WO2020253913A1 - Échangeur de chaleur comprenant un générateur thermoélectrique et procédé de fabrication d'échangeurs de chaleur comprenant des générateurs thermoélectriques - Google Patents

Échangeur de chaleur comprenant un générateur thermoélectrique et procédé de fabrication d'échangeurs de chaleur comprenant des générateurs thermoélectriques Download PDF

Info

Publication number
WO2020253913A1
WO2020253913A1 PCT/DE2020/100507 DE2020100507W WO2020253913A1 WO 2020253913 A1 WO2020253913 A1 WO 2020253913A1 DE 2020100507 W DE2020100507 W DE 2020100507W WO 2020253913 A1 WO2020253913 A1 WO 2020253913A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
heat exchanger
heat
flow channels
module
Prior art date
Application number
PCT/DE2020/100507
Other languages
German (de)
English (en)
Inventor
Frank Silber
Thomas Silber
Emil Silber
Original Assignee
DAROTHEM GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAROTHEM GmbH filed Critical DAROTHEM GmbH
Publication of WO2020253913A1 publication Critical patent/WO2020253913A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Definitions

  • the invention is based on a heat exchanger with a thermal generator according to the preamble of claim 1 and a method for producing heat exchangers provided with thermal generators according to the preamble of claim 5.
  • Heat exchangers provided with thermal generators have long been known and are used in a wide variety of heat exchanger devices in order to gain electrical energy from the temperature difference between fluids flowing in separate channels using the principle of the Seebeck effect.
  • a heat exchanger with a thermal generator for converting thermal energy contained in the exhaust gases of a combustion apparatus into electrical energy is known, which consists of an ordered bundle of cylindrical flow channels coaxially to the longitudinal axis of the heat exchanger.
  • the flow channels are each designed alternately as a hot exhaust gas channel or as a cold supply air channel, the thermal modules of the thermal generator being arranged on the outside of the hot exhaust gas channels (DE 20 2015 004 026 U1).
  • the disadvantage of this heat exchanger is its complex production.
  • thermoelectric device of a heat exchanger which also has a shell structure, wherein the thermoelectric device is arranged on at least one of the shells and verbun with this heat flow effective is the.
  • the shell structure can be produced inexpensively using 3D printing processes (DE 10 2017 109 732 A1).
  • the invention is on the production of individual shells is restricted.
  • the thermo-electrical device must be attached to the shells.
  • thermoelectric temperature control elements operating on the principle of the Peltier or Thomson effect are integrated.
  • Both the structure itself and a combination of structure and anode of the Peltier element can be created by means of additive constructions in the form of a 3D printer (DE 10 2016 012 795 A1).
  • the disadvantage is that these structures are only suitable for the temperature control and cooling of solid bodies and containers. They are not readily suitable for conducting a medium, but would always have to be provided with a tight cover. An application, for example, on shell-shaped heat exchangers is therefore not possible or only possible to a limited extent, with the acceptance of a correspondingly large construction.
  • the structure can only be produced together with a contact plane of the Peltier elements using additive processes. The Peltier elements themselves must be subsequently completed on the printed part
  • an integrated arrangement consisting of a micro heat exchanger and a thermoelectric module
  • the micro heat exchanger being integrally connected or formed in a thermally conductive manner to the thermoelectric module.
  • the micro heat exchanger has several continuous channels with a diameter of less than 1 mm, through which a fluid heat exchange medium can flow.
  • the Mik rouzaleyer has an integrally formed container that receives the p- and n-conductive thermoelectric material pieces.
  • the micro heat exchanger with the molded container can be produced by selective laser sintering (EP 2 764 555 B1).
  • the disadvantage of this micro heat exchanger is the need to arrange a separate container for the thermoelectric elements. In addition, its application is limited to those heat exchangers which have a relatively small volume of fluid to pass through.
  • thermoelectric generators per se, that is to say independently of their specific use, by means of additive processes.
  • the semiconductor components of the n- and p-type are each separately on a non- Conductive plate applied by means of a 3D printer and the two printed plates finally joined together (US 9,882, 1 1 1 B2).
  • the disadvantage of this method is that the thermoelectric generators produced in the manner described still have to be completed with parts or components, which is not possible in particular with the shell structures of heat exchangers described above.
  • a device for generating electrical energy which comprises a split sleeve enclosing a tube, a first and second support ring coaxially surrounding this, at least one first and second thermal generator and a first and second jacket.
  • Each carrier ring has a first flat end face spaced radially from the collar.
  • the first thermal generator is arranged on the first flat end face of the first support ring and the second thermogenerator is arranged on the first flat end face of the second support ring.
  • the first jacket is arranged to protect the at least one first and the second jacket to protect the at least one second thermal generator around the latter.
  • Each shell has a flat surface and first and second ends. The first and second ends of each jacket are separably and interchangeably arranged around the tube.
  • the carrier rings are each provided with ribs on their free surfaces (US 10 128 427 B2).
  • thermogenerator element for generating electrical energy from waste heat, which consists of a pair of cylindrical electrodes that are constructed concentrically and are arranged at a predetermined interval and have power connections.
  • the thermogenerator element has an expanded surface area, has a highly efficient electrical efficiency and is resistant to harsh environmental conditions.
