおり、共重合体(C)とエポキシ樹脂(A)とが反応することが、硬化物のポリイミド樹脂前駆体溶液との濡れ性が高まる理由の一つであると考えられる。 The copolymer (C) has a carboxyl group formed by the reaction of polysiloxane (c1) and polyalkylene glycol (c2). Therefore, the copolymer (C) has dispersibility in the epoxy resin (A), and the bleed-out of the copolymer (C) from the cured product is suppressed. Further, as described above, the reaction between the copolymer (C) and the epoxy resin (A) is considered to be one of the reasons why the wettability of the cured product with the polyimide resin precursor solution is enhanced.
 ポリシロキサン(c1)は、例えば下記式(2)に示す構造を有する化合物を含有する。 Polysiloxane (c1) contains, for example, a compound having a structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(2)中、nは5~100の数である。Xはカルボン酸無水物基である。カルボン酸無水物基は、無水マレイン酸基、無水フタル酸基、又は無水コハク酸基などの環状の基であってもよい。R1は各々独立に、水素原子、炭素数1~5のアルキル基又はフェニル基である。R2は各々独立に、単結合、炭素数1~10の2価の脂肪族又は芳香族炭化水素基及び炭素数1~10の2価の炭化水素エーテル基から選ばれる基である。R1は、好ましくはプロピル基、エチル基およびメチル基のいずれかであり、より好ましくはエチル基又はメチル基であり、最も好ましくはメチル基である。 In formula (2), n is a number from 5 to 100. X is a carboxylic acid anhydride group. The carboxylic acid anhydride group may be a cyclic group such as a maleic anhydride group, a phthalic anhydride group, or a succinic anhydride group. R 1 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group. R 2 is a group independently selected from a single bond, a divalent aliphatic or aromatic hydrocarbon group having 1 to 10 carbon atoms, and a divalent hydrocarbon ether group having 1 to 10 carbon atoms. R 1 is preferably any of a propyl group, an ethyl group and a methyl group, more preferably an ethyl group or a methyl group, and most preferably a methyl group.
 ポリシロキサン(c1)の重量平均分子量は、500以上が好ましく、800以上がより好ましく、1000以上が更に好ましい。またこの重量平均分子量は、8000以下が好ましく、5000以下がより好ましく、4000以下が更に好ましく、3000以下が特に好ましい。なお、重量平均分子量は、溶媒としてテトラヒドロフラン(THF)を用いたゲルパーミエーションクロマトグラフィで測定し、ポリメタクリル酸メチルで換算した値である。 The weight average molecular weight of the polysiloxane (c1) is preferably 500 or more, more preferably 800 or more, and even more preferably 1000 or more. The weight average molecular weight is preferably 8000 or less, more preferably 5000 or less, further preferably 4000 or less, and particularly preferably 3000 or less. The weight average molecular weight is a value measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent and converted into polymethyl methacrylate.
 ポリアルキレングリコール(c2)は、例えば下記式(3)で示される化合物を含有する。 The polyalkylene glycol (c2) contains, for example, a compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(3)中、mは3~300の数を表す。R3は各々独立に、直鎖状又は分岐状の炭素数2~10のアルキル基である。R3の炭素数は3又は4であることが好ましい。 In formula (3), m represents a number from 3 to 300. Each of R 3 is a linear or branched alkyl group having 2 to 10 carbon atoms. The carbon number of R 3 is preferably 3 or 4.
 ポリアルキレングリコール(c2)は、ポリテトラメチレングリコールとポリプロピレングリコールとのうち少なくとも一方を含有することが好ましい。 The polyalkylene glycol (c2) preferably contains at least one of polytetramethylene glycol and polypropylene glycol.
 ポリアルキレングリコール(c2)の重量平均分子量は、300以上が好ましく、500以上がより好ましく、1000以上が更に好ましい。またこの重量平均分子量は20000以下が好ましく、10000以下がより好ましく、5000以下が更に好ましく、3000以下が特に好ましい。重量平均分子量は、溶媒としてテトラヒドロフラン(THF)を用いたゲルパーミエーションクロマトグラフィで測定し、ポリメタクリル酸メチルで換算した値である。 The weight average molecular weight of the polyalkylene glycol (c2) is preferably 300 or more, more preferably 500 or more, and even more preferably 1000 or more. The weight average molecular weight is preferably 20000 or less, more preferably 10000 or less, further preferably 5000 or less, and particularly preferably 3000 or less. The weight average molecular weight is a value measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent and converted into polymethylmethacrylate.
 共重合体(C)は、ポリシロキサン(c1)およびポリアルキレングリコール(c2)以外の共重合成分(c3)由来の構成単位を更に有してもよい。共重合成分(c3)は、例えば1価又は2価のカルボン酸無水物、ジオール類、アルコール類及びフェノール類からなる群から選択される少なくとも一種の化合物を含有する。共重合体(C)が共重合成分(c3)由来の構成単位を有する場合、共重合体(C)に対する共重合成分(c3)の百分比は40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が更に好ましく、10質量%以下が特に好ましい。 The copolymer (C) may further have a structural unit derived from the copolymerization component (c3) other than the polysiloxane (c1) and the polyalkylene glycol (c2). The copolymerization component (c3) contains, for example, at least one compound selected from the group consisting of monovalent or divalent carboxylic acid anhydrides, diols, alcohols and phenols. When the copolymer (C) has a structural unit derived from the copolymer component (c3), the percentage of the copolymer component (c3) to the copolymer (C) is preferably 40% by mass or less, more preferably 30% by mass or less. It is preferable, more preferably 20% by mass or less, and particularly preferably 10% by mass or less.
 共重合体(C)は、例えば下記式(4)に示す構造を含む、両末端酸無水物変性ポリシロキサンとポリテトラメチレングリコールとの共重合体(C1)を含有する。 The copolymer (C) contains, for example, a copolymer (C1) of both terminal acid anhydride-modified polysiloxane and polytetramethylene glycol, which contains a structure represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(4)中、nは5~100の数、mは3~300の数、pは5~100の数である。Rは炭素数4又は5の直鎖状又は分岐状のアルキル基である。 In formula (4), n is a number of 5 to 100, m is a number of 3 to 300, and p is a number of 5 to 100. R is a linear or branched alkyl group having 4 or 5 carbon atoms.
