WO2020253851A1 - 基于磁感通信的车辆控制的装置和方法 - Google Patents

基于磁感通信的车辆控制的装置和方法 Download PDF

Info

Publication number
WO2020253851A1
WO2020253851A1 PCT/CN2020/097270 CN2020097270W WO2020253851A1 WO 2020253851 A1 WO2020253851 A1 WO 2020253851A1 CN 2020097270 W CN2020097270 W CN 2020097270W WO 2020253851 A1 WO2020253851 A1 WO 2020253851A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
coil
vehicle
electromotive force
control device
Prior art date
Application number
PCT/CN2020/097270
Other languages
English (en)
French (fr)
Inventor
周悦
李榕
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20827469.6A priority Critical patent/EP3982227B1/en
Priority to JP2021576059A priority patent/JP7347748B2/ja
Publication of WO2020253851A1 publication Critical patent/WO2020253851A1/zh
Priority to US17/556,639 priority patent/US20220116079A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/73Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for taking measurements, e.g. using sensing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Definitions

  • the embodiments of the present application belong to the field of communications, and more specifically, relate to a device and method for vehicle control based on magnetic induction (Magnetic Induction, MI).
  • MI Magnetic Induction
  • the Internet of Vehicles technology integrates sensors, communication networks, data processing, and automatic control technologies to achieve vehicle-to-Vehicle (V2V), vehicle-to-Pedestrian (V2P), and vehicle-to-infrastructure (Vehicle-to-Vehicle). -Infrastructure, V2I) connection between.
  • the Internet of Vehicles can be said to be one of the important implementation scenarios of the Internet of Things (IoT), and the connection between the vehicle and various things can be collectively referred to as V2X (Vehicle to Everything), which hopes to realize the vehicle and all the possible impacts on the vehicle.
  • the entity realizes information interaction. Through the communication of information between V2X, each car can become any part of the node in the network.
  • V2X Intelligent Transportation System
  • V2X technology can be regarded as one of the most cutting-edge automotive technologies, while DSRC (Dedicated Short Range Communication) and LTE-V (or Cellular V2X, C-V2X for short, based on cellular
  • DSRC Dedicated Short Range Communication
  • LTE-V Cellular V2X, C-V2X for short
  • the V2X of the network is the two major communication standards that implement V2X.
  • the bottom layer, physical layer and wireless link control of DSRC technology are based on the IEEE802.11p of the WiFi ecosystem. Its working frequency band is 5.85 ⁇ 5.925GHz, which can support V2V and V2I use cases in the US and European markets.
  • C-V2X is a cellular communication-based V2X technology defined by 3GPP. According to different interfaces, it can be divided into two working modes: V2X-Direct and V2X-Cellular.
  • C-V2X can use the base station infrastructure of the existing cellular network to complete the V2X networking, and can support more extensive and complex services in terms of communication capabilities.
  • C-V2X like DSRC, also requires radio frequency communication technology, so it is inevitable to have electromagnetic interference problems and wireless communication physical layer security problems.
  • Magnetic induction communication is a near-field communication technology that uses magnetic fields to transmit information.
  • magnetic induction communication can flex its muscles. Based on the magnetic induction of near field communication, it does not radiate signals to the far field, and can generate a privacy network with a controllable communication range around personal network devices. Therefore, magnetic induction communication becomes a wireless personal area network (Wireless personal area network) that provides privacy protection and high security.
  • WPAN Personal Area Network
  • the present application provides a vehicle control device and method, which can achieve vehicle trajectory control without occupying additional spectrum resources, and at the same time improve the security of existing vehicle networking communications.
  • the present application provides a vehicle control device.
  • the vehicle control device includes one or more first coils, a processor, and a communication interface, the one or more first coils are coupled to the processor, and the The processor is coupled with the communication interface; the first coil is configured to receive a first signal of a second coil arranged along a predetermined driving direction, and the first coil and the second coil have a preset relative position Relationship, when the vehicle equipped with the automobile control device deviates from the predetermined driving direction, the first coil generates an electromotive force signal according to the change in the relative position relationship between the first coil and the second coil, and the processing
  • the device is configured to output a second signal according to the electromotive force signal, and the second signal is used to instruct the vehicle to adjust the running track to drive in the predetermined driving direction.
  • the present application provides an automobile with lane keeping and communication functions, including an automobile control device, a steering system, and a transmission system.
  • the automobile control device is coupled with the steering system and the transmission system, and the automobile control device includes a Or a plurality of first coils, a processor, and a communication interface, the one or more first coils are coupled to the processor, and the processor is coupled to the communication interface; the first coil is configured to receive The first signal of the second coil placed in the predetermined driving direction, the first coil and the second coil have a preset relative position relationship, when the vehicle equipped with the automobile control device deviates from the predetermined driving direction , The first coil generates an electromotive force signal according to a change in the relative positional relationship between the first coil and the second coil, the processor outputs a second signal according to the electromotive force signal, and the second signal is used to indicate The vehicle adjusts the running trajectory to drive according to the predetermined driving direction.
  • the second aspect relates to a vehicle equipped with the vehicle control device of the first aspect.
  • the vehicle control device uses the spatial structure characteristics of the magnetic line of the second coil (magnetic waveguide) or the magnetic field of the magnetic waveguide.
  • the energy spatial distribution characteristics are used to judge the lane position.
  • the vehicle control device can realize functions such as automatic lane keeping and automatic maintenance of successive vehicle distances through magnetic induction communication, and can also realize automatic lane change and other functions in conjunction with the laying of magnetic waveguides in adjacent lanes. Compared with traditional vision sensor devices, it can improve the reliability of autonomous driving in a variety of weather and road conditions.
  • the automobile control device when the automobile control device is used to receive the first signal of the second coil placed along the predetermined driving direction, the first coil is perpendicular to the second coil, and the first coil is perpendicular to the second coil.
  • the two coils are laid parallel to the ground and arranged in a row along the predetermined driving direction.
  • the magnetic waveguide (second coil) is laid parallel to the ground and only laid along the center of the lane, which can realize the most economical deployment and is suitable for single-lane or multi-lane systems.
  • Parallel to the ground compared with the buried underground layout, it has the advantages of small construction volume, low cost, and fast laying.
  • the one or more first coils when the vehicle deviates from the predetermined driving direction in a first direction, the one or more first coils generate the electromotive force signal, and the electromotive force signal includes a first direction electromotive force, and the The processor outputs the second signal according to the electromotive force in the first direction, and the second signal is used to instruct the vehicle to adjust a running track in a second direction to drive in the predetermined driving direction.