  • the electrodes consist of a mixture of tellurium, bismuth, tin, antimony, nickel, lead and a small amount of metal (JP 2010 245 492 A).
  • the invention is based on the object of being able to develop heat exchangers provided with thermal generators without being restricted to a specific shape in which the thermal generators are already integrated.
  • the object of the invention is also to provide a method for the cost-effective setting of thermogenerators provided with To develop heat exchangers that allow the integration of the thermal generators in the heating process of the heat exchangers, so that subsequent installation of the thermal generators in the heat exchangers is not necessary.
  • the modular structure of the heat exchangers makes it possible to manufacture heat exchangers virtually independently of their shape and arrangement using additive processes, in particular 3D printing processes. As a result, heat exchangers that are complicated in their design, in particular those that have a shell-shaped structure, can be manufactured inexpensively.
  • the production of the thermal generators can be integrated into the production process of the modules.
  • the heat exchanger is provided with the thermal generators as it were, regardless of its shape and arrangement, when it is in its lowering position.
  • the modular structure also enables the use of the modular principle, with the heat exchanger being composed of individual components, similar to a modular system. The dimensions of the heat exchangers can easily be varied by lining up the components.
  • each of the at least two flow channels of the heat exchanger is composed of individual modules, the thermoelectric generators being integrated into each module and means for collecting and / or dissipating the thermal voltage obtained and means for sealing on its free edges Has plug connection with an adjacent module.
  • each module consists of at least two shell-shaped elements that form at least one section of a flow channel coaxially opposite one another. This makes it possible in a simple manner to build very compact heat exchangers consisting of a bundle of flow channels arranged coaxially one inside the other.
  • At least one voltage arrester is arranged between two axially aligned modules.
  • the method for setting heat exchangers with thermal generators made light a cost-effective setting for the components of the heat exchangers and, therefore, with the heat exchanger itself.
  • a mixed green compact made of thermoplastic highly filled with sinterable particles of different ceramic components is first produced to create a module using a 3D printing process, at least one ceramic component having properties for the thermoelectric conversion of heat into electrical energy, d. H. the prerequisites for generating a thermoelectric generator.
  • the thermoplastic components are then removed by heat treatment.
  • the resulting inorganic solid structure is solidified in a subsequent sintering process at higher temperatures to form a structural part with electrical contacting and connecting elements.
  • Another advantageous embodiment of the method consists in that the modules are attached to one another by means of electrically conductive plug connections to form flow channels. This means that voltage arresters are only required at the beginning or at the end of the flow channel.
  • the figure shows a heat exchanger standing vertically in a spatial presen- tation, with only a few inner flow channels being shown for recognizing its modular structure.
  • the heat exchanger has a main axis 1 and consists of a bundle of cylindrical flow channels arranged coaxially to one another, as illustrated and described, for example, in the utility model DE 20 2015 004 026 U1.
  • the flow channels are each formed by cylinder half-shells 2, which, in a modular manner, coaxially to a cylinder element 3 and axially strung together to form the wall of the flow channels, are advantageously joined together by plug connections.
  • the shells can also have any other shape, the only essential thing is that they can be assembled to form a closed flow channel.
  • the cylinder half-shells 2 and consequently also the cylinder elements 3 formed from two axially opposite cylinder half-shells 2 are provided with a diameter that increases from the inside to the outside, so that when they are coaxial, ring-shaped flow channels are formed between the cylinder elements.
  • a flow channel 4 created between the cylinder elements 3 is shown as an example. From the present illustration it can be seen that the innermost wall of the heat exchanger located coaxially around the main axis 1, which at the same time also forms the inner wall of the first flow channel 4, has already been completed and cylinder half-shells 2 for the outer wall of this flow channel 4 are partially joined.
  • thermoelectric generators 5 are provided, which are applied in the course of the production of the Zylin deroudreschalen 2 by 3D printing processes on this. Since the thermoelectric generators 5 are usually arranged on the outside of a flow channel 4 carrying the warmer medium, the cooler medium flows around them.
  • the heat exchanger has a fluid flow distributor 6 on its lower face, which alternately divides the two fluids of different temperatures arriving in separate supply pipes into a hot and a cool flow channel 4.
  • a fluid flow collector 7 At its upper end there is a fluid flow collector 7, which collects the two fluids from the separate flow channels 4 again in a respective discharge pipe.
  • the upper side of the fluid flow distributor 6 is provided to realize a plug connection with Boh stanchions 8 for receiving for on the underside of the shells 2 arranged, not shown pins.
  • a voltage arrester 9 Arranged approximately in the middle between the fluid flow distributor 6 and the fluid flow collector 7 is a voltage arrester 9 which is provided with electrical busbars (not shown in detail) for the electrically conductive connection to the contacts of the shells 2.
  • the voltage arrester 9 is provided on its upper side with pins 10, onto which the cylinder half-shells 2 with the bores made in their underside are plugged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

