JP2011195742A - Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package - Google Patents

Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package Download PDF

Info

Publication number
JP2011195742A
JP2011195742A JP2010065472A JP2010065472A JP2011195742A JP 2011195742 A JP2011195742 A JP 2011195742A JP 2010065472 A JP2010065472 A JP 2010065472A JP 2010065472 A JP2010065472 A JP 2010065472A JP 2011195742 A JP2011195742 A JP 2011195742A
Authority
JP
Japan
Prior art keywords
resin composition
liquid resin
weight
parts
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010065472A
Other languages
Japanese (ja)
Inventor
Seiji Fukamachi
星児 深町
Takeshi Masuda
剛 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2010065472A priority Critical patent/JP2011195742A/en
Publication of JP2011195742A publication Critical patent/JP2011195742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid sealing resin composition which suppresses warp of a pseudo wafer causing degradation in the productivity of a wafer level package, and to provide a semiconductor package manufactured by using the liquid sealing resin composition.SOLUTION: The liquid resin composition contains (A) an epoxy resin, (B) an acid anhydride, (C) an inorganic filler, (D) a curing accelerator, and (E) a low stress material, wherein the solid form component is contained in an amount of 80-90 wt.% with respect to the whole liquid resin composition, and wherein the internal stress value (σ) obtained according to expression (1) is ≤20 MPa in a two layer state composed of a silicon wafer and a cured material of the liquid resin composition. In the expression (1), σ is internal stress, Eresin (T) is elastic modulus of the cured material of the liquid resin composition at a temperature T°C, αresin (T) is linear expansion coefficient of the cured material of the liquid resin composition at a temperature T°C, and αsi(T) is linear expansion coefficient of silicon at a temperature T°C.

Description

本発明は、液状樹脂組成物と、それを用いて作製した半導体パッケージおよび半導体パッケージの製造方法に関するものである The present invention relates to a liquid resin composition, a semiconductor package manufactured using the liquid resin composition, and a method for manufacturing the semiconductor package.

近年の電子機器の小型化、軽量化、高集積化、高速動作化の動向を反映して、半導体パッケージに占める半導体チップの面積、体積は大きくなり、半導体パッケージ内の配線は微細化、短小化している。
従来、このような半導体チップを配線基板に電気的に接続する方法としては、半導体チップに突起電極(バンプ)を形成して、このバンプによって配線基板と一括接合するフリップチップ接続と呼ばれる実装方法がある。この方法では、例えば、半導体チップを小型化した場合、配線基板上の配線パターンも変更せねばならず、開発の際のタイムラグやコスト増につながり、多品種少量生産には向かなくなってしまう。
そこで、ウエハーレベルパッケージ(WLP)と呼ばれる、半導体回路の形成されたウエハーを個別の半導体チップに切断する前に、電気接続用のバンプを設け、ウエハー全体を封止する手法が考え出された。(例えば、特許文献1参照。)
WLPでは配線基板を用いたフリップチップ接続が不要なため、多品種少量生産にも適する。しかしWLPでは、半導体パッケージの機能拡大と共に増大する単位面積あたりの実装用IO(入出力)バンプ数の上限が半導体チップの面積に比例し、小チップに機能を詰め込んだ多IO半導体チップには対応できない。
そこで、予め切断した半導体チップを支持体となるキャリア上に並べ、それをウエハー形状に封止樹脂で封止した後(擬似ウエハー化)、半導体チップの回路面に再配線を行うことで、半導体チップのデザイン変更にも低コストで対応しつつ、半導体チップのサイズに対して、過多なIO数にも対応できる技術が提案されている。(例えば、特許文献2参照。)
ところが、このタイプのWLPでは、封止樹脂とキャリアとの線膨張係数の差による内部応力から、擬似ウエハーに反りが発生することにより、封止より後の工程での擬似ウエハーの吸着搬送が困難になり生産性が低下することが問題となっている。
Reflecting the recent trend of downsizing, weight reduction, high integration, and high-speed operation of electronic devices, the area and volume of the semiconductor chip in the semiconductor package are increased, and the wiring in the semiconductor package is miniaturized and shortened. ing.
Conventionally, as a method of electrically connecting such a semiconductor chip to a wiring board, there is a mounting method called flip-chip connection in which bump electrodes are formed on the semiconductor chip and the bumps are collectively bonded to the wiring board by the bumps. is there. In this method, for example, when the semiconductor chip is downsized, the wiring pattern on the wiring board must be changed, leading to a time lag and cost increase during development, and not suitable for high-mix low-volume production.
Therefore, a method called a wafer level package (WLP) has been devised in which a bump for electrical connection is provided and the entire wafer is sealed before the wafer on which the semiconductor circuit is formed is cut into individual semiconductor chips. (For example, refer to Patent Document 1.)
Since WLP does not require flip-chip connection using a wiring board, it is suitable for high-mix low-volume production. However, in WLP, the upper limit of the number of mounting IO (input / output) bumps per unit area, which increases with the expansion of semiconductor package functions, is proportional to the area of the semiconductor chip, and is compatible with multi-IO semiconductor chips packed with functions in small chips. Can not.
Therefore, semiconductor chips that have been cut in advance are arranged on a carrier serving as a support, sealed in a wafer shape with a sealing resin (pseudo-wafer), and then rewired on the circuit surface of the semiconductor chip. There has been proposed a technology that can cope with an excessive number of IOs with respect to the size of a semiconductor chip while also corresponding to a chip design change at a low cost. (For example, see Patent Document 2.)
However, in this type of WLP, the pseudo wafer is warped due to internal stress due to the difference in coefficient of linear expansion between the sealing resin and the carrier, so that it is difficult to adsorb and transfer the pseudo wafer in the process after sealing. Therefore, the problem is that productivity decreases.

特許第3616615号公報Japanese Patent No. 3616615 米国特許出願公開第2007/205513号公報US Patent Application Publication No. 2007/205513

本発明は、WLPにおいて生産性の低下を招く擬似ウエハーの反りを抑制した液状封止樹脂組成物、およびこれを用いて作製した半導体パッケージを提供するものである。   The present invention provides a liquid encapsulating resin composition in which the warpage of a pseudo wafer that causes a decrease in productivity in WLP is suppressed, and a semiconductor package produced using the liquid encapsulating resin composition.

本発明は以下の通りである。
[1](A)エポキシ樹脂、(B)酸無水物、(C)無機充填材、(D)硬化促進剤、および(E)低応力材を含有する液状樹脂組成物であって、固形成分が全液状樹脂組成物に対して80重量%以上95重量%以下含まれ、シリコンウェハーと液状樹脂組成物の硬化物の2層状態において式(1)により得られる内部応力値(σ)が20MPa以下である液状樹脂組成物。

Figure 2011195742
(但し、σは内部応力、Eresin(T)は温度T℃における液状樹脂組成物の硬化物の弾性率、αresin(T)は温度T℃における液状樹脂組成物の硬化物の線膨張係数、αsi(T)は温度T℃におけるシリコンの線膨張係数。)
[2](E)低応力材の含有量が、全液状樹脂組成物に対して3重量%以上30重量%以下である[1]に記載の液状樹脂組成物。
[3]前記液状樹脂組成物の硬化物の25℃での弾性率をE、ガラス転移温度以下での線膨張係数をα、前記液状樹脂組成物の(E)低応力材成分を(C)無機充填材成分に置換した液状樹脂組成物の硬化物の25℃での弾性率をE、ガラス転移温度以下での線膨張係数をαとした時、(Eα−Eα)/Eα<−0.05である[1]または[2]に記載の液状樹脂組成物。
[4]前記液状樹脂組成物の硬化物のガラス転移温度をTg、前記液状樹脂組成物の(E)低応力材成分を(C)無機充填材成分に置換した液状樹脂組成物の硬化物のガラス転移温度をTgとした時、−0.05<(Tg−Tg)/Tgである[1]乃至[4]のいずれかに記載の液状樹脂組成物。
[5](E)低応力材が、コアシェルゴム粒子である[1]乃至[4]のいずれかに記載の液状樹脂組成物。
[6](E)低応力材が、コアシェルシリコーンゴム粒子である[1]乃至[5]のいずれかに記載の液状樹脂組成物。
[7][1]乃至[6]のいずれかに記載の液状樹脂組成物を用いて、半導体チップを支持体に多数個配置し、封止して作製した再配置ウエハー。
[8][7]に記載の再配置ウエハーにおいて、半導体チップを支持体に多数個配置したものを圧縮成形により、封止して作製された再配置ウエハー。
[9][7]又は[8]に記載の再配置ウエハーを個片化して作製した半導体パッケージ。
[10][1]乃至[6]のいずれかに記載の液状樹脂組成物を用いて作製される半導体パッケージの製造方法であって、半導体チップを支持体に多数個配置する工程、この上に前記液状樹脂組成物を塗布する工程、金型により成形する工程、を含む半導体パッケージの製造方法。 The present invention is as follows.
[1] A liquid resin composition containing (A) an epoxy resin, (B) an acid anhydride, (C) an inorganic filler, (D) a curing accelerator, and (E) a low-stress material, Is contained in an amount of 80 wt% or more and 95 wt% or less with respect to the total liquid resin composition, and the internal stress value (σ) obtained by the equation (1) is 20 MPa in a two-layer state of a silicon wafer and a cured product of the liquid resin composition. The liquid resin composition which is the following.
Figure 2011195742
(Where σ is internal stress, Eresin (T) is the elastic modulus of the cured product of the liquid resin composition at temperature T ° C., αresin (T) is the linear expansion coefficient of the cured product of the liquid resin composition at temperature T ° C., αsi (T) is the linear expansion coefficient of silicon at a temperature of T ° C.)
[2] The liquid resin composition according to [1], wherein the content of the low stress material (E) is 3% by weight or more and 30% by weight or less with respect to the total liquid resin composition.
[3] The elastic modulus at 25 ° C. of the cured product of the liquid resin composition is E 1 , the linear expansion coefficient below the glass transition temperature is α 1 , and (E) the low-stress material component of the liquid resin composition is ( C) When the elastic modulus at 25 ° C. of the cured liquid resin composition substituted with the inorganic filler component is E 2 , and the linear expansion coefficient below the glass transition temperature is α 2 , (E 1 α 1 -E 2 alpha 2) / E is 2 alpha 2 <-0.05 [1] or liquid resin composition according to [2].
[4] Cured product of liquid resin composition in which glass transition temperature of cured product of liquid resin composition is Tg 1 and (E) low stress material component of liquid resin composition is replaced with (C) inorganic filler component when the glass transition temperature was Tg 2 of, -0.05 <(Tg 1 -Tg 2 ) / Tg is 2 [1] to the liquid resin composition according to any one of [4].
[5] The liquid resin composition according to any one of [1] to [4], wherein the low stress material (E) is a core-shell rubber particle.
[6] The liquid resin composition according to any one of [1] to [5], wherein the low stress material (E) is a core-shell silicone rubber particle.
[7] A rearranged wafer produced by using the liquid resin composition according to any one of [1] to [6] and arranging a large number of semiconductor chips on a support and sealing them.
[8] A rearranged wafer according to [7], wherein a plurality of semiconductor chips arranged on a support are sealed by compression molding.
[9] A semiconductor package produced by dividing the rearranged wafer according to [7] or [8].
[10] A method for producing a semiconductor package produced using the liquid resin composition according to any one of [1] to [6], comprising a step of arranging a plurality of semiconductor chips on a support, A method for producing a semiconductor package, comprising: a step of applying the liquid resin composition; and a step of molding with a mold.