  • the one or more first coils When the vehicle deviates from the predetermined driving direction in the second direction, the one or more first coils generate the electromotive force signal, the electromotive force signal includes a second direction electromotive force, and the processor is based on the second direction electromotive force
  • the second signal is output, and the second signal is used to instruct the vehicle to adjust a running track in a first direction to drive according to the predetermined driving direction, wherein the first direction and the second direction are opposite.
  • the plane where the first coil in the automobile control device is located is parallel to the traveling direction of the vehicle.
  • the induced current When deviating from the predetermined driving direction, the induced current will be excited, and the difference of the induced current direction will be used to correct the deviation in the driving direction.
  • the implementation scheme is simple and easy to implement.
  • the one or more first coils when the vehicle deviates from the predetermined driving direction, the one or more first coils generate the electromotive force signal, and the electromotive force signal includes the electromotive force amplitude information within a predetermined time interval, so
  • the processor outputs a second signal according to the electromotive force amplitude information, the second signal is used to instruct the vehicle to adjust the running track to drive according to the predetermined driving direction, wherein the electromotive force amplitude information includes at least one of the following information: electromotive force The peak-to-peak value, the absolute value of the maximum or minimum value of the electromotive force, and the electromotive force in the predetermined time interval are fully or partially integrated.
  • the second signal corresponding to the next predetermined time interval is opposite to the adjustment direction indicated by the second signal corresponding to the predetermined time interval;
  • the adjustment direction indicated by the second signal corresponding to the next predetermined time interval is the same.
  • the plane where the first coil in the automobile control device is located is perpendicular to the traveling direction of the vehicle.
  • the induced current is excited, and the characteristic value (such as peak-to-peak value) of the induced current during the tracking period is used to correct the deviation in the driving direction.
  • the implementation scheme is relatively simple. This arrangement scheme can use the same first coil to transmit signals to the magnetic waveguide for vehicle networking communication.
  • At least two of the first coils are symmetrically arranged on the left and right sides of the vehicle, when the electromotive force amplitude information generated by the first coil on one side is greater than that of the first coil on the other side
  • the second signal instructs the vehicle to adjust the running track in the first direction to drive according to the predetermined driving direction; when the electromotive force amplitude information generated by the first coil on one side is smaller than the other
  • the second signal instructs the vehicle to adjust the running track in a second direction to drive in the predetermined driving direction, wherein the first direction and the second direction in contrast.
  • the processor is further configured to receive a third signal from the communication interface, and the communication interface is configured to receive a signal from a vehicle equipped with the automobile control device;
  • the processor generates an electromotive force signal according to the third signal;
  • the first coil is configured to send a fourth signal according to the electromotive force signal, and the fourth signal is used to identify the vehicle equipped with the automobile control device And indicate the operating information of the vehicle.
  • the magnetic waveguide (second coil) performs wireless sensing and wireless communication at the same time. While the magnetic waveguide is used to build a magnetic location mark, it transmits signals to vehicles or facilities on the near-field magnetic communication highway to realize V2X communication.
  • the realization of this aspect uses a physical layer air interface technology to accomplish two major tasks.
  • the vehicle control device communicates with a vehicle control unit VCU through a bus, and the vehicle control unit VCU is used for coordination and control of the vehicle power system.
  • the communication interface is configured to receive at least one of the following signals: a bus signal and a wireless signal from a vehicle where the automobile control device is deployed.
  • the vehicle control device communicates with a vehicle-mounted dedicated processor, and the vehicle-mounted dedicated processor is used to run a vehicle-mounted infotainment IVI system.
  • the automobile control device further includes a wireless communication module, the wireless communication module is coupled with the processor, and the wireless communication module is configured to communicate with the core network through a wireless access network.
  • the first signal is generated by a network element in a communication network, and the network element is coupled with at least one of the second coils, wherein the network element includes Installed vehicles and transportation infrastructure.
  • the automobile control device includes a wireless communication module, and the wireless communication module is configured to communicate with a core network through a wireless access network.
  • the transmission of small data volume control information in V2V, V2I, V2P and other communications can eliminate the need to occupy cellular network air interface resources and reduce end-to-end delay.
  • it can be connected to a cellular network through a car equipped with the car control device running on a magnetic waveguide, or it can be connected to a transponder or a mobile base station by connecting the magnetic waveguide.
  • the magnetic waveguide V2X can become a part of the cellular network to assist or enhance the function and coverage of C-V2X. While the magnetic waveguide is used to build the magnetic location mark, it also transmits signals to the vehicles or facilities on the near-field magnetic communication highway to realize V2X communication.
  • the present application provides a vehicle control method.
  • the method includes: transmitting a first signal from a second coil arranged along a predetermined driving direction, the second coil being laid parallel to the ground and arranged along the predetermined driving direction In a row; a vehicle equipped with a car control device receives the first signal of the second coil, and the car control device generates a second signal according to the first signal, and the second signal is used to instruct the vehicle to adjust the running track to Follow the predetermined driving direction.
  • the vehicle control device uses the spatial structure characteristics of the magnetic line of induction of the second coil (magnetic waveguide) or the spatial distribution characteristics of the magnetic field energy of the magnetic waveguide to judge the lane position.
  • the vehicle control device can realize functions such as automatic lane keeping and automatic maintenance of successive vehicle distances, and can also realize automatic lane changing functions in conjunction with the laying of magnetic waveguides in adjacent lanes. Especially compared with traditional vision sensor devices, it can improve the reliability of automatic driving in a variety of weather and road conditions.
  • the magnetic waveguide (second coil) is laid parallel to the ground and only laid along the center of the lane, which can realize the most economical deployment and is suitable for single-lane or multi-lane systems. Parallel to the ground, compared with the buried underground layout, it has the advantages of small construction volume, low cost, and fast laying.
  • the first signal is generated by a network element in a communication network, and the network element is coupled with at least one of the second coils, wherein the network element includes Installed vehicles and transportation infrastructure.
  • the second coil performs wireless sensing and wireless communication at the same time. While the magnetic waveguide is used to build the magnetic location mark, it transmits signals to vehicles or facilities on the near-field magnetic communication road to realize V2X communication.
  • the realization of this aspect uses a physical layer air interface technology to accomplish two major tasks.
  • the automobile control device receives the third signal of the vehicle equipped with the automobile control device; the automobile control device sends a fourth signal to the second coil based on the third signal The fourth signal is used to identify the vehicle equipped with the automobile control device and to indicate the operation information of the vehicle.
  • the second coil transmits the fourth signal to another vehicle or a network element that allows communication in the network; or the second coil transmits and Amplify the fourth signal to another vehicle or a network element that allows communication in the network.
