WO2020255680A1 - Ion-exchange fiber, and ion-exchange filter containing same - Google Patents

Ion-exchange fiber, and ion-exchange filter containing same Download PDF

Info

Publication number
WO2020255680A1
WO2020255680A1 PCT/JP2020/021509 JP2020021509W WO2020255680A1 WO 2020255680 A1 WO2020255680 A1 WO 2020255680A1 JP 2020021509 W JP2020021509 W JP 2020021509W WO 2020255680 A1 WO2020255680 A1 WO 2020255680A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
exchange
ion
fiber
filter
Prior art date
Application number
PCT/JP2020/021509
Other languages
French (fr)
Japanese (ja)
Inventor
丹後佑斗
Original Assignee
日本エクスラン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エクスラン工業株式会社 filed Critical 日本エクスラン工業株式会社
Priority to JP2021527531A priority Critical patent/JP7441429B2/en
Priority to CN202080043688.5A priority patent/CN114007743B/en
Publication of WO2020255680A1 publication Critical patent/WO2020255680A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • B01J47/127Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes in the form of filaments or fibres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Definitions

  • the present invention relates to an ion exchange fiber and an ion exchange filter containing the fiber, and more specifically, to an ion exchange filter made of a non-woven fabric or a papermaking sheet.
  • the strongly acidic cation exchange resins listed above are known to mainly have a sulfonic acid group. Since the ion exchange resin is relatively inexpensive and has a neutral salt resolution, it is used for purifying water to remove Na ions and the like in water (for example, Patent Document 1).
  • Chelate resins are known to have various functional groups, and in particular, those having iminodiacetic acid groups and polyamine groups are known. These functional groups are used for recovering valuable metals such as Cu and Ni existing in water (for example, Patent Document 2).
  • the weakly acidic cation exchange resin mainly has a carboxyl group.
  • the ion exchange resin is used for softening applications such as removing Ca and Mg ions in water by utilizing its features of ease of regeneration and high ion exchange capacity (for example, Patent Document 3).
  • the strongly acidic cation exchange resin having a sulfonic acid group has a strong bond with the metal ion, and it is necessary to use a large amount of acid for regeneration. was there.
  • there is a difficulty in the selectivity of adsorbed ions and there is a drawback that Cu, Ni, Pb and the like can hardly be adsorbed in an aqueous solution containing a hardness component such as Ca.
  • the chelate resin has good selectivity for heavy metals and can be said to be an ion exchange resin specialized for recovery and removal of heavy metals.
  • the ion exchange capacity is small and a large amount of chelate is required to obtain an effect in actual use. I had to use resin.
  • the weakly acidic cation exchange resin having a carboxyl group has better selectivity than the strongly acidic cation exchange resin having a sulfonic acid group, and can adsorb trace heavy metal ions in hard water, but has a particle shape. Since there is a limit to miniaturization in order to secure the flow path, the specific surface area cannot be increased. For this reason, the flow of heavy metal ions increases under high flow velocity, and water treatment at low flow velocity is unavoidable.
  • the present invention has been devised in view of the current state of the prior art, and an object of the present invention is to provide an ion exchanger having good selectivity for heavy metals, a high ion exchange capacity, and suppressed flow through. Is to provide.
  • the present inventors used acrylic fiber having a fine fineness as a starting material and formed a high-density carboxyl group by hydrolysis to form a high-density carboxyl group against heavy metals.
  • acrylic fiber having a fine fineness as a starting material and formed a high-density carboxyl group by hydrolysis to form a high-density carboxyl group against heavy metals.
  • ion exchange fiber having good selectivity, a high ion exchange capacity, and suppressed flow through can be obtained, and have reached the present invention.
  • the present invention is achieved by the following means.
  • the amount of carboxyl groups is 7.0 to 11.0 mmol / g, the degree of water swelling is 0.5 to 1.5 g / g, and the fineness is 1.0 to 3.0 dtex.
  • An ion exchange filter made of a mixture of 30% by mass of ion exchange fibers and 70% by mass of heat-sealed fibers and having a density of 0.33 g / cm 3 was wound and then heat-bonded to prepare an ion exchange filter.
  • the filter is attached to the filter housing, and an aqueous solution having a Cu (copper) concentration of 3 ppm and a Ca (calcium) concentration of 12 ppm and adjusted to pH 6 to 7 with sodium hydroxide is passed through SV500 [hr -1 ] every 30 minutes. Measure the Cu concentration [ppm] of the filtered water. From the obtained measurement results, the flow-through exchange capacity (C [eq]) when the flow-through point is 1.0 ppm and the total exchange capacity (C0 [eq]) of the ion exchange filter are calculated, and the flow-through exchange is performed by the following equation. Calculate the capacity ratio.
  • Flow exchange capacity ratio [%] 100 x C / C0 (2)
  • An ion exchange filter comprising the thread, non-woven fabric or papermaking sheet according to (5) or (6).
  • the ion exchange fiber of the present invention employs a carboxyl group as an ion exchange group, trace heavy metal ions in hard water can be removed and recovered. Further, the fiber has a large amount of carboxyl groups, and has an extremely high specific surface area because of its fiber shape and fineness. Therefore, the fiber has a high probability of contact between the functional group and water when it is formed into a filter shape and passed through water, and heavy metal ions can be efficiently recovered and removed even under a high flow velocity. Further, when the ion exchange fiber of the present invention adopts a calcium salt or magnesium salt type carboxyl group, the degree of water swelling can be further lowered, so that when the mixing ratio when molding into a filter is designed to be high, Can also reduce pressure loss.
  • the ion exchange fiber of the present invention having such performance can be used as, for example, a filter for industrial wastewater treatment containing heavy metals, which can cope with a high flow velocity.
  • the ion exchange fiber of the present invention has a carboxyl group as an ion exchange group, and the amount of carboxyl thereof is 7.0 to 11.0 mmol / g, preferably 7.5 to 10.5 mmol / g, more preferably 7.5 to 10.5 mmol / g. Is 8.0 to 10.0 mmol / g.
  • the amount of carboxyl groups is measured by a method described later, and in the present invention, per 1 g of fibers of H-type carboxyl groups when various salt-type carboxyl groups are converted to H-type by acid. Indicates the amount.
  • the amount of the carboxyl group When the amount of the carboxyl group is less than 7.0 mmol / g, the total ion exchange capacity of the ion exchange filter containing the fiber decreases. If the amount of the carboxyl group exceeds 11.0 mmol / g, the durability of the fiber is remarkably lowered, and the yield at the time of producing the ion exchange filter is deteriorated.
  • the amount of the carboxyl group can be controlled by adjusting the amount of the alkali metal compound used at the time of hydrolysis, which will be described later.
  • the carboxyl group contained in the ion exchange fiber of the present invention preferably has a structure salt-formed with calcium or magnesium. Since these are multivalent metal ions, they have the effect of forming an ionic bond between two carboxyl groups and reducing the degree of water swelling. On the other hand, when the carboxyl group is salt-formed with an alkali metal such as sodium or potassium, for example, the water permeability of the filter deteriorates and the pressure loss increases, which is not preferable.
  • the ion exchange fiber of the present invention has a water swelling degree of 0.5 to 1.5 g / g, particularly preferably 0.8 to 1.2 g / g, as measured by a method described later. If the degree of water swelling exceeds 1.5 g / g, the water permeability of the ion exchange filter is lowered and pressure loss occurs, which is not preferable. Further, when the water swelling degree is less than 0.5 g / g, it is expected that almost no carboxyl group is introduced in the first place, and there is a possibility that the ion exchange performance cannot be exhibited.
  • the degree of water swelling can be controlled by ionic bonding with the above-mentioned multivalent metal ions or by adjusting the amount of the cross-linking agent at the time of the cross-linking treatment in the production method described later.
  • the ion exchange fiber of the present invention has a fineness of 1.0 to 3.0 dtex, particularly preferably 1.5 to 2.8 dtex.
  • the fineness exceeds 3.0 dtex, the contact probability between the carboxyl group and the heavy metal ion in water decreases due to the decrease in the specific surface area of the fiber, which may impair the ion exchange performance, which is not preferable.
  • the fineness is less than 1.0 dtex, sufficient fiber strength cannot be maintained and the yield at the time of producing an ion exchange filter may deteriorate, which is not preferable.
  • the ion exchange fiber of the present invention has a once-through exchange capacity ratio of 40% or more, preferably 50% or more, as measured by the method described in Examples described later.
  • the once-through exchange capacity refers to the exchange capacity until a certain concentration of leaked ions in the treated water (such a concentration is referred to as a once-through point) is reached when water is continuously passed. After passing the once-through point, ion exchange becomes insufficient and the number of leaked ions increases. Therefore, even if the total exchange capacity is not reached, the purpose such as ion removal cannot be achieved and the ion cannot be used substantially.
  • the once-through exchange capacity ratio is the ratio of the once-through exchange capacity to the total exchange capacity, and is an index showing the speed of the ion exchange rate.
  • the ion exchange rate gradually decreases as the ion exchange of the ion exchange group progresses.
  • the ion exchange rate does not match the flow velocity of the treatment liquid, and the ion exchange cannot be completed, reaching the once-through point. Therefore, the faster the initial ion exchange rate, the later the time to reach the once-through point, and the larger the once-through exchange capacity ratio.
  • the once-through exchange capacity ratio is less than 40%, the ion exchange rate of the ion exchange fiber is low and the heavy metal removal performance is significantly lowered. Therefore, it is used under high flow velocity conditions or by a so-called one-pass in which the treatment liquid is passed only once. Not suitable for use.
  • the flow-through exchange capacity ratio can also be adjusted by the fineness of the ion exchange fiber, and fineness is effective for improving the flow-through exchange capacity ratio.