本発明により、液状樹脂封止材を用いて作製されたウエハーレベルパッケージ、とりわけ圧縮成形でウエハー状に形成されたウエハーレベル工程で製造される半導体装置において、反りが少なく吸着搬送が容易で生産性高い擬似ウエハーを提供する事が出来る。 According to the present invention, a wafer level package manufactured using a liquid resin encapsulant, particularly a semiconductor device manufactured in a wafer level process formed into a wafer shape by compression molding, has a low warpage and can be easily sucked and conveyed. High pseudo wafer can be provided.

本発明は、(A)エポキシ樹脂、(B)酸無水物、(C)無機充填材、(D)硬化促進剤、および(E)低応力材を含有する液状樹脂組成物であって、固形成分が全液状樹脂組成物に対して80重量%以上95重量%以下含まれ、シリコンウェハーと液状樹脂組成物の硬化物の2層状態において式(1)により得られる内部応力値(σ)が20MPa以下である液状樹脂組成物、およびこれを用いた半導体装置である。

Figure 2011195742
(但し、σは内部応力、Eresin(T)は温度T℃における液状樹脂組成物の硬化物の弾性率、αresin(T)は温度T℃における液状樹脂組成物の硬化物の線膨張係数、αsi(T)は温度T℃におけるシリコンの線膨張係数。)
以下、本発明を詳細に説明する The present invention is a liquid resin composition containing (A) an epoxy resin, (B) an acid anhydride, (C) an inorganic filler, (D) a curing accelerator, and (E) a low-stress material, The internal stress value (σ) obtained by the formula (1) in the two-layer state of the silicon wafer and the cured product of the liquid resin composition is contained in 80% by weight or more and 95% by weight or less with respect to the total liquid resin composition. A liquid resin composition having a pressure of 20 MPa or less and a semiconductor device using the same.
Figure 2011195742
(Where σ is internal stress, Eresin (T) is the elastic modulus of the cured product of the liquid resin composition at temperature T ° C., αresin (T) is the linear expansion coefficient of the cured product of the liquid resin composition at temperature T ° C., αsi (T) is the linear expansion coefficient of silicon at a temperature of T ° C.)
Hereinafter, the present invention will be described in detail.

本発明で用いる(A)エポキシ樹脂としては、一分子中にエポキシ基を2個以上有するもので、かつ常温において液状であれば、特に分子量や構造は限定されるものではない。
例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、N,N-ジグリシジルアニリン、N,N−ジグリシジルトルイジン、ジアミノジフェニルメタン型グリシジルアミン、アミノフェノール型グリシジルアミンのような芳香族グリシジルアミン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリフェノールプロパン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂などのアラルキル型エポキシ樹脂などのエポキシ樹脂、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、アリサイクリックジエポキシ−アジペイドなどの脂環式エポキシなどの脂肪族エポキシ樹脂が挙げられる。
本発明では、芳香族環にグリシジルエーテル構造またはグリシジルアミン構造が結合した構造を含むものが耐熱性、機械特性、耐湿性という観点から好ましく、脂肪族または脂環式エポキシ樹脂は信頼性、特に接着性という観点から使用する量を限定するほうが好ましい。これらは単独でも2種以上混合して使用しても良い。本発明ではエポキシ樹脂として最終的に常温(25℃)で液状であることが好ましいが、常温で固体のエポキシ樹脂であっても常温で液状のエポキシ樹脂に溶解させ、結果的に液状の状態であればよい
The (A) epoxy resin used in the present invention is not particularly limited in molecular weight or structure as long as it has two or more epoxy groups in one molecule and is liquid at room temperature.
For example, novolak type epoxy resin such as phenol novolac type epoxy resin, cresol novolak type epoxy resin, bisphenol F type epoxy resin, N, N-diglycidylaniline, N, N-diglycidyltoluidine, diaminodiphenylmethane type glycidylamine, aminophenol Aromatic glycidylamine type epoxy resin such as glycidylamine type, hydroquinone type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, triphenolpropane type epoxy resin, alkyl-modified triphenolmethane type epoxy Resin, triazine nucleus-containing epoxy resin, dicyclopentadiene-modified phenol type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, Epoxy resins such as phenol aralkyl type epoxy resins having a nylene and / or biphenylene skeleton, aralkyl type epoxy resins such as a naphthol aralkyl type epoxy resin having a phenylene and / or biphenylene skeleton, vinylcyclohexene dioxide, dicyclopentadiene oxide, alicyclic Aliphatic epoxy resins such as alicyclic epoxies such as click diepoxy-adipade.
In the present invention, those containing a structure in which a glycidyl ether structure or a glycidylamine structure is bonded to an aromatic ring are preferable from the viewpoints of heat resistance, mechanical properties, and moisture resistance. It is more preferable to limit the amount to be used from the viewpoint of property. These may be used alone or in combination of two or more. In the present invention, it is preferable that the epoxy resin is finally liquid at room temperature (25 ° C.), but even an epoxy resin that is solid at room temperature is dissolved in the liquid epoxy resin at room temperature, and as a result, in a liquid state Just need

本発明に用いる(B)酸無水物としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3−メチル−ヘキサヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、3−メチル−ヘキサヒドロ無水フタル酸と4−メチル−ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、または無水メチルナジック酸などが挙げられる。
これらは、低温での硬化が早いことと、硬化物のガラス転移温度が高くなることから好ましい。また、常温で液状であり、且つ粘度も低いことから、テトラヒドロ無水フタル酸を硬化剤として用いることがより好ましい。特にこれらは、単独で用いても2種以上用いても差し支えない。
(B) Acid anhydride used in the present invention includes phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydro. Examples thereof include phthalic anhydride, a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, or methyl nadic anhydride.
These are preferable because curing at a low temperature is fast and the glass transition temperature of the cured product is high. Moreover, since it is liquid at normal temperature and its viscosity is low, it is more preferable to use tetrahydrophthalic anhydride as a curing agent. In particular, these may be used alone or in combination of two or more.

上記の(B)酸無水物以外の硬化剤としては、1分子内にエポキシと反応する官能基を有するモノマー、オリゴマー、ポリマー全般であればこれを併用できる。例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂(フェニレン骨格、ジフェニレン骨格などを有する)などのフェノール類が挙げられる。 As the curing agent other than the above (B) acid anhydride, any monomer, oligomer or polymer having a functional group that reacts with epoxy in one molecule can be used in combination. For example, phenols such as phenol novolac resin, cresol novolac resin, dicyclopentadiene modified phenol resin, terpene modified phenol resin, triphenolmethane type resin, phenol aralkyl resin (having phenylene skeleton, diphenylene skeleton, etc.) can be mentioned.

本発明に用いる無機充填材(C)としては、一般に封止材料に使用されているものを使用することができる。
例えば、溶融シリカ、結晶シリカ、タルク、アルミナ、窒化珪素などが挙げられ、これらは単独でも2種類以上併用して用いても差し支えない。これらの中でも樹脂組成物の耐熱性、耐湿性、強度などを向上できることから溶融シリカ、結晶シリカ、合成シリカ粉末が好ましい。
前記無機充填材の形状は、特に限定されないが、粘度特性や流動特性の観点から形状は球状であることが好ましい。
無機充填材が溶融シリカの場合の含有量としては、成形性と耐半田クラック性のバランスから、全エポキシ樹脂組成物中に60重量%以上95重量%以下使用することが好ましく、更に好ましくは80重量%以上95重量%以下である。前記下限値未満の場合には、吸水率の上昇に伴う耐半田クラック性が低下し、前記上限値を越えると液状封止用樹脂組成物のディスペンス性能に問題が生じる可能性がある。
無機充填剤が、溶融シリカ以外の場合は、体積換算として前記の含有量となるようにする。
As an inorganic filler (C) used for this invention, what is generally used for the sealing material can be used.
Examples thereof include fused silica, crystalline silica, talc, alumina, silicon nitride and the like, and these may be used alone or in combination of two or more. Among these, fused silica, crystalline silica, and synthetic silica powder are preferable because the heat resistance, moisture resistance, strength, and the like of the resin composition can be improved.
The shape of the inorganic filler is not particularly limited, but the shape is preferably spherical from the viewpoints of viscosity characteristics and flow characteristics.
When the inorganic filler is fused silica, the content is preferably 60% by weight or more and 95% by weight or less in the total epoxy resin composition, more preferably 80%, in view of the balance between moldability and solder crack resistance. % By weight or more and 95% by weight or less. If it is less than the lower limit value, the solder crack resistance with increasing water absorption rate is lowered, and if it exceeds the upper limit value, there may be a problem in the dispensing performance of the liquid sealing resin composition.
When the inorganic filler is other than fused silica, the content is set as the volume conversion.

本発明に用いる硬化促進剤(D)としては、エポキシ基と酸無水物との反応を促進させるものであればよく、一般に封止用材料に用いられるものを広く使用できる。例えば、ホスホニウム塩、トリフェニルホスフィン、イミダゾール化合物等が挙げられるが、これらに限定されるものではない。これらの硬化促進剤は単独でも混合して用いても差し支えない。好ましくは一般式(2)または一般式(3)の構造を有するホスホニウム塩、式(4)の構造を有するトリフェニルホスフィン、式(5)または式(6)の構造を有するイミダゾール化合物が低粘度化の観点から有効である。更に好ましくは一般式(2)の構造を有する硬化促進剤、または式(6)の構造を有するイミダゾール化合物が更なる低粘度化の観点から有効である。前記一般式(2)の硬化促進剤としては、例えば、下記式(7)、式(8)、および式(9)などが挙げられる。 As a hardening accelerator (D) used for this invention, what is necessary is just to accelerate | stimulate reaction of an epoxy group and an acid anhydride, and what is generally used for the sealing material can be used widely. Examples thereof include, but are not limited to, phosphonium salts, triphenylphosphine, imidazole compounds and the like. These curing accelerators may be used alone or in combination. Preferably, the phosphonium salt having the structure of the general formula (2) or the general formula (3), the triphenylphosphine having the structure of the formula (4), or the imidazole compound having the structure of the formula (5) or the formula (6) has a low viscosity. This is effective from the viewpoint of optimization. More preferably, a curing accelerator having the structure of the general formula (2) or an imidazole compound having the structure of the formula (6) is effective from the viewpoint of further reducing the viscosity. As a hardening accelerator of the said General formula (2), following formula (7), Formula (8), Formula (9) etc. are mentioned, for example.

Figure 2011195742
(ただし、式(2)でR1, R2, R3, 及びR4は芳香族もしくは複素環を有する1価の有機基または1価の脂肪族基であって、それらの内の少なくとも1つは、分子外に放出しうるプロトンを少なくとも1個有するプロトン供与体がプロトンを1個放出してなる基であり、これらは互いに同一であっても異なっていても良い。)
Figure 2011195742
(In the formula (2), R1, R2, R3, and R4 are monovalent organic groups or monovalent aliphatic groups having an aromatic or heterocyclic ring, and at least one of them is a molecule. (The proton donor having at least one proton that can be released to the outside is a group formed by releasing one proton, and these may be the same or different from each other.)

Figure 2011195742
(ただし、式(3)で、Arは置換または無置換の芳香族基を表し、同一分子内の二つの酸素原子は、芳香族炭素位の隣接に位置する。 nは2〜12の整数)
Figure 2011195742
(In the formula (3), Ar represents a substituted or unsubstituted aromatic group, and two oxygen atoms in the same molecule are located adjacent to the aromatic carbon position. N is an integer of 2 to 12)

Figure 2011195742
Figure 2011195742

Figure 2011195742
Figure 2011195742

Figure 2011195742
Figure 2011195742

Figure 2011195742
Figure 2011195742

Figure 2011195742
Figure 2011195742

Figure 2011195742
Figure 2011195742

また一般式(3)の硬化促進剤としては、下記式(10)、式(11)、および式(12)などが挙げられる。   Moreover, as a hardening accelerator of General formula (3), following formula (10), Formula (11), Formula (12), etc. are mentioned.

