JP2021116329A - Sealing resin composition, electronic component device, and method for producing electronic component device - Google Patents

Sealing resin composition, electronic component device, and method for producing electronic component device Download PDF

Info

Publication number
JP2021116329A
JP2021116329A JP2020009128A JP2020009128A JP2021116329A JP 2021116329 A JP2021116329 A JP 2021116329A JP 2020009128 A JP2020009128 A JP 2020009128A JP 2020009128 A JP2020009128 A JP 2020009128A JP 2021116329 A JP2021116329 A JP 2021116329A
Authority
JP
Japan
Prior art keywords
resin composition
sealing resin
mass
silicone
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020009128A
Other languages
Japanese (ja)
Inventor
智博 池田
Tomohiro Ikeda
智博 池田
格 山浦
Itaru Yamaura
格 山浦
圭一 春日
Keiichi Kasuga
圭一 春日
貴大 齋藤
Takahiro Saito
貴大 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Materials Co Ltd filed Critical Showa Denko Materials Co Ltd
Priority to JP2020009128A priority Critical patent/JP2021116329A/en
Publication of JP2021116329A publication Critical patent/JP2021116329A/en
Pending legal-status Critical Current

Links

Abstract

To provide a sealing resin composition for a wafer level package that prevents the occurrence of mold warpage in a cured product of it and has excellent RDL wettability.SOLUTION: A sealing resin composition for a wafer level package contains epoxy resin, a curing agent, and silicone with a glass transition temperature of 70°C or lower, the content of the silicone being 30 pts.mass or less with respect to 100 pts.mass of the epoxy resin.SELECTED DRAWING: None

Description

本発明は、封止用樹脂組成物、電子部品装置、及び電子部品装置の製造方法に関する。 The present invention relates to a sealing resin composition, an electronic component device, and a method for manufacturing the electronic component device.

例えば特許文献1には、シリコーン系化合物を含有する封止用エポキシ樹脂成形材料と、当該封止用エポキシ樹脂成形材料を薄型パッケージに適用することが開示されている。 For example, Patent Document 1 discloses that a sealing epoxy resin molding material containing a silicone compound and the sealing epoxy resin molding material are applied to a thin package.

特開2006−241307号公報Japanese Unexamined Patent Publication No. 2006-241307

ウエハレベルパッケージ(Wafer level package,WLP)は、比較的大きな面積を封止用樹脂組成物で封止する技術である。封止用樹脂組成物で封止する面積が大きくなるほど、成形反りが顕著になる傾向があるので、成形反りの発生を抑制できる封止用樹脂組成物が求められている。
また、封止用樹脂組成物で封止したのちに再配線層(Re Distribution Layer,RDL)を形成する場合、封止用樹脂組成物の硬化物上に、RDLを形成する材料(以下「RDL形成材料」ともいう)を塗布する。そのため、封止用樹脂組成物の硬化物は、RDL形成材料に対する濡れ性(以下「RDL濡れ性」ともいう)に優れることが求められる。
Wafer level package (WLP) is a technique for sealing a relatively large area with a sealing resin composition. The larger the area to be sealed with the sealing resin composition, the more remarkable the molding warp tends to be. Therefore, there is a demand for a sealing resin composition capable of suppressing the occurrence of molding warpage.
Further, when a rewiring layer (ReDistribution Layer, RDL) is formed after sealing with a sealing resin composition, a material for forming RDL on a cured product of the sealing resin composition (hereinafter referred to as "RDL"). Also called "forming material") is applied. Therefore, the cured product of the sealing resin composition is required to have excellent wettability with respect to the RDL forming material (hereinafter, also referred to as “RDL wettability”).

本開示の実施形態は、上記状況のもとになされた。
本開示は、硬化物の成形反りの発生を抑制し、且つ、RDL濡れ性に優れるウエハレベルパッケージ用の封止用樹脂組成物、これを用いて封止された電子部品装置、及びこれを用いて封止する電子部品装置の製造方法を提供することを課題とする。
The embodiments of the present disclosure have been made under the above circumstances.
The present disclosure describes a sealing resin composition for a wafer level package that suppresses the occurrence of molding warpage of a cured product and has excellent RDL wettability, an electronic component device sealed using the same, and the use thereof. An object of the present invention is to provide a method for manufacturing an electronic component device to be sealed.

前記課題を解決するための具体的手段には、以下の態様が含まれる。 Specific means for solving the above problems include the following aspects.

<1>
エポキシ樹脂と、
硬化剤と、
ガラス転移温度が70℃以下のシリコーンと、
を含有し、
前記シリコーンの含有量が前記エポキシ樹脂100質量部に対して30質量部以下であるウエハレベルパッケージ用の封止用樹脂組成物。
<2>
前記シリコーンの25℃における粘度が1.0×10−2Pa・s〜1.0×10Pa・sである<1>に記載の封止用樹脂組成物。
<3>
前記硬化剤が活性エステル化合物を含む<1>又は<2>に記載の封止用樹脂組成物。
<4>
支持部材と、
前記支持部材上に配置された素子と、
前記素子を封止している<1>〜<3>のいずれか1つに記載の封止用樹脂組成物の硬化物と、
を備える電子部品装置。
<5>
前記硬化物上に配置された再配線層をさらに備える<4>に記載の電子部品装置。
<6>
複数個の素子をウエハ上に配置する工程と、
前記複数個の素子を<1>〜<3>のいずれか1つに記載の封止用樹脂組成物で一括して封止する工程と、
封止された素子ごとに個片化する工程と、
を含む電子部品装置の製造方法。
<1>
Epoxy resin and
Hardener and
Silicone with a glass transition temperature of 70 ° C or less and
Contains,
A sealing resin composition for a wafer level package in which the silicone content is 30 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
<2>
The sealing resin composition according to <1>, wherein the silicone has a viscosity of 1.0 × 10 -2 Pa · s to 1.0 × 10 5 Pa · s at 25 ° C.
<3>
The sealing resin composition according to <1> or <2>, wherein the curing agent contains an active ester compound.
<4>
Support members and
The element arranged on the support member and
The cured product of the sealing resin composition according to any one of <1> to <3>, which seals the element, and the cured product.
Electronic component device equipped with.
<5>
The electronic component apparatus according to <4>, further comprising a rewiring layer arranged on the cured product.
<6>
The process of arranging multiple elements on the wafer,
A step of collectively sealing the plurality of elements with the sealing resin composition according to any one of <1> to <3>, and a step of collectively sealing the plurality of elements.
The process of individualizing each sealed element and
Manufacturing method of electronic component equipment including.

本開示によれば、硬化物の成形反りの発生を抑制し、且つ、RDL濡れ性に優れるウエハレベルパッケージ用の封止用樹脂組成物、これを用いて封止された電子部品装置、及びこれを用いて封止する電子部品装置の製造方法が提供される。 According to the present disclosure, a sealing resin composition for a wafer level package that suppresses the occurrence of molding warpage of a cured product and has excellent RDL wettability, an electronic component device sealed using the same, and the like. A method for manufacturing an electronic component device to be sealed using the above is provided.

本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本開示において「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
In the present disclosure, the term "process" includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
The numerical range indicated by using "~" in the present disclosure includes the numerical values before and after "~" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, a plurality of types of particles corresponding to each component may be contained. When a plurality of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.

以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 Hereinafter, modes for carrying out the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit this disclosure.

<封止用樹脂組成物>
本開示の一実施形態に係る封止用樹脂組成物は、ウエハレベルパッケージ用の封止用樹脂組成物であり、エポキシ樹脂と、硬化剤と、ガラス転移温度が70℃以下のシリコーン(以下「特定シリコーン」ともいう)と、を含有し、前記特定シリコーンの含有量がエポキシ樹脂100質量部に対して30質量部以下である。
<Resin composition for sealing>
The sealing resin composition according to one embodiment of the present disclosure is a sealing resin composition for a wafer level package, and is an epoxy resin, a curing agent, and a silicone having a glass transition temperature of 70 ° C. or lower (hereinafter, "" (Also referred to as "specific silicone"), and the content of the specific silicone is 30 parts by mass or less with respect to 100 parts by mass of the epoxy resin.

前述のように、ウエハレベルパッケージは、比較的大きな面積を封止用樹脂組成物で封止する技術であり、封止用樹脂組成物で封止する面積が大きくなるほど、成形反りが顕著になる傾向がある。
一方で、成形反りを抑制する目的でシリコーンを添加すると、RDL形成材料に対する封止用樹脂組成物の硬化物の濡れ性(すなわちRDL濡れ性)が低くなることがある。特に、シリコーンとしてガラス転移温度が70℃以下のシリコーン(すなわち特定シリコーン)を用いると、成形反りの抑制効果は高いものの、RDL濡れ性は低くなりやすい。その理由は定かではないが、封止用樹脂組成物が硬化する過程で特定シリコーンが表面に染み出し、硬化物の表面に特定シリコーンが露出した状態となることにより、RDL形成材料がはじかれやすくなるためと推測される。そして、RDL濡れ性が低い封止用樹脂組成物の硬化物上に、再配線層(RDL)を形成するためのRDL形成材料を塗布すると、RDL形成材料がはじかれ、外観不良を起こすことがある。
これに対して、本実施形態の封止用樹脂組成物は、特定シリコーンを含有し、かつ、特定シリコーンの含有量がエポキシ樹脂100質量部に対して30質量部以下である。そのため、封止用樹脂組成物が特定シリコーンを含有していても、硬化する過程で表面への染み出しは起こりにくく、硬化物の成形反りの発生の抑制と優れたRDL濡れ性とが両立できるものと推測される。
As described above, the wafer level package is a technique for sealing a relatively large area with a sealing resin composition, and the larger the area to be sealed with the sealing resin composition, the more remarkable the molding warp becomes. Tend.
On the other hand, when silicone is added for the purpose of suppressing molding warpage, the wettability (that is, RDL wettability) of the cured product of the sealing resin composition with respect to the RDL forming material may be lowered. In particular, when a silicone having a glass transition temperature of 70 ° C. or lower (that is, a specific silicone) is used as the silicone, the effect of suppressing molding warpage is high, but the RDL wettability tends to be low. The reason is not clear, but the specific silicone exudes to the surface in the process of curing the sealing resin composition, and the specific silicone is exposed on the surface of the cured product, so that the RDL forming material is easily repelled. It is presumed that it will be. Then, when the RDL forming material for forming the rewiring layer (RDL) is applied on the cured product of the sealing resin composition having low RDL wettability, the RDL forming material is repelled and the appearance may be deteriorated. be.
On the other hand, the sealing resin composition of the present embodiment contains the specific silicone, and the content of the specific silicone is 30 parts by mass or less with respect to 100 parts by mass of the epoxy resin. Therefore, even if the sealing resin composition contains a specific silicone, it is unlikely that it will seep out to the surface during the curing process, and it is possible to suppress the occurrence of molding warpage of the cured product and to achieve both excellent RDL wettability. It is presumed to be.

ここで、特定シリコーンのガラス転移温度は、示差走査熱量測定(DSC,Differential Scanning Calorimetry)により得られるDSC曲線から求める温度であり、JIS K7121:1987「プラスチックの転移温度測定方法」の「ガラス転移温度の求め方」に記載の「補外ガラス転移開始温度」である。
具体的には、例えば、測定装置としてDSC Q200(TA インスツルメント社)を用い、25℃から300℃までの温度範囲を10℃/minの昇温条件において測定を行う。
以下、本実施形態に係る封止用樹脂組成物に含まれる各成分について説明する。
Here, the glass transition temperature of the specific silicone is a temperature obtained from the DSC curve obtained by differential scanning calorimetry (DSC), and is the "glass transition temperature" of JIS K7121: 1987 "Method for measuring transition temperature of plastics". It is the "external glass transition start temperature" described in "How to obtain".
Specifically, for example, a DSC Q200 (TA Instrument Co., Ltd.) is used as a measuring device, and measurement is performed in a temperature range of 25 ° C. to 300 ° C. under a temperature rising condition of 10 ° C./min.
Hereinafter, each component contained in the sealing resin composition according to the present embodiment will be described.

(エポキシ樹脂)
エポキシ樹脂は、分子中にエポキシ基を有するものであればその種類は特に制限されない。
(Epoxy resin)
The type of epoxy resin is not particularly limited as long as it has an epoxy group in the molecule.

エポキシ樹脂として具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物と、を酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、2−(3,4−エポキシ)シクロヘキシル−5,5−スピロ(3,4−エポキシ)シクロヘキサン−m−ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはアクリル樹脂のエポキシ化物等もエポキシ樹脂として挙げられる。これらのエポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Specifically, the epoxy resin is at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A, and bisphenol F, and naphthol compounds such as α-naphthol, β-naphthol, and dihydroxynaphthalene. A novolak type epoxy resin (phenol novolak) which is an epoxidized novolak resin obtained by condensing or cocondensing a seed phenolic compound and an aliphatic aldehyde compound such as formaldehyde, acetaldehyde, propionaldehyde, etc. under an acidic catalyst. Type epoxy resin, orthocresol novolac type epoxy resin, etc.); Triphenylmethane type phenol resin obtained by condensing or cocondensing the above phenolic compound with aromatic aldehyde compounds such as benzaldehyde and salicylaldehyde under an acidic catalyst. Triphenylmethane type epoxy resin obtained by epoxidizing the above; copolymerized epoxy obtained by co-condensing the above phenol compound, naphthol compound, and aldehyde compound under an acidic catalyst. Resin: Diphenylmethane type epoxy resin which is a diglycidyl ether such as bisphenol A and bisphenol F; Biphenyl type epoxy resin which is an alkyl-substituted or unsubstituted biphenol diglycidyl ether; Stilben-type epoxy which is a diglycidyl ether of a stilben-based phenol compound. Resin: Sulfur atom-containing epoxy resin that is a diglycidyl ether such as bisphenol S; Epoxy resin that is an alcoholic glycidyl ether such as butanediol, polyethylene glycol, polypropylene glycol; Glysidyl ester type epoxy resin which is a glycidyl ester of a carboxylic acid compound; Glysidylamine type epoxy resin which is obtained by substituting an active hydrogen bonded to a nitrogen atom such as aniline, diaminodiphenylmethane, or isocyanuric acid with a glycidyl group; dicyclopentadiene and phenol. Dicyclopentadiene type epoxy resin which is an epoxidized cocondensate resin of a compound; vinylcyclohexene epoxide which is an epoxide of an olefin bond in a molecule, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane Carboxylate, 2- (3,4-epoxy) cyclohexyl An alicyclic epoxy resin such as -5,5-spiro (3,4-epoxy) cyclohexane-m-dioxane; paraxylylene-modified epoxy resin which is a glycidyl ether of a paraxylylene-modified phenol resin; metaxylylene which is a glycidyl ether of a metaxylylene-modified phenol resin. Modified epoxy resin; Terpen-modified epoxy resin, which is a glycidyl ether of a terpene-modified phenol resin; Dicyclopentadiene-modified epoxy resin, which is a glycidyl ether of a dicyclopentadiene-modified phenol resin; Cyclopentadiene-modified epoxy, which is a glycidyl ether of a cyclopentadiene-modified phenol resin. Resin; Polycyclic aromatic ring-modified epoxy resin which is a glycidyl ether of a polycyclic aromatic ring-modified phenol resin; Naphthalene type epoxy resin which is a glycidyl ether of a naphthalene ring-containing phenol resin; Halogenated phenol novolac type epoxy resin; Hydroquinone type epoxy resin; Trimethylol propane type epoxy resin; linear aliphatic epoxy resin obtained by oxidizing an olefin bond with a peracid such as peracetic acid; aralkyl which is an epoxidized aralkyl type phenol resin such as phenol aralkyl resin and naphthol aralkyl resin. Type epoxy resin; etc. Further, an epoxy resin such as an acrylic resin is also mentioned as an epoxy resin. These epoxy resins may be used alone or in combination of two or more.

エポキシ樹脂のエポキシ当量(分子量/エポキシ基数)は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、100g/eq〜1000g/eqであることが好ましく、150g/eq〜500g/eqであることがより好ましい。
エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。
The epoxy equivalent (molecular weight / number of epoxy groups) of the epoxy resin is not particularly limited. From the viewpoint of the balance of various characteristics such as moldability, reflow resistance, and electrical reliability, it is preferably 100 g / eq to 1000 g / eq, and more preferably 150 g / eq to 500 g / eq.
The epoxy equivalent of the epoxy resin shall be a value measured by a method according to JIS K 7236: 2009.

エポキシ樹脂が固体である場合、エポキシ樹脂の軟化点又は融点は特に制限されない。成形性と耐リフロー性の観点からは40℃〜180℃であることが好ましく、封止用樹脂組成物の調製の際の取扱い性の観点からは50℃〜130℃であることがより好ましい。
エポキシ樹脂の融点又は軟化点は、示差走査熱量測定(DSC)又はJIS K 7234:1986に準じた方法(環球法)で測定される値とする。
When the epoxy resin is a solid, the softening point or melting point of the epoxy resin is not particularly limited. From the viewpoint of moldability and reflow resistance, the temperature is preferably 40 ° C. to 180 ° C., and from the viewpoint of handleability when preparing the sealing resin composition, the temperature is more preferably 50 ° C. to 130 ° C.
The melting point or softening point of the epoxy resin shall be a value measured by differential scanning calorimetry (DSC) or a method according to JIS K 7234: 1986 (ring ball method).

封止用樹脂組成物の全量に占めるエポキシ樹脂の質量割合は、強度、流動性、耐熱性、成形性等の観点から0.5質量%〜50質量%であることが好ましく、2質量%〜30質量%であることがより好ましい。 The mass ratio of the epoxy resin to the total amount of the sealing resin composition is preferably 0.5% by mass to 50% by mass from the viewpoint of strength, fluidity, heat resistance, moldability, etc., and is preferably 2% by mass to 50% by mass. It is more preferably 30% by mass.

(硬化剤)
本実施形態における封止用樹脂組成物は、硬化剤を含む。硬化剤の種類は特に制限されない。
硬化剤は活性エステル化合物を含むことが好ましい。ここで、活性エステル化合物とは、エポキシ基と反応するエステル基を1分子中に1個以上有し、エポキシ樹脂の硬化作用を有する化合物をいう。
(Hardener)
The sealing resin composition in the present embodiment contains a curing agent. The type of curing agent is not particularly limited.
The curing agent preferably contains an active ester compound. Here, the active ester compound refers to a compound having one or more ester groups that react with an epoxy group in one molecule and having a curing action of an epoxy resin.

通信のために発信された電波が誘電体において熱変換されることで発生する伝送損失の量は、周波数と比誘電率の平方根と誘電正接との積として表される。つまり伝送信号は周波数に比例して熱に変わりやすいので、伝送損失を抑制するために高周波帯ほど通信部材の材料に低誘電特性が要求される。情報通信分野においては、チャンネル数の増加と伝送される情報量の増加にともなって電波の高周波化が進行している。現在、第5世代移動通信システムの実用化が世界的に進められており、使用する周波帯の候補に約30GHz〜70GHzの範囲の幾つかが挙げられている。今後は無線通信の主流がこれほどの高周波帯での通信になるため、通信部材の材料にはさらなる誘電正接の低さが求められている。 The amount of transmission loss caused by the thermal conversion of radio waves transmitted for communication in a dielectric is expressed as the product of the square root of frequency and relative permittivity and the dielectric loss tangent. That is, since the transmission signal is easily converted into heat in proportion to the frequency, the material of the communication member is required to have low dielectric properties in the high frequency band in order to suppress the transmission loss. In the information and communication field, the frequency of radio waves is increasing along with the increase in the number of channels and the amount of information to be transmitted. Currently, the 5th generation mobile communication system is being put into practical use worldwide, and some of the frequency band candidates to be used are in the range of about 30 GHz to 70 GHz. In the future, the mainstream of wireless communication will be communication in such a high frequency band, so that the material of the communication member is required to have a lower dielectric loss tangent.

従来、エポキシ樹脂の硬化剤としては一般的にフェノール硬化剤、アミン硬化剤等が使用されているが、エポキシ樹脂とフェノール硬化剤又はアミン硬化剤との反応においては2級水酸基が発生する。これに対して、エポキシ樹脂と活性エステル化合物との反応においては2級水酸基のかわりにエステル基が生じる。エステル基は2級水酸基に比べて極性が低い故、硬化剤として活性エステル化合物を含有する封止用樹脂組成物は、硬化剤として2級水酸基を発生させる硬化剤のみを含有する封止用樹脂組成物に比べて、硬化物の誘電正接を低く抑えることができる。
また、硬化物中の極性基は硬化物の吸水性を高めるところ、硬化剤として活性エステル化合物を用いることによって硬化物の極性基濃度を抑えることができ、硬化物の吸水性を抑制することができる。そして、硬化物の吸水性を抑制すること、つまりは極性分子であるHOの含有量を抑制することにより、硬化物の誘電正接をさらに低く抑えることができる。
Conventionally, a phenol curing agent, an amine curing agent, or the like is generally used as a curing agent for an epoxy resin, but a secondary hydroxyl group is generated in the reaction between the epoxy resin and the phenol curing agent or the amine curing agent. On the other hand, in the reaction between the epoxy resin and the active ester compound, an ester group is generated instead of the secondary hydroxyl group. Since the ester group has a lower polarity than the secondary hydroxyl group, the sealing resin composition containing an active ester compound as a curing agent is a sealing resin containing only a curing agent that generates a secondary hydroxyl group as a curing agent. The dielectric constant contact of the cured product can be suppressed to be lower than that of the composition.
Further, the polar groups in the cured product enhance the water absorption of the cured product, and by using an active ester compound as the curing agent, the concentration of polar groups in the cured product can be suppressed, and the water absorption of the cured product can be suppressed. can. Then, suppressing the water absorption of the cured product, that is, by suppressing the H 2 O content is a polar molecule, it is possible to suppress even lower dielectric loss tangent of a cured product.

活性エステル化合物は、エポキシ基と反応するエステル基を分子中に1個以上有する化合物であればその種類は特に制限されない。活性エステル化合物としては、フェノールエステル化合物、チオフェノールエステル化合物、N−ヒドロキシアミンエステル化合物、複素環ヒドロキシ化合物のエステル化物等が挙げられる。 The type of the active ester compound is not particularly limited as long as it is a compound having one or more ester groups in the molecule that react with the epoxy group. Examples of the active ester compound include a phenol ester compound, a thiophenol ester compound, an N-hydroxyamine ester compound, and an esterified product of a heterocyclic hydroxy compound.

活性エステル化合物としては、例えば、脂肪族カルボン酸及び芳香族カルボン酸の少なくとも1種と脂肪族ヒドロキシ化合物及び芳香族ヒドロキシ化合物の少なくとも1種とから得られるエステル化合物が挙げられる。脂肪族化合物を重縮合の成分とするエステル化合物は、脂肪族鎖を有することによりエポキシ樹脂との相溶性に優れる傾向にある。芳香族化合物を重縮合の成分とするエステル化合物は、芳香環を有することにより耐熱性に優れる傾向にある。 Examples of the active ester compound include ester compounds obtained from at least one of an aliphatic carboxylic acid and an aromatic carboxylic acid and at least one of an aliphatic hydroxy compound and an aromatic hydroxy compound. Ester compounds containing an aliphatic compound as a component of polycondensation tend to have excellent compatibility with an epoxy resin because they have an aliphatic chain. Ester compounds containing an aromatic compound as a component of polycondensation tend to have excellent heat resistance due to having an aromatic ring.

活性エステル化合物の具体例としては、芳香族カルボン酸とフェノール性水酸基との縮合反応にて得られる芳香族エステルが挙げられる。中でも、ベンゼン、ナフタレン、ビフェニル、ジフェニルプロパン、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルホン酸等の芳香環の水素原子の2〜4個をカルボキシ基で置換した芳香族カルボン酸成分と、前記した芳香環の水素原子の1個を水酸基で置換した1価フェノールと、前記した芳香環の水素原子の2〜4個を水酸基で置換した多価フェノールとの混合物を原材料として、芳香族カルボン酸とフェノール性水酸基との縮合反応にて得られる芳香族エステルが好ましい。すなわち、上記芳香族カルボン酸成分由来の構造単位と上記1価フェノール由来の構造単位と上記多価フェノール由来の構造単位とを有する芳香族エステルが好ましい。 Specific examples of the active ester compound include aromatic esters obtained by a condensation reaction between an aromatic carboxylic acid and a phenolic hydroxyl group. Among them, an aromatic carboxylic acid component in which 2 to 4 hydrogen atoms of an aromatic ring such as benzene, naphthalene, biphenyl, diphenylpropane, diphenylmethane, diphenyl ether, and diphenylsulfonic acid are substituted with a carboxy group, and the hydrogen atom of the aromatic ring described above. A mixture of a monovalent phenol in which one of the above is substituted with a hydroxyl group and a polyhydric phenol in which 2 to 4 hydrogen atoms of the aromatic ring are substituted with a hydroxyl group as a raw material, and an aromatic carboxylic acid and a phenolic hydroxyl group are used as raw materials. Aromatic esters obtained by the condensation reaction are preferred. That is, an aromatic ester having a structural unit derived from the aromatic carboxylic acid component, a structural unit derived from the monovalent phenol, and a structural unit derived from the multivalent phenol is preferable.

活性エステル化合物の具体例としては、特開2012−246367号公報に記載されている、脂肪族環状炭化水素基を介してフェノール化合物が結節された分子構造を有するフェノール樹脂と、芳香族ジカルボン酸又はそのハライドと、芳香族モノヒドロキシ化合物と、を反応させて得られる構造を有する活性エステル樹脂が挙げられる。当該活性エステル樹脂としては、下記の構造式(1)で表される化合物が好ましい。 Specific examples of the active ester compound include a phenol resin having a molecular structure in which a phenol compound is knotted via an aliphatic cyclic hydrocarbon group described in JP2012-246367, and an aromatic dicarboxylic acid or Examples thereof include an active ester resin having a structure obtained by reacting the halide with an aromatic monohydroxy compound. As the active ester resin, a compound represented by the following structural formula (1) is preferable.

Figure 2021116329
Figure 2021116329

構造式(1)中、Rは炭素数1〜4のアルキル基であり、Xはベンゼン環、ナフタレン環、炭素数1〜4のアルキル基で置換されたベンゼン環若しくはナフタレン環、又はビフェニル基であり、Yはベンゼン環、ナフタレン環、又は炭素数1〜4のアルキル基で置換されたベンゼン環若しくはナフタレン環であり、kは0又は1であり、nは繰り返し数の平均を表し0.25〜1.5である。 In the structural formula (1), R 1 is an alkyl group having 1 to 4 carbon atoms, and X is a benzene ring, a naphthalene ring, a benzene ring or a naphthalene ring substituted with an alkyl group having 1 to 4 carbon atoms, or a biphenyl group. Y is a benzene ring, a naphthalene ring, or a benzene ring or a naphthalene ring substituted with an alkyl group having 1 to 4 carbon atoms, k is 0 or 1, and n represents the average number of repetitions. It is 25 to 1.5.

構造式(1)で表される化合物の具体例としては、例えば、下記の例示化合物(1−1)〜(1−10)が挙げられる。構造式中のt−Buは、tert−ブチル基である。 Specific examples of the compound represented by the structural formula (1) include the following exemplified compounds (1-1) to (1-10). T-Bu in the structural formula is a tert-butyl group.

Figure 2021116329
Figure 2021116329

Figure 2021116329
Figure 2021116329

活性エステル化合物の別の具体例としては、特開2014−114352号公報に記載されている、下記の構造式(2)で表される化合物及び下記の構造式(3)で表される化合物が挙げられる。 As another specific example of the active ester compound, the compound represented by the following structural formula (2) and the compound represented by the following structural formula (3) described in JP-A-2014-114352 can be used. Can be mentioned.

Figure 2021116329
Figure 2021116329

構造式(2)中、R及びRはそれぞれ独立に、水素原子、炭素数1〜4のアルキル基、又は炭素数1〜4のアルコキシ基であり、Zはベンゾイル基、ナフトイル基、炭素数1〜4のアルキル基で置換されたベンゾイル基又はナフトイル基、及び炭素数2〜6のアシル基からなる群から選ばれるエステル形成構造部位(z1)、又は水素原子(z2)であり、Zのうち少なくとも1個はエステル形成構造部位(z1)である。 In the structural formula (2), R 1 and R 2 are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, or alkoxy groups having 1 to 4 carbon atoms, and Z is a benzoyl group, a naphthoyl group, and carbon. An ester-forming structural site (z1) or hydrogen atom (z2) selected from the group consisting of a benzoyl group or a naphthoyl group substituted with an alkyl group of number 1 to 4 and an acyl group having 2 to 6 carbon atoms, and Z. At least one of them is an ester-forming structural site (z1).

構造式(3)中、R及びRはそれぞれ独立に、水素原子、炭素数1〜4のアルキル基、又は炭素数1〜4のアルコキシ基であり、Zはベンゾイル基、ナフトイル基、炭素数1〜4のアルキル基で置換されたベンゾイル基又はナフトイル基、及び炭素数2〜6のアシル基からなる群から選ばれるエステル形成構造部位(z1)、又は水素原子(z2)であり、Zのうち少なくとも1個はエステル形成構造部位(z1)である。 In the structural formula (3), R 1 and R 2 are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, or alkoxy groups having 1 to 4 carbon atoms, and Z is a benzoyl group, a naphthoyl group, and carbon. An ester-forming structural site (z1) or hydrogen atom (z2) selected from the group consisting of a benzoyl group or a naphthoyl group substituted with an alkyl group of number 1 to 4 and an acyl group having 2 to 6 carbon atoms, and Z. At least one of them is an ester-forming structural site (z1).

構造式(2)で表される化合物の具体例としては、例えば、下記の例示化合物(2−1)〜(2−6)が挙げられる。 Specific examples of the compound represented by the structural formula (2) include the following exemplified compounds (2-1) to (2-6).

Figure 2021116329
Figure 2021116329

構造式(3)で表される化合物の具体例としては、例えば、下記の例示化合物(3−1)〜(3−6)が挙げられる。 Specific examples of the compound represented by the structural formula (3) include the following exemplified compounds (3-1) to (3-6).

Figure 2021116329
Figure 2021116329

活性エステル化合物としては、市販品を用いてもよい。活性エステル化合物の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として「EXB9451」、「EXB9460」、「EXB9460S」、「HPC−8000−65T」(DIC株式会社製);芳香族構造を含む活性エステル化合物として「EXB9416−70BK」、「EXB−8」、「EXB−9425」(DIC株式会社製);フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱ケミカル株式会社製);フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱ケミカル株式会社製);等が挙げられる。 As the active ester compound, a commercially available product may be used. Commercially available products of the active ester compound include "EXB9451", "EXB9460", "EXB9460S", "HPC-8000-65T" (manufactured by DIC Co., Ltd.) as active ester compounds containing a dicyclopentadiene type diphenol structure; aromatics. "EXB9416-70BK", "EXB-8", "EXB-9425" (manufactured by DIC Co., Ltd.) as active ester compounds containing a structure; "DC808" (Mitsubishi Chemical Co., Ltd.) as an active ester compound containing an acetylated product of phenol novolac. (Manufactured); Examples of the active ester compound containing a benzoylated product of phenol novolac include "YLH1026" (manufactured by Mitsubishi Chemical Co., Ltd.).

活性エステル化合物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 The active ester compound may be used alone or in combination of two or more.

活性エステル化合物のエステル当量は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、150g/eq〜400g/eqが好ましく、170g/eq〜300g/eqがより好ましく、200g/eq〜250g/eqがさらに好ましい。
活性エステル化合物のエステル当量は、JIS K 0070:1992に準じた方法により測定される値とする。
The ester equivalent of the active ester compound is not particularly limited. From the viewpoint of balancing various characteristics such as moldability, reflow resistance, and electrical reliability, 150 g / eq to 400 g / eq is preferable, 170 g / eq to 300 g / eq is more preferable, and 200 g / eq to 250 g / eq is preferable. More preferred.
The ester equivalent of the active ester compound shall be a value measured by a method according to JIS K 0070: 1992.

エポキシ樹脂と活性エステル化合物との当量比(エステル基/エポキシ基)は、硬化物の誘電正接を低く抑える観点からは、0.9以上が好ましく、0.95以上がより好ましく、0.97以上がさらに好ましい。
エポキシ樹脂と活性エステル化合物との当量比(エステル基/エポキシ基)は、活性エステル化合物の未反応分を少なく抑える観点からは、1.1以下が好ましく、1.05以下がより好ましく、1.03以下がさらに好ましい。
The equivalent ratio (ester group / epoxy group) of the epoxy resin to the active ester compound is preferably 0.9 or more, more preferably 0.95 or more, and 0.97 or more from the viewpoint of suppressing the dielectric loss tangent of the cured product to be low. Is even more preferable.
The equivalent ratio (ester group / epoxy group) of the epoxy resin to the active ester compound is preferably 1.1 or less, more preferably 1.05 or less, from the viewpoint of suppressing the unreacted content of the active ester compound. 03 or less is more preferable.

硬化剤は、活性エステル化合物以外のその他の硬化剤を含んでもよい。この場合、その他の硬化剤の種類は特に制限されず、封止用樹脂組成物の所望の特性等に応じて選択できる。その他の硬化剤としては、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。 The curing agent may contain other curing agents other than the active ester compound. In this case, the type of other curing agent is not particularly limited and can be selected according to the desired properties of the sealing resin composition and the like. Examples of other curing agents include phenol curing agents, amine curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, blocked isocyanate curing agents and the like.

フェノール硬化剤として具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等と、から合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;パラキシリレン変性フェノール樹脂、メタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物と、ジシクロペンタジエンと、から共重合により合成されるジシクロペンタジエン型フェノール樹脂及びジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物と、を酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらのフェノール硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Specifically, the phenol curing agent is a polyhydric phenol compound such as resorsin, catecor, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorsin, catecol, bisphenol A, bisphenol F, phenylphenol. , At least one phenolic compound selected from the group consisting of phenol compounds such as aminophenols and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene, and aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde. A novolac-type phenolic resin obtained by condensing or co-condensing a compound with an acidic catalyst; a phenol-aralkyl resin, naphthol-aralkyl, which is synthesized from the above-mentioned phenolic compound and dimethoxyparaxylene, bis (methoxymethyl) biphenyl, and the like. Aralkyl-type phenolic resin such as resin; paraxylylene-modified phenolic resin, metaxylylene-modified phenolic resin; melamine-modified phenolic resin; terpen-modified phenolic resin; dicyclopentadiene-type synthesized from the above phenolic compound and dicyclopentadiene by copolymerization. Phenol resin and dicyclopentadiene type naphthol resin; cyclopentadiene-modified phenol resin; polycyclic aromatic ring-modified phenol resin; biphenyl-type phenol resin; Examples thereof include a triphenylmethane-type phenol resin obtained by condensing or co-condensing below; a phenol resin obtained by copolymerizing two or more of these. These phenol curing agents may be used alone or in combination of two or more.

その他の硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、特に制限されない。成形性、耐リフロー性、電気的信頼性等の各種特性バランスの観点からは、70g/eq〜1000g/eqであることが好ましく、80g/eq〜500g/eqであることがより好ましい。
その他の硬化剤の官能基当量(フェノール硬化剤の場合は水酸基当量)は、JIS K 0070:1992に準じた方法により測定される値とする。
The functional group equivalents of other curing agents (hydroxyl equivalents in the case of phenol curing agents) are not particularly limited. From the viewpoint of balancing various characteristics such as moldability, reflow resistance, and electrical reliability, it is preferably 70 g / eq to 1000 g / eq, and more preferably 80 g / eq to 500 g / eq.
The functional group equivalents of other curing agents (hydroxyl equivalents in the case of phenol curing agents) shall be values measured by a method according to JIS K 0070: 1992.

硬化剤の軟化点又は融点は、特に制限されない。成形性と耐リフロー性の観点からは、40℃〜180℃であることが好ましく、封止用樹脂組成物の製造時における取扱い性の観点からは、50℃〜130℃であることがより好ましい。 The softening point or melting point of the curing agent is not particularly limited. From the viewpoint of moldability and reflow resistance, the temperature is preferably 40 ° C. to 180 ° C., and from the viewpoint of handleability during production of the sealing resin composition, the temperature is more preferably 50 ° C. to 130 ° C. ..

硬化剤の融点又は軟化点は、エポキシ樹脂の融点又は軟化点と同様にして測定される値とする。 The melting point or softening point of the curing agent shall be a value measured in the same manner as the melting point or softening point of the epoxy resin.

エポキシ樹脂とすべての硬化剤(活性エステル化合物及びその他の硬化剤)との当量比、すなわちエポキシ樹脂中の官能基数に対する硬化剤中の官能基数の比(硬化剤中の官能基数/エポキシ樹脂中の官能基数)は、特に制限されない。それぞれの未反応分を少なく抑える観点からは、0.5〜2.0の範囲に設定されることが好ましく、0.6〜1.3の範囲に設定されることがより好ましい。成形性と耐リフロー性の観点からは、0.8〜1.2の範囲に設定されることがさらに好ましい。 Equivalent ratio of epoxy resin to all curing agents (active ester compounds and other curing agents), that is, the ratio of the number of functional groups in the curing agent to the number of functional groups in the epoxy resin (number of functional groups in the curing agent / in the epoxy resin) The number of functional groups) is not particularly limited. From the viewpoint of suppressing each unreacted component to a small extent, it is preferably set in the range of 0.5 to 2.0, and more preferably set in the range of 0.6 to 1.3. From the viewpoint of moldability and reflow resistance, it is more preferable to set the range from 0.8 to 1.2.

活性エステル化合物及びその他の硬化剤の合計量に占める活性エステル化合物の質量割合は、硬化物の誘電正接を低く抑える観点から、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 The mass ratio of the active ester compound to the total amount of the active ester compound and other curing agents is preferably 80% by mass or more, preferably 85% by mass or more, from the viewpoint of suppressing the dielectric adjacency of the cured product to be low. More preferably, it is 90% by mass or more.

エポキシ樹脂、活性エステル化合物及びその他の硬化剤の合計量に占めるエポキシ樹脂及び活性エステル化合物の合計質量割合は、硬化物の誘電正接を低く抑える観点から、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 The total mass ratio of the epoxy resin and the active ester compound to the total amount of the epoxy resin, the active ester compound and other curing agents is preferably 80% by mass or more from the viewpoint of suppressing the dielectric loss tangent of the cured product to be low. It is more preferably mass% or more, and further preferably 90 mass% or more.

(特定シリコーン)
特定シリコーンは、ガラス転移温度が70℃以下のシリコーンであれば特に限定されるものではない。特定シリコーンは、1種を単独で用いてもよく、2種以上を併用してもよい。
特定シリコーンのガラス転移温度は、70℃以下であり、硬化物の成形反りの発生を抑制する観点から、50℃以下であることがより好ましく、Tgが30℃以下であることが更に好ましい。
(Specific silicone)
The specific silicone is not particularly limited as long as it is a silicone having a glass transition temperature of 70 ° C. or lower. As the specific silicone, one type may be used alone, or two or more types may be used in combination.
The glass transition temperature of the specific silicone is 70 ° C. or lower, more preferably 50 ° C. or lower, and further preferably 30 ° C. or lower, from the viewpoint of suppressing the occurrence of molding warpage of the cured product.

特定シリコーンとしては、例えば、ポリエーテル基が導入されたポリエーテル変性シリコーン、エポキシ基が導入されたエポキシ変性シリコーン、ポリエーテル基及びエポキシ基が導入されたエポキシ・ポリエーテル変性シリコーン、アクリロイル基が導入されたアクリル変性シリコーン、メタクリロイル基が導入されたメタクリル変性シリコーン、ポリカプロラクトン基が導入されたポリカプロラクトン変性シリコーン等が挙げられる。
特定シリコーンとしては、これらの中でも、ポリエーテル変性シリコーン、エポキシ変性シリコーン、エポキシ・ポリエーテル変性シリコーン、アクリル変性シリコーンが好ましく、RDL濡れ性の観点から極性の低いエポキシ・ポリエーテル変性シリコーンがより好ましい。
また、特定シリコーンは、側鎖変性型シリコーンであってもよく、末端変性型シリコーンであってもよい。特定シリコーンは、これらの中でも側鎖変性型シリコーンが好ましい。
Examples of the specific silicone include a polyether-modified silicone having a polyether group introduced, an epoxy-modified silicone having an epoxy group introduced, an epoxy-polyether-modified silicone having a polyether group and an epoxy group introduced, and an acryloyl group. Examples thereof include acrylic-modified silicones, methacryl-modified silicones having a methacryloyl group introduced, and polycaprolactone-modified silicones having a polycaprolactone group introduced.
Among these, as the specific silicone, a polyether-modified silicone, an epoxy-modified silicone, an epoxy-polyether-modified silicone, and an acrylic-modified silicone are preferable, and an epoxy-polyether-modified silicone having a low polarity is more preferable from the viewpoint of RDL wettability.
Further, the specific silicone may be a side chain modified silicone or a terminal modified silicone. Among these, the specific silicone is preferably a side chain modified silicone.

特定シリコーンの一例として、上記の通り、エポキシ・ポリエーテル変性シリコーンが挙げられる。エポキシ・ポリエーテル変性シリコーンは、シロキサン結合による主骨格を持つ高分子化合物であるシリコーンにポリエーテル基及びエポキシ基が導入された化合物であれば特に限定されるものではない。
エポキシ・ポリエーテル変性シリコーンは、側鎖変性型エポキシ・ポリエーテル変性シリコーンであってもよく、末端変性型エポキシ・ポリエーテル変性シリコーンであってもよく、側鎖及び末端変性型エポキシ・ポリエーテル変性シリコーンであってもよい。エポキシ・ポリエーテル変性シリコーンの主骨格としては、ポリジメチルシロキサンが好ましい。ポリエーテル基としては、エチレンオキシド及びプロピレンオキシドの一方又は双方が重合したポリエーテル基が好ましい。
エポキシ・ポリエーテル変性シリコーンは、ポリエーテル基(好ましくはエチレンオキシド及びプロピレンオキシドの一方又は双方が重合したポリエーテル基)及びエポキシ基がそれぞれシリコーン(好ましくはポリジメチルシロキサン)の側鎖に存在する側鎖変性型エポキシ・ポリエーテル変性シリコーンであることが好ましい。当該エポキシ・ポリエーテル変性シリコーンの市販品としては、例えば、モメンティブ・パフォーマンス・マテリアルズ社製「SIM768E」が挙げられる。
As an example of the specific silicone, as described above, an epoxy / polyether-modified silicone can be mentioned. The epoxy-polyether-modified silicone is not particularly limited as long as it is a compound in which a polyether group and an epoxy group are introduced into silicone, which is a polymer compound having a main skeleton due to a siloxane bond.
The epoxy / polyether-modified silicone may be a side chain-modified epoxy / polyether-modified silicone, a terminal-modified epoxy / polyether-modified silicone, or a side-chain and terminal-modified epoxy / polyether-modified silicone. It may be silicone. Polydimethylsiloxane is preferred as the main skeleton of the epoxy-polyether-modified silicone. As the polyether group, a polyether group obtained by polymerizing one or both of ethylene oxide and propylene oxide is preferable.
The epoxy-polyether-modified silicone is a side chain in which a polyether group (preferably a polyether group in which one or both of ethylene oxide and propylene oxide are polymerized) and an epoxy group are present in the side chain of the silicone (preferably polydimethylsiloxane). It is preferably a modified epoxy / polyether modified silicone. Examples of commercially available products of the epoxy / polyether-modified silicone include "SIM768E" manufactured by Momentive Performance Materials.

特定シリコーンの他の一例として、上記の通り、ポリカプロラクトン変性シリコーンが挙げられる。ポリカプロラクトン変性シリコーンは、シロキサン結合による主骨格を持つ高分子化合物であるシリコーンにカプロラクトンを反応させた化合物であれば特に限定されるものではない。
ポリカプロラクトン変性シリコーンは、側鎖変性型ポリカプロラクトン変性シリコーンでもよく、片末端変性型ポリカプロラクトン変性シリコーンでもよく、両末端変性型ポリカプロラクトン変性シリコーンでもよく、両末端変性型ポリカプロラクトン変性シリコーンが好ましい。ポリカプロラクトン変性シリコーンの主骨格としては、ポリジメチルシロキサンが好ましい。ポリジメチルシロキサンの両末端変性型であるポリカプロラクトン変性シリコーンの市販品としては、例えば、Gelest社製「DBL−C32」が挙げられる。
As another example of the specific silicone, as described above, polycaprolactone-modified silicone can be mentioned. The polycaprolactone-modified silicone is not particularly limited as long as it is a compound obtained by reacting caprolactone with silicone, which is a polymer compound having a main skeleton due to a siloxane bond.
The polycaprolactone-modified silicone may be a side chain-modified polycaprolactone-modified silicone, a one-terminal modified polycaprolactone-modified silicone, a two-terminal modified polycaprolactone-modified silicone, or a two-terminal modified polycaprolactone-modified silicone, and a two-terminal modified polycaprolactone-modified silicone is preferable. As the main skeleton of the polycaprolactone-modified silicone, polydimethylsiloxane is preferable. Examples of commercially available products of polycaprolactone-modified silicone, which is a modified form of both ends of polydimethylsiloxane, include "DBL-C32" manufactured by Gelest.

特定シリコーンの25℃における粘度は特に制限されない。特定シリコーンの粘度(25℃)は、封止用樹脂組成物の硬化物の成形反りの発生を抑制する観点から、1.0×10−2Pa・s〜1.0×10Pa・sが好ましく、1.0×10−2Pa・s〜8.0×10Pa・sがより好ましく、1.0Pa・s〜8.0×10Pa・sが更に好ましく、1.0Pa・s〜4.0×10Pa・sが特に好ましく、1.0Pa・s〜1.0×10Pa・sが極めて好ましく、1.0Pa・s〜4.0Pa・sが最も好ましい。
また、ガラス転移温度が40℃以上70℃以下である特定シリコーンの100℃における粘度は、封止用樹脂組成物の硬化物の成形反りの発生を抑制する観点から、1.0×10−2Pa・s〜1.0×10Pa・sが好ましく、1.0Pa・s〜1.0×10Pa・sがより好ましく、1.0Pa・s〜5.0×10Pa・sがさらに好ましい。
特定シリコーンの25℃における粘度及び100℃における粘度は、JIS Z 8803:2011に準じた方法で測定される値とする。具体的には、例えば、測定装置としてKINEXUS (スペクトリス株式会社、品名「KT4」)を用い、温度25℃又は100℃、周波数1Hz、ひずみ1%の条件で測定する。
The viscosity of the specific silicone at 25 ° C. is not particularly limited. The viscosity (25 ° C.) of the specific silicone is 1.0 × 10 -2 Pa · s to 1.0 × 10 5 Pa · s from the viewpoint of suppressing the occurrence of molding warpage of the cured product of the sealing resin composition. Is preferable, 1.0 × 10 -2 Pa · s to 8.0 × 10 4 Pa · s is more preferable, 1.0 Pa · s to 8.0 × 10 4 Pa · s is further preferable, and 1.0 Pa · s is more preferable. s to 4.0 × 10 Pa · s is particularly preferable, 1.0 Pa · s to 1.0 × 10 Pa · s is extremely preferable, and 1.0 Pa · s to 4.0 Pa · s is most preferable.
The viscosity at 100 ° C. in particular silicone glass transition temperature of 40 ° C. or higher 70 ° C. or less, from the viewpoint of suppressing the occurrence of molding warpage of the cured product of the encapsulating resin composition, 1.0 × 10 -2 Pa · s to 1.0 × 10 2 Pa · s is preferable, 1.0 Pa · s to 1.0 × 10 2 Pa · s is more preferable, and 1.0 Pa · s to 5.0 × 10 Pa · s is further preferable. preferable.
The viscosity of the specific silicone at 25 ° C. and the viscosity at 100 ° C. shall be values measured by a method according to JIS Z 8803: 2011. Specifically, for example, KINEXUS (Spectris Co., Ltd., product name "KT4") is used as a measuring device, and measurement is performed under the conditions of a temperature of 25 ° C. or 100 ° C., a frequency of 1 Hz, and a strain of 1%.

特定シリコーンの含有量は、エポキシ樹脂100質量部に対して30質量部以下であり、硬化物の成形反りの発生の抑制と優れたRDL濡れ性とを両立する観点から、8質量部〜30質量部が好ましく、8質量部〜20質量部がより好ましく、10質量部〜15質量部がさらに好ましい。
特に、特定シリコーンとしてガラス転移温度が40℃以上70℃以下であるシリコーンを用いる場合、特定シリコーンの含有量は、封止用樹脂組成物の流動性を得る観点からも、エポキシ樹脂100質量部に対して30質量部以下であることが好ましく、20質量部以下であることがより好ましく、8質量部〜20質量部であることがさらに好ましい。
The content of the specific silicone is 30 parts by mass or less with respect to 100 parts by mass of the epoxy resin, and 8 parts by mass to 30 parts by mass from the viewpoint of suppressing the occurrence of molding warpage of the cured product and achieving both excellent RDL wettability. Parts are preferable, 8 parts by mass to 20 parts by mass are more preferable, and 10 parts by mass to 15 parts by mass are further preferable.
In particular, when a silicone having a glass transition temperature of 40 ° C. or higher and 70 ° C. or lower is used as the specific silicone, the content of the specific silicone is set to 100 parts by mass of the epoxy resin from the viewpoint of obtaining the fluidity of the sealing resin composition. On the other hand, it is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 8 parts by mass to 20 parts by mass.

(硬化促進剤)
封止用樹脂組成物は、必要に応じて硬化促進剤を含んでもよい。硬化促進剤の種類は特に制限されず、エポキシ樹脂又は硬化剤の種類、封止用樹脂組成物の所望の特性等に応じて選択できる。
(Curing accelerator)
The sealing resin composition may contain a curing accelerator, if necessary. The type of the curing accelerator is not particularly limited, and can be selected according to the type of the epoxy resin or the curing agent, the desired properties of the sealing resin composition, and the like.

硬化促進剤としては、1,5−ジアザビシクロ[4.3.0]ノネン−5(DBN)、1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)等のジアザビシクロアルケン、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール等の環状アミジン化合物;前記環状アミジン化合物の誘導体;前記環状アミジン化合物又はその誘導体のフェノールノボラック塩;これらの化合物に無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4−ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;DBUのテトラフェニルボレート塩、DBNのテトラフェニルボレート塩、2−エチル−4−メチルイミダゾールのテトラフェニルボレート塩、N−メチルモルホリンのテトラフェニルボレート塩等の環状アミジニウム化合物;ピリジン、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物;前記三級アミン化合物の誘導体;酢酸テトラ−n−ブチルアンモニウム、リン酸テトラ−n−ブチルアンモニウム、酢酸テトラエチルアンモニウム、安息香酸テトラ−n−ヘキシルアンモニウム、水酸化テトラプロピルアンモニウム等のアンモニウム塩化合物;トリフェニルホスフィン、ジフェニル(p−トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の三級ホスフィン;前記三級ホスフィンと有機ボロン類との錯体等のホスフィン化合物;前記三級ホスフィン又は前記ホスフィン化合物に、無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4−ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;前記三級ホスフィン又は前記ホスフィン化合物と4−ブロモフェノール、3−ブロモフェノール、2−ブロモフェノール、4−クロロフェノール、3−クロロフェノール、2−クロロフェノール、4−ヨウ化フェノール、3−ヨウ化フェノール、2−ヨウ化フェノール、4−ブロモ−2−メチルフェノール、4−ブロモ−3−メチルフェノール、4−ブロモ−2,6−ジメチルフェノール、4−ブロモ−3,5−ジメチルフェノール、4−ブロモ−2,6−ジ−tert−ブチルフェノール、4−クロロ−1−ナフトール、1−ブロモ−2−ナフトール、6−ブロモ−2−ナフトール、4−ブロモ−4’−ヒドロキシビフェニル等のハロゲン化フェノール化合物とを反応させた後に、脱ハロゲン化水素の工程を経て得られる、分子内分極を有する化合物;テトラフェニルホスホニウム等のテトラ置換ホスホニウム、テトラ−p−トリルボレート等のホウ素原子に結合したフェニル基がないテトラ置換ホスホニウム及びテトラ置換ボレート;テトラフェニルホスホニウムとフェノール化合物との塩;テトラアルキルホスホニウムと芳香族カルボン酸無水物の部分加水分解物との塩などが挙げられる。 Examples of the curing accelerator include diazabicycloalkenes such as 1,5-diazabicyclo [4.3.0] nonen-5 (DBN) and 1,8-diazabicyclo [5.4.0] undecene-7 (DBU). Cyclic amidin compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole; derivatives of the cyclic amidin compound; phenol novolac salt of the cyclic amidin compound or a derivative thereof; Maleic anhydride, 1,4-benzoquinone, 2,5-turquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1 , 4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone and other quinone compounds, and diazophenylmethane and other quinone compounds with π-bonded compounds added. Compounds; Cyclic amidinium compounds such as DBU tetraphenylborate salt, DBN tetraphenylborate salt, 2-ethyl-4-methylimidazole tetraphenylborate salt, N-methylmorpholin tetraphenylborate salt; pyridine, triethylamine, tri Tertiary amine compounds such as ethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; derivatives of the tertiary amine compound; tetra-n-butylammonium acetate, tetra-n-phosphate Ammonium salt compounds such as butylammonium, tetraethylammonium acetate, tetra-n-hexylammonium benzoate, tetrapropylammonium hydroxide; triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) ) Hosphin, Tris (alkyl / alkoxyphenyl) phosphin, Tris (dialkylphenyl) phosphin, Tris (trialkylphenyl) phosphin, Tris (tetraalkylphenyl) phosphin, Tris (dialkoxyphenyl) phosphin, Tris (trialkoxyphenyl) phosphine , Tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, alkyldiarylphosphine and other tertiary phosphines; Phosphine compound; the tertiary phosphine or the phosphine compound, in which maleic anhydride, 1,4-benzoquinone, 2,5-torquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2 , 3-Dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone and other quinone compounds, diazophenylmethane and other compounds with π bonds Compound having intramolecular polarization formed by adding the above; the tertiary phosphine or the phosphine compound and 4-bromophenol, 3-bromophenol, 2-bromophenol, 4-chlorophenol, 3-chlorophenol, 2-chlorophenol. , 4-Io ratherated Phenol, 3-Iyoated Phenol, 2-Iodized Phenol, 4-Bromo-2-methylphenol, 4-Bromo-3-Methylphenol, 4-Bromo-2,6-Dimethylphenol, 4- Bromo-3,5-dimethylphenol, 4-bromo-2,6-di-tert-butylphenol, 4-chloro-1-naphthol, 1-bromo-2-naphthol, 6-bromo-2-naphthol, 4-bromo A compound having intramolecular polarization obtained by reacting with a halogenated phenol compound such as -4'-hydroxybiphenyl and then undergoing a step of dehalogenating; a tetra-substituted phosphonium such as tetraphenylphosphonium, tetra-p- Tetra-substituted phosphonium and tetra-substituted borate without a phenyl group bonded to a boron atom such as trillborate; salt of tetraphenylphosphonium and a phenol compound; salt of tetraalkylphosphonium and a partial hydrolyzate of aromatic carboxylic acid anhydride, etc. Can be mentioned.

封止用樹脂組成物が硬化促進剤を含む場合、その量は、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.1質量部〜30質量部であることが好ましく、1質量部〜15質量部であることがより好ましい。硬化促進剤の量が樹脂成分100質量部に対して0.1質量部以上であると、短時間で良好に硬化する傾向にある。硬化促進剤の量が樹脂成分100質量部に対して30質量部以下であると、硬化速度が速すぎず良好な成形品が得られる傾向にある。 When the sealing resin composition contains a curing accelerator, the amount thereof is preferably 0.1 part by mass to 30 parts by mass with respect to 100 parts by mass of the resin component (total amount of epoxy resin and curing agent). More preferably, it is 1 part by mass to 15 parts by mass. When the amount of the curing accelerator is 0.1 part by mass or more with respect to 100 parts by mass of the resin component, it tends to be cured well in a short time. When the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing rate is not too fast and a good molded product tends to be obtained.

(無機充填材)
封止用樹脂組成物は、必要に応じて無機充填材を含んでもよい。無機充填材の種類は、特に制限されない。具体的には、溶融シリカ、結晶シリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、窒化珪素、窒化アルミニウム、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等の無機材料が挙げられる。難燃効果を有する無機充填材を用いてもよい。難燃効果を有する無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。
(Inorganic filler)
The sealing resin composition may contain an inorganic filler, if necessary. The type of inorganic filler is not particularly limited. Specifically, fused silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mulite. , Titania, talc, clay, mica and other inorganic materials. An inorganic filler having a flame-retardant effect may be used. Examples of the inorganic filler having a flame-retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxide such as a composite hydroxide of magnesium and zinc, and zinc borate.

無機充填材の中でも、線膨張係数低減の観点からは溶融シリカ等のシリカが好ましく、高熱伝導性の観点からはアルミナが好ましい。無機充填材は1種を単独で用いても2種以上を組み合わせて用いてもよい。無機充填材の形態としては粉末、粉末を球形化したビーズ、繊維等が挙げられる。 Among the inorganic fillers, silica such as fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. The inorganic filler may be used alone or in combination of two or more. Examples of the form of the inorganic filler include powder, beads obtained by spheroidizing the powder, fibers and the like.

無機充填材が粒子状である場合、その平均粒径は、特に制限されない。例えば、平均粒径が0.2μm〜100μmであることが好ましく、0.5μm〜50μmであることがより好ましい。平均粒径が0.2μm以上であると、封止用樹脂組成物の粘度の上昇がより抑制される傾向にある。平均粒径が100μm以下であると、充填性がより向上する傾向にある。無機充填材の平均粒径は、レーザー散乱回折法粒度分布測定装置により、体積平均粒径(D50)として求める。 When the inorganic filler is in the form of particles, its average particle size is not particularly limited. For example, the average particle size is preferably 0.2 μm to 100 μm, and more preferably 0.5 μm to 50 μm. When the average particle size is 0.2 μm or more, the increase in viscosity of the sealing resin composition tends to be further suppressed. When the average particle size is 100 μm or less, the filling property tends to be further improved. The average particle size of the inorganic filler is determined as the volume average particle size (D50) by a laser scattering diffraction method particle size distribution measuring device.

封止用樹脂組成物に含まれる無機充填材の含有率は、封止用樹脂組成物の硬化物の弾性率を制御する観点から、封止用樹脂組成物全体の60体積%〜82体積%であることが好ましく、62体積%〜80体積%であることがより好ましく、65体積%〜80体積%であることが更に好ましく、65体積%〜78体積%であることが更に好ましい。 The content of the inorganic filler contained in the sealing resin composition is 60% by volume to 82% by volume of the entire sealing resin composition from the viewpoint of controlling the elasticity of the cured product of the sealing resin composition. It is more preferably 62% by volume to 80% by volume, further preferably 65% by volume to 80% by volume, and even more preferably 65% by volume to 78% by volume.

封止用樹脂組成物における無機充填材の体積割合は、下記の方法により求めることができる。
封止用樹脂組成物の硬化物の薄片試料を走査型電子顕微鏡(SEM)にて撮像する。SEM画像において任意の面積Sを特定し、面積Sに含まれる無機充填材の総面積Aを求める。無機充填材の総面積Aを面積Sで除算した値を百分率(%)に換算し、この値を封止用樹脂組成物に占める無機充填材の体積割合とする。
面積Sは、無機充填材の大きさに対して十分大きい面積とする。例えば、無機充填材が100個以上含まれる大きさとする。面積Sは、複数個の切断面の合計でもよい。
無機充填材は、封止用樹脂組成物の硬化時の重力方向において存在割合に偏りが生じることがある。その場合、SEMにて撮像する際、硬化物の重力方向全体を撮像し、硬化物の重力方向全体が含まれる面積Sを特定する。
The volume ratio of the inorganic filler in the sealing resin composition can be determined by the following method.
A flaky sample of the cured resin composition for encapsulation is imaged with a scanning electron microscope (SEM). An arbitrary area S is specified in the SEM image, and the total area A of the inorganic filler contained in the area S is obtained. The value obtained by dividing the total area A of the inorganic filler by the area S is converted into a percentage (%), and this value is taken as the volume ratio of the inorganic filler in the sealing resin composition.
The area S is a sufficiently large area with respect to the size of the inorganic filler. For example, the size may include 100 or more inorganic fillers. The area S may be the sum of a plurality of cut surfaces.
The presence ratio of the inorganic filler may be biased in the direction of gravity during curing of the sealing resin composition. In that case, when the image is taken by the SEM, the entire gravity direction of the cured product is imaged, and the area S including the entire gravity direction of the cured product is specified.

[各種添加剤]
封止用樹脂組成物は、上述の成分に加えて、以下に例示するカップリング剤、イオン交換体、離型剤、難燃剤、着色剤等の各種添加剤を含んでもよい。封止用樹脂組成物は、以下に例示する添加剤以外にも必要に応じて当技術分野で周知の各種添加剤を含んでもよい。
[Various additives]
In addition to the above-mentioned components, the sealing resin composition may contain various additives such as a coupling agent, an ion exchanger, a mold release agent, a flame retardant, and a colorant exemplified below. The sealing resin composition may contain various additives well known in the art, if necessary, in addition to the additives exemplified below.

(カップリング剤)
封止用樹脂組成物は、カップリング剤を含んでもよい。樹脂成分と無機充填材との接着性を高める観点からは、封止用樹脂組成物はカップリング剤を含むことが好ましい。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン、ジシラザン等のシラン系化合物、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物などの公知のカップリング剤が挙げられる。
(Coupling agent)
The sealing resin composition may contain a coupling agent. From the viewpoint of enhancing the adhesiveness between the resin component and the inorganic filler, the sealing resin composition preferably contains a coupling agent. Examples of the coupling agent include known coupling agents such as silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, vinylsilane and disilazane, titanium compounds, aluminum chelate compounds and aluminum / zirconium compounds. Can be mentioned.

封止用樹脂組成物がカップリング剤を含む場合、カップリング剤の量は、無機充填材100質量部に対して0.05質量部〜5質量部であることが好ましく、0.1質量部〜2.5質量部であることがより好ましい。カップリング剤の量が無機充填材100質量部に対して0.05質量部以上であると、フレームとの接着性がより向上する傾向にある。カップリング剤の量が無機充填材100質量部に対して5質量部以下であると、パッケージの成形性がより向上する傾向にある。 When the sealing resin composition contains a coupling agent, the amount of the coupling agent is preferably 0.05 parts by mass to 5 parts by mass, and 0.1 parts by mass with respect to 100 parts by mass of the inorganic filler. More preferably, it is ~ 2.5 parts by mass. When the amount of the coupling agent is 0.05 parts by mass or more with respect to 100 parts by mass of the inorganic filler, the adhesiveness with the frame tends to be further improved. When the amount of the coupling agent is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.

(イオン交換体)
封止用樹脂組成物は、イオン交換体を含んでもよい。封止用樹脂組成物は、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、イオン交換体を含むことが好ましい。イオン交換体は特に制限されず、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム、及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。イオン交換体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、下記一般式(A)で表されるハイドロタルサイトが好ましい。
(Ion exchanger)
The sealing resin composition may contain an ion exchanger. The sealing resin composition preferably contains an ion exchanger from the viewpoint of improving the moisture resistance and high temperature standing characteristics of the electronic component device including the element to be sealed. The ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples thereof include hydrotalcite compounds and hydroxides containing at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium, and bismuth. As the ion exchanger, one type may be used alone or two or more types may be used in combination. Of these, hydrotalcite represented by the following general formula (A) is preferable.

Mg(1−X)Al(OH)(COX/2・mHO ……(A)
(0<X≦0.5、mは正の数)
Mg (1-X) Al X (OH) 2 (CO 3 ) X / 2・ mH 2 O …… (A)
(0 <X ≤ 0.5, m is a positive number)

封止用樹脂組成物がイオン交換体を含む場合、その含有量は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。例えば、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.1質量部〜30質量部であることが好ましく、1質量部〜10質量部であることがより好ましい。 When the sealing resin composition contains an ion exchanger, the content thereof is not particularly limited as long as it is an amount sufficient to capture ions such as halogen ions. For example, it is preferably 0.1 part by mass to 30 parts by mass, and more preferably 1 part by mass to 10 parts by mass with respect to 100 parts by mass of the resin component (total amount of epoxy resin and curing agent).

(離型剤)
封止用樹脂組成物は、成形時における金型との良好な離型性を得る観点から、離型剤を含んでもよい。離型剤は特に制限されず、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Release agent)
The sealing resin composition may contain a mold release agent from the viewpoint of obtaining good mold releasability from the mold at the time of molding. The release agent is not particularly limited, and conventionally known release agents can be used. Specific examples thereof include higher fatty acids such as carnauba wax, montanic acid and stearic acid, ester waxes such as higher fatty acid metal salts and montanic acid esters, and polyolefin waxes such as polyethylene oxide and non-oxidized polyethylene. The release agent may be used alone or in combination of two or more.

封止用樹脂組成物が離型剤を含む場合、その量は樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.01質量部〜10質量部が好ましく、0.1質量部〜5質量部がより好ましい。離型剤の量が樹脂成分100質量部に対して0.01質量部以上であると、離型性が充分に得られる傾向にある。10質量部以下であると、より良好な接着性が得られる傾向にある。 When the sealing resin composition contains a mold release agent, the amount thereof is preferably 0.01 part by mass to 10 parts by mass with respect to 100 parts by mass of the resin component (total amount of epoxy resin and curing agent), 0.1 part by mass. More preferably, parts by mass to 5 parts by mass. When the amount of the mold release agent is 0.01 parts by mass or more with respect to 100 parts by mass of the resin component, the mold release property tends to be sufficiently obtained. When it is 10 parts by mass or less, better adhesiveness tends to be obtained.

(難燃剤)
封止用樹脂組成物は、難燃剤を含んでもよい。難燃剤は特に制限されず、従来公知のものを用いることができる。具体的には、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Flame retardants)
The sealing resin composition may contain a flame retardant. The flame retardant is not particularly limited, and conventionally known flame retardants can be used. Specific examples thereof include organic or inorganic compounds containing halogen atoms, antimony atoms, nitrogen atoms or phosphorus atoms, metal hydroxides and the like. The flame retardant may be used alone or in combination of two or more.

封止用樹脂組成物が難燃剤を含む場合、その量は、所望の難燃効果を得るのに充分な量であれば特に制限されない。例えば、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して1質量部〜30質量部であることが好ましく、2質量部〜20質量部であることがより好ましい。 When the sealing resin composition contains a flame retardant, the amount thereof is not particularly limited as long as it is sufficient to obtain the desired flame retardant effect. For example, it is preferably 1 part by mass to 30 parts by mass, and more preferably 2 parts by mass to 20 parts by mass with respect to 100 parts by mass of the resin component (total amount of epoxy resin and curing agent).

(着色剤)
封止用樹脂組成物は、着色剤を含んでもよい。着色剤としてはカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。
着色剤の含有量は、目的等に応じて適宜選択できる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Colorant)
The sealing resin composition may contain a colorant. Examples of the colorant include known colorants such as carbon black, organic dyes, organic pigments, titanium oxide, lead tan, and red iron oxide.
The content of the colorant can be appropriately selected depending on the purpose and the like. As the colorant, one type may be used alone or two or more types may be used in combination.

(封止用樹脂組成物の調製方法)
封止用樹脂組成物の調製方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を均一に攪拌及び混合し、予め70℃〜140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
(Method for preparing resin composition for sealing)
The method for preparing the sealing resin composition is not particularly limited. As a general method, a method in which a predetermined amount of components are sufficiently mixed by a mixer or the like, then melt-kneaded by a mixing roll, an extruder or the like, cooled and pulverized can be mentioned. More specifically, for example, a method in which a predetermined amount of the above-mentioned components is uniformly stirred and mixed, kneaded with a kneader, roll, extruder or the like preheated to 70 ° C. to 140 ° C., cooled and pulverized. Can be mentioned.

封止用樹脂組成物は、常温常圧下(例えば、25℃、大気圧下)において固体であることが好ましい。封止用樹脂組成物が固体である場合の形状は特に制限されず、粉状、粒状、タブレット状等が挙げられる。封止用樹脂組成物がタブレット状である場合の寸法及び質量は、パッケージの成形条件に合うような寸法及び質量となるようにすることが取り扱い性の観点から好ましい。 The sealing resin composition is preferably solid at normal temperature and pressure (for example, 25 ° C. and atmospheric pressure). When the sealing resin composition is a solid, the shape is not particularly limited, and examples thereof include powder, granules, and tablets. When the sealing resin composition is in the shape of a tablet, it is preferable that the dimensions and mass are suitable for the molding conditions of the package from the viewpoint of handleability.

<電子部品装置>
本開示の一実施形態に係る電子部品装置は、ウエハレベルパッケージ(Wafer level package,WLP)によって製造されたものである。即ち、本実施形態の電子部品装置は、ウエハ上に、複数個の素子(半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子など)を搭載したのち、複数個の素子を封止用樹脂組成物で一括して封止し、封止された素子ごとに個片化されたものである。WLPは、FOWLP(Fan Out Wafer Level Package)でもよく、FIWLP(Fan In Wafer Level Package.WLCSP(Wafer level Chip Size Package)とも呼ばれる。)でもよい。
本実施形態の電子部品装置は、支持部材と、前記支持部材上に配置された素子と、前記素子を封止している本開示の封止用樹脂組成物の硬化物と、を備える。本実施形態の電子部品装置は、前記硬化物上に配置された再配線層をさらに備えるものであってもよい。
<Electronic component equipment>
The electronic component device according to the embodiment of the present disclosure is manufactured by a wafer level package (WLP). That is, in the electronic component device of the present embodiment, after mounting a plurality of elements (active elements such as semiconductor chips, transistors, diodes, thyristors, passive elements such as capacitors, resistors, coils, etc.) on a wafer, A plurality of elements are collectively sealed with a sealing resin composition, and each sealed element is individualized. The WLP may be FOWLP (Fan Out Wafer Level Package) or FIWLP (Fan In Wafer Level Package.WLCSP) (also referred to as Wafer Level Chip Size Package).
The electronic component device of the present embodiment includes a support member, an element arranged on the support member, and a cured product of the sealing resin composition of the present disclosure that seals the element. The electronic component device of the present embodiment may further include a rewiring layer arranged on the cured product.

<電子部品装置の製造方法>
本開示の一実施形態に係る電子部品装置の製造方法は、複数個の素子をウエハ上に配置する工程と、前記複数個の素子を本開示の封止用樹脂組成物で一括して封止する工程と、封止された素子ごとに個片化する工程と、を含む。即ち、本実施形態の電子部品装置の製造方法は、ウエハレベルパッケージングを含む製造方法である。本実施形態の電子部品装置の製造方法は、封止する工程により形成された封止用樹脂組成物の硬化物上に再配線層を形成する工程をさらに含んでもよい。その場合、個片化する工程は、例えば、再配線層を形成する工程を経た後に行われる。
<Manufacturing method of electronic component equipment>
The method for manufacturing an electronic component device according to an embodiment of the present disclosure includes a step of arranging a plurality of elements on a wafer and collectively sealing the plurality of elements with the sealing resin composition of the present disclosure. This includes a step of performing the process and a step of separating each sealed element into individual pieces. That is, the manufacturing method of the electronic component device of the present embodiment is a manufacturing method including wafer level packaging. The method for manufacturing the electronic component device of the present embodiment may further include a step of forming a rewiring layer on the cured product of the sealing resin composition formed by the sealing step. In that case, the step of individualizing is performed after, for example, the step of forming the rewiring layer.

上記各工程を実施する方法は特に制限されず、一般的な手法により行うことができる。また、電子部品装置の製造に使用するウエハ及び素子の種類は特に制限されず、電子部品装置の製造に一般的に用いられるウエハ及び素子を使用できる。 The method of carrying out each of the above steps is not particularly limited, and can be carried out by a general method. Further, the types of wafers and elements used for manufacturing the electronic component device are not particularly limited, and wafers and elements generally used for manufacturing the electronic component device can be used.

WLPに用いられるウエハの素材は、通常は半導体材料の結晶であり、シリコンの単結晶が一般的である。ウエハの大きさは、特に制限されず、例えば直径6インチ〜12インチであり、好ましくは直径10インチ〜12インチである。 The material of the wafer used for WLP is usually a crystal of a semiconductor material, and a single crystal of silicon is generally used. The size of the wafer is not particularly limited, and is, for example, 6 inches to 12 inches in diameter, preferably 10 inches to 12 inches in diameter.

本開示の封止用樹脂組成物を用いて素子を封止する方法としては、低圧トランスファ成形法、インジェクション成形法、圧縮成形法等が挙げられる。これらの中では、低圧トランスファ成形法が一般的である。 Examples of the method for sealing the element using the sealing resin composition of the present disclosure include a low-pressure transfer molding method, an injection molding method, a compression molding method, and the like. Among these, the low-pressure transfer molding method is common.

また、再配線層を形成する方法としては、例えば、RDL形成材料を封止用樹脂組成物上に塗布し、スピンコートすることにより、再配線層を形成する方法が挙げられる。
RDL形成材料としては、例えば、HD−7110(日立化成製)、HD−8820(日立化成製)BL−301(旭化成製)が挙げられる。
Further, as a method of forming the rewiring layer, for example, a method of forming the rewiring layer by applying the RDL forming material on the sealing resin composition and spin-coating it can be mentioned.
Examples of the RDL forming material include HD-7110 (manufactured by Hitachi Kasei) and HD-8820 (manufactured by Hitachi Kasei) BL-301 (manufactured by Asahi Kasei).

以下、上記実施形態を実施例により具体的に説明するが、上記実施形態の範囲はこれらの実施例に限定されるものではない。 Hereinafter, the above-described embodiment will be specifically described with reference to Examples, but the scope of the above-mentioned Embodiment is not limited to these Examples.

<封止用樹脂組成物の調製>
下記に示す成分を表1に示す配合割合(質量部)で混合し、実施例と比較例の封止用樹脂組成物を調製した。この封止用樹脂組成物は、常温常圧下において固体であった。
<Preparation of resin composition for sealing>
The components shown below were mixed at the blending ratios (parts by mass) shown in Table 1 to prepare resin compositions for encapsulation of Examples and Comparative Examples. This sealing resin composition was a solid under normal temperature and pressure.

・エポキシ樹脂1:ビフェニル型エポキシ樹脂、エポキシ当量186g/eq(三菱ケミカル株式会社、品名「YX−4000」)
・エポキシ樹脂2:トリフェニルメタン型エポキシ樹脂、エポキシ当量167g/eq(三菱ケミカル株式会社、品名「1032H60」)
-Epoxy resin 1: Biphenyl type epoxy resin, epoxy equivalent 186 g / eq (Mitsubishi Chemical Corporation, product name "YX-4000")
-Epoxy resin 2: Triphenylmethane type epoxy resin, epoxy equivalent 167 g / eq (Mitsubishi Chemical Co., Ltd., product name "1032H60")

・硬化剤1:活性エステル化合物(DIC株式会社、品名「EXB−8」)
・硬化剤2:フェノール硬化剤、フェノールアラルキル樹脂、水酸基当量175g/eq(明和化成株式会社、品名「MEH7800SS」)
-Curing agent 1: Active ester compound (DIC Corporation, product name "EXB-8")
-Curing agent 2: Phenol curing agent, phenol aralkyl resin, hydroxyl group equivalent 175 g / eq (Meiwa Kasei Co., Ltd., product name "MEH7800SS")

・離型剤1:モンタン酸エステルワックス(クラリアントジャパン株式会社、品名「HW−E」)
・カップリング剤1:3−メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社、品名「KBM−503」)
・カップリング剤3:N−フェニル−3−アミノプロピルトリメトキシシラン(信越化学工業社、品名「KBM−573」)
・硬化促進剤1:トリフェニルホスフィン/1,4−ベンゾキノン付加物
・着色剤1:カーボンブラック(三菱ケミカル株式会社、品名「MA600」)
・無機充填材1:溶融シリカ(平均粒径4.5μm)
・無機充填材2:溶融シリカ(平均粒径0.6μm)
-Release agent 1: Montanic acid ester wax (Clariant Japan Co., Ltd., product name "HW-E")
-Coupling agent 1: 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., product name "KBM-503")
-Coupling agent 3: N-phenyl-3-aminopropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., product name "KBM-573")
・ Curing accelerator 1: Triphenylphosphine / 1,4-benzoquinone adduct ・ Colorant 1: Carbon black (Mitsubishi Chemical Corporation, product name “MA600”)
-Inorganic filler 1: Fused silica (average particle size 4.5 μm)
-Inorganic filler 2: fused silica (average particle size 0.6 μm)

・特定シリコーン1:末端変性型ポリエーテル変性シリコーン、Tg:60℃、粘度(25℃):8.0×10Pa・s、粘度(100℃):30Pa・s
・特定シリコーン2:側鎖変性型エポキシ・ポリエーテル変性シリコーン、Tg:25℃以下、粘度(25℃):1.5Pa・s
・特定シリコーン3:側鎖変性型エポキシ・ポリエーテル変性シリコーン、Tg:25℃以下、粘度(25℃):4.5Pa・s(信越化学工業株式会社、品名「KF−1002」)
・特定シリコーン4:側鎖変性型エポキシ・ポリエーテル変性シリコーン、Tg25℃以下、粘度(25℃):0.35Pa・s(信越化学工業株式会社、品名「X−22−4741」)
・特定シリコーン5:末端変性型アクリル変性シリコーン、Tg25℃以下、粘度(25℃):0.3Pa・s(シルテック社、品名「Silmer ACR Di−50」)
-Specific Silicone 1: End-modified polyether-modified silicone, Tg: 60 ° C, viscosity (25 ° C): 8.0 × 10 4 Pa · s, viscosity (100 ° C): 30 Pa · s
-Specific silicone 2: Side chain modified epoxy / polyether modified silicone, Tg: 25 ° C or lower, viscosity (25 ° C): 1.5 Pa · s
-Specific Silicone 3: Side chain modified epoxy / polyether modified silicone, Tg: 25 ° C or lower, viscosity (25 ° C): 4.5 Pa · s (Shin-Etsu Chemical Co., Ltd., product name "KF-1002")
-Specific Silicone 4: Side chain modified epoxy / polyether modified silicone, Tg 25 ° C or lower, viscosity (25 ° C): 0.35 Pa · s (Shin-Etsu Chemical Co., Ltd., product name "X-22-4471")
-Specific silicone 5: end-modified acrylic-modified silicone, Tg 25 ° C or lower, viscosity (25 ° C): 0.3 Pa · s (Siltec, product name "Silmer ACR Di-50")

<封止用樹脂組成物の性能評価>
(比誘電率及び誘電正接)
封止用樹脂組成物を真空ハンドプレス機に仕込み、金型温度175℃、成形圧力6.9MPa、硬化時間600秒の条件で成形し、後硬化を180℃で6時間行い、板状の硬化物(縦12.5mm、横25mm、厚さ0.2mm)を得た。この板状の硬化物を試験片として、誘電率測定装置(アジレント・テクノロジー社、品名「ネットワークアナライザN5227A」)を用いて、温度25±3℃下、約60GHzでの比誘電率と誘電正接を測定した。結果を表1に示す。
<Performance evaluation of sealing resin composition>
(Relative permittivity and dielectric loss tangent)
The sealing resin composition is charged into a vacuum hand press machine, molded under the conditions of a mold temperature of 175 ° C., a molding pressure of 6.9 MPa, and a curing time of 600 seconds, and post-curing is performed at 180 ° C. for 6 hours to cure the plate. An article (length 12.5 mm, width 25 mm, thickness 0.2 mm) was obtained. Using this plate-shaped cured product as a test piece, a permittivity measuring device (Agilent Technologies, Inc., product name "Network Analyzer N5227A") was used to determine the relative permittivity and dielectric loss tangent at about 60 GHz at a temperature of 25 ± 3 ° C. It was measured. The results are shown in Table 1.

(成形反り)
直径12インチのシリコンウエハ上に厚さ200μmの樹脂硬化物が積層した積層体を、コンプレッション成形にて成形するための金型及び離型フィルムを用意した。この金型、離型フィルム、直径12インチのシリコンウエハ、及び封止用樹脂組成物を用いて、金型温度175℃、成形圧力7MPa、硬化時間300秒の条件で、シリコンウエハ上に封止用樹脂組成物の硬化物が積層した積層体を成形した。
この積層体について、シャドウモアレ測定装置(Akrometrix社製、TherMoireAXP)を用いて成型反りを測定した。2.0mm以下が許容範囲(○)である。
(Molding warp)
A mold and a release film were prepared for molding a laminate in which a cured resin product having a thickness of 200 μm was laminated on a silicon wafer having a diameter of 12 inches by compression molding. Using this mold, a mold release film, a silicon wafer having a diameter of 12 inches, and a resin composition for sealing, the mold is sealed on the silicon wafer under the conditions of a mold temperature of 175 ° C., a molding pressure of 7 MPa, and a curing time of 300 seconds. A laminate in which the cured product of the resin composition for use was laminated was molded.
The molding warpage of this laminated body was measured using a shadow moire measuring device (TherMoireAXP manufactured by Akrometrix). The allowable range (◯) is 2.0 mm or less.

(RDL濡れ性)
RDL形成材料として、HD−7110(日立化成製)を用いた。
直径10cm、厚み3mmの円板状に成型した封止用樹脂組成物の硬化物の表面を#3000で研磨し、110℃、1時間乾燥した。その封止用樹脂組成物の硬化物上にRDL形成材料をスピンコートにより塗布し、200℃、1時間で乾燥した後、下記基準によりRDL濡れ性を評価した。結果を表1に示す。
(RDL wettability)
HD-7110 (manufactured by Hitachi Kasei) was used as the RDL forming material.
The surface of the cured product of the sealing resin composition molded into a disk shape having a diameter of 10 cm and a thickness of 3 mm was polished with # 3000 and dried at 110 ° C. for 1 hour. An RDL forming material was applied onto the cured product of the sealing resin composition by spin coating, dried at 200 ° C. for 1 hour, and then the RDL wettability was evaluated according to the following criteria. The results are shown in Table 1.

−評価基準−
A(〇):不良箇所が5箇所以下
B(△):不良箇所が6箇所以上20箇所以下
C(×):不良箇所が21箇所以上
-Evaluation criteria-
A (○): 5 or less defective parts B (△): 6 or more defective parts, 20 or less C (×): 21 or more defective parts

Figure 2021116329
Figure 2021116329

実施例の封止用樹脂組成物は、比較例の封止用樹脂組成物に比べて、硬化物の成形反り発生の抑制と、優れたRDL濡れ性と、が両立されていた。 Compared with the sealing resin composition of the comparative example, the sealing resin composition of the example had both suppression of molding warpage of the cured product and excellent RDL wettability.

Claims (7)

エポキシ樹脂と、
硬化剤と、
ガラス転移温度が70℃以下のシリコーンと、
を含有し、
前記シリコーンの含有量が前記エポキシ樹脂100質量部に対して30質量部以下であるウエハレベルパッケージ用の封止用樹脂組成物。
Epoxy resin and
Hardener and
Silicone with a glass transition temperature of 70 ° C or less and
Contains,
A sealing resin composition for a wafer level package in which the silicone content is 30 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
前記シリコーンの25℃における粘度が1.0×10−2Pa・s〜1.0×10Pa・sである請求項1に記載の封止用樹脂組成物。 The sealing resin composition according to claim 1, wherein the silicone has a viscosity of 1.0 × 10 -2 Pa · s to 1.0 × 10 5 Pa · s at 25 ° C. 前記硬化剤が活性エステル化合物を含む請求項1又は請求項2に記載の封止用樹脂組成物。 The sealing resin composition according to claim 1 or 2, wherein the curing agent contains an active ester compound. 支持部材と、
前記支持部材上に配置された素子と、
前記素子を封止している請求項1〜請求項3のいずれか1項に記載の封止用樹脂組成物の硬化物と、
を備える電子部品装置。
Support members and
The element arranged on the support member and
The cured product of the sealing resin composition according to any one of claims 1 to 3, which seals the element, and the cured product.
Electronic component device equipped with.
前記硬化物上に配置された再配線層をさらに備える請求項4に記載の電子部品装置。 The electronic component apparatus according to claim 4, further comprising a rewiring layer arranged on the cured product. 複数個の素子をウエハ上に配置する工程と、
前記複数個の素子を請求項1〜請求項3のいずれか1項に記載の封止用樹脂組成物で一括して封止する工程と、
封止された素子ごとに個片化する工程と、
を含む電子部品装置の製造方法。
The process of arranging multiple elements on the wafer,
A step of collectively sealing the plurality of elements with the sealing resin composition according to any one of claims 1 to 3.
The process of individualizing each sealed element and
Manufacturing method of electronic component equipment including.
前記封止する工程により形成された前記封止用樹脂組成物の硬化物上に再配線層を形成する工程をさらに含み、
前記個片化する工程が、前記再配線層を形成する工程を経た後に行われる請求項6に記載の電子部品装置の製造方法。
A step of forming a rewiring layer on the cured product of the sealing resin composition formed by the sealing step is further included.
The method for manufacturing an electronic component device according to claim 6, wherein the step of individualizing is performed after the step of forming the rewiring layer.
JP2020009128A 2020-01-23 2020-01-23 Sealing resin composition, electronic component device, and method for producing electronic component device Pending JP2021116329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020009128A JP2021116329A (en) 2020-01-23 2020-01-23 Sealing resin composition, electronic component device, and method for producing electronic component device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020009128A JP2021116329A (en) 2020-01-23 2020-01-23 Sealing resin composition, electronic component device, and method for producing electronic component device

Publications (1)

Publication Number Publication Date
JP2021116329A true JP2021116329A (en) 2021-08-10

Family

ID=77174067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020009128A Pending JP2021116329A (en) 2020-01-23 2020-01-23 Sealing resin composition, electronic component device, and method for producing electronic component device

Country Status (1)

Country Link
JP (1) JP2021116329A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238951A1 (en) * 2022-06-10 2023-12-14 株式会社レゾナック Resin composition for molding and electronic component device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235165A (en) * 2008-03-26 2009-10-15 Dic Corp Epoxy resin composition and its cured product
WO2018008416A1 (en) * 2016-07-06 2018-01-11 Dic株式会社 Active ester composition and cured product thereof
JP2018133536A (en) * 2017-02-17 2018-08-23 日立化成株式会社 Encapsulation material, wlp structure optical semiconductor device, and method of manufacturing the same
JP2018172545A (en) * 2017-03-31 2018-11-08 日立化成株式会社 Solid sealing material for compression molding, semiconductor device, and semiconductor device production method
JP2018188494A (en) * 2017-04-28 2018-11-29 住友ベークライト株式会社 Encapsulation resin composition and method for manufacturing electronic device
JP2019077758A (en) * 2017-10-23 2019-05-23 味の素株式会社 Resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235165A (en) * 2008-03-26 2009-10-15 Dic Corp Epoxy resin composition and its cured product
WO2018008416A1 (en) * 2016-07-06 2018-01-11 Dic株式会社 Active ester composition and cured product thereof
JP2018133536A (en) * 2017-02-17 2018-08-23 日立化成株式会社 Encapsulation material, wlp structure optical semiconductor device, and method of manufacturing the same
JP2018172545A (en) * 2017-03-31 2018-11-08 日立化成株式会社 Solid sealing material for compression molding, semiconductor device, and semiconductor device production method
JP2018188494A (en) * 2017-04-28 2018-11-29 住友ベークライト株式会社 Encapsulation resin composition and method for manufacturing electronic device
JP2019077758A (en) * 2017-10-23 2019-05-23 味の素株式会社 Resin composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
反応性・非反応性変性シリコーンオイル, JPN6023034711, ISSN: 0005138440 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238951A1 (en) * 2022-06-10 2023-12-14 株式会社レゾナック Resin composition for molding and electronic component device

Similar Documents

Publication Publication Date Title
JP6870778B1 (en) Resin composition for molding and electronic component equipment
JPWO2020066856A1 (en) Manufacturing method of sealing resin composition, electronic component device and electronic component device
JP2023100761A (en) Resin composition for encapsulation, electronic component device and method for manufacturing electronic component device
JP7452028B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
WO2020262654A1 (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP2020152825A (en) Resin composition for sealing, electronic component device, and production method for electronic component device
JP2023059892A (en) Resin composition for sealing, electronic component device and method for manufacturing electronic component device
JP2021116329A (en) Sealing resin composition, electronic component device, and method for producing electronic component device
JP7396290B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2022093030A (en) Resin composition and high-frequency device
JP2021084980A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2020122071A (en) Sealing resin composition, electronic component device, and method for manufacturing same
WO2021149727A1 (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
WO2020189309A1 (en) Resin composition for sealing, electronic component device, and production method for electronic component device
WO2022124405A1 (en) Resin composition for molding and high frequency device
JPWO2020158851A1 (en) A resin composition for encapsulation, an electronic component device, and a method for manufacturing the electronic component device.
WO2022124406A1 (en) Molding resin composition and electronic component device
JP2022021902A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2021113253A (en) Sealing resin composition, electronic component device, and method for producing electronic component device
WO2023238951A1 (en) Resin composition for molding and electronic component device
JP2022011184A (en) Sealing resin composition and electronic component device
JP2022021901A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JP2020050793A (en) Sealing resin composition, electronic component device and method for producing electronic component device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240408