  • the ion exchange filter in the present invention is a filter made by winding a thread, a non-woven fabric or a papermaking sheet made of a mixture containing ion exchange fibers, or a laminated non-woven fabric or a papermaking sheet and punching it into an arbitrary shape. Examples include, but are not limited to these.
  • the yarn used for producing the ion exchange filter in the present invention is not particularly limited, but is known such that the above-mentioned ion exchange fiber is mixed with other fibers, carded, and then spun as a sliver. Examples include threads obtained by the method.
  • the non-woven fabric for producing the ion exchange filter in the present invention is not particularly limited, but for example, the above-mentioned ion exchange fiber and other fibers are mixed and passed through a device such as a card machine a plurality of times to make a needle punch machine. , Non-woven fabric adjusted to an arbitrary density by passing through a calendar machine and the like can be mentioned.
  • the papermaking sheet for producing the ion exchange filter in the present invention is not particularly limited, but a slurry in which the above-mentioned mixture of ion exchange fibers and other fibers is uniformly dispersed using a beater, a refiner, or the like is produced. Then, the paper is made and then dried.
  • the other fibers in the above-mentioned yarn, non-woven fabric, and papermaking sheet are not particularly limited, and examples thereof include general-purpose fibers such as polyester and rayon, heat-sealing fibers, activated carbon fibers, and chelate fibers.
  • the heat-fused fiber contributes to the improvement of moldability, and the fineness is preferably about 2 to 4 dtex, which is close to the ion exchange fiber to be mixed.
  • Specific examples of such heat-sealed fibers include fibers having a core-sheath structure formed of polyethylene and polypropylene, polyester and polyethylene, polyester and low-melting point polyester, and the like.
  • the content of the ion exchange fiber of the present invention is preferably more than 20% by mass, more preferably 25% by mass or more. If the content of the ion exchange fiber is less than the above lower limit, sufficient ion exchange performance may not be obtained.
  • ion exchange filter of the present invention includes a harmful heavy metal removal filter, a valuable metal recovery filter, a water purification filter and the like.
  • an acrylic fiber having a fine fineness is used as a starting material, a crosslinked structure is formed in the fiber, and a carboxyl group is formed in the fiber at a high density by hydrolysis.
  • a method of forming a calcium salt type carboxyl group or a magnesium salt type carboxyl group by treating with a nitrate, sulfate, hydrochloride or the like of calcium or magnesium can be mentioned. The method will be described below.
  • the acrylic fiber used as a raw material is produced from an acrylonitrile-based polymer according to a known method, and the composition of the polymer is preferably 40% by mass or more of acrylonitrile, more preferably. It is 50% by mass or more, more preferably 80% by mass or more.
  • the fineness of the acrylic fiber may be any fineness such that the fineness of the finally obtained ion exchange fiber is 1.0 to 3.0 dtex, but usually, it is preferably 2.0 dtex or less. , More preferably 1.0 dtex or less. Since the fineness tends to increase due to the cross-linking treatment and the hydrolysis treatment described later, it is necessary to use an acrylic fiber having a finer fineness than the target fineness of the ion exchange fiber.
  • a crosslinked structure is introduced into the acrylic fiber as described above.
  • a cross-linking agent such as a nitrogen-containing compound is preferably used for introducing the cross-linked structure.
  • the nitrogen-containing compound it is preferable to use an amino compound having two or more primary amino groups or a hydrazine-based compound.
  • a hydrolysis treatment with an alkali metal compound is performed to convert the nitrile group into a carboxyl group.
  • the above-mentioned cross-linking treatment and hydrolysis treatment may be performed individually or at the same time. However, the conditions for each process differ depending on whether they are performed individually or at the same time.
  • the conditions for the cross-linking treatment when the cross-linking treatment and the hydrolysis treatment are individually performed are not limited as long as the ion-exchanged fibers of the present invention can be obtained.
  • the hydrazine concentration is 10.
  • examples thereof include a method of immersing the above-mentioned acrylic fibers in an aqueous solution to which the above-mentioned hydrazine-based compound is added so as to have a concentration of about 18% by mass, and treating the mixture at 100 to 130 ° C. for 2 to 10 hours.
  • Examples of the hydrolysis treatment conditions after the cross-linking treatment include a method of treating in an aqueous solution of a treatment agent containing 5 to 10% by mass of an alkali metal compound at a temperature of 100 to 130 ° C. for 2 to 10 hours.
  • the conditions for simultaneously performing the cross-linking treatment and the hydrolysis treatment are not particularly limited, but the amount of carboxyl groups required for the ion exchange fiber of the present invention is the same as the treatment conditions for each cross-linking hydrolysis described above. Select in consideration of such factors. In addition, it is possible to proceed with the reaction by reducing the amount of the drug as compared with the case of performing separately.
  • the acrylic fiber described above is immersed in an aqueous solution containing 0.5 to 4% by weight of a hydrazine compound as a cross-linking agent and 1 to 6% by weight of sodium hydroxide as an alkali metal compound, and the temperature is 100 to 130 ° C., 2 to 10%. Examples include a method of processing in time.
  • the carboxyl group after the hydrolysis treatment is the alkali metal used in the hydrolysis treatment as a counter ion.
  • conversion to calcium salt type carboxyl group or magnesium salt type carboxyl group can be performed.
  • the specific treatment conditions are not particularly limited, but the temperature is 30 in an aqueous solution of a treatment agent containing 0.5 to 1.0 molar equivalents of calcium ions and magnesium ions with respect to the amount of the introduced carboxyl groups. Examples thereof include a method of treating at ⁇ 100 ° C. for 0.5 to 3 hours.
  • the ion exchange fiber of the present invention described above has a high carboxyl group amount, a large specific surface area, and a low water swelling degree, it has highly efficient ion exchange performance that could not be realized in the past. Therefore, the ion exchange filter using the ion exchange fiber of the present invention has a high exchange capacity like the conventional weakly acidic cation exchange resin and strongly acidic cation exchange resin, and Cu under high flow velocity conditions. It has become possible to remove heavy metal ions such as.
  • ⁇ Measurement method of water swelling degree> Approximately 1 g of a fully dried sample is precisely weighed (W2 [g]) and immersed in 200 ml of distilled water for 30 minutes. Then, dehydrate at 160 G (G indicates gravitational acceleration) for 5 minutes using a centrifugal dehydrator (TYPE KS-8000 manufactured by Kubota Co., Ltd.). The mass after dehydration is precisely weighed (W3 [g]), and the degree of water swelling is calculated by the following formula. Water swelling degree [g / g] (W3-W2) / W2
  • Ion-exchange fiber sample (carboxyl group amount A1 [mmol / g]) and heat-sealed fiber (Unitika Melty 4080 fineness 2.2 dtex) are uniformly mixed using a roller card machine manufactured by KYOWA Machinery at a mass ratio of 3: 7.
  • the mixture is passed through a needle punching machine and a calendar machine, and unnecessary parts are cut to obtain a non-woven fabric (length 100 cm, width 15 cm) having a thickness of 0.3 mm and a grain ratio of 100 g / m 2 .
  • the initial concentration of Cu and the permeation point in the above measurement method were set based on the NSF International Standard / American Standard (NSF / ANSI 53-2009) for drinking water treatment equipment.
  • ⁇ Measurement method of Pb concentration of filtered water A chromatographic column with a cock having an inner diameter of 4 cm is filled with 0.1 g of a sample, and 5 g of glass beads are placed therein. A test solution adjusted to a Pb concentration of 0.14 mg / l using lead nitrate was passed through the test solution at a flow rate of 25 ml / min up to a water flow rate of 4500 ml, and the concentration of the filtered water per hour was adjusted to "54. Measure by a method based on "4 ICP mass spectrometry".
  • the raw material fibers were subjected to a treatment of simultaneously introducing cross-linking and hydrolysis at 115 ° C. for 3 hours in an aqueous solution containing 1.5% by mass of sodium hydroxide and 1.0% by mass of hydrated hydrazine, and washed with water. Then, it was treated with 8 mass% nitric acid aqueous solution at 120 degreeC for 3 hours, and was washed with water. Next, the obtained fiber was immersed in water, sodium hydroxide was added to adjust the pH to 9, and then the temperature was 70 ° C. in an aqueous solution in which calcium nitrate equivalent to 1.5 times the amount of carboxyl groups contained in the fiber was dissolved.
  • FIG. 3 shows a graph showing the relationship between the Cu concentration and the water flow rate ratio used for calculating the once-through exchange capacity ratio.
  • the evaluation result of the Pb concentration in the filtered water is shown in FIG.
  • the horizontal axis of FIG. 4 represents the water flow time in terms of the water flow amount.
  • Example 2 Using the same raw material fiber as that used in Example 1, a cross-linking introduction treatment was performed at 115 ° C. for 2 hours in an aqueous solution containing 15% by mass of hydrated hydrazine, and the fiber was washed with water. Next, hydrolysis treatment was performed at 120 ° C. for 2 hours in an aqueous solution containing 10% by mass of sodium hydroxide. Washed with water. Further, it was treated with a 6 mass% nitric acid aqueous solution at 110 ° C. for 3 hours and washed with water. Next, the hydrolysis treatment was performed again at 120 ° C.
  • FIG. 3 shows a graph showing the relationship between the Cu concentration and the water flow rate ratio used for calculating the once-through exchange capacity ratio.
  • Example 2 showed almost the same tendency as that of Example 1.
  • the ion exchange fiber of Example 1 since the ion exchange fiber of Example 1 has a fineness and a large specific surface area, hardness components and other ions coexist, and even in a situation where the flow velocity is very high, Pb and the like can be used. Heavy metals can be removed efficiently.
  • the ion exchange resin of Comparative Example 1 leakage of 0.02 ppm or more of Pb was observed from an early stage, and it was found that it was not suitable for water treatment at a high flow velocity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