Figure 2011195742
Figure 2011195742

Figure 2011195742
Figure 2011195742

Figure 2011195742
Figure 2011195742

(D)硬化促進剤の配合量は、全液状封止用樹脂組成物100重量部に対して、0.1重量部以上1.0重量部以下であることが好ましく、更に好ましくは0.3重量部以上0.8重量部以下である。下限値未満の場合には硬化が遅く生産性が低下し、上限値を越える場合には保存性が悪化する恐れがあるためである。 (D) It is preferable that the compounding quantity of a hardening accelerator is 0.1 to 1.0 weight part with respect to 100 weight part of all the liquid sealing resin compositions, More preferably, it is 0.3. It is not less than 0.8 parts by weight. This is because if it is less than the lower limit, curing is slow and productivity is lowered, and if it exceeds the upper limit, the storage stability may be deteriorated.

(B)酸無水物と(D)硬化促進剤の配合比[(B)/(D)]は、3以上35以下が好ましく、5以上30以下であることがさらに好ましく、10以上20以下が特に好ましい。配合比[(B)/(D)]が、下限値未満の場合には保存性が悪化し、上限値を越える場合には硬化が遅く生産性が悪くなる恐れがあるためである。
また、(B)酸無水物の配合量は、液状樹脂組成物100重量部に対して、2重量部以上10重量部以下が好ましく、更に好ましくは5重量部以上7重量部以下である。
(B)酸無水物の配合量が、下限値未満の場合には硬化性が悪くなり、生産性が低下する。そして、上限値を越える場合には、耐湿信頼性が低下する恐れがある。
The blending ratio [(B) / (D)] of (B) acid anhydride and (D) curing accelerator is preferably 3 or more and 35 or less, more preferably 5 or more and 30 or less, and more preferably 10 or more and 20 or less. Particularly preferred. This is because when the blending ratio [(B) / (D)] is less than the lower limit value, the storage stability is deteriorated, and when it exceeds the upper limit value, the curing is slow and the productivity may be deteriorated.
Further, the blending amount of (B) acid anhydride is preferably 2 parts by weight or more and 10 parts by weight or less, and more preferably 5 parts by weight or more and 7 parts by weight or less with respect to 100 parts by weight of the liquid resin composition.
(B) When the compounding quantity of an acid anhydride is less than a lower limit, curability will worsen and productivity will fall. And when it exceeds an upper limit, there exists a possibility that moisture resistance reliability may fall.

本発明に用いる(E)低応力材は、樹脂組成物を低弾性化させるものであればよく、一般に封止用材料に用いられるものを広く使用できる。例えば、エチレン・エチルアクリレート共重合樹脂、エチレン・酢酸ビニル共重合樹脂、ブタジエン−ニトリルゴム、ポリウレタン、アクリルゴム、アクリロニトリル−ブタジエンゴム、シリコーンゴム、ポリエチレン、ポリプロピレン、ポリブタジエン、シリコーンゴム、オレフィン系共重合体、ニトリルゴム、ポリブタジエンゴムやその変性物などが挙げられる。この内、(E)低応力材が液状ゴムの場合、添加によるTgの低下が大きくなるため固形ゴムが好ましい。固形ゴムの中でもコアシェルゴム粒子を用いると、線膨張係数の増加が抑えられる為更に好ましい。より好ましくはコアシェルシリコーンゴム粒子である。また、(E)低応力材の添加量は、液状樹脂組成物中に3〜30重量%であることが好ましく、5〜20重量%がより好ましい。下限値未満の場合には低弾性の効果が得られず、上限値を超える場合には粘度上昇が高く生産性が悪くなる恐れがあるためである。 The (E) low-stress material used in the present invention is not particularly limited as long as it makes the resin composition have low elasticity, and those generally used for sealing materials can be widely used. For example, ethylene / ethyl acrylate copolymer resin, ethylene / vinyl acetate copolymer resin, butadiene-nitrile rubber, polyurethane, acrylic rubber, acrylonitrile-butadiene rubber, silicone rubber, polyethylene, polypropylene, polybutadiene, silicone rubber, olefin copolymer , Nitrile rubber, polybutadiene rubber and modified products thereof. Among these, when the low stress material (E) is a liquid rubber, a solid rubber is preferable because a decrease in Tg due to the addition becomes large. Among the solid rubbers, it is more preferable to use core-shell rubber particles because an increase in the linear expansion coefficient can be suppressed. More preferred are core-shell silicone rubber particles. Moreover, it is preferable that the addition amount of (E) low-stress material is 3 to 30 weight% in a liquid resin composition, and 5 to 20 weight% is more preferable. This is because if it is less than the lower limit, the effect of low elasticity cannot be obtained, and if it exceeds the upper limit, the increase in viscosity is high and the productivity may be deteriorated.

(E)低応力材がコアシェル粒子場合、コア部のガラス転移温度は、シェル部のガラス転移温度に比べ、低く、室温よりも低いことが好ましい。その際にコア部とシェル部が同一種のゴムである必要は無く、コア部がシリコーンゴムでシェル部がアクリルゴムや、コア部がブタジエンゴムでシェル部にアクリルゴムなどを組み合わせても可能である。 (E) When the low-stress material is core-shell particles, the glass transition temperature of the core part is preferably lower than the glass transition temperature of the shell part and lower than room temperature. In this case, the core and shell need not be the same type of rubber, and it is possible to combine the core with silicone rubber, the shell with acrylic rubber, or the core with butadiene rubber and the shell with acrylic rubber. is there.

(E)低応力材がコアシェル粒子場合、凝集しにくいという点で球状または略球状であることが好ましい。また(C)コアシェル粒子の粒子径は、好ましくは、0.01μm以上30μm以下であり、より好ましくは、0.1μm以上10μm以下である。粒子径が下限値未満では凝集力が強くなり、粘度が上昇し流動性が維持できない。また上限値を超えると狭ギャップに対して、樹脂詰まりを起こしてしまう可能性がある。   (E) When the low-stress material is a core-shell particle, it is preferably spherical or substantially spherical in that it hardly aggregates. The particle diameter of (C) core-shell particles is preferably 0.01 μm or more and 30 μm or less, and more preferably 0.1 μm or more and 10 μm or less. When the particle diameter is less than the lower limit, the cohesive force becomes strong, the viscosity increases, and the fluidity cannot be maintained. If the upper limit is exceeded, resin clogging may occur in a narrow gap.

本発明の液状樹脂組成物において、固形成分が全液状樹脂組成物に対して80重量%以上95重量%以下含まれる。固形成分は25℃において固形の成分であり、無機充填剤と固形の低応力材とを併せた含有量を示す。 In the liquid resin composition of the present invention, the solid component is contained in an amount of 80% by weight or more and 95% by weight or less based on the total liquid resin composition. The solid component is a solid component at 25 ° C., and indicates the combined content of the inorganic filler and the solid low-stress material.

上記以外に用いることができる成分としては、消泡剤としてのシリコーン化合物やワックスなどの離型剤や難燃剤等が挙げられ、求める特性に応じて添加する事ができる。   Examples of components that can be used other than the above include mold release agents such as silicone compounds and waxes as antifoaming agents, flame retardants, and the like, and they can be added according to desired characteristics.

本発明の液状封止樹脂組成物の製造方法としては、例えば各成分、添加剤などをプラネタリーミキサー、三本ロール、二本熱ロール、ライカイ機などの装置を用いて分散混練したのち、真空下で脱泡処理して製造する。 As a method for producing the liquid sealing resin composition of the present invention, for example, each component, additive and the like are dispersed and kneaded using an apparatus such as a planetary mixer, three rolls, two hot rolls, and a laika machine, and then vacuumed. Manufacture by defoaming under.

本発明の液状樹脂組成物の硬化物とシリコンウェハーの2層状態において式(1)により得られる内部応力値(σ)が20MPa以下であることが必要である。この値が上限値を超えると、ウエハーレベルパッケージに適用した場合内部応力によるウェハーの反りが大きくなる恐れがある。 The internal stress value (σ) obtained by the formula (1) in the two-layer state of the cured product of the liquid resin composition of the present invention and the silicon wafer needs to be 20 MPa or less. If this value exceeds the upper limit, the wafer warpage due to internal stress may increase when applied to a wafer level package.

Figure 2011195742
(但し、σは内部応力、Eresin(T)は温度T℃における樹脂の弾性率、αresin(T)は温度T℃における樹脂の線膨張係数、αsi(T)は温度T℃における半導体素子の線膨張係数。)
Figure 2011195742
(Where σ is the internal stress, Eresin (T) is the elastic modulus of the resin at a temperature T ° C., αresin (T) is the linear expansion coefficient of the resin at the temperature T ° C., and αsi (T) is the line of the semiconductor element at the temperature T ° C. Expansion coefficient.)

本発明の液状樹脂組成物の硬化物の25℃での弾性率をE、ガラス転移温度以下での線膨張係数をα、前記液状樹脂組成物の(E)低応力材成分を(C)無機充填材成分に置換した液状樹脂組成物の硬化物の25℃での弾性率をE、ガラス転移温度以下での線膨張係数をαとした時、(Eα−Eα)/Eα<−0.05であることが好ましい。この値が上限値を超えると半導体パッケージにおける半田耐熱試験等で不良が発生しやすくなる恐れがある。 The elastic modulus at 25 ° C. of the cured product of the liquid resin composition of the present invention is E 1 , the coefficient of linear expansion below the glass transition temperature is α 1 , and (E) the low stress material component of the liquid resin composition is (C ) When the elastic modulus at 25 ° C. of the cured liquid resin composition substituted with the inorganic filler component is E 2 and the coefficient of linear expansion below the glass transition temperature is α 2 , (E 1 α 1 -E 2 α 2 ) / E 2 α 2 <−0.05 is preferred. If this value exceeds the upper limit, defects may easily occur in a solder heat test or the like in a semiconductor package.

本発明の液状樹脂組成物の硬化物のガラス転移温度をTg、前記液状樹脂組成物の(E)低応力材成分を(C)無機充填材成分に置換した液状樹脂組成物の硬化物のガラス転移温度をTgとした時、−0.05<(Tg−Tg)/Tgであることが好ましい。この値が下限値未満では半導体パッケージにおける半田耐熱試験等で不良が発生しやすくなる恐れがある。 The glass transition temperature of the cured product of the liquid resin composition of the present invention is Tg 1 , and the cured product of the liquid resin composition in which the (E) low stress material component of the liquid resin composition is replaced with the (C) inorganic filler component. when the glass transition temperature was Tg 2, it is preferably -0.05 <(Tg 1 -Tg 2) / Tg 2. If this value is less than the lower limit, defects may easily occur in a solder heat test or the like in a semiconductor package.

本発明の半導体パッケージの種類としては、例えば次の様な種類があるが、これに限るものではない。
即ち、BGA(Ball Grid Array)、FCBGA(Flip Chip BGA)、MAPBGA(Molded Array Process BGA)などである。また本発明の液状封止樹脂組成物の適用例としてより好ましい例として、eWLB(Embedded Wafer−Level BGA)があり、Fan−Out型、Fan−In型、SiP(System in Package)などの形態である。
Examples of the semiconductor package of the present invention include the following types, but are not limited thereto.
That is, BGA (Ball Grid Array), FCBGA (Flip Chip BGA), MAPBGA (Molded Array Process BGA), and the like. As a more preferable example of application of the liquid sealing resin composition of the present invention, there is eWLB (Embedded Wafer-Level BGA), which is in the form of Fan-Out type, Fan-In type, SiP (System in Package) or the like. is there.