  • the resonance frequency of the magnetic waveguide coil is adjustable, and the resonance frequency is adjusted by a peripheral adaptive coupling control circuit.
  • the magnetic waveguide coil is buried underground; or the magnetic waveguide coil is fixed on the road surface.
  • the first coil in the automobile control device receives the first signal of the second coil arranged along the predetermined driving direction.
  • the first coil and the second coil have a preset relative positional relationship.
  • the first coil When the vehicle with the automobile control device deviates from the predetermined driving direction, the first coil generates an electromotive force signal according to the change in the relative positional relationship between the two coils, and the processor outputs a second signal according to the electromotive force signal, which instructs the vehicle to adjust the running track Follow the intended driving direction.
  • the vehicle control device can realize functions such as automatic lane keeping and has higher reliability in specific scenarios. At the same time, there is no need to occupy spectrum resources, and it also has the security properties of near field communication.
  • the second coil (magnetic waveguide) can transmit signals for vehicles or facilities on the near-field magnetic induction communication highway to realize V2X communication.
  • Figure 1a is a schematic diagram of the MI transceiver of the magnetic induction communication channel model
  • Figure 1b is a schematic diagram of a transformer model of a magnetic induction communication channel model
  • Figure 1c is a schematic diagram of an equivalent circuit of a transformer model of a magnetic induction communication channel model
  • FIG. 2 is a block diagram of a magnetic induction communication system based on a magnetic induction waveguide provided by an embodiment of the present application;
  • FIG. 3 is a vehicle control device 1000 provided by an embodiment of the present application.
  • FIG. 4 is a car 2000 with lane keeping and communication functions provided by an embodiment of the present application.
  • FIG. 5 is a block diagram of a vehicle control method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the relative position of the vehicle control device and the ground magnetic waveguide
  • FIG. 7 is a flowchart of a vehicle control method provided by an embodiment of the present application.
  • Figure 8a is a schematic diagram of the relative positional relationship between two coils and the traveling direction of the vehicle where the receiving coil is located;
  • Figure 8b is a schematic diagram of the direction 0 of the induced current/electromotive force of the receiving coil
  • Figure 8c shows the direction 1 of the induced current/electromotive force of the receiving coil
  • Figure 8d shows the direction 2 of the induced current/electromotive force of the receiving coil
  • FIG. 9 is a flowchart of another vehicle control method provided by an embodiment of the present application.
  • Figure 10a is a schematic diagram of detecting the position of a second coil (magnetic waveguide coil) using a single first coil;
  • FIG. 10b is a schematic diagram of detecting the position of the second coil (magnetic waveguide coil) by using the first coil array;
  • FIG. 11 is a schematic diagram of a vehicle networking communication method provided by an embodiment of the present application.
  • FIG. 12a is a schematic diagram of a V2N implementation example that uses a magnetic induction waveguide coil to communicate with a cellular terminal according to an embodiment of the present application;
  • FIG. 12a is a schematic diagram of a V2N implementation example that uses a magnetic induction waveguide coil to communicate with a cellular terminal according to an embodiment of the present application;
  • FIG. 12b is a schematic diagram of a V2I implementation example that uses a magnetic induction waveguide coil to connect to a transportation infrastructure provided by an embodiment of the present application;
  • FIG. 12c is a schematic diagram of a V2P implementation example that uses a magnetic induction waveguide coil to connect to a pedestrian portable device through a wireless magnetic induction communication method according to an embodiment of the present application;
  • FIG. 12d is a schematic diagram of an implementation example of V2V and V2N that uses a magnetic induction waveguide coil to connect to a vehicle or an on-board transponder through wireless magnetic induction communication according to an embodiment of the present application;
  • FIG. 13a is a schematic diagram of a magnetic induction waveguide coil 1004 (second coil) provided by an embodiment of the present application;
  • FIG. 13b is a schematic diagram of another magnetic induction waveguide coil 1004 (second coil) provided by an embodiment of the present application.
  • FIG. 13c is a schematic diagram of another magnetic induction waveguide coil 1004 (second coil) provided by an embodiment of the present application.
  • component used in this application are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, processor, object, executable file, thread of execution, program, and/or computer running on the processor.
  • application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component may be based on, for example, a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • MI Magnetic Induction
  • ⁇ B is the magnetic flux, which is defined as the product of the magnetic field strength and the projected area of the coil:
  • FIG. 1a is a schematic diagram of a channel model of magnetic induction communication.
  • Fig. 1a, Fig. 1b, and Fig. 1c are respectively an MI transceiver, a transformer model and a schematic diagram of an equivalent circuit.
  • a t and a r are respectively The radius of the transmitting coil and the receiving coil, r is the distance between the transmitter and the receiver, and (90°- ⁇ ) is the angle between the axes of the two coupling coils.
  • the alternating current at the transmitting end produces an alternating magnetic field; there is alternating magnetic flux in the coil at the receiving end, thereby generating an alternating current at the receiving end, which realizes the basic process of magnetic induction communication .
  • magnetic induction communication is a near field communication technology that uses magnetic fields to transmit information. It is demonstrated in Underwater Wireless Sensor Networks (UWSNs) and Underground Wireless Sensor Networks (Wireless Underground Sensor Networks, WUSNs). Channel invariance (not affected by the transformation of space-time channel environment parameters), negligible delay and long-range coverage.
  • UWSNs Underwater Wireless Sensor Networks
  • WUSNs Underground Wireless Sensor Networks
  • Channel invariance not affected by the transformation of space-time channel environment parameters
  • negligible delay and long-range coverage In the low-efficiency scene of traditional radio frequency, acoustic and optical wireless communication, magnetic induction communication can flex its muscles and allow wireless networks to enter the underground sea. Based on the magnetic induction of Near Field Communication (NFC), it does not radiate signals to the far field, and can generate a privacy network with a controllable communication range around personal network devices. Therefore, MI communication provides privacy protection and high security.
  • NFC Near Field Communication
  • this application provides a vehicle control device and method and a car equipped with the vehicle control device. It can be applied to autonomous driving, Internet of Vehicles, Intelligent Transport System (ITS), and various scenarios where wireless local area communication and wireless sensing requirements exist. It can also be applied to other scenarios of the Internet of Things (IoT), specifically, scenarios such as smart factories, smart shelves, smart parking lots, and large ship decks.