Strongly acidic cation-exchange resins, chelate resins, weakly acidic cation-exchange resins, etc. have conventionally been used for removing metal ions present in aqueous solutions. However, there are problems in that strongly acidic cation-exchange resins require large amounts of acids for regeneration and have low selectivity for adsorbed ions, chelate resins have good selectivity but low ion-exchange capacity, and weakly acidic cation-exchange resins have relatively good selectivity but suffer from high breakthrough of heavy metal ions under high flow rates. The purpose of the present invention is to provide an ion exchanger having good selectivity for heavy metals, high ion-exchange capacity, and suppressed breakthrough. The present invention pertains to an ion-exchange fiber characterized by having an amount of carboxyl groups of 7.0-11.0 mmol/g, a degree of water swelling of 0.5-1.5 g/g, a fineness of 1.0-3.0 dtex, and a breakthrough exchange capacity ratio of at least 40%.

Description

イオン交換繊維および該繊維を含有するイオン交換フィルターIon exchange fibers and ion exchange filters containing the fibers
本発明はイオン交換繊維および該繊維を含有するイオン交換フィルターに関し、より具体的には不織布または抄紙シートからなるイオン交換フィルターに関する。 The present invention relates to an ion exchange fiber and an ion exchange filter containing the fiber, and more specifically, to an ion exchange filter made of a non-woven fabric or a papermaking sheet.
従来の陽イオン交換性を有しているイオン交換繊維としては強酸性陽イオン交換樹脂、キレート樹脂、弱酸性陽イオン交換樹脂等が知られていた。これらは水溶液に存在する金属イオンの除去等に利用されていた。 As conventional ion exchange fibers having cation exchange properties, strongly acidic cation exchange resins, chelate resins, weakly acidic cation exchange resins and the like have been known. These have been used for removing metal ions present in an aqueous solution.
上記に挙げた強酸性陽イオン交換樹脂は主にスルホン酸基を有したものが知られている。該イオン交換樹脂は比較的安価であり、中性塩分解能を有することから、水中のNaイオン等を除去する純水化用途等に使用されている(たとえば、特許文献1)。 The strongly acidic cation exchange resins listed above are known to mainly have a sulfonic acid group. Since the ion exchange resin is relatively inexpensive and has a neutral salt resolution, it is used for purifying water to remove Na ions and the like in water (for example, Patent Document 1).
キレート樹脂は様々な官能基を有したものが知られているが、特にイミノジ酢酸基、ポリアミン基を有したもの等が知られている。これら官能基は水中に存在するCu、Ni等の有価金属を回収する用途等に使用されている(たとえば、特許文献2)。 Chelate resins are known to have various functional groups, and in particular, those having iminodiacetic acid groups and polyamine groups are known. These functional groups are used for recovering valuable metals such as Cu and Ni existing in water (for example, Patent Document 2).
また、弱酸性陽イオン交換樹脂は主にカルボキシル基を有したものが知られている。該イオン交換樹脂は再生のし易さ、イオン交換容量が高い特徴を活用し、水中のCa、Mgイオンを除去する軟水化用途等に使用されている(たとえば、特許文献3)。 Further, it is known that the weakly acidic cation exchange resin mainly has a carboxyl group. The ion exchange resin is used for softening applications such as removing Ca and Mg ions in water by utilizing its features of ease of regeneration and high ion exchange capacity (for example, Patent Document 3).
特開平10-028879号公報Japanese Unexamined Patent Publication No. 10-0288879 特開2016-221438号公報Japanese Unexamined Patent Publication No. 2016-22148 特開2016-005835号公報Japanese Unexamined Patent Publication No. 2016-005835
しかしながら、Cu、Ni、Pb等の重金属除去の用途に焦点を当てると、スルホン酸基を有する強酸性陽イオン交換樹脂は金属イオンとの結合が強固であり、再生に多量の酸を使用する必要があった。また吸着イオンの選択性にも難があり、Ca等の硬度成分が含まれた水溶液中においては、Cu、Ni、Pb等をほとんど吸着できない欠点があった。 However, focusing on the use of removing heavy metals such as Cu, Ni, and Pb, the strongly acidic cation exchange resin having a sulfonic acid group has a strong bond with the metal ion, and it is necessary to use a large amount of acid for regeneration. was there. In addition, there is a difficulty in the selectivity of adsorbed ions, and there is a drawback that Cu, Ni, Pb and the like can hardly be adsorbed in an aqueous solution containing a hardness component such as Ca.
一方、キレート樹脂は重金属に対する選択性が良好であり、重金属の回収、除去に特化したイオン交換樹脂であるといえるが、イオン交換容量が小さく、実使用において効果を得るには、多量のキレート樹脂を使用しなければならなかった。 On the other hand, the chelate resin has good selectivity for heavy metals and can be said to be an ion exchange resin specialized for recovery and removal of heavy metals. However, the ion exchange capacity is small and a large amount of chelate is required to obtain an effect in actual use. I had to use resin.
また、カルボキシル基を有する弱酸性陽イオン交換樹脂は、スルホン酸基を有する強酸性陽イオン交換樹脂に比べて選択性が良好で、硬水中の微量重金属イオンを吸着できるが、粒子形状であり、流路確保のために微細化には限度があることから、比表面積を大きくすることができない。このため、高流速下においては重金属イオンの貫流が多くなり、低流速での水処理を余儀なくされていた。 Further, the weakly acidic cation exchange resin having a carboxyl group has better selectivity than the strongly acidic cation exchange resin having a sulfonic acid group, and can adsorb trace heavy metal ions in hard water, but has a particle shape. Since there is a limit to miniaturization in order to secure the flow path, the specific surface area cannot be increased. For this reason, the flow of heavy metal ions increases under high flow velocity, and water treatment at low flow velocity is unavoidable.
本発明は、かかる従来技術の現状に鑑みて創案されたものであり、その目的は、重金属に対して選択性が良好で、高いイオン交換容量を有し、貫流の抑えられたイオン交換体を提供することである。 The present invention has been devised in view of the current state of the prior art, and an object of the present invention is to provide an ion exchanger having good selectivity for heavy metals, a high ion exchange capacity, and suppressed flow through. Is to provide.
本発明者らは、上述の目的を達成するために誠意検討を進めた結果、細繊度のアクリル繊維を出発原料として用い、加水分解によってカルボキシル基を高密度に形成させることによって、重金属に対して良選択性をもち、高いイオン交換容量を有し、貫流の抑えられたイオン交換繊維が得られることを見出し、本発明に到達した。 As a result of sincere studies to achieve the above-mentioned object, the present inventors used acrylic fiber having a fine fineness as a starting material and formed a high-density carboxyl group by hydrolysis to form a high-density carboxyl group against heavy metals. We have found that an ion exchange fiber having good selectivity, a high ion exchange capacity, and suppressed flow through can be obtained, and have reached the present invention.
即ち、本発明は以下の手段により達成される。
(1) カルボキシル基量が7.0~11.0mmol/gであり、水膨潤度が0.5~1.5g/gであり、繊度が1.0~3.0dtexであり、下記の方法により測定した貫流交換容量比が40%以上であることを特徴とするイオン交換繊維。
(方法)イオン交換繊維30質量%、熱融着繊維70質量%である混合物からなる、密度が0.33g/cmの不織布を捲回したのちに熱接着したイオン交換フィルターを作製し、該フィルターをフィルターハウジングに取り付け、Cu(銅)濃度3ppm、Ca(カルシウム)濃度12ppmであり、水酸化ナトリウムでpH6~7に調整した水溶液をSV500[hr-1]で通水させ、30分毎にろ過水のCu濃度[ppm]を測定する。得られた測定結果より、貫流点を1.0ppmとした時の貫流交換容量(C[eq])とイオン交換フィルターの総交換容量(C0[eq])を算出し、次式にて貫流交換容量比を計算する。
 貫流交換容量比[%]=100×C/C0
(2) カルボキシル基量が7.5mmol/g以上であることを特徴とする(1)に記載のイオン交換繊維。
(3) カルボキシル基の少なくとも一部がカルシウム塩型カルボキシル基であることを特徴とする(1)または(2)に記載のイオン交換繊維。
(4) カルボキシル基の少なくとも一部がマグネシウム塩型カルボキシル基であることを特徴とする(1)または(2)に記載のイオン交換繊維。
(5) (1)~(4)のいずれかに記載のイオン交換繊維を含有することを特徴とする糸、不織布または抄紙シート。
(6) イオン交換繊維の含有量が20質量%を超えることを特徴とする(5)に記載の糸、不織布または抄紙シート。
(7) (5)または(6)に記載の糸、不織布または抄紙シートを含むものであることを特徴とするイオン交換フィルター。
That is, the present invention is achieved by the following means.
(1) The amount of carboxyl groups is 7.0 to 11.0 mmol / g, the degree of water swelling is 0.5 to 1.5 g / g, and the fineness is 1.0 to 3.0 dtex. An ion exchange fiber having a once-through exchange capacity ratio of 40% or more as measured by the above.
(Method) An ion exchange filter made of a mixture of 30% by mass of ion exchange fibers and 70% by mass of heat-sealed fibers and having a density of 0.33 g / cm 3 was wound and then heat-bonded to prepare an ion exchange filter. The filter is attached to the filter housing, and an aqueous solution having a Cu (copper) concentration of 3 ppm and a Ca (calcium) concentration of 12 ppm and adjusted to pH 6 to 7 with sodium hydroxide is passed through SV500 [hr -1 ] every 30 minutes. Measure the Cu concentration [ppm] of the filtered water. From the obtained measurement results, the flow-through exchange capacity (C [eq]) when the flow-through point is 1.0 ppm and the total exchange capacity (C0 [eq]) of the ion exchange filter are calculated, and the flow-through exchange is performed by the following equation. Calculate the capacity ratio.
Flow exchange capacity ratio [%] = 100 x C / C0
(2) The ion exchange fiber according to (1), wherein the amount of carboxyl groups is 7.5 mmol / g or more.
(3) The ion exchange fiber according to (1) or (2), wherein at least a part of the carboxyl group is a calcium salt type carboxyl group.
(4) The ion exchange fiber according to (1) or (2), wherein at least a part of the carboxyl group is a magnesium salt type carboxyl group.
(5) A thread, non-woven fabric or papermaking sheet containing the ion exchange fiber according to any one of (1) to (4).
(6) The thread, non-woven fabric or papermaking sheet according to (5), wherein the content of the ion exchange fiber exceeds 20% by mass.
(7) An ion exchange filter comprising the thread, non-woven fabric or papermaking sheet according to (5) or (6).