本発明の半導体パッケージの製造方法としては、例えば次の様な方法があるが、これに限るものではない。
即ち、支持体であるキャリアの上に、予め動作することが分かっている半導体チップをその活性面を下向きに多数個並べる工程(半導体チップを支持体に多数個配置する工程)、次に成形金型に配置しその上に本発明の液状樹脂組成物をディスペンサーなどで塗布する工程(液状樹脂組成物を塗布する工程)、次に、圧縮成形(金型により成形する工程)後、キャリアを剥がして半導体チップが封止され再配置された再配置ウエハーを得る。
続いて、得られた再配置ウエハーの表面にバッファコート材をスピンコートして、バッファコート材を硬化して絶縁膜層を形成した後、パターニング処理により半導体チップ活性面上の電極パッド部分を開孔する。開孔部分からバッファコート材表面へ、メッキなどにより再配線加工と実装用バンプ形成を行う(再配線工程)。その後、これをダイシングにより個片化する(個片化工程)ことで半導体パッケージが得られる。
As a method for manufacturing a semiconductor package of the present invention, for example, there is the following method, but the method is not limited to this.
That is, a step of arranging a large number of semiconductor chips known to operate in advance on a carrier as a support with the active surface facing downward (a step of arranging a large number of semiconductor chips on a support), and then a molding metal Place on the mold and apply the liquid resin composition of the present invention on the dispenser with a dispenser or the like (the step of applying the liquid resin composition), then, after the compression molding (the step of forming with the mold), peel off the carrier Thus, a rearranged wafer in which the semiconductor chips are sealed and rearranged is obtained.
Subsequently, a buffer coating material is spin-coated on the surface of the obtained rearranged wafer, the buffer coating material is cured to form an insulating film layer, and then an electrode pad portion on the active surface of the semiconductor chip is opened by a patterning process. Make a hole. Rewiring processing and mounting bump formation are performed by plating or the like from the hole portion to the surface of the buffer coating material (rewiring process). Then, a semiconductor package is obtained by dividing this into pieces by dicing (an individualization process).

以下、実施例を用いて、本発明を具体的に説明するが、これらに限定されるものではない。
[実施例1]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルテトラヒドロフタル酸無水物
MT−500 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 1200重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 250重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてコアシェルシリコーンゴム粒子(コアシェルシリコーンゴム1)
KMP−605 信越化学工業社製 150重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, it is not limited to these.
[Example 1]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S manufactured by Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyltetrahydrophthalic anhydride
MT-500 New Nippon Rika Co., Ltd. 100 parts by weight (3) Inorganic filler 1 as inorganic filler (C)
FB-74 Denki Kagaku Kogyo Co., Ltd. 1200 parts by weight (4) Inorganic filler 2 as inorganic filler (C)
SO-E2 manufactured by Admatechs Co., Ltd. 250 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (6) Core shell silicone rubber particles (E) as low stress material (E) Core shell silicone rubber 1)
KMP-605 150 parts by weight manufactured by Shin-Etsu Chemical Co., Ltd. (7) Epoxysilane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E 4 parts by weight manufactured by Shin-Etsu Chemical Co., Ltd. was taken in a beaker and mixed with a spatula. Then, after kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.

作製した液状樹脂組成物について、以下の評価を行った。
液状樹脂組成物を125℃10分、150℃1時間の硬化条件により硬化して試験サンプルを作成した。又、上記液状樹脂組成物の(E)低応力材成分を(C)無機充填材1に置換した液状樹脂組成物を125℃10分、150℃1時間の硬化条件により硬化して試験サンプルを作成した。
The following evaluation was performed about the produced liquid resin composition.
The liquid resin composition was cured under curing conditions of 125 ° C. for 10 minutes and 150 ° C. for 1 hour to prepare a test sample. Further, a test sample was prepared by curing a liquid resin composition obtained by substituting the low stress material component (E) of the liquid resin composition with (C) inorganic filler 1 under the curing conditions of 125 ° C. for 10 minutes and 150 ° C. for 1 hour. Created.

(a)粘度測定:E型粘度計に3°R7.7型コーンを装着し25℃で5rpmの条件で測定を実施した。 (A) Viscosity measurement: A 3 ° R7.7 cone was attached to an E-type viscometer, and measurement was performed at 25 ° C. under the condition of 5 rpm.

(b)ガラス転移温度、線膨張係数:熱機械分析装置(TMA/SS6100,SII社製)を用いて、四角柱状に硬化した液状樹脂組成物を圧縮法にて−100℃から300℃まで5℃/minで昇温測定し、ガラス転移温度およびガラス状態領域での線膨張係数を測定した。 (B) Glass transition temperature, linear expansion coefficient: Using a thermomechanical analyzer (TMA / SS6100, manufactured by SII), a liquid resin composition cured in a square column shape is compressed from -100 ° C to 300 ° C by a compression method. The temperature was measured at a rate of ° C./min, and the glass transition temperature and the linear expansion coefficient in the glass state region were measured.

(c)ガラス転移温度変化率:液状樹脂組成物の硬化物のガラス転移温度をTg、前記液状樹脂組成物の(E)低応力材成分を(C)無機充填材1に置換した液状樹脂組成物の硬化物のガラス転移温度をTgとした時、(Tg−Tg)/Tg×100である。 (C) Glass transition temperature change rate: Tg 1 is the glass transition temperature of the cured product of the liquid resin composition, and (E) the low stress material component of the liquid resin composition is the liquid resin in which (C) the inorganic filler 1 is substituted. when the glass transition temperature of the cured product of the composition was Tg 2, a (Tg 1 -Tg 2) / Tg 2 × 100.

(d)室温弾性率:粘弾性測定装置(DMA−7e,PERKIN ELMER社製)を用いて、板状に硬化した液状樹脂組成物を3点曲げ法にて0℃から300℃まで5℃/minで昇温測定し、25℃での弾性率を測定した。 (D) Room temperature elastic modulus: Using a viscoelasticity measuring device (DMA-7e, manufactured by PERKIN ELMER), a liquid resin composition cured in a plate shape was subjected to 3 ° bending from 0 ° C. to 300 ° C. at 5 ° C. / The temperature was measured at min and the elastic modulus at 25 ° C. was measured.

(e)線膨張係数×室温弾性率変化率:液状樹脂組成物の硬化物の25℃での弾性率をE、ガラス転移温度以下での線膨張係数をα、前記液状樹脂組成物の(E)低応力材成分を(C)無機充填材1に置換した液状樹脂組成物の硬化物の25℃での弾性率をE、ガラス転移温度以下での線膨張係数をαとした時、(Eα−Eα)/Eα×100である。 (E) linear expansion coefficient × room temperature elastic modulus change rate: E 1 is an elastic modulus at 25 ° C. of a cured product of the liquid resin composition, α 1 is a linear expansion coefficient below the glass transition temperature, and the liquid resin composition (E) The elastic modulus at 25 ° C. of the cured product of the liquid resin composition in which the low-stress material component is replaced with (C) inorganic filler 1 is E 2 , and the linear expansion coefficient below the glass transition temperature is α 2 . when a (E 1 α 1 -E 2 α 2) / E 2 α 2 × 100.

(f)内部応力値:シリコンウェハーと液状樹脂硬化物の2層状態において式(1)により得られる内部応力値(σ)を求めた。 (F) Internal stress value: The internal stress value (σ) obtained by the formula (1) in the two-layer state of the silicon wafer and the liquid resin cured product was determined.

Figure 2011195742
(但し、σは内部応力、Eresin(T)は温度T℃における樹脂の弾性率、αresin(T)は温度T℃における樹脂の線膨張係数、αsi(T)は温度T℃におけるシリコンの線膨張係数。)
Figure 2011195742
(Where σ is the internal stress, Eresin (T) is the elastic modulus of the resin at a temperature T ° C., αresin (T) is the linear expansion coefficient of the resin at the temperature T ° C., and αsi (T) is the linear expansion of the silicon at the temperature T ° C. coefficient.)

(g)密着力:10mm角に切断した表面がミラータイプの625μm厚シリコンウエハーの裏面であるブライトエッチ面に、作製した液状樹脂組成物を塗布した。これを挟んで密着測定用の釘(銅製)を取り付け、125℃10分加熱硬化後、更に175℃4時間で後硬化を行い、測定サンプルを得た。釘の接着面積10mmである。これを測定装置(Dage4000,Dage社製)に半導体チップ面を万力で固定して取り付け、25℃において垂直方向に持ち上げて測定した。
作製した液状樹脂組成物の25℃での粘度は、500Pa・s、ガラス転移温度は100℃、ガラス転移温度変化は0℃、線膨張係数は7ppm/℃、室温弾性率は15GPa、線膨張×室温弾性率変化率は−24%。内部応力値は9MPa、密着力は28Nであった。
(G) Adhesion force: The prepared liquid resin composition was applied to the bright etch surface, which is the back surface of a 625 μm-thick silicon wafer whose surface was cut into 10 mm square. A nail (copper) for adhesion measurement was attached across this, and after heat curing at 125 ° C. for 10 minutes, post-curing was further performed at 175 ° C. for 4 hours to obtain a measurement sample. The nail adhesion area is 10 mm 2 . This was measured by fixing the semiconductor chip surface to a measuring device (Dage4000, manufactured by Dage) with a vise and lifting it vertically at 25 ° C.
The viscosity of the prepared liquid resin composition at 25 ° C. is 500 Pa · s, the glass transition temperature is 100 ° C., the glass transition temperature change is 0 ° C., the linear expansion coefficient is 7 ppm / ° C., the room temperature elastic modulus is 15 GPa, and the linear expansion × The room temperature elastic modulus change rate is -24%. The internal stress value was 9 MPa, and the adhesion was 28N.