  • IoT Internet of Things
  • Magnetic induction waveguide Magnetic induction signal is a kind of near-field communication. The distance that it can effectively propagate is limited and often cannot reach one wavelength; but multiple passive coils are placed in the specified direction, when alternating current When the magnetic flux in a coil changes, it will induce an alternating current in its adjacent coil, and this process will further induce an alternating current in the next adjacent coil. This repeated process is like a propagating wave , So it is called magnetic induction waveguide. Magnetic induction waveguides can provide passive relay transmission of magnetic induction signals, forming network communication channels and position reference signals for wireless magnetic induction sensing. The magnetic induction waveguide/magnetic waveguide is also referred to as the second coil in this application, and has the same meaning without distinction.
  • Vehicle receiving coil It can detect the magnetic field characteristics of the magnetic waveguide at the same time to perceive the relationship between the current vehicle driving position and the location of the magnetic induction waveguide, and receive the communication signals from other devices in the magnetic induction communication network.
  • Vehicle-mounted transmitting coil It can provide the magnetic induction waveguide with marking energy for generating wireless magnetic induction and send communication signals to other devices in the magnetic induction communication network.
  • the number of vehicle receiving coils and vehicle transmitting coils can be adjusted according to specific application requirements. The two can also be combined into a vehicle-mounted transceiver coil, using, for example, different frequency points for transmission and reception. Similarly, the number of on-board transceiver coils can also be changed according to the situation and requirements.
  • the vehicle-mounted receiving coil, vehicle-mounted transmitting coil, and vehicle-mounted transmitting and receiving coil are collectively referred to as the first coil, which has the same meaning and is not distinguished.
  • FIG. 2 is a block diagram of a magnetic induction communication system 100 based on a magnetic induction waveguide provided by an embodiment of the present application, which realizes the combination of wireless local area network communication and wireless sensing.
  • the system includes: a magnetic waveguide 105, a first vehicle-mounted magnetic sensor transmitter 101, and a first vehicle-mounted magnetic sensor receiver 102. It may also include: a second vehicle-mounted magnetic transmitter 108, a second vehicle-mounted magnetic receiver 109, a pedestrian magnetic transceiver 103, a magnetic cellular transponder 104, transportation infrastructure equipment 106, a cellular base station 107, and so on.
  • the vehicle-mounted magnetic transmitter and the magnetic receiver can use one or one type of coil to achieve related functions in the vehicle control device, or use two or two types of coils to achieve related functions.
  • the vehicle control device may only include an on-board receiver or transmitter.
  • the magnetic induction waveguide provides the relay transmission of the magnetic induction signal, constitutes a network communication channel, and transmits the position reference signal of the wireless magnetic induction sensor.
  • the vehicle-mounted transmitting coil can simultaneously provide the magnetic induction waveguide with marking energy for generating wireless magnetic induction and send communication signals to other devices in the magnetic induction communication network.
  • the vehicle-mounted receiving coil can detect the magnetic field characteristics of the magnetic waveguide at the same time to perceive the relationship between the current vehicle driving position and the location of the magnetic waveguide, and receive communication signals from other devices in the magnetic communication network.
  • the transponder 104 of this system connected to the magnetic communication network forwards the magnetic signal and the wireless cellular signal to each other to realize V2N communication, etc.
  • the pedestrian device 103 connected to the magnetic communication network realizes V2P communication, which is the basis for access to the magnetic communication network
  • the facility equipment 106 implements V2I communication and the cellular network base station 107 connected to the magnetic induction communication network implements V2N communication.
  • Pedestrian magnetic sensor transceiver 103, magnetic sensor cellular transponder 104, traffic infrastructure 106, cellular base station 107, etc. can be approximately regarded as vehicles (other network elements) equipped with vehicle control devices in the magnetic sensor communication network to achieve vehicle-mounted
  • the related functions of the control device especially the realization of the communication function in the magnetic induction communication network.
  • the embodiments of the present application will focus on the structure and working principle of the vehicle control device and the interaction method between the vehicle control device and the magnetic waveguide.
  • FIG. 3 is a vehicle control device 1000 provided by an embodiment of the present application.
  • the vehicle control device 1000 includes one or more first coils 1001, a processor 1002, and a communication interface 1003.
  • the one or more The first coil 1001 is coupled with the processor 1002, and the processor 1002 is coupled with the communication interface 1003; the first coil 1001 is configured to receive the first signal of the second coil 1004 arranged along the predetermined driving direction, the first The coil 1001 and the second coil 1004 have a preset relative positional relationship.
  • the first coil 1001 is based on the first coil 1001 and the second coil 1004
  • An electromotive force signal is generated by the change in the relative position relationship of the processor 1002, and the processor 1002 is configured to output a second signal according to the electromotive force signal, and the second signal is used to instruct the vehicle 2000 to adjust the running track to drive according to the predetermined driving direction.
  • the first signal may be generated by a network element in a communication network, and the network element is coupled with at least one of the second coils, where the network element may be the vehicle equipped with an automobile control device, a transportation infrastructure, or other vehicles.
  • the first coil 1001 is perpendicular to the second coil 1004, and the The second coils 1004 are laid parallel to the ground and arranged in a row along the predetermined driving direction.
  • the magnetic waveguide (second coil) 1004 is laid parallel to the ground and only laid along the center of the lane, so that the most economical layout can be realized and it is suitable for single-lane or multi-lane systems.
  • the present application provides the first lane keeping solution based on the vehicle control device 1000.
  • the first coil 1001 generates the electromotive force signal
  • the electromotive force signal includes a first direction electromotive force
  • the processor 1002 outputs the second signal according to the first direction electromotive force
  • the second signal is used to instruct the vehicle to adjust the running track in a second direction (for example, right) to drive in the predetermined driving direction.
  • the first coil 1001 When the vehicle deviates from the predetermined driving direction in a second direction (eg, to the right), the first coil 1001 generates the electromotive force signal, the electromotive force signal includes a second direction electromotive force, and the processor outputs the second signal according to the second direction electromotive force The second signal is used to instruct the vehicle to adjust the running track to the left to drive according to the predetermined driving direction.
  • the plane where the first coil 1001 in the automobile control device 1000 is located is parallel to the traveling direction of the vehicle.
  • the induced current When deviating from the predetermined driving direction, the induced current will be excited, and the difference of the induced current direction will be used to correct the deviation in the driving direction.
  • the implementation scheme is simple and easy to implement.
  • a second lane keeping solution is provided based on the vehicle control device 1000.
  • the second solution uses tracking the maximum value of the electromotive force amplitude information to correct deviation.