本発明のイオン交換繊維は、イオン交換基としてカルボキシル基を採用しているために、硬水中の微量重金属イオンを除去、回収することができる。さらに該繊維はカルボキシル基を多量に有し、繊維形状でなおかつ細繊度であるために比表面積がきわめて高い。このため、該繊維はフィルター状に成形し通水させた際の官能基と水との間の接触確率が高く、高流速下においても効率よく重金属イオンを回収、除去できる。また、本発明のイオン交換繊維はカルシウム塩、またはマグネシウム塩型カルボキシル基を採用した場合には、より水膨潤度を低くすることができるため、フィルターに成形する際の混率を高く設計した場合においても圧力損失を低くすることができる。かかる性能を有する本発明のイオン交換繊維は、例えば高流速に対応できる、重金属を含有する産業廃水処理用フィルターとして利用することができる。 Since the ion exchange fiber of the present invention employs a carboxyl group as an ion exchange group, trace heavy metal ions in hard water can be removed and recovered. Further, the fiber has a large amount of carboxyl groups, and has an extremely high specific surface area because of its fiber shape and fineness. Therefore, the fiber has a high probability of contact between the functional group and water when it is formed into a filter shape and passed through water, and heavy metal ions can be efficiently recovered and removed even under a high flow velocity. Further, when the ion exchange fiber of the present invention adopts a calcium salt or magnesium salt type carboxyl group, the degree of water swelling can be further lowered, so that when the mixing ratio when molding into a filter is designed to be high, Can also reduce pressure loss. The ion exchange fiber of the present invention having such performance can be used as, for example, a filter for industrial wastewater treatment containing heavy metals, which can cope with a high flow velocity.
本発明のイオン交換繊維を用いた不織布を捲回して作製したイオン交換フィルターの外観を示す図である。It is a figure which shows the appearance of the ion exchange filter produced by winding the non-woven fabric using the ion exchange fiber of this invention. 図1のイオン交換フィルターを装着したフィルターハウジングを横から見たときの断面図である。It is sectional drawing which looked at the filter housing which attached the ion exchange filter of FIG. 1 from the side. 実施例1、2および比較例1における貫流交換容量比の測定結果を示すグラフである。It is a graph which shows the measurement result of the once-through exchange capacity ratio in Examples 1 and 2 and Comparative Example 1. 実施例1および比較例1におけるろ過水中のPb濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the Pb concentration in the filtered water in Example 1 and Comparative Example 1.
以下に本発明を詳細に説明する。本発明のイオン交換繊維は、イオン交換基としてカルボキシル基を有しており、そのカルボキシル量は7.0~11.0mmol/gであり、好ましくは7.5~10.5mmol/g、さらに好ましくは8.0~10.0mmol/gである。ここで、カルボキシル基量とは、後述する方法によって測定されるものであり、本発明においては、各種塩型のカルボキシル基を酸によってH型に変換した際のH型カルボキシル基の繊維1g当たりの量を示す。かかるカルボキシル基量が7.0mmol/g未満の場合、該繊維を含有したイオン交換フィルターの総イオン交換容量が低下する。かかるカルボキシル基量が11.0mmol/gを超えると繊維の耐久性が著しく低下し、イオン交換フィルター作製の際の歩留まりが悪化する。かかるカルボキシル基量は後述する加水分解時のアルカリ金属化合物の使用量を調整することなどにより制御することができる。 The present invention will be described in detail below. The ion exchange fiber of the present invention has a carboxyl group as an ion exchange group, and the amount of carboxyl thereof is 7.0 to 11.0 mmol / g, preferably 7.5 to 10.5 mmol / g, more preferably 7.5 to 10.5 mmol / g. Is 8.0 to 10.0 mmol / g. Here, the amount of carboxyl groups is measured by a method described later, and in the present invention, per 1 g of fibers of H-type carboxyl groups when various salt-type carboxyl groups are converted to H-type by acid. Indicates the amount. When the amount of the carboxyl group is less than 7.0 mmol / g, the total ion exchange capacity of the ion exchange filter containing the fiber decreases. If the amount of the carboxyl group exceeds 11.0 mmol / g, the durability of the fiber is remarkably lowered, and the yield at the time of producing the ion exchange filter is deteriorated. The amount of the carboxyl group can be controlled by adjusting the amount of the alkali metal compound used at the time of hydrolysis, which will be described later.
本発明のイオン交換繊維に含まれるカルボキシル基は、カルシウム、またはマグネシウムと造塩した構造を有することが好ましい。これらは多価金属イオンであるために2つのカルボキシル基間においてイオン結合を形成し、水膨潤度を低下させる効果を有する。これに対して、例えばカルボキシル基がナトリウム、カリウム等のアルカリ金属と造塩している場合、フィルターにした際の通水性が悪化し、圧力損失が上昇するために、好ましくない。またストロンチウム、バリウム、ランタン等の多価金属の場合、カルボキシル基どうしのイオン結合は形成するが、これらの多価金属のイオンは選択吸着性が高く、イオン交換しづらいため、Cu、Ni、Pbイオン等を吸着できなくなる恐れがある上、経済的にも不利なため、好ましくない。 The carboxyl group contained in the ion exchange fiber of the present invention preferably has a structure salt-formed with calcium or magnesium. Since these are multivalent metal ions, they have the effect of forming an ionic bond between two carboxyl groups and reducing the degree of water swelling. On the other hand, when the carboxyl group is salt-formed with an alkali metal such as sodium or potassium, for example, the water permeability of the filter deteriorates and the pressure loss increases, which is not preferable. Further, in the case of polyvalent metals such as strontium, barium, and lanthanum, ionic bonds between carboxyl groups are formed, but the ions of these polyvalent metals have high selective adsorption property and are difficult to exchange ions, so Cu, Ni, and Pb. It is not preferable because it may not be able to adsorb ions and the like and it is economically disadvantageous.
また、本発明のイオン交換繊維は、後述する方法によって測定される水膨潤度が0.5~1.5g/gであり、特に0.8~1.2g/gであることが好ましい。水膨潤度が1.5g/gを超えると、イオン交換フィルターの通水性が低下し、圧力損失が発生するために、好ましくない。また、水膨潤度が0.5g/g未満の場合はそもそもカルボキシル基がほとんど導入されていないことが予想され、イオン交換性能を発揮できない恐れがある。かかる水膨潤度は上述した多価金属イオンによるイオン結合、または後述する製造方法における架橋処理時の架橋剤量の調整によって制御できる。 Further, the ion exchange fiber of the present invention has a water swelling degree of 0.5 to 1.5 g / g, particularly preferably 0.8 to 1.2 g / g, as measured by a method described later. If the degree of water swelling exceeds 1.5 g / g, the water permeability of the ion exchange filter is lowered and pressure loss occurs, which is not preferable. Further, when the water swelling degree is less than 0.5 g / g, it is expected that almost no carboxyl group is introduced in the first place, and there is a possibility that the ion exchange performance cannot be exhibited. The degree of water swelling can be controlled by ionic bonding with the above-mentioned multivalent metal ions or by adjusting the amount of the cross-linking agent at the time of the cross-linking treatment in the production method described later.
さらに、本発明のイオン交換繊維は、繊度が1.0~3.0dtexであり、特に1.5~2.8dtexであることが好ましい。繊度が3.0dtexを超える場合、繊維の比表面積が減少することでカルボキシル基と水中の重金属イオンとの接触確率が低下し、イオン交換性能を損なう恐れがあるため、好ましくない。さらに繊度が1.0dtex未満の場合、十分な繊維強度を保持できず、イオン交換フィルター作製時の歩留まり悪化の恐れがあるため、好ましくない。 Further, the ion exchange fiber of the present invention has a fineness of 1.0 to 3.0 dtex, particularly preferably 1.5 to 2.8 dtex. When the fineness exceeds 3.0 dtex, the contact probability between the carboxyl group and the heavy metal ion in water decreases due to the decrease in the specific surface area of the fiber, which may impair the ion exchange performance, which is not preferable. Further, when the fineness is less than 1.0 dtex, sufficient fiber strength cannot be maintained and the yield at the time of producing an ion exchange filter may deteriorate, which is not preferable.
また、本発明のイオン交換繊維は、後述の実施例に記載の方法によって測定した貫流交換容量比が40%以上であり、50%以上であることが好ましい。ここで、貫流交換容量とは、通水を続けた場合に処理水中の漏出イオンがある決められた濃度(かかる濃度を貫流点という)に到達するまでの交換容量のことを指している。貫流点を過ぎるとイオン交換が不十分となって漏出イオンが増加するため、総交換容量に達していなくても、イオン除去などの目的を果たせず、実質的に使用できなくなる。 Further, the ion exchange fiber of the present invention has a once-through exchange capacity ratio of 40% or more, preferably 50% or more, as measured by the method described in Examples described later. Here, the once-through exchange capacity refers to the exchange capacity until a certain concentration of leaked ions in the treated water (such a concentration is referred to as a once-through point) is reached when water is continuously passed. After passing the once-through point, ion exchange becomes insufficient and the number of leaked ions increases. Therefore, even if the total exchange capacity is not reached, the purpose such as ion removal cannot be achieved and the ion cannot be used substantially.
また、貫流交換容量比は、総交換容量に対する貫流交換容量の比率のことであって、イオン交換速度の速さを表す指標となるものである。一定速度で通水している状況下においては、イオン交換基のイオン交換が進行するにつれて、イオン交換速度が徐々に低下していく。やがてイオン交換速度は処理液の流速に見合わなくなり、イオン交換しきれなくなって貫流点に到達することになる。このため、初期のイオン交換速度が速いほど貫流点に到達する時期が遅くなり、貫流交換容量比も大きくなることになる。 Further, the once-through exchange capacity ratio is the ratio of the once-through exchange capacity to the total exchange capacity, and is an index showing the speed of the ion exchange rate. Under the condition that water is flowing at a constant speed, the ion exchange rate gradually decreases as the ion exchange of the ion exchange group progresses. Eventually, the ion exchange rate does not match the flow velocity of the treatment liquid, and the ion exchange cannot be completed, reaching the once-through point. Therefore, the faster the initial ion exchange rate, the later the time to reach the once-through point, and the larger the once-through exchange capacity ratio.
かかる貫流交換容量比が40%未満である場合、イオン交換繊維のイオン交換速度が低く、重金属除去性能が著しく低下するため、高流速条件での使用や処理液を1回のみ通過させるいわゆるワンパスによる使用に適さない。かかる貫流交換容量比はイオン交換繊維の繊度によっても調節することができ、貫流交換容量比向上には細繊度化が効果的である。 When the once-through exchange capacity ratio is less than 40%, the ion exchange rate of the ion exchange fiber is low and the heavy metal removal performance is significantly lowered. Therefore, it is used under high flow velocity conditions or by a so-called one-pass in which the treatment liquid is passed only once. Not suitable for use. The flow-through exchange capacity ratio can also be adjusted by the fineness of the ion exchange fiber, and fineness is effective for improving the flow-through exchange capacity ratio.
本発明におけるイオン交換フィルターとしては、イオン交換繊維を含む混合物からなる糸、不織布または抄紙シートを捲回させて作製したもの、あるいは不織布または抄紙シートを積層して任意の形状に打ち抜いてフィルターとしたもの等が挙げられるが、これらに限定されるものではない。 The ion exchange filter in the present invention is a filter made by winding a thread, a non-woven fabric or a papermaking sheet made of a mixture containing ion exchange fibers, or a laminated non-woven fabric or a papermaking sheet and punching it into an arbitrary shape. Examples include, but are not limited to these.