[信頼性評価]
半導体チップ上に回路配線された半導体ウエハー(Phase8、日立超LSI株式会社製,350μm厚)をダイシング装置で7mm角大に切断し、半導体チップを得た。次に8インチシリコンウエハー(725μm厚)をキャリアとし、剥離可能な熱発泡フィルム(リバアルファ、日東電工株式会社製)を、熱発泡フィルムの発泡面を常温で接着して支持基板を作った。支持基板に適当な間隔を空けて、半導体チップの電極がある活性面が熱発泡フィルムと接するように、ダイマウンター(DB200, 澁谷工業(株)製)で半導体チップを搭載した。半導体チップ付き支持基板を圧縮成形機にセットし、液状樹脂組成物適量載せ、成形圧力3MPa,125℃10分で硬化を行い、ウエハーを得た。液状樹脂組成物の量は、成形後の樹脂厚みが600±10μmとなるように調整した。
ウエハーを150℃1時間オーブンで熱処理し後硬化を行った後、支持基板を剥がす為に、200℃の吸着可能な熱盤上に置いて熱発泡フィルムを発泡させ、支持基板のウエハー部を剥離し、次いで熱発泡フィルム自体をウエハーから剥離することで、表面に多数の半導体チップが露出した状態の再配置ウエハーを得た。得られた再配置ウエハーをチップ面を上にして表面粗さ測定装置(SURFCOM1400D,株式会社東京精密社製)を用いて測定距離18mm、測定速度6mm/sで測定し、反りは0.8mmであった。
得られた再配置ウエハー全体に、感光性バッファコート材をスピンコート(DSPIN80A、(株)SOKUDO製、1500rpm、30秒)、次いで同装置にてプリベーク(125℃5分)を行い、再配置ウエハー表面に再配線用の絶縁膜を形成する。半導体チップの各接続パッドの位置で絶縁膜を開孔するために、光照射(ブロードバンドアライナーMA−8、ズース・マイクロテック(株)製、500mJ/cm)を行い、現像液(TMAH2.38%、23℃、62秒2回パドル)で現像、最終硬化(250℃ 1.5時間)した。次にスパッター(SPF−740H、キャノンアネルバエンジニアリング(株)製)にてバッファコート上に、チタン500Å、銅3000Å厚みとなる様、順に成膜。ここにレジスト(サンフォート155、旭化成イーマテリアルズ(株)製)を塗布し、再配線回路用マスクを用いてレジストの露光と現像を行う。更に銅メッキ処理で、全体に10μm厚みの銅の層を形成した後、レジストを剥離した。この状態では、バッファコート面に不要な銅とチタン層が残っているので、これらをエッチングにより除去後、もう一度スピンコートにてバッファコート層を設け、再配線後の別位置に開孔しバンプ接続の為の銅層を露出させた。再配線は、以上の手順で行った。
再配線まで終わった再配置ウエハーは、ダイサーを用いて15mm角サイズに個片化した。この様にして、信頼性試験用の半導体パッケージ装置を組立てた。
[Reliability evaluation]
A semiconductor wafer (Phase 8, manufactured by Hitachi Ultra LSI Co., Ltd., 350 μm thickness) wired on the semiconductor chip was cut into a 7 mm square by a dicing apparatus to obtain a semiconductor chip. Next, an 8-inch silicon wafer (725 μm thickness) was used as a carrier, and a peelable thermally foamed film (Riva Alpha, manufactured by Nitto Denko Corporation) was bonded to the foamed surface of the thermally foamed film at room temperature to form a support substrate. A semiconductor chip was mounted with a die mounter (DB200, manufactured by Kasuya Kogyo Co., Ltd.) so that the active surface on which the electrodes of the semiconductor chip were in contact with the thermally foamed film with a suitable space in the support substrate. A support substrate with a semiconductor chip was set in a compression molding machine, an appropriate amount of the liquid resin composition was placed, and curing was performed at a molding pressure of 3 MPa at 125 ° C. for 10 minutes to obtain a wafer. The amount of the liquid resin composition was adjusted so that the resin thickness after molding was 600 ± 10 μm.
After the wafer is heat-treated in an oven at 150 ° C. for 1 hour and then cured, it is placed on a 200 ° C. adsorbing hot plate to peel off the support substrate, and then the thermally foamed film is foamed, and the wafer portion of the support substrate is peeled off. Then, the thermally foamed film itself was peeled from the wafer to obtain a rearranged wafer with a large number of semiconductor chips exposed on the surface. The obtained rearranged wafer was measured with a surface roughness measuring device (SURFCOM 1400D, manufactured by Tokyo Seimitsu Co., Ltd.) with the chip surface facing upward at a measurement distance of 18 mm and a measurement speed of 6 mm / s, and the warpage was 0.8 mm. there were.
The entire rearranged wafer thus obtained was spin coated with a photosensitive buffer coating material (DSPIN 80A, manufactured by Sokudo Co., Ltd., 1500 rpm, 30 seconds), and then pre-baked (at 125 ° C. for 5 minutes) with the same apparatus. An insulating film for rewiring is formed on the surface. In order to open the insulating film at the position of each connection pad of the semiconductor chip, light irradiation (broadband aligner MA-8, manufactured by SUSS Microtec Co., Ltd., 500 mJ / cm 2 ) was performed, and a developer (TMAH 2.38) was formed. %, 23 ° C., 62 seconds twice paddle), and final curing (250 ° C., 1.5 hours). Next, a film was formed in order on the buffer coat by sputtering (SPF-740H, manufactured by Canon Anelva Engineering Co., Ltd.) so that the thickness was 500 mm of titanium and 3000 mm of copper. A resist (Sunfort 155, manufactured by Asahi Kasei E-Materials Co., Ltd.) is applied here, and the resist is exposed and developed using a rewiring circuit mask. Further, a copper layer having a thickness of 10 μm was formed on the whole by copper plating, and then the resist was peeled off. In this state, unnecessary copper and titanium layers remain on the buffer coat surface. After removing these by etching, a buffer coat layer is provided again by spin coating, and holes are opened at different positions after rewiring. The copper layer for this was exposed. Rewiring was performed according to the above procedure.
The rearranged wafers that had been rewired were separated into 15 mm square sizes using a dicer. In this way, a semiconductor package device for reliability testing was assembled.

(h)半田耐熱試験
上記作製した半導体パッケージを、125℃20時間処理し、次いで85℃85%RHの条件で168時間吸湿処理した。これを、最大温度260℃の時間が30秒となるように設定したリフローオーブンに3回通し、半田耐熱試験1を行った。(試験条件1とした。)
また、半田耐熱試験1(試験条件1)の吸湿処理条件を85℃60%RH168hとした以外は、同様にして、半田耐熱試験2を行った。(試験条件2とした。)
試験後のサンプルは、超音波探傷装置(FineSAT FS300型,日立建機(株)製)にて20MHzのプローブを用いて、内部の剥離状態を確認した。半導体チップの面積に対して、剥離面積の合計が10%以下の場合は微小剥離とし、それ以上の剥離面積では剥離として、剥離が見られた半導体パッケージの数を数えた。
液状樹脂組成物を用いた結果では微小剥離、剥離ともに見つからなかった。
(H) Solder heat resistance test The manufactured semiconductor package was treated at 125 ° C. for 20 hours, and then moisture-absorbed for 168 hours at 85 ° C. and 85% RH. This was passed three times through a reflow oven set so that the maximum temperature of 260 ° C. was 30 seconds, and a solder heat resistance test 1 was conducted. (Test condition 1)
Further, a solder heat resistance test 2 was performed in the same manner except that the moisture absorption treatment condition of the solder heat resistance test 1 (test condition 1) was 85 ° C. and 60% RH168h. (Test condition 2)
The sample after the test was checked for internal peeling using a 20 MHz probe with an ultrasonic flaw detector (FineSAT FS300, manufactured by Hitachi Construction Machinery Co., Ltd.). When the total peeled area was 10% or less with respect to the area of the semiconductor chip, it was regarded as minute peeling, and as the peeling area was larger than that, the number of semiconductor packages where peeling was observed was counted.
As a result of using the liquid resin composition, neither fine peeling nor peeling was found.

[実施例2]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルテトラヒドロフタル酸無水物
MT−500 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 750重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 150重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてコアシェルシリコーンゴム粒子(コアシェルシリコーンゴム1)
KMP−605 信越化学工業社製 100重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物25℃での粘度は、100Pa・s、ガラス転移温度は100℃、ガラス転移温度変化は0℃、線膨張係数は11ppm/℃、室温弾性率は7GPa、線膨張×室温弾性率変化率は−20%。内部応力値は11MPa、密着力は24N、再配置ウエハーの反りは1.0mmであった。
[Example 2]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S manufactured by Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyltetrahydrophthalic anhydride
MT-500 New Nippon Rika Co., Ltd. 100 parts by weight (3) Inorganic filler 1 as inorganic filler (C)
FB-74 750 parts by weight manufactured by Denki Kagaku Kogyo Co., Ltd. (4) Inorganic filler 2 as inorganic filler (C)
SO-E2 manufactured by Admatechs Co., Ltd. 150 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (6) Core-shell silicone rubber particles as low stress material (E) ( Core shell silicone rubber 1)
KMP-605 Shin-Etsu Chemical Co., Ltd. 100 parts by weight (7) Epoxysilane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E Shin-Etsu Chemical Co., Ltd. 4 parts by weight in a beaker and mixed with a spatula Then, after kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. The viscosity at 25 ° C. of the liquid resin composition is 100 Pa · s, the glass transition temperature is 100 ° C., the glass transition temperature change is 0 ° C., the linear expansion coefficient is 11 ppm / ° C., the room temperature elastic modulus is 7 GPa, and the linear expansion × room temperature elastic modulus. The rate of change is -20%. The internal stress value was 11 MPa, the adhesion force was 24 N, and the warpage of the rearranged wafer was 1.0 mm.

[実施例3]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルテトラヒドロフタル酸無水物
MT−500 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 2000重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 400重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてコアシェルシリコーンゴム粒子(コアシェルシリコーンゴム1)
KMP−605 信越化学工業社製 230重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物25℃での粘度は、1500Pa・s、ガラス転移温度は100℃、ガラス転移温度変化は0℃、線膨張係数は5ppm/℃、室温弾性率は21GPa、線膨張×室温弾性率変化率は−18%。内部応力値は5MPa、密着力は30N、再配置ウエハーの反りは0.7mmであった。
[Example 3]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S manufactured by Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyltetrahydrophthalic anhydride
MT-500 New Nippon Rika Co., Ltd. 100 parts by weight (3) Inorganic filler 1 as inorganic filler (C)
FB-74 manufactured by Denki Kagaku Kogyo Co., Ltd. 2000 parts by weight (4) As inorganic filler (C), inorganic filler 2
SO-E2 Admatex 400 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (6) Low-stress material (E) core-shell silicone rubber particles ( Core shell silicone rubber 1)
KMP-605 Shin-Etsu Chemical Co., Ltd. 230 parts by weight (7) Epoxysilane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E Shin-Etsu Chemical Co., Ltd. 4 parts by weight in a beaker and mixed with a spatula Then, after kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. Viscosity at 25 ° C. of liquid resin composition is 1500 Pa · s, glass transition temperature is 100 ° C., glass transition temperature change is 0 ° C., linear expansion coefficient is 5 ppm / ° C., room temperature elastic modulus is 21 GPa, linear expansion × room temperature elastic modulus The rate of change is -18%. The internal stress value was 5 MPa, the adhesion was 30 N, and the warpage of the rearranged wafer was 0.7 mm.

[実施例4]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルテトラヒドロフタル酸無水物
MT−500 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 1200重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 250重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてコアシェルシリコーンゴム粒子(コアシェルシリコーンゴム1)
KMP−605 信越化学工業社製 70重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物25℃での粘度は、400Pa・s、ガラス転移温度は100℃、ガラス転移温度変化は0℃、線膨張係数は7ppm/℃、室温弾性率は18GPa、線膨張×室温弾性率変化率は−10%。内部応力値は11MPa、密着力は23N、再配置ウエハーの反りは0.9mmであった。
[Example 4]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S manufactured by Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyltetrahydrophthalic anhydride
MT-500 New Nippon Rika Co., Ltd. 100 parts by weight (3) Inorganic filler 1 as inorganic filler (C)
FB-74 Denki Kagaku Kogyo Co., Ltd. 1200 parts by weight (4) Inorganic filler 2 as inorganic filler (C)
SO-E2 manufactured by Admatechs Co., Ltd. 250 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (6) Core shell silicone rubber particles (E) as low stress material (E) Core shell silicone rubber 1)
KMP-605 Shin-Etsu Chemical Co., Ltd. 70 parts by weight (7) Epoxysilane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E Shin-Etsu Chemical Co., Ltd. 4 parts by weight in a beaker and mixed with a spatula Then, after kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. The viscosity at 25 ° C. of the liquid resin composition is 400 Pa · s, the glass transition temperature is 100 ° C., the glass transition temperature change is 0 ° C., the linear expansion coefficient is 7 ppm / ° C., the room temperature elastic modulus is 18 GPa, and the linear expansion × room temperature elastic modulus. Change rate is -10%. The internal stress value was 11 MPa, the adhesion was 23 N, and the warpage of the rearranged wafer was 0.9 mm.