 共重合体(C)の重量平均分子量は、5000以上が好ましく、10000以上がより好ましく、15000以上が更に好ましく、20000以上が特に好ましく、30000以上が最も好ましい。この重量平均分子量は、500000以下が好ましく、200000以下がより好ましく、150000以下が更に好ましく、100000以下が特に好ましく、80000以下が最も好ましい。なお、重量平均分子量は、溶媒としてテトラヒドロフラン(THF)を用いたゲルパーミエーションクロマトグラフィで測定し、ポリメタクリル酸メチルで換算した値である。 The weight average molecular weight of the copolymer (C) is preferably 5,000 or more, more preferably 10,000 or more, further preferably 15,000 or more, particularly preferably 20,000 or more, and most preferably 30,000 or more. The weight average molecular weight is preferably 500,000 or less, more preferably 200,000 or less, further preferably 150,000 or less, particularly preferably 100,000 or less, and most preferably 80,000 or less. The weight average molecular weight is a value measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent and converted into polymethyl methacrylate.
 共重合体(C)の官能基含有量は、0.1mmol/g以上3.0mmol/g以下であることが好ましい。官能基含有量は0.2mmol/g以上がより好ましく、0.3mmol/g以上が更に好ましい。また官能基含有量は、3.0mmol/g以下がより好ましく、2.8mmol/g以下が更に好ましく、2.5mmol/g以下が特に好ましい。なお、官能基含有量は、公知の滴定法により求めることができる。 The functional group content of the copolymer (C) is preferably 0.1 mmol / g or more and 3.0 mmol / g or less. The functional group content is more preferably 0.2 mmol / g or more, further preferably 0.3 mmol / g or more. The functional group content is more preferably 3.0 mmol / g or less, further preferably 2.8 mmol / g or less, and particularly preferably 2.5 mmol / g or less. The functional group content can be determined by a known titration method.
 共重合体(C)は、ポリシロキサン(c1)及びポリアルキレングリコール(c2)を含む重合性成分を反応させることで、合成できる。例えば減圧窒素雰囲気下、ポリシロキサン(c1)とポリアルキレングリコール(c2)を、共重合体(C)の組成に応じた比率で混合して加熱することで、共重合体(C)を合成できる。この反応を有機溶媒中で進行させてもよい。反応時の加熱温度は例えば70℃以上220℃以下であり、反応時間は例えば20時間以内である。 The copolymer (C) can be synthesized by reacting a polymerizable component containing polysiloxane (c1) and polyalkylene glycol (c2). For example, the copolymer (C) can be synthesized by mixing and heating the polysiloxane (c1) and the polyalkylene glycol (c2) in a ratio according to the composition of the copolymer (C) under a reduced pressure nitrogen atmosphere. .. This reaction may proceed in an organic solvent. The heating temperature during the reaction is, for example, 70 ° C. or higher and 220 ° C. or lower, and the reaction time is, for example, 20 hours or less.
 封止用組成物全体に対する共重合体(C)の百分比は、0.3質量%以上であることが好ましい。この場合、共重合体(C)により、硬化物の弾性率を特に低めることができる。共重合体(C)は5質量%以下であることも好ましい。この場合、共重合体(C)の影響による封止用組成物の溶融粘度の上昇が生じにくくなり、封止用組成物の成形性が悪化しにくくなる。共重合体(C)の百分比は0.5質量%以上5.0質量%以下であることがより好ましく、1.0質量%以上4.0質量%以下であれば更に好ましい。 The percentage of the copolymer (C) with respect to the entire sealing composition is preferably 0.3% by mass or more. In this case, the copolymer (C) can particularly reduce the elastic modulus of the cured product. The copolymer (C) is also preferably 5% by mass or less. In this case, the melt viscosity of the sealing composition is less likely to increase due to the influence of the copolymer (C), and the moldability of the sealing composition is less likely to deteriorate. The percentage of the copolymer (C) is more preferably 0.5% by mass or more and 5.0% by mass or less, and further preferably 1.0% by mass or more and 4.0% by mass or less.
 封止用組成物は、無機充填材を更に含有してもよい。無機充填材は、例えば溶融シリカ、球状溶融シリカ、及び結晶シリカ等のシリカ;酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、高誘電率性チタン酸バリウム、及び酸化チタン等の高誘電率フィラー;ハードフェライト等の磁性フィラー;水酸化マグネシウム、水酸化アルミニウム、三酸化アンチモン、五酸化アンチモン、グアニジン塩、ホウ酸亜鉛、モリブデン化合物、及びスズ酸亜鉛等の無機系難燃剤;タルク;硫酸バリウム;炭酸カルシウム;並びに雲母粉からなる群から選択される少なくとも一種の材料を含有できる。 The sealing composition may further contain an inorganic filler. Inorganic fillers include, for example, fused silica, spherical fused silica, and silica such as crystalline silica; high dielectric constant fillers such as aluminum oxide, magnesium oxide, boron nitride, aluminum hydroxide, high dielectric constant barium titanate, and titanium oxide; Magnetic fillers such as hard ferrite; Inorganic flame retardants such as magnesium hydroxide, aluminum hydroxide, antimony trioxide, antimony pentoxide, guanidine salts, zinc borate, molybdenum compounds, and zinc stannate; talc; barium sulfate; carbon dioxide It can contain at least one material selected from the group consisting of calcium; as well as mica flour.
 無機充填材は、特に球状溶融シリカを含有することが好ましい。この場合、成形時の封止用組成物の流動性が特に高くなる。また、封止樹脂中の無機充填材の充填性を容易に向上することもできる。 The inorganic filler preferably contains spherical fused silica. In this case, the fluidity of the sealing composition during molding becomes particularly high. In addition, the filling property of the inorganic filler in the sealing resin can be easily improved.
 無機充填材の平均粒径は2μm以上20μm以下であることが好ましい。この場合、成形時の封止用組成物の流動性が特に良好になる。なお、この平均粒径は、レーザー回折・散乱式粒度分布測定装置を用いたレーザー回折・散乱法による粒度分布の測定値に基づく、体積基準の累積中位径(メディアン径d50)である。無機充填材の平均粒径が5μm以上15μm以下であれば更に好ましい。 The average particle size of the inorganic filler is preferably 2 μm or more and 20 μm or less. In this case, the fluidity of the sealing composition during molding becomes particularly good. The average particle size is a volume-based cumulative medium diameter (median diameter d50) based on the measured value of the particle size distribution by the laser diffraction / scattering method using a laser diffraction / scattering type particle size distribution measuring device. It is more preferable that the average particle size of the inorganic filler is 5 μm or more and 15 μm or less.
 封止用組成物全量に対する無機充填材の百分比は50質量%以上93質量%以下であることが好ましい。この場合、成形時の封止用組成物の流動性が特に良好になる。無機充填材の百分比は更に80質量%以上93質量%以下であることが好ましい。 The percentage of the inorganic filler to the total amount of the sealing composition is preferably 50% by mass or more and 93% by mass or less. In this case, the fluidity of the sealing composition during molding becomes particularly good. The percentage of the inorganic filler is more preferably 80% by mass or more and 93% by mass or less.
