WO2015060106A1 - Semiconductor package manufacturing method - Google Patents

Semiconductor package manufacturing method Download PDF

Info

Publication number
WO2015060106A1
WO2015060106A1 PCT/JP2014/076575 JP2014076575W WO2015060106A1 WO 2015060106 A1 WO2015060106 A1 WO 2015060106A1 JP 2014076575 W JP2014076575 W JP 2014076575W WO 2015060106 A1 WO2015060106 A1 WO 2015060106A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
resin sheet
semiconductor wafer
sealing
sealing resin
Prior art date
Application number
PCT/JP2014/076575
Other languages
French (fr)
Japanese (ja)
Inventor
浩介 盛田
石坂 剛
豊田 英志
豪士 志賀
智絵 飯野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015060106A1 publication Critical patent/WO2015060106A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip

Definitions

  • the present invention relates to a method for manufacturing a semiconductor package.
  • a semiconductor package is manufactured by sealing an electronic component fixed to a semiconductor wafer with a sealing resin, and dicing the sealed product into a package for each electronic component as necessary. Is adopted.
  • a technique for reducing the thickness by grinding a sealing resin or a semiconductor wafer after resin sealing has been proposed (for example, Patent Documents 1 and 2). Thinning by grinding is also important in the manufacturing process of thin semiconductor packages such as flip chip BGA (Ball Grid Array), flip chip SiP (System in Package), fan-in type wafer level package, and fan out type wafer level package. Become an element.
  • An object of the present invention is to provide a semiconductor package manufacturing method capable of forming a target circuit element on a ground surface of a semiconductor wafer with high yield after grinding of a sealing body using a sealing resin sheet.
  • the present invention provides a preparation step of preparing a semiconductor wafer having one or more semiconductor chips mounted on the first main surface, A sealing step of sealing the semiconductor chip by laminating a sealing resin sheet on the first main surface of the semiconductor wafer so as to embed the semiconductor chip; and a first step opposite to the first main surface of the semiconductor wafer. 2 including a back grinding process to grind the main surface,
  • the difference between the thickness of the thickest thickest part and the thinnest thinnest part of the laminate of the sealing resin sheet and the ground semiconductor wafer is 20 ⁇ m or less.
  • the cause of the trouble in forming the circuit element is the state of the second main surface forming the circuit element of the semiconductor wafer after grinding, particularly the bulge of the surface.
  • a bulge is considered to occur during grinding of the semiconductor wafer. That is, the grinding of the second main surface of the semiconductor wafer is performed by fixing the sealing body to a fixing means such as a back surface grinding tape with the sealing resin sheet side as a fixed surface. At this time, a region where the semiconductor chip is interposed and a region where the semiconductor chip is not interposed are mixed between the second main surface of the semiconductor wafer and the fixing means.
  • the hardness of the sealing resin sheet and the hardness of the semiconductor chip are different from each other. It will not be uniformly loaded. Since the hardness of the semiconductor chip is generally higher than the hardness of the encapsulated resin sheet after curing, the repulsion from the encapsulated resin sheet in the region where the semiconductor chip intervenes between the semiconductor wafer and the fixing means.
  • the semiconductor wafer is deeply (thinly) easily ground due to the increased force, and conversely, the sealing resin in the region where the semiconductor chip is not interposed between the semiconductor wafer and the fixing means (the region where only the sealing resin sheet is interposed)
  • the repulsive force from the sheet is weakened, and the semiconductor wafer becomes shallower (thicker) and more easily ground.
  • the ground surface of the semiconductor wafer rises due to the thickness variation in the semiconductor wafer after grinding.
  • laminated body the difference between the thickness of the thickest thickest part and the thickness of the thinnest thinnest part of the laminated body (hereinafter also simply referred to as “laminated body”) of the encapsulating resin sheet and the ground semiconductor wafer.
  • thickness difference is 20 ⁇ m or less, it is possible to suppress the occurrence of swell of the ground surface of the semiconductor wafer and ensure sufficient flatness. Circuit elements can be formed efficiently. If the thickness difference exceeds 20 ⁇ m, there may be a problem in forming the circuit element described above.
  • the sealing step is preferably performed by flat plate pressing or compression molding on the sealing resin sheet. Thereby, the surface of the sealing resin sheet of a laminated body can be smoothed, and the bulge of the grinding surface of a semiconductor wafer can be measured and controlled accurately.
  • the thickest portion of the laminate is also referred to as a region where the semiconductor wafer and the semiconductor chip do not overlap when the semiconductor wafer is seen through in plan view (hereinafter also referred to as “resin sheet region”.
  • the region where the semiconductor wafer and the semiconductor chip overlap when viewed through is also referred to as a “chip overlapping region”).
  • the region where the semiconductor chip is not interposed between the semiconductor wafer and the fixing means that is, the resin sheet region
  • the semiconductor wafer is thicker and easier to grind.
  • circuit elements can be formed on the ground surface of the semiconductor wafer with a high yield.
  • the Shore D hardness at 25 ° C. of the encapsulating resin sheet after being subjected to thermosetting treatment at 150 ° C. for 1 hour is preferably 60 or more.
  • the storage elastic modulus in 25 degreeC of the said sealing resin sheet after performing a thermosetting process at 150 degreeC for 1 hour is 3 GPa or more.
  • a rewiring forming step for forming a rewiring on the ground second main surface of the semiconductor chip may be further included.
  • a dicing step of dicing the semiconductor wafer together with the sealing resin sheet in units of a target semiconductor chip may be further included after the rewiring formation step.
  • the present invention includes a semiconductor package obtained by the method for manufacturing the semiconductor package.
  • FIGS. 1A to 1G are cross-sectional views schematically showing one process of a method for manufacturing a semiconductor package according to an embodiment of the present invention.
  • a semiconductor chip is manufactured by sealing a semiconductor chip mounted on a semiconductor wafer with a sealing resin sheet.
  • the semiconductor package manufacturing method according to the present embodiment is suitable for a chip-on-wafer (COW) process.
  • COW chip-on-wafer
  • Chip mounting wafer preparation process In the chip mounting wafer preparation step, a semiconductor wafer 12A in which a plurality of semiconductor chips 13 are flip-chip connected to the first main surface is prepared (see FIG. 1A).
  • the semiconductor chip 13 can be formed by dicing a semiconductor wafer on which a predetermined circuit is formed by a known method.
  • a known device such as a flip chip bonder can be used for mounting the semiconductor chip 13 on the semiconductor wafer 12A.
  • flip chip connection is employed in which the active surface A1 on which the protruding electrode 13a of the semiconductor chip 13 is formed faces the semiconductor wafer 12A.
  • the semiconductor chip 13 and the semiconductor wafer 12A are electrically connected to each other through bump electrode electrodes 13a formed on the semiconductor chip 13 and through electrodes 12a provided on the semiconductor wafer 12A.
  • a TSV (Through Silicon Via) type electrode can be preferably used as the through-electrode 12a.
  • an underfill material 14 is filled between the semiconductor chip 13 and the semiconductor wafer 12A in order to reduce the difference in thermal expansion coefficient between the semiconductor chip 13 and the semiconductor wafer 12A, in particular, to prevent the occurrence of cracks or the like at the connection site.
  • a known material may be used as the underfill material 14.
  • the underfill material 14 may be arranged by injecting the liquid underfill material 14 between the semiconductor chips 13 after the semiconductor chip 13 is mounted on the semiconductor wafer 12A.
  • the semiconductor chip with the sheet-like underfill material 14 may be disposed. 13 or the semiconductor wafer 12A may be prepared, and the semiconductor chip 13 and the semiconductor wafer 12A may be connected to each other.
  • the sealing resin sheet 11 is laminated on the semiconductor wafer 12A so as to embed the semiconductor chip 13, and the semiconductor chip 13 is resin-sealed with the sealing resin sheet (see FIG. 1B).
  • the sealing resin sheet 11 functions as a sealing resin for protecting the semiconductor chip 13 and its accompanying elements from the external environment.
  • the method for laminating the sealing resin sheet 11 is not particularly limited, and a melt-kneaded product of the resin composition for forming the sealing resin sheet is extruded, and the extruded product is placed on the semiconductor wafer 12A and pressed.
  • the coating film is dried. Examples include a method of forming the sealing resin sheet 11 and transferring the sealing resin sheet 11 onto the semiconductor wafer 12A.
  • the sealing resin sheet 11 by adopting the sealing resin sheet 11, the semiconductor chip 13 can be embedded simply by sticking the semiconductor chip 13 on the semiconductor wafer 12 ⁇ / b> A, thereby improving the production efficiency of the semiconductor package. Can do.
  • the sealing resin sheet 11 can be laminated on the semiconductor wafer 12A by a known method such as compression using a flat plate press, a laminator, or a mold. It is preferable to perform a sealing process by the flat plate press with respect to the sealing resin sheet 11, or compression molding. Thereby, the surface of the sealing resin sheet 11 of the laminate 16B (see FIG. 1D) of the sealing resin sheet 11 and the ground semiconductor wafer 12B can be smoothed, and the rising of the ground surface of the semiconductor wafer 12B can be accurately performed.
  • a hot press using a flat plate press is preferable.
  • the temperature is, for example, 40 to 120 ° C., preferably 50 to 100 ° C.
  • the pressure is, for example, 50 to 2500 kPa, preferably 100 to 2000 kPa
  • the time is, for example, 0 3 to 10 minutes, preferably 0.5 to 5 minutes.
  • it is preferable to press under reduced pressure conditions for example, 10 to 2000 Pa).
  • the temperature is, for example, 40 to 200 ° C., preferably 60 to 160 ° C.
  • the pressure is, for example, 100 to 6000 kPa, preferably 500 to 5000 kPa
  • the time is, for example, 0.5 to 20 minutes, preferably 1 to 15 minutes.
  • the sealing resin sheet is thermally cured to form the sealing body 15 in which the semiconductor chip 13 is embedded in the sealing resin sheet 11 (see FIG. 1B).
  • the conditions for the thermosetting treatment of the sealing resin sheet are preferably 100 to 200 ° C., more preferably 120 to 180 ° C. as the heating temperature, and preferably 10 to 180 minutes, more preferably 30 to 120 minutes as the heating time. You may pressurize as needed. In the pressurization, preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 5 MPa can be employed. Thereby, since this sealing body formation process is included in a sealing process, a sealing process is completed here.
  • a grinding process may be performed in which the sealing resin sheet 11 of the sealing body 15 is ground so that the surface opposite to the active surface A of the semiconductor chip 13 is exposed to form a grinding body 16A (FIG. 1C).
  • the semiconductor chip 13 may be ground together with the sealing resin sheet 11 as shown in FIG. 1C, or only the sealing resin sheet 11 may be ground. Grinding may be performed using a known grinding apparatus.
  • a procedure for forming the grinding body 16A by grinding the surface of the sealing body while feeding the sealing body 15 while rotating a grinding tool such as a diamond tool can be suitably employed. This step can be omitted depending on the specifications of the target semiconductor package.
  • the back surface grinding step In the back surface grinding step, the surface opposite to the grinding surface G1 of the grinding body 16A (that is, the back surface B1) is ground (see FIG. 1D). Thereby, the exposed 2nd main surface (surface on the opposite side to the surface which laminated
  • Laminated body 16B of encapsulating resin sheet 11 and ground semiconductor wafer 12B (Note that when encapsulating resin sheet 11 is ground and semiconductor chip 13 is exposed as shown in FIG.
  • the difference between the thickness T max of the thickest thickest part of the semiconductor chip 13 and the thickness T min of the thinnest thinnest part is 20 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the lower limit of the thickness difference is preferably 0 ⁇ m, but may be 1 ⁇ m or more as long as it does not affect circuit element formation.
  • the bulge occurs only in the resin sheet region corresponding to the space between the leftmost semiconductor chip and the central semiconductor chip among the illustrated semiconductor chips. Instead of the region or together with the resin sheet region, the resin sheet region corresponding to another semiconductor chip may be raised. When a plurality of swells occur on the ground surface of the semiconductor wafer, the thickness difference is obtained with reference to a portion where the thickness of the stacked body 16B is maximum.
  • a rewiring forming step of forming the rewiring 19 on the surface B1 on the active surface A1 side of the semiconductor chip 13 of the stacked body 16B (see FIG. 1E).
  • a rewiring 39 connected to the through electrode 12a of the semiconductor wafer 12B is formed on the stacked body 16B.
  • a metal seed layer is formed on the exposed semiconductor wafer 12B using a known method such as a vacuum film forming method, and the rewiring is performed by a known method such as a semi-additive method.
  • the wiring 19 can be formed.
  • an insulating layer such as polyimide or PBO may be formed on the rewiring 19 and the stacked body 16B.
  • bumping processing for forming bumps 17 on the formed rewiring 19 may be performed (see FIG. 1D).
  • the bumping process can be performed by a known method such as a solder ball or solder plating.
  • the material of the bump is not particularly limited.
  • tin-lead metal material tin-silver metal material, tin-silver-copper metal material, tin-zinc metal material, tin-zinc-bismuth metal material, etc.
  • Solders alloys
  • gold-based metal materials copper-based metal materials, and the like.
  • Chip back surface protection process When a surface opposite to the active surface A1 of the semiconductor chip 13 is exposed by performing a grinding process, the ground surface of the grinding body 16A is formed to protect the exposed surface 13S of the semiconductor chip 13 after the bumps 17 are formed. G1 (see FIG. 1C) may be resin-sealed again.
  • the sealing method is not particularly limited, and a known liquid or film-like sealing resin may be applied or bonded to the grinding surface G1, dried, and cured. When the grinding process is performed, this process may be performed at any stage after the grinding process and before the dicing process.
  • the grinding body 16C may be diced through bump formation including elements such as the sealing resin sheet 11, the semiconductor wafer 12B, and the semiconductor chip 13 (see FIG. 1G).
  • the semiconductor package 18 can be obtained in the target semiconductor chip 13 unit.
  • dicing is performed corresponding to one semiconductor chip, but dicing may be performed with two or more semiconductor chips as a unit. Dicing is usually performed after the grinding body 16C is fixed by a conventionally known dicing sheet.
  • the alignment of the cut portion may be performed by image recognition using direct illumination or indirect illumination.
  • a cutting method called full cut that cuts up to a dicing sheet can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used.
  • the expanding device when expanding a grinding body following a dicing process, this expansion can be performed using a conventionally well-known expanding apparatus.
  • the expanding device includes a donut-shaped outer ring that can push down the dicing sheet through the dicing ring, and an inner ring that has a smaller diameter than the outer ring and supports the dicing sheet.
  • a substrate mounting step of mounting the semiconductor package 18 obtained above on a separate substrate can be performed.
  • a known device such as a flip chip bonder or a die bonder can be used.
  • FIG. 2 is a cross-sectional view schematically showing a sealing resin sheet according to an embodiment of the present invention.
  • the sealing resin sheet 11 is typically provided in a state of being laminated on a support 11a such as a polyethylene terephthalate (PET) film. Note that a release treatment may be applied to the support 11a in order to easily peel off the sealing resin sheet 11.
  • PET polyethylene terephthalate
  • the Shore D hardness at 25 ° C. of the encapsulating resin sheet 11 after performing the thermosetting treatment at 150 ° C. for 1 hour is preferably 60 or more, and more preferably 70 or more.
  • the upper limit of the Shore D hardness is preferably 92 or less.
  • the storage elastic modulus in 25 degreeC of the sealing resin sheet 11 after performing a thermosetting process at 150 degreeC for 1 hour is 3 GPa or more, and it is more preferable that it is 10 GPa or more.
  • the upper limit of the storage elastic modulus is preferably 30 GPa or less.
  • the Shore D hardness and storage elastic modulus of the encapsulating resin sheet 11 after the thermosetting treatment By setting the Shore D hardness and storage elastic modulus of the encapsulating resin sheet 11 after the thermosetting treatment to the above ranges, the difference between the hardness of the semiconductor chip in the chip overlap region and the hardness of the encapsulating resin sheet in the resin sheet region is reduced. Thus, the thickness difference can be reduced.
  • the resin composition for forming the sealing resin sheet is not particularly limited as long as it has the above-described characteristics and can be used for resin sealing of electronic components such as semiconductor chips.
  • An epoxy resin composition containing an A component to an E component is preferable.
  • the C component may or may not be added as necessary.
  • the epoxy resin (component A) is not particularly limited.
  • Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