[実施例5]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルテトラヒドロフタル酸無水物
MT−500 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 800重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 300重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてコアシェルシリコーンゴム粒子(コアシェルシリコーンゴム1)
KMP−605 信越化学工業社製 430重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物25℃での粘度は、1500Pa・s、ガラス転移温度は100℃、ガラス転移温度変化は0℃、線膨張係数は9ppm/℃、室温弾性率は6GPa、線膨張×室温弾性率変化率は−50%。内部応力値は6MPa、密着力は25N、再配置ウエハーの反りは0.8mmであった。
[Example 5]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S manufactured by Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyltetrahydrophthalic anhydride
MT-500 New Nippon Rika Co., Ltd. 100 parts by weight (3) Inorganic filler 1 as inorganic filler (C)
FB-74, manufactured by Denki Kagaku Kogyo Co., Ltd. 800 parts by weight (4) As inorganic filler (C), inorganic filler 2
SO-E2 manufactured by Admatechs Co., Ltd. 300 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (6) Core shell silicone rubber particles (E) as low-stress material (E) Core shell silicone rubber 1)
KMP-605 Shin-Etsu Chemical Co., Ltd. 430 parts by weight (7) Epoxy silane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E Shin-Etsu Chemical Co., Ltd. 4 parts by weight in a beaker and mixed with a spatula Then, after kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. Viscosity at 25 ° C. of liquid resin composition is 1500 Pa · s, glass transition temperature is 100 ° C., glass transition temperature change is 0 ° C., linear expansion coefficient is 9 ppm / ° C., room temperature elastic modulus is 6 GPa, linear expansion × room temperature elastic modulus Change rate is -50%. The internal stress value was 6 MPa, the adhesion was 25 N, and the warpage of the rearranged wafer was 0.8 mm.

[実施例6]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルテトラヒドロフタル酸無水物
MT−500 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 1200重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 250重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてコアシェルシリコーンゴム粒子(コアシェルシリコーンゴム2)
KMP−600 信越化学工業社製 150重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物25℃での粘度は、500Pa・s、ガラス転移温度は100℃、ガラス転移温度変化は0℃、線膨張係数は7ppm/℃、室温弾性率は15GPa、線膨張×室温弾性率変化率は−24%。内部応力値は9MPa、密着力は27N、再配置ウエハーの反りは1.0mmであった。
[Example 6]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S manufactured by Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyltetrahydrophthalic anhydride
MT-500 New Nippon Rika Co., Ltd. 100 parts by weight (3) Inorganic filler 1 as inorganic filler (C)
FB-74 Denki Kagaku Kogyo Co., Ltd. 1200 parts by weight (4) Inorganic filler 2 as inorganic filler (C)
SO-E2 manufactured by Admatechs Co., Ltd. 250 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (6) Core shell silicone rubber particles (E) as low stress material (E) Core shell silicone rubber 2)
KMP-600 Shin-Etsu Chemical Co., Ltd. 150 parts by weight (7) Epoxysilane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E Shin-Etsu Chemical Co., Ltd. 4 parts by weight was taken in a beaker and mixed with a spatula Then, after kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. The viscosity at 25 ° C. of the liquid resin composition is 500 Pa · s, the glass transition temperature is 100 ° C., the glass transition temperature change is 0 ° C., the linear expansion coefficient is 7 ppm / ° C., the room temperature elastic modulus is 15 GPa, and the linear expansion × room temperature elastic modulus. The rate of change is -24%. The internal stress value was 9 MPa, the adhesion was 27 N, and the warpage of the rearranged wafer was 1.0 mm.

[実施例7]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルテトラヒドロフタル酸無水物
MT−500 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 1200重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 250重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてコアシェルアクリルゴム粒子(コアシェルアクリルゴム)
W5500 三菱レイヨン社製 150重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物25℃での粘度は、500Pa・s、ガラス転移温度は100℃、ガラス転移温度変化は0℃、線膨張係数は12ppm/℃、室温弾性率は16GPa、線膨張×室温弾性率変化率は−7%。内部応力値は15MPa、密着力は27N、再配置ウエハーの反りは1.2mmであった。
[Example 7]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S manufactured by Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyltetrahydrophthalic anhydride
MT-500 New Nippon Rika Co., Ltd. 100 parts by weight (3) Inorganic filler 1 as inorganic filler (C)
FB-74 Denki Kagaku Kogyo Co., Ltd. 1200 parts by weight (4) Inorganic filler 2 as inorganic filler (C)
SO-E2 manufactured by Admatechs Co., Ltd. 250 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (6) Core shell acrylic rubber particles (E) as low stress material (E) Core shell acrylic rubber)
W5500 150 parts by weight manufactured by Mitsubishi Rayon Co., Ltd. (7) Epoxysilane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E manufactured by Shin-Etsu Chemical Co., Ltd. After kneading three times with a roll, it was put in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. The viscosity at 25 ° C. of the liquid resin composition is 500 Pa · s, the glass transition temperature is 100 ° C., the glass transition temperature change is 0 ° C., the linear expansion coefficient is 12 ppm / ° C., the room temperature elastic modulus is 16 GPa, and the linear expansion × room temperature elastic modulus. The rate of change is -7%. The internal stress value was 15 MPa, the adhesion was 27 N, and the warpage of the rearranged wafer was 1.2 mm.

[実施例8]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルテトラヒドロフタル酸無水物
MT−500 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 1200重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 250重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてエポキシ化ポリブタジエン(25℃で液状)
BF−1000 アデカ社製 70重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物25℃での粘度は、400Pa・s、ガラス転移温度は96℃、ガラス転移温度変化は−4℃、線膨張係数は13ppm/℃、室温弾性率は18GPa、線膨張×室温弾性率変化率は−6%。内部応力値は16MPa、密着力は22N、再配置ウエハーの反りは1.8mmであった。
[Example 8]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S manufactured by Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyltetrahydrophthalic anhydride
MT-500 New Nippon Rika Co., Ltd. 100 parts by weight (3) Inorganic filler 1 as inorganic filler (C)
FB-74 Denki Kagaku Kogyo Co., Ltd. 1200 parts by weight (4) Inorganic filler 2 as inorganic filler (C)
SO-E2 Admatex 250 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (6) Epoxidized polybutadiene (25) as low stress material (E) Liquid at ℃)
BF-1000 70 parts by weight manufactured by Adeka (7) Epoxy silane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E Shin-Etsu Chemical Co., Ltd. 4 parts by weight was taken in a beaker and mixed with a spatula. After kneading three times with this roll, it was put in a beaker and defoamed for 10 minutes in a vacuum oven (normal temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. The viscosity at 25 ° C. of the liquid resin composition is 400 Pa · s, the glass transition temperature is 96 ° C., the glass transition temperature change is −4 ° C., the linear expansion coefficient is 13 ppm / ° C., the room temperature elastic modulus is 18 GPa, and the linear expansion × room temperature elasticity. The rate of change is -6%. The internal stress value was 16 MPa, the adhesion was 22 N, and the warpage of the rearranged wafer was 1.8 mm.

[実施例9]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 80重量部
(2)エポキシ樹脂(A)として、クレゾールノボラック型エポキシ
ESCN195LA(軟化点62℃) 住友化学社製 20重量部
(3)無水物(B)として、メチルテトラヒドロフタル酸無水物
MT−500 新日本理化社製 100重量部
(4)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 1200重量部
(5)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 250重量部
(6)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(7)低応力材(E)としてコアシェルシリコーンゴム粒子(コアシェルシリコーンゴム1)
KMP−605 信越化学工業社製 150重量部
(8)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物25℃での粘度は、900Pa・s、ガラス転移温度は110℃、ガラス転移温度変化は0℃、線膨張係数は7ppm/℃、室温弾性率は16GPa、線膨張×室温弾性率変化率は−28%。内部応力値は10MPa、密着力は29N、再配置ウエハーの反りは1.3mmであった。
[Example 9]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S Nippon Kayaku Kogyo Co., Ltd. 80 parts by weight (2) As an epoxy resin (A), a cresol novolac type epoxy
ESCN195LA (softening point 62 ° C.) 20 parts by weight of Sumitomo Chemical Co., Ltd. (3) Methyltetrahydrophthalic anhydride as anhydride (B)
MT-500 New Nippon Rika Co., Ltd. 100 parts by weight (4) Inorganic filler 1 as inorganic filler (C)
FB-74 Denki Kagaku Kogyo Co., Ltd. 1200 parts by weight (5) As inorganic filler (C), inorganic filler 2
SO-E2 manufactured by Admatechs Co., Ltd. 250 parts by weight (6) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (7) Core-shell silicone rubber particles (E) as low stress material (E) Core shell silicone rubber 1)
KMP-605 Shin-Etsu Chemical Co., Ltd. 150 parts by weight (8) Epoxysilane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E Shin-Etsu Chemical Co., Ltd. 4 parts by weight in a beaker and mixed with a spatula Then, after kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. The viscosity at 25 ° C. of the liquid resin composition is 900 Pa · s, the glass transition temperature is 110 ° C., the glass transition temperature change is 0 ° C., the linear expansion coefficient is 7 ppm / ° C., the room temperature elastic modulus is 16 GPa, and the linear expansion × room temperature elastic modulus. The rate of change is -28%. The internal stress value was 10 MPa, the adhesion was 29 N, and the warpage of the rearranged wafer was 1.3 mm.

[実施例10]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルヘキサヒドロフタル酸無水物
MH−700 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 1200重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 250重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてコアシェルシリコーンゴム粒子(コアシェルシリコーンゴム1)
KMP−605 信越化学工業社製 150重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物25℃での粘度は、500Pa・s、ガラス転移温度は96℃、ガラス転移温度変化は0℃、線膨張係数は7ppm/℃、室温弾性率は15GPa、線膨張×室温弾性率変化率は−23%。内部応力値は9MPa、密着力は27N、再配置ウエハーの反りは1.1mmであった。
[Example 10]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyl hexahydrophthalic anhydride
MH-700 New Nippon Rika Co., Ltd. 100 weight part (3) Inorganic filler 1 as an inorganic filler (C)
FB-74 Denki Kagaku Kogyo Co., Ltd. 1200 parts by weight (4) Inorganic filler 2 as inorganic filler (C)
SO-E2 manufactured by Admatechs Co., Ltd. 250 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (6) Core shell silicone rubber particles (E) as low stress material (E) Core shell silicone rubber 1)
150 parts by weight of KMP-605 manufactured by Shin-Etsu Chemical Co., Ltd. (7) Epoxysilane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E manufactured by Shin-Etsu Chemical Co., Ltd. Then, after kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. The viscosity at 25 ° C. of the liquid resin composition is 500 Pa · s, the glass transition temperature is 96 ° C., the glass transition temperature change is 0 ° C., the linear expansion coefficient is 7 ppm / ° C., the room temperature elastic modulus is 15 GPa, and the linear expansion × room temperature elastic modulus. The rate of change is -23%. The internal stress value was 9 MPa, the adhesion was 27 N, and the warpage of the rearranged wafer was 1.1 mm.