  • the one or more first coils 1001 When the vehicle deviates from the predetermined driving direction, the one or more first coils 1001 generate the electromotive force signal, the electromotive force signal includes electromotive force amplitude information within a predetermined time interval, and the processor 1002 outputs a second signal according to the electromotive force amplitude information The second signal is used to instruct the vehicle to adjust the running track to drive according to the predetermined driving direction, wherein the electromotive force amplitude information includes at least one of the following information: the peak-to-peak value of the electromotive force, the absolute value of the maximum or minimum electromotive force, the predetermined The electromotive force is fully or partially integrated within the time interval.
  • the adjustment direction indicated by the second signal corresponding to the next predetermined time interval is opposite to the adjustment direction indicated by the second signal corresponding to the predetermined time interval.
  • the adjustment direction indicated by the second signal corresponding to the predetermined time interval is rightward, but the filtered peak-to-peak value of the electromotive force within the predetermined time interval is smaller than the filtered peak-to-peak value of the electromotive force within the next predetermined time interval.
  • the adjustment direction indicated by the second signal corresponding to the next predetermined time interval is to the left.
  • the processor determines that the correction should be made The direction is the same. More specifically, the steering angle can be determined by the variable of the filtered electromotive force amplitude information in two time intervals, for example, if the variable exceeds the threshold, the steering angle is reduced, and if the threshold is not exceeded, the steering angle is increased or maintained.
  • the adjustment direction indicated by the second signal corresponding to the next predetermined time interval is the same as the adjustment direction indicated by the second signal corresponding to the predetermined time interval.
  • the adjustment direction indicated by the second signal corresponding to the predetermined time interval is to the right, but the filtered peak-to-peak value of the electromotive force in the predetermined time interval is greater than the filtered electromotive force peak in the next predetermined time interval Peak value, the adjustment direction indicated by the second signal corresponding to the next predetermined time interval remains to the right.
  • the plane where the first coil in the automobile control device is located is perpendicular to the traveling direction of the vehicle.
  • the induced current is excited, and the characteristic value (such as peak-to-peak value) of the induced current during the tracking period is used to correct the deviation in the driving direction.
  • the implementation scheme is relatively simple. This arrangement scheme can use the same first coil to transmit signals to the magnetic waveguide for vehicle networking communication.
  • a third lane keeping solution is provided based on the vehicle control device 1000.
  • the third solution uses two or more coils to track the maximum value of the electromotive force information to correct the deviation on the basis of the second solution.
  • At least two of the first coils are symmetrically arranged on the left and right sides of the vehicle, when the electromotive force amplitude information generated by the first coil on one side (for example, the left side) is greater than that of the other side (for example, the right side).
  • the second signal instructs the vehicle to adjust the running track in the first direction (for example, the left side) to drive according to the predetermined driving direction; when one side (for example, the left side) the electromotive force generated by the first coil When the amplitude information is less than the electromotive force amplitude information generated by the first coil on the other side (for example, the right side), the second signal instructs the vehicle to adjust the running track in the second direction (for example, the right side) to drive in the predetermined driving direction, wherein
  • the first direction and the second direction are opposite.
  • the left and right here are relative concepts. Viewed from the direction facing the front of the car and the direction facing the parking space, the left and right can be reversed. However, the left and right in the embodiment of the present application are viewed from one direction (front of the car or parking space). Keep uniform under this kind of implementation.
  • first coils in the automobile control device there are at least two first coils in the automobile control device, and the plane where the first coils are located is perpendicular to the traveling direction of the vehicle.
  • first coils 1001 in the device there are three first coils 1001 in the device.
  • the driving direction of the vehicle equipped with the device is perpendicular to the paper surface.
  • the plane on which the coil 1001 is located is perpendicular to the driving direction of the car.
  • This solution judges the amplitude of the induced electromotive force filter signal output by each coil in the receiving coil array per unit time. If the maximum amplitude coil is not in the center position, the vehicle controller changes the forward direction toward the receiving coil at the maximum amplitude position until the center coil is the maximum amplitude output coil. It can be seen that the implementation is simpler and more direct, and can reduce the complexity of the algorithm.
  • the vehicle control device uses the spatial structure characteristic of the magnetic line of induction of the second coil (the magnetic waveguide coil 1004) or the spatial distribution characteristic of the magnetic field energy of the magnetic waveguide to judge the lane position.
  • the vehicle control device 1000 can replace traditional visual sensor devices to realize functions such as automatic lane keeping and automatic maintenance of successive vehicle distances, and can also realize automatic lane change and other functions in conjunction with the laying of magnetic waveguides in adjacent lanes. Especially compared with traditional vision sensor devices, it can improve the reliability of automatic driving in a variety of weather and road conditions.
  • the night vision sensor needs to rely on the lighting effects of the vehicle's own lights and street lights, and the vehicle control device 1000 implements lane keeping based on magnetic induction communication, which avoids dependence on ambient light in principle.
  • the vehicle control device 1000 and the supporting magnetic waveguide coil 1004 are based on magnetic induction communication, which avoids the resource occupation problem of commonly used radio frequency communication.
  • there is no need for roadside construction A large number of roadside units RSUs do not need to occupy expensive spectrum resources. It only needs to lay the magnetic waveguide coil 1004 along the pre-determined driving trajectory, which has a small amount of engineering and low construction cost; low communication power consumption; it also has the characteristics of near field communication that is not easy to be monitored and naturally has higher physical layer security properties.
  • the processor 1002 may also be configured to receive a third signal from the communication interface 1003.
  • the communication interface 1003 is configured to receive a signal from the vehicle 2000 equipped with the automobile control device; the processor 1002 is configured to receive a third signal from the vehicle control device.
  • An electromotive force signal is generated; the first coil 1001 is configured to send a fourth signal according to the electromotive force signal, and the fourth signal is used to identify the vehicle equipped with the automobile control device and indicate operating information of the vehicle.
  • the vehicle control device 1000 can also send the vehicle identification and information in the form of a magnetic induction signal through the first coil 1001, that is, the fourth signal.
  • the third signal may be the current speed of the vehicle, the change of the speed per unit time, the infrastructure equipment information received by the vehicle, and so on.
  • the automobile control device 1000 receives the third signal of the vehicle 2000 equipped with the automobile control device; the automobile control device 1000 sends a fourth signal to the second coil 1004 based on the third signal, and the fourth signal is used to identify the device The vehicle with the vehicle control device and information indicating the operation of the vehicle.
  • the second coil 1004 transmits the fourth signal to another vehicle or network element that supports magnetic induction communication; or the second coil 1004 transmits and amplifies the The fourth signal is sent to another vehicle or network element that supports magnetic induction communication.
  • the vehicle control device 1000 communicates with a vehicle control unit VCU1006 through a bus 1005, and the vehicle control unit VCU1006 is used for coordination and control of the vehicle power system.