  • a modified bisphenol A type epoxy resin having a flexible skeleton such as an acetal group or a polyoxyalkylene group is preferable, and a modified bisphenol A type epoxy resin having an acetal group is in a liquid state and is easy to handle. Therefore, it can be particularly preferably used.
  • the content of the epoxy resin (component A) is preferably set in the range of 1 to 10% by weight with respect to the entire epoxy resin composition.
  • the phenol resin (component B) is not particularly limited as long as it causes a curing reaction with the epoxy resin (component A).
  • a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.
  • phenol resin those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin (component A), and above all, from the viewpoint of high curing reactivity.
  • a phenol novolac resin can be preferably used. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
  • the blending ratio of the epoxy resin (component A) and the phenol resin (component B) is a hydroxyl group in the phenol resin (component B) with respect to 1 equivalent of the epoxy group in the epoxy resin (component A). It is preferable to blend so that the total amount becomes 0.7 to 1.5 equivalents, more preferably 0.9 to 1.2 equivalents.
  • the total content of the epoxy resin and the phenol resin in the sealing resin sheet 11 is preferably 2.5% by weight or more, and more preferably 3.0% by weight or more. Adhesive force with respect to the semiconductor chip 13, the semiconductor wafer 12A, etc. is obtained favorably as it is 2.5 wt% or more.
  • the total content of the epoxy resin and the phenol resin in the sealing resin sheet 11 is preferably 20% by weight or less, and more preferably 10% by weight or less. Hygroscopicity can be reduced as it is 20 weight% or less.
  • the elastomer (component C) used together with the epoxy resin (component A) and the phenol resin (component B) provides the epoxy resin composition with the flexibility necessary for sealing electronic components with a sealing resin sheet.
  • the structure is not particularly limited as long as such an effect is exhibited.
  • various acrylic copolymers such as polyacrylates, styrene acrylate copolymers, butadiene rubber, styrene-butadiene rubber (SBR), ethylene-vinyl acetate copolymer (EVA), isoprene rubber, acrylonitrile rubber, etc. Polymers can be used.
  • the heat resistance and strength of the resulting sealing resin sheet can be improved. It is preferable to use an acrylic copolymer. These may be used alone or in combination of two or more.
  • the acrylic copolymer can be synthesized, for example, by radical polymerization of an acrylic monomer mixture having a predetermined mixing ratio by a conventional method.
  • a method for radical polymerization a solution polymerization method in which an organic solvent is used as a solvent or a suspension polymerization method in which polymerization is performed while dispersing raw material monomers in water are used.
  • polymerization initiator used in this case examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), and 2,2′-azobis-4- Methoxy-2,4-dimethylvaleronitrile, other azo or diazo polymerization initiators, peroxide polymerization initiators such as benzoyl peroxide and methyl ethyl ketone peroxide are used.
  • a dispersing agent such as polyacrylamide or polyvinyl alcohol.
  • the content of the elastomer (component C) is 15 to 30% by weight of the entire epoxy resin composition.
  • the content of the elastomer (component C) is less than 15% by weight, it becomes difficult to obtain the flexibility and flexibility of the sealing resin sheet 11, and it is also difficult to perform resin sealing while suppressing warping of the sealing resin sheet. It becomes.
  • the content exceeds 30% by weight, the melt viscosity of the sealing resin sheet 11 is increased, the embedding property of the semiconductor chip 13 is lowered, and the strength and heat resistance of the cured body of the sealing resin sheet 11 are reduced. There is a tendency to decrease.
  • the weight ratio of the elastomer (component C) to the epoxy resin (component A) is preferably set in the range of 3 to 4.7.
  • weight ratio is less than 3, it is difficult to control the fluidity of the sealing resin sheet 11, and when it exceeds 4.7, the adhesion of the sealing resin sheet 11 to the semiconductor chip 13 tends to be inferior. Because it is.
  • the inorganic filler (component D) is not particularly limited, and various conventionally known fillers can be used.
  • silica powder is used in that the internal stress is reduced by reducing the coefficient of thermal expansion of the cured product of the epoxy resin composition, and as a result, warpage of the sealing resin sheet 11 after sealing of the electronic component can be suppressed.
  • a fused silica powder among the silica powders examples include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, it is particularly preferable to use a spherical fused silica powder. Among them, those having an average particle diameter in the range of 0.1 to 30 ⁇ m are preferably used, and those in the range of 1 to 20 ⁇ m are more preferable.
  • the average particle diameter can be derived by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the content of the inorganic filler (component D) is preferably 70 to 95% by weight of the entire epoxy resin composition, more preferably 75 to 92% by weight, and still more preferably 80 to 90% by weight.
  • the content of the inorganic filler (component D) is less than 50% by weight, the linear expansion coefficient of the cured product of the epoxy resin composition increases, and thus the warpage of the sealing resin sheet 11 tends to increase.
  • liquidity of the sealing resin sheet 11 will worsen when the said content exceeds 90 weight%, the tendency for adhesiveness with a semiconductor chip to fall is seen.
  • the curing accelerator (component E) is not particularly limited as long as it allows curing of the epoxy resin and the phenol resin, but from the viewpoint of curability and storage stability, triphenylphosphine or tetraphenylphosphonium tetraphenyl. Organic phosphorus compounds such as borates and imidazole compounds are preferably used. These curing accelerators may be used alone or in combination with other curing accelerators.
  • the content of the curing accelerator (component E) is preferably 0.1 to 5 parts by weight with respect to a total of 100 parts by weight of the epoxy resin (component A) and the phenol resin (component B).
  • a flame retardant component may be added to the epoxy resin composition.
  • various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, and complex metal hydroxide can be used.
  • the average particle diameter of the metal hydroxide is preferably 1 to 10 ⁇ m, more preferably 2 to 5 ⁇ m, from the viewpoint of ensuring appropriate fluidity when the epoxy resin composition is heated. It is.
  • the average particle size of the metal hydroxide is less than 1 ⁇ m, it becomes difficult to uniformly disperse in the epoxy resin composition, and the fluidity during heating of the epoxy resin composition tends to be insufficient.
  • the surface area per addition amount of a metal hydroxide (E component) will become small when an average particle diameter exceeds 10 micrometers, the tendency for a flame-retardant effect to fall is seen.
  • a phosphazene compound can be used in addition to the above metal hydroxide.
  • phosphazene compounds for example, SPR-100, SA-100, SP-100 (above, Otsuka Chemical Co., Ltd.), FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like are commercially available. is there.
  • the phosphazene compound represented by the formula (1) or the formula (2) is preferable from the viewpoint of exhibiting a flame retardant effect even in a small amount, and the content of phosphorus element contained in these phosphanzene compounds is 12% by weight or more. Is preferred.
  • n is an integer of 3 to 25
  • R 1 and R 2 are the same or different and are selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group.
  • a monovalent organic group having (In the formula (2), n and m are each independently an integer of 3 to 25.
  • R 3 and R 5 are the same or different and are composed of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group.
  • R 4 is a divalent organic group having a functional group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group. .
  • n is an integer of 3 to 25
  • R 6 and R 7 are the same or different and are hydrogen, a hydroxyl group, an alkyl group, an alkoxy group, or a glycidyl group.
  • the cyclic phosphazene oligomer represented by the above formula (3) is commercially available, for example, FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like.
  • the content of the phosphazene compound includes the epoxy resin (component A), phenol resin (component B), elastomer (component D), curing accelerator (component E) and phosphazene compound (other components) contained in the epoxy resin composition. It is preferably 10 to 30% by weight of the total organic component containing. That is, when the content of the phosphazene compound is less than 10% by weight of the total organic component, the flame retardancy of the sealing resin sheet 11 is reduced and the unevenness followability to an adherend (semiconductor wafer on which a semiconductor chip is mounted) or the like. Tends to decrease, and voids tend to occur. When the content exceeds 30% by weight of the whole organic component, tackiness is likely to occur on the surface of the sealing resin sheet 11, and the workability tends to be lowered, such as difficulty in alignment with the adherend.
  • the sealing resin sheet 11 having excellent flame retardancy while ensuring the flexibility necessary for sealing the sheet.
  • sufficient flame retardancy when only the metal hydroxide is used and sufficient flexibility can be obtained when only the phosphazene compound is used.
  • organic flame retardants are used from the viewpoint of the deformability of the sealing resin sheet at the time of molding the resin seal, the conformity to the unevenness of the adherend, and the adhesion to the semiconductor chip or the semiconductor wafer.
  • phosphazene flame retardants are preferably used.
  • the epoxy resin composition can be appropriately mixed with other additives such as pigments including carbon black as necessary.
  • an epoxy resin composition is prepared by mixing the above-described components.
  • the mixing method is not particularly limited as long as each component is uniformly dispersed and mixed.
  • a varnish in which each component is dissolved or dispersed in an organic solvent or the like is applied to form a sheet.
  • a kneaded material may be prepared by directly kneading each compounding component with a kneader or the like, and the kneaded material thus obtained may be extruded to form a sheet.
  • the above components A to E and other additives as necessary are mixed as appropriate according to a conventional method, and uniformly dissolved or dispersed in an organic solvent to prepare a varnish.
  • the sealing resin sheet 11 can be obtained by applying the varnish on a support such as polyester and drying it. If necessary, a release sheet such as a polyester film may be bonded to protect the surface of the sealing resin sheet. The release sheet peels at the time of sealing.
  • the organic solvent is not particularly limited, and various conventionally known organic solvents such as methyl ethyl ketone, acetone, cyclohexanone, dioxane, diethyl ketone, toluene, and ethyl acetate can be used. These may be used alone or in combination of two or more. Usually, it is preferable to use an organic solvent so that the solid content concentration of the varnish is in the range of 30 to 60% by weight.
  • the thickness of the sheet after drying the organic solvent is not particularly limited, but is usually preferably set to 5 to 100 ⁇ m, more preferably 20 to 70 ⁇ m, from the viewpoint of thickness uniformity and the amount of residual solvent. is there.
  • the above components A to E and, if necessary, each component of other additives are mixed using a known method such as a mixer, and then kneaded to prepare a kneaded product.
  • the method of melt kneading is not particularly limited, and examples thereof include a method of melt kneading with a known kneader such as a mixing roll, a pressure kneader, or an extruder.
  • the kneading conditions are not particularly limited as long as the temperature is equal to or higher than the softening point of each component described above.
  • thermosetting property of the epoxy resin it is preferably 40 to 140 ° C., more preferably The temperature is 60 to 120 ° C., and the time is, for example, 1 to 30 minutes, preferably 5 to 15 minutes. Thereby, a kneaded material can be prepared.
  • the sealing resin sheet 11 can be obtained by molding the obtained kneaded material by extrusion molding. Specifically, the encapsulating resin sheet 11 can be formed by extrusion molding without cooling the kneaded product after melt-kneading while maintaining a high temperature state.
  • Such an extrusion method is not particularly limited, and examples thereof include a T-die extrusion method, a roll rolling method, a roll kneading method, a co-extrusion method, and a calendar molding method.
  • the extrusion temperature is not particularly limited as long as it is equal to or higher than the softening point of each component described above. However, considering the thermosetting property and moldability of the epoxy resin, for example, 40 to 150 ° C., preferably 50 to 140 ° C. Preferably, it is 70 to 120 ° C.
  • the sealing resin sheet 11 can be formed.
  • the encapsulating resin sheet obtained in this way may be used by being laminated so as to have a desired thickness if necessary. That is, the sealing resin sheet may be used in a single layer structure, or may be used as a laminate formed by laminating two or more multilayer structures.
  • Example 1 (Preparation of sealing resin sheet) The following components were blended with a mixer, melt kneaded at 120 ° C. for 2 minutes with a twin-screw kneader, and then extruded from a T-die to prepare a sealing resin sheet A having a thickness of 500 ⁇ m.
  • Epoxy resin Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.)) 286 parts
  • Phenol resin phenol resin having biphenylaralkyl skeleton (Maywa Kasei Co., Ltd.) Manufactured by MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.)
  • Curing accelerator imidazole catalyst as a curing catalyst (manufactured by Shikoku Chemicals Co., Ltd., 2PHZ-PW) 6 parts
  • Inorganic Filler Spherical fused silica powder (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-9454, average particle size 20 ⁇ m) 3695 parts
  • Silane coupling agent Epoxy group-containing silane coupling agent
  • Example 2 Preparation of sealing resin sheet
  • the following components were blended with a mixer, melt-kneaded at 120 ° C. for 2 minutes with a twin-screw kneader, and then extruded from a T die to prepare a sealing resin sheet B having a thickness of 500 ⁇ m.
  • Epoxy resin Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.)) 169 parts
  • Phenol resin phenol resin having biphenylaralkyl skeleton (Maywa Kasei Co., Ltd.) Manufactured by MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.) 179 parts
  • Curing accelerator imidazole catalyst as a curing catalyst (manufactured by Shikoku Kasei Co., Ltd., 2PHZ-PW) 6 parts
  • Elastomer Styrene-isobutylene-styrene triblock copolymer (manufactured by Kaneka Corp., SIBSTAR 072T) 152 parts
  • Inorganic filler spherical fused silica
  • the storage elastic modulus was measured using a solid viscoelasticity measuring apparatus (manufactured by Rheometric Scientific: model: RSA-III). Specifically, each sealing resin sheet is heated and cured at 150 ° C. for 1 hour, and a measurement sample is obtained from the cured product with a sample size of 400 mm long ⁇ 2 mm wide ⁇ 80 ⁇ m thick, and then the measurement sample.
  • a film tension measuring jig was set in a film tension measuring jig, and the storage elastic modulus and loss elastic modulus in the temperature range of ⁇ 50 to 300 ° C. were measured under the conditions of a frequency of 1 Hz and a heating rate of 10 ° C./min. It was obtained by reading the storage modulus (E ′).
  • a chip mounting interposer was prepared in which a semiconductor chip having the following specifications was flip-chip mounted on a silicon interposer, and the space between the chip and the interposer was sealed with a bisphenol A type epoxy thermosetting underfill material.
  • Each of the sealing resin sheets A to C was pasted on the obtained chip mounting interposer by a vacuum flat plate press under the following heating and pressing conditions.
  • the sealing resin sheet was thermally cured in a hot air dryer at 150 ° C. for 1 hour to obtain a sealing body.
  • the thickness of the semiconductor chip is obtained by grinding using a cutting device (manufactured by DISCO Corporation, surface planar “DFS8910”) under the conditions of a peripheral speed of the grinding tool of 1000 m / min, a feed pitch of 100 ⁇ m, and a cutting depth of 10 ⁇ m.
  • the exposed surface of the silicon interposer of the obtained grinding body (the surface opposite to the surface on which the sealing resin sheet was bonded) was removed with a grinding device (“DGP8761” manufactured by DISCO) and the thickness of the silicon interposer was 100 ⁇ m. It grinded until it became, and the laminated body was formed.
  • DISCO grinding device
  • polyamic acid obtained by reacting 3,4 ', 3,4'-biphenyltetracarboxylic dianhydride, 4,4'-diaminodiphenyl ether, paraphenylenediamine
  • polyimide layer having a thickness of 10 ⁇ m.
  • An opening was formed by laser processing at a position corresponding to the through-silicon via to expose the via.
  • a gold film and a nickel film were sequentially formed on the surface of the polyimide layer including the opening by plating.
  • sputtering is performed in the order of chromium and copper to form a seed film (chrome layer thickness 20 nm, copper layer thickness 100 nm), and a rewiring layer having a predetermined wiring pattern is formed by electrolytic copper plating.
  • a semiconductor package was produced.
  • the thickness difference of the laminate of the sealing resin sheet and the silicon interposer is 20 ⁇ m or less, so rewiring as a circuit surface element of the semiconductor package
  • the semiconductor package of Comparative Example 1 has a thickness difference exceeding 20 ⁇ m, resulting in poor rewiring formability.
  • Example 3 In the sealing process of manufacturing a semiconductor package using the sealing resin sheet A of Example 1, instead of the vacuum flat plate press, a compression molding apparatus WCM-300 (manufactured by Apic Yamada) was placed on the obtained chip mounting interposer. Measurement and rewiring of the difference between the thickness of the thickest part and the thickness of the thinnest part in the same manner as in Example 1 except that the sealing resin sheet A was pasted under the following molding conditions. The formability of was evaluated. The results are shown in Table 2.