[実施例11]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルヘキサヒドロフタル酸無水物
MH−700 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 1200重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 250重量部
(5)硬化促進剤(D)として、式(10)で表される硬化促進剤 7重量部
(6)低応力材(E)としてコアシェルシリコーンゴム粒子(コアシェルシリコーンゴム1)
KMP−605 信越化学工業社製 150重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物25℃での粘度は、600Pa・s、ガラス転移温度は100℃、ガラス転移温度変化は0℃、線膨張係数は7ppm/℃、室温弾性率は15GPa、線膨張×室温弾性率変化率は−25%。内部応力値は9MPa、密着力は26N、再配置ウエハーの反りは1.1mmであった。
[Example 11]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyl hexahydrophthalic anhydride
MH-700 New Nippon Rika Co., Ltd. 100 weight part (3) Inorganic filler 1 as an inorganic filler (C)
FB-74 Denki Kagaku Kogyo Co., Ltd. 1200 parts by weight (4) Inorganic filler 2 as inorganic filler (C)
SO-E2 Admatex 250 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (10) 7 parts by weight (6) Low-stress material (E) core-shell silicone rubber particles ( Core shell silicone rubber 1)
KMP-605 Shin-Etsu Chemical Co., Ltd. 150 parts by weight (7) Epoxysilane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E Shin-Etsu Chemical Co., Ltd. 4 parts by weight in a beaker and mixed with a spatula Then, after kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. The viscosity at 25 ° C. of the liquid resin composition is 600 Pa · s, the glass transition temperature is 100 ° C., the glass transition temperature change is 0 ° C., the linear expansion coefficient is 7 ppm / ° C., the room temperature elastic modulus is 15 GPa, and the linear expansion × room temperature elastic modulus. The rate of change is -25%. The internal stress value was 9 MPa, the adhesion force was 26 N, and the warpage of the rearranged wafer was 1.1 mm.

[比較例1]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルヘキサヒドロフタル酸無水物
MH−700 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 450重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 100重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてコアシェルシリコーンゴム粒子(コアシェルシリコーンゴム1)
KMP−605 信越化学工業社製 70重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物25℃での粘度は、10Pa・s、ガラス転移温度は100℃、ガラス転移温度変化は0℃、線膨張係数は15ppm/℃、室温弾性率は5GPa、線膨張×室温弾性率変化率は−23%。内部応力値は23MPa、密着力は19N、再配置ウエハーの反りは2.4mmであった。
[Comparative Example 1]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyl hexahydrophthalic anhydride
MH-700 New Nippon Rika Co., Ltd. 100 weight part (3) Inorganic filler 1 as an inorganic filler (C)
FB-74 manufactured by Denki Kagaku Kogyo Co., Ltd. 450 parts by weight (4) As inorganic filler (C), inorganic filler 2
SO-E2 manufactured by Admatechs Co., Ltd. 100 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (6) Core-shell silicone rubber particles (E) as low stress material (E) Core shell silicone rubber 1)
KMP-605 Shin-Etsu Chemical Co., Ltd. 70 parts by weight (7) Epoxysilane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E Shin-Etsu Chemical Co., Ltd. 4 parts by weight in a beaker and mixed with a spatula Then, after kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. The viscosity at 25 ° C. of the liquid resin composition is 10 Pa · s, the glass transition temperature is 100 ° C., the glass transition temperature change is 0 ° C., the linear expansion coefficient is 15 ppm / ° C., the room temperature elastic modulus is 5 GPa, and the linear expansion × room temperature elastic modulus. The rate of change is -23%. The internal stress value was 23 MPa, the adhesion force was 19 N, and the warpage of the rearranged wafer was 2.4 mm.

[比較例2]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルヘキサヒドロフタル酸無水物
MH−700 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 3000重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 500重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてコアシェルシリコーンゴム粒子(コアシェルシリコーンゴム1)
KMP−605 信越化学工業社製 320重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物の25℃での粘度を測定しようとしたが、硬すぎて測定できず。その他硬化物評価も、サンプル作製が出来ず実施しなかった。
[Comparative Example 2]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyl hexahydrophthalic anhydride
MH-700 New Nippon Rika Co., Ltd. 100 weight part (3) Inorganic filler 1 as an inorganic filler (C)
FB-74 manufactured by Denki Kagaku Kogyo Co., Ltd. 3000 parts by weight (4) Inorganic filler 2 as inorganic filler (C)
SO-E2 Admatex 500 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (6) Low-stress material (E) core-shell silicone rubber particles ( Core shell silicone rubber 1)
KMP-605 Shin-Etsu Chemical Co., Ltd. 320 parts by weight (7) Epoxysilane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E Shin-Etsu Chemical Co., Ltd. 4 parts by weight in a beaker and mixed with a spatula Then, after kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. An attempt was made to measure the viscosity at 25 ° C. of the liquid resin composition, but it was too hard to measure. Other cured products were not evaluated because samples could not be prepared.

[比較例3]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルヘキサヒドロフタル酸無水物
MH−700 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 1200重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 300重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてコアシェルシリコーンゴム粒子(コアシェルシリコーンゴム1)
KMP−605 信越化学工業社製 20重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物25℃での粘度は、200Pa・s、ガラス転移温度は100℃、ガラス転移温度変化は0℃、線膨張係数は7ppm/℃、室温弾性率は21GPa、線膨張×室温弾性率変化率は−3%。内部応力値は21MPa、密着力は20N、再配置ウエハーの反りは2.5mmであった。
[Comparative Example 3]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyl hexahydrophthalic anhydride
MH-700 New Nippon Rika Co., Ltd. 100 weight part (3) Inorganic filler 1 as an inorganic filler (C)
FB-74 Denki Kagaku Kogyo Co., Ltd. 1200 parts by weight (4) Inorganic filler 2 as inorganic filler (C)
SO-E2 manufactured by Admatechs Co., Ltd. 300 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (6) Core shell silicone rubber particles (E) as low-stress material (E) Core shell silicone rubber 1)
KMP-605 Shin-Etsu Chemical Co., Ltd. 20 parts by weight (7) Epoxysilane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E Shin-Etsu Chemical Co., Ltd. 4 parts by weight in a beaker and mixed with a spatula Then, after kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. The viscosity at 25 ° C. of the liquid resin composition is 200 Pa · s, the glass transition temperature is 100 ° C., the glass transition temperature change is 0 ° C., the linear expansion coefficient is 7 ppm / ° C., the room temperature elastic modulus is 21 GPa, and the linear expansion × room temperature elastic modulus. The rate of change is -3%. The internal stress value was 21 MPa, the adhesion was 20 N, and the warpage of the rearranged wafer was 2.5 mm.

[比較例4]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルヘキサヒドロフタル酸無水物
MH−700 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 800重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 200重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてコアシェルシリコーンゴム粒子
KMP−605 信越化学工業社製 580重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物の25℃での粘度を測定しようとしたが、硬すぎて測定できず。その他硬化物評価も、サンプル作製が出来ず実施しなかった。
[Comparative Example 4]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyl hexahydrophthalic anhydride
MH-700 New Nippon Rika Co., Ltd. 100 weight part (3) Inorganic filler 1 as an inorganic filler (C)
FB-74, manufactured by Denki Kagaku Kogyo Co., Ltd. 800 parts by weight (4) As inorganic filler (C), inorganic filler 2
SO-E2 manufactured by Admatechs Co., Ltd. 200 parts by weight (5) Curing accelerator represented by formula (8) as curing accelerator (D) 7 parts by weight (6) Core shell silicone rubber particles as low stress material (E)
KMP-605 Shin-Etsu Chemical Co., Ltd. 580 parts by weight (7) Epoxysilane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E Shin-Etsu Chemical Co., Ltd. 4 parts by weight was taken in a beaker and mixed with a spatula Then, after kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. An attempt was made to measure the viscosity at 25 ° C. of the liquid resin composition, but it was too hard to measure. Other cured products were not evaluated because samples could not be prepared.

[比較例5]
(1)エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂
SB−403S 日本化薬工業社製 100重量部
(2)無水物(B)として、メチルヘキサヒドロフタル酸無水物
MH−700 新日本理化社製 100重量部
(3)無機充填材(C)として、無機充填剤1
FB−74 電気化学工業社製 1200重量部
(4)無機充填材(C)として、無機充填材2
SO−E2 アドマテックス社製 500重量部
(5)硬化促進剤(D)として、式(8)で表される硬化促進剤 7重量部
(6)低応力材(E)としてアクリルゴムポリマー(アクリルゴム、25℃で液状)
UP−1061 東亞合成社製 150重量部
(7)エポキシシランカップリング剤:3−グリシドキシプロピルトリメトキシシラン
KBM−403E 信越化学工業社製 4重量部
をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
作製した液状樹脂組成物を実施例1と同様に評価した。液状樹脂組成物25℃での粘度は、100Pa・s、ガラス転移温度は80℃、ガラス転移温度変化は−20℃、線膨張係数は15ppm/℃、室温弾性率は16GPa、線膨張×室温弾性率変化率は98%。内部応力値は22MPa、密着力は22N、再配置ウエハーの反りは2.6mmであった。
[Comparative Example 5]
(1) Bisphenol F type epoxy resin as epoxy resin (A)
SB-403S Nippon Kayaku Kogyo Co., Ltd. 100 parts by weight (2) As anhydride (B), methyl hexahydrophthalic anhydride
MH-700 New Nippon Rika Co., Ltd. 100 weight part (3) Inorganic filler 1 as an inorganic filler (C)
FB-74 Denki Kagaku Kogyo Co., Ltd. 1200 parts by weight (4) Inorganic filler 2 as inorganic filler (C)
SO-E2 Admatex 500 parts by weight (5) Curing accelerator (D), curing accelerator represented by formula (8) 7 parts by weight (6) Low stress material (E) acrylic rubber polymer (acrylic) Rubber, liquid at 25 ° C)
UP-1061 150 parts by weight manufactured by Toagosei Co., Ltd. (7) Epoxy silane coupling agent: 3-glycidoxypropyltrimethoxysilane KBM-403E 4 parts by weight manufactured by Shin-Etsu Chemical Co., Ltd. was placed in a beaker and mixed with a spatula. After kneading three times with three rolls, the mixture was placed in a beaker and defoamed for 10 minutes in a vacuum oven (room temperature, 5 mmHg) to obtain a liquid resin composition.
The produced liquid resin composition was evaluated in the same manner as in Example 1. The viscosity at 25 ° C. of the liquid resin composition is 100 Pa · s, the glass transition temperature is 80 ° C., the glass transition temperature change is −20 ° C., the linear expansion coefficient is 15 ppm / ° C., the room temperature elastic modulus is 16 GPa, and the linear expansion × room temperature elasticity. The rate of change is 98%. The internal stress value was 22 MPa, the adhesion force was 22 N, and the warpage of the rearranged wafer was 2.6 mm.

実施例2〜11についても、実施例1と同様にして半導体パッケージを組立て半田耐熱試験を行った。試験条件2では何れも剥離は観察されなかったが、試験条件1では実施例4,7,8で、一つ微小剥離が観察された。
比較例1〜5についても、実施例1と同様にして半導体パッケージを組立てたが、比較例2と4では液状樹脂組成物Gは樹脂粘度が高すぎて成形できず、評価は行わなかった。比較例1と5について組立てた半導体パッケージで半田耐熱試験を行ったが、試験条件1では全数が剥離し、試験条件2では半数以上が剥離した。比較例3については試験条件1では約半数が剥離したが、試験条件2では剥離は観察されなかった。
For Examples 2 to 11, a semiconductor package was assembled in the same manner as in Example 1, and a solder heat resistance test was performed. No peeling was observed in any of Test Conditions 2, but one minute peeling was observed in Examples 4, 7, and 8 in Test Condition 1.
In Comparative Examples 1 to 5, semiconductor packages were assembled in the same manner as in Example 1. However, in Comparative Examples 2 and 4, the liquid resin composition G was too high to be molded and was not evaluated. The solder heat resistance test was performed on the semiconductor packages assembled for Comparative Examples 1 and 5. In Test Condition 1, all of them were peeled off, and in Test Condition 2, more than half were peeled off. About Comparative Example 3, about half peeled off under test condition 1, but no peel was observed under test condition 2.