本発明におけるイオン交換フィルターを作製する際の糸としては、特に限定されるものではないが、上述したイオン交換繊維を他繊維と混綿し、梳綿したのちにスライバーとし精紡するような公知の方法で得られる糸が挙げられる。 The yarn used for producing the ion exchange filter in the present invention is not particularly limited, but is known such that the above-mentioned ion exchange fiber is mixed with other fibers, carded, and then spun as a sliver. Examples include threads obtained by the method.
本発明におけるイオン交換フィルターを作製する際の不織布としては特に限定されるものではないが、例えば上述したイオン交換繊維と他繊維を混綿し、カード機等の装置を複数回通過させ、ニードルパンチ機、カレンダー機を通過させることによって任意の密度に調整した不織布などを挙げることができる。 The non-woven fabric for producing the ion exchange filter in the present invention is not particularly limited, but for example, the above-mentioned ion exchange fiber and other fibers are mixed and passed through a device such as a card machine a plurality of times to make a needle punch machine. , Non-woven fabric adjusted to an arbitrary density by passing through a calendar machine and the like can be mentioned.
本発明におけるイオン交換フィルターを作製する際の抄紙シートとしては、特に限定されるものではないが、上述したイオン交換繊維と他繊維の混合物をビーター、リファイナーなどを用いて均一に分散したスラリーを作製して抄紙し、その後乾燥させたものなどを挙げることができる。 The papermaking sheet for producing the ion exchange filter in the present invention is not particularly limited, but a slurry in which the above-mentioned mixture of ion exchange fibers and other fibers is uniformly dispersed using a beater, a refiner, or the like is produced. Then, the paper is made and then dried.
上述した糸、不織布、抄紙シートにおける他繊維としては、特に限定されないが、ポリエステルやレーヨンなどの汎用繊維や、熱融着繊維、活性炭繊維、キレート繊維等が挙げられる。熱融着繊維は成形性の向上に寄与するものであり、繊度が2~4dtex程度の、混綿するイオン交換繊維に近い繊度であることが好ましい。かかる熱融着繊維の具体例としては、ポリエチレンとポリプロピレン、ポリエステルとポリエチレン、ポリエステルと低融点ポリエステル等によって形成された芯鞘構造の繊維等が挙げられる。また、活性炭繊維を混綿すると脱ハロゲン性能を付与することができ、キレート繊維を混綿すると本発明のイオン交換繊維を単独で使用した場合よりもさらに低濃度の領域(数十ppb以下)の重金属を除去できるようになる。 The other fibers in the above-mentioned yarn, non-woven fabric, and papermaking sheet are not particularly limited, and examples thereof include general-purpose fibers such as polyester and rayon, heat-sealing fibers, activated carbon fibers, and chelate fibers. The heat-fused fiber contributes to the improvement of moldability, and the fineness is preferably about 2 to 4 dtex, which is close to the ion exchange fiber to be mixed. Specific examples of such heat-sealed fibers include fibers having a core-sheath structure formed of polyethylene and polypropylene, polyester and polyethylene, polyester and low-melting point polyester, and the like. Further, when activated carbon fiber is mixed, dehalogenation performance can be imparted, and when chelate fiber is mixed, heavy metal in a region (several tens of ppb or less) having a lower concentration than when the ion exchange fiber of the present invention is used alone can be obtained. You will be able to remove it.
また、上述した糸、不織布、抄紙シートあるいはこれらを成形してなるイオン交換フィルターには、活性炭、防腐剤、防かび剤、抗菌剤、消臭剤、吸着材などの機能性添加剤を添加してもよい。 In addition, functional additives such as activated carbon, preservatives, antifungal agents, antibacterial agents, deodorants, and adsorbents are added to the above-mentioned threads, non-woven fabrics, papermaking sheets, or ion exchange filters formed by molding these. You may.
さらに、上述した糸、不織布、抄紙シートおいては、本発明のイオン交換繊維の含有量が20質量%を超えることが好ましく、25質量%以上であることがより好ましい。イオン交換繊維の含有量が上記下限に満たない場合は、十分なイオン交換性能を得られない場合がある。 Further, in the above-mentioned yarn, non-woven fabric, and papermaking sheet, the content of the ion exchange fiber of the present invention is preferably more than 20% by mass, more preferably 25% by mass or more. If the content of the ion exchange fiber is less than the above lower limit, sufficient ion exchange performance may not be obtained.
上述してきた本発明のイオン交換フィルターの具体的な用途としては、有害重金属除去フィルター、有価金属回収フィルター、浄水フィルター等が挙げられる。 Specific applications of the ion exchange filter of the present invention described above include a harmful heavy metal removal filter, a valuable metal recovery filter, a water purification filter and the like.
上述した本発明のイオン交換繊維の製造方法としては、細繊度のアクリル繊維を出発原料として用い、該繊維内に架橋構造を形成し、さらに加水分解によりカルボキシル基を高密度に繊維中に形成させ、カルシウムまたはマグネシウムの硝酸塩、硫酸塩、塩酸塩などで処理することによりカルシウム塩型カルボキシル基またはマグネシウム塩型カルボキシル基とする方法等を挙げることができる。以下、かかる方法について説明する。 In the method for producing an ion exchange fiber of the present invention described above, an acrylic fiber having a fine fineness is used as a starting material, a crosslinked structure is formed in the fiber, and a carboxyl group is formed in the fiber at a high density by hydrolysis. , A method of forming a calcium salt type carboxyl group or a magnesium salt type carboxyl group by treating with a nitrate, sulfate, hydrochloride or the like of calcium or magnesium can be mentioned. The method will be described below.
まず、原料として用いるアクリル繊維は、アクリロニトリル系重合体から公知の方法に準じて製造されるものであるが、該重合体の組成としてはアクリロニトリルが40質量%以上であることが好ましく、より好ましくは50質量%以上、さらに好ましくは80質量%以上である。また、アクリル繊維の繊度は、最終的に得られるイオン交換繊維の繊度が1.0~3.0dtexとなるような繊度であればよいが、通常の場合、2.0dtex以下であることが好ましく、さらに好ましくは1.0dtex以下である。後述する架橋処理、加水分解処理によって繊度が大きくなる傾向にあるため、イオン交換繊維の目的とする繊度よりも細繊度のアクリル繊維を使用する必要がある。 First, the acrylic fiber used as a raw material is produced from an acrylonitrile-based polymer according to a known method, and the composition of the polymer is preferably 40% by mass or more of acrylonitrile, more preferably. It is 50% by mass or more, more preferably 80% by mass or more. Further, the fineness of the acrylic fiber may be any fineness such that the fineness of the finally obtained ion exchange fiber is 1.0 to 3.0 dtex, but usually, it is preferably 2.0 dtex or less. , More preferably 1.0 dtex or less. Since the fineness tends to increase due to the cross-linking treatment and the hydrolysis treatment described later, it is necessary to use an acrylic fiber having a finer fineness than the target fineness of the ion exchange fiber.
上記のようなアクリル繊維に対して架橋構造が導入される。架橋構造の導入には、窒素含有化合物等の架橋剤が使用されることが好ましい。窒素含有化合物としては、2個以上の1級アミノ基を有するアミノ化合物やヒドラジン系化合物を使用することが好ましい。架橋構造が導入された後は、アルカリ金属化合物による加水分解処理が施され、ニトリル基がカルボキシル基に変換される。なお、上述した架橋処理と加水分解処理は個別に施してもよいし、同時に施してもよい。ただし、各処理の条件は個別に行う場合と同時に行う場合で異なる。 A crosslinked structure is introduced into the acrylic fiber as described above. A cross-linking agent such as a nitrogen-containing compound is preferably used for introducing the cross-linked structure. As the nitrogen-containing compound, it is preferable to use an amino compound having two or more primary amino groups or a hydrazine-based compound. After the crosslinked structure is introduced, a hydrolysis treatment with an alkali metal compound is performed to convert the nitrile group into a carboxyl group. The above-mentioned cross-linking treatment and hydrolysis treatment may be performed individually or at the same time. However, the conditions for each process differ depending on whether they are performed individually or at the same time.
架橋処理、加水分解処理を個別に行う際の架橋処理条件としては、本発明のイオン交換繊維が得られる限り、限定されないが、例えば、架橋剤としてヒドラジン系化合物を用いる場合では、ヒドラジン濃度として10~18質量%となるように上記のヒドラジン系化合物を添加した水溶液に、上述したアクリル繊維を浸漬し、100~130℃、2~10時間で処理する方法等が挙げられる。また、架橋処理後の加水分解処理条件としては、例えば、アルカリ金属系化合物を5~10質量%含有する処理薬剤水溶液中、温度100~130℃において2~10時間で処理する方法が挙げられる。 The conditions for the cross-linking treatment when the cross-linking treatment and the hydrolysis treatment are individually performed are not limited as long as the ion-exchanged fibers of the present invention can be obtained. For example, when a hydrazine-based compound is used as the cross-linking agent, the hydrazine concentration is 10. Examples thereof include a method of immersing the above-mentioned acrylic fibers in an aqueous solution to which the above-mentioned hydrazine-based compound is added so as to have a concentration of about 18% by mass, and treating the mixture at 100 to 130 ° C. for 2 to 10 hours. Examples of the hydrolysis treatment conditions after the cross-linking treatment include a method of treating in an aqueous solution of a treatment agent containing 5 to 10% by mass of an alkali metal compound at a temperature of 100 to 130 ° C. for 2 to 10 hours.
また、架橋処理、加水分解処理を同時に行う際の条件としては、特に限定されるものではないが、上述した架橋加水分解別処理条件と同様に、本発明のイオン交換繊維に求められるカルボキシル基量等を勘案して選定する。また、別々に行う場合と比較して薬剤量を少量にして反応を進行させることが可能である。例えば、架橋剤としてヒドラジン系化合物0.5~4重量%、アルカリ金属化合物として水酸化ナトリウム1~6重量%を添加した水溶液に、上述したアクリル繊維を浸漬し、100~130℃、2~10時間で処理する方法等が挙げられる。 The conditions for simultaneously performing the cross-linking treatment and the hydrolysis treatment are not particularly limited, but the amount of carboxyl groups required for the ion exchange fiber of the present invention is the same as the treatment conditions for each cross-linking hydrolysis described above. Select in consideration of such factors. In addition, it is possible to proceed with the reaction by reducing the amount of the drug as compared with the case of performing separately. For example, the acrylic fiber described above is immersed in an aqueous solution containing 0.5 to 4% by weight of a hydrazine compound as a cross-linking agent and 1 to 6% by weight of sodium hydroxide as an alkali metal compound, and the temperature is 100 to 130 ° C., 2 to 10%. Examples include a method of processing in time.