Abstract

Provided is a semiconductor package manufacturing method whereby a circuit element to be formed can be formed, at an excellent yield, on a polished surface of a semiconductor wafer after polishing a sealed body having a sealing resin sheet used therein. This semiconductor package manufacturing method includes: a preparation step, wherein a semiconductor wafer having one or a plurality of semiconductor chips mounted on a first main surface is prepared; a sealing step, wherein the semiconductor chips are sealed by laminating a sealing resin sheet on the first main surface of the semiconductor wafer such that the semiconductor chips are embedded; and a rear surface polishing step, wherein a second main surface of the semiconductor wafer is polished, said second main surface being on the reverse side of the first main surface. In a laminated body of the sealing resin sheet and the polished semiconductor wafer, a difference between the thickness of a thickest part and that of a thinnest part is equal to or less than 20 μm.

Description

半導体パッケージの製造方法Manufacturing method of semiconductor package
 本発明は、半導体パッケージの製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor package.
 近年、電子機器の小型化、軽量化、高機能化の要求が高まっており、それに応じて電子機器を構成するパッケージについても小型化、薄型化、高密度実装が求められている。 In recent years, there has been an increasing demand for downsizing, weight reduction, and high functionality of electronic devices, and accordingly, packages that make up electronic devices are also required to be downsized, thinned, and mounted with high density.
 半導体パッケージの作製には、代表的に、半導体ウェハに固定された電子部品を封止樹脂にて封止し、必要に応じて封止物を電子部品単位のパッケージとなるようにダイシングするという手順が採用されている。このような過程の中で、上記要求に応えるべく、樹脂封止後に封止樹脂や半導体ウェハを研削して薄型化を図る技術が提案されている(例えば、特許文献1、2)。フリップチップBGA(Ball Grid Array)、フリップチップSiP(System in Package)、ファンイン型ウェハレベルパッケージ、ファンアウト型ウェハレベルパッケージ等の薄型半導体パッケージの製造工程においては、こうした研削による薄型化も重要な要素となる。 Typically, a semiconductor package is manufactured by sealing an electronic component fixed to a semiconductor wafer with a sealing resin, and dicing the sealed product into a package for each electronic component as necessary. Is adopted. In such a process, in order to meet the above-described requirements, a technique for reducing the thickness by grinding a sealing resin or a semiconductor wafer after resin sealing has been proposed (for example, Patent Documents 1 and 2). Thinning by grinding is also important in the manufacturing process of thin semiconductor packages such as flip chip BGA (Ball Grid Array), flip chip SiP (System in Package), fan-in type wafer level package, and fan out type wafer level package. Become an element.
特開2009-110995号公報JP 2009-110995 A 国際公開第2012/053463号International Publication No. 2012/053463
 しかしながら、封止後の半導体ウェハの研削後、研削面に対して再配線やバンプ等の回路要素を形成するプロセスを施そうとしても、所望の再配線やバンプを形成することができなかったり、再配線形成後に再配線の剥離が生じたりするという不具合が生じる場合があることが判明した。これらの不具合は、上記特許文献1の技術では認識されておらず、その解決が望まれている。 However, after grinding the sealed semiconductor wafer, even if an attempt is made to form a circuit element such as rewiring or bump on the ground surface, the desired rewiring or bump cannot be formed, It has been found that there may be a problem that the rewiring is peeled off after the rewiring is formed. These inconveniences are not recognized by the technique of the above-mentioned patent document 1, and the solution is desired.
 本発明の目的は、封止樹脂シートを用いた封止体の研削後に半導体ウェハの研削面に目的とする回路要素を歩留まり良く形成可能な半導体パッケージの製造方法を提供することにある。 An object of the present invention is to provide a semiconductor package manufacturing method capable of forming a target circuit element on a ground surface of a semiconductor wafer with high yield after grinding of a sealing body using a sealing resin sheet.
 本発明者らは、半導体ウェハの研削面の平坦性が回路要素形成に影響を及ぼすとの考えに基づき、鋭意検討した結果、以下の構成により上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies based on the idea that the flatness of the ground surface of a semiconductor wafer affects the formation of circuit elements, the present inventors have found that the above problem can be solved by the following configuration, and completed the present invention. It was.
 すなわち、本発明は、第1主面に一又は複数の半導体チップが搭載された半導体ウェハを準備する準備工程、
 前記半導体チップを埋め込むように前記半導体ウェハの第1主面に封止樹脂シートを積層して前記半導体チップを封止する封止工程、及び
 前記半導体ウェハの第1主面とは反対側の第2主面を研削する裏面研削工程を含み、
 前記封止樹脂シートと前記研削された半導体ウェハとの積層体の最も厚い最厚部の厚さと最も薄い最薄部の厚さとの差が20μm以下である半導体パッケージの製造方法である。
That is, the present invention provides a preparation step of preparing a semiconductor wafer having one or more semiconductor chips mounted on the first main surface,
A sealing step of sealing the semiconductor chip by laminating a sealing resin sheet on the first main surface of the semiconductor wafer so as to embed the semiconductor chip; and a first step opposite to the first main surface of the semiconductor wafer. 2 including a back grinding process to grind the main surface,
In this method, the difference between the thickness of the thickest thickest part and the thinnest thinnest part of the laminate of the sealing resin sheet and the ground semiconductor wafer is 20 μm or less.
 本発明者らは、回路要素の形成の際に不具合が生じる原因が、研削後の半導体ウェハの回路要素を形成する第2主面の状態、特に表面の盛り上がりにあることを突き止めた。このような盛り上がりは、半導体ウェハの研削時に生じると考えられる。すなわち、半導体ウェハの第2主面の研削は、封止樹脂シート側を固定面として封止体を裏面研削テープ等の固定手段に固定して行われる。このとき、半導体ウェハの第2主面と固定手段との間には、半導体チップが介在する領域と半導体チップが介在しない領域が混在している。これらを固定面側として半導体ウェハを研削すると、封止樹脂シートの硬度と半導体チップの硬度とは互いに異なることから、両者の硬度差に起因して研削加工の際の圧力が半導体ウェハに対して一様に負荷されなくなる。一般的に半導体チップの硬度は硬化後の封止樹脂シートの硬度より高いことから、半導体ウェハと固定手段との間に半導体チップが介在する領域では半導体チップが介在する分封止樹脂シートからの反発力が強くなって半導体ウェハはより深く(薄く)研削されやすくなり、反対に半導体ウェハと固定手段との間に半導体チップが介在しない領域(封止樹脂シートのみが介在する領域)では封止樹脂シートからの反発力が弱くなって半導体ウェハはより浅く(厚く)研削されやすくなる。このように研削後の半導体ウェハにおける厚さのバラツキに起因して半導体ウェハの研削面における盛り上がりが生じると推測される。当該製造方法では、封止樹脂シートと研削された半導体ウェハとの積層体(以下、単に「積層体」ともいう。)の最も厚い最厚部の厚さと最も薄い最薄部の厚さとの差(以下、単に「厚さ差」ともいう。)を20μm以下としているので、半導体ウェハの研削面の盛り上がりの発生を抑制して十分な平坦性を確保することができ、その結果、目的とする回路要素を効率良く形成することができる。上記厚さ差が20μmを超えると、上述の回路要素形成の際の不具合が生じる場合がある。 The inventors of the present invention have found out that the cause of the trouble in forming the circuit element is the state of the second main surface forming the circuit element of the semiconductor wafer after grinding, particularly the bulge of the surface. Such a bulge is considered to occur during grinding of the semiconductor wafer. That is, the grinding of the second main surface of the semiconductor wafer is performed by fixing the sealing body to a fixing means such as a back surface grinding tape with the sealing resin sheet side as a fixed surface. At this time, a region where the semiconductor chip is interposed and a region where the semiconductor chip is not interposed are mixed between the second main surface of the semiconductor wafer and the fixing means. When the semiconductor wafer is ground using these as the fixed surface side, the hardness of the sealing resin sheet and the hardness of the semiconductor chip are different from each other. It will not be uniformly loaded. Since the hardness of the semiconductor chip is generally higher than the hardness of the encapsulated resin sheet after curing, the repulsion from the encapsulated resin sheet in the region where the semiconductor chip intervenes between the semiconductor wafer and the fixing means. The semiconductor wafer is deeply (thinly) easily ground due to the increased force, and conversely, the sealing resin in the region where the semiconductor chip is not interposed between the semiconductor wafer and the fixing means (the region where only the sealing resin sheet is interposed) The repulsive force from the sheet is weakened, and the semiconductor wafer becomes shallower (thicker) and more easily ground. Thus, it is presumed that the ground surface of the semiconductor wafer rises due to the thickness variation in the semiconductor wafer after grinding. In this manufacturing method, the difference between the thickness of the thickest thickest part and the thickness of the thinnest thinnest part of the laminated body (hereinafter also simply referred to as “laminated body”) of the encapsulating resin sheet and the ground semiconductor wafer. (Hereinafter, also simply referred to as “thickness difference”) is 20 μm or less, it is possible to suppress the occurrence of swell of the ground surface of the semiconductor wafer and ensure sufficient flatness. Circuit elements can be formed efficiently. If the thickness difference exceeds 20 μm, there may be a problem in forming the circuit element described above.
 前記封止工程は、前記封止樹脂シートに対する平板プレス又は圧縮成形により行うことが好ましい。これにより積層体の封止樹脂シートの表面を平滑化することができ、半導体ウェハの研削面の盛り上がりを精度良く測定しかつ制御することができる。 The sealing step is preferably performed by flat plate pressing or compression molding on the sealing resin sheet. Thereby, the surface of the sealing resin sheet of a laminated body can be smoothed, and the bulge of the grinding surface of a semiconductor wafer can be measured and controlled accurately.
 前記積層体の最厚部は、前記半導体ウェハを平面視で透視した際に該半導体ウェハと前記半導体チップとが重複しない領域(以下、「樹脂シート領域」ともいう。また、半導体ウェハを平面視で透視した際に半導体ウェハと半導体チップとが重複する領域を「チップ重複領域」ともいう。)に位置していてもよい。上述のように、半導体ウェハと固定手段との間に半導体チップが介在しない領域(すなわち、樹脂シート領域)は比較的浅く研削されやすい。言い換えると、樹脂シート領域では、半導体ウェハはより厚く研削やすいことになる。当該製造方法では積層体の厚さ差を抑制しているので、半導体ウェハの研削面への回路要素形成を歩留まり良く行うことができる。 The thickest portion of the laminate is also referred to as a region where the semiconductor wafer and the semiconductor chip do not overlap when the semiconductor wafer is seen through in plan view (hereinafter also referred to as “resin sheet region”. The region where the semiconductor wafer and the semiconductor chip overlap when viewed through is also referred to as a “chip overlapping region”). As described above, the region where the semiconductor chip is not interposed between the semiconductor wafer and the fixing means (that is, the resin sheet region) is relatively shallow and easily ground. In other words, in the resin sheet region, the semiconductor wafer is thicker and easier to grind. In the manufacturing method, since the thickness difference of the stacked body is suppressed, circuit elements can be formed on the ground surface of the semiconductor wafer with a high yield.
 150℃で1時間熱硬化処理を施した後の前記封止樹脂シートの25℃におけるショアD硬度が60以上であることが好ましい。また、150℃で1時間熱硬化処理を施した後の前記封止樹脂シートの25℃における貯蔵弾性率が3GPa以上であることが好ましい。当該製造方法において、上記ショアD硬度及び/又は上記貯蔵弾性率を上記範囲とすることにより、チップ重複領域と樹脂シート領域との硬度差を小さくして半導体ウェハの研削面における上記盛り上がりを抑制することができ、その結果、該研削面での回路要素の形成効率を向上させることができる。 The Shore D hardness at 25 ° C. of the encapsulating resin sheet after being subjected to thermosetting treatment at 150 ° C. for 1 hour is preferably 60 or more. Moreover, it is preferable that the storage elastic modulus in 25 degreeC of the said sealing resin sheet after performing a thermosetting process at 150 degreeC for 1 hour is 3 GPa or more. In the manufacturing method, by setting the Shore D hardness and / or the storage elastic modulus within the above range, the hardness difference between the chip overlap region and the resin sheet region is reduced to suppress the above-described swell on the ground surface of the semiconductor wafer. As a result, the formation efficiency of the circuit elements on the ground surface can be improved.
 前記研削工程後、前記半導体チップの研削された第2主面に再配線を形成する再配線形成工程をさらに含んでいてもよい。 After the grinding step, a rewiring forming step for forming a rewiring on the ground second main surface of the semiconductor chip may be further included.
 当該製造方法では、前記半導体チップが複数用いられており、
 前記再配線形成工程後に、前記半導体ウェハを前記封止樹脂シートとともに目的の半導体チップ単位でダイシングするダイシング工程をさらに含んでいてもよい。
In the manufacturing method, a plurality of the semiconductor chips are used,
A dicing step of dicing the semiconductor wafer together with the sealing resin sheet in units of a target semiconductor chip may be further included after the rewiring formation step.
 本発明には、当該半導体パッケージの製造方法により得られる半導体パッケージも含まれる。 The present invention includes a semiconductor package obtained by the method for manufacturing the semiconductor package.
本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the semiconductor package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る封止樹脂シートを模式的に示す断面図である。It is sectional drawing which shows typically the sealing resin sheet which concerns on one Embodiment of this invention.
 本発明の半導体パッケージの製造方法の実施形態について、図面を参照しながら以下に説明する。ただし、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。 Embodiments of a method for manufacturing a semiconductor package of the present invention will be described below with reference to the drawings. However, in some or all of the drawings, parts unnecessary for the description are omitted, and there are parts shown enlarged or reduced for easy explanation.
 [半導体パッケージの製造方法]
 封止樹脂シートを用いる本実施形態に係る半導体パッケージの製造方法について図1A~図1Gを参照しつつ説明する。図1A~図1Gはそれぞれ、本発明の一実施形態に係る半導体パッケージの製造方法の一工程を模式的に示す断面図である。本実施形態では、半導体ウェハ上に搭載された半導体チップを封止樹脂シートにより樹脂封止して半導体パッケージを作製する。本実施形態に係る半導体パッケージの製造方法は、チップ・オン・ウェハ(COW)プロセスに好適である。
[Semiconductor package manufacturing method]
A method of manufacturing a semiconductor package according to this embodiment using a sealing resin sheet will be described with reference to FIGS. 1A to 1G. 1A to 1G are cross-sectional views schematically showing one process of a method for manufacturing a semiconductor package according to an embodiment of the present invention. In this embodiment, a semiconductor chip is manufactured by sealing a semiconductor chip mounted on a semiconductor wafer with a sealing resin sheet. The semiconductor package manufacturing method according to the present embodiment is suitable for a chip-on-wafer (COW) process.
 (チップ搭載ウェハ準備工程)
 チップ搭載ウェハ準備工程では、複数の半導体チップ13が第1主面にフリップチップ接続された半導体ウェハ12Aを準備する(図1A参照)。半導体チップ13は、所定の回路が形成された半導体ウェハを公知の方法でダイシングして個片化することにより形成することができる。半導体チップ13の半導体ウェハ12Aへの搭載には、フリップチップボンダーなどの公知の装置を用いることができる。本実施形態では、半導体チップ13の突起電極13aが形成された活性面A1が半導体ウェハ12Aと対向するフリップチップ接続を採用している。半導体チップ13に形成されたバンプ等の突起電極13aと、半導体ウェハ12Aに設けられた貫通電極12aとを介して、半導体チップ13と半導体ウェハ12Aとが電気的に接続されている。貫通電極12aは、TSV(Through Silicon Via)形式の電極を好適に用いることができる。
(Chip mounting wafer preparation process)
In the chip mounting wafer preparation step, a semiconductor wafer 12A in which a plurality of semiconductor chips 13 are flip-chip connected to the first main surface is prepared (see FIG. 1A). The semiconductor chip 13 can be formed by dicing a semiconductor wafer on which a predetermined circuit is formed by a known method. For mounting the semiconductor chip 13 on the semiconductor wafer 12A, a known device such as a flip chip bonder can be used. In the present embodiment, flip chip connection is employed in which the active surface A1 on which the protruding electrode 13a of the semiconductor chip 13 is formed faces the semiconductor wafer 12A. The semiconductor chip 13 and the semiconductor wafer 12A are electrically connected to each other through bump electrode electrodes 13a formed on the semiconductor chip 13 and through electrodes 12a provided on the semiconductor wafer 12A. As the through-electrode 12a, a TSV (Through Silicon Via) type electrode can be preferably used.
 また、半導体チップ13と半導体ウェハ12Aとの間には両者の熱膨張率の差を緩和して特に接続部位におけるクラック等の発生を防止するためのアンダーフィル材14が充填されている。アンダーフィル材14としては公知のものを用いればよい。アンダーフィル材14の配置は、半導体チップ13の半導体ウェハ12Aへの搭載後、両者間に液状のアンダーフィル材14を注入させることにより行ってもよく、シート状のアンダーフィル材14付きの半導体チップ13又は半導体ウェハ12Aを用意した上で、半導体チップ13と半導体ウェハ12Aとを接続することにより行ってもよい。 In addition, an underfill material 14 is filled between the semiconductor chip 13 and the semiconductor wafer 12A in order to reduce the difference in thermal expansion coefficient between the semiconductor chip 13 and the semiconductor wafer 12A, in particular, to prevent the occurrence of cracks or the like at the connection site. A known material may be used as the underfill material 14. The underfill material 14 may be arranged by injecting the liquid underfill material 14 between the semiconductor chips 13 after the semiconductor chip 13 is mounted on the semiconductor wafer 12A. The semiconductor chip with the sheet-like underfill material 14 may be disposed. 13 or the semiconductor wafer 12A may be prepared, and the semiconductor chip 13 and the semiconductor wafer 12A may be connected to each other.