 封止用組成物は、硬化促進剤を含有してもよい。封止用組成物が硬化促進剤を含有する場合、硬化促進剤は、例えば2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、及び2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール等のイミダゾール類;1,8-ジアザビシクロ[5.4.0]ウンデセン-7、及び1,5-ジアザビシクロ[4.3.0]ノネン-5、5,6-ジブチルアミノ-1,8-ジアザビシクロ[5.4.0]ウンデセン-7等のシクロアミジン類;2-(ジメルアミノメチル)フェノール、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、及びトリス(ジメチルアミノメチル)フェノール等の第3級アミン類;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、トリフェニルホスフィンとパラベンゾキノンの付加反応物、及びフェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、及びテトラブチルホスホニウム・テトラブチルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート;ボレート以外の対アニオンを持つ4級ホスホニウム塩;並びに2-エチル-4-メチルイミダゾール・テトラフェニルボレート、及びN-メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩、からなる群から選択される少なくとも一種の成分を含有することができる。 The sealing composition may contain a curing accelerator. If the encapsulating composition contains a cure accelerator, the cure accelerators are, for example, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, and 2-phenyl-4. -Imidazoles such as hydroxymethyl-5-methylimidazole; 1,8-diazabicyclo [5.4.0] undecene-7, and 1,5-diazabicyclo [4.3.0] nonen-5,5,6- Cycloamidins such as dibutylamino-1,8-diazabicyclo [5.4.0] undecene-7; 2- (dimelaminomethyl) phenol, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, and Tertiary amines such as tris (dimethylaminomethyl) phenol; tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, addition reactants of triphenylphosphine and parabenzoquinone, and Organic phosphines such as phenylphosphine; tetra-substituted phosphonium-tetra-substituted borates such as tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / ethyltriphenylborate, and tetrabutylphosphonium / tetrabutylborate; It contains at least one component selected from the group consisting of a quaternary phosphonium salt; and a tetraphenylborone salt such as 2-ethyl-4-methylimidazole tetraphenylborate and N-methylmorpholin tetraphenylborate. Can be done.
 封止用組成物は、離型剤を含有してもよい。封止用組成物が離型剤を含有する場合、離型剤は例えばカルナバワックス、ステアリン酸、モンタン酸、及びカルボキシル基含有ポリオレフィンからなる群から選択される一種以上の成分を含有することができる。 The sealing composition may contain a release agent. When the encapsulating composition contains a mold release agent, the mold release agent can contain, for example, one or more components selected from the group consisting of carnauba wax, stearic acid, montanic acid, and carboxyl group-containing polyolefins. ..
 封止用組成物は、必要に応じて、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシランといったシランカップリング剤、難燃剤、着色剤、及びシリコーン可とう剤等からなる群から選択される少なくとも一種の成分を含有することもできる。 The encapsulating composition is a group consisting of silane coupling agents such as γ-glycidoxypropyltrimethoxysilane and γ-mercaptopropyltrimethoxysilane, flame retardants, colorants, and silicone flexible agents, if necessary. It can also contain at least one component selected from.
 封止用組成物は、溶剤を含有してもよいが、含有しないことが好ましい。 The sealing composition may contain a solvent, but preferably does not.
 封止用組成物は、例えば上記の原料をミキサー、ブレンダー等で混合してから、ニーダー、加熱ロール等で溶融混練し、これにより得られた混合物を冷却してから粉砕して粉末状にすることで得られる。必要により、粉末状の封止用組成物を打錠することでタブレット状の封止用組成物を得てもよい。 For the sealing composition, for example, the above raw materials are mixed with a mixer, a blender, etc., and then melt-kneaded with a kneader, a heating roll, etc., and the resulting mixture is cooled and then pulverized into a powder. You can get it. If necessary, a tablet-shaped sealing composition may be obtained by locking the powder-shaped sealing composition.
 封止用組成物の調製時には、まず封止用組成物のうち、エポキシ樹脂(A)の少なくとも一部と共重合体(C)とを混合して混合物(マスターバッチ)を調製し、この混合物との残りの原料とを混合してもよい。この場合、封止用組成物中に共重合体(C)を良好に分散させやすい。 At the time of preparing the sealing composition, first, at least a part of the epoxy resin (A) and the copolymer (C) of the sealing composition are mixed to prepare a mixture (master batch), and this mixture is prepared. You may mix with the rest of the raw materials. In this case, the copolymer (C) can be easily dispersed in the sealing composition.
 本実施形態に係る封止用組成物は、半導体装置における封止樹脂を作製するために好適である。封止用組成物は、片面モールド型の半導体装置、特にFO-WLPにおける封止樹脂を作製するために、特に好適である。 The sealing composition according to this embodiment is suitable for producing a sealing resin in a semiconductor device. The encapsulating composition is particularly suitable for producing encapsulating resins in single-sided molded semiconductor devices, especially FO-WLP.
 本実施形態に係る半導体装置9は、半導体チップ1と、半導体チップ1を覆う封止樹脂4とを備える。 The semiconductor device 9 according to the present embodiment includes a semiconductor chip 1 and a sealing resin 4 that covers the semiconductor chip 1.
 封止樹脂4を作製するために、封止用組成物を圧縮成形法(直圧成形法)で成形することが好ましい。この場合、片面モールド型の半導体装置9、特にFO-WLPにおける封止樹脂4を容易に作製できる。なお、圧縮成形法ではなく、低圧トランスファ成形法といった公知の成形法で封止用組成物を成形してもよい。 In order to produce the sealing resin 4, it is preferable to mold the sealing composition by a compression molding method (direct pressure molding method). In this case, the single-sided mold type semiconductor device 9, particularly the sealing resin 4 in FO-WLP, can be easily manufactured. The sealing composition may be molded by a known molding method such as a low-pressure transfer molding method instead of the compression molding method.
 封止用組成物を成形する際の加熱温度は、例えば120℃以上180℃以下である。この温度は、特に150℃以下であることが好ましい。この場合、封止樹脂4の寸法変化量がより低減することで、反りの発生が更に抑制される。この温度が130℃以上150℃以下であることも好ましい。本実施形態では、このような温度条件において、封止用組成物から封止樹脂4を作製できる。 The heating temperature when molding the sealing composition is, for example, 120 ° C. or higher and 180 ° C. or lower. This temperature is particularly preferably 150 ° C. or lower. In this case, the amount of dimensional change of the sealing resin 4 is further reduced, so that the occurrence of warpage is further suppressed. It is also preferable that this temperature is 130 ° C. or higher and 150 ° C. or lower. In the present embodiment, the sealing resin 4 can be produced from the sealing composition under such temperature conditions.