  • the vehicle transmission system related information is stored in the VCU, and the related information is transmitted to the vehicle control device 1000 through the bus, and the vehicle control device 1000 can also transmit the vehicle trajectory adjustment information to the VCU.
  • the communication interface is configured to receive at least one of the following signals: a bus signal and a wireless signal from the vehicle where the automobile control device is deployed.
  • the wireless signal can come from a Bluetooth module 1004 coupled with a communication interface, and the Bluetooth module 1004 can communicate with other Bluetooth modules 1009 on the vehicle equipped with the vehicle control device.
  • the car control device 1000 communicates with a car-specific processor 1007, and the car-specific processor is used to run the car infotainment IVI system.
  • the car control device further includes a wireless communication module 1008 coupled to the processor 1002, and the wireless communication module 1008 is configured to communicate with the core network through the wireless access network 1200.
  • the transmission of small data volume control information in V2V, V2I, V2P and other communications can eliminate the need to occupy cellular network air interface resources, reduce end-to-end delay, and improve driving. safety.
  • the car equipped with the car control device can be connected to the cellular network through the car running on the magnetic waveguide.
  • the magnetic waveguide V2X can become a part of the cellular network to assist or enhance the function and coverage of C-V2X. While the magnetic waveguide is used to build the magnetic location mark, it also transmits signals to the vehicles or facilities on the near-field magnetic communication highway to realize V2X communication.
  • FIG. 4 is a car 2000 with lane keeping and communication functions provided by an embodiment of the present application, including a car control device 1000, a steering system 2001, and a transmission system 2002.
  • the car control device 1000 and The steering system 2001 and the transmission system 2002 are coupled through the bus 2003.
  • the automobile control device 1000 has the same function as the above-mentioned automobile control device, so it will not be repeated. Only the connection of the communication interface and the installation and fixation of the device are required.
  • the output signal of the device is used for The steering system 2001 and the transmission system 2002 are instructed to adjust to drive in the predetermined driving direction. It can be considered as the specific application of the device.
  • the steering system 2001 refers to a series of devices used to change or maintain the driving or reverse direction of the car.
  • the transmission system 2002 generally consists of a clutch, a transmission, a universal transmission, a final drive, a differential, and a half shaft. Its basic function is to transmit the power from the engine to the driving wheels of the car to generate driving force so that the car can run at a certain speed.
  • the car 2000 equipped with the vehicle control device can also be used to actively send the information of the vehicle equipped with the device to the magnetic waveguide 1004, so as to make it coupled with other magnetic waveguides.
  • Network elements exchange information, such as another vehicle that can communicate, infrastructure, and a cellular network that can communicate with magnetic sensors.
  • the magnetic waveguide (second coil) 1004 can perform wireless sensing and wireless communication at the same time. While the magnetic waveguide is used to build a magnetic location mark, it can transmit signals to vehicles or facilities on the near-field magnetic communication highway to realize V2X Communication. The realization of this aspect uses a physical layer air interface technology to accomplish two major tasks.
  • FIG. 5 is a block diagram of a vehicle control method provided by an embodiment of the present application.
  • FIG. 6 for a schematic diagram of the relative position of the vehicle control device and the ground magnetic waveguide.
  • the second coil 1004 is laid in parallel along the road and along the preset driving direction.
  • the method includes:
  • a second coil 1004 arranged along a predetermined driving direction transmits a first signal, and the second coil 1004 is laid parallel to the ground and arranged in a row along the predetermined driving direction;
  • the vehicle equipped with the automobile control device receives the first signal of the second coil 1004, and the automobile control device generates a second signal according to the first signal, and the second signal is used to instruct the vehicle to adjust the running track to follow the predetermined driving Drive in the direction.
  • FIG. 7 is a flowchart of a vehicle control method provided by an embodiment of the present application. The method mainly includes the following steps:
  • the magnetic induction waveguide coil (ie the second coil) is placed along the center line of the lane and parallel to the lane.
  • the midline of the magnetic field generated is perpendicular to the ground, and the alternating magnetic field is induced from other waveguide coils through the waveguide. In the plane where the magnetic waveguide coil is located, the farther away from the center of the coil, the less the change in magnetic flux per unit area.
  • the magnetic induction waveguide can be induced to the magnetic induction waveguide by the transmitting coil of the current vehicle; it can also be induced to the magnetic induction by the transmitting coil of other vehicles.
  • the alternating magnetic field can be transmitted from other waveguide coils through the waveguide, and induced by the waveguide from a distance. The energy of the alternating magnetic field may be lost in the propagation of the waveguide, so a repeater or signal enhancement device can be added in the magnetic induction waveguide to reduce the energy loss of the magnetic field.
  • the specific implementation details are beyond the scope of this application.
  • the vehicle control device measures the magnetic field of the magnetic waveguide deployed along the center line of the lane by using a coil perpendicular to the magnetic waveguide to determine the relationship between the center line of the vehicle body and the center line of the lane.
  • the plane of the receiving coil in the vehicle control device is parallel to the traveling direction.
  • Fig. 8a is a schematic diagram of the relative positional relationship between the two coils and the traveling direction of the vehicle where the receiving coil is located. It mainly includes: the first coil 1001 in the vehicle control device, and the second coil 1001 laid horizontally on the road surface and only in the direction of travel.
  • Figure 8b is a schematic diagram showing the direction of induced current/electromotive force of the receiving coil 0, when the first coil 1001 is at the midline of the magnetic field of the second coil 1004 At this time, there will be no induced current in the first coil 1001.
  • the receiving coil induced current/electromotive force direction 1 the vehicle travel direction is perpendicular to the paper surface inward, when the vehicle body deviates to the right from the lane, the first coil 1001 is on the right side of the magnetic field of the second coil 1004, and the vehicle body
  • the changing magnetic flux in the coil generates a first direction induced current and a first direction induced electromotive force in the first coil 1001, and the vehicle control device can detect the first direction electromotive force and output a control signal.
  • the receiving coil induced current/electromotive force direction 2 the vehicle travel direction is perpendicular to the paper plane inward, when the car body deviates to the left from the lane, the first coil 1001 is on the left side of the magnetic field of the second coil 1004, the car body
  • the changing magnetic flux of the coil generates a second direction induced current and a second direction induced electromotive force in the first coil 1001, and the vehicle control device can detect the second direction electromotive force and output a control signal.
  • the vehicle equipped with the vehicle control device senses the deviation direction of the lane through the output control signal, so as to automatically adjust the driving direction and always keep the vehicle moving along the center line of the magnetic waveguide.