L'invention concerne un échangeur de chaleur comprenant un générateur thermoélectrique, composé - d'au moins deux canaux d'écoulement (4) disposés coaxialement l'un par rapport à l'autre en contact de transfert de chaleur pour deux fluides présentant un gradient de température, qui s'écoulent respectivement dans un des aux moins deux canaux d'écoulement (4), des générateurs thermoélectriques (5) étant respectivement disposés de manière efficace pour le flux de chaleur sur la paroi extérieure du canal d'écoulement (4) conducteur du fluide le plus chaud, - un distributeur de courant de fluide (6) et - un collecteur de courant de fluide (7). Selon l'invention, chacun des au moins deux canaux d'écoulement (4) de l'échangeur de chaleur est composé de modules individuels, des générateurs thermoélectriques (5) étant intégrés dans chaque module et chaque module présentant des moyens pour la collecte et/ou la dérivation de la tension thermique obtenue ainsi que, sur chacun des ses bords libres, des moyens pour la connexion enfichable étanche à un module adjacent.
PCT/DE2020/100507 2019-06-18 2020-06-17 Échangeur de chaleur comprenant un générateur thermoélectrique et procédé de fabrication d'échangeurs de chaleur comprenant des générateurs thermoélectriques WO2020253913A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019116478.8 2019-06-18
DE102019116478.8A DE102019116478B3 (de) 2019-06-18 2019-06-18 Wärmeübertrager mit Thermogenerator und Verfahren zur Herstellung von Wärmeübertragern mit Thermogeneratoren

Publications (1)

Publication Number Publication Date
WO2020253913A1 true WO2020253913A1 (fr) 2020-12-24

Family

ID=71402826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2020/100507 WO2020253913A1 (fr) 2019-06-18 2020-06-17 Échangeur de chaleur comprenant un générateur thermoélectrique et procédé de fabrication d'échangeurs de chaleur comprenant des générateurs thermoélectriques

Country Status (2)

Country Link
DE (1) DE102019116478B3 (fr)
WO (1) WO2020253913A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245492A (ja) 2009-04-02 2010-10-28 繁 佐藤 熱発電素子構成手段と熱発電素子
DE102010034708A1 (de) * 2010-08-18 2012-02-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Rohrförmiges thermoelektrisches Modul sowie Verfahren zu dessen Herstellung
DE202015004026U1 (de) 2015-06-09 2015-09-17 Silber Anlagentechnik Gmbh Wärmeübertrager mit Themogenerator
EP2764555B1 (fr) 2011-10-04 2018-01-17 Basf Se Ensemble intégré constitué d'un micro-échangeur de chaleur et d'un module thermoélectrique
US9882111B2 (en) 2015-06-12 2018-01-30 Xilico, LLC Thermoelectric devices
DE102016012795A1 (de) 2016-10-26 2018-04-26 Peter Marchl Struktur zur Temperierung von Festkörpern und Behältnissen und seine Verwendung
DE102017109732A1 (de) 2017-05-05 2018-11-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Schalenstruktur mit thermoelektrischer Einrichtung, Brennkammervorrichtung und Verfahren zur Gewinnung eines nutzbaren elektrischen Stroms
US10128427B2 (en) 2013-11-22 2018-11-13 Exnics Limited Thermoelectric generator
US20190002711A1 (en) * 2017-06-29 2019-01-03 Unist(Ulsan National Institute Of Science And Technology) Thermoelectric (te) ink for three-dimensional (3d) printed te materials, te module including 3d printed te material, and method of manufacturing te module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245492A (ja) 2009-04-02 2010-10-28 繁 佐藤 熱発電素子構成手段と熱発電素子
DE102010034708A1 (de) * 2010-08-18 2012-02-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Rohrförmiges thermoelektrisches Modul sowie Verfahren zu dessen Herstellung
EP2764555B1 (fr) 2011-10-04 2018-01-17 Basf Se Ensemble intégré constitué d'un micro-échangeur de chaleur et d'un module thermoélectrique
US10128427B2 (en) 2013-11-22 2018-11-13 Exnics Limited Thermoelectric generator
DE202015004026U1 (de) 2015-06-09 2015-09-17 Silber Anlagentechnik Gmbh Wärmeübertrager mit Themogenerator
US9882111B2 (en) 2015-06-12 2018-01-30 Xilico, LLC Thermoelectric devices
DE102016012795A1 (de) 2016-10-26 2018-04-26 Peter Marchl Struktur zur Temperierung von Festkörpern und Behältnissen und seine Verwendung
DE102017109732A1 (de) 2017-05-05 2018-11-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Schalenstruktur mit thermoelektrischer Einrichtung, Brennkammervorrichtung und Verfahren zur Gewinnung eines nutzbaren elektrischen Stroms
US20190002711A1 (en) * 2017-06-29 2019-01-03 Unist(Ulsan National Institute Of Science And Technology) Thermoelectric (te) ink for three-dimensional (3d) printed te materials, te module including 3d printed te material, and method of manufacturing te module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM FREDRICK ET AL: "3D printing of shape-conformable thermoelectric materials using all-inorganic BiTe-based inks", NATURE ENERGY, NATURE PUBLISHING GROUP UK, LONDON, vol. 3, no. 4, 15 January 2018 (2018-01-15), pages 301 - 309, XP036914481, DOI: 10.1038/S41560-017-0071-2 *