 封止樹脂4の厚みは、1.2mm以下であることが好ましい。この場合、半導体装置9の反りが特に抑制される。この封止樹脂4の厚みが0.2mm以上1.2mm以下であれば更に好ましい。 The thickness of the sealing resin 4 is preferably 1.2 mm or less. In this case, the warp of the semiconductor device 9 is particularly suppressed. It is more preferable that the thickness of the sealing resin 4 is 0.2 mm or more and 1.2 mm or less.
 半導体装置9であるFO-WLPの、より具体的な例及びその製造方法について説明する。 A more specific example of FO-WLP, which is a semiconductor device 9, and a manufacturing method thereof will be described.
 半導体装置9の製造方法の具体例である第1の例、第2の例、及び第3の例について説明する。 The first example, the second example, and the third example, which are specific examples of the manufacturing method of the semiconductor device 9, will be described.
 第1の例及び第2の例では、ダイ-ファースト(チップファースト)と呼ばれる工法で、半導体装置9を作製する。 In the first example and the second example, the semiconductor device 9 is manufactured by a method called die-first (chip first).
 第1の例では、回路形成されたウエハをダイシングすることで、複数の半導体チップ1(ダイ)を作製する。図1Aに示すように、複数の半導体チップ1を、無機質基材からなるキャリア2の上に、接着層3を介して載せる。接着層3は、例えば仮止め用の両面粘着テープから作製される。これにより、キャリア2に複数の半導体チップ1を支持させる。複数の半導体チップ1は、隣合う半導体チップ1の間に隙間があくように、キャリア2の上に並べられる。 In the first example, a plurality of semiconductor chips 1 (dies) are manufactured by dicing a wafer on which a circuit is formed. As shown in FIG. 1A, a plurality of semiconductor chips 1 are placed on a carrier 2 made of an inorganic base material via an adhesive layer 3. The adhesive layer 3 is made of, for example, a double-sided adhesive tape for temporary fixing. As a result, the carrier 2 is made to support the plurality of semiconductor chips 1. The plurality of semiconductor chips 1 are arranged on the carrier 2 so that there is a gap between the adjacent semiconductor chips 1.
 続いて、図1Bに示すように、キャリア2の上に封止樹脂4を、この封止樹脂4が半導体チップ1を覆うように作製する。例えばキャリア2の上に粉末状の封止用組成物を半導体チップ1が封止用組成物に埋まるように載せ、その状態で金型内で封止用組成物を圧縮成形法(直圧成形法)で成形する。これにより封止用組成物を硬化させて、封止樹脂4を作製できる。これにより、半導体チップ1及び封止樹脂4を備える中間製品5が作製され、この中間製品5が接着層3を介してキャリア2の上に載せられている。 Subsequently, as shown in FIG. 1B, a sealing resin 4 is produced on the carrier 2 so that the sealing resin 4 covers the semiconductor chip 1. For example, a powdery sealing composition is placed on a carrier 2 so that the semiconductor chip 1 is embedded in the sealing composition, and in that state, the sealing composition is placed in a mold by a compression molding method (direct pressure molding). Mold by method). Thereby, the sealing composition can be cured to produce the sealing resin 4. As a result, an intermediate product 5 including the semiconductor chip 1 and the sealing resin 4 is produced, and the intermediate product 5 is placed on the carrier 2 via the adhesive layer 3.
 図1Cに示すように、中間製品5から接着層3を剥離する。続いて、図1Dに示すように、中間製品5における接着層3に接していた面6(以下、配線面6という)の上に、再配線層7を設ける。再配線層7は、例えばポリイミドから作製される絶縁層と、銅などの金属から作製される導体とを備える。絶縁層は、例えば配線面6にポリイミド前駆体溶液を塗布してから硬化させ、更に必要に応じてフォトリソグラフィ法などによりパターニングすることで、作製される。続いて、再配線層7の上に、再配線層7における導体に電気的に接続するようにバンプ8を設ける。バンプ8は、例えばハンダから作製される。続いて、中間製品5を切断することで、図1Eに示すように、半導体チップ1、半導体チップ1を覆う封止樹脂4、再配線層7及びバンプ8を備える複数の半導体装置9が得られる。なお、バンプ8は、中間製品5を切断してから設けてもよい。 As shown in FIG. 1C, the adhesive layer 3 is peeled off from the intermediate product 5. Subsequently, as shown in FIG. 1D, the rewiring layer 7 is provided on the surface 6 (hereinafter referred to as the wiring surface 6) that was in contact with the adhesive layer 3 in the intermediate product 5. The rewiring layer 7 includes, for example, an insulating layer made of polyimide and a conductor made of a metal such as copper. The insulating layer is produced, for example, by applying a polyimide precursor solution to the wiring surface 6, curing it, and further patterning it by a photolithography method or the like, if necessary. Subsequently, a bump 8 is provided on the rewiring layer 7 so as to be electrically connected to the conductor in the rewiring layer 7. The bump 8 is made of, for example, solder. Subsequently, by cutting the intermediate product 5, as shown in FIG. 1E, a plurality of semiconductor devices 9 including the semiconductor chip 1, the sealing resin 4 covering the semiconductor chip 1, the rewiring layer 7, and the bump 8 can be obtained. .. The bump 8 may be provided after cutting the intermediate product 5.
 第2の例では、図2Aに示すように、第1の例と同様の複数の半導体チップ1を、無機質基材からなるキャリア2の上に、接着層3を介して載せる。これにより、キャリア2に複数の半導体チップ1を支持させる。複数の半導体チップ1は、隣合う半導体チップ1の間に隙間があくように、キャリア2の上に並べられる。各半導体チップ1における、キャリア2とは反対側を向く面の上には、複数の導体製のピラー10を設ける。 In the second example, as shown in FIG. 2A, a plurality of semiconductor chips 1 similar to those in the first example are mounted on the carrier 2 made of an inorganic base material via the adhesive layer 3. As a result, the carrier 2 is made to support the plurality of semiconductor chips 1. The plurality of semiconductor chips 1 are arranged on the carrier 2 so that there is a gap between the adjacent semiconductor chips 1. A plurality of conductor pillars 10 are provided on the surface of each semiconductor chip 1 facing the side opposite to the carrier 2.