 (封止工程)
 封止工程では、半導体チップ13を埋め込むように半導体ウェハ12Aへ封止樹脂シート11を積層し、半導体チップ13を上記封止樹脂シートで樹脂封止する(図1B参照)。この封止樹脂シート11は、半導体チップ13及びそれに付随する要素を外部環境から保護するための封止樹脂として機能する。
(Sealing process)
In the sealing step, the sealing resin sheet 11 is laminated on the semiconductor wafer 12A so as to embed the semiconductor chip 13, and the semiconductor chip 13 is resin-sealed with the sealing resin sheet (see FIG. 1B). The sealing resin sheet 11 functions as a sealing resin for protecting the semiconductor chip 13 and its accompanying elements from the external environment.
 封止樹脂シート11の積層方法としては特に限定されず、封止樹脂シートを形成するための樹脂組成物の溶融混練物を押出成形し、押出成形物を半導体ウェハ12A上に載置してプレスすることにより封止樹脂シート11の形成と積層とを一括にて行う方法や、封止樹脂シート11を形成するための樹脂組成物を離型処理シート上に塗布し、塗布膜を乾燥させて封止樹脂シート11を形成した上で、この封止樹脂シート11を半導体ウェハ12A上に転写する方法などが挙げられる。 The method for laminating the sealing resin sheet 11 is not particularly limited, and a melt-kneaded product of the resin composition for forming the sealing resin sheet is extruded, and the extruded product is placed on the semiconductor wafer 12A and pressed. By applying the resin composition for forming the encapsulating resin sheet 11 and laminating at once or the resin composition for forming the encapsulating resin sheet 11 on the release treatment sheet, the coating film is dried. Examples include a method of forming the sealing resin sheet 11 and transferring the sealing resin sheet 11 onto the semiconductor wafer 12A.
 本実施形態では、上記封止樹脂シート11を採用することにより、半導体チップ13の被覆に半導体ウェハ12A上に貼り付けるだけで半導体チップ13を埋め込むことができ、半導体パッケージの生産効率を向上させることができる。この場合、平板プレスやラミネータ、金型を用いる圧縮成形など公知の方法により封止樹脂シート11を半導体ウェハ12A上に積層することができる。封止工程は、封止樹脂シート11に対する平板プレス又は圧縮成形により行うことが好ましい。これにより封止樹脂シート11と研削した半導体ウェハ12Bとの積層体16B(図1D参照)の封止樹脂シート11の表面を平滑化することができ、半導体ウェハ12Bの研削面の盛り上がりを精度良く測定しかつ制御することができる。中でも、平板プレスによる熱プレスが好ましい。熱プレス条件としては、温度が、例えば、40~120℃、好ましくは、50~100℃であり、圧力が、例えば、50~2500kPa、好ましくは、100~2000kPaであり、時間が、例えば、0.3~10分間、好ましくは、0.5~5分間である。また、封止樹脂シート11の半導体チップ13及び半導体ウェハ12Aへの密着性および追従性の向上を考慮すると、好ましくは、減圧条件下(例えば10~2000Pa)において、プレスすることが好ましい。なお、圧縮成形条件としては、温度が、例えば、40~200℃、好ましくは、60~160℃であり、圧力が、例えば、100~6000kPa、好ましくは、500~5000kPaであり、時間が、例えば、0.5~20分間、好ましくは、1~15分間である。 In the present embodiment, by adopting the sealing resin sheet 11, the semiconductor chip 13 can be embedded simply by sticking the semiconductor chip 13 on the semiconductor wafer 12 </ b> A, thereby improving the production efficiency of the semiconductor package. Can do. In this case, the sealing resin sheet 11 can be laminated on the semiconductor wafer 12A by a known method such as compression using a flat plate press, a laminator, or a mold. It is preferable to perform a sealing process by the flat plate press with respect to the sealing resin sheet 11, or compression molding. Thereby, the surface of the sealing resin sheet 11 of the laminate 16B (see FIG. 1D) of the sealing resin sheet 11 and the ground semiconductor wafer 12B can be smoothed, and the rising of the ground surface of the semiconductor wafer 12B can be accurately performed. Can be measured and controlled. Among these, a hot press using a flat plate press is preferable. As hot press conditions, the temperature is, for example, 40 to 120 ° C., preferably 50 to 100 ° C., the pressure is, for example, 50 to 2500 kPa, preferably 100 to 2000 kPa, and the time is, for example, 0 3 to 10 minutes, preferably 0.5 to 5 minutes. Further, in consideration of improvement in the adhesion and followability of the sealing resin sheet 11 to the semiconductor chip 13 and the semiconductor wafer 12A, it is preferable to press under reduced pressure conditions (for example, 10 to 2000 Pa). As compression molding conditions, the temperature is, for example, 40 to 200 ° C., preferably 60 to 160 ° C., the pressure is, for example, 100 to 6000 kPa, preferably 500 to 5000 kPa, and the time is, for example, 0.5 to 20 minutes, preferably 1 to 15 minutes.
 (封止体形成工程)
 封止体形成工程では、上記封止樹脂シートを熱硬化処理して半導体チップ13が封止樹脂シート11に埋め込まれた封止体15を形成する(図1B参照)。封止樹脂シートの熱硬化処理の条件は、加熱温度として好ましくは100℃から200℃、より好ましくは120℃から180℃、加熱時間として好ましくは10分から180分、より好ましくは30分から120分の間、必要に応じて加圧しても良い。加圧の際は、好ましくは0.1MPaから10MPa、より好ましくは0.5MPaから5MPaを採用することができる。これにより、この封止体形成工程は封止工程に含まれるので、封止工程はここで完了する。
(Sealing body forming process)
In the sealing body forming step, the sealing resin sheet is thermally cured to form the sealing body 15 in which the semiconductor chip 13 is embedded in the sealing resin sheet 11 (see FIG. 1B). The conditions for the thermosetting treatment of the sealing resin sheet are preferably 100 to 200 ° C., more preferably 120 to 180 ° C. as the heating temperature, and preferably 10 to 180 minutes, more preferably 30 to 120 minutes as the heating time. You may pressurize as needed. In the pressurization, preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 5 MPa can be employed. Thereby, since this sealing body formation process is included in a sealing process, a sealing process is completed here.
 (研削工程)
 次に、封止体15の封止樹脂シート11を半導体チップ13の活性面Aとは反対側の表面が露出するように研削して研削体16Aを形成する研削工程を行ってもよい(図1C参照)。研削の際、図1Cに示すように封止樹脂シート11とともに半導体チップ13も研削してもよく、封止樹脂シート11のみを研削してもよい。研削は公知の研削装置を用いて行えばよい。ダイアモンドバイト等の研削バイトを回転させながら、そこに封止体15を送りつつ封止体表面を研削して研削体16Aを形成する手順を好適に採用することができる。本工程は、目的とする半導体パッケージの仕様に応じて省略することができる。
(Grinding process)
Next, a grinding process may be performed in which the sealing resin sheet 11 of the sealing body 15 is ground so that the surface opposite to the active surface A of the semiconductor chip 13 is exposed to form a grinding body 16A (FIG. 1C). During grinding, the semiconductor chip 13 may be ground together with the sealing resin sheet 11 as shown in FIG. 1C, or only the sealing resin sheet 11 may be ground. Grinding may be performed using a known grinding apparatus. A procedure for forming the grinding body 16A by grinding the surface of the sealing body while feeding the sealing body 15 while rotating a grinding tool such as a diamond tool can be suitably employed. This step can be omitted depending on the specifications of the target semiconductor package.
 (裏面研削工程)
 裏面研削工程では、研削体16Aの研削面G1とは反対側の面(すなわち、裏面B1)を研削する(図1D参照)。これにより、半導体ウェハ12Aの露出した第2主面(封止樹脂シート11を積層した面とは反対側の面)を研削することになり、薄型化した半導体ウェハ12Bを得ることができる。研削後の半導体ウェハ12Bの厚さは目的とするパッケージの仕様により変更すればよく、例えば25~200μmが好ましく、50~100μmがより好ましい。研削は公知の研削装置を用いて行えばよい。研削体16Aは裏面研削用テープを用いて固定してもよく、この場合は裏面研削の際の研削面G1の汚染を防止することができる。裏面研削用テープは公知のものを用いることができる。
(Back grinding process)
In the back surface grinding step, the surface opposite to the grinding surface G1 of the grinding body 16A (that is, the back surface B1) is ground (see FIG. 1D). Thereby, the exposed 2nd main surface (surface on the opposite side to the surface which laminated | stacked the sealing resin sheet 11) of the semiconductor wafer 12A will be ground, and the semiconductor wafer 12B reduced in thickness can be obtained. What is necessary is just to change the thickness of the semiconductor wafer 12B after grinding according to the specification of the target package, for example, 25-200 μm is preferable, and 50-100 μm is more preferable. Grinding may be performed using a known grinding apparatus. The grinding body 16A may be fixed using a back surface grinding tape. In this case, contamination of the grinding surface G1 during back surface grinding can be prevented. A well-known thing can be used for the tape for back surface grinding.
 封止樹脂シート11と研削された半導体ウェハ12Bとの積層体16B(なお、図1Dのように、封止樹脂シート11を研削して半導体チップ13が露出している場合、積層体16Bには半導体チップ13も含める。)の最も厚い最厚部の厚さTmaxと最も薄い最薄部の厚さTminとの差は20μm以下であり、10μm以下が好ましく、5μm以下がより好ましい。厚さ差を上記範囲とすることにより、半導体ウェハ12Bの研削面の盛り上がりの発生を抑制して十分な平坦性を確保することができ、その結果、目的とする回路要素を効率良く形成することができる。上記厚さ差の下限は0μmが好ましいものの、回路要素形成に影響を及ぼさない限り1μm以上であってもよい。なお、本実施形態では、図示された半導体チップのうち最も左に位置する半導体チップと中央に位置する半導体チップとの間に対応する樹脂シート領域にのみ上記盛り上がりが生じているものの、この樹脂シート領域に代えて、又はこの樹脂シート領域とともに、他の半導体チップ間に対応する樹脂シート領域にも盛り上がりが生じることがある。半導体ウェハの研削面における盛り上がりが複数生じた場合には、この中でも積層体16Bの厚さが最大となる部分を基準にして上記厚さ差を求める。 Laminated body 16B of encapsulating resin sheet 11 and ground semiconductor wafer 12B (Note that when encapsulating resin sheet 11 is ground and semiconductor chip 13 is exposed as shown in FIG. The difference between the thickness T max of the thickest thickest part of the semiconductor chip 13 and the thickness T min of the thinnest thinnest part is 20 μm or less, preferably 10 μm or less, and more preferably 5 μm or less. By setting the thickness difference within the above range, it is possible to suppress the occurrence of swell of the ground surface of the semiconductor wafer 12B and ensure sufficient flatness, and as a result, to efficiently form the target circuit element. Can do. The lower limit of the thickness difference is preferably 0 μm, but may be 1 μm or more as long as it does not affect circuit element formation. In the present embodiment, the bulge occurs only in the resin sheet region corresponding to the space between the leftmost semiconductor chip and the central semiconductor chip among the illustrated semiconductor chips. Instead of the region or together with the resin sheet region, the resin sheet region corresponding to another semiconductor chip may be raised. When a plurality of swells occur on the ground surface of the semiconductor wafer, the thickness difference is obtained with reference to a portion where the thickness of the stacked body 16B is maximum.
 (再配線形成工程)
 本実施形態ではさらに、積層体16Bの半導体チップ13の活性面A1側の面B1に再配線19を形成する再配線形成工程を含むことが好ましい(図1E参照)。再配線形成工程では、裏面研削による薄型化した半導体ウェハ12Bの形成後、半導体ウェハ12Bの貫通電極12aと接続する再配線39を積層体16B上に形成する。
(Rewiring process)
In the present embodiment, it is preferable to further include a rewiring forming step of forming the rewiring 19 on the surface B1 on the active surface A1 side of the semiconductor chip 13 of the stacked body 16B (see FIG. 1E). In the rewiring forming step, after the thinned semiconductor wafer 12B is formed by back grinding, a rewiring 39 connected to the through electrode 12a of the semiconductor wafer 12B is formed on the stacked body 16B.
 再配線の形成方法としては、例えば、露出している半導体ウェハ12B上へ真空成膜法などの公知の方法を利用して金属シード層を形成し、セミアディティブ法などの公知の方法により、再配線19を形成することができる。 As a method for forming the rewiring, for example, a metal seed layer is formed on the exposed semiconductor wafer 12B using a known method such as a vacuum film forming method, and the rewiring is performed by a known method such as a semi-additive method. The wiring 19 can be formed.
 かかる後に、再配線19及び積層体16B上へポリイミドやPBOなどの絶縁層を形成してもよい。 Thereafter, an insulating layer such as polyimide or PBO may be formed on the rewiring 19 and the stacked body 16B.
 (バンプ形成工程)
 次いで、形成した再配線19上にバンプ17を形成するバンピング加工を行ってもよい(図1D参照)。バンピング加工は、半田ボールや半田メッキなど公知の方法で行うことができる。バンプの材質は特に限定されず、例えば、錫-鉛系金属材、錫-銀系金属材、錫-銀-銅系金属材、錫-亜鉛系金属材、錫-亜鉛-ビスマス系金属材等の半田類(合金)や、金系金属材、銅系金属材などが挙げられる。
(Bump formation process)
Next, bumping processing for forming bumps 17 on the formed rewiring 19 may be performed (see FIG. 1D). The bumping process can be performed by a known method such as a solder ball or solder plating. The material of the bump is not particularly limited. For example, tin-lead metal material, tin-silver metal material, tin-silver-copper metal material, tin-zinc metal material, tin-zinc-bismuth metal material, etc. Solders (alloys), gold-based metal materials, copper-based metal materials, and the like.
 (チップ裏面保護工程)
 研削工程を行って半導体チップ13の活性面A1とは反対側の表面を露出させた場合、バンプ17を形成した後、半導体チップ13の露出面13Sを保護するために、研削体16Aの研削面G1(図1C参照)を再度樹脂封止してもよい。封止方法としては特に限定されず、公知の液状やフィルム状の封止樹脂を研削面G1に塗布ないし貼り合わせ、乾燥、硬化させればよい。なお研削工程を行った場合、本工程は、研削工程後であってダイシング工程前であればいずれの段階で行ってもよい。
(Chip back surface protection process)
When a surface opposite to the active surface A1 of the semiconductor chip 13 is exposed by performing a grinding process, the ground surface of the grinding body 16A is formed to protect the exposed surface 13S of the semiconductor chip 13 after the bumps 17 are formed. G1 (see FIG. 1C) may be resin-sealed again. The sealing method is not particularly limited, and a known liquid or film-like sealing resin may be applied or bonded to the grinding surface G1, dried, and cured. When the grinding process is performed, this process may be performed at any stage after the grinding process and before the dicing process.
 (ダイシング工程)
 続いて、封止樹脂シート11、半導体ウェハ12B、及び半導体チップ13などの要素からなるバンプ形成を経た研削体16Cのダイシングを行ってもよい(図1G参照)。これにより、目的とする半導体チップ13単位での半導体パッケージ18を得ることができる。図1Gでは、1つの半導体チップに対応させてダイシングしているが、2つ以上の半導体チップを一単位としてダイシングを行ってもよい。ダイシングは、通常、従来公知のダイシングシートにより上記研削体16Cを固定した上で行う。切断箇所の位置合わせは直接照明又は間接照明を用いた画像認識により行ってもよい。
(Dicing process)
Subsequently, the grinding body 16C may be diced through bump formation including elements such as the sealing resin sheet 11, the semiconductor wafer 12B, and the semiconductor chip 13 (see FIG. 1G). As a result, the semiconductor package 18 can be obtained in the target semiconductor chip 13 unit. In FIG. 1G, dicing is performed corresponding to one semiconductor chip, but dicing may be performed with two or more semiconductor chips as a unit. Dicing is usually performed after the grinding body 16C is fixed by a conventionally known dicing sheet. The alignment of the cut portion may be performed by image recognition using direct illumination or indirect illumination.
 本工程では、例えば、ダイシングシートまで切込みを行うフルカットと呼ばれる切断方式等を採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。 In this step, for example, a cutting method called full cut that cuts up to a dicing sheet can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used.
 なお、ダイシング工程に続いて研削体のエキスパンドを行う場合、該エキスパンドは従来公知のエキスパンド装置を用いて行うことができる。エキスパンド装置は、ダイシングリングを介してダイシングシートを下方へ押し下げることが可能なドーナッツ状の外リングと、外リングよりも径が小さくダイシングシートを支持する内リングとを有している。このエキスパンド工程により、隣り合う半導体パッケージ18同士が接触して破損するのを防ぐことができる。 In addition, when expanding a grinding body following a dicing process, this expansion can be performed using a conventionally well-known expanding apparatus. The expanding device includes a donut-shaped outer ring that can push down the dicing sheet through the dicing ring, and an inner ring that has a smaller diameter than the outer ring and supports the dicing sheet. By this expanding process, it is possible to prevent the adjacent semiconductor packages 18 from coming into contact with each other and being damaged.
 (基板実装工程)
 必要に応じて、上記で得られた半導体パッケージ18を別途の基板(図示せず)に実装する基板実装工程を行うことができる。半導体パッケージ18の基板への実装には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
(Board mounting process)
If necessary, a substrate mounting step of mounting the semiconductor package 18 obtained above on a separate substrate (not shown) can be performed. For mounting the semiconductor package 18 on the substrate, a known device such as a flip chip bonder or a die bonder can be used.
 [封止樹脂シート]
 本実施形態に係る封止樹脂シートについて図2を参照しつつ説明する。図2は、本発明の一実施形態に係る封止樹脂シートを模式的に示す断面図である。封止樹脂シート11は、代表的に、ポリエチレンテレフタレート(PET)フィルム等の支持体11a上に積層された状態で提供される。なお、支持体11aには封止樹脂シート11の剥離を容易に行うために離型処理が施されていてもよい。
[Sealing resin sheet]
The sealing resin sheet according to the present embodiment will be described with reference to FIG. FIG. 2 is a cross-sectional view schematically showing a sealing resin sheet according to an embodiment of the present invention. The sealing resin sheet 11 is typically provided in a state of being laminated on a support 11a such as a polyethylene terephthalate (PET) film. Note that a release treatment may be applied to the support 11a in order to easily peel off the sealing resin sheet 11.