Also Published As

Publication number Publication date
DE102019116478B3 (de) 2020-07-23

Similar Documents

Publication Publication Date Title
EP2697486B1 (fr) Dispositif comprenant un échangeur de chaleur pour un générateur thermoélectrique d'un véhicule automobile
DE69724792T2 (de) Brennstoffzellensystem zur stromerzeugung, heizung und kühlung und ventilation
DE102009013692A1 (de) Thermoelektrische Vorrichtung
DE102012108225B4 (de) Thermoelektrischer Generator für ein Fahrzeug
DE112008001912T5 (de) Thermoelektrisches Wandlermodul
DE102009013535A1 (de) Thermoelektrische Vorrichtung
WO2010094533A2 (fr) Dispositif thermoélectrique
DE102012112224B4 (de) Thermoelektrischer Generator eines Fahrzeugs
DE102010012629A1 (de) Vorrichtung umfassend einen Katalysatorträgerkörper und einen thermoelektrischen Generator angeordnet in einem Gehäuse
EP2614232B1 (fr) Module thermoélectrique pour un générateur thermoélectrique d'un véhicule muni d'un élément d'étanchéité
WO2011006978A1 (fr) Dispositif thermoélectrique doté de faisceaux de tubes
EP2697485A2 (fr) Dispositif doté d'un échangeur de chaleur pour un générateur thermoélectrique d'un véhicule automobile
WO2013124053A1 (fr) Microturbine à gaz équipée d'un récupérateur de forme tubulaire
EP2678888B1 (fr) Module thermoélectrique pour un générateur thermoélectrique d'un véhicule
WO2019115255A1 (fr) Échangeur de chaleur à plaques
DE102012112861B4 (de) Thermoelektrischer Generator für ein Fahrzeug
DE102005036768A1 (de) Heizgerät mit thermoelektrischer Einrichtung
WO2020253913A1 (fr) Échangeur de chaleur comprenant un générateur thermoélectrique et procédé de fabrication d'échangeurs de chaleur comprenant des générateurs thermoélectriques
EP2636080B1 (fr) Module thermoélectrique pour un générateur thermoélectrique d'un véhicule
DE102015120082B4 (de) Thermoelektrische Generatorvorrichtung für ein Fahrzeug
DE102006047342B3 (de) Doppelwandiger Stahlschornstein zur Gewinnung elektrischer Energie
DE10342655A1 (de) Vorrichtung für die Erzeugung elektrischer Energie
DE102017109732A1 (de) Schalenstruktur mit thermoelektrischer Einrichtung, Brennkammervorrichtung und Verfahren zur Gewinnung eines nutzbaren elektrischen Stroms
DE202016106782U1 (de) Wärmeübertragungsvorrichtung
DE1191395B (de) Elektrothermische Vorrichtung zur Erzielung von Kuehl- oder Waermewirkungen und thermo-elektrische Vorrichtung zur Stromerzeugung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20746543

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20746543

Country of ref document: EP

Kind code of ref document: A1