 続いて、図2Bに示すように、キャリア2の上に封止樹脂4を、この封止樹脂4で半導体チップ1及びピラー10を覆うように作製する。例えばキャリア2の上に粉末状の封止用組成物を半導体チップ1及びピラー10が封止用組成物に埋まるように載せ、その状態で金型内で封止用組成物を圧縮成形法で成形する。これにより封止用組成物を硬化させて、封止樹脂4を作製できる。これにより、半導体チップ1、ピラー10及び封止樹脂4を備える中間製品5が作製され、この中間製品5が接着層3を介してキャリア2の上に載せられている。 Subsequently, as shown in FIG. 2B, a sealing resin 4 is produced on the carrier 2 so as to cover the semiconductor chip 1 and the pillar 10 with the sealing resin 4. For example, a powdery encapsulating composition is placed on the carrier 2 so that the semiconductor chip 1 and the pillar 10 are embedded in the encapsulating composition, and in that state, the encapsulating composition is placed in a mold by a compression molding method. Mold. Thereby, the sealing composition can be cured to produce the sealing resin 4. As a result, an intermediate product 5 including the semiconductor chip 1, the pillar 10, and the sealing resin 4 is manufactured, and the intermediate product 5 is placed on the carrier 2 via the adhesive layer 3.
 この中間製品5における封止樹脂4の、キャリア2とは反対側を向く面を研磨する。図2Cに示すように、研磨後の封止樹脂4は、研磨により新たに形成されたキャリア2とは反対側を向く面6(以下、配線面6という)を有し、配線面6でピラー10が露出している。続いて、図2Dに示すように、中間製品5における配線面6の上に、再配線層7を設ける。続いて、図2Eに示すように、中間製品5から接着層3を剥離する。続いて、再配線層7の上に、再配線層7における導体に電気的に接続するようにバンプ8を設ける。続いて、中間製品5を切断することで、図2Fに示すように、半導体チップ1、半導体チップ1を覆う封止樹脂4、再配線層7及びバンプ8を備える複数の半導体装置9が得られる。なお、バンプ8は、中間製品5を切断してから設けてもよい。 The surface of the sealing resin 4 in the intermediate product 5 facing the opposite side to the carrier 2 is polished. As shown in FIG. 2C, the polishing sealing resin 4 has a surface 6 (hereinafter referred to as a wiring surface 6) facing the side opposite to the carrier 2 newly formed by polishing, and the pillar on the wiring surface 6. 10 is exposed. Subsequently, as shown in FIG. 2D, the rewiring layer 7 is provided on the wiring surface 6 of the intermediate product 5. Subsequently, as shown in FIG. 2E, the adhesive layer 3 is peeled from the intermediate product 5. Subsequently, a bump 8 is provided on the rewiring layer 7 so as to be electrically connected to the conductor in the rewiring layer 7. Subsequently, by cutting the intermediate product 5, as shown in FIG. 2F, a plurality of semiconductor devices 9 including the semiconductor chip 1, the sealing resin 4 covering the semiconductor chip 1, the rewiring layer 7, and the bump 8 can be obtained. .. The bump 8 may be provided after cutting the intermediate product 5.
 第3の例では、ダイ-ラスト(チップ-ラスト)と呼ばれる工法で、半導体装置9を作成する。第3の例では、図3Aに示すように、無機質基材からなるキャリア2の上に接着層3を設け、この接着層3の上に、再配線層7を作製する。再配線層7は、例えばポリイミドから作製される絶縁層と、銅などの金属から作製される導体とを備える。続いて、図3Bに示すように、第1の例と同様の複数の半導体チップ1を、無機質基材からなるキャリア2の上に、接着層3及び再配線層7を介して載せる。半導体チップ1は、バンプ11を介して、再配線層7の導体に電気的に接続される。これにより、キャリア2に複数の半導体チップ1を支持させる。複数の半導体チップ1は、隣合う半導体チップ1の間に隙間があくように、再配線層7の上に並べられる。 In the third example, the semiconductor device 9 is created by a method called die-last (chip-last). In the third example, as shown in FIG. 3A, the adhesive layer 3 is provided on the carrier 2 made of an inorganic base material, and the rewiring layer 7 is produced on the adhesive layer 3. The rewiring layer 7 includes, for example, an insulating layer made of polyimide and a conductor made of a metal such as copper. Subsequently, as shown in FIG. 3B, a plurality of semiconductor chips 1 similar to those in the first example are placed on the carrier 2 made of an inorganic base material via the adhesive layer 3 and the rewiring layer 7. The semiconductor chip 1 is electrically connected to the conductor of the rewiring layer 7 via the bump 11. As a result, the carrier 2 is made to support the plurality of semiconductor chips 1. The plurality of semiconductor chips 1 are arranged on the rewiring layer 7 so that there is a gap between the adjacent semiconductor chips 1.
 続いて、図3Cに示すように、キャリア2の上(再配線層7の上)に封止樹脂4を、この封止樹脂4で半導体チップ1を覆うように作製する。例えば再配線層7の上に粉末状の封止用組成物を半導体チップ1が組成物に埋まるように載せ、その状態で金型内で封止用組成物を圧縮成形法(直圧成形法)で成形する。これにより封止用組成物を硬化させて、封止樹脂4を作製できる。これにより、半導体チップ1、再配線層7及び封止樹脂4を備える中間製品5が作製され、この中間製品5が接着層3を介してキャリア2の上に載せられている。続いて、図3Dに示すように、中間製品5から接着層3を剥離する。続いて、再配線層7の上に、再配線層7における導体に電気的に接続するようにバンプ8を設ける。続いて、中間製品5を切断することで、図3Eに示すように、半導体チップ1、半導体チップ1を覆う封止樹脂4、再配線層7及びバンプ8を備える複数の半導体装置9が得られる。なお、バンプ8は、中間製品5を切断してから設けてもよい。 Subsequently, as shown in FIG. 3C, a sealing resin 4 is produced on the carrier 2 (above the rewiring layer 7) so as to cover the semiconductor chip 1 with the sealing resin 4. For example, a powdery sealing composition is placed on the rewiring layer 7 so that the semiconductor chip 1 is embedded in the composition, and in that state, the sealing composition is placed in a mold by a compression molding method (direct pressure molding method). ). Thereby, the sealing composition can be cured to produce the sealing resin 4. As a result, an intermediate product 5 including the semiconductor chip 1, the rewiring layer 7, and the sealing resin 4 is manufactured, and the intermediate product 5 is placed on the carrier 2 via the adhesive layer 3. Subsequently, as shown in FIG. 3D, the adhesive layer 3 is peeled from the intermediate product 5. Subsequently, a bump 8 is provided on the rewiring layer 7 so as to be electrically connected to the conductor in the rewiring layer 7. Subsequently, by cutting the intermediate product 5, as shown in FIG. 3E, a plurality of semiconductor devices 9 including the semiconductor chip 1, the sealing resin 4 covering the semiconductor chip 1, the rewiring layer 7, and the bump 8 can be obtained. .. The bump 8 may be provided after cutting the intermediate product 5.