Figure 2011195742
Figure 2011195742

Figure 2011195742
Figure 2011195742

Claims (10)

(A)エポキシ樹脂、(B)酸無水物、(C)無機充填材、(D)硬化促進剤、および(E)低応力材を含有する液状樹脂組成物であって、固形成分が全液状樹脂組成物に対して80重量%以上95重量%以下含まれ、シリコンウェハーと液状樹脂組成物の硬化物の2層状態において式(1)により得られる内部応力値(σ)が20MPa以下である液状樹脂組成物。
Figure 2011195742
(但し、σは内部応力、Eresin(T)は温度T℃における液状樹脂組成物の硬化物の弾性率、αresin(T)は温度T℃における液状樹脂組成物の硬化物の線膨張係数、αsi(T)は温度T℃におけるシリコンの線膨張係数。)
A liquid resin composition containing (A) an epoxy resin, (B) an acid anhydride, (C) an inorganic filler, (D) a curing accelerator, and (E) a low stress material, wherein the solid components are all liquid. 80 wt% or more and 95 wt% or less with respect to the resin composition, and the internal stress value (σ) obtained by the formula (1) is 20 MPa or less in the two-layer state of the cured product of the silicon wafer and the liquid resin composition. Liquid resin composition.
Figure 2011195742
(Where σ is internal stress, Eresin (T) is the elastic modulus of the cured product of the liquid resin composition at temperature T ° C., αresin (T) is the linear expansion coefficient of the cured product of the liquid resin composition at temperature T ° C., αsi (T) is the linear expansion coefficient of silicon at a temperature of T ° C.)
(E)低応力材の含有量が、全液状樹脂組成物に対して3重量%以上30重量%以下である請求項1に記載の液状樹脂組成物。 (E) The liquid resin composition according to claim 1, wherein the content of the low-stress material is 3% by weight or more and 30% by weight or less with respect to the total liquid resin composition. 前記液状樹脂組成物の硬化物の25℃での弾性率をE、ガラス転移温度以下での線膨張係数をα、前記液状樹脂組成物の(E)低応力材成分を(C)無機充填材成分に置換した液状樹脂組成物の硬化物の25℃での弾性率をE、ガラス転移温度以下での線膨張係数をαとした時、(Eα−Eα)/Eα<−0.05である請求項1または2に記載の液状樹脂組成物。 The cured product of the liquid resin composition has an elastic modulus at 25 ° C. of E 1 , a linear expansion coefficient below the glass transition temperature α 1 , and (E) the low stress material component of the liquid resin composition is (C) inorganic When the elastic modulus at 25 ° C. of the cured product of the liquid resin composition substituted with the filler component is E 2 , and the linear expansion coefficient below the glass transition temperature is α 2 , (E 1 α 1 -E 2 α 2 ) / E 2 α 2 <−0.05. The liquid resin composition according to claim 1 or 2. 前記液状樹脂組成物の硬化物のガラス転移温度をTg、前記液状樹脂組成物の(E)低応力材成分を(C)無機充填材成分に置換した液状樹脂組成物の硬化物のガラス転移温度をTgとした時、−0.05<(Tg−Tg)/Tgである請求項1乃至3のいずれか1項に記載の液状樹脂組成物。 The glass transition temperature of the cured product of the liquid resin composition is Tg 1 , and the glass transition of the cured product of the liquid resin composition in which the (E) low stress material component of the liquid resin composition is replaced with the (C) inorganic filler component. when the temperature was Tg 2, -0.05 <(Tg 1 -Tg 2) / Tg is two preceding claims liquid resin composition according to any one of 3. (E)低応力材が、コアシェルゴム粒子である請求項1乃至4のいずれか1項に記載の液状樹脂組成物。 (E) The liquid resin composition according to any one of claims 1 to 4, wherein the low-stress material is core-shell rubber particles. (E)低応力材が、コアシェルシリコーンゴム粒子である請求項1乃至5のいずれか1項に記載の液状樹脂組成物。 (E) The liquid resin composition according to any one of claims 1 to 5, wherein the low-stress material is core-shell silicone rubber particles. 請求項1乃至6のいずれか1項に記載の液状樹脂組成物を用いて、半導体チップを支持体に多数個配置し、封止して作製した再配置ウエハー。 A rearranged wafer produced by placing a large number of semiconductor chips on a support and sealing the liquid resin composition according to claim 1. 請求項7に記載の再配置ウエハーにおいて、半導体チップを支持体に多数個配置したものを圧縮成形により、封止して作製された再配置ウエハー。 8. The rearrangement wafer according to claim 7, wherein a plurality of semiconductor chips arranged on a support are sealed by compression molding. 請求項7又は8に記載の再配置ウエハーを個片化して作製した半導体パッケージ。 A semiconductor package produced by dividing the rearranged wafer according to claim 7 or 8 into individual pieces. 請求項1乃至6のいずれかに1項に記載の液状樹脂組成物を用いて作製される半導体パッケージの製造方法であって、
半導体チップを支持体に多数個配置する工程、
この上に前記液状樹脂組成物を塗布する工程、
金型により成形する工程、を含む半導体パッケージの製造方法。
A method for manufacturing a semiconductor package produced using the liquid resin composition according to any one of claims 1 to 6,
Arranging a large number of semiconductor chips on a support,
A step of applying the liquid resin composition thereon,
A method of manufacturing a semiconductor package, including a step of molding with a mold.
JP2010065472A 2010-03-23 2010-03-23 Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package Pending JP2011195742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010065472A JP2011195742A (en) 2010-03-23 2010-03-23 Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010065472A JP2011195742A (en) 2010-03-23 2010-03-23 Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package

Publications (1)

Publication Number Publication Date
JP2011195742A true JP2011195742A (en) 2011-10-06

Family

ID=44874359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010065472A Pending JP2011195742A (en) 2010-03-23 2010-03-23 Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package

Country Status (1)

Country Link
JP (1) JP2011195742A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003044A1 (en) * 2012-06-29 2014-01-03 太陽ホールディングス株式会社 Thermosetting resin composition and thermosetting resin film
JP2014003218A (en) * 2012-06-20 2014-01-09 Nichicon Corp Power module
JP2014003219A (en) * 2012-06-20 2014-01-09 Nichicon Corp Design method of power module
WO2015045422A1 (en) 2013-09-30 2015-04-02 ナガセケムテックス株式会社 Epoxy resin composition for use in sealing of semiconductors, and semiconductor-packaged structure and method for producing same
KR20160110158A (en) * 2015-03-10 2016-09-21 스미또모 베이크라이트 가부시키가이샤 Resin composition for encapsulation, method for manufacturing electronic component and electronic component
JP2020050826A (en) * 2018-09-28 2020-04-02 日立化成株式会社 Resin composition for encapsulation, relocated wafer, semiconductor package, and manufacturing method of semiconductor package
WO2020255749A1 (en) * 2019-06-21 2020-12-24 パナソニックIpマネジメント株式会社 Composition for sealing, semiconductor device, and method for producing semiconductor device
JP2021504497A (en) * 2018-04-10 2021-02-15 エルジー・ケム・リミテッド Thermosetting resin composite for metal leaf laminate and metal foil laminate
JP2021134337A (en) * 2020-02-28 2021-09-13 味の素株式会社 Resin composition
WO2023054884A1 (en) * 2021-09-28 2023-04-06 주식회사 케이씨씨 Epoxy resin composition for molding

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003218A (en) * 2012-06-20 2014-01-09 Nichicon Corp Power module
JP2014003219A (en) * 2012-06-20 2014-01-09 Nichicon Corp Design method of power module
WO2014003044A1 (en) * 2012-06-29 2014-01-03 太陽ホールディングス株式会社 Thermosetting resin composition and thermosetting resin film
WO2015045422A1 (en) 2013-09-30 2015-04-02 ナガセケムテックス株式会社 Epoxy resin composition for use in sealing of semiconductors, and semiconductor-packaged structure and method for producing same
KR20160065897A (en) 2013-09-30 2016-06-09 나가세케무텍쿠스가부시키가이샤 Epoxy resin composition for use in sealing of semiconductors, and semiconductor-packaged structure and method for producing same
KR102511646B1 (en) * 2015-03-10 2023-03-17 스미또모 베이크라이트 가부시키가이샤 Resin composition for encapsulation, method for manufacturing electronic component and electronic component
JP2016169367A (en) * 2015-03-10 2016-09-23 住友ベークライト株式会社 Sealing resin composition, method for producing electronic component, and electronic component
KR20160110158A (en) * 2015-03-10 2016-09-21 스미또모 베이크라이트 가부시키가이샤 Resin composition for encapsulation, method for manufacturing electronic component and electronic component
JP2021504497A (en) * 2018-04-10 2021-02-15 エルジー・ケム・リミテッド Thermosetting resin composite for metal leaf laminate and metal foil laminate
JP7078215B2 (en) 2018-04-10 2022-05-31 エルジー・ケム・リミテッド Thermosetting resin composite for metal leaf laminated board and metal leaf laminated board
JP2020050826A (en) * 2018-09-28 2020-04-02 日立化成株式会社 Resin composition for encapsulation, relocated wafer, semiconductor package, and manufacturing method of semiconductor package
JP7346804B2 (en) 2018-09-28 2023-09-20 株式会社レゾナック Encapsulating resin composition, repositioning wafer, semiconductor package, and method for manufacturing semiconductor package
WO2020255749A1 (en) * 2019-06-21 2020-12-24 パナソニックIpマネジメント株式会社 Composition for sealing, semiconductor device, and method for producing semiconductor device
JP2021134337A (en) * 2020-02-28 2021-09-13 味の素株式会社 Resin composition
JP7314837B2 (en) 2020-02-28 2023-07-26 味の素株式会社 resin composition
WO2023054884A1 (en) * 2021-09-28 2023-04-06 주식회사 케이씨씨 Epoxy resin composition for molding

Similar Documents

Publication Publication Date Title
JP2011195742A (en) Liquid resin composition, semiconductor package, and method for manufacturing semiconductor package
JP2012209453A (en) Liquid resin composition, semiconductor package, and manufacturing method of semiconductor package
JP4935670B2 (en) Semiconductor device, resin composition for buffer coating, resin composition for die bonding, and resin composition for sealing
TWI549241B (en) Method for manufacturing wafer sealant and semiconductor device
JP2013010940A (en) Liquid resin composition and semiconductor device using the same
JP6090614B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP6018967B2 (en) Method for manufacturing thermosetting sealing resin sheet and electronic component package
TW201836027A (en) Method for manufacturing semiconductor apparatus
JP2012227441A (en) Semiconductor device manufacturing method and semiconductor device
JP3794349B2 (en) Liquid epoxy resin composition for sealing and semiconductor device
JP2018083893A (en) Solid resin composition for sealing and rearrangement wafer therewith, semiconductor package, and production method thereof
JP3998564B2 (en) Curable adhesive composition for semiconductor encapsulation and adhesive sheet
WO2015060106A1 (en) Semiconductor package manufacturing method
TWI431093B (en) Then the sheet
JP2012129326A (en) Electronic device manufacturing method and electronic device package manufacturing method
JP2011116843A (en) Liquid sealing resin composition and semiconductor apparatus prepared by using the same
JPWO2019044817A1 (en) Negative photosensitive resin composition, semiconductor device and electronic device
JP2019151713A (en) Film-like semiconductor encapsulation material
JP2011052160A (en) Liquid sealing resin composition, semiconductor package and method of manufacturing semiconductor package
JP2015054952A (en) Epoxy resin composition, electronic part device and production method of electronic part device
TWI616475B (en) Resin sheet
WO2012070612A1 (en) Method for producing electronic device, electronic device, method for producing electronic device package, electronic device package, and method for producing semiconductor device
JP2014141573A (en) Resin composition for semiconductor encapsulation and semiconductor encapsulation device
JP2003238651A (en) Liquid resin composition, manufacturing method of semiconductor device and the semiconductor device
JP3956717B2 (en) Epoxy resin composition for sealing and single-side sealed semiconductor device