 また、150℃で1時間熱硬化処理を施した後の封止樹脂シート11の25℃におけるショアD硬度が60以上であることが好ましく、70以上であることがより好ましい。上記ショアD硬度の上限は92以下であることが好ましい。さらに、150℃で1時間熱硬化処理を施した後の封止樹脂シート11の25℃における貯蔵弾性率が3GPa以上であることが好ましく、10GPa以上であることがより好ましい。上記貯蔵弾性率の上限は30GPa以下であることが好ましい。熱硬化処理後の封止樹脂シート11のショアD硬度や貯蔵弾性率を上記範囲とすることにより、チップ重複領域における半導体チップの硬度と樹脂シート領域における封止樹脂シートの硬度との差を小さくすることができ、これにより上記厚さ差を小さくすることができる。 Further, the Shore D hardness at 25 ° C. of the encapsulating resin sheet 11 after performing the thermosetting treatment at 150 ° C. for 1 hour is preferably 60 or more, and more preferably 70 or more. The upper limit of the Shore D hardness is preferably 92 or less. Furthermore, it is preferable that the storage elastic modulus in 25 degreeC of the sealing resin sheet 11 after performing a thermosetting process at 150 degreeC for 1 hour is 3 GPa or more, and it is more preferable that it is 10 GPa or more. The upper limit of the storage elastic modulus is preferably 30 GPa or less. By setting the Shore D hardness and storage elastic modulus of the encapsulating resin sheet 11 after the thermosetting treatment to the above ranges, the difference between the hardness of the semiconductor chip in the chip overlap region and the hardness of the encapsulating resin sheet in the resin sheet region is reduced. Thus, the thickness difference can be reduced.
 (封止樹脂シートを形成する樹脂組成物)
 封止樹脂シートを形成する樹脂組成物は、上述のような特性を好適に有し、半導体チップ等の電子部品の樹脂封止に利用可能なものであれば、特に限定されないが、例えば以下のA成分からE成分を含有するエポキシ樹脂組成物が好ましいものとして挙げられる。なお、C成分は必要に応じて添加しても添加しなくてもよい。
  A成分:エポキシ樹脂
  B成分:フェノール樹脂
  C成分:エラストマー
  D成分:無機充填剤
  E成分:硬化促進剤
(Resin composition forming a sealing resin sheet)
The resin composition for forming the sealing resin sheet is not particularly limited as long as it has the above-described characteristics and can be used for resin sealing of electronic components such as semiconductor chips. An epoxy resin composition containing an A component to an E component is preferable. The C component may or may not be added as necessary.
A component: Epoxy resin B component: Phenol resin C component: Elastomer D component: Inorganic filler E component: Curing accelerator
 (A成分)
 エポキシ樹脂(A成分)としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂等の各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。
(A component)
The epoxy resin (component A) is not particularly limited. For example, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
 エポキシ樹脂の硬化後の靭性及びエポキシ樹脂の反応性を確保する観点からは、エポキシ当量150~250、軟化点もしくは融点が50~130℃の常温で固形のものが好ましく、中でも、信頼性の観点から、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂が好ましい。 From the viewpoint of ensuring the toughness of the epoxy resin after curing and the reactivity of the epoxy resin, those having a solid at normal temperature having an epoxy equivalent of 150 to 250 and a softening point or melting point of 50 to 130 ° C. are preferable. Therefore, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, and biphenyl type epoxy resin are preferable.
 また、低応力性の観点から、アセタール基やポリオキシアルキレン基等の柔軟性骨格を有する変性ビスフェノールA型エポキシ樹脂が好ましく、アセタール基を有する変性ビスフェノールA型エポキシ樹脂は、液体状で取り扱いが良好であることから、特に好適に用いることができる。 Also, from the viewpoint of low stress, a modified bisphenol A type epoxy resin having a flexible skeleton such as an acetal group or a polyoxyalkylene group is preferable, and a modified bisphenol A type epoxy resin having an acetal group is in a liquid state and is easy to handle. Therefore, it can be particularly preferably used.
 エポキシ樹脂(A成分)の含有量は、エポキシ樹脂組成物全体に対して1~10重量%の範囲に設定することが好ましい。 The content of the epoxy resin (component A) is preferably set in the range of 1 to 10% by weight with respect to the entire epoxy resin composition.
 (B成分)
 フェノール樹脂(B成分)は、エポキシ樹脂(A成分)との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂、等が用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。
(B component)
The phenol resin (component B) is not particularly limited as long as it causes a curing reaction with the epoxy resin (component A). For example, a phenol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.
 フェノール樹脂としては、エポキシ樹脂(A成分)との反応性の観点から、水酸基当量が70~250、軟化点が50~110℃のものを用いることが好ましく、中でも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。 As the phenol resin, those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin (component A), and above all, from the viewpoint of high curing reactivity. A phenol novolac resin can be preferably used. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
 エポキシ樹脂(A成分)とフェノール樹脂(B成分)の配合割合は、硬化反応性という観点から、エポキシ樹脂(A成分)中のエポキシ基1当量に対して、フェノール樹脂(B成分)中の水酸基の合計が0.7~1.5当量となるように配合することが好ましく、より好ましくは0.9~1.2当量である。 From the viewpoint of curing reactivity, the blending ratio of the epoxy resin (component A) and the phenol resin (component B) is a hydroxyl group in the phenol resin (component B) with respect to 1 equivalent of the epoxy group in the epoxy resin (component A). It is preferable to blend so that the total amount becomes 0.7 to 1.5 equivalents, more preferably 0.9 to 1.2 equivalents.
 封止樹脂シート11中のエポキシ樹脂及びフェノール樹脂の合計含有量は、2.5重量%以上が好ましく、3.0重量%以上がより好ましい。2.5重量%以上であると、半導体チップ13、半導体ウェハ12Aなどに対する接着力が良好に得られる。封止樹脂シート11中のエポキシ樹脂及びフェノール樹脂の合計含有量は、20重量%以下が好ましく、10重量%以下がより好ましい。20重量%以下であると、吸湿性を低減できる。 The total content of the epoxy resin and the phenol resin in the sealing resin sheet 11 is preferably 2.5% by weight or more, and more preferably 3.0% by weight or more. Adhesive force with respect to the semiconductor chip 13, the semiconductor wafer 12A, etc. is obtained favorably as it is 2.5 wt% or more. The total content of the epoxy resin and the phenol resin in the sealing resin sheet 11 is preferably 20% by weight or less, and more preferably 10% by weight or less. Hygroscopicity can be reduced as it is 20 weight% or less.
 (C成分)
 エポキシ樹脂(A成分)及びフェノール樹脂(B成分)とともに用いられるエラストマー(C成分)は、封止樹脂シートによる電子部品の封止に必要な可撓性をエポキシ樹脂組成物に付与するものであり、このような作用を奏するものであれば特にその構造を限定するものではない。例えば、ポリアクリル酸エステル等の各種アクリル系共重合体、スチレンアクリレート系共重合体、ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、エチレン-酢酸ビニルコポリマー(EVA)、イソプレンゴム、アクリロニトリルゴム等のゴム質重合体を用いることができる。中でも、エポキシ樹脂(A成分)へ分散させやすく、またエポキシ樹脂(A成分)との反応性も高いために、得られる封止樹脂シートの耐熱性や強度を向上させることができるという観点から、アクリル系共重合体を用いることが好ましい。これらは単独で用いてもよいし、2種以上併せて用いてもよい。
(C component)
The elastomer (component C) used together with the epoxy resin (component A) and the phenol resin (component B) provides the epoxy resin composition with the flexibility necessary for sealing electronic components with a sealing resin sheet. The structure is not particularly limited as long as such an effect is exhibited. For example, various acrylic copolymers such as polyacrylates, styrene acrylate copolymers, butadiene rubber, styrene-butadiene rubber (SBR), ethylene-vinyl acetate copolymer (EVA), isoprene rubber, acrylonitrile rubber, etc. Polymers can be used. Among them, from the viewpoint that it is easy to disperse in the epoxy resin (component A), and because the reactivity with the epoxy resin (component A) is high, the heat resistance and strength of the resulting sealing resin sheet can be improved. It is preferable to use an acrylic copolymer. These may be used alone or in combination of two or more.
 なお、アクリル系共重合体は、例えば、所定の混合比にしたアクリルモノマー混合物を、定法によってラジカル重合することにより合成することができる。ラジカル重合の方法としては、有機溶剤を溶媒に行う溶液重合法や、水中に原料モノマーを分散させながら重合を行う懸濁重合法が用いられる。その際に用いる重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル、その他のアゾ系又はジアゾ系重合開始剤、ベンゾイルパーオキサイド及びメチルエチルケトンパーオキサイド等の過酸化物系重合開始剤等が用いられる。なお、懸濁重合の場合は、例えばポリアクリルアミド、ポリビニルアルコールのような分散剤を加えることが望ましい。 The acrylic copolymer can be synthesized, for example, by radical polymerization of an acrylic monomer mixture having a predetermined mixing ratio by a conventional method. As a method for radical polymerization, a solution polymerization method in which an organic solvent is used as a solvent or a suspension polymerization method in which polymerization is performed while dispersing raw material monomers in water are used. Examples of the polymerization initiator used in this case include 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), and 2,2′-azobis-4- Methoxy-2,4-dimethylvaleronitrile, other azo or diazo polymerization initiators, peroxide polymerization initiators such as benzoyl peroxide and methyl ethyl ketone peroxide are used. In the case of suspension polymerization, it is desirable to add a dispersing agent such as polyacrylamide or polyvinyl alcohol.
 エラストマー(C成分)の含有量は、エポキシ樹脂組成物全体の15~30重量%である。エラストマー(C成分)の含有量が15重量%未満では、封止樹脂シート11の柔軟性及び可撓性を得るのが困難となり、さらには封止樹脂シートの反りを抑えた樹脂封止も困難となる。逆に上記含有量が30重量%を超えると、封止樹脂シート11の溶融粘度が高くなって半導体チップ13の埋まり込み性が低下するとともに、封止樹脂シート11の硬化体の強度及び耐熱性が低下する傾向がみられる。 The content of the elastomer (component C) is 15 to 30% by weight of the entire epoxy resin composition. When the content of the elastomer (component C) is less than 15% by weight, it becomes difficult to obtain the flexibility and flexibility of the sealing resin sheet 11, and it is also difficult to perform resin sealing while suppressing warping of the sealing resin sheet. It becomes. On the other hand, when the content exceeds 30% by weight, the melt viscosity of the sealing resin sheet 11 is increased, the embedding property of the semiconductor chip 13 is lowered, and the strength and heat resistance of the cured body of the sealing resin sheet 11 are reduced. There is a tendency to decrease.
 また、エラストマー(C成分)のエポキシ樹脂(A成分)に対する重量比率(C成分の重量/A成分の重量)は、3~4.7の範囲に設定することが好ましい。上記重量比率が3未満の場合は、封止樹脂シート11の流動性をコントロールすることが困難となり、4.7を超えると封止樹脂シート11の半導体チップ13への接着性が劣る傾向がみられるためである。 Also, the weight ratio of the elastomer (component C) to the epoxy resin (component A) (weight of component C / weight of component A) is preferably set in the range of 3 to 4.7. When the weight ratio is less than 3, it is difficult to control the fluidity of the sealing resin sheet 11, and when it exceeds 4.7, the adhesion of the sealing resin sheet 11 to the semiconductor chip 13 tends to be inferior. Because it is.
 (D成分)
 無機質充填剤(D成分)は、特に限定されるものではなく、従来公知の各種充填剤を用いることができ、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカ等)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素の粉末が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。
(D component)
The inorganic filler (component D) is not particularly limited, and various conventionally known fillers can be used. For example, quartz glass, talc, silica (fused silica, crystalline silica, etc.), alumina, nitriding Examples thereof include aluminum, silicon nitride, and boron nitride powders. These may be used alone or in combination of two or more.
 中でも、エポキシ樹脂組成物の硬化体の熱線膨張係数が低減することにより内部応力を低減し、その結果、電子部品の封止後の封止樹脂シート11の反りを抑制できるという点から、シリカ粉末を用いることが好ましく、シリカ粉末の中でも溶融シリカ粉末を用いることがより好ましい。溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末が挙げられるが、流動性という観点から、球状溶融シリカ粉末を用いることが特に好ましい。中でも、平均粒径が0.1~30μmの範囲のものを用いることが好ましく、1~20μmの範囲のものを用いることがより好ましい。 Among these, silica powder is used in that the internal stress is reduced by reducing the coefficient of thermal expansion of the cured product of the epoxy resin composition, and as a result, warpage of the sealing resin sheet 11 after sealing of the electronic component can be suppressed. It is preferable to use a fused silica powder among the silica powders. Examples of the fused silica powder include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, it is particularly preferable to use a spherical fused silica powder. Among them, those having an average particle diameter in the range of 0.1 to 30 μm are preferably used, and those in the range of 1 to 20 μm are more preferable.
 なお、平均粒径は、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。 The average particle diameter can be derived by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
 無機質充填剤(D成分)の含有量は、好ましくはエポキシ樹脂組成物全体の70~95重量%であり、より好ましくは75~92重量%であり、さらに好ましくは80~90重量%である。無機質充填剤(D成分)の含有量が50重量%未満では、エポキシ樹脂組成物の硬化体の線膨張係数が大きくなるために、封止樹脂シート11の反りが大きくなる傾向がみられる。一方、上記含有量が90重量%を超えると、封止樹脂シート11の柔軟性や流動性が悪くなるために、半導体チップとの接着性が低下する傾向がみられる。 The content of the inorganic filler (component D) is preferably 70 to 95% by weight of the entire epoxy resin composition, more preferably 75 to 92% by weight, and still more preferably 80 to 90% by weight. When the content of the inorganic filler (component D) is less than 50% by weight, the linear expansion coefficient of the cured product of the epoxy resin composition increases, and thus the warpage of the sealing resin sheet 11 tends to increase. On the other hand, since the softness | flexibility and fluidity | liquidity of the sealing resin sheet 11 will worsen when the said content exceeds 90 weight%, the tendency for adhesiveness with a semiconductor chip to fall is seen.
 (E成分)
 硬化促進剤(E成分)は、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されるものではないが、硬化性と保存性の観点から、トリフェニルホスフィンやテトラフェニルホスホニウムテトラフェニルボレート等の有機リン系化合物や、イミダゾール系化合物が好適に用いられる。これら硬化促進剤は、単独で用いても良いし、他の硬化促進剤と併用しても構わない。
(E component)
The curing accelerator (component E) is not particularly limited as long as it allows curing of the epoxy resin and the phenol resin, but from the viewpoint of curability and storage stability, triphenylphosphine or tetraphenylphosphonium tetraphenyl. Organic phosphorus compounds such as borates and imidazole compounds are preferably used. These curing accelerators may be used alone or in combination with other curing accelerators.
 硬化促進剤(E成分)の含有量は、エポキシ樹脂(A成分)及びフェノール樹脂(B成分)の合計100重量部に対して0.1~5重量部であることが好ましい。 The content of the curing accelerator (component E) is preferably 0.1 to 5 parts by weight with respect to a total of 100 parts by weight of the epoxy resin (component A) and the phenol resin (component B).
 (その他の成分)
 また、エポキシ樹脂組成物には、A成分からE成分に加えて、難燃剤成分を加えてもよい。難燃剤組成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物等の各種金属水酸化物を用いることができる。
(Other ingredients)
In addition to the A component to the E component, a flame retardant component may be added to the epoxy resin composition. As the flame retardant composition, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, and complex metal hydroxide can be used.
 金属水酸化物の平均粒径としては、エポキシ樹脂組成物を加熱した際に適当な流動性を確保するという観点から、平均粒径が1~10μmであることが好ましく、さらに好ましくは2~5μmである。金属水酸化物の平均粒径が1μm未満では、エポキシ樹脂組成物中に均一に分散させることが困難となるとともに、エポキシ樹脂組成物の加熱時における流動性が十分に得られない傾向がある。また、平均粒径が10μmを超えると、金属水酸化物(E成分)の添加量あたりの表面積が小さくなるため、難燃効果が低下する傾向がみられる。 The average particle diameter of the metal hydroxide is preferably 1 to 10 μm, more preferably 2 to 5 μm, from the viewpoint of ensuring appropriate fluidity when the epoxy resin composition is heated. It is. When the average particle size of the metal hydroxide is less than 1 μm, it becomes difficult to uniformly disperse in the epoxy resin composition, and the fluidity during heating of the epoxy resin composition tends to be insufficient. Moreover, since the surface area per addition amount of a metal hydroxide (E component) will become small when an average particle diameter exceeds 10 micrometers, the tendency for a flame-retardant effect to fall is seen.
 また、難燃剤成分としては上記金属水酸化物のほか、ホスファゼン化合物を用いることができる。ホスファゼン化合物としては、例えばSPR-100、SA-100、SP-100(以上、大塚化学株式会社)、FP-100、FP-110(以上、株式会社伏見製薬所)等が市販品として入手可能である。 Further, as the flame retardant component, a phosphazene compound can be used in addition to the above metal hydroxide. As phosphazene compounds, for example, SPR-100, SA-100, SP-100 (above, Otsuka Chemical Co., Ltd.), FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like are commercially available. is there.
 少量でも難燃効果を発揮するという観点から、式(1)又は式(2)で表されるホスファゼン化合物が好ましく、これらホスファンゼン化合物に含まれるリン元素の含有率は、12重量%以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000001