 上記のように半導体装置9を製造すると、無機質基材からなるキャリア2の上で封止用組成物を成形して封止樹脂4を成形して中間製品5を作製しても、中間製品5に、封止樹脂4と無機質基材からなるキャリア2との間の線膨張係数の差に起因する反りは生じにくい。このため、中間製品5の取り扱い性は良好である。また、封止樹脂4は、ポリイミド前駆体溶液との良好な濡れ性を有しうるため、ポリイミド製の絶縁層を有する再配線層7を、封止樹脂4に重ねて作製しやすい。このため、本実施形態に係る封止用組成物は、半導体装置9、特にFO-WLPの封止樹脂4を作製するために適する。 When the semiconductor device 9 is manufactured as described above, even if the sealing composition is molded on the carrier 2 made of an inorganic base material and the sealing resin 4 is molded to produce the intermediate product 5, the intermediate product 5 is produced. In addition, warpage due to the difference in linear expansion coefficient between the sealing resin 4 and the carrier 2 made of an inorganic base material is unlikely to occur. Therefore, the handleability of the intermediate product 5 is good. Further, since the sealing resin 4 can have good wettability with the polyimide precursor solution, the rewiring layer 7 having the insulating layer made of polyimide can be easily produced by superimposing it on the sealing resin 4. Therefore, the sealing composition according to the present embodiment is suitable for producing a semiconductor device 9, particularly a sealing resin 4 for FO-WLP.
 なお、封止用組成物から作製される封止樹脂4を備える半導体装置9の構成及び製造方法は、上記に限られない。例えば半導体装置9は、リードフレームと、リードフレームに搭載された半導体チップと、半導体チップの全体を覆う封止樹脂とを備え、封止樹脂が本実施形態に係る組成物の硬化物であってもよい。 The configuration and manufacturing method of the semiconductor device 9 including the sealing resin 4 produced from the sealing composition are not limited to the above. For example, the semiconductor device 9 includes a lead frame, a semiconductor chip mounted on the lead frame, and a sealing resin that covers the entire semiconductor chip, and the sealing resin is a cured product of the composition according to the present embodiment. May be good.
 1.封止用組成物の調製
 表1及び表2に示す成分を配合し、ミキサーにより均一に混合して混合物を得た。なお、両末端変性シリコーンを用いる場合は、両末端変性シリコーンとエポキシ樹脂の一部とを100℃で混合してマスターバッチ化してから、残りの成分を混合して混合物を得た。この混合物をニーダーで約100℃で溶融混練してから冷却し、更に粉砕することで、粉末状の封止用組成物を得た。
1. 1. Preparation of Encapsulation Composition The components shown in Tables 1 and 2 were blended and mixed uniformly with a mixer to obtain a mixture. When both end-modified silicones were used, both end-modified silicones and a part of the epoxy resin were mixed at 100 ° C. to form a masterbatch, and then the remaining components were mixed to obtain a mixture. This mixture was melt-kneaded with a kneader at about 100 ° C., cooled, and further pulverized to obtain a powdery sealing composition.
 表1及び表2に示す成分の詳細は次のとおりである。
-HP6000-L:式(1)に示す構造を有するナフチレンエーテル骨格を有するエポキシ樹脂、エポキシ当量218g/eq、150℃でのICI粘度0.05Pa・s、DIC製、品番HP6000-L。
-YX8800UH:ジヒドロアントラセン型エポキシ樹脂、三菱ケミカル株式会社製、品番YX8800UH。
-WHR-991S:N-フェニルフェノールフタレインジグリシジルエーテル、日本化薬株式会社製、品番WHR-991S。
-YL6121H:ビフェニル型エポキシ樹脂、三菱ケミカル株式会社製、品番YL6121H。
-YX4000H:ビフェニル型エポキシ樹脂、三菱ケミカル株式会社製、品番YX4000H。
-NC3000:日本化薬株式会社製、品番NC3000。
-VG3101L:株式会社プリンテック製、品番VG3101L。
-MEH7500-3S:トリフェノールメタン型フェノール樹脂、明和化成株式会社製、品番MEH7500-3S。
-2PHZ:2-フェニル-4,5-ジヒドロキシメチルイミダゾール、四国化成株式会社製、品番2PHZ。
-両末端酸無水物変性ポリシロキサンとポリテトラメチレングリコールとの共重合体:式(4)に示す構造を含む共重合体、官能基当量1000g/mol。
-X22-163C:両末端エポキシ変性シリコーン、信越化学工業株式会社製、品番X22-163C。
-AY42-119:エポキシ変性シリコーンレジン、東レ・ダウコーニング株式会社製、品番AY42-119。
-MA600:カーボンブラック、三菱ケミカル株式会社製、品番MA600。
-MBN:大日化学工業株式会社製、品番WAX-MBN。
-FB5FDC:球状溶融シリカ、電気化学工業製、品番FB5FDC。
-KBM-573:N-フェニル-3-アミノプロピルトリメトキシシラン、信越化学株式会社製、品番KBM-573。
The details of the components shown in Tables 1 and 2 are as follows.
-HP6000-L: Epoxy resin having a naphthylene ether skeleton having a structure represented by the formula (1), epoxy equivalent 218 g / eq, ICI viscosity 0.05 Pa · s at 150 ° C., manufactured by DIC, product number HP6000-L.
-YX8800UH: Dihydroanthracene type epoxy resin, manufactured by Mitsubishi Chemical Corporation, product number YX8800UH.
-WHR-991S: N-Phenylphenol Phenyldiglycidyl ether, manufactured by Nippon Kayaku Co., Ltd., product number WHR-991S.
-YL6121H: Biphenyl type epoxy resin, manufactured by Mitsubishi Chemical Corporation, product number YL6121H.
-YX4000H: Biphenyl type epoxy resin, manufactured by Mitsubishi Chemical Corporation, product number YX4000H.
-NC3000: Made by Nippon Kayaku Co., Ltd., product number NC3000.
-VG3101L: Made by Printec Co., Ltd., product number VG3101L.
-MEH7500-3S: Triphenol methane type phenol resin, manufactured by Meiwa Kasei Co., Ltd., product number MEH7500-3S.
-2PHZ: 2-Phenyl-4,5-dihydroxymethylimidazole, manufactured by Shikoku Chemicals Corporation, product number 2PHZ.