  • FIG. 9 is a flowchart of another vehicle control method provided by an embodiment of the present application, including:
  • the magnetic induction waveguide coil (second coil) is arranged along the center line of the lane and parallel to the lane, and the specific content will not be repeated.
  • the vehicle control device measures the magnetic field of the magnetic induction waveguide coil arranged along the center line of the lane by measuring the first coil perpendicular to the magnetic waveguide coil to determine the relationship between the vehicle body travel center line and the lane center line.
  • the plane of the first coil in the vehicle control device is perpendicular to the traveling direction.
  • the first coil with the center of the coil pointing to the direction of travel detects the strength of the magnetic field change, and the location of the second coil is determined by detecting the magnitude of the induced electromotive force/induced current generated by the first coil.
  • the vehicle adjusts the traveling direction by tracking the position of the magnetic induction waveguide coil determined by tracking the maximum value of the peak-to-peak value of the induced electromotive force. (Judge the lane position based on the spatial energy distribution of the magnetic induction waveguide coil)
  • the vehicle speed is 30km/h
  • the coil distance in the magnetic waveguide is 1m
  • the frequency of the magnetic field excited in the magnetic waveguide is 200Hz
  • the on-board coil induced signal frequency is 1.67kHz.
  • the signal processing circuit connected to the receiving coil will analyze the peak-to-peak value V p of the coil electromotive force per unit time ⁇ t after the signal is filtered (such as common low-pass or band-pass filtering, which can filter out noise introduced due to some external interference) .
  • Unit time of analysis Is the m cycles of receiving the induction signal.
  • M is a positive integer greater than 1, and usually takes a value of 2 to 5. Assuming that M is 4, the required analysis time is 2.4 ms.
  • a partial integral of the electromotive force per unit time or the entire integral of the absolute value of the electromotive force can also be selected.
  • a single first coil is used to detect the position of the second coil (magnetic waveguide coil).
  • the magnetic waveguide coil 1004 is arranged along the center line of the lane to form a magnetic induction waveguide to transmit the first signal.
  • the vehicle control device 1000 When the vehicle control device 1000 is installed When the vehicle is close to the center of the lane, the peak-to-peak value V p of the first coil's electromotive force is large. If it deviates from the center, the maximum amplitude that V p can reach must be smaller than the non-center line position. Therefore, the vehicle processor will track the change of V p in the first coil within each unit time by changing the direction of travel of the vehicle, and notify the vehicle controller VCU to change the direction of travel.
  • the adjustment range can be determined by the automatic control circuit (such as VCU) in the driving control unit according to the classic PID control method or machine learning algorithm.
  • the maximum amplitude value may be a preset value.
  • FIG. 10b it is a schematic diagram of detecting the position of the second coil (magnetic waveguide coil) using the first coil array method.
  • the figure shows three magnetic waveguide coils, which are respectively arranged on the left, center, and center of the vehicle control device 1000. In the right three positions, the first coils on the left and right sides are arranged symmetrically with respect to the first coil in the middle.
  • the device 1000 is arranged on the axis of the vehicle with the first coil in the middle as a reference point.
  • the magnetic waveguide coil 1004 is arranged along the center line of the lane to form a magnetic induction waveguide to transmit the first signal.
  • the lane keeping can be determined by comparing the peak-to-peak value V p (i) of the electromotive force of each coil in the first coil array. If the V p (i) maximum amplitude coil is not in the center position (or symmetrical about the center position), the vehicle controller changes the forward direction toward the first coil at the V p (i) maximum amplitude position until the center coil is the maximum amplitude output coil.
  • the first coil array may be composed of two, four or more first coils. The example in this embodiment does not constitute a practical limitation, and only provides an idea of the principle of the first coil array. When the array is an even number of first coils, the vehicle controller changes the forward direction toward the direction where the V p (i) amplitude of the two central first coils increases, until the two central first coils reach the maximum value at the same time (or set Set threshold).
  • FIG. 11 is a schematic diagram of a vehicle networking communication method provided by an embodiment of the present application. The method includes:
  • the magnetic induction waveguide coil (that is, the above-mentioned second coil) is placed horizontally or perpendicular to the road surface.
  • the magnetic induction waveguide coil is used to distribute the magnetic induction signal only in the near field (there is only an alternating magnetic field, which can be ignored The electric field cannot be transmitted to the far field) to transmit along the waveguide to build a magnetic communication network between the vehicle and the vehicle or between the vehicle and other network elements.
  • Vehicle V1 modulates the information that needs to be transmitted (such as vehicle speed, road conditions ahead, warning of sudden braking of the preceding vehicle, warning of overtaking of the following vehicle, etc.) in a changing magnetic field through the transmitting coil.
  • the changing magnetic field will in turn induce adjacent and distant waveguide
  • the coil generates an alternating magnetic field containing the same information, and the vehicle V2 extracts the information of the vehicle V1 through the receiving coil.
  • the transmitting coils of the vehicle V1 and the vehicle V2 can be placed vertically at the same time, or placed horizontally at the same time, or one vertical and one horizontally; however, both vertical placement can ensure that more magnetic lines of induction pass through the receiving/transmitting at the same time
  • the coil and the magnetic waveguide have a better coupling effect.
  • the signal transmitted by the magnetic induction waveguide coil is generated by a network element in the communication network, and the network element is coupled with at least one magnetic induction waveguide coil, wherein the network element includes vehicles equipped with automobile control devices and transportation infrastructure.
  • Fig. 12a is a schematic diagram of an implementation example of V2N using a magnetic induction waveguide coil to communicate with a cellular terminal according to an embodiment of the application, including: a magnetic induction waveguide coil 1004 (second coil) laid on a fixed facility and a mobile vehicle
  • Information can be aggregated to core networks, edge computing stations, etc., to achieve functions such as traffic flow control and fleet guidance. It can be integrated with C-V2X after being connected to the cellular device 4001.
  • FIG. 12b is a schematic diagram of a V2I implementation example that uses a magnetic induction waveguide coil to connect to a transportation infrastructure provided by an embodiment of the present application.
  • a magnetic induction waveguide coil 1004 (second coil) laid on fixed facilities or roads
  • vehicle control device 1000 on a moving vehicle
  • infrastructure 4002 connected to magnetic waveguide coil 1004 through link cables or connection equipment 4000 , Such as signal lights, so as to achieve V2I communication.