加水分解処理後のカルボキシル基は、加水分解処理で使用したアルカリ金属が対イオンとなっている。ここで、カルシウムまたはマグネシウムの硝酸塩、硫酸塩、塩酸塩などの水溶液にて処理を行うことで、カルシウム塩型カルボキシル基、またはマグネシウム塩型カルボキシル基への変換を行うことができる。この際、水溶液の濃度を高めるなどして可能な限り多くのアルカリ金属をカルシウム、マグネシウム塩にて置換することが好ましい。具体的な処理条件としては特に限定されるものではないが、導入したカルボキシル基量に対して0.5~1.0モル当量のカルシウムイオン、マグネシウムイオンが含まれた処理薬剤水溶液中、温度30~100℃において0.5~3時間処理する方法が挙げられる。 The carboxyl group after the hydrolysis treatment is the alkali metal used in the hydrolysis treatment as a counter ion. Here, by treating with an aqueous solution of calcium or magnesium nitrate, sulfate, hydrochloride or the like, conversion to calcium salt type carboxyl group or magnesium salt type carboxyl group can be performed. At this time, it is preferable to replace as many alkali metals as possible with calcium and magnesium salts by increasing the concentration of the aqueous solution. The specific treatment conditions are not particularly limited, but the temperature is 30 in an aqueous solution of a treatment agent containing 0.5 to 1.0 molar equivalents of calcium ions and magnesium ions with respect to the amount of the introduced carboxyl groups. Examples thereof include a method of treating at ~ 100 ° C. for 0.5 to 3 hours.
以上説明してきた本発明のイオン交換繊維は高いカルボキシル基量、大きな比表面積、低い水膨潤度を兼ね備えているために従来では実現できなかった高効率なイオン交換性能を有している。このため、本発明のイオン交換繊維を使用したイオン交換フィルターは、従来の弱酸性陽イオン交換樹脂、強酸性陽イオン交換樹脂のような高い交換容量を有しつつ、高流速条件下でのCu等の重金属イオン除去が可能となった。 Since the ion exchange fiber of the present invention described above has a high carboxyl group amount, a large specific surface area, and a low water swelling degree, it has highly efficient ion exchange performance that could not be realized in the past. Therefore, the ion exchange filter using the ion exchange fiber of the present invention has a high exchange capacity like the conventional weakly acidic cation exchange resin and strongly acidic cation exchange resin, and Cu under high flow velocity conditions. It has become possible to remove heavy metal ions such as.
以下に本発明の理解を容易にするために実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれらにより限定されるものではない。実施例中の特性の評価方法は以下の通りである。 Examples are shown below to facilitate understanding of the present invention, but these are merely examples, and the gist of the present invention is not limited thereto. The evaluation method of the characteristics in the examples is as follows.
<カルボキシル基量の測定方法>
試料を約1g秤量し、1mol/l塩酸50mlに30分浸漬後、水洗し浴比1:500で純水に15分間浸漬する。浴pHが4以上となるまで水洗した後、熱風乾燥機にて105℃で5時間乾燥させる。乾燥した試料約0.2gを精秤し(W1[g])、これに100mlの水と0.1mol/l水酸化ナトリウム15ml、塩化ナトリウム0.4gを加えて撹拌する。次いで金網を用いて試料を濾しとり、水洗する。得られたろ液(水洗液を含む)にフェノールフタレイン液を2~3滴加え、0.1mol/l塩酸で常法にしたがって滴定を行い、消費された塩酸量(V1[ml])を求め、次式によりカルボキシル基量を算出する。
 カルボキシル基量[mmol/g]=(0.1×15-0.1×V1)/W1
<Measurement method of carboxyl group amount>
About 1 g of the sample is weighed, immersed in 50 ml of 1 mol / l hydrochloric acid for 30 minutes, washed with water, and immersed in pure water at a bath ratio of 1: 500 for 15 minutes. After washing with water until the bath pH becomes 4 or more, it is dried at 105 ° C. for 5 hours in a hot air dryer. Approximately 0.2 g of the dried sample is precisely weighed (W1 [g]), 100 ml of water, 15 ml of 0.1 mol / l sodium hydroxide, and 0.4 g of sodium chloride are added thereto, and the mixture is stirred. Then, the sample is filtered out using a wire mesh and washed with water. Add 2 to 3 drops of phenolphthalein solution to the obtained filtrate (including washing solution) and titrate with 0.1 mol / l hydrochloric acid according to a conventional method to determine the amount of hydrochloric acid consumed (V1 [ml]). , The amount of carboxyl groups is calculated by the following formula.
Carboxylic acid group amount [mmol / g] = (0.1 × 15-0.1 × V1) / W1
<水膨潤度の測定方法>
十分に乾燥させた試料約1gを精秤し(W2[g])これを200mlの蒸留水に30分間浸漬させる。その後遠心脱水機(クボタ(株)社製TYPE KS-8000)を用い160G(Gは重力加速度を示す)において5分間脱水する。脱水後質量を精秤(W3[g])し、次式によって水膨潤度を算出する。
水膨潤度[g/g]=(W3-W2)/W2
<Measurement method of water swelling degree>
Approximately 1 g of a fully dried sample is precisely weighed (W2 [g]) and immersed in 200 ml of distilled water for 30 minutes. Then, dehydrate at 160 G (G indicates gravitational acceleration) for 5 minutes using a centrifugal dehydrator (TYPE KS-8000 manufactured by Kubota Co., Ltd.). The mass after dehydration is precisely weighed (W3 [g]), and the degree of water swelling is calculated by the following formula.
Water swelling degree [g / g] = (W3-W2) / W2
<繊度の測定方法>
JISL1015:2010の「8.5 繊度」に準拠した方法により測定を行う。
<Measurement method of fineness>
The measurement is performed by a method in accordance with "8.5 Fineness" of JIS L1015: 2010.
<貫流交換容量比の測定方法>
イオン交換繊維試料(カルボキシル基量A1[mmol/g])と熱融着繊維(ユニチカ製メルティ4080 繊度2.2dtex)を3:7の質量比でKYOWA機械製のローラーカード機を用いて均一に混合し、得られたものをニードルパンチ機、カレンダー機を通し、不要部分をカットすることで厚さ0.3mm、目付100g/mの不織布(縦100cm、横15cm)を得る。この不織布を5枚用意し、直径2.8cm、長さ30cmの金属製丸棒に巻き付け、135℃、50分間加熱し、上下の不要部分をカットすることにより内径2.8cm、外径5.6cm、高さ11.1cmの図1に示すようなイオン交換フィルターを得る。かかるイオン交換フィルターの質量(W4[g])を測定し、次式によりイオン交換フィルターの総交換容量(C0[eq])を算出する。
C0[eq]=A1×W4/1000
次に、得られたイオン交換フィルターの両端面にシリコーンシーラント(セメダイン社製)を用いて天然ゴム製パッキン(内径2.8cm、外径6.3cm、厚さ3mm)を接着した後、図2に示すようにフィルターハウジング(日本フィルター社製、品番NFH-A-5-E)に取り付け、硫酸銅五水和物、塩化カルシウム二水和物および水酸化ナトリウムを用いてCu濃度3ppm、Ca濃度12ppm、pH6~7に調整した水溶液をSV(空間速度)500[hr-1]で通水させ、30分ごとにろ過水のCu濃度[ppm]を後述する方法で測定し、Cu濃度が1.0ppmを超えるまで通水を行う。縦軸にろ過水のCu濃度、横軸に後述する通水量比をプロットし、直線で結んだグラフから、Cu濃度が1.0ppmとなるまでにイオン交換フィルターが吸着したCuイオンのモル量を求める。Cuは2価イオンであることから、求めたモル量に2を乗じた値を貫流交換容量(C[eq])とし、上記の総交換容量C0[eq]を用いて次式により貫流交換容量比[%]を算出する。
貫流交換容量比[%]=100×C/C0
<Measurement method of once-through exchange capacity ratio>
Ion-exchange fiber sample (carboxyl group amount A1 [mmol / g]) and heat-sealed fiber (Unitika Melty 4080 fineness 2.2 dtex) are uniformly mixed using a roller card machine manufactured by KYOWA Machinery at a mass ratio of 3: 7. The mixture is passed through a needle punching machine and a calendar machine, and unnecessary parts are cut to obtain a non-woven fabric (length 100 cm, width 15 cm) having a thickness of 0.3 mm and a grain ratio of 100 g / m 2 . Five pieces of this non-woven fabric are prepared, wrapped around a metal round bar having a diameter of 2.8 cm and a length of 30 cm, heated at 135 ° C. for 50 minutes, and by cutting unnecessary parts at the top and bottom, the inner diameter is 2.8 cm and the outer diameter is 5. Obtain an ion exchange filter as shown in FIG. 1 having a height of 6 cm and a height of 11.1 cm. The mass (W4 [g]) of the ion exchange filter is measured, and the total exchange capacity (C0 [eq]) of the ion exchange filter is calculated by the following equation.
C0 [eq] = A1 x W4 / 1000
Next, natural rubber packing (inner diameter 2.8 cm, outer diameter 6.3 cm, thickness 3 mm) was adhered to both end faces of the obtained ion exchange filter using a silicone sealant (manufactured by Cemedyne), and then FIG. As shown in, attach to the filter housing (manufactured by Nippon Filter Co., Ltd., product number NFH-A-5E), and use copper sulfate pentahydrate, calcium chloride dihydrate and sodium hydroxide to create a Cu concentration of 3 ppm and a Ca concentration. An aqueous solution adjusted to 12 ppm and pH 6 to 7 was passed through at SV (space velocity) 500 [hr -1 ], and the Cu concentration [ppm] of the filtered water was measured every 30 minutes by the method described below, and the Cu concentration was 1. Water is passed until it exceeds 0.0 ppm. The Cu concentration of the filtered water is plotted on the vertical axis, and the water flow rate ratio described later is plotted on the horizontal axis. From the graph connected by a straight line, the molar amount of Cu ions adsorbed by the ion exchange filter until the Cu concentration reaches 1.0 ppm Ask. Since Cu is a divalent ion, the value obtained by multiplying the obtained molar quantity by 2 is defined as the once-through exchange capacity (C [eq]), and the once-through exchange capacity is calculated by the following equation using the above total exchange capacity C0 [eq]. Calculate the ratio [%].
Flow exchange capacity ratio [%] = 100 x C / C0
なお、上記測定方法におけるCuの初期濃度および貫流点は、飲料用水処理装置のためのNSFインターナショナル規格/米国規格(NSF/ANSI 53-2009)を踏まえて設定した。 The initial concentration of Cu and the permeation point in the above measurement method were set based on the NSF International Standard / American Standard (NSF / ANSI 53-2009) for drinking water treatment equipment.
<ろ過水のCu濃度の測定方法>
JISB8224:2016の「24.3クプリゾン吸光光度法」に準拠した方法により測定を行う。
<Measurement method of Cu concentration of filtered water>
The measurement is carried out by a method based on "24.3 Cuprizone Absorptiometry" of JISB8224: 2016.
<通水量比の測定方法>
貫流交換容量比の測定に使用するイオン交換フィルターの外形寸法から求めた体積から中央の空洞部の体積を差し引いて、フィルターの見かけ体積(Vi[l])算出する。この値と累積通水量(Vl[l])を用いて次式により通水量比を計算する。
 通水量比=Vl/Vi
<Measurement method of water flow ratio>
The apparent volume (Vi [l]) of the filter is calculated by subtracting the volume of the central cavity from the volume obtained from the external dimensions of the ion exchange filter used for measuring the once-through exchange capacity ratio. Using this value and the cumulative water flow (Vl [l]), the water flow ratio is calculated by the following formula.
Water flow ratio = Vl / Vi
<ろ過水のPb濃度の測定方法>
内径4cmのコック付きクロマトカラムに試料を0.1g充填し、その上からガラスビーズを5g入れる。ここに硝酸鉛を使用してPb濃度0.14mg/lに調整した試験液を25ml/minの流速で通水量4500mlまで通水させ、時間ごとのろ過水の濃度をJISK0102:2016の「54.4ICP質量分析法」に準拠した方法により測定する。
<Measurement method of Pb concentration of filtered water>