-Copolymer of both end acid anhydride-modified polysiloxane and polytetramethylene glycol: Copolymer containing the structure represented by the formula (4), functional group equivalent 1000 g / mol.
-X22-163C: Epoxy-modified silicone at both ends, manufactured by Shin-Etsu Chemical Co., Ltd., product number X22-163C.
-AY42-119: Epoxy-modified silicone resin, manufactured by Toray Dow Corning Co., Ltd., product number AY42-119.
-MA600: Carbon black, manufactured by Mitsubishi Chemical Corporation, product number MA600.
-MBN: Made by Dainichi Chemical Industry Co., Ltd., product number WAX-MBN.
-FB5FDC: Spherical fused silica, manufactured by Denki Kagaku Kogyo, product number FB5FDC.
-KBM-573: N-Phenyl-3-aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., product number KBM-573.
 2.評価
 封止用組成物を、下記の方法で評価した。
2. 2. Evaluation The sealing composition was evaluated by the following method.
 (1)線膨張係数の評価
 封止用組成物を、神藤金属工業所製のトランスファ成型機ETA-30Dを用いて、トランスファ成形法で、成形圧力約6.9MPa(70kgf/cm2)、金型温度175℃、硬化時間150秒の条件で成形した。得られた成形体を、175℃で4時間加熱することで後硬化させた。これにより直径20mm、厚み5mmの試験片を得た。
(1) Evaluation of coefficient of linear expansion The sealing composition was subjected to a transfer molding method using a transfer molding machine ETA-30D manufactured by Shinto Metal Industry Co., Ltd., and the molding pressure was about 6.9 MPa (70 kgf / cm 2 ), gold Molding was performed under the conditions of a mold temperature of 175 ° C. and a curing time of 150 seconds. The obtained molded product was post-cured by heating at 175 ° C. for 4 hours. As a result, a test piece having a diameter of 20 mm and a thickness of 5 mm was obtained.
 株式会社リガク製の熱機械分析装置(Thermo plus TMA8310)を用いて、試験片を空気雰囲気下で50℃から100℃まで昇温し、この間の評価用サンプルの寸法変化量から、評価用サンプルの線膨張係数を算出した。 Using a thermomechanical analyzer (Thermo plus TMA8310) manufactured by Rigaku Co., Ltd., the temperature of the test piece was raised from 50 ° C to 100 ° C in an air atmosphere, and the amount of dimensional change of the evaluation sample during this period was used to determine the evaluation sample. The coefficient of linear expansion was calculated.
 (2)曲げ弾性率及び曲げ強度の評価
 封止用組成物を、上記(1)の場合と同じ条件で成形して、10mm×85mm×4mmtの寸法の試験片を得た。
(2) Evaluation of flexural modulus and bending strength The sealing composition was molded under the same conditions as in (1) above to obtain a test piece having dimensions of 10 mm × 85 mm × 4 mmt.
 インストロン社製の万能材料試験機(モデル5965型)を用いて、25℃で試験片の3点曲げ試験を行った。その結果から、曲げ弾性率を算出した。また、この3点曲げ試験において試験片が破断した時点での曲げ応力の値を試験片の曲げ強度とした。 A three-point bending test of the test piece was performed at 25 ° C. using a universal material testing machine (model 5965 type) manufactured by Instron. From the result, the flexural modulus was calculated. Further, in this three-point bending test, the value of the bending stress at the time when the test piece was broken was defined as the bending strength of the test piece.
 (3)Stress indexの算出
 上記(1)で算出した線膨張係数と、上記(2)で算出した25℃での曲げ弾性率との積を算出し、得られた値を、簡易的なStress indexとした。この値が小さいほど、試験片に力が加えられても試験片内で応力が緩和されやすい(応力緩和効果が大きい)と判断できる。
(3) Calculation of Stress index The product of the coefficient of linear expansion calculated in (1) above and the flexural modulus at 25 ° C. calculated in (2) above is calculated, and the obtained value is used as a simple stress. It was set as index. It can be judged that the smaller this value is, the more easily the stress is relaxed in the test piece even if a force is applied to the test piece (the stress relaxation effect is large).
 (4)ポリイミド塗布性の評価
 封止用組成物を、上記(1)の場合と同じ条件で成形して、直径60mm、厚み2mmの試験片を得た。この試験片の一面を、株式会社ディスコ製のグラインダー(DAG810 Disco Automatic Grinder)を用いて、ホイール#4000で100μm研削した。続いて、試験片に、MARCH社製のプラズマドライクリーナー(型番PX-250)を用いて酸素プラズマ処理を施した。
(4) Evaluation of Polyimide Coatingability The sealing composition was molded under the same conditions as in (1) above to obtain a test piece having a diameter of 60 mm and a thickness of 2 mm. One side of this test piece was ground 100 μm with wheel # 4000 using a grinder (DAG810 Disco Acoustic Grinder) manufactured by Disco Corporation. Subsequently, the test piece was subjected to oxygen plasma treatment using a plasma dry cleaner (model number PX-250) manufactured by MARCH.
 この試験片にポリイミド前駆体溶液(LTC-9320シリーズ;富士フイルムエレクトロニクスマテリアルズ株式会社製)をスピンコーターにて塗布した結果を、観察した。ポリイミド前駆体溶液を試験片の表面に均一に塗布できた場合を「A」、試験片の表面の1割未満の面積でポリイミド前駆体溶液がはじかれた場合を「B」、試験片の表面の1割以上の面積でポリイミド前駆体溶液がはじかれた場合を「C」と、評価した。 The result of applying a polyimide precursor solution (LCC-9320 series; manufactured by FUJIFILM Electronics Materials Co., Ltd.) to this test piece with a spin coater was observed. "A" is when the polyimide precursor solution can be uniformly applied to the surface of the test piece, "B" is when the polyimide precursor solution is repelled in an area less than 10% of the surface of the test piece, and the surface of the test piece. The case where the polyimide precursor solution was repelled in an area of 10% or more of the above was evaluated as "C".
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 

Claims (6)

  1. 縮合環式炭化水素骨格を有するエポキシ樹脂(a)を含むエポキシ樹脂(A)と、
    硬化剤(B)と、
    両末端酸無水物変性ポリシロキサンとポリアルキレングリコールとを含む重合性成分が重合した共重合体(C)とを含有する、
    封止用組成物。
    An epoxy resin (A) containing an epoxy resin (a) having a fused cyclic hydrocarbon skeleton,
    Hardener (B) and
    It contains a copolymer (C) obtained by polymerizing a polymerizable component containing both terminal acid anhydride-modified polysiloxane and polyalkylene glycol.