(式(1)中、nは3~25の整数であり、R及びRは同一又は異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する1価の有機基である。)
Figure JPOXMLDOC01-appb-C000002

(式(2)中、n及びmは、それぞれ独立して3~25の整数である。R及びRは同一又は異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する1価の有機基である。Rは、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される官能基を有する2価の有機基である。)
The phosphazene compound represented by the formula (1) or the formula (2) is preferable from the viewpoint of exhibiting a flame retardant effect even in a small amount, and the content of phosphorus element contained in these phosphanzene compounds is 12% by weight or more. Is preferred.
Figure JPOXMLDOC01-appb-C000001

(In the formula (1), n is an integer of 3 to 25, and R 1 and R 2 are the same or different and are selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group. A monovalent organic group having
Figure JPOXMLDOC01-appb-C000002

(In the formula (2), n and m are each independently an integer of 3 to 25. R 3 and R 5 are the same or different and are composed of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group. R 4 is a divalent organic group having a functional group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group. .)
 また、安定性及びボイドの生成抑制という観点から、式(3)で表される環状ホスファゼンオリゴマーを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000003

(式(3)中、nは3~25の整数であり、R及びRは同一又は異なって、水素、水酸基、アルキル基、アルコキシ基又はグリシジル基である。)
Moreover, it is preferable to use the cyclic phosphazene oligomer represented by Formula (3) from a viewpoint of stability and suppression of void formation.
Figure JPOXMLDOC01-appb-C000003