A chromatographic column with a cock having an inner diameter of 4 cm is filled with 0.1 g of a sample, and 5 g of glass beads are placed therein. A test solution adjusted to a Pb concentration of 0.14 mg / l using lead nitrate was passed through the test solution at a flow rate of 25 ml / min up to a water flow rate of 4500 ml, and the concentration of the filtered water per hour was adjusted to "54. Measure by a method based on "4 ICP mass spectrometry".
[実施例1]
アクリロニトリル91質量%、アクリル酸メチル9質量%を重合してアクリロニトリル系重合体(30℃ジメチルホルムアミド中での極限年度[η]=1.5)を得る。かかる重合体10質量部を48質量%ロダンソーダ水溶液90質量部に溶解した紡糸原液を、常法に従って紡糸、延伸(全延伸倍率:10倍)した後、乾球/湿球=120℃/60℃の雰囲気下で乾燥後、湿熱処理することにより、単繊維繊度0.9dtexの原料繊維(繊維長70mm)を得た。
[Example 1]
91% by mass of acrylonitrile and 9% by mass of methyl acrylate are polymerized to obtain an acrylonitrile-based polymer (extreme year [η] = 1.5 in dimethylformamide at 30 ° C.). A spinning stock solution prepared by dissolving 10 parts by mass of such a polymer in 90 parts by mass of a 48 mass% Rodin soda aqueous solution is spun and stretched (total draw ratio: 10 times) according to a conventional method, and then dry bulb / wet bulb = 120 ° C./60 ° C. After drying in the above atmosphere, a wet heat treatment was performed to obtain a raw material fiber (fiber length 70 mm) having a single fiber fineness of 0.9 dtex.
該原料繊維に、水酸化ナトリウム1.5質量%、水加ヒドラジン1.0質量%を含有する水溶液中で、115℃3時間架橋、加水分解を同時に導入する処理を行い、水洗した。その後8質量%硝酸水溶液中で120℃3時間処理し、水洗を行った。次に得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整した後、繊維に含まれるカルボキシル基量の1.5倍に相当する硝酸カルシウムを溶解させた水溶液に70℃1時間浸漬することによりイオン交換処理を実施し、水洗、乾燥することによりカルシウム塩型カルボキシル基を含有するイオン交換繊維を得た。該イオン交換繊維について各種測定を行ったところ、カルボキシル基量8.0mmol/g、水膨潤度1.0g/g、繊度2.7dtex、貫流交換容量比60.2%であった。図3に、貫流交換容量比の算出に用いた、Cu濃度と通水量比の関係を示すグラフを示す。また、ろ過水中のPb濃度の評価結果を図4に示す。なお、図4の横軸は、通水時間を通水量に換算して表している。 The raw material fibers were subjected to a treatment of simultaneously introducing cross-linking and hydrolysis at 115 ° C. for 3 hours in an aqueous solution containing 1.5% by mass of sodium hydroxide and 1.0% by mass of hydrated hydrazine, and washed with water. Then, it was treated with 8 mass% nitric acid aqueous solution at 120 degreeC for 3 hours, and was washed with water. Next, the obtained fiber was immersed in water, sodium hydroxide was added to adjust the pH to 9, and then the temperature was 70 ° C. in an aqueous solution in which calcium nitrate equivalent to 1.5 times the amount of carboxyl groups contained in the fiber was dissolved. The ion exchange treatment was carried out by immersing the mixture for 1 hour, and the mixture was washed with water and dried to obtain an ion exchange fiber containing a calcium salt-type carboxyl group. When various measurements were made on the ion-exchanged fibers, the amount of carboxyl groups was 8.0 mmol / g, the degree of water swelling was 1.0 g / g, the degree of fineness was 2.7 dtex, and the flow-through exchange capacity ratio was 60.2%. FIG. 3 shows a graph showing the relationship between the Cu concentration and the water flow rate ratio used for calculating the once-through exchange capacity ratio. The evaluation result of the Pb concentration in the filtered water is shown in FIG. The horizontal axis of FIG. 4 represents the water flow time in terms of the water flow amount.
[実施例2]
実施例1で用いた原料繊維と同様のものを用い、水加ヒドラジン15質量%を含有する水溶液中で、115℃2時間、架橋導入処理を行い、水洗した。次に水酸化ナトリウム10質量%を含有する水溶液中で、120℃2時間、加水分解処理を行い。水洗した。さらに6質量%硝酸水溶液で110℃3時間処理し、水洗を行った。次に水酸化ナトリウム3質量%を含有する水溶液中で120℃2時間の加水分解処理をもう一度行い、水洗した後、3質量%硝酸水溶液で110℃1時間の処理を行い、水洗した。次に、得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整した後、繊維に含まれるカルボキシル基量の2倍に相当する硝酸カルシウムを溶解させた水溶液に70℃×1時間浸漬することによりイオン交換処理を実施し、水洗、乾燥することによりカルシウム塩型カルボキシル基を有するイオン交換繊維を得た。該イオン交換繊維について各種測定を行ったところ、カルボキシル基量8.9mmol/g、水膨潤度1.1g/g、繊度2.7dtex、貫流交換容量比52.7%であった。図3に、貫流交換容量比の算出に用いた、Cu濃度と通水量比の関係を示すグラフを示す。
[Example 2]
Using the same raw material fiber as that used in Example 1, a cross-linking introduction treatment was performed at 115 ° C. for 2 hours in an aqueous solution containing 15% by mass of hydrated hydrazine, and the fiber was washed with water. Next, hydrolysis treatment was performed at 120 ° C. for 2 hours in an aqueous solution containing 10% by mass of sodium hydroxide. Washed with water. Further, it was treated with a 6 mass% nitric acid aqueous solution at 110 ° C. for 3 hours and washed with water. Next, the hydrolysis treatment was performed again at 120 ° C. for 2 hours in an aqueous solution containing 3% by mass of sodium hydroxide, washed with water, and then treated with a 3% by mass nitric acid aqueous solution for 1 hour at 110 ° C. and washed with water. Next, the obtained fiber was immersed in water, sodium hydroxide was added to adjust the pH to 9, and then 70 ° C. × 70 ° C. in an aqueous solution in which calcium nitrate equivalent to twice the amount of carboxyl groups contained in the fiber was dissolved. Ion exchange treatment was carried out by immersing for 1 hour, and the ion exchange fiber having a calcium salt type carboxyl group was obtained by washing with water and drying. When various measurements were made on the ion-exchanged fibers, the amount of carboxyl groups was 8.9 mmol / g, the degree of water swelling was 1.1 g / g, the degree of fineness was 2.7 dtex, and the flow-through exchange capacity ratio was 52.7%. FIG. 3 shows a graph showing the relationship between the Cu concentration and the water flow rate ratio used for calculating the once-through exchange capacity ratio.
[比較例1]
弱酸性陽イオン交換樹脂(ダウ・ケミカル社製:ダウエックス MAC-3、カルボキシル基量5.7mmol/g、粒径0.3~1.2mm、水膨潤度2.0g/g)を用い、これをカラム型の密閉ガラス容器に充填し、イオン交換樹脂塔とした。このときのイオン交換樹脂塔の体積当たりの総交換容量は1.2eq/lであり、実施例1のイオン交換フィルターの体積当たりの総交換容量は0.6eq/lであったことから、体積換算では2倍の総交換容量を有していた。このイオン交換樹脂塔をフィルターハウジングの代わりに使用して実施例1と同様に貫流交換容量比の測定を行った。この測定から得られたCu濃度と通水量比の関係を図3に示す。また、ろ過水中のPb濃度の評価結果を図4に示す。
[Comparative Example 1]
Using a weakly acidic cation exchange resin (Dow Chemical Co., Ltd .: Dowex MAC-3, carboxyl group amount 5.7 mmol / g, particle size 0.3 to 1.2 mm, water swelling degree 2.0 g / g), This was filled in a column-type closed glass container to form an ion exchange resin tower. At this time, the total exchange capacity per volume of the ion exchange resin tower was 1.2 eq / l, and the total exchange capacity per volume of the ion exchange filter of Example 1 was 0.6 eq / l. In terms of conversion, it had twice the total exchange capacity. Using this ion exchange resin tower instead of the filter housing, the once-through exchange capacity ratio was measured in the same manner as in Example 1. The relationship between the Cu concentration obtained from this measurement and the water flow ratio is shown in FIG. The evaluation result of the Pb concentration in the filtered water is shown in FIG.
図3からわかるように、実施例1のイオン交換繊維は細繊度であるため比表面積が大きく、通水量比が3000程度まではCuが0.1ppm程度しか貫流せず、ほぼ全てのCuを除去できていることがわかる。さらに貫流点(Cu濃度が1ppmに達した点)が通水量比約4200地点であり、比較的遅い傾向にある。貫流交換容量比は60.2%であり、効率よくCuを除去できており、硬度成分であるCaの共存する高流速条件下においても十分に利用可能な素材であることがわかる。また、実施例2に関しても実施例1とほぼ同様の傾向を示していた。一方で比較例1のイオン交換樹脂は比表面積が小さいために、通水初期から0.5ppm程度のCuが漏出していた。さらに実施例1と比べて貫流点を迎えるのが早く、その後のろ過水中のCu濃度の上昇は緩やかであった。貫流交換容量比を計算すると20.6%であり、効率よくCuを除去できているとはいえず、高流速での水処理には適していないことがわかる。 As can be seen from FIG. 3, since the ion exchange fiber of Example 1 has a fine fineness, the specific surface area is large, and up to a water flow ratio of about 3000, only about 0.1 ppm of Cu flows through, and almost all Cu is removed. You can see that it is made. Further, the once-through point (the point where the Cu concentration reaches 1 ppm) is about 4200 points with a water flow rate ratio, which tends to be relatively slow. The once-through exchange capacity ratio is 60.2%, and it can be seen that Cu can be efficiently removed, and that the material can be sufficiently used even under high flow velocity conditions in which Ca, which is a hardness component, coexists. In addition, Example 2 showed almost the same tendency as that of Example 1. On the other hand, since the ion exchange resin of Comparative Example 1 has a small specific surface area, about 0.5 ppm of Cu leaked from the initial stage of water flow. Further, as compared with Example 1, the flow point was reached earlier, and the subsequent increase in Cu concentration in the filtered water was gradual. The flow-through exchange capacity ratio is calculated to be 20.6%, which means that Cu cannot be removed efficiently, and it is found that it is not suitable for water treatment at a high flow velocity.
また、図4からわかるように、実施例1のイオン交換繊維は細繊度であり、比表面積が大きいため、硬度成分やその他のイオンが共存し、かつ非常に流速の早い状況においてもPb等の重金属の除去を効率的に行うことができる。一方、比較例1のイオン交換樹脂に関しては早い段階から0.02ppm以上のPbの漏洩がみられ、高流速での水処理には不適であることがわかる。 Further, as can be seen from FIG. 4, since the ion exchange fiber of Example 1 has a fineness and a large specific surface area, hardness components and other ions coexist, and even in a situation where the flow velocity is very high, Pb and the like can be used. Heavy metals can be removed efficiently. On the other hand, with respect to the ion exchange resin of Comparative Example 1, leakage of 0.02 ppm or more of Pb was observed from an early stage, and it was found that it was not suitable for water treatment at a high flow velocity.
1・・・イオン交換フィルター
2・・・空洞部
3・・・フィルターハウジング
4・・・ゴムパッキン
5・・・処理液の流れ
 
1 ... Ion exchange filter 2 ... Cavity 3 ... Filter housing 4 ... Rubber packing 5 ... Flow of processing liquid

Claims (7)

  1.  カルボキシル基量が7.0~11.0mmol/gであり、水膨潤度が0.5~1.5g/gであり、繊度が1.0~3.0dtexであり、下記の方法により測定した貫流交換容量比が40%以上であることを特徴とするイオン交換繊維。
    (方法)イオン交換繊維30質量%、熱融着繊維70質量%である混合物からなる、密度が0.33g/cmの不織布を捲回したのちに熱接着したイオン交換フィルターを作製し、該フィルターをフィルターハウジングに取り付け、Cu濃度3ppm、Ca濃度12ppmであり、水酸化ナトリウムでpH6~7に調整した水溶液をSV500[hr-1]で通水させ、30分毎にろ過水のCu濃度[ppm]を測定する。得られた測定結果より、貫流点を1.0ppmとした時の貫流交換容量(C[eq])とイオン交換フィルターの総交換容量(C0[eq])を算出し、次式にて貫流交換容量比を計算する。
     貫流交換容量比[%]=100×C/C0
    The amount of carboxyl groups was 7.0 to 11.0 mmol / g, the degree of water swelling was 0.5 to 1.5 g / g, and the fineness was 1.0 to 3.0 dtex, which were measured by the following methods. An ion exchange fiber having a once-through exchange capacity ratio of 40% or more.
    (Method) An ion exchange filter made of a mixture of 30% by mass of ion exchange fibers and 70% by mass of heat-sealed fibers and having a density of 0.33 g / cm 3 was wound and then heat-bonded to prepare an ion exchange filter. The filter is attached to the filter housing, and an aqueous solution having a Cu concentration of 3 ppm and a Ca concentration of 12 ppm and adjusted to pH 6 to 7 with sodium hydroxide is passed through with SV500 [hr -1 ], and the Cu concentration of the filtered water [hr- 1 ] is passed every 30 minutes. ppm] is measured. From the obtained measurement results, the flow-through exchange capacity (C [eq]) when the flow-through point is 1.0 ppm and the total exchange capacity (C0 [eq]) of the ion exchange filter are calculated, and the flow-through exchange is performed by the following equation. Calculate the capacity ratio.
    Flow exchange capacity ratio [%] = 100 x C / C0
  2.  カルボキシル基量が7.5mmol/g以上であることを特徴とする請求項1に記載のイオン交換繊維。 The ion exchange fiber according to claim 1, wherein the amount of carboxyl groups is 7.5 mmol / g or more.
  3.  カルボキシル基の少なくとも一部がカルシウム塩型カルボキシル基であることを特徴とする請求項1または2に記載のイオン交換繊維。 The ion exchange fiber according to claim 1 or 2, wherein at least a part of the carboxyl groups is a calcium salt type carboxyl group.
  4.  カルボキシル基の少なくとも一部がマグネシウム型カルボキシル基であることを特徴とする請求項1または2に記載のイオン交換繊維。 The ion exchange fiber according to claim 1 or 2, wherein at least a part of the carboxyl groups is a magnesium type carboxyl group.
  5.  請求項1~4のいずれかに記載のイオン交換繊維を含有することを特徴とする糸、不織布または抄紙シート。 A thread, non-woven fabric or papermaking sheet containing the ion exchange fiber according to any one of claims 1 to 4.
  6.  イオン交換繊維の含有量が20質量%を超えることを特徴とする請求項5に記載の糸、不織布または抄紙シート。 The thread, non-woven fabric or papermaking sheet according to claim 5, wherein the content of the ion exchange fiber exceeds 20% by mass.
  7.  請求項5または6に記載の糸、不織布または抄紙シートを含むものであることを特徴とするイオン交換フィルター。
     
    An ion exchange filter comprising the thread, non-woven fabric or papermaking sheet according to claim 5 or 6.
PCT/JP2020/021509 2019-06-20 2020-06-01 Ion-exchange fiber, and ion-exchange filter containing same WO2020255680A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021527531A JP7441429B2 (en) 2019-06-20 2020-06-01 Ion exchange fiber and ion exchange filter containing the fiber
CN202080043688.5A CN114007743B (en) 2019-06-20 2020-06-01 Ion exchange fiber and ion exchange filter containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019114809 2019-06-20
JP2019-114809 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020255680A1 true WO2020255680A1 (en) 2020-12-24

Family

ID=74037260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021509 WO2020255680A1 (en) 2019-06-20 2020-06-01 Ion-exchange fiber, and ion-exchange filter containing same

Country Status (3)

Country Link
JP (1) JP7441429B2 (en)
CN (1) CN114007743B (en)
WO (1) WO2020255680A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003278079A (en) * 2002-03-22 2003-10-02 Japan Exlan Co Ltd Cross-linked acrylate-based fiber dyeable by reactive dye, fiber structure and method for producing the same
WO2006027910A1 (en) * 2004-09-07 2006-03-16 Japan Exlan Company Limited Slowly moisture-absorbing and -releasing crosslinked acrylic fiber
JP2010095843A (en) * 2008-09-10 2010-04-30 Japan Exlan Co Ltd Crosslinked acrylate-based fiber
WO2015041275A1 (en) * 2013-09-20 2015-03-26 日本エクスラン工業株式会社 Cross-linked acrylate fiber and fiber structure containing same
CN108187765A (en) * 2018-01-31 2018-06-22 河南省科学院化学研究所有限公司 A kind of PP-ST-DVB bases cation exchange fibre and its synthetic method
WO2020003935A1 (en) * 2018-06-25 2020-01-02 東洋紡株式会社 Sanitary article

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767634A (en) * 1980-10-13 1982-04-24 Sumitomo Chem Co Ltd Ion-exchange filter and its preparation
JP2008281281A (en) * 2007-05-11 2008-11-20 Japan Exlan Co Ltd Sorption module and its manufacturing method
EP2458082A4 (en) * 2009-07-22 2017-12-27 Japan Exlan Company Limited Moisture-absorbing fiber dyeable with acid dyes and method for producing same
JP5765570B2 (en) * 2010-09-08 2015-08-19 日本エクスラン工業株式会社 Thermal insulation fiber
CN102102295A (en) * 2010-11-26 2011-06-22 昆明理工大学 Ion exchange nonwoven fabric with high carboxyl content and preparation method thereof
CN101979329A (en) * 2010-12-06 2011-02-23 重庆宽能科技有限公司 Ion exchange desalting method and device
CN102351335A (en) * 2011-07-05 2012-02-15 河南省科学院化学研究所有限公司 Method for processing electroplating wastewater with organic functional fibers
CN102389724A (en) * 2011-09-26 2012-03-28 中国科学院新疆理化技术研究所 Preparation method and use of carboxyl-modified polyacrylonitrile nano fiber membrane
CN109641207A (en) * 2016-08-31 2019-04-16 东丽株式会社 Ion-exchange fibre, water-purifying filter and method for treating water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003278079A (en) * 2002-03-22 2003-10-02 Japan Exlan Co Ltd Cross-linked acrylate-based fiber dyeable by reactive dye, fiber structure and method for producing the same
WO2006027910A1 (en) * 2004-09-07 2006-03-16 Japan Exlan Company Limited Slowly moisture-absorbing and -releasing crosslinked acrylic fiber
JP2010095843A (en) * 2008-09-10 2010-04-30 Japan Exlan Co Ltd Crosslinked acrylate-based fiber
WO2015041275A1 (en) * 2013-09-20 2015-03-26 日本エクスラン工業株式会社 Cross-linked acrylate fiber and fiber structure containing same
CN108187765A (en) * 2018-01-31 2018-06-22 河南省科学院化学研究所有限公司 A kind of PP-ST-DVB bases cation exchange fibre and its synthetic method
WO2020003935A1 (en) * 2018-06-25 2020-01-02 東洋紡株式会社 Sanitary article

Also Published As

Publication number Publication date
JP7441429B2 (en) 2024-03-01
CN114007743A (en) 2022-02-01
CN114007743B (en) 2023-09-15
JPWO2020255680A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
EP2527023B1 (en) Complex filter for water purification
JP3196855B2 (en) High moisture absorption and release fiber
JP2000248467A (en) Metal chelate-forming fiber and its production and capturing of metal ion using the same fiber and metal chelate fiber
JP2011056349A (en) Fibrous adsorbent for adsorbing metal, and method of producing the same
JP2012061390A (en) Filter for purification
JP2011056350A (en) Nonwoven fabric capable of adsorbing metal, and method of producing the same
WO2015122856A1 (en) A process for preparation of composite sorbent for removal contaminants from water
KR102033119B1 (en) Antibacterial and antiviral positive electric charge-filter and method of manufacturing using the same
WO2020255680A1 (en) Ion-exchange fiber, and ion-exchange filter containing same
US5773655A (en) Process for the purification of an aqueous solution of a tertiary amine-oxide
CA1265535A (en) Removal of impurities from amines
CA2978693C (en) Activated carbon regeneration method and gold recovery method
RU2345833C1 (en) Method for preparation of ferrocyanide sorbates
JP2011092864A (en) Method for manufacturing fibrous metal adsorbent
US20140107236A1 (en) Cross-linked polyphosphonate-sulfone composition for removal of metal ions from wastewater
JP2001113272A (en) Method for capturing selenium or arsenic in aqueous solution
JP4114763B2 (en) Method for removing germanium in aqueous solution
US6200481B1 (en) Chelate-forming fiber, process for preparing the same, and use thereof
Radetić et al. Removal of metal cations from wastewater using recycled wool-based non-woven material
JP2016059903A (en) Cartridge filter
JP7177980B2 (en) Strong anion exchange fibers, fibrous structures containing said fibers, and adsorption products containing said fibrous structures
JP3381806B2 (en) Vacuum exhaust gas filter
RU2262557C1 (en) Method of manufacturing ion-exchange polyacrylonitrile fiber (options)
JP7424576B2 (en) Fibrous adsorbent, method for producing the same, and method for immobilizing heavy metals using the fibrous adsorbent
JP2023064081A (en) Gold adsorption/desorption material, fiber structure and filter including the same, and method for recovering gold using them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527531

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827827

Country of ref document: EP

Kind code of ref document: A1