    Encapsulating composition.
  2. 前記エポキシ樹脂(a)は、ナフタレン骨格を有するエポキシ樹脂、アントラセン骨格を有するエポキシ樹脂、及びジヒドロ-アントラセン骨格を有するエポキシ樹脂からなる群から選択される少なくとも一種のエポキシ樹脂を含有する、
    請求項1に記載の封止用組成物。
    The epoxy resin (a) contains at least one epoxy resin selected from the group consisting of an epoxy resin having a naphthalene skeleton, an epoxy resin having an anthracene skeleton, and an epoxy resin having a dihydro-anthracene skeleton.
    The sealing composition according to claim 1.
  3. 前記エポキシ樹脂(A)に対する前記エポキシ樹脂(a)の百分比は、20質量%以上である、
    請求項1又は2に記載の封止用組成物。
    The percentage of the epoxy resin (a) to the epoxy resin (A) is 20% by mass or more.
    The sealing composition according to claim 1 or 2.
  4. 前記封止用組成物の硬化物の線膨張係数と曲げ弾性率との積が、150以下である、
    請求項1から3のいずれか一項に記載の封止用組成物。
    The product of the linear expansion coefficient and the flexural modulus of the cured product of the sealing composition is 150 or less.
    The sealing composition according to any one of claims 1 to 3.
  5. 半導体チップと、前記半導体チップを封止する封止樹脂とを備え、前記封止樹脂は請求項1から4のいずれか一項に記載の封止用組成物の硬化物である、
    半導体装置。
    A semiconductor chip and a sealing resin for sealing the semiconductor chip are provided, and the sealing resin is a cured product of the sealing composition according to any one of claims 1 to 4.
    Semiconductor device.
  6. 半導体チップと、前記半導体チップを封止する封止樹脂とを備える半導体装置を製造する方法であり、
    請求項1から4のいずれか一項に記載の封止用組成物から前記封止樹脂を、直圧成型法で作製することを含む、
    半導体装置の製造方法。
    A method for manufacturing a semiconductor device including a semiconductor chip and a sealing resin for sealing the semiconductor chip.
    The sealing resin is prepared from the sealing composition according to any one of claims 1 to 4 by a direct pressure molding method.
    Manufacturing method of semiconductor devices.
PCT/JP2020/022267 2019-06-21 2020-06-05 Composition for sealing, semiconductor device, and method for producing semiconductor device WO2020255749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-115785 2019-06-21
JP2019115785 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020255749A1 true WO2020255749A1 (en) 2020-12-24

Family

ID=74037293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022267 WO2020255749A1 (en) 2019-06-21 2020-06-05 Composition for sealing, semiconductor device, and method for producing semiconductor device

Country Status (2)

Country Link
TW (1) TW202108692A (en)
WO (1) WO2020255749A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230180A (en) * 1991-06-25 1993-09-07 Matsushita Electric Works Ltd Epoxy resin composition for semiconductor sealing
WO2009142065A1 (en) * 2008-05-21 2009-11-26 ナガセケムテックス株式会社 Epoxy resin composition for encapsulating electronic part
JP2011195742A (en) * 2010-03-23 2011-10-06 Sumitomo Bakelite Co Ltd Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package
JP2018168354A (en) * 2017-03-29 2018-11-01 味の素株式会社 Resin composition
WO2018221373A1 (en) * 2017-05-31 2018-12-06 東レ株式会社 Block copolymer, method for producing same, epoxy resin composition, cured product, and semiconductor encapsulating material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230180A (en) * 1991-06-25 1993-09-07 Matsushita Electric Works Ltd Epoxy resin composition for semiconductor sealing
WO2009142065A1 (en) * 2008-05-21 2009-11-26 ナガセケムテックス株式会社 Epoxy resin composition for encapsulating electronic part
JP2011195742A (en) * 2010-03-23 2011-10-06 Sumitomo Bakelite Co Ltd Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package
JP2018168354A (en) * 2017-03-29 2018-11-01 味の素株式会社 Resin composition
WO2018221373A1 (en) * 2017-05-31 2018-12-06 東レ株式会社 Block copolymer, method for producing same, epoxy resin composition, cured product, and semiconductor encapsulating material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAJI MASASHI: "Structures and properties of Epoxy Resins- Structures and properties of Naphtalene-based Epoxy Resins", SOCIETY OF SYNTHETIC TESIN INDUSTRY, 1994, pages 137 - 140, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/networkpolymer1951/44/0/44_137/_pdf-char/ja> *

Also Published As

Publication number Publication date
TW202108692A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
TWI445729B (en) Resin composition kit for system-in-package type semiconductor devices
JP2001288340A (en) Encapsulant for flip-chip type semiconductor device and flip-chip type semiconductor device
WO2010150487A1 (en) Resin composition for sealing semiconductors, and semiconductor device
JP7135278B2 (en) Encapsulating resin composition and method for producing electronic device
KR20180013751A (en) Epoxy resin composition for encapsulating semiconductor device, and semiconductor device
KR20170122120A (en) Epoxy resin composition for semiconductor encapsulation and method for producing semiconductor device
JP7230936B2 (en) Epoxy resin composition for semiconductor encapsulation and method for manufacturing semiconductor device
JP3998564B2 (en) Curable adhesive composition for semiconductor encapsulation and adhesive sheet
JP2021178880A (en) Encapsulating resin composition, wafer level package, panel level package and electronic device
JP2018172545A (en) Solid sealing material for compression molding, semiconductor device, and semiconductor device production method
JP2020107767A (en) Sealing resin composition, hollow package and method for manufacturing the same
JP7337462B2 (en) epoxy resin composition
WO2020137610A1 (en) Hollow package and method for manufacturing same
JP2010024265A (en) Epoxy resin composition and electronic component device using same
JP7155502B2 (en) SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, AND ENCLOSURE RESIN COMPOSITION
WO2020255749A1 (en) Composition for sealing, semiconductor device, and method for producing semiconductor device
JP7396246B2 (en) Resin composition for sealing applications
JP7287348B2 (en) resin composition
JP5572918B2 (en) Epoxy resin composition for sealing and electronic component device using the same
JP2005015561A (en) Epoxy resin molding material for sealing and electronic part apparatus
JP2018104603A (en) Curable resin composition and electronic component device
JP4633249B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPWO2020158851A1 (en) A resin composition for encapsulation, an electronic component device, and a method for manufacturing the electronic component device.
JP4367024B2 (en) Epoxy resin molding material for sealing and electronic component device
JP2021116329A (en) Sealing resin composition, electronic component device, and method for producing electronic component device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP