WO2022124405A1 - Resin composition for molding and high frequency device - Google Patents

Resin composition for molding and high frequency device Download PDF

Info

Publication number
WO2022124405A1
WO2022124405A1 PCT/JP2021/045636 JP2021045636W WO2022124405A1 WO 2022124405 A1 WO2022124405 A1 WO 2022124405A1 JP 2021045636 W JP2021045636 W JP 2021045636W WO 2022124405 A1 WO2022124405 A1 WO 2022124405A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic filler
resin composition
molding
molding resin
mass
Prior art date
Application number
PCT/JP2021/045636
Other languages
French (fr)
Japanese (ja)
Inventor
格 山浦
道俊 荒田
貴大 齋藤
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2022568352A priority Critical patent/JPWO2022124405A1/ja
Publication of WO2022124405A1 publication Critical patent/WO2022124405A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or Groups 14 to 16 of the Periodic system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present disclosure relates to a molding resin composition and a high frequency device.
  • a high dielectric constant epoxy resin composition used for encapsulating a semiconductor element has been proposed from the viewpoint of miniaturization of a semiconductor package and compatibility with high frequencies (see, for example, Patent Document 1).
  • a material having a high relative permittivity as the sealing material for sealing the antenna, it is possible to reduce the size of the AiP, while the material having a high relative permittivity generally has a high dielectric loss tangent.
  • the amount of transmission loss generated by heat conversion of radio waves transmitted for communication in a dielectric is expressed as the product of the square root of frequency and relative permittivity and the dielectric loss tangent. That is, since the transmission signal easily changes to heat in proportion to the frequency, a sealing material having a lower dielectric loss tangent is required in the high frequency band in order to suppress the transmission loss.
  • the radio wave used for communication is increased in frequency in order to cope with the increase in the number of channels due to the diversification of information, and the sealing material has a high relative permittivity and a low dielectric loss tangent. It is required to be compatible with.
  • the present disclosure provides a molding resin composition capable of producing a cured product capable of achieving both a high relative permittivity and a low dielectric loss tangent, and a high frequency device having a cured product obtained by curing this composition. Make it an issue.
  • ⁇ 4> The molding resin according to ⁇ 3>, wherein the content of the first inorganic filler is 40% by mass or more with respect to the total of the first inorganic filler and the second inorganic filler.
  • Composition. ⁇ 5> The ratio of the average particle size of the first inorganic filler to the average particle size of the second inorganic filler (first inorganic filler / second inorganic filler) is 0.5 to 20.
  • ⁇ 6> The molding resin composition according to any one of ⁇ 3> to ⁇ 5>, wherein the second inorganic filler contains at least one selected from the group consisting of silica particles and alumina particles.
  • ⁇ 7> The molding resin composition according to any one of ⁇ 1> to ⁇ 6>, wherein the average particle size of the first inorganic filler is 0.5 ⁇ m to 30 ⁇ m.
  • the first inorganic filler contains at least one titanium-based inorganic filler selected from the group consisting of barium titanate, calcium titanate, and strontium titanate.
  • the molding resin composition according to one. ⁇ 9> A molding resin composition containing an epoxy resin, a curing agent containing an active ester compound, and a first inorganic filler which is a titanium-based inorganic filler containing a titanium element.
  • ⁇ 10> The molding resin composition according to any one of ⁇ 1> to ⁇ 9> for use in producing the cured product in a high-frequency device having an antenna and a cured product of the resin composition.
  • a high frequency device comprising an antenna and a cured product of the molding resin composition according to any one of ⁇ 1> to ⁇ 10>.
  • a molding resin composition capable of producing a cured product capable of achieving both a high relative permittivity and a low dielectric loss tangent, and a high frequency device having a cured product obtained by curing the composition. be able to.
  • the term "process” includes, in addition to a process independent of other processes, the process as long as the purpose of the process is achieved even if it cannot be clearly distinguished from the other process. ..
  • the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • each component may contain a plurality of applicable substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • a plurality of types of particles corresponding to each component may be contained.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition, unless otherwise specified.
  • the molding resin composition of the present disclosure contains an epoxy resin, a curing agent containing an active ester compound, and a first inorganic filler which is an inorganic filler having a relative permittivity of 8 or more at 10 GHz.
  • the molding resin composition of the present disclosure contains an active ester compound which is a curing agent for an epoxy resin and a first inorganic filler, so that a high specific dielectric constant and a low dielectric loss tangent can be achieved at the same time. Can manufacture things.
  • the molding resin composition of the present disclosure is used for producing a resin molded product by using various molding methods such as a low pressure transfer molding method, an injection molding method, and a compression molding method.
  • the molding resin composition of the present disclosure may be a composition used for sealing a member such as an antenna.
  • a phenol curing agent, an amine curing agent, or the like is generally used as a curing agent for an epoxy resin, but a secondary hydroxyl group is generated in the reaction between the epoxy resin and the phenol curing agent or the amine curing agent.
  • an ester group is generated instead of the secondary hydroxyl group. Since the ester group has a lower polarity than the secondary hydroxyl group, the molding resin composition of the present disclosure is a cured product as compared with a molding resin composition containing only a curing agent that generates a secondary hydroxyl group as a curing agent. It is considered that the dielectric positive contact of the resin can be kept low.
  • the molding resin composition of the present embodiment contains an epoxy resin, a curing agent containing an active ester compound, and a first inorganic filler, and may contain other components as necessary.
  • epoxy resin The type of epoxy resin is not particularly limited as long as it has an epoxy group in the molecule.
  • the epoxy resin is at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A and bisphenol F, and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • a novolak type epoxy resin (phenol novolak type) which is an epoxidation of a novolak resin obtained by condensing or cocondensing a kind of phenolic compound and an aliphatic aldehyde compound such as formaldehyde, acetaldehyde, and propionaldehyde under an acidic catalyst.
  • Diphenylmethane type epoxy resin which is a diglycidyl ether such as A and bisphenol F; biphenyl type epoxy resin which is an alkyl-substituted or unsubstituted biphenol diglycidyl ether; stillben type epoxy resin which is a diglycidyl ether of a stilben-based phenol compound; bisphenol Sulfur atom-containing epoxy resin that is a diglycidyl ether such as S; epoxy resin that is an alcoholic glycidyl ether such as butanediol, polyethylene glycol, polypropylene glycol; and a polyvalent carboxylic acid compound such as phthalic acid, isophthalic acid, and tetrahydrophthalic acid.
  • Glysidyl ester type epoxy resin which is a glycidyl ester; glycidylamine type epoxy resin, which is obtained by substituting an active hydrogen bonded to a nitrogen atom such as aniline, diaminodiphenylmethane, or isocyanuric acid with a glycidyl group; Dicyclopentadiene-type epoxy resin, which is an epoxide of a condensed resin; vinylcyclohexene epoxide, which is an epoxide of an olefin bond in a molecule, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxide) cyclohexyl-5,5 An alicyclic epoxy resin such as 5-spiro (3,4-epoxy) cyclohexane-m-dioxane; a paraxylylene-modified epoxy resin that is
  • Phenol formaldehyde resin; etc. may be mentioned. Further, an epoxy resin such as an acrylic resin can also be mentioned as an epoxy resin. These epoxy resins may be used alone or in combination of two or more. From the viewpoint of heat resistance, the epoxy resin preferably contains a triphenylmethane type epoxy resin.
  • the epoxy resin may contain a triphenylmethane type epoxy resin and a biphenyl type epoxy resin, and may contain a biphenyl aralkyl type epoxy resin and a biphenyl type epoxy resin.
  • the epoxy equivalent (molecular weight / number of epoxy groups) of the epoxy resin is not particularly limited. From the viewpoint of balance of various characteristics such as moldability, heat resistance and electrical reliability, it is preferably 100 g / eq to 1000 g / eq, and more preferably 150 g / eq to 500 g / eq.
  • the epoxy equivalent of the epoxy resin shall be a value measured by a method according to JIS K 7236: 2009.
  • the temperature is preferably 40 ° C. to 180 ° C., and from the viewpoint of handleability when preparing the molding resin composition, the temperature is more preferably 50 ° C. to 130 ° C.
  • the melting point or softening point of the epoxy resin shall be a value measured by differential scanning calorimetry (DSC) or a method according to JIS K 7234: 1986 (ring ball method).
  • the content of the epoxy resin in the molding resin composition is preferably 0.5% by mass to 30% by mass, preferably 2% by mass to 20% by mass, from the viewpoints of strength, fluidity, heat resistance, moldability, and the like. Is more preferable, and 3% by mass to 10% by mass is further preferable.
  • the molding resin composition contains a curing agent containing an active ester compound.
  • the molding resin composition may contain a curing agent other than the active ester compound, and may not contain a curing agent other than the active ester compound.
  • the active ester compound may be used alone or in combination of two or more.
  • the type of the active ester compound is not particularly limited as long as it is a compound having one or more ester groups in the molecule that react with the epoxy group.
  • a phenol curing agent, an amine curing agent, or the like is generally used as the curing agent for the epoxy resin, but a secondary hydroxyl group is generated in the reaction between the epoxy resin and the phenol curing agent or the amine curing agent.
  • an ester group is generated instead of the secondary hydroxyl group. Since the ester group has a lower polarity than the secondary hydroxyl group, there is a tendency that the dielectric loss tangent of the cured product can be reduced by using the active ester compound as the curing agent.
  • the active ester compound examples include phenol ester compounds, thiophenol ester compounds, N-hydroxyamine ester compounds, and esterified products of heterocyclic hydroxy compounds.
  • the active ester compound may be used alone or in combination of two or more.
  • Examples of the active ester compound include ester compounds obtained from at least one of an aliphatic carboxylic acid and an aromatic carboxylic acid and at least one of an aliphatic hydroxy compound and an aromatic hydroxy compound.
  • Ester compounds containing an aliphatic compound as a component of polycondensation tend to have excellent compatibility with an epoxy resin due to having an aliphatic chain.
  • Ester compounds containing an aromatic compound as a component of polycondensation tend to have excellent heat resistance due to having an aromatic ring.
  • the active ester compound include aromatic esters obtained by a condensation reaction between an aromatic carboxylic acid and a phenolic hydroxyl group.
  • aromatic carboxylic acid component in which 2 to 4 hydrogen atoms of an aromatic ring such as benzene, naphthalene, biphenyl, diphenylpropane, diphenylmethane, diphenyl ether, and diphenylsulfonic acid are substituted with a carboxy group, and the hydrogen atom of the above-mentioned aromatic ring.
  • Aromatic carboxylic acid and a phenolic hydroxyl group are prepared from a mixture of a monovalent phenol in which one of the above is substituted with a hydroxyl group and a polyhydric phenol in which 2 to 4 hydrogen atoms of the aromatic ring are substituted with a hydroxyl group.
  • Aromatic esters obtained by the condensation reaction are preferred. That is, an aromatic ester having a structural unit derived from the aromatic carboxylic acid component, a structural unit derived from the monovalent phenol, and a structural unit derived from the polyhydric phenol is preferable.
  • the active ester compound examples include a phenol resin having a molecular structure in which a phenol compound is knotted via an aliphatic cyclic hydrocarbon group described in JP2012-246367, and an aromatic dicarboxylic acid or Examples thereof include an active ester resin having a structure obtained by reacting the halide with an aromatic monohydroxy compound.
  • the active ester resin a compound represented by the following structural formula (1) is preferable.
  • R 1 is an alkyl group having 1 to 4 carbon atoms
  • X is a benzene ring, a naphthalene ring, a benzene ring or a naphthalene ring substituted with an alkyl group having 1 to 4 carbon atoms, or a biphenyl group
  • Y is a benzene ring, a naphthalene ring, or a benzene ring or a naphthalene ring substituted with an alkyl group having 1 to 4 carbon atoms
  • k is 0 or 1
  • n represents the average number of repetitions. It is 25 to 1.5.
  • T-Bu in the structural formula is a tert-butyl group.
  • the compound represented by the following structural formula (2) and the compound represented by the following structural formula (3) described in JP-A-2014-114352 can be used. Can be mentioned.
  • R 1 and R 2 are independently hydrogen atoms, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • Z is a benzoyl group, a naphthoyl group, or a carbon.
  • R 1 and R 2 are independently hydrogen atoms, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • Z is a benzoyl group, a naphthoyl group, or a carbon.
  • Specific examples of the compound represented by the structural formula (2) include the following exemplary compounds (2-1) to (2-6).
  • Specific examples of the compound represented by the structural formula (3) include the following exemplary compounds (3-1) to (3-6).
  • active ester compound a commercially available product may be used.
  • Commercially available active ester compounds include “EXB9451”, “EXB9460”, “EXB9460S”, “HPC-8000-65T” (manufactured by DIC Co., Ltd.) as active ester compounds containing a dicyclopentadiene-type diphenol structure; aromatics.
  • EXB9416-70BK”, “EXB-8”, “EXB-9425” manufactured by DIC Co., Ltd.
  • DC808 Mitsubishi Chemical Co., Ltd.
  • Examples of the active ester compound containing a benzoylated product of phenol novolac include "YLH1026" (manufactured by Mitsubishi Chemical Co., Ltd.).
  • the ester group equivalent of the active ester compound is not particularly limited. From the viewpoint of balance of various characteristics such as moldability, heat resistance, and electrical reliability, 150 g / eq to 400 g / eq is preferable, 170 g / eq to 300 g / eq is more preferable, and 200 g / eq to 250 g / eq is further preferable. preferable.
  • the ester group equivalent of the active ester compound shall be a value measured by a method according to JIS K 0070: 1992.
  • the other curing agents include a phenol curing agent, an amine curing agent, and an acid anhydride curing agent.
  • the other curing agents include a phenol curing agent, an amine curing agent, and an acid anhydride curing agent.
  • the curing agent may contain a phenol curing agent from the viewpoint of suppressing the dielectric loss tangent of the cured product to a low level and from the viewpoint of moldability.
  • phenolic curing agent examples include polyhydric phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol.
  • At least one phenolic compound selected from the group consisting of phenolic compounds such as aminophenol and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, and aldehyde compounds such as formaldehyde, acetaldehyde and propionaldehyde are acid catalysts.
  • Novorak-type phenolic resin obtained by condensing or co-condensing underneath; Phenolic aralkyl resin synthesized from the above phenolic compound and dimethoxyparaxylene, bis (methoxymethyl) biphenyl, etc., aralkyl-type phenolic resin such as naphthol aralkyl resin.
  • Paraxylylene-modified phenolic resin methaxylylene-modified phenolic resin; Melamine-modified phenolic resin; Terpen-modified phenolic resin; Dicyclopentadiene-type phenolic resin and dicyclopentadiene-type naphthol synthesized by copolymerization of the above phenolic compound with dicyclopentadiene.
  • Resin Cyclopentadiene-modified phenolic resin; Polycyclic aromatic ring-modified phenolic resin; Biphenyl-type phenolic resin; Obtained by condensing or co-condensing the above phenolic compound with aromatic aldehyde compounds such as benzaldehyde and salicylaldehyde under an acidic catalyst.
  • Triphenylmethane-type phenolic resins examples thereof include phenolic resins obtained by copolymerizing two or more of these. These phenol curing agents may be used alone or in combination of two or more.
  • the functional group equivalents of other curing agents are not particularly limited. From the viewpoint of the balance of various characteristics such as moldability, heat resistance, and electrical reliability, it is preferably 70 g / eq to 1000 g / eq, and more preferably 80 g / eq to 500 g / eq.
  • the functional group equivalent of other curing agents shall be a value measured by a method according to JIS K 0070: 1992.
  • the curing agent When the curing agent is a solid, its softening point or melting point is not particularly limited. From the viewpoint of moldability and heat resistance, it is preferably 40 ° C. to 180 ° C., and from the viewpoint of handleability at the time of manufacturing the molding resin composition, it is more preferably 50 ° C. to 130 ° C.
  • the melting point or softening point of the curing agent shall be a value measured in the same manner as the melting point or softening point of the epoxy resin.
  • the equivalent ratio of the epoxy resin to the curing agent is not particularly limited. From the viewpoint of suppressing each unreacted component to a small amount, it is preferably set in the range of 0.5 to 2.0, and more preferably set in the range of 0.6 to 1.3. From the viewpoint of moldability and heat resistance, it is more preferable to set it in the range of 0.8 to 1.2.
  • the content of the active ester compound with respect to the total mass of the curing agent is preferably 80% by mass or more, preferably 85% by mass or more, from the viewpoint of keeping the dielectric adjacency of the cured product low. It is more preferably present, and further preferably 90% by mass or more.
  • the molding resin composition may contain a curing accelerator.
  • the type of the curing accelerator is not particularly limited, and can be selected according to the type of the epoxy resin or the curing agent, the desired characteristics of the molding resin composition, and the like.
  • curing accelerator examples include diazabicycloalkene such as 1,5-diazabicyclo [4.3.0] nonen-5 (DBN) and 1,8-diazabicyclo [5.4.0] undecene-7 (DBU).
  • Cyclic amidin compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole; derivatives of the cyclic amidin compound; phenol novolac salts of the cyclic amidin compound or its derivatives; these.
  • Cyclic amidinium compounds such as DBU tetraphenylborate salt, DBN tetraphenylborate salt, 2-ethyl-4-methylimidazole tetraphenylborate salt, N-methylmorpholin tetraphenylborate salt and isocyanate are added.
  • DBU isocyanate adduct
  • DBN isocyanate adduct
  • 2-ethyl-4-methylimidazole isocyanate adduct N-methylmorpholin isocyanate adduct
  • pyridine triethylamine, triethylenediamine, benzyldimethylamine, triethanol
  • Tertiary amine compounds such as amines, dimethylaminoethanol, tris (dimethylaminomethyl) phenols
  • derivatives of the tertiary amine compounds tetra-n-butylammonium acetate, tetra-n-butylammonium phosphate, tetraethylammonium acetate, benzo
  • Ammonium salt compounds such as tetra-n-hexylammonium acid and tetrapropylammonium hydroxide; first phosphine such as ethylphosphine and phenylphosphine, second
  • Phosphin Tris (alkylphenyl) phosphin, Tris (alkoxyphenyl) phosphin, Tris (alkyl / alkoxyphenyl) phosphin, Tris (dialkylphenyl) phosphin, Tris (trialkylphenyl) phosphin, Tris (Tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, alkyldiarylphosphine, trinaphthylphosphine, tris (benzyl) ) Organic phosphine such as tertiary phosphine such as phosphine; phosphine compound such as a complex of the organic phosphine and
  • Obtained compounds having intramolecular polarization tetra-substituted phosphoniums such as tetraphenylphosphonium, tetra-phenylborate salts of tetra-substituted phosphoniums such as tetra-p-tolylbolate, salts of tetra-substituted phosphoniums and phenolic compounds, etc. , Tetra-substituted phosphonium compounds; salts of tetraalkylphosphoniums and partial hydrolysates of aromatic carboxylic acid anhydrides; phosphobetaine compounds; adducts of phosphonium compounds and silane compounds; and the like.
  • the curing accelerator may be used alone or in combination of two or more.
  • particularly suitable curing accelerators include triphenylphosphine, an adduct of triphenylphosphine and a quinone compound, an adduct of tributylphosphine and a quinone compound, and an adduct of tri-p-tolylphosphine and a quinone compound. Things etc. can be mentioned.
  • the amount thereof is preferably 0.1 part by mass to 30 parts by mass with respect to 100 parts by mass of the resin component (total amount of the epoxy resin and the curing agent). It is more preferably 1 part by mass to 15 parts by mass.
  • the amount of the curing accelerator is 0.1 part by mass or more with respect to 100 parts by mass of the resin component, it tends to cure well in a short time.
  • the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing rate is not too fast and a good molded product tends to be obtained.
  • the molding resin composition contains a first inorganic filler which is an inorganic filler having a relative permittivity of 8 or more at 10 GHz.
  • the first inorganic filler may be used alone or in combination of two or more.
  • the first inorganic filler preferably has a relative permittivity of 8 to 100 at 10 GHz, and more preferably 10 to 100.
  • the first inorganic filler preferably contains a titanium-based inorganic filler containing a titanium element from the viewpoint of high dielectric constant.
  • the titanium-based inorganic filler include barium titanate, calcium titanate, strontium titanate, zinc zirconate titanate, and titanium oxide. Of these, barium titanate, calcium titanate and strontium titanate are preferred. Of these, barium titanate is preferable from the viewpoint of high sphericity and high fluidity.
  • the average particle size of the first inorganic filler is preferably 0.1 m to 100 ⁇ m, more preferably 0.5 ⁇ m to 30 ⁇ m, further preferably 1.0 ⁇ m to 20 ⁇ m, and even more preferably 3.0 ⁇ m to 3.0 ⁇ m. It is particularly preferably 10 ⁇ m.
  • the average particle size of the first inorganic filler can be measured as follows.
  • the molding resin composition is placed in a crucible and left at 800 ° C. for 4 hours to incinerate.
  • the particle size distribution of ash obtained by using a laser diffraction / scattering type particle size distribution measuring device (for example, Horiba Seisakusho Co., Ltd., LA920) was obtained, and the average particle size of the inorganic filler was used as the volume average particle size (D50) from the particle size distribution.
  • the particle size can be determined.
  • the shape of the first inorganic filler is not particularly limited, and examples thereof include a spherical shape, an elliptical shape, and an amorphous shape. Further, the first inorganic filler may be crushed.
  • the relative permittivity of the inorganic filler at 10 GHz is a value measured by the following method. 100 parts by mass of epoxy resin (biphenyl aralkyl type epoxy resin, epoxy equivalent 274 g / eq), 74.8 parts by mass of phenol curing agent (phenol aralkyl resin, hydroxyl group equivalent 205 g / eq) and 1,4-benzoquinone adduct of triphenylphosphine Two parts by mass of the resin composition, the inorganic filler, and the methyl ethyl ketone (MEK) are mixed, and the above-mentioned resin composition is dissolved in MEK to prepare a varnish (75% by mass of the total of the resin composition and the inorganic filler).
  • epoxy resin biphenyl aralkyl type epoxy resin, epoxy equivalent 274 g / eq
  • phenol curing agent phenol aralkyl resin, hydroxyl group equivalent 205 g / eq
  • varnishes having an inorganic filler content of 10% by volume, 20% by volume, and 30% by volume with respect to the solid content excluding the solvent are prepared, respectively.
  • the obtained varnish was applied onto the substrate, the substrate was dried under the conditions of 100 ° C. for 10 minutes, and then the resin film was peeled off from the substrate.
  • the obtained resin film is molded by compression molding under the conditions of a mold temperature of 175 ° C., a molding pressure of 6.9 MPa, and a curing time of 600 seconds to obtain a cured product for measurement.
  • the relative permittivity at 10 GHz in each of the obtained cured products for measurement is measured, and a graph is created in which the content of the inorganic filler is plotted on the horizontal axis and the measured value of the relative permittivity is plotted on the vertical axis. From the obtained graph, a linear approximation is performed by the least squares method, and the relative permittivity when the content of the inorganic filler is 100% by volume is obtained by extrapolation and used as "the relative permittivity of the entire inorganic filler".
  • the molding resin composition may further contain a second inorganic filler, which is an inorganic filler having a relative permittivity of less than 8 at 10 GHz.
  • the second inorganic filler may have a relative permittivity of 4 or less at 10 GHz.
  • the lower limit of the relative permittivity at 10 GHz is not particularly limited, and may be, for example, 2 or more, or 6 or more.
  • the type of the second inorganic filler is not particularly limited. Specific examples thereof include inorganic materials such as fused silica, crystalline silica, glass, alumina, talc, clay and mica.
  • an inorganic filler having a flame-retardant effect may be used as the second inorganic filler. Examples of the inorganic filler having a flame-retardant effect include aluminum hydroxide, magnesium hydroxide, a composite metal hydroxide such as a composite hydroxide of magnesium and zinc, and zinc borate.
  • silica such as molten silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity.
  • the second inorganic filler may be used alone or in combination of two or more. Examples of the form of the second inorganic filler include powder, beads obtained by spheroidizing the powder, fibers and the like.
  • the average particle size of the second inorganic filler is preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 0.5 ⁇ m to 30 ⁇ m.
  • the average particle size of the second inorganic filler can be measured by the same method as that of the first inorganic filler described above.
  • the second inorganic filler may contain two or more kinds of inorganic fillers having different average particle sizes from the viewpoint of fluidity.
  • the second inorganic filler may contain an inorganic filler having an average particle size of 0.1 ⁇ m to 5 ⁇ m and an inorganic filler having an average particle size of 10 ⁇ m to 50 ⁇ m.
  • the content of the inorganic filler contained in the molding resin composition is not particularly limited, and is preferably 50% by mass to 95% by mass of the entire molding resin composition from the viewpoint of fluidity and strength. It is more preferably 60% by mass to 95% by mass, and even more preferably 70% by mass to 90% by mass.
  • the properties such as the relative permittivity, the coefficient of thermal expansion, the thermal conductivity, and the elastic modulus of the cured product tend to be further improved.
  • the content of the inorganic filler is 95% by mass or less of the entire molding resin composition, an increase in the viscosity of the molding resin composition is suppressed, the fluidity is further improved, and the moldability tends to be better. It is in.
  • the "inorganic filler" in the content of the inorganic filler contained in the molding resin composition and the inorganic filler described below mean the total of the first inorganic filler and the second inorganic filler.
  • the "inorganic filler" means the first inorganic filler.
  • the content of the first inorganic filler is 40 mass by mass with respect to the total of the first inorganic filler and the second inorganic filler from the viewpoint of the relative permittivity of the cured product. % Or more, more preferably 55% by mass or more, and even more preferably 70% by mass or more.
  • the content of the first inorganic filler may be 95% by mass or less with respect to the total of the first inorganic filler and the second inorganic filler.
  • the ratio of the average particle size of the first inorganic filler to the average particle size of the second inorganic filler is fluidity.
  • the content is preferably 0.5 to 20, and more preferably 1 to 10.
  • the molding resin composition may contain various additives such as a coupling agent, an ion exchanger, a mold release agent, a flame retardant, a colorant, and a stress relaxation agent exemplified below.
  • the molding resin composition may contain various additives well known in the art, if necessary, in addition to the additives exemplified below.
  • the molding resin composition may contain a coupling agent.
  • the molding resin composition preferably contains a coupling agent.
  • the coupling agent include known coupling agents such as silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, vinylsilane and disilazane, titanium compounds, aluminum chelate compounds and aluminum / zirconium compounds. Can be mentioned.
  • the amount of the coupling agent is preferably 0.05 parts by mass to 5 parts by mass, and 0.1 parts by mass to 5 parts by mass with respect to 100 parts by mass of the inorganic filler. More preferably, it is 2.5 parts by mass.
  • the amount of the coupling agent is 0.05 parts by mass or more with respect to 100 parts by mass of the inorganic filler, the adhesiveness with the frame tends to be further improved.
  • the amount of the coupling agent is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
  • the molding resin composition may contain an ion exchanger. From the viewpoint of improving the moisture resistance and high temperature standing characteristics of the high frequency device including the cured product of the molding resin composition, it is preferable to include an ion exchanger.
  • the ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples thereof include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth. As the ion exchanger, one type may be used alone or two or more types may be used in combination. Of these, hydrotalcite represented by the following general formula (A) is preferable.
  • the content thereof is not particularly limited as long as it is an amount sufficient to capture ions such as halogen ions.
  • it is preferably 0.1 part by mass to 30 parts by mass, and more preferably 1 part by mass to 10 parts by mass with respect to 100 parts by mass of the resin component (total amount of epoxy resin and curing agent).
  • the molding resin composition may contain a mold release agent from the viewpoint of obtaining good mold release property from the mold at the time of molding.
  • the release agent is not particularly limited, and conventionally known release agents can be used. Specific examples thereof include higher fatty acids such as carnauba wax, montanic acid and stearic acid, ester waxes such as higher fatty acid metal salts and montanic acid esters, and polyolefin waxes such as polyethylene oxide and non-oxidized polyethylene.
  • the release agent one type may be used alone or two or more types may be used in combination.
  • the amount thereof is preferably 0.01 part by mass to 10 parts by mass, preferably 0.1 part by mass with respect to 100 parts by mass of the resin component (total amount of epoxy resin and curing agent). 5 parts by mass is more preferable.
  • the amount of the mold release agent is 0.01 part by mass or more with respect to 100 parts by mass of the resin component, the mold release property tends to be sufficiently obtained.
  • it is 10 parts by mass or less, better adhesiveness tends to be obtained.
  • the molding resin composition may contain a flame retardant.
  • the flame retardant is not particularly limited, and conventionally known flame retardants can be used. Specific examples thereof include organic or inorganic compounds containing halogen atoms, antimony atoms, nitrogen atoms or phosphorus atoms, metal hydroxides and the like.
  • the flame retardant may be used alone or in combination of two or more.
  • the amount thereof is not particularly limited as long as it is sufficient to obtain the desired flame retardant effect.
  • it is preferably 1 part by mass to 30 parts by mass, and more preferably 2 parts by mass to 20 parts by mass with respect to 100 parts by mass (total amount of epoxy resin and curing agent) of the resin component.
  • the molding resin composition may contain a colorant.
  • the colorant include known colorants such as carbon black, organic dyes, organic pigments, titanium oxide, lead tan, and red iron oxide.
  • the content of the colorant can be appropriately selected according to the purpose and the like.
  • the colorant one type may be used alone or two or more types may be used in combination.
  • the molding resin composition may contain a stress relaxation agent.
  • a stress relaxation agent By containing a stress relaxation agent, it is possible to further reduce the warpage deformation of the package and the occurrence of package cracks.
  • the stress relaxation agent include commonly used known stress relaxation agents (flexible agents). Specifically, thermoplastic elastomers such as silicone-based, styrene-based, olefin-based, urethane-based, polyester-based, polyether-based, polyamide-based, and polybutadiene-based, NR (natural rubber), NBR (acrylonitrile-butadiene rubber), and acrylic.
  • Rubber particles such as rubber, urethane rubber, silicone powder, core-shell such as methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, methyl methacrylate-butyl acrylate copolymer, etc.
  • MFS methyl methacrylate-styrene-butadiene copolymer
  • Examples include rubber particles having a structure.
  • the stress relaxation agent one type may be used alone or two or more types may be used in combination.
  • silicone-based stress relaxation agents are preferable.
  • the silicone-based stress relieving agent include those having an epoxy group, those having an amino group, those obtained by modifying these with a polyether, and the like, and silicone compounds such as a silicone compound having an epoxy group and a polyether silicone compound are more suitable.
  • a polyether silicone compound is preferable from the viewpoint of reducing the dielectric loss tangent of the cured product and suppressing the appearance deterioration of the cured product.
  • the polyether-based silicone compound is not particularly limited as long as it is a compound in which a polyether group is introduced into silicone, which is a polymer compound having a main skeleton due to a siloxane bond.
  • the polyether silicone compound one type may be used alone or two or more types may be used in combination.
  • the polyether-based silicone compound may be a side chain-modified type polyether-based silicone compound or a terminal-modified type polyether-based silicone compound.
  • the polyether-based silicone compound is preferably a side chain-modified type polyether-based silicone compound from the viewpoint of suppressing the appearance deterioration of the cured product.
  • polyether-based silicone compound is an epoxy-polyester-based silicone compound.
  • the epoxy-polyether-based silicone compound is not particularly limited as long as it is a compound in which a polyether group and an epoxy group are introduced into silicone, which is a polymer compound having a main skeleton due to a siloxane bond.
  • the epoxy / polyether silicone compound may be a side chain modified epoxy / polyether silicone compound, a terminal modified epoxy / polyether silicone compound, and a side chain and a terminal modified epoxy. It may be a polyether silicone compound. Polydimethylsiloxane is preferable as the main skeleton of the epoxy / polyether silicone compound.
  • the epoxy-polyether-based silicone compound is a side in which a polyether group (preferably a polyether group in which one or both of ethylene oxide and propylene oxide are polymerized) and an epoxy group are present in the side chain of silicone (preferably polydimethylsiloxane). It is preferably a chain-modified epoxy / polyether silicone compound.
  • the amount thereof is preferably, for example, 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the resin component (total amount of the epoxy resin and the curing agent). It is more preferably 2 parts by mass to 20 parts by mass.
  • Modifications of the molding resin composition of the present disclosure include an epoxy resin, a curing agent containing an active ester compound, and a first inorganic filler which is a titanium-based inorganic filler containing a titanium element.
  • a cured product having both a high relative permittivity and a low dielectric loss tangent is obtained by containing an active ester compound which is a curing agent for an epoxy resin and a titanium-based inorganic filler containing a titanium element.
  • the preferred forms of the epoxy resin and the active ester compound used in this modification are the same as the preferred forms of the epoxy resin and the active ester compound used in the above-mentioned molding resin composition of the present disclosure.
  • the preferred form of the modified example of the molding resin composition of the present disclosure is the same as that of the above-mentioned molding resin composition of the present disclosure.
  • the titanium-based inorganic filler containing the titanium element used in this modification preferably has a relative permittivity of 8 or more at 10 GHz, and more preferably has a relative permittivity of 8 to 100 at 10 GHz. It is more preferable that the relative permittivity at 10 GHz is 10 to 100.
  • a preferred form of the first inorganic filler which is a titanium-based inorganic filler containing a titanium element used in the present modification, is the first inorganic filler used in the above-mentioned molding resin composition of the present disclosure. This is similar to the preferred form of the material.
  • the method for preparing the molding resin composition is not particularly limited.
  • a method of sufficiently mixing a predetermined blending amount of components with a mixer or the like, then melt-kneading with a mixing roll, an extruder or the like, cooling and pulverizing can be mentioned. More specifically, for example, a method in which a predetermined amount of the above-mentioned components is uniformly stirred and mixed, kneaded with a kneader, roll, extruder or the like preheated to 70 ° C. to 140 ° C., cooled and pulverized. Can be mentioned.
  • the molding resin composition is preferably solid at normal temperature and pressure (for example, 25 ° C. and atmospheric pressure).
  • the shape is not particularly limited, and examples thereof include powder, granules, and tablets.
  • the molding resin composition is in the shape of a tablet, it is preferable that the dimensions and mass are suitable for the molding conditions of the package from the viewpoint of handleability.
  • the high frequency device of the present disclosure comprises an antenna and a cured product of the molding resin composition of the present disclosure.
  • the high frequency device of the present disclosure is used, for example, when transmitting and receiving radio waves of 1 GHz or higher, and preferably used when transmitting and receiving radio waves of 3 GHz or higher.
  • the high-frequency device of the present disclosure may have a structure in which the cured product of the molding resin composition of the present disclosure seals the antenna, and the antenna is arranged on the cured product of the molding resin composition of the present disclosure. It may have a structure that has been modified.
  • Epoxy resin 1 Triphenylmethane type epoxy resin, epoxy equivalent 167 g / eq -Epoxy resin 2: Biphenyl aralkyl type epoxy resin, epoxy equivalent 274 g / eq -Epoxy resin 3: Biphenyl type epoxy resin, epoxy equivalent 192 g / eq -Active ester compound: Active ester compound containing aromatic structure-Phenol curing agent: Phenolic aralkyl resin, hydroxyl group equivalent 205 g / eq ⁇ Curing accelerator: 1,4-benzoquinone adduct of triphenylphosphine ⁇ Coupling agent: N-phenyl-3-aminopropyltrimethoxysilane ⁇ Release agent: montanic acid ester wax ⁇ Coloring agent: carbon black ⁇ Additive : Side chain modified epoxy / polyether modified silicone, viscosity (25 ° C): 1.50 Pa ⁇ s Inorganic filler 1: Spherical
  • the gel time of the molding resin composition at 175 ° C. was measured as follows. Specifically, 0.5 g of a sample of the resin composition for molding is placed on a hot plate heated to 175 ° C., and the sample is placed at a rotation speed of 20 rotations / minute to 25 rotations / minute using a jig. It was spread evenly in a circle of 0 cm to 2.5 cm. The time from when the sample was placed on the hot plate until the sample became less viscous and became a gel state and peeled off from the hot plate was measured, and this was measured as the gel time (seconds). The results are shown in Table 1.
  • the molding resin composition is molded with a hand press machine under the conditions of a mold temperature of 175 ° C., a molding pressure of 6.9 MPa, and a curing time of 600 seconds, and post-curing is performed at 175 ° C. for 6 hours to cut the plate-shaped cured product. (Length 50 mm, width 1 mm, thickness about 0.5 mm) were obtained.
  • a permittivity measuring device (Agilent, product name "Network Analyzer N5227A") was used to measure the relative permittivity and dielectric loss tangent at 10 GHz at a temperature of 25 ⁇ 3 ° C. .. The results are shown in Table 1.
  • Example 1 As shown in Table 1, when Example 1 and Comparative Example 1 in which the same epoxy resin is used and the composition of the inorganic filler is similar are compared, in Example 1, a high relative permittivity and a low dielectric loss tangent are compatible. It was found that a cured product was obtained.

Abstract

A resin composition for molding, said resin composition containing an epoxy resin, a curing agent that contains an active ester compound, and a first inorganic filler that has a relative dielectric constant of 8 or more at 10 GHz.

Description

成形用樹脂組成物及び高周波デバイスMolding resin compositions and high frequency devices
 本開示は、成形用樹脂組成物及び高周波デバイスに関する。 The present disclosure relates to a molding resin composition and a high frequency device.
 近年の電子機器の高機能化、軽薄短小化の要求に伴い電子部品の高密度集積化、さらには高密度実装化が進んできており、これらの電子機器に使用される半導体パッケージは、従来にも増して、益々、小型化が進んでいる。さらに、電子機器の通信に使用される電波の高周波化も進んでいる。 In recent years, with the demand for higher functionality, lighter weight, shorter length, and smaller electronic devices, high-density integration of electronic components and high-density mounting have progressed, and semiconductor packages used in these electronic devices have been conventionally used. The size is increasing, and the size is getting smaller and smaller. Furthermore, the frequency of radio waves used for communication of electronic devices is increasing.
 半導体パッケージの小型化、及び高周波への対応の点から、半導体素子の封止に用いる高誘電率エポキシ樹脂組成物が提案されている(例えば、特許文献1参照)。 A high dielectric constant epoxy resin composition used for encapsulating a semiconductor element has been proposed from the viewpoint of miniaturization of a semiconductor package and compatibility with high frequencies (see, for example, Patent Document 1).
特開2015-36410号公報JP-A-2015-36410
 ところで、半導体パッケージ(PKG)の小型化及び高機能化に伴い、アンテナ機能を有するPKGであるアンテナ・イン・パッケージ(AiP)の開発も進められている。アンテナを封止する封止材料として比誘電率が高い材料を用いることで、AiPの小型を図ることが可能である一方、比誘電率が高い材料は一般的に誘電正接も高い。 By the way, along with the miniaturization and high functionality of the semiconductor package (PKG), the development of the antenna-in-package (AiP), which is a PKG having an antenna function, is also underway. By using a material having a high relative permittivity as the sealing material for sealing the antenna, it is possible to reduce the size of the AiP, while the material having a high relative permittivity generally has a high dielectric loss tangent.
 通信のために発信された電波が誘電体において熱変換されることで発生する伝送損失の量は、周波数と比誘電率の平方根と誘電正接との積として表される。つまり伝送信号は周波数に比例して熱に変わりやすいので、伝送損失を抑制するために高周波帯ほど誘電正接の低い封止材料が求められる。 The amount of transmission loss generated by heat conversion of radio waves transmitted for communication in a dielectric is expressed as the product of the square root of frequency and relative permittivity and the dielectric loss tangent. That is, since the transmission signal easily changes to heat in proportion to the frequency, a sealing material having a lower dielectric loss tangent is required in the high frequency band in order to suppress the transmission loss.
 例えば、AiPでは、情報の多様化に伴うチャンネル数増加等に対応するため、通信に使用される電波が高周波化されるようになっており、封止材料において、高い比誘電率と低い誘電正接との両立が求められている。 For example, in AiP, the radio wave used for communication is increased in frequency in order to cope with the increase in the number of channels due to the diversification of information, and the sealing material has a high relative permittivity and a low dielectric loss tangent. It is required to be compatible with.
 本開示は、高い比誘電率と低い誘電正接との両立が可能な硬化物を製造できる成形用樹脂組成物、及び、この組成物を硬化してなる硬化物を有する高周波デバイスを提供することを課題とする。 The present disclosure provides a molding resin composition capable of producing a cured product capable of achieving both a high relative permittivity and a low dielectric loss tangent, and a high frequency device having a cured product obtained by curing this composition. Make it an issue.
 前記課題を解決するための具体的手段には、以下の態様が含まれる。
<1> エポキシ樹脂と、活性エステル化合物を含む硬化剤と、10GHzでの比誘電率が8以上の無機充填材である第1の無機充填材と、を含有する成形用樹脂組成物。
<2> 前記第1の無機充填材は、チタン元素を含むチタン系無機充填材を含有する<1>に記載の成形用樹脂組成物。
<3> 10GHzでの比誘電率が8未満の無機充填材である第2の無機充填材をさらに含有する<1>又は<2>に記載の成形用樹脂組成物。
<4> 前記第1の無機充填材の含有率は、前記第1の無機充填材及び前記第2の無機充填材の合計に対して40質量%以上である<3>に記載の成形用樹脂組成物。
<5> 前記第2の無機充填材の平均粒径に対する前記第1の無機充填材の平均粒径の比率(第1の無機充填材/第2の無機充填材)は、0.5~20である<3>又は<4>に記載の成形用樹脂組成物。
<6> 前記第2の無機充填材は、シリカ粒子及びアルミナ粒子からなる群より選択される少なくとも一種を含有する<3>~<5>のいずれか1つに記載の成形用樹脂組成物。
<7> 前記第1の無機充填材の平均粒径は、0.5μm~30μmである<1>~<6>のいずれか1つに記載の成形用樹脂組成物。
<8> 前記第1の無機充填材は、チタン酸バリウム、チタン酸カルシウム及びチタン酸ストロンチウムからなる群より選択される少なくとも一種のチタン系無機充填材を含有する<1>~<7>のいずれか1つに記載の成形用樹脂組成物。
<9> エポキシ樹脂と、活性エステル化合物を含む硬化剤と、チタン元素を含むチタン系無機充填材である第1の無機充填材と、を含有する成形用樹脂組成物。
<10> アンテナ及び樹脂組成物の硬化物を有する高周波デバイスにおける前記硬化物の製造に用いられるための<1>~<9>のいずれか1つに記載の成形用樹脂組成物。
<11> アンテナと、<1>~<10>のいずれか1つに記載の成形用樹脂組成物の硬化物と、を有する高周波デバイス。
Specific means for solving the above-mentioned problems include the following aspects.
<1> A molding resin composition containing an epoxy resin, a curing agent containing an active ester compound, and a first inorganic filler which is an inorganic filler having a relative permittivity of 8 or more at 10 GHz.
<2> The molding resin composition according to <1>, wherein the first inorganic filler contains a titanium-based inorganic filler containing a titanium element.
<3> The molding resin composition according to <1> or <2>, which further contains a second inorganic filler which is an inorganic filler having a relative permittivity of less than 8 at 10 GHz.
<4> The molding resin according to <3>, wherein the content of the first inorganic filler is 40% by mass or more with respect to the total of the first inorganic filler and the second inorganic filler. Composition.
<5> The ratio of the average particle size of the first inorganic filler to the average particle size of the second inorganic filler (first inorganic filler / second inorganic filler) is 0.5 to 20. The molding resin composition according to <3> or <4>.
<6> The molding resin composition according to any one of <3> to <5>, wherein the second inorganic filler contains at least one selected from the group consisting of silica particles and alumina particles.
<7> The molding resin composition according to any one of <1> to <6>, wherein the average particle size of the first inorganic filler is 0.5 μm to 30 μm.
<8> Any of <1> to <7>, wherein the first inorganic filler contains at least one titanium-based inorganic filler selected from the group consisting of barium titanate, calcium titanate, and strontium titanate. The molding resin composition according to one.
<9> A molding resin composition containing an epoxy resin, a curing agent containing an active ester compound, and a first inorganic filler which is a titanium-based inorganic filler containing a titanium element.
<10> The molding resin composition according to any one of <1> to <9> for use in producing the cured product in a high-frequency device having an antenna and a cured product of the resin composition.
<11> A high frequency device comprising an antenna and a cured product of the molding resin composition according to any one of <1> to <10>.
 本開示によれば、高い比誘電率と低い誘電正接との両立が可能な硬化物を製造できる成形用樹脂組成物、及び、この組成物を硬化してなる硬化物を有する高周波デバイスを提供することができる。 According to the present disclosure, there are provided a molding resin composition capable of producing a cured product capable of achieving both a high relative permittivity and a low dielectric loss tangent, and a high frequency device having a cured product obtained by curing the composition. be able to.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
In the present disclosure, the term "process" includes, in addition to a process independent of other processes, the process as long as the purpose of the process is achieved even if it cannot be clearly distinguished from the other process. ..
In the present disclosure, the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, a plurality of types of particles corresponding to each component may be contained. When a plurality of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the plurality of particles present in the composition, unless otherwise specified.
<成形用樹脂組成物>
 本開示の成形用樹脂組成物は、エポキシ樹脂と、活性エステル化合物を含む硬化剤と、10GHzでの比誘電率が8以上の無機充填材である第1の無機充填材と、を含有する。本開示の成形用樹脂組成物が、エポキシ樹脂の硬化剤である活性エステル化合物と、第1の無機充填材と、を含有することで、高い比誘電率と低い誘電正接とが両立された硬化物を製造できる。さらに、本開示の成形用樹脂組成物は、低圧トランスファ成形法、インジェクション成形法、圧縮成形法等の各種成形法を用いて樹脂成形物を製造するために用いられるものである。本開示の成形用樹脂組成物は、アンテナ等の部材を封止するために用いられる組成物であってもよい。
<Plastic composition for molding>
The molding resin composition of the present disclosure contains an epoxy resin, a curing agent containing an active ester compound, and a first inorganic filler which is an inorganic filler having a relative permittivity of 8 or more at 10 GHz. The molding resin composition of the present disclosure contains an active ester compound which is a curing agent for an epoxy resin and a first inorganic filler, so that a high specific dielectric constant and a low dielectric loss tangent can be achieved at the same time. Can manufacture things. Further, the molding resin composition of the present disclosure is used for producing a resin molded product by using various molding methods such as a low pressure transfer molding method, an injection molding method, and a compression molding method. The molding resin composition of the present disclosure may be a composition used for sealing a member such as an antenna.
 従来、エポキシ樹脂の硬化剤としては一般的にフェノール硬化剤、アミン硬化剤等が使用されているところ、エポキシ樹脂とフェノール硬化剤又はアミン硬化剤との反応においては2級水酸基が発生する。これに対して、エポキシ樹脂と活性エステル化合物との反応においては2級水酸基の代わりにエステル基が生じる。エステル基は2級水酸基に比べて極性が低い故、本開示の成形用樹脂組成物は、硬化剤として2級水酸基を発生させる硬化剤のみを含有する成形用樹脂組成物に比べて、硬化物の誘電正接を低く抑えることができる、と考えられる。 Conventionally, a phenol curing agent, an amine curing agent, or the like is generally used as a curing agent for an epoxy resin, but a secondary hydroxyl group is generated in the reaction between the epoxy resin and the phenol curing agent or the amine curing agent. On the other hand, in the reaction between the epoxy resin and the active ester compound, an ester group is generated instead of the secondary hydroxyl group. Since the ester group has a lower polarity than the secondary hydroxyl group, the molding resin composition of the present disclosure is a cured product as compared with a molding resin composition containing only a curing agent that generates a secondary hydroxyl group as a curing agent. It is considered that the dielectric positive contact of the resin can be kept low.
 以下、成形用樹脂組成物を構成する各成分について説明する。本実施形態の成形用樹脂組成物は、エポキシ樹脂と、活性エステル化合物を含む硬化剤と、第1の無機充填材と、を含有し、必要に応じてその他の成分を含有してもよい。 Hereinafter, each component constituting the molding resin composition will be described. The molding resin composition of the present embodiment contains an epoxy resin, a curing agent containing an active ester compound, and a first inorganic filler, and may contain other components as necessary.
(エポキシ樹脂)
 エポキシ樹脂は、分子中にエポキシ基を有するものであればその種類は特に制限されない。
(Epoxy resin)
The type of epoxy resin is not particularly limited as long as it has an epoxy group in the molecule.
 エポキシ樹脂として具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはアクリル樹脂のエポキシ化物等もエポキシ樹脂として挙げられる。これらのエポキシ樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 耐熱性の観点から、エポキシ樹脂は、トリフェニルメタン型エポキシ樹脂を含有することが好ましい。
 エポキシ樹脂は、トリフェニルメタン型エポキシ樹脂及びビフェニル型エポキシ樹脂を含んでいてもよく、ビフェニルアラルキル型エポキシ樹脂及びビフェニル型エポキシ樹脂を含んでいてもよい。
Specifically, the epoxy resin is at least one selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A and bisphenol F, and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene. A novolak type epoxy resin (phenol novolak type) which is an epoxidation of a novolak resin obtained by condensing or cocondensing a kind of phenolic compound and an aliphatic aldehyde compound such as formaldehyde, acetaldehyde, and propionaldehyde under an acidic catalyst. Epoxide resin, orthocresol novolak type epoxy resin, etc.); A triphenylmethane type phenol resin obtained by condensing or cocondensing the above phenolic compound with an aromatic aldehyde compound such as benzaldehyde or salicylaldehyde under an acidic catalyst. Triphenylmethane type epoxide resin; a copolymerized epoxy resin obtained by epoxidizing a novolak resin obtained by cocondensing the above phenol compound and naphthol compound with an aldehyde compound under an acidic catalyst; bisphenol. Diphenylmethane type epoxy resin which is a diglycidyl ether such as A and bisphenol F; biphenyl type epoxy resin which is an alkyl-substituted or unsubstituted biphenol diglycidyl ether; stillben type epoxy resin which is a diglycidyl ether of a stilben-based phenol compound; bisphenol Sulfur atom-containing epoxy resin that is a diglycidyl ether such as S; epoxy resin that is an alcoholic glycidyl ether such as butanediol, polyethylene glycol, polypropylene glycol; and a polyvalent carboxylic acid compound such as phthalic acid, isophthalic acid, and tetrahydrophthalic acid. Glysidyl ester type epoxy resin, which is a glycidyl ester; glycidylamine type epoxy resin, which is obtained by substituting an active hydrogen bonded to a nitrogen atom such as aniline, diaminodiphenylmethane, or isocyanuric acid with a glycidyl group; Dicyclopentadiene-type epoxy resin, which is an epoxide of a condensed resin; vinylcyclohexene epoxide, which is an epoxide of an olefin bond in a molecule, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxide) cyclohexyl-5,5 An alicyclic epoxy resin such as 5-spiro (3,4-epoxy) cyclohexane-m-dioxane; a paraxylylene-modified epoxy resin that is a glycidyl ether of a paraxylylene-modified phenol formaldehyde; a metaxylylene-modified epoxy resin that is a glycidyl ether of a metaxylylene-modified phenol resin. A terpene-modified epoxy resin that is a glycidyl ether of a terpene-modified phenol form; a dicyclopentadiene-modified epoxy resin that is a glycidyl ether of a dicyclopentadiene-modified phenol resin; a cyclopentadiene-modified epoxy resin that is a glycidyl ether of a cyclopentadiene-modified phenol resin; Polycyclic aromatic ring-modified epoxy resin, which is a glycidyl ether of a ring-fragrant ring-modified phenol resin; naphthalene-type epoxy resin, which is a glycidyl ether of a naphthalene ring-containing phenol resin; Type epoxy resin; A linear aliphatic epoxy resin obtained by oxidizing an olefin bond with a peracid such as peracetic acid; an aralkyl-type phenol resin such as a phenol aralkyl resin, a biphenyl aralkyl resin, or a naphthol aralkyl resin is epoxidized. Phenol formaldehyde resin; etc. may be mentioned. Further, an epoxy resin such as an acrylic resin can also be mentioned as an epoxy resin. These epoxy resins may be used alone or in combination of two or more.
From the viewpoint of heat resistance, the epoxy resin preferably contains a triphenylmethane type epoxy resin.
The epoxy resin may contain a triphenylmethane type epoxy resin and a biphenyl type epoxy resin, and may contain a biphenyl aralkyl type epoxy resin and a biphenyl type epoxy resin.
 エポキシ樹脂のエポキシ当量(分子量/エポキシ基数)は、特に制限されない。成形性、耐熱性及び電気的信頼等の各種特性バランスの観点からは、100g/eq~1000g/eqであることが好ましく、150g/eq~500g/eqであることがより好ましい。 The epoxy equivalent (molecular weight / number of epoxy groups) of the epoxy resin is not particularly limited. From the viewpoint of balance of various characteristics such as moldability, heat resistance and electrical reliability, it is preferably 100 g / eq to 1000 g / eq, and more preferably 150 g / eq to 500 g / eq.
 エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。 The epoxy equivalent of the epoxy resin shall be a value measured by a method according to JIS K 7236: 2009.
 エポキシ樹脂が固体である場合、その軟化点又は融点は特に制限されない。成形性と耐熱性の観点からは40℃~180℃であることが好ましく、成形用樹脂組成物の調製の際の取扱い性の観点からは50℃~130℃であることがより好ましい。 When the epoxy resin is a solid, its softening point or melting point is not particularly limited. From the viewpoint of moldability and heat resistance, the temperature is preferably 40 ° C. to 180 ° C., and from the viewpoint of handleability when preparing the molding resin composition, the temperature is more preferably 50 ° C. to 130 ° C.
 エポキシ樹脂の融点又は軟化点は、示差走査熱量測定(DSC)又はJIS K 7234:1986に準じた方法(環球法)で測定される値とする。 The melting point or softening point of the epoxy resin shall be a value measured by differential scanning calorimetry (DSC) or a method according to JIS K 7234: 1986 (ring ball method).
 成形用樹脂組成物中のエポキシ樹脂の含有率は、強度、流動性、耐熱性、成形性等の観点から0.5質量%~30質量%であることが好ましく、2質量%~20質量%であることがより好ましく、3質量%~10質量%であることがさらに好ましい。 The content of the epoxy resin in the molding resin composition is preferably 0.5% by mass to 30% by mass, preferably 2% by mass to 20% by mass, from the viewpoints of strength, fluidity, heat resistance, moldability, and the like. Is more preferable, and 3% by mass to 10% by mass is further preferable.
(硬化剤)
 成形用樹脂組成物は、活性エステル化合物を含む硬化剤を含有する。成形用樹脂組成物は、活性エステル化合物以外の硬化剤を含有していてもよく、活性エステル化合物以外の硬化剤を含有していなくてもよい。活性エステル化合物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Hardener)
The molding resin composition contains a curing agent containing an active ester compound. The molding resin composition may contain a curing agent other than the active ester compound, and may not contain a curing agent other than the active ester compound. The active ester compound may be used alone or in combination of two or more.
 活性エステル化合物は、エポキシ基と反応するエステル基を分子中に1個以上有する化合物であればその種類は特に制限されない。エポキシ樹脂の硬化剤としては一般的にフェノール硬化剤、アミン硬化剤等が使用されているところ、エポキシ樹脂とフェノール硬化剤又はアミン硬化剤との反応においては2級水酸基が発生する。これに対して、エポキシ樹脂と活性エステル化合物との反応においては2級水酸基のかわりにエステル基が生じる。エステル基は2級水酸基に比べて極性が低い故、硬化剤として活性エステル化合物を用いることにより、硬化物の誘電正接を低減できる傾向にある。 The type of the active ester compound is not particularly limited as long as it is a compound having one or more ester groups in the molecule that react with the epoxy group. A phenol curing agent, an amine curing agent, or the like is generally used as the curing agent for the epoxy resin, but a secondary hydroxyl group is generated in the reaction between the epoxy resin and the phenol curing agent or the amine curing agent. On the other hand, in the reaction between the epoxy resin and the active ester compound, an ester group is generated instead of the secondary hydroxyl group. Since the ester group has a lower polarity than the secondary hydroxyl group, there is a tendency that the dielectric loss tangent of the cured product can be reduced by using the active ester compound as the curing agent.
 活性エステル化合物としては、フェノールエステル化合物、チオフェノールエステル化合物、N-ヒドロキシアミンエステル化合物、複素環ヒドロキシ化合物のエステル化物等が挙げられる。活性エステル化合物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Examples of the active ester compound include phenol ester compounds, thiophenol ester compounds, N-hydroxyamine ester compounds, and esterified products of heterocyclic hydroxy compounds. The active ester compound may be used alone or in combination of two or more.
 活性エステル化合物としては、例えば、脂肪族カルボン酸及び芳香族カルボン酸の少なくとも1種と脂肪族ヒドロキシ化合物及び芳香族ヒドロキシ化合物の少なくとも1種とから得られるエステル化合物が挙げられる。脂肪族化合物を重縮合の成分とするエステル化合物は、脂肪族鎖を有することによりエポキシ樹脂との相溶性に優れる傾向にある。芳香族化合物を重縮合の成分とするエステル化合物は、芳香環を有することにより耐熱性に優れる傾向にある。 Examples of the active ester compound include ester compounds obtained from at least one of an aliphatic carboxylic acid and an aromatic carboxylic acid and at least one of an aliphatic hydroxy compound and an aromatic hydroxy compound. Ester compounds containing an aliphatic compound as a component of polycondensation tend to have excellent compatibility with an epoxy resin due to having an aliphatic chain. Ester compounds containing an aromatic compound as a component of polycondensation tend to have excellent heat resistance due to having an aromatic ring.
 活性エステル化合物の具体例としては、芳香族カルボン酸とフェノール性水酸基との縮合反応にて得られる芳香族エステルが挙げられる。中でも、ベンゼン、ナフタレン、ビフェニル、ジフェニルプロパン、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルホン酸等の芳香環の水素原子の2~4個をカルボキシ基で置換した芳香族カルボン酸成分と、前記した芳香環の水素原子の1個を水酸基で置換した1価フェノールと、前記した芳香環の水素原子の2~4個を水酸基で置換した多価フェノールとの混合物を原材料として、芳香族カルボン酸とフェノール性水酸基との縮合反応にて得られる芳香族エステルが好ましい。すなわち、上記芳香族カルボン酸成分由来の構造単位と上記1価フェノール由来の構造単位と上記多価フェノール由来の構造単位とを有する芳香族エステルが好ましい。 Specific examples of the active ester compound include aromatic esters obtained by a condensation reaction between an aromatic carboxylic acid and a phenolic hydroxyl group. Among them, an aromatic carboxylic acid component in which 2 to 4 hydrogen atoms of an aromatic ring such as benzene, naphthalene, biphenyl, diphenylpropane, diphenylmethane, diphenyl ether, and diphenylsulfonic acid are substituted with a carboxy group, and the hydrogen atom of the above-mentioned aromatic ring. Aromatic carboxylic acid and a phenolic hydroxyl group are prepared from a mixture of a monovalent phenol in which one of the above is substituted with a hydroxyl group and a polyhydric phenol in which 2 to 4 hydrogen atoms of the aromatic ring are substituted with a hydroxyl group. Aromatic esters obtained by the condensation reaction are preferred. That is, an aromatic ester having a structural unit derived from the aromatic carboxylic acid component, a structural unit derived from the monovalent phenol, and a structural unit derived from the polyhydric phenol is preferable.
 活性エステル化合物の具体例としては、特開2012-246367号公報に記載されている、脂肪族環状炭化水素基を介してフェノール化合物が結節された分子構造を有するフェノール樹脂と、芳香族ジカルボン酸又はそのハライドと、芳香族モノヒドロキシ化合物とを反応させて得られる構造を有する活性エステル樹脂が挙げられる。当該活性エステル樹脂としては、下記の構造式(1)で表される化合物が好ましい。 Specific examples of the active ester compound include a phenol resin having a molecular structure in which a phenol compound is knotted via an aliphatic cyclic hydrocarbon group described in JP2012-246367, and an aromatic dicarboxylic acid or Examples thereof include an active ester resin having a structure obtained by reacting the halide with an aromatic monohydroxy compound. As the active ester resin, a compound represented by the following structural formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000001

 
 構造式(1)中、Rは炭素数1~4のアルキル基であり、Xはベンゼン環、ナフタレン環、炭素数1~4のアルキル基で置換されたベンゼン環若しくはナフタレン環、又はビフェニル基であり、Yはベンゼン環、ナフタレン環、又は炭素数1~4のアルキル基で置換されたベンゼン環若しくはナフタレン環であり、kは0又は1であり、nは繰り返し数の平均を表し0.25~1.5である。 In the structural formula (1), R 1 is an alkyl group having 1 to 4 carbon atoms, and X is a benzene ring, a naphthalene ring, a benzene ring or a naphthalene ring substituted with an alkyl group having 1 to 4 carbon atoms, or a biphenyl group. Y is a benzene ring, a naphthalene ring, or a benzene ring or a naphthalene ring substituted with an alkyl group having 1 to 4 carbon atoms, k is 0 or 1, and n represents the average number of repetitions. It is 25 to 1.5.
 構造式(1)で表される化合物の具体例としては、例えば、下記の例示化合物(1-1)~(1-10)が挙げられる。構造式中のt-Buは、tert-ブチル基である。 Specific examples of the compound represented by the structural formula (1) include the following exemplary compounds (1-1) to (1-10). T-Bu in the structural formula is a tert-butyl group.
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
 活性エステル化合物の別の具体例としては、特開2014-114352号公報に記載されている、下記の構造式(2)で表される化合物及び下記の構造式(3)で表される化合物が挙げられる。 As another specific example of the active ester compound, the compound represented by the following structural formula (2) and the compound represented by the following structural formula (3) described in JP-A-2014-114352 can be used. Can be mentioned.
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
 構造式(2)中、R及びRはそれぞれ独立に、水素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基であり、Zはベンゾイル基、ナフトイル基、炭素数1~4のアルキル基で置換されたベンゾイル基又はナフトイル基、及び炭素数2~6のアシル基からなる群から選ばれるエステル形成構造部位(z1)、又は水素原子(z2)であり、Zのうち少なくとも1個はエステル形成構造部位(z1)である。 In the structural formula (2), R 1 and R 2 are independently hydrogen atoms, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Z is a benzoyl group, a naphthoyl group, or a carbon. An ester-forming structural site (z1) or hydrogen atom (z2) selected from the group consisting of a benzoyl group or a naphthoyl group substituted with an alkyl group of the number 1 to 4 and an acyl group having 2 to 6 carbon atoms, and Z. At least one of them is an ester-forming structural site (z1).
 構造式(3)中、R及びRはそれぞれ独立に、水素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基であり、Zはベンゾイル基、ナフトイル基、炭素数1~4のアルキル基で置換されたベンゾイル基又はナフトイル基、及び炭素数2~6のアシル基からなる群から選ばれるエステル形成構造部位(z1)、又は水素原子(z2)であり、Zのうち少なくとも1個はエステル形成構造部位(z1)である。 In the structural formula (3), R 1 and R 2 are independently hydrogen atoms, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and Z is a benzoyl group, a naphthoyl group, or a carbon. An ester-forming structural site (z1) or hydrogen atom (z2) selected from the group consisting of a benzoyl group or a naphthoyl group substituted with an alkyl group of the number 1 to 4 and an acyl group having 2 to 6 carbon atoms, and Z. At least one of them is an ester-forming structural site (z1).
 構造式(2)で表される化合物の具体例としては、例えば、下記の例示化合物(2-1)~(2-6)が挙げられる。 Specific examples of the compound represented by the structural formula (2) include the following exemplary compounds (2-1) to (2-6).
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
 構造式(3)で表される化合物の具体例としては、例えば、下記の例示化合物(3-1)~(3-6)が挙げられる。 Specific examples of the compound represented by the structural formula (3) include the following exemplary compounds (3-1) to (3-6).
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000006

 
 活性エステル化合物としては、市販品を用いてもよい。活性エステル化合物の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」(DIC株式会社製);芳香族構造を含む活性エステル化合物として「EXB9416-70BK」、「EXB-8」、「EXB-9425」(DIC株式会社製);フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱ケミカル株式会社製);フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱ケミカル株式会社製)等が挙げられる。 As the active ester compound, a commercially available product may be used. Commercially available active ester compounds include "EXB9451", "EXB9460", "EXB9460S", "HPC-8000-65T" (manufactured by DIC Co., Ltd.) as active ester compounds containing a dicyclopentadiene-type diphenol structure; aromatics. "EXB9416-70BK", "EXB-8", "EXB-9425" (manufactured by DIC Co., Ltd.) as an active ester compound containing a structure; "DC808" (Mitsubishi Chemical Co., Ltd.) as an active ester compound containing an acetylated product of phenol novolac. (Manufactured); Examples of the active ester compound containing a benzoylated product of phenol novolac include "YLH1026" (manufactured by Mitsubishi Chemical Co., Ltd.).
 活性エステル化合物のエステル基当量は、特に制限されない。成形性、耐熱性、電気的信頼性等の各種特性バランスの観点からは、150g/eq~400g/eqが好ましく、170g/eq~300g/eqがより好ましく、200g/eq~250g/eqがさらに好ましい。
 活性エステル化合物のエステル基当量は、JIS K 0070:1992に準じた方法により測定される値とする。
The ester group equivalent of the active ester compound is not particularly limited. From the viewpoint of balance of various characteristics such as moldability, heat resistance, and electrical reliability, 150 g / eq to 400 g / eq is preferable, 170 g / eq to 300 g / eq is more preferable, and 200 g / eq to 250 g / eq is further preferable. preferable.
The ester group equivalent of the active ester compound shall be a value measured by a method according to JIS K 0070: 1992.
 硬化剤が活性エステル化合物以外の硬化剤(以下、「その他の硬化剤」とも称する。)を含有している場合、その他の硬化剤としては、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。これらの硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 When the curing agent contains a curing agent other than the active ester compound (hereinafter, also referred to as "other curing agent"), the other curing agents include a phenol curing agent, an amine curing agent, and an acid anhydride curing agent. , Polymercaptan curing agent, polyaminoamide curing agent, isocyanate curing agent, blocked isocyanate curing agent and the like. These curing agents may be used alone or in combination of two or more.
 硬化剤がその他の硬化剤を含有している場合、硬化物の誘電正接を低く抑える観点及び成形性の観点から、硬化剤は、フェノール硬化剤を含んでいてもよい。 When the curing agent contains other curing agents, the curing agent may contain a phenol curing agent from the viewpoint of suppressing the dielectric loss tangent of the cured product to a low level and from the viewpoint of moldability.
 フェノール硬化剤として具体的には、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等とから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;パラキシリレン変性フェノール樹脂、メタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物と、ジシクロペンタジエンとから共重合により合成されるジシクロペンタジエン型フェノール樹脂及びジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらのフェノール硬化剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。 Specific examples of the phenolic curing agent include polyhydric phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol. , At least one phenolic compound selected from the group consisting of phenolic compounds such as aminophenol and naphthol compounds such as α-naphthol, β-naphthol and dihydroxynaphthalene, and aldehyde compounds such as formaldehyde, acetaldehyde and propionaldehyde are acid catalysts. Novorak-type phenolic resin obtained by condensing or co-condensing underneath; Phenolic aralkyl resin synthesized from the above phenolic compound and dimethoxyparaxylene, bis (methoxymethyl) biphenyl, etc., aralkyl-type phenolic resin such as naphthol aralkyl resin. Paraxylylene-modified phenolic resin, methaxylylene-modified phenolic resin; Melamine-modified phenolic resin; Terpen-modified phenolic resin; Dicyclopentadiene-type phenolic resin and dicyclopentadiene-type naphthol synthesized by copolymerization of the above phenolic compound with dicyclopentadiene. Resin; Cyclopentadiene-modified phenolic resin; Polycyclic aromatic ring-modified phenolic resin; Biphenyl-type phenolic resin; Obtained by condensing or co-condensing the above phenolic compound with aromatic aldehyde compounds such as benzaldehyde and salicylaldehyde under an acidic catalyst. Triphenylmethane-type phenolic resins; examples thereof include phenolic resins obtained by copolymerizing two or more of these. These phenol curing agents may be used alone or in combination of two or more.
 その他の硬化剤の官能基当量(例えば、フェノール硬化剤の場合は水酸基当量)は、特に制限されない。成形性、耐熱性、電気的信頼性等の各種特性バランスの観点からは、70g/eq~1000g/eqであることが好ましく、80g/eq~500g/eqであることがより好ましい。
 その他の硬化剤の官能基当量(例えば、フェノール硬化剤の場合は水酸基当量)は、JIS K 0070:1992に準じた方法により測定される値とする。
The functional group equivalents of other curing agents (for example, hydroxyl group equivalents in the case of phenol curing agents) are not particularly limited. From the viewpoint of the balance of various characteristics such as moldability, heat resistance, and electrical reliability, it is preferably 70 g / eq to 1000 g / eq, and more preferably 80 g / eq to 500 g / eq.
The functional group equivalent of other curing agents (for example, the hydroxyl group equivalent in the case of a phenol curing agent) shall be a value measured by a method according to JIS K 0070: 1992.
 硬化剤が固体である場合、その軟化点又は融点は、特に制限されない。成形性と耐熱性の観点からは、40℃~180℃であることが好ましく、成形用樹脂組成物の製造時における取扱い性の観点からは、50℃~130℃であることがより好ましい。 When the curing agent is a solid, its softening point or melting point is not particularly limited. From the viewpoint of moldability and heat resistance, it is preferably 40 ° C. to 180 ° C., and from the viewpoint of handleability at the time of manufacturing the molding resin composition, it is more preferably 50 ° C. to 130 ° C.
 硬化剤の融点又は軟化点は、エポキシ樹脂の融点又は軟化点と同様にして測定される値とする。 The melting point or softening point of the curing agent shall be a value measured in the same manner as the melting point or softening point of the epoxy resin.
 エポキシ樹脂と硬化剤との当量比、すなわちエポキシ樹脂中の官能基数に対する硬化剤中の官能基数の比(硬化剤中の官能基数/エポキシ樹脂中の官能基数)は、特に制限されない。それぞれの未反応分を少なく抑える観点からは、0.5~2.0の範囲に設定されることが好ましく、0.6~1.3の範囲に設定されることがより好ましい。成形性と耐熱性の観点からは、0.8~1.2の範囲に設定されることがさらに好ましい。 The equivalent ratio of the epoxy resin to the curing agent, that is, the ratio of the number of functional groups in the curing agent to the number of functional groups in the epoxy resin (the number of functional groups in the curing agent / the number of functional groups in the epoxy resin) is not particularly limited. From the viewpoint of suppressing each unreacted component to a small amount, it is preferably set in the range of 0.5 to 2.0, and more preferably set in the range of 0.6 to 1.3. From the viewpoint of moldability and heat resistance, it is more preferable to set it in the range of 0.8 to 1.2.
 硬化剤が活性エステル化合物を含む場合、硬化剤の全質量に対する活性エステル化合物の含有率は、硬化物の誘電正接を低く抑える観点から、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。 When the curing agent contains an active ester compound, the content of the active ester compound with respect to the total mass of the curing agent is preferably 80% by mass or more, preferably 85% by mass or more, from the viewpoint of keeping the dielectric adjacency of the cured product low. It is more preferably present, and further preferably 90% by mass or more.
(硬化促進剤)
 成形用樹脂組成物は、硬化促進剤を含有していてもよい。硬化促進剤の種類は特に制限されず、エポキシ樹脂又は硬化剤の種類、成形用樹脂組成物の所望の特性等に応じて選択できる。
(Curing accelerator)
The molding resin composition may contain a curing accelerator. The type of the curing accelerator is not particularly limited, and can be selected according to the type of the epoxy resin or the curing agent, the desired characteristics of the molding resin composition, and the like.
 硬化促進剤としては、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)等のジアザビシクロアルケン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール等の環状アミジン化合物;前記環状アミジン化合物の誘導体;前記環状アミジン化合物又はその誘導体のフェノールノボラック塩;これらの化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;DBUのテトラフェニルボレート塩、DBNのテトラフェニルボレート塩、2-エチル-4-メチルイミダゾールのテトラフェニルボレート塩、N-メチルモルホリンのテトラフェニルボレート塩等の環状アミジニウム化合物及びイソシアネートを付加してなる化合物;DBUのイソシアネート付加物、DBNのイソシアネート付加物、2-エチル-4-メチルイミダゾールのイソシアネート付加物、N-メチルモルホリンのイソシアネート付加物;ピリジン、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物;前記三級アミン化合物の誘導体;酢酸テトラ-n-ブチルアンモニウム、リン酸テトラ-n-ブチルアンモニウム、酢酸テトラエチルアンモニウム、安息香酸テトラ-n-ヘキシルアンモニウム、水酸化テトラプロピルアンモニウム等のアンモニウム塩化合物;エチルホスフィン、フェニルホスフィン等の第1ホスフィン、ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の三級ホスフィンなどの、有機ホスフィン;前記有機ホスフィンと有機ボロン類との錯体等のホスフィン化合物;前記有機ホスフィン又は前記ホスフィン化合物と無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン、アントラキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;前記有機ホスフィン又は前記ホスフィン化合物と4-ブロモフェノール、3-ブロモフェノール、2-ブロモフェノール、4-クロロフェノール、3-クロロフェノール、2-クロロフェノール、4-ヨウ化フェノール、3-ヨウ化フェノール、2-ヨウ化フェノール、4-ブロモ-2-メチルフェノール、4-ブロモ-3-メチルフェノール、4-ブロモ-2,6-ジメチルフェノール、4-ブロモ-3,5-ジメチルフェノール、4-ブロモ-2,6-ジ-tert-ブチルフェノール、4-クロロ-1-ナフトール、1-ブロモ-2-ナフトール、6-ブロモ-2-ナフトール、4-ブロモ-4’-ヒドロキシビフェニル等のハロゲン化フェノール化合物を反応させた後に、脱ハロゲン化水素の工程を経て得られる、分子内分極を有する化合物;テトラフェニルホスホニウム等のテトラ置換ホスホニウム、テトラフェニルホスホニウムテトラ-p-トリルボレート等のテトラ置換ホスホニウムのテトラフェニルボレート塩、テトラ置換ホスホニウムとフェノール化合物との塩などの、テトラ置換ホスホニウム化合物;テトラアルキルホスホニウムと芳香族カルボン酸無水物の部分加水分解物との塩;ホスホベタイン化合物;ホスホニウム化合物とシラン化合物との付加物;などが挙げられる。
 硬化促進剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。
 これらの中でも、特に好適な硬化促進剤としては、トリフェニルホスフィン、トリフェニルホスフィンとキノン化合物との付加物、トリブチルホスフィンとキノン化合物との付加物、トリ-p-トリルホスフィンとキノン化合物との付加物等が挙げられる。
Examples of the curing accelerator include diazabicycloalkene such as 1,5-diazabicyclo [4.3.0] nonen-5 (DBN) and 1,8-diazabicyclo [5.4.0] undecene-7 (DBU). Cyclic amidin compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole; derivatives of the cyclic amidin compound; phenol novolac salts of the cyclic amidin compound or its derivatives; these. Maleic anhydride, 1,4-benzoquinone, 2,5-turquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1 , 4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone and other quinone compounds, and diazophenylmethane and other quinone compounds with π-bonded compounds have an intramolecular polarization. Compounds; Cyclic amidinium compounds such as DBU tetraphenylborate salt, DBN tetraphenylborate salt, 2-ethyl-4-methylimidazole tetraphenylborate salt, N-methylmorpholin tetraphenylborate salt and isocyanate are added. Compounds; DBU isocyanate adduct, DBN isocyanate adduct, 2-ethyl-4-methylimidazole isocyanate adduct, N-methylmorpholin isocyanate adduct; pyridine, triethylamine, triethylenediamine, benzyldimethylamine, triethanol Tertiary amine compounds such as amines, dimethylaminoethanol, tris (dimethylaminomethyl) phenols; derivatives of the tertiary amine compounds; tetra-n-butylammonium acetate, tetra-n-butylammonium phosphate, tetraethylammonium acetate, benzo Ammonium salt compounds such as tetra-n-hexylammonium acid and tetrapropylammonium hydroxide; first phosphine such as ethylphosphine and phenylphosphine, second phosphine such as dimethylphosphine and diphenylphosphine, triphenylphosphine, diphenyl (p-tolyl). ) Phosphin, Tris (alkylphenyl) phosphin, Tris (alkoxyphenyl) phosphin, Tris (alkyl / alkoxyphenyl) phosphin, Tris (dialkylphenyl) phosphin, Tris (trialkylphenyl) phosphin, Tris (Tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, alkyldiarylphosphine, trinaphthylphosphine, tris (benzyl) ) Organic phosphine such as tertiary phosphine such as phosphine; phosphine compound such as a complex of the organic phosphine and organic borons; the organic phosphine or the phosphine compound and maleic anhydride, 1,4-benzoquinone, 2,5-. Truquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, A quinone compound such as phenyl-1,4-benzoquinone or anthraquinone, a compound having intramolecular polarization by adding a compound having a π bond such as diazophenylmethane; the organic phosphine or the phosphine compound and 4-bromophenol, 3-bromophenol, 2-bromophenol, 4-chlorophenol, 3-chlorophenol, 2-chlorophenol, 4-iodide phenol, 3-iodide phenol, 2-iodide phenol, 4-bromo-2-methyl Phenol, 4-bromo-3-methylphenol, 4-bromo-2,6-dimethylphenol, 4-bromo-3,5-dimethylphenol, 4-bromo-2,6-di-tert-butylphenol, 4-chloro After reacting with a halogenated phenol compound such as -1-naphthol, 1-bromo-2-naphthol, 6-bromo-2-naphthol, 4-bromo-4'-hydroxybiphenyl, the process of dehalogenation is performed. Obtained compounds having intramolecular polarization; tetra-substituted phosphoniums such as tetraphenylphosphonium, tetra-phenylborate salts of tetra-substituted phosphoniums such as tetra-p-tolylbolate, salts of tetra-substituted phosphoniums and phenolic compounds, etc. , Tetra-substituted phosphonium compounds; salts of tetraalkylphosphoniums and partial hydrolysates of aromatic carboxylic acid anhydrides; phosphobetaine compounds; adducts of phosphonium compounds and silane compounds; and the like.
The curing accelerator may be used alone or in combination of two or more.
Among these, particularly suitable curing accelerators include triphenylphosphine, an adduct of triphenylphosphine and a quinone compound, an adduct of tributylphosphine and a quinone compound, and an adduct of tri-p-tolylphosphine and a quinone compound. Things etc. can be mentioned.
 成形用樹脂組成物が硬化促進剤を含む場合、その量は、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.1質量部~30質量部であることが好ましく、1質量部~15質量部であることがより好ましい。硬化促進剤の量が樹脂成分100質量部に対して0.1質量部以上であると、短時間で良好に硬化する傾向にある。硬化促進剤の量が樹脂成分100質量部に対して30質量部以下であると、硬化速度が速すぎず良好な成形品が得られる傾向にある。 When the molding resin composition contains a curing accelerator, the amount thereof is preferably 0.1 part by mass to 30 parts by mass with respect to 100 parts by mass of the resin component (total amount of the epoxy resin and the curing agent). It is more preferably 1 part by mass to 15 parts by mass. When the amount of the curing accelerator is 0.1 part by mass or more with respect to 100 parts by mass of the resin component, it tends to cure well in a short time. When the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing rate is not too fast and a good molded product tends to be obtained.
(第1の無機充填材)
 成形用樹脂組成物は、10GHzでの比誘電率が8以上の無機充填材である第1の無機充填材を含有する。第1の無機充填材は1種を単独で用いても2種以上を組み合わせて用いてもよい。第1の無機充填材は、10GHzでの比誘電率が8~100であることが好ましく、10~100であることがより好ましい。
(First inorganic filler)
The molding resin composition contains a first inorganic filler which is an inorganic filler having a relative permittivity of 8 or more at 10 GHz. The first inorganic filler may be used alone or in combination of two or more. The first inorganic filler preferably has a relative permittivity of 8 to 100 at 10 GHz, and more preferably 10 to 100.
 第1の無機充填材は、高誘電率の観点から、チタン元素を含むチタン系無機充填材を含有することが好ましい。チタン系無機充填材としては、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸ジルコン酸亜鉛、酸化チタン等が挙げられる。中でも、チタン酸バリウム、チタン酸カルシウム及びチタン酸ストロンチウムが好ましい。中でも、球形度が高く、流動性が高い観点から、チタン酸バリウムが好ましい。 The first inorganic filler preferably contains a titanium-based inorganic filler containing a titanium element from the viewpoint of high dielectric constant. Examples of the titanium-based inorganic filler include barium titanate, calcium titanate, strontium titanate, zinc zirconate titanate, and titanium oxide. Of these, barium titanate, calcium titanate and strontium titanate are preferred. Of these, barium titanate is preferable from the viewpoint of high sphericity and high fluidity.
 第1の無機充填材の平均粒径は0.1m~100μmであることが好ましく、0.5μm~30μmであることがより好ましく、1.0μm~20μmであることがさらに好ましく、3.0μm~10μmであることが特に好ましい。 The average particle size of the first inorganic filler is preferably 0.1 m to 100 μm, more preferably 0.5 μm to 30 μm, further preferably 1.0 μm to 20 μm, and even more preferably 3.0 μm to 3.0 μm. It is particularly preferably 10 μm.
 第1の無機充填材の平均粒径は、以下のようにして測定することができる。成形用樹脂組成物をるつぼに入れ、800℃で4時間放置し、灰化させる。レーザー回折/散乱式粒子径分布測定装置(例えば、株式会社堀場製作所、LA920)を用いて得られた灰分の粒度分布を求め、その粒度分布から体積平均粒径(D50)として無機充填材の平均粒径を求めることができる。 The average particle size of the first inorganic filler can be measured as follows. The molding resin composition is placed in a crucible and left at 800 ° C. for 4 hours to incinerate. The particle size distribution of ash obtained by using a laser diffraction / scattering type particle size distribution measuring device (for example, Horiba Seisakusho Co., Ltd., LA920) was obtained, and the average particle size of the inorganic filler was used as the volume average particle size (D50) from the particle size distribution. The particle size can be determined.
 第1の無機充填材の形状としては、特に限定されず、球形、楕円形、不定形等が挙げられる。また、第1の無機充填材は、破砕されたものであってもよい。 The shape of the first inorganic filler is not particularly limited, and examples thereof include a spherical shape, an elliptical shape, and an amorphous shape. Further, the first inorganic filler may be crushed.
 本開示において、無機充填材の10GHzでの比誘電率は以下の方法によって測定される値である。
 エポキシ樹脂(ビフェニルアラルキル型エポキシ樹脂、エポキシ当量274g/eq)100質量部、フェノール硬化剤(フェノールアラルキル樹脂、水酸基当量205g/eq)74.8質量部及びトリフェニルホスフィンの1,4-ベンゾキノン付加物2質量部の樹脂組成物、無機充填材、並びにメチルエチルケトン(MEK)を混合させ、前述の樹脂組成物をMEKに溶解させてワニス(樹脂組成物及び無機充填材の合計75質量%)を作製する。このとき、無機充填材の含有率が溶剤を除く固形分に対して10体積%、20体積%、30体積%であるワニスをそれぞれ準備する。
 得られたワニスを基材上に塗布し、100℃、10分の条件で基材を乾燥させた後、基材から樹脂膜を剥離した。得られた樹脂膜を、圧縮成形により、金型温度175℃、成形圧力6.9MPa、硬化時間600秒の条件で成形し、それぞれ測定用硬化物を得る。得られた各測定用硬化物における10GHzでの比誘電率を測定し、無機充填材の含有率を横軸、比誘電率の測定値を縦軸としてプロットしたグラフを作成する。得られたグラフから、最小二乗法により直線近似を行い、無機充填材の含有率が100体積%のときの比誘電率を外挿により求め、「無機充填材全体における比誘電率」とする。
In the present disclosure, the relative permittivity of the inorganic filler at 10 GHz is a value measured by the following method.
100 parts by mass of epoxy resin (biphenyl aralkyl type epoxy resin, epoxy equivalent 274 g / eq), 74.8 parts by mass of phenol curing agent (phenol aralkyl resin, hydroxyl group equivalent 205 g / eq) and 1,4-benzoquinone adduct of triphenylphosphine Two parts by mass of the resin composition, the inorganic filler, and the methyl ethyl ketone (MEK) are mixed, and the above-mentioned resin composition is dissolved in MEK to prepare a varnish (75% by mass of the total of the resin composition and the inorganic filler). .. At this time, varnishes having an inorganic filler content of 10% by volume, 20% by volume, and 30% by volume with respect to the solid content excluding the solvent are prepared, respectively.
The obtained varnish was applied onto the substrate, the substrate was dried under the conditions of 100 ° C. for 10 minutes, and then the resin film was peeled off from the substrate. The obtained resin film is molded by compression molding under the conditions of a mold temperature of 175 ° C., a molding pressure of 6.9 MPa, and a curing time of 600 seconds to obtain a cured product for measurement. The relative permittivity at 10 GHz in each of the obtained cured products for measurement is measured, and a graph is created in which the content of the inorganic filler is plotted on the horizontal axis and the measured value of the relative permittivity is plotted on the vertical axis. From the obtained graph, a linear approximation is performed by the least squares method, and the relative permittivity when the content of the inorganic filler is 100% by volume is obtained by extrapolation and used as "the relative permittivity of the entire inorganic filler".
(第2の無機充填材)
 成形用樹脂組成物は、10GHzでの比誘電率が8未満の無機充填材である第2の無機充填材をさらに含有していてもよい。第2の無機充填材は、10GHzでの比誘電率が4以下であってもよい。
 第2の無機充填材では、10GHzでの比誘電率の下限は特に限定されず、例えば、2以上であってもよく、6以上であってもよい。
(Second inorganic filler)
The molding resin composition may further contain a second inorganic filler, which is an inorganic filler having a relative permittivity of less than 8 at 10 GHz. The second inorganic filler may have a relative permittivity of 4 or less at 10 GHz.
In the second inorganic filler, the lower limit of the relative permittivity at 10 GHz is not particularly limited, and may be, for example, 2 or more, or 6 or more.
 第2の無機充填材の種類は、特に制限されない。具体的には、溶融シリカ、結晶シリカ、ガラス、アルミナ、タルク、クレー、マイカ等の無機材料が挙げられる。第2の無機充填材として、難燃効果を有する無機充填材を用いてもよい。難燃効果を有する無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。 The type of the second inorganic filler is not particularly limited. Specific examples thereof include inorganic materials such as fused silica, crystalline silica, glass, alumina, talc, clay and mica. As the second inorganic filler, an inorganic filler having a flame-retardant effect may be used. Examples of the inorganic filler having a flame-retardant effect include aluminum hydroxide, magnesium hydroxide, a composite metal hydroxide such as a composite hydroxide of magnesium and zinc, and zinc borate.
 第2の無機充填材の中でも、線膨張係数低減の観点からは溶融シリカ等のシリカが好ましく、高熱伝導性の観点からはアルミナが好ましい。第2の無機充填材は1種を単独で用いても2種以上を組み合わせて用いてもよい。第2の無機充填材の形態としては粉末、粉末を球形化したビーズ、繊維等が挙げられる。 Among the second inorganic fillers, silica such as molten silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. The second inorganic filler may be used alone or in combination of two or more. Examples of the form of the second inorganic filler include powder, beads obtained by spheroidizing the powder, fibers and the like.
 第2の無機充填材の平均粒径は、0.1μm~50μmであることが好ましく、0.5μm~30μmであることがより好ましい。
 第2の無機充填材の平均粒径は、前述の第1の無機充填材と同様の方法により測定することができる。
The average particle size of the second inorganic filler is preferably 0.1 μm to 50 μm, more preferably 0.5 μm to 30 μm.
The average particle size of the second inorganic filler can be measured by the same method as that of the first inorganic filler described above.
 第2の無機充填材は、流動性の観点から、平均粒径が異なる2種以上の無機充填材を含んでいてもよい。例えば、第2の無機充填材は、平均粒径が0.1μm~5μmである無機充填材と、平均粒径が10μm~50μmである無機充填材と、を含んでいてもよい。 The second inorganic filler may contain two or more kinds of inorganic fillers having different average particle sizes from the viewpoint of fluidity. For example, the second inorganic filler may contain an inorganic filler having an average particle size of 0.1 μm to 5 μm and an inorganic filler having an average particle size of 10 μm to 50 μm.
 成形用樹脂組成物に含まれる無機充填材の含有率は、特に制限されず、流動性及び強度の観点からは、成形用樹脂組成物全体の50質量%~95質量%であることが好ましく、60質量%~95質量%であることがより好ましく、70質量%~90質量%であることがさらに好ましい。無機充填材の含有率が成形用樹脂組成物全体の50質量%以上であると、硬化物の比誘電率、熱膨張係数、熱伝導率、弾性率等の特性がより向上する傾向にある。無機充填材の含有率が成形用樹脂組成物全体の95質量%以下であると、成形用樹脂組成物の粘度の上昇が抑制され、流動性がより向上して成形性がより良好になる傾向にある。
 なお、成形用樹脂組成物に含まれる無機充填材の含有率における「無機充填材」、及び以下に記載の無機充填材は、第1の無機充填材及び第2の無機充填材の合計を意味し、成形用樹脂組成物が第2の無機充填材を含まないときは、「無機充填材」は第1の無機充填材を意味する。
The content of the inorganic filler contained in the molding resin composition is not particularly limited, and is preferably 50% by mass to 95% by mass of the entire molding resin composition from the viewpoint of fluidity and strength. It is more preferably 60% by mass to 95% by mass, and even more preferably 70% by mass to 90% by mass. When the content of the inorganic filler is 50% by mass or more of the entire molding resin composition, the properties such as the relative permittivity, the coefficient of thermal expansion, the thermal conductivity, and the elastic modulus of the cured product tend to be further improved. When the content of the inorganic filler is 95% by mass or less of the entire molding resin composition, an increase in the viscosity of the molding resin composition is suppressed, the fluidity is further improved, and the moldability tends to be better. It is in.
The "inorganic filler" in the content of the inorganic filler contained in the molding resin composition and the inorganic filler described below mean the total of the first inorganic filler and the second inorganic filler. However, when the molding resin composition does not contain the second inorganic filler, the "inorganic filler" means the first inorganic filler.
 成形用樹脂組成物にて、第1の無機充填材の含有率は、硬化物の比誘電率の観点から、第1の無機充填材及び第2の無機充填材の合計に対して、40質量%以上であることが好ましく、55質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。第1の無機充填材の含有率は、第1の無機充填材及び第2の無機充填材の合計に対して、95質量%以下であってもよい。 In the molding resin composition, the content of the first inorganic filler is 40 mass by mass with respect to the total of the first inorganic filler and the second inorganic filler from the viewpoint of the relative permittivity of the cured product. % Or more, more preferably 55% by mass or more, and even more preferably 70% by mass or more. The content of the first inorganic filler may be 95% by mass or less with respect to the total of the first inorganic filler and the second inorganic filler.
 成形用樹脂組成物にて、第2の無機充填材の平均粒径に対する第1の無機充填材の平均粒径の比率(第1の無機充填材/第2の無機充填材)は、流動性及び成形性の観点から、0.5~20であることが好ましく、1~10であることがより好ましい。 In the molding resin composition, the ratio of the average particle size of the first inorganic filler to the average particle size of the second inorganic filler (first inorganic filler / second inorganic filler) is fluidity. From the viewpoint of moldability, the content is preferably 0.5 to 20, and more preferably 1 to 10.
 成形用樹脂組成物は、上述の成分に加えて、以下に例示するカップリング剤、イオン交換体、離型剤、難燃剤、着色剤、応力緩和剤等の各種添加剤を含んでもよい。成形用樹脂組成物は、以下に例示する添加剤以外にも必要に応じて当技術分野で周知の各種添加剤を含んでもよい。 In addition to the above-mentioned components, the molding resin composition may contain various additives such as a coupling agent, an ion exchanger, a mold release agent, a flame retardant, a colorant, and a stress relaxation agent exemplified below. The molding resin composition may contain various additives well known in the art, if necessary, in addition to the additives exemplified below.
(カップリング剤)
 成形用樹脂組成物は、カップリング剤を含んでもよい。樹脂成分と無機充填材との接着性を高める観点からは、成形用樹脂組成物はカップリング剤を含むことが好ましい。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン、ジシラザン等のシラン系化合物、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物などの公知のカップリング剤が挙げられる。
(Coupling agent)
The molding resin composition may contain a coupling agent. From the viewpoint of enhancing the adhesiveness between the resin component and the inorganic filler, the molding resin composition preferably contains a coupling agent. Examples of the coupling agent include known coupling agents such as silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, vinylsilane and disilazane, titanium compounds, aluminum chelate compounds and aluminum / zirconium compounds. Can be mentioned.
 成形用樹脂組成物がカップリング剤を含む場合、カップリング剤の量は、無機充填材100質量部に対して0.05質量部~5質量部であることが好ましく、0.1質量部~2.5質量部であることがより好ましい。カップリング剤の量が無機充填材100質量部に対して0.05質量部以上であると、フレームとの接着性がより向上する傾向にある。カップリング剤の量が無機充填材100質量部に対して5質量部以下であると、パッケージの成形性がより向上する傾向にある。 When the molding resin composition contains a coupling agent, the amount of the coupling agent is preferably 0.05 parts by mass to 5 parts by mass, and 0.1 parts by mass to 5 parts by mass with respect to 100 parts by mass of the inorganic filler. More preferably, it is 2.5 parts by mass. When the amount of the coupling agent is 0.05 parts by mass or more with respect to 100 parts by mass of the inorganic filler, the adhesiveness with the frame tends to be further improved. When the amount of the coupling agent is 5 parts by mass or less with respect to 100 parts by mass of the inorganic filler, the moldability of the package tends to be further improved.
(イオン交換体)
 成形用樹脂組成物は、イオン交換体を含んでもよい。成形用樹脂組成物の硬化物を備える高周波デバイスの耐湿性及び高温放置特性を向上させる観点から、イオン交換体を含むことが好ましい。イオン交換体は特に制限されず、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。イオン交換体は、1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、下記一般式(A)で表されるハイドロタルサイトが好ましい。
(Ion exchanger)
The molding resin composition may contain an ion exchanger. From the viewpoint of improving the moisture resistance and high temperature standing characteristics of the high frequency device including the cured product of the molding resin composition, it is preferable to include an ion exchanger. The ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples thereof include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth. As the ion exchanger, one type may be used alone or two or more types may be used in combination. Of these, hydrotalcite represented by the following general formula (A) is preferable.
  Mg(1-X)Al(OH)(COX/2・mHO ……(A)
  (0<X≦0.5、mは正の数)
Mg (1-X) Al X (OH) 2 (CO 3 ) X / 2・ mH 2 O …… (A)
(0 <X≤0.5, m is a positive number)
 成形用樹脂組成物がイオン交換体を含む場合、その含有量は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。例えば、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.1質量部~30質量部であることが好ましく、1質量部~10質量部であることがより好ましい。 When the molding resin composition contains an ion exchanger, the content thereof is not particularly limited as long as it is an amount sufficient to capture ions such as halogen ions. For example, it is preferably 0.1 part by mass to 30 parts by mass, and more preferably 1 part by mass to 10 parts by mass with respect to 100 parts by mass of the resin component (total amount of epoxy resin and curing agent).
(離型剤)
 成形用樹脂組成物は、成形時における金型との良好な離型性を得る観点から、離型剤を含んでもよい。離型剤は特に制限されず、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Release agent)
The molding resin composition may contain a mold release agent from the viewpoint of obtaining good mold release property from the mold at the time of molding. The release agent is not particularly limited, and conventionally known release agents can be used. Specific examples thereof include higher fatty acids such as carnauba wax, montanic acid and stearic acid, ester waxes such as higher fatty acid metal salts and montanic acid esters, and polyolefin waxes such as polyethylene oxide and non-oxidized polyethylene. As the release agent, one type may be used alone or two or more types may be used in combination.
 成形用樹脂組成物が離型剤を含む場合、その量は樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して0.01質量部~10質量部が好ましく、0.1質量部~5質量部がより好ましい。離型剤の量が樹脂成分100質量部に対して0.01質量部以上であると、離型性が充分に得られる傾向にある。10質量部以下であると、より良好な接着性が得られる傾向にある。 When the molding resin composition contains a mold release agent, the amount thereof is preferably 0.01 part by mass to 10 parts by mass, preferably 0.1 part by mass with respect to 100 parts by mass of the resin component (total amount of epoxy resin and curing agent). 5 parts by mass is more preferable. When the amount of the mold release agent is 0.01 part by mass or more with respect to 100 parts by mass of the resin component, the mold release property tends to be sufficiently obtained. When it is 10 parts by mass or less, better adhesiveness tends to be obtained.
(難燃剤)
 成形用樹脂組成物は、難燃剤を含んでもよい。難燃剤は特に制限されず、従来公知のものを用いることができる。具体的には、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Flame retardants)
The molding resin composition may contain a flame retardant. The flame retardant is not particularly limited, and conventionally known flame retardants can be used. Specific examples thereof include organic or inorganic compounds containing halogen atoms, antimony atoms, nitrogen atoms or phosphorus atoms, metal hydroxides and the like. The flame retardant may be used alone or in combination of two or more.
 成形用樹脂組成物が難燃剤を含む場合、その量は、所望の難燃効果を得るのに充分な量であれば特に制限されない。例えば、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して1質量部~30質量部であることが好ましく、2質量部~20質量部であることがより好ましい。 When the molding resin composition contains a flame retardant, the amount thereof is not particularly limited as long as it is sufficient to obtain the desired flame retardant effect. For example, it is preferably 1 part by mass to 30 parts by mass, and more preferably 2 parts by mass to 20 parts by mass with respect to 100 parts by mass (total amount of epoxy resin and curing agent) of the resin component.
(着色剤)
 成形用樹脂組成物は、着色剤を含んでもよい。着色剤としてはカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は目的等に応じて適宜選択できる。着色剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Colorant)
The molding resin composition may contain a colorant. Examples of the colorant include known colorants such as carbon black, organic dyes, organic pigments, titanium oxide, lead tan, and red iron oxide. The content of the colorant can be appropriately selected according to the purpose and the like. As the colorant, one type may be used alone or two or more types may be used in combination.
(応力緩和剤)
 成形用樹脂組成物は、応力緩和剤を含んでもよい。応力緩和剤を含むことにより、パッケージの反り変形及びパッケージクラックの発生をより低減させることができる。応力緩和剤としては、一般に使用されている公知の応力緩和剤(可とう剤)が挙げられる。具体的には、シリコーン系、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリエーテル系、ポリアミド系、ポリブタジエン系等の熱可塑性エラストマー、NR(天然ゴム)、NBR(アクリロニトリル-ブタジエンゴム)、アクリルゴム、ウレタンゴム、シリコーンパウダー等のゴム粒子、メタクリル酸メチル-スチレン-ブタジエン共重合体(MBS)、メタクリル酸メチル-シリコーン共重合体、メタクリル酸メチル-アクリル酸ブチル共重合体等のコア-シェル構造を有するゴム粒子などが挙げられる。応力緩和剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Stress relaxation agent)
The molding resin composition may contain a stress relaxation agent. By containing a stress relaxation agent, it is possible to further reduce the warpage deformation of the package and the occurrence of package cracks. Examples of the stress relaxation agent include commonly used known stress relaxation agents (flexible agents). Specifically, thermoplastic elastomers such as silicone-based, styrene-based, olefin-based, urethane-based, polyester-based, polyether-based, polyamide-based, and polybutadiene-based, NR (natural rubber), NBR (acrylonitrile-butadiene rubber), and acrylic. Rubber particles such as rubber, urethane rubber, silicone powder, core-shell such as methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, methyl methacrylate-butyl acrylate copolymer, etc. Examples include rubber particles having a structure. As the stress relaxation agent, one type may be used alone or two or more types may be used in combination.
 応力緩和剤の中でも、シリコーン系応力緩和剤が好ましい。シリコーン系応力緩和剤としては、エポキシ基を有するもの、アミノ基を有するもの、これらをポリエーテル変性したもの等が挙げられ、エポキシ基を有するシリコーン化合物、ポリエーテル系シリコーン化合物等のシリコーン化合物がより好ましい。中でも、硬化物の誘電正接を低減し、かつ、硬化物の外観不良を抑制する観点から、ポリエーテル系シリコーン化合物が好ましい。 Among the stress relaxation agents, silicone-based stress relaxation agents are preferable. Examples of the silicone-based stress relieving agent include those having an epoxy group, those having an amino group, those obtained by modifying these with a polyether, and the like, and silicone compounds such as a silicone compound having an epoxy group and a polyether silicone compound are more suitable. preferable. Of these, a polyether silicone compound is preferable from the viewpoint of reducing the dielectric loss tangent of the cured product and suppressing the appearance deterioration of the cured product.
 ポリエーテル系シリコーン化合物は、シロキサン結合による主骨格を持つ高分子化合物であるシリコーンにポリエーテル基が導入された化合物であれば特に限定されるものではない。ポリエーテル系シリコーン化合物は、1種を単独で用いても2種以上を併用してもよい。
 ポリエーテル系シリコーン化合物は、側鎖変性型ポリエーテル系シリコーン化合物であってもよく、末端変性型ポリエーテル系シリコーン化合物であってもよい。ポリエーテル系シリコーン化合物は、これらの中でも、硬化物の外観不良抑制の観点から、側鎖変性型ポリエーテル系シリコーン化合物が好ましい。
The polyether-based silicone compound is not particularly limited as long as it is a compound in which a polyether group is introduced into silicone, which is a polymer compound having a main skeleton due to a siloxane bond. As the polyether silicone compound, one type may be used alone or two or more types may be used in combination.
The polyether-based silicone compound may be a side chain-modified type polyether-based silicone compound or a terminal-modified type polyether-based silicone compound. Among these, the polyether-based silicone compound is preferably a side chain-modified type polyether-based silicone compound from the viewpoint of suppressing the appearance deterioration of the cured product.
 ポリエーテル系シリコーン化合物の一例として、エポキシ・ポリエーテル系シリコーン化合物が挙げられる。エポキシ・ポリエーテル系シリコーン化合物は、シロキサン結合による主骨格を持つ高分子化合物であるシリコーンにポリエーテル基及びエポキシ基が導入された化合物であれば特に限定されるものではない。
 エポキシ・ポリエーテル系シリコーン化合物は、側鎖変性型エポキシ・ポリエーテル系シリコーン化合物であってもよく、末端変性型エポキシ・ポリエーテル系シリコーン化合物であってもよく、側鎖及び末端変性型エポキシ・ポリエーテル系シリコーン化合物であってもよい。エポキシ・ポリエーテル系シリコーン化合物の主骨格としては、ポリジメチルシロキサンが好ましい。ポリエーテル基としては、エチレンオキシド及びプロピレンオキシドの一方又は双方が重合したポリエーテル基が好ましい。
 エポキシ・ポリエーテル系シリコーン化合物は、ポリエーテル基(好ましくはエチレンオキシド及びプロピレンオキシドの一方又は双方が重合したポリエーテル基)及びエポキシ基がそれぞれシリコーン(好ましくはポリジメチルシロキサン)の側鎖に存在する側鎖変性型エポキシ・ポリエーテル系シリコーン化合物であることが好ましい。
An example of a polyether-based silicone compound is an epoxy-polyester-based silicone compound. The epoxy-polyether-based silicone compound is not particularly limited as long as it is a compound in which a polyether group and an epoxy group are introduced into silicone, which is a polymer compound having a main skeleton due to a siloxane bond.
The epoxy / polyether silicone compound may be a side chain modified epoxy / polyether silicone compound, a terminal modified epoxy / polyether silicone compound, and a side chain and a terminal modified epoxy. It may be a polyether silicone compound. Polydimethylsiloxane is preferable as the main skeleton of the epoxy / polyether silicone compound. As the polyether group, a polyether group obtained by polymerizing one or both of ethylene oxide and propylene oxide is preferable.
The epoxy-polyether-based silicone compound is a side in which a polyether group (preferably a polyether group in which one or both of ethylene oxide and propylene oxide are polymerized) and an epoxy group are present in the side chain of silicone (preferably polydimethylsiloxane). It is preferably a chain-modified epoxy / polyether silicone compound.
 成形用樹脂組成物が応力緩和剤を含む場合、その量は、例えば、樹脂成分100質量部(エポキシ樹脂と硬化剤の合計量)に対して1質量部~30質量部であることが好ましく、2質量部~20質量部であることがより好ましい。 When the molding resin composition contains a stress relieving agent, the amount thereof is preferably, for example, 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the resin component (total amount of the epoxy resin and the curing agent). It is more preferably 2 parts by mass to 20 parts by mass.
<成形用樹脂組成物の変形例>
 本開示の成形用樹脂組成物の変形例は、エポキシ樹脂と、活性エステル化合物を含む硬化剤と、チタン元素を含むチタン系無機充填材である第1の無機充填材と、を含有する。本変形例では、エポキシ樹脂の硬化剤である活性エステル化合物と、チタン元素を含むチタン系無機充填材と、を含有することで、高い比誘電率と低い誘電正接とが両立された硬化物を製造できる。
 本変形例にて使用されるエポキシ樹脂及び活性エステル化合物の好ましい形態は、前述の本開示の成形用樹脂組成物にて使用されるエポキシ樹脂及び活性エステル化合物の好ましい形態と同様である。また、本開示の成形用樹脂組成物の変形例の好ましい形態は、前述の本開示の成形用樹脂組成物と同様である。
<Modification example of resin composition for molding>
Modifications of the molding resin composition of the present disclosure include an epoxy resin, a curing agent containing an active ester compound, and a first inorganic filler which is a titanium-based inorganic filler containing a titanium element. In this modification, a cured product having both a high relative permittivity and a low dielectric loss tangent is obtained by containing an active ester compound which is a curing agent for an epoxy resin and a titanium-based inorganic filler containing a titanium element. Can be manufactured.
The preferred forms of the epoxy resin and the active ester compound used in this modification are the same as the preferred forms of the epoxy resin and the active ester compound used in the above-mentioned molding resin composition of the present disclosure. Further, the preferred form of the modified example of the molding resin composition of the present disclosure is the same as that of the above-mentioned molding resin composition of the present disclosure.
 本変形例にて使用されるチタン元素を含むチタン系無機充填材は、10GHzでの比誘電率が8以上であることが好ましく、10GHzでの比誘電率が8~100であることがより好ましく、10GHzでの比誘電率が10~100であることがさらに好ましい。本変形例にて使用されるチタン元素を含むチタン系無機充填材である第1の無機充填材の好ましい形態は、前述の本開示の成形用樹脂組成物にて使用される第1の無機充填材の好ましい形態と同様である。 The titanium-based inorganic filler containing the titanium element used in this modification preferably has a relative permittivity of 8 or more at 10 GHz, and more preferably has a relative permittivity of 8 to 100 at 10 GHz. It is more preferable that the relative permittivity at 10 GHz is 10 to 100. A preferred form of the first inorganic filler, which is a titanium-based inorganic filler containing a titanium element used in the present modification, is the first inorganic filler used in the above-mentioned molding resin composition of the present disclosure. This is similar to the preferred form of the material.
(成形用樹脂組成物の調製方法)
 成形用樹脂組成物の調製方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を均一に攪拌及び混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
(Preparation method of resin composition for molding)
The method for preparing the molding resin composition is not particularly limited. As a general method, a method of sufficiently mixing a predetermined blending amount of components with a mixer or the like, then melt-kneading with a mixing roll, an extruder or the like, cooling and pulverizing can be mentioned. More specifically, for example, a method in which a predetermined amount of the above-mentioned components is uniformly stirred and mixed, kneaded with a kneader, roll, extruder or the like preheated to 70 ° C. to 140 ° C., cooled and pulverized. Can be mentioned.
 成形用樹脂組成物は、常温常圧下(例えば、25℃、大気圧下)において固体であることが好ましい。成形用樹脂組成物が固体である場合の形状は特に制限されず、粉状、粒状、タブレット状等が挙げられる。成形用樹脂組成物がタブレット状である場合の寸法及び質量は、パッケージの成形条件に合うような寸法及び質量となるようにすることが取り扱い性の観点から好ましい。 The molding resin composition is preferably solid at normal temperature and pressure (for example, 25 ° C. and atmospheric pressure). When the molding resin composition is a solid, the shape is not particularly limited, and examples thereof include powder, granules, and tablets. When the molding resin composition is in the shape of a tablet, it is preferable that the dimensions and mass are suitable for the molding conditions of the package from the viewpoint of handleability.
 成形用樹脂組成物は、アンテナ及び樹脂組成物の硬化物を有する高周波デバイスにおける前記硬化物の製造に用いられることが好ましい。成形用樹脂組成物は、高周波デバイスにおける電子部品の封止に用いられてもよい。成形用樹脂組成物は、高い比誘電率と低い誘電正接との両立が要求される半導体パッケージ用途に用いられることが好ましく、例えば、アンテナ・イン・パッケージに用いられることがより好ましい。 The molding resin composition is preferably used for producing the cured product in a high frequency device having an antenna and a cured product of the resin composition. The molding resin composition may be used for sealing electronic components in high frequency devices. The molding resin composition is preferably used for semiconductor package applications where both high relative permittivity and low dielectric loss tangent are required, and more preferably used for antenna-in-package, for example.
<高周波デバイス>
 本開示の高周波デバイスは、アンテナと、本開示の成形用樹脂組成物の硬化物と、を有する。
<High frequency device>
The high frequency device of the present disclosure comprises an antenna and a cured product of the molding resin composition of the present disclosure.
 本開示の高周波デバイスは、例えば、1GHz以上の電波を送受信する際に用いられ、好ましくは3GHz以上の電波を送受信する際に用いられる。本開示の高周波デバイスとしては、本開示の成形用樹脂組成物の硬化物がアンテナを封止する構造を有していてもよく、本開示の成形用樹脂組成物の硬化物上にアンテナが配置された構造を有していてもよい。 The high frequency device of the present disclosure is used, for example, when transmitting and receiving radio waves of 1 GHz or higher, and preferably used when transmitting and receiving radio waves of 3 GHz or higher. The high-frequency device of the present disclosure may have a structure in which the cured product of the molding resin composition of the present disclosure seals the antenna, and the antenna is arranged on the cured product of the molding resin composition of the present disclosure. It may have a structure that has been modified.
 以下、本発明を実施例により具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the scope of the present invention is not limited to these Examples.
<成形用樹脂組成物の調製>
 下記に示す成分を表1に示す配合割合(単位:質量部)で混合し、実施例と比較例の成形用樹脂組成物を調製した。この成形用樹脂組成物は、常温常圧下において固体であった。また、表1中の空欄は、未配合であることを意味する。また、無機充填材1~5の10GHzでの比誘電率は、前述の方法によって測定された値である。
<Preparation of resin composition for molding>
The components shown below were mixed in the blending ratio (unit: parts by mass) shown in Table 1 to prepare the molding resin compositions of Examples and Comparative Examples. This molding resin composition was a solid under normal temperature and pressure. Further, the blanks in Table 1 mean that they have not been mixed. The relative permittivity of the inorganic fillers 1 to 5 at 10 GHz is a value measured by the above-mentioned method.
・エポキシ樹脂1:トリフェニルメタン型エポキシ樹脂、エポキシ当量167g/eq
・エポキシ樹脂2:ビフェニルアラルキル型エポキシ樹脂、エポキシ当量274g/eq
・エポキシ樹脂3:ビフェニル型エポキシ樹脂、エポキシ当量192g/eq
・活性エステル化合物:芳香族構造を含む活性エステル化合物
・フェノール硬化剤:フェノールアラルキル樹脂、水酸基当量205g/eq
・硬化促進剤:トリフェニルホスフィンの1,4-ベンゾキノン付加物
・カップリング剤:N-フェニル-3-アミノプロピルトリメトキシシラン
・離型剤:モンタン酸エステルワックス
・着色剤:カーボンブラック
・添加剤:側鎖変性型エポキシ・ポリエーテル変性シリコーン、粘度(25℃):1.50Pa・s
・無機充填材1:体積平均粒径6.5μmの球状チタン酸バリウム(10GHzでの比誘電率:46.29)
・無機充填材2:体積平均粒径0.8μmの球状アルミナ粒子(10GHzでの比誘電率:7.79)
・無機充填材3:体積平均粒径30μmの球状アルミナ粒子(10GHzでの比誘電率:7.79)
・無機充填材4:体積平均粒径0.7μmの球状シリカ粒子(10GHzでの比誘電率:3.61)
・無機充填材5:体積平均粒径30μmの球状シリカ粒子(10GHzでの比誘電率:3.61)
Epoxy resin 1: Triphenylmethane type epoxy resin, epoxy equivalent 167 g / eq
-Epoxy resin 2: Biphenyl aralkyl type epoxy resin, epoxy equivalent 274 g / eq
-Epoxy resin 3: Biphenyl type epoxy resin, epoxy equivalent 192 g / eq
-Active ester compound: Active ester compound containing aromatic structure-Phenol curing agent: Phenolic aralkyl resin, hydroxyl group equivalent 205 g / eq
・ Curing accelerator: 1,4-benzoquinone adduct of triphenylphosphine ・ Coupling agent: N-phenyl-3-aminopropyltrimethoxysilane ・ Release agent: montanic acid ester wax ・ Coloring agent: carbon black ・ Additive : Side chain modified epoxy / polyether modified silicone, viscosity (25 ° C): 1.50 Pa · s
Inorganic filler 1: Spherical barium titanate with a volume average particle size of 6.5 μm (relative permittivity at 10 GHz: 46.29)
Inorganic filler 2: Spherical alumina particles with a volume average particle size of 0.8 μm (relative permittivity at 10 GHz: 7.79)
Inorganic filler 3: Spherical alumina particles with a volume average particle size of 30 μm (relative permittivity at 10 GHz: 7.79)
Inorganic filler 4: Spherical silica particles with a volume average particle size of 0.7 μm (relative permittivity at 10 GHz: 3.61)
Inorganic filler 5: Spherical silica particles having a volume average particle size of 30 μm (relative permittivity at 10 GHz: 3.61)
(流動性:スパイラルフロー)
 EMMI-1-66に準じたスパイラルフロー測定用金型を用いて、成形用樹脂組成物を金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、流動距離(cm)を求めた。結果を表1に示す。
(Liquidity: Spiral flow)
Using a mold for measuring spiral flow according to EMMI-1-66, the molding resin composition was molded under the conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 90 seconds, and a flow distance (cm). ) Was asked. The results are shown in Table 1.
(ゲルタイム)
 175℃における成形用樹脂組成物のゲルタイムの測定を、以下のようにして行った。具体的には、成形用樹脂組成物の試料0.5gを175℃に熱した熱板上に乗せ、治具を用いて20回転/分~25回転/分の回転速度で、試料を2.0cm~2.5cmの円状に均一に広げた。試料を熱板に乗せてから、試料の粘性がなくなり、ゲル状態となって熱板から剥がれるようになるまでの時間を計測し、これをゲルタイム(秒)として測定した。結果を表1に示す。
(Gel time)
The gel time of the molding resin composition at 175 ° C. was measured as follows. Specifically, 0.5 g of a sample of the resin composition for molding is placed on a hot plate heated to 175 ° C., and the sample is placed at a rotation speed of 20 rotations / minute to 25 rotations / minute using a jig. It was spread evenly in a circle of 0 cm to 2.5 cm. The time from when the sample was placed on the hot plate until the sample became less viscous and became a gel state and peeled off from the hot plate was measured, and this was measured as the gel time (seconds). The results are shown in Table 1.
(比誘電率及び誘電正接)
 成形用樹脂組成物をハンドプレス機で、金型温度175℃、成形圧力6.9MPa、硬化時間600秒の条件で成形し、後硬化を175℃で6時間行い、板状の硬化物を切断して(縦50mm、横1mm、厚さ約0.5mm)を得た。板状の硬化物を試験片として、誘電率測定装置(Agilent社、品名「ネットワーク・アナライザーN5227A」)を用いて、温度25±3℃下、10GHzでの比誘電率と誘電正接とを測定した。
 結果を表1に示す。
(Relative permittivity and dielectric loss tangent)
The molding resin composition is molded with a hand press machine under the conditions of a mold temperature of 175 ° C., a molding pressure of 6.9 MPa, and a curing time of 600 seconds, and post-curing is performed at 175 ° C. for 6 hours to cut the plate-shaped cured product. (Length 50 mm, width 1 mm, thickness about 0.5 mm) were obtained. Using a plate-shaped cured product as a test piece, a permittivity measuring device (Agilent, product name "Network Analyzer N5227A") was used to measure the relative permittivity and dielectric loss tangent at 10 GHz at a temperature of 25 ± 3 ° C. ..
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1に示すように、同じエポキシ樹脂を使用し、かつ無機充填材の組成が近い実施例1及び比較例1を比較すると、実施例1にて高い比誘電率と低い誘電正接とが両立された硬化物が得られることが分かった。 As shown in Table 1, when Example 1 and Comparative Example 1 in which the same epoxy resin is used and the composition of the inorganic filler is similar are compared, in Example 1, a high relative permittivity and a low dielectric loss tangent are compatible. It was found that a cured product was obtained.
 2020年12月11日に出願された日本国特許出願2020-206092の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese patent application 2020-206092 filed December 11, 2020 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated by reference herein.