(In the formula (3), n is an integer of 3 to 25, and R 6 and R 7 are the same or different and are hydrogen, a hydroxyl group, an alkyl group, an alkoxy group, or a glycidyl group.)
 上記式(3)で表される環状ホスファゼンオリゴマーは、例えばFP-100、FP-110(以上、株式会社伏見製薬所)等が市販品として入手可能である。 The cyclic phosphazene oligomer represented by the above formula (3) is commercially available, for example, FP-100, FP-110 (above, Fushimi Pharmaceutical Co., Ltd.) and the like.
 ホスファゼン化合物の含有量は、エポキシ樹脂組成物中に含まれるエポキシ樹脂(A成分)、フェノール樹脂(B成分)、エラストマー(D成分)、硬化促進剤(E成分)及びホスファゼン化合物(その他の成分)を含む有機成分全体の10~30重量%であることが好ましい。すなわち、ホスファゼン化合物の含有量が、有機成分全体の10重量%未満では、封止樹脂シート11の難燃性が低下するとともに、被着体(半導体チップを搭載した半導体ウェハ)等に対する凹凸追従性が低下し、ボイドが発生する傾向がみられる。上記含有量が有機成分全体の30重量%を超えると、封止樹脂シート11の表面にタックが生じやすくなり、被着体に対する位置合わせをしにくくなる等作業性が低下する傾向がみられる。 The content of the phosphazene compound includes the epoxy resin (component A), phenol resin (component B), elastomer (component D), curing accelerator (component E) and phosphazene compound (other components) contained in the epoxy resin composition. It is preferably 10 to 30% by weight of the total organic component containing. That is, when the content of the phosphazene compound is less than 10% by weight of the total organic component, the flame retardancy of the sealing resin sheet 11 is reduced and the unevenness followability to an adherend (semiconductor wafer on which a semiconductor chip is mounted) or the like. Tends to decrease, and voids tend to occur. When the content exceeds 30% by weight of the whole organic component, tackiness is likely to occur on the surface of the sealing resin sheet 11, and the workability tends to be lowered, such as difficulty in alignment with the adherend.
 また、上記金属水酸化物及びホスファゼン化合物を併用し、シート封止に必要な可撓性を確保しつつ、難燃性に優れた封止樹脂シート11を得ることもできる。両者を併用することにより、金属水酸化物のみを用いた場合の十分な難燃性と、ホスファゼン化合物のみを用いた場合は、十分な可撓性を得ることができる。 Also, by using the metal hydroxide and the phosphazene compound together, it is possible to obtain the sealing resin sheet 11 having excellent flame retardancy while ensuring the flexibility necessary for sealing the sheet. By using both in combination, sufficient flame retardancy when only the metal hydroxide is used and sufficient flexibility can be obtained when only the phosphazene compound is used.
 上記難燃剤のうち、樹脂封止の成型時における封止樹脂シートの変形性、被着体の凹凸への追従性、半導体チップや半導体ウェハへの密着性の点から有機系難燃剤を用いるのが望ましく、特にホスファゼン系難燃剤が好適に用いられる。 Among the above flame retardants, organic flame retardants are used from the viewpoint of the deformability of the sealing resin sheet at the time of molding the resin seal, the conformity to the unevenness of the adherend, and the adhesion to the semiconductor chip or the semiconductor wafer. In particular, phosphazene flame retardants are preferably used.
 なお、エポキシ樹脂組成物は、上記の各成分以外に必要に応じて、カーボンブラックをはじめとする顔料等、他の添加剤を適宜配合することができる。 In addition to the above components, the epoxy resin composition can be appropriately mixed with other additives such as pigments including carbon black as necessary.
 (封止樹脂シートの作製方法)
 封止樹脂シートの作製方法を以下に説明する。まず、上述の各成分を混合することによりエポキシ樹脂組成物を調製する。混合方法は、各成分が均一に分散混合される方法であれば特に限定するものではない。その後、例えば、各成分を有機溶剤等に溶解又は分散したワニスを塗工してシート状に形成する。あるいは、各配合成分を直接ニーダー等で混練することにより混練物を調製し、このようにして得られた混練物を押し出してシート状に形成してもよい。
(Method for producing sealing resin sheet)
A method for producing the sealing resin sheet will be described below. First, an epoxy resin composition is prepared by mixing the above-described components. The mixing method is not particularly limited as long as each component is uniformly dispersed and mixed. Thereafter, for example, a varnish in which each component is dissolved or dispersed in an organic solvent or the like is applied to form a sheet. Alternatively, a kneaded material may be prepared by directly kneading each compounding component with a kneader or the like, and the kneaded material thus obtained may be extruded to form a sheet.
 ワニスを用いる具体的な作製手順としては、上記A~E成分及び必要に応じて他の添加剤を常法に準じて適宜混合し、有機溶剤に均一に溶解あるいは分散させ、ワニスを調製する。ついで、上記ワニスをポリエステル等の支持体上に塗布し乾燥させることにより封止樹脂シート11を得ることができる。そして必要により、封止樹脂シートの表面を保護するためにポリエステルフィルム等の剥離シートを貼り合わせてもよい。剥離シートは封止時に剥離する。 As a specific production procedure using a varnish, the above components A to E and other additives as necessary are mixed as appropriate according to a conventional method, and uniformly dissolved or dispersed in an organic solvent to prepare a varnish. Subsequently, the sealing resin sheet 11 can be obtained by applying the varnish on a support such as polyester and drying it. If necessary, a release sheet such as a polyester film may be bonded to protect the surface of the sealing resin sheet. The release sheet peels at the time of sealing.
 上記有機溶剤としては、特に限定されるものではなく従来公知の各種有機溶剤、例えばメチルエチルケトン、アセトン、シクロヘキサノン、ジオキサン、ジエチルケトン、トルエン、酢酸エチル等を用いることができる。これらは単独で用いてもよいし、2種以上併せて用いてもよい。また通常、ワニスの固形分濃度が30~60重量%の範囲となるように有機溶剤を用いることが好ましい。 The organic solvent is not particularly limited, and various conventionally known organic solvents such as methyl ethyl ketone, acetone, cyclohexanone, dioxane, diethyl ketone, toluene, and ethyl acetate can be used. These may be used alone or in combination of two or more. Usually, it is preferable to use an organic solvent so that the solid content concentration of the varnish is in the range of 30 to 60% by weight.
 有機溶剤乾燥後のシートの厚みは、特に制限されるものではないが、厚みの均一性と残存溶剤量の観点から、通常、5~100μmに設定することが好ましく、より好ましくは20~70μmである。 The thickness of the sheet after drying the organic solvent is not particularly limited, but is usually preferably set to 5 to 100 μm, more preferably 20 to 70 μm, from the viewpoint of thickness uniformity and the amount of residual solvent. is there.
 一方、混練を用いる場合には、上記A~E成分及び必要に応じて他の添加剤の各成分をミキサーなど公知の方法を用いて混合し、その後、溶融混練することにより混練物を調製する。溶融混練する方法としては、特に限定されないが、例えば、ミキシングロール、加圧式ニーダー、押出機などの公知の混練機により、溶融混練する方法などが挙げられる。混練条件としては、温度が、上記した各成分の軟化点以上であれば特に制限されず、例えば30~150℃、エポキン樹脂の熱硬化性を考慮すると、好ましくは40~140℃、さらに好ましくは60~120℃であり、時間が、例えば1~30分間、好ましくは5~15分間である。これによって、混練物を調製することができる。 On the other hand, when kneading is used, the above components A to E and, if necessary, each component of other additives are mixed using a known method such as a mixer, and then kneaded to prepare a kneaded product. . The method of melt kneading is not particularly limited, and examples thereof include a method of melt kneading with a known kneader such as a mixing roll, a pressure kneader, or an extruder. The kneading conditions are not particularly limited as long as the temperature is equal to or higher than the softening point of each component described above. For example, considering the thermosetting property of the epoxy resin, it is preferably 40 to 140 ° C., more preferably The temperature is 60 to 120 ° C., and the time is, for example, 1 to 30 minutes, preferably 5 to 15 minutes. Thereby, a kneaded material can be prepared.
 得られる混練物を押出成形により成形することにより、封止樹脂シート11を得ることができる。具体的には、溶融混練後の混練物を冷却することなく高温状態のままで、押出成形することで、封止樹脂シート11を形成することができる。このような押出方法としては、特に制限されず、Tダイ押出法、ロール圧延法、ロール混練法、共押出法、カレンダー成形法などが挙げられる。押出温度としては、上記した各成分の軟化点以上であれば、特に制限されないが、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40~150℃、好ましくは、50~140℃、さらに好ましくは70~120℃である。以上により、封止樹脂シート11を形成することができる。 The sealing resin sheet 11 can be obtained by molding the obtained kneaded material by extrusion molding. Specifically, the encapsulating resin sheet 11 can be formed by extrusion molding without cooling the kneaded product after melt-kneading while maintaining a high temperature state. Such an extrusion method is not particularly limited, and examples thereof include a T-die extrusion method, a roll rolling method, a roll kneading method, a co-extrusion method, and a calendar molding method. The extrusion temperature is not particularly limited as long as it is equal to or higher than the softening point of each component described above. However, considering the thermosetting property and moldability of the epoxy resin, for example, 40 to 150 ° C., preferably 50 to 140 ° C. Preferably, it is 70 to 120 ° C. As described above, the sealing resin sheet 11 can be formed.
 このようにして得られた封止樹脂シートは、必要により所望の厚みとなるように積層して使用してもよい。すなわち、封止樹脂シートは、単層構造にて使用してもよいし、2層以上の多層構造に積層してなる積層体として使用してもよい。 The encapsulating resin sheet obtained in this way may be used by being laminated so as to have a desired thickness if necessary. That is, the sealing resin sheet may be used in a single layer structure, or may be used as a laminate formed by laminating two or more multilayer structures.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。また、部とあるのは、重量部を意味する。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in this example are not intended to limit the scope of the present invention only to those unless otherwise specified. The term “parts” means parts by weight.
[実施例1]
 (封止樹脂シートの作製)
 以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ500μmの封止樹脂シートAを作製した。
[Example 1]
(Preparation of sealing resin sheet)
The following components were blended with a mixer, melt kneaded at 120 ° C. for 2 minutes with a twin-screw kneader, and then extruded from a T-die to prepare a sealing resin sheet A having a thickness of 500 μm.
 エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV-80XY(エポキン当量200g/eq.軟化点80℃))        286部
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃))  303部
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)                                6部
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454、平均粒子径20μm)                             3695部
 シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM-403)                           5部
 カーボンブラック(三菱化学(株)製、#20)                    5部
Epoxy resin: Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.)) 286 parts Phenol resin: phenol resin having biphenylaralkyl skeleton (Maywa Kasei Co., Ltd.) Manufactured by MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.) 303 parts Curing accelerator: imidazole catalyst as a curing catalyst (manufactured by Shikoku Chemicals Co., Ltd., 2PHZ-PW) 6 parts Inorganic Filler: Spherical fused silica powder (manufactured by Denki Kagaku Kogyo Co., Ltd., FB-9454, average particle size 20 μm) 3695 parts Silane coupling agent: Epoxy group-containing silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403) 5 parts carbon black (three Chemical Co., Ltd., # 20), 5 parts
[実施例2]
 (封止樹脂シートの作製)
 以下の成分をミキサーにてブレンドし、2軸混練機により120℃で2分間溶融混練し、続いてTダイから押出しすることにより、厚さ500μmの封止樹脂シートBを作製した。
[Example 2]
(Preparation of sealing resin sheet)
The following components were blended with a mixer, melt-kneaded at 120 ° C. for 2 minutes with a twin-screw kneader, and then extruded from a T die to prepare a sealing resin sheet B having a thickness of 500 μm.
 エポキシ樹脂:ビスフェノールF型エポキシ樹脂(新日鐵化学(株)製、YSLV-80XY(エポキン当量200g/eq.軟化点80℃))        169部
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃))  179部
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)                                6部
 エラストマー:スチレン-イソブチレン-スチレントリブロック共重合体((株)カネカ製、SIBSTAR 072T)                    152部
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454、平均粒子径20μm)                              1700部
 シランカップリング剤:エポキシ基含有シランカップリング剤(信越化学工業(株)製、KBM-403)                           5部
 カーボンブラック(三菱化学(株)製、#20)                   5部
 難燃剤:ホスファゼン化合物((株)伏見製薬所製、FP-100)         89部
Epoxy resin: Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YSLV-80XY (epochine equivalent 200 g / eq. Softening point 80 ° C.)) 169 parts Phenol resin: phenol resin having biphenylaralkyl skeleton (Maywa Kasei Co., Ltd.) Manufactured by MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.) 179 parts Curing accelerator: imidazole catalyst as a curing catalyst (manufactured by Shikoku Kasei Co., Ltd., 2PHZ-PW) 6 parts Elastomer : Styrene-isobutylene-styrene triblock copolymer (manufactured by Kaneka Corp., SIBSTAR 072T) 152 parts Inorganic filler: spherical fused silica powder (manufactured by Denki Kagaku Kogyo, FB-9454, average particle size 20 μm) 1700 parts Ring agent: Epoxy group-containing silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403) 5 parts Carbon black (Mitsubishi Chemical Corporation, # 20) 5 parts Flame retardant: Phosphazene compound (Fushimi Co., Ltd.) 89 parts by FP-100
[比較例1]
 (封止樹脂シートの作製)
 以下の成分をメチルエチルケトンに溶解ないし分散し、固形分40重量%のワニスを作製した。
[Comparative Example 1]
(Preparation of sealing resin sheet)
The following components were dissolved or dispersed in methyl ethyl ketone to prepare a varnish having a solid content of 40% by weight.
 液状エポキシ樹脂(大日本インキ化学工業(株)製、EXA-4850-150)   80部
 固形エポキシ樹脂(日本化薬(株)製、EPPN-501-HY)          20部
 フェノール樹脂:ビフェニルアラルキル骨格を有するフェノール樹脂(明和化成社製、MEH-7851-SS(水酸基当量203g/eq.、軟化点67℃)) 60部
 硬化促進剤:硬化触媒としてのイミダゾール系触媒(四国化成工業(株)製、2PHZ-PW)                                3部
 アクリル共重合体(BA(ブチルアクリレート):AN(アクリロニトリル):GMA(グリシジルメタクリレート)=85:8:7重量%からなる重量平均分子量が800,000の共重合体)                    330部
 無機充填剤:球状溶融シリカ粉末(電気化学工業社製、FB-9454、平均粒子径20μm)                               400部
 カーボンブラック(三菱化学(株)製、#20)                  7部
Liquid epoxy resin (Dainippon Ink Chemical Co., Ltd., EXA-4850-150) 80 parts Solid epoxy resin (Nippon Kayaku Co., Ltd., EPPN-501-HY) 20 parts Phenol resin: biphenylaralkyl skeleton Phenol resin (Maywa Kasei Co., Ltd., MEH-7851-SS (hydroxyl equivalent: 203 g / eq., Softening point: 67 ° C.)) 60 parts Curing accelerator: imidazole catalyst as curing catalyst (manufactured by Shikoku Chemicals Co., Ltd., 2PHZ -PW) 3 parts Acrylic copolymer (BA (butyl acrylate): AN (acrylonitrile): GMA (glycidyl methacrylate) = 85: 8: 7% by weight copolymer having a weight average molecular weight of 800,000) 330 parts Inorganic filler: Spherical fused silica powder (Electrochemical Industry Co., Ltd.) , FB-9454, average particle size 20 [mu] m) 400 parts Carbon black (Mitsubishi Chemical Co., Ltd., # 20) 7 parts
 (封止樹脂シートの貯蔵弾性率の測定)
 貯蔵弾性率の測定は、固体粘弾性測定装置(レオメトリックサイエンティック社製:形式:RSA-III)を用いて行った。具体的には、各封止樹脂シートを150℃で1時間加熱して熱硬化させ、この硬化物からサンプルサイズを長さ400mm×幅2mm×厚さ80μmとして測定試料を得た後、測定試料をフィルム引っ張り測定用治具にセットし-50~300℃の温度域での貯蔵弾性率及び損失弾性率を、周波数1Hz、昇温速度10℃/minの条件下で測定し、25℃での貯蔵弾性率(E’)を読み取ることにより得た。
(Measurement of storage elastic modulus of sealing resin sheet)
The storage elastic modulus was measured using a solid viscoelasticity measuring apparatus (manufactured by Rheometric Scientific: model: RSA-III). Specifically, each sealing resin sheet is heated and cured at 150 ° C. for 1 hour, and a measurement sample is obtained from the cured product with a sample size of 400 mm long × 2 mm wide × 80 μm thick, and then the measurement sample. Was set in a film tension measuring jig, and the storage elastic modulus and loss elastic modulus in the temperature range of −50 to 300 ° C. were measured under the conditions of a frequency of 1 Hz and a heating rate of 10 ° C./min. It was obtained by reading the storage modulus (E ′).
 (封止樹脂シートのショアD硬度の測定)
 各封止樹脂シートを2mm厚となるようにラミネータを用いて積層し、この積層体を150℃で1時間加熱して熱硬化させた後、JIS K 7215に準拠し、硬度計((株)ミツトヨ製、プラスチック用硬度計)を用いて、25℃での測定値を読み取ることで得た。
(Measurement of Shore D hardness of encapsulating resin sheet)
Each sealing resin sheet was laminated using a laminator so as to have a thickness of 2 mm, and this laminate was heated at 150 ° C. for 1 hour to be thermally cured, and in accordance with JIS K 7215, a hardness meter (Corporation) It was obtained by reading the measured value at 25 ° C. using a Mitutoyo plastic hardness tester.
 (半導体パッケージの作製)
 以下の仕様の半導体チップがシリコンインターポーザーにフリップチップ実装され、チップ-インターポーザー間がビスフェノールA型エポキシ系熱硬化性アンダーフィル材で封止されたチップ実装インターポーザーを準備した。
(Production of semiconductor package)
A chip mounting interposer was prepared in which a semiconductor chip having the following specifications was flip-chip mounted on a silicon interposer, and the space between the chip and the interposer was sealed with a bisphenol A type epoxy thermosetting underfill material.
 <半導体チップ>
 半導体チップサイズ:7.3mm□(厚さ400μm)
 バンプ材質:Cu 30μm、Sn-Ag 15μm厚み
 バンプ数:544バンプ
 バンプピッチ:50μm
 チップ数:16個(4個×4個)
<Semiconductor chip>
Semiconductor chip size: 7.3 mm □ (thickness 400 μm)
Bump material: Cu 30μm, Sn-Ag 15μm thickness Number of bumps: 544 bumps Bump pitch: 50μm
Number of chips: 16 (4 x 4)
 <シリコンインターポーザー>
 直径:8インチ
 厚さ:730μm
 電極:スルーシリコンビア(径:30μm)
<Silicon interposer>
Diameter: 8 inches Thickness: 730 μm
Electrode: Through silicon via (diameter: 30 μm)
 得られたチップ実装インターポーザー上に、以下に示す加熱加圧条件下、封止樹脂シートA~Cのそれぞれを真空平板プレスにより貼付けた。 Each of the sealing resin sheets A to C was pasted on the obtained chip mounting interposer by a vacuum flat plate press under the following heating and pressing conditions.
 <貼り付け条件>
 温度:90℃
 加圧力:0.5MPa
 真空度:2000Pa
 プレス時間:3分
<Paste conditions>
Temperature: 90 ° C
Applied pressure: 0.5 MPa
Degree of vacuum: 2000Pa
Press time: 3 minutes
 大気圧に開放した後、熱風乾燥機中、150℃、1時間の条件で封止樹脂シートを熱硬化させ、封止体を得た。次に、切削装置((株)DISCO製、サーフェスプレーナー「DFS8910」)を用いた研削により、研削バイトの周速度1000m/min、送りピッチ100μm、切り込み深さ10μmの条件で、半導体チップの厚さが100μmとなるまで封止体を半導体チップ共々薄化することで、研削体を作製した。 After releasing to atmospheric pressure, the sealing resin sheet was thermally cured in a hot air dryer at 150 ° C. for 1 hour to obtain a sealing body. Next, the thickness of the semiconductor chip is obtained by grinding using a cutting device (manufactured by DISCO Corporation, surface planar “DFS8910”) under the conditions of a peripheral speed of the grinding tool of 1000 m / min, a feed pitch of 100 μm, and a cutting depth of 10 μm. By grinding the sealing body together with the semiconductor chip until the thickness becomes 100 μm, a ground body was produced.
 得られた研削体のシリコンインターポーザーの露出面(封止樹脂シートを貼り合わせた面とは反対側の面)を研削装置(DISCO製、「DGP8761」)によりシリコンインターポーザーの厚さが100μmとなるまで研削し、積層体を形成した。 The exposed surface of the silicon interposer of the obtained grinding body (the surface opposite to the surface on which the sealing resin sheet was bonded) was removed with a grinding device (“DGP8761” manufactured by DISCO) and the thickness of the silicon interposer was 100 μm. It grinded until it became, and the laminated body was formed.
 (封止樹脂シートとシリコンインターポーザーとの積層体の最厚部の厚さと最薄部の厚さの差の測定)
 積層体(露出した半導体チップを含む。)の最厚部の厚さと最薄部の厚さの差を、ウェハ厚み計測装置(浜松ホトニクス社製、「C8870-02」)を用いて測定ピッチ2mmで測定した。
(Measurement of the difference between the thickness of the thickest part and the thinnest part of the laminate of the sealing resin sheet and the silicon interposer)
The difference between the thickness of the thickest part and the thickness of the thinnest part of the laminated body (including the exposed semiconductor chip) is measured using a wafer thickness measuring device (“C8880-02” manufactured by Hamamatsu Photonics) with a measurement pitch of 2 mm. Measured with
 続いて、シリコンインターポーザーの研削面にポリアミック酸(3,4’,3,4’-ビフェニルテトラカルボン酸二無水物と4,4’-ジアミノジフェニルエーテル、パラフェニレンジアミンを反応して得たもの)を塗布し、熱硬化させて、厚さ10μmのポリイミド層を形成した。スルーシリコンビアに対応する位置に、レーザー加工によって開口を形成し、該ビアを露出させた。開口を含むポリイミド層表面に、めっきによって金膜、ニッケル膜を順次形成した。さらに、クロム、銅の順にスパッタリングを施して、種膜(クロム層の厚さ20nm、銅層の厚さ100nm)を形成し、電解銅めっきにより所定の配線パターンを有する再配線層を形成することにより半導体パッケージを作製した。 Subsequently, polyamic acid (obtained by reacting 3,4 ', 3,4'-biphenyltetracarboxylic dianhydride, 4,4'-diaminodiphenyl ether, paraphenylenediamine) on the ground surface of the silicon interposer Was applied and thermally cured to form a polyimide layer having a thickness of 10 μm. An opening was formed by laser processing at a position corresponding to the through-silicon via to expose the via. A gold film and a nickel film were sequentially formed on the surface of the polyimide layer including the opening by plating. Further, sputtering is performed in the order of chromium and copper to form a seed film (chrome layer thickness 20 nm, copper layer thickness 100 nm), and a rewiring layer having a predetermined wiring pattern is formed by electrolytic copper plating. Thus, a semiconductor package was produced.
 (再配線の形成性)
 再配線形成面にて、配線の破断があるかどうかを顕微鏡(倍率:500倍)にて確認し、破断のない場合を「○」、破断のある場合を「×」として評価した。結果を表1に示す。
(Formability of rewiring)
On the rewiring formation surface, whether or not there was a break in the wiring was confirmed with a microscope (magnification: 500 times), and the case where there was no break was evaluated as “◯”, and the case where there was a break was evaluated as “x”. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 表1からも明らかなように、実施例1及び2では、封止樹脂シートとシリコンインターポーザーとの積層体の厚さ差が20μm以下であることから、半導体パッケージの回路面要素としての再配線の形成を歩留りよく行うことができるのに対し、比較例1の半導体パッケージでは、厚さ差が20μmを超えていることから、再配線の形成性に劣る結果となった。 As is clear from Table 1, in Examples 1 and 2, the thickness difference of the laminate of the sealing resin sheet and the silicon interposer is 20 μm or less, so rewiring as a circuit surface element of the semiconductor package In contrast, the semiconductor package of Comparative Example 1 has a thickness difference exceeding 20 μm, resulting in poor rewiring formability.
[実施例3]
 実施例1の封止樹脂シートAを用いる半導体パッケージの作製の封止工程において、真空平板プレスに代えて、得られたチップ実装インターポーザー上に、圧縮成形装置WCM-300(アピックヤマダ社製)を用いて封止樹脂シートAを下記成形条件にて貼付けたこと以外は、実施例1の場合と同様に、積層体の最厚部の厚さと最薄部の厚さの差の測定及び再配線の形成性の評価を行った。結果を表2に示す。
[Example 3]
In the sealing process of manufacturing a semiconductor package using the sealing resin sheet A of Example 1, instead of the vacuum flat plate press, a compression molding apparatus WCM-300 (manufactured by Apic Yamada) was placed on the obtained chip mounting interposer. Measurement and rewiring of the difference between the thickness of the thickest part and the thickness of the thinnest part in the same manner as in Example 1 except that the sealing resin sheet A was pasted under the following molding conditions. The formability of was evaluated. The results are shown in Table 2.
 <成形条件>
 温度:150℃
 加圧力:4.5MPa
 真空度:2000Pa
 加圧時間:10分
<Molding conditions>
Temperature: 150 ° C
Applied pressure: 4.5 MPa
Degree of vacuum: 2000Pa
Pressurization time: 10 minutes
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 表2の結果より、封止樹脂シートによる封止工程として、平板プレス及び圧縮成形のいずれも好適に利用可能であることが分かる。 From the results of Table 2, it can be seen that both flat plate press and compression molding can be suitably used as the sealing step with the sealing resin sheet.
    11、21  封止樹脂シート
    11S、21S  (研削後の)封止樹脂シートの表面
    12A  (研削前の)半導体ウェハ
    12B  (研削後の)半導体ウェハ
    13、23  半導体チップ
    13S、23S  (研削後の)半導体チップの露出面
    15、25  封止体
    16A、16C  研削体
    16B  積層体
    18、28  半導体パッケージ
    19、29  再配線
    Tmax  積層体の最厚部の厚さ
    Tmin  積層体の最薄部の厚さ 
 