Claims (11)

  1.  エポキシ樹脂と、
     活性エステル化合物を含む硬化剤と、
     10GHzでの比誘電率が8以上の無機充填材である第1の無機充填材と、
     を含有する成形用樹脂組成物。
    Epoxy resin and
    A curing agent containing an active ester compound and
    The first inorganic filler, which is an inorganic filler having a relative permittivity of 8 or more at 10 GHz,
    A resin composition for molding containing.
  2.  前記第1の無機充填材は、チタン元素を含むチタン系無機充填材を含有する請求項1に記載の成形用樹脂組成物。 The molding resin composition according to claim 1, wherein the first inorganic filler contains a titanium-based inorganic filler containing a titanium element.
  3.  10GHzでの比誘電率が8未満の無機充填材である第2の無機充填材をさらに含有する請求項1又は請求項2に記載の成形用樹脂組成物。 The molding resin composition according to claim 1 or 2, further comprising a second inorganic filler which is an inorganic filler having a relative permittivity of less than 8 at 10 GHz.
  4.  前記第1の無機充填材の含有率は、前記第1の無機充填材及び前記第2の無機充填材の合計に対して40質量%以上である請求項3に記載の成形用樹脂組成物。 The molding resin composition according to claim 3, wherein the content of the first inorganic filler is 40% by mass or more with respect to the total of the first inorganic filler and the second inorganic filler.
  5.  前記第2の無機充填材の平均粒径に対する前記第1の無機充填材の平均粒径の比率(第1の無機充填材/第2の無機充填材)は、0.5~20である請求項3又は請求項4に記載の成形用樹脂組成物。 The ratio of the average particle size of the first inorganic filler to the average particle size of the second inorganic filler (first inorganic filler / second inorganic filler) is 0.5 to 20. Item 3. The molding resin composition according to claim 4.
  6.  前記第2の無機充填材は、シリカ粒子及びアルミナ粒子からなる群より選択される少なくとも一種を含有する請求項3~請求項5のいずれか1項に記載の成形用樹脂組成物。 The molding resin composition according to any one of claims 3 to 5, wherein the second inorganic filler contains at least one selected from the group consisting of silica particles and alumina particles.
  7.  前記第1の無機充填材の平均粒径は、0.5μm~30μmである請求項1~請求項6のいずれか1項に記載の成形用樹脂組成物。 The molding resin composition according to any one of claims 1 to 6, wherein the average particle size of the first inorganic filler is 0.5 μm to 30 μm.
  8.  前記第1の無機充填材は、チタン酸バリウム、チタン酸カルシウム及びチタン酸ストロンチウムからなる群より選択される少なくとも一種のチタン系無機充填材を含有する請求項1~請求項7のいずれか1項に記載の成形用樹脂組成物。 The first inorganic filler is any one of claims 1 to 7, which contains at least one titanium-based inorganic filler selected from the group consisting of barium titanate, calcium titanate and strontium titanate. The molding resin composition according to.
  9.  エポキシ樹脂と、
     活性エステル化合物を含む硬化剤と、
     チタン元素を含むチタン系無機充填材である第1の無機充填材と、
     を含有する成形用樹脂組成物。
    Epoxy resin and
    A curing agent containing an active ester compound and
    The first inorganic filler, which is a titanium-based inorganic filler containing a titanium element,
    A resin composition for molding containing.
  10.  アンテナ及び樹脂組成物の硬化物を有する高周波デバイスにおける前記硬化物の製造に用いられるための請求項1~請求項9のいずれか1項に記載の成形用樹脂組成物。 The molding resin composition according to any one of claims 1 to 9, which is used for producing the cured product in a high-frequency device having an antenna and a cured product of the resin composition.
  11.  アンテナと、請求項1~請求項10のいずれか1項に記載の成形用樹脂組成物の硬化物と、を有する高周波デバイス。 A high-frequency device having an antenna and a cured product of the molding resin composition according to any one of claims 1 to 10.
PCT/JP2021/045636 2020-12-11 2021-12-10 Resin composition for molding and high frequency device WO2022124405A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022568352A JPWO2022124405A1 (en) 2020-12-11 2021-12-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-206092 2020-12-11
JP2020206092 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022124405A1 true WO2022124405A1 (en) 2022-06-16

Family

ID=81974573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045636 WO2022124405A1 (en) 2020-12-11 2021-12-10 Resin composition for molding and high frequency device

Country Status (3)

Country Link
JP (1) JPWO2022124405A1 (en)
TW (1) TW202229394A (en)
WO (1) WO2022124405A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119379A (en) * 2001-10-15 2003-04-23 Hitachi Chem Co Ltd Resin composition and utilization thereof
JP2010195997A (en) * 2009-02-27 2010-09-09 Panasonic Electric Works Co Ltd Highly dielectric epoxy resin composition and high-frequency device
CN103351578A (en) * 2013-07-19 2013-10-16 广东生益科技股份有限公司 Resin composition used for forming dielectric layer of dielectric substrate for antenna and application of resin composition
JP2017014406A (en) * 2015-07-01 2017-01-19 味の素株式会社 Resin composition
WO2020066856A1 (en) * 2018-09-27 2020-04-02 日立化成株式会社 Sealing resin composition, electronic component device, and method for manufacturing electronic component device
WO2020153068A1 (en) * 2019-01-23 2020-07-30 株式会社村田製作所 Antenna module and communication device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119379A (en) * 2001-10-15 2003-04-23 Hitachi Chem Co Ltd Resin composition and utilization thereof
JP2010195997A (en) * 2009-02-27 2010-09-09 Panasonic Electric Works Co Ltd Highly dielectric epoxy resin composition and high-frequency device
CN103351578A (en) * 2013-07-19 2013-10-16 广东生益科技股份有限公司 Resin composition used for forming dielectric layer of dielectric substrate for antenna and application of resin composition
JP2017014406A (en) * 2015-07-01 2017-01-19 味の素株式会社 Resin composition
WO2020066856A1 (en) * 2018-09-27 2020-04-02 日立化成株式会社 Sealing resin composition, electronic component device, and method for manufacturing electronic component device
WO2020153068A1 (en) * 2019-01-23 2020-07-30 株式会社村田製作所 Antenna module and communication device

Also Published As

Publication number Publication date
JPWO2022124405A1 (en) 2022-06-16
TW202229394A (en) 2022-08-01

Similar Documents

Publication Publication Date Title
JP6870778B1 (en) Resin composition for molding and electronic component equipment
TWI774852B (en) Method of producing electronic component device
JPWO2020066856A1 (en) Manufacturing method of sealing resin composition, electronic component device and electronic component device
JP7452028B2 (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP7272368B2 (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP2020152825A (en) Resin composition for sealing, electronic component device, and production method for electronic component device
JP2022093030A (en) Resin composition and high-frequency device
JP2021116329A (en) Sealing resin composition, electronic component device, and method for producing electronic component device
WO2022124405A1 (en) Resin composition for molding and high frequency device
JP6953971B2 (en) Curable resin composition, electronic component device and method for manufacturing electronic component device
JP2021084980A (en) Sealing resin composition, electronic component device and method for producing electronic component device
JPWO2020067016A1 (en) Manufacturing method of sealing resin composition, electronic component device and electronic component device
JP2020122071A (en) Sealing resin composition, electronic component device, and method for manufacturing same
WO2022124406A1 (en) Molding resin composition and electronic component device
WO2021149727A1 (en) Sealing resin composition, electronic component device, and method for manufacturing electronic component device
JP7345750B2 (en) Epoxy resin composition, epoxy resin cured product and epoxy resin modifier
JP6953973B2 (en) Curable resin composition, electronic component device and method for manufacturing electronic component device
WO2023238950A1 (en) Molding resin composition and electronic component device
WO2023238951A1 (en) Resin composition for molding and electronic component device
WO2020189309A1 (en) Resin composition for sealing, electronic component device, and production method for electronic component device
JPWO2020158851A1 (en) A resin composition for encapsulation, an electronic component device, and a method for manufacturing the electronic component device.
JP2021113253A (en) Sealing resin composition, electronic component device, and method for producing electronic component device
JP2023040897A (en) Thermosetting resin composition and electronic component device
JP2022011184A (en) Sealing resin composition and electronic component device
TW202405086A (en) Resin composition for molding and electronic component device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568352

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903501

Country of ref document: EP

Kind code of ref document: A1