11, 21 Encapsulating resin sheet 11S, 21S Surface of encapsulating resin sheet (after grinding) 12A (Before grinding) Semiconductor wafer 12B (After grinding) Semiconductor wafer 13, 23 Semiconductor chip 13S, 23S (After grinding) Semiconductor chip exposed surface 15, 25 Sealed body 16A, 16C Grinded body 16B Laminated body 18, 28 Semiconductor package 19, 29 Rewiring T max Thickness of the thickest part of the laminated body T min Thickness of the thinnest part of the laminated body The

Claims (8)

  1.  第1主面に一又は複数の半導体チップが搭載された半導体ウェハを準備する準備工程、
     前記半導体チップを埋め込むように前記半導体ウェハの第1主面に封止樹脂シートを積層して前記半導体チップを封止する封止工程、及び
     前記半導体ウェハの第1主面とは反対側の第2主面を研削する裏面研削工程を含み、
     前記封止樹脂シートと前記研削された半導体ウェハとの積層体の最も厚い最厚部の厚さと最も薄い最薄部の厚さとの差が20μm以下である半導体パッケージの製造方法。
    A preparation step of preparing a semiconductor wafer having one or more semiconductor chips mounted on the first main surface;
    A sealing step of sealing the semiconductor chip by laminating a sealing resin sheet on the first main surface of the semiconductor wafer so as to embed the semiconductor chip; and a first step opposite to the first main surface of the semiconductor wafer. 2 including a back grinding process to grind the main surface,
    A manufacturing method of a semiconductor package, wherein a difference between a thickness of a thickest thickest part and a thickness of a thinnest thinnest part of a laminate of the sealing resin sheet and the ground semiconductor wafer is 20 μm or less.
  2.  前記封止工程は、前記封止樹脂シートに対する平板プレス又は圧縮成形により行う請求項1に記載の半導体パッケージの製造方法。 The method for manufacturing a semiconductor package according to claim 1, wherein the sealing step is performed by flat plate pressing or compression molding on the sealing resin sheet.
  3.  前記積層体の最厚部は、前記半導体ウェハを平面視で透視した際に、該半導体ウェハと前記半導体チップとが重複しない領域に位置する請求項1又は2に記載の半導体パッケージの製造方法。 3. The method of manufacturing a semiconductor package according to claim 1, wherein the thickest part of the stacked body is located in a region where the semiconductor wafer and the semiconductor chip do not overlap when the semiconductor wafer is seen through in plan view.
  4.  150℃で1時間熱硬化処理を施した後の前記封止樹脂シートの25℃におけるショアD硬度が60以上である請求項1~3のいずれか1項に記載の半導体パッケージの製造方法。 The method of manufacturing a semiconductor package according to any one of claims 1 to 3, wherein a Shore D hardness at 25 ° C of the encapsulating resin sheet after performing a thermosetting treatment at 150 ° C for 1 hour is 60 or more.
  5.  150℃で1時間熱硬化処理を施した後の前記封止樹脂シートの25℃における貯蔵弾性率が3GPa以上である請求項1~4のいずれか1項に記載の半導体パッケージの製造方法。 The method for producing a semiconductor package according to any one of claims 1 to 4, wherein a storage elastic modulus at 25 ° C of the encapsulating resin sheet after performing a thermosetting treatment at 150 ° C for 1 hour is 3 GPa or more.
  6.  前記裏面研削工程後、前記半導体チップの研削された第2主面に再配線を形成する再配線形成工程をさらに含む請求項1~5のいずれか1項に記載の半導体パッケージの製造方法。 6. The method for manufacturing a semiconductor package according to claim 1, further comprising a rewiring forming step of forming a rewiring on the ground second main surface of the semiconductor chip after the back surface grinding step.
  7.  前記半導体チップが複数用いられており、
     前記再配線形成工程後に、前記半導体ウェハを前記封止樹脂シートとともに目的の半導体チップ単位でダイシングするダイシング工程をさらに含む請求項6に記載の半導体パッケージの製造方法。
    A plurality of the semiconductor chips are used,
    The manufacturing method of the semiconductor package of Claim 6 which further includes the dicing process of dicing the said semiconductor wafer with the said sealing resin sheet per target semiconductor chip after the said rewiring formation process.
  8.  請求項1~7のいずれか1項に記載の半導体パッケージの製造方法により得られる半導体パッケージ。
     
     
     
    A semiconductor package obtained by the method for manufacturing a semiconductor package according to any one of claims 1 to 7.


PCT/JP2014/076575 2013-10-23 2014-10-03 Semiconductor package manufacturing method WO2015060106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-220382 2013-10-23
JP2013220382A JP2015082606A (en) 2013-10-23 2013-10-23 Semiconductor package manufacturing method

Publications (1)

Publication Number Publication Date
WO2015060106A1 true WO2015060106A1 (en) 2015-04-30

Family

ID=52992709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076575 WO2015060106A1 (en) 2013-10-23 2014-10-03 Semiconductor package manufacturing method

Country Status (3)

Country Link
JP (1) JP2015082606A (en)
TW (1) TW201523719A (en)
WO (1) WO2015060106A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183818A (en) * 2018-02-22 2019-08-30 味之素株式会社 Wafer-class encapsulation resin composition for encapsulating
CN110246809A (en) * 2018-03-08 2019-09-17 日东电工株式会社 Sheet for sealing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6741063B2 (en) * 2016-03-25 2020-08-19 日立化成株式会社 Organic interposer and method for manufacturing organic interposer
KR102140259B1 (en) 2018-01-11 2020-07-31 주식회사 엘지화학 Epoxy resin composition for molding semiconductor, molding film and semiconductor package using the same
JP7217865B2 (en) * 2018-02-22 2023-02-06 味の素株式会社 Wafer level package encapsulation resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144123A (en) * 1999-09-02 2001-05-25 Matsushita Electric Ind Co Ltd Method of manufacturing semiconductor device and the semiconductor device
JP2001332654A (en) * 2000-03-17 2001-11-30 Matsushita Electric Ind Co Ltd Module provided with built-in electric element and manufacturing method thereof
JP2003268203A (en) * 2002-03-18 2003-09-25 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for wafer mold and semiconductor apparatus using the same
JP2005060584A (en) * 2003-08-18 2005-03-10 Hitachi Chem Co Ltd Film for sealing
JP2011243596A (en) * 2010-05-14 2011-12-01 Panasonic Corp Manufacturing method of package component and package component
JP2012227441A (en) * 2011-04-21 2012-11-15 Sumitomo Bakelite Co Ltd Semiconductor device manufacturing method and semiconductor device
JP2014015490A (en) * 2012-07-05 2014-01-30 Nitto Denko Corp Encapsulation resin sheet, manufacturing method of electronic component package, and electronic component package

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144123A (en) * 1999-09-02 2001-05-25 Matsushita Electric Ind Co Ltd Method of manufacturing semiconductor device and the semiconductor device
JP2001332654A (en) * 2000-03-17 2001-11-30 Matsushita Electric Ind Co Ltd Module provided with built-in electric element and manufacturing method thereof
JP2003268203A (en) * 2002-03-18 2003-09-25 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for wafer mold and semiconductor apparatus using the same
JP2005060584A (en) * 2003-08-18 2005-03-10 Hitachi Chem Co Ltd Film for sealing
JP2011243596A (en) * 2010-05-14 2011-12-01 Panasonic Corp Manufacturing method of package component and package component
JP2012227441A (en) * 2011-04-21 2012-11-15 Sumitomo Bakelite Co Ltd Semiconductor device manufacturing method and semiconductor device
JP2014015490A (en) * 2012-07-05 2014-01-30 Nitto Denko Corp Encapsulation resin sheet, manufacturing method of electronic component package, and electronic component package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183818A (en) * 2018-02-22 2019-08-30 味之素株式会社 Wafer-class encapsulation resin composition for encapsulating
CN110246809A (en) * 2018-03-08 2019-09-17 日东电工株式会社 Sheet for sealing

Also Published As

Publication number Publication date
TW201523719A (en) 2015-06-16
JP2015082606A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5961055B2 (en) Sealing resin sheet, electronic component package manufacturing method, and electronic component package
JP5837381B2 (en) Manufacturing method of semiconductor device
TWI606925B (en) Thermosetting sealing resin sheet and manufacturing method of electronic part package
JP6484061B2 (en) Manufacturing method of electronic component package
TW201516122A (en) Thermally curable resin sheet for sealing semiconductor chip, and method for manufacturing semiconductor package
JP5943898B2 (en) Method for manufacturing thermosetting resin sheet and electronic component package
WO2015019817A1 (en) Method for producing semiconductor package
WO2015060106A1 (en) Semiconductor package manufacturing method
WO2017168820A1 (en) Electronic device package tape
WO2015019816A1 (en) Method for producing semiconductor package
TW201532154A (en) Adhesive film, wafer-slicing wafer-adhering film, semiconductor device manufacturing method and semiconductor device
KR20140142676A (en) Thermosetting die-bonding film, die-bonding film with dicing sheet, and process for producing semiconductor device
JP6041933B2 (en) Method for manufacturing thermosetting resin sheet and electronic component package
TWI824195B (en) Chip-cut die-bonding film, semiconductor packaging using the same and manufacturing method thereof
JP2015126129A (en) Method of manufacturing electronic component package
TWI828076B (en) Chip-bonding film and manufacturing method thereof, and semiconductor packaging and manufacturing method thereof
WO2015072378A1 (en) Sealing resin sheet and method for producing electronic component package
WO2015046073A1 (en) Semiconductor device manufacturing method
JP6721963B2 (en) Bump root reinforcement sheet
TW202313910A (en) Composition for adhesive agent, film-like adhesive agent, semiconductor package using film-like adhesive agent, and production method therefor
JP2015126131A (en) Method of manufacturing electronic component package
JP2015126130A (en) Method of manufacturing electronic component package
JP2015097232A (en) Method of manufacturing electronic component package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856659

Country of ref document: EP

Kind code of ref document: A1