  • link cables or connection equipment 4000 Such as signal lights
  • FIG. 12c is a schematic diagram of a V2P implementation example that uses a magnetic induction waveguide coil to connect to a pedestrian portable device through a wireless magnetic induction communication method according to an embodiment of the present application. It includes: a magnetic induction waveguide coil 1004 (second coil) laid on a fixed facility or a road, a vehicle control device 1000 located on a moving vehicle, and a pedestrian carrying a magnetic induction communication device 4003, so as to realize V2P communication. Realize pedestrian traffic warning, realize emergency braking control for vehicles, etc.
  • the magnetic induction communication device 4003 can be integrated into mobile devices such as mobile phones.
  • FIG. 12d is a schematic diagram of an implementation example of V2V and V2N that uses a magnetic induction waveguide coil to connect to a vehicle or an on-board transponder through wireless magnetic induction communication according to an embodiment of the present application.
  • a magnetic induction waveguide coil 1004 (second coil) laid on a fixed facility or road surface and a vehicle control device 1000 on a mobile vehicle (the device 1000 is installed on multiple vehicles).
  • the first mobile vehicle 4004 passes through the honeycomb and the core Network connection.
  • the second mobile vehicle 4005 can realize the magnetic induction communication with the first mobile vehicle 4004 through the magnetic induction waveguide coil 1004, and then complete the connection with the core network through the first mobile vehicle 4004.
  • V2V and V2N communication it transmits vehicle and road conditions information, or receives traffic control and fleet scheduling information.
  • FIG. 13a is a schematic diagram of a magnetic induction waveguide coil 1004 (second coil) provided by an embodiment of the present application.
  • the magnetic induction waveguide coil 1004 can be made of a flexible PCB and printed on the flexible substrate 5000, so that the magnetic induction waveguide coil 1004 can be easily laid on existing fixed facilities like a tape.
  • a flexible PCB magnetic induction waveguide coil 1004 is circular.
  • the geometric parameters are: 22 mm in diameter and 1 mm in line width; the coil is connected to a capacitor 1004a.
  • the capacitance is 270 picofarads; at this time, the resonance frequency of the coil is 46MHz, and the available communication bandwidth is 5MHz.
  • FIG. 13b is a schematic diagram of another magnetic induction waveguide coil 1004 (second coil) provided by an embodiment of the present application.
  • the magnetic induction waveguide coil 1004 is also made of a flexible PCB and printed on the flexible substrate 5000.
  • the flexible PCB magnetic induction waveguide coil is rectangular.
  • the geometric parameters are: the outer side of the rectangle is 9.5 mm long, the line width is 1.5 mm, and the opening is 0.8 mm; the coil 1004 is connected to the capacitor 1004a.
  • the capacitance of the capacitor is 22 picofarads, and a 50-ohm capacitor 1004b is connected in parallel; at this time, the resonance frequency of the coil is 240MHz, and the available communication bandwidth is 45-70MHz.
  • the capacitance of the coil in the printed circuit can be a variable capacitor, and the resonance frequency of the waveguide coil is adjusted by the peripheral adaptive coupling control circuit, so as to achieve the best coupling with the magnetic induction transmitting end and the magnetic induction receiving end in S1.
  • the magnetic induction waveguide coil 1004 can also be coaxially placed as shown in FIG. 13c (a schematic diagram of another magnetic induction waveguide coil 1004 (second coil) provided in this embodiment of the application): the projection of the magnetic induction waveguide coil 1004 along the road direction coincide. It is made of hard PCB board, buried in the ground or anchored on the road surface.
  • the bus in the embodiments of the present application may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus, etc.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc.
  • the buses in the drawings of this application are not limited to only one bus or one type of bus.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Near-Field Transmission Systems (AREA)
  • Power Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于磁感通信的车辆控制的装置和方法,该装置包括第一线圈(1001)、处理器(1002)和通信接口(1003),第一线圈(1001)接收沿车道布放的第二线圈(1004)的信号,该第一线圈(1001)和第二线圈(1004)具有预设的相对位置关系,当装有汽车控制装置的车辆偏离预定行车方向时,该第一线圈(1001)根据上述两线圈的相对位置关系的变化生成电动势信号,处理器(1002)根据该电动势信号输出第二信号,该第二信号用于指示车辆调整运行轨迹以按照预定行车方向行驶。该装置和方法基于磁感通信控制车辆行驶方向,不占用额外频谱资源,还具有近场通信的安全属性。

Description

基于磁感通信的车辆控制的装置和方法 技术领域
本申请实施例属于通信领域,并且更具体地,涉及一种基于磁感通信(Magnetic Induction,MI)的车辆控制的装置和方法。
背景技术
车联网技术整合传感器、通讯网络、数据处理、自动控制技术来实现车辆间(Vehicle-to-Vehicle,V2V)、车辆与人(Vehicle-to-Pedestrian,V2P)、车辆与基础设施(Vehicle-to-Infrastructure,V2I)之间的联接。车联网可以说是物联网(Internet of Things,IoT)的重要实现场景之一,而将车辆与各种事物的联接可以总称为V2X(Vehicle to Everything),其希望实现车辆与一切可能影响车辆的实体实现信息交互,借由V2X之间信息的沟通,使得每一台汽车可以成为网络中节点的任一部分,这些信息的沟通使得车辆网络控制中心能够快速掌握临车或路上车辆的状况、动态,有助于提高行车的安全性;减少交通事故的发生,减缓交通拥堵,降低环境污染以及提供其他信息服务。故V2X技术的发展也是实现智能交通系统(Intelligent Transportation System,简称ITS)的重要环节之一。
目前,除自动驾驶技术之外,V2X技术可以算是最前沿的汽车技术之一,而DSRC(Dedicated Short Range Communication,专用短程通讯)和LTE-V(或称Cellular V2X,简称C-V2X,基于蜂窝网络的V2X)是实现V2X的两大通信标准。DSRC技术的底层、物理层和无线链路控制基于WiFi生态系统的IEEE802.11p。其工作频段为5.85~5.925GHz,在美国和欧洲市场可以支撑V2V及V2I用例。但是,DSRC最大的缺点在于除了需要在车辆上部署OBU(On board Unit)s外,还需要沿公路部署RSU(Road Side Unit)s。RSUs高昂的自身及部署成本会阻碍V2X在现有道路的推广。另外,DSRC需要占用本就紧张且昂贵的频谱资源。采用射频进行通信也难以避免存在物理层安全漏洞,例如被监听、信息被干扰或篡改等。而C-V2X是由3GPP定义的基于蜂窝通信的V2X技术,具体根据接口的不同可分为直通方式V2X-Direct和蜂窝方式V2X-Cellular两种工作方式。C-V2X可利用现有蜂窝网络的基站基础设施完成V2X组网,在通信能力上能够支撑更加广泛和复杂的业务。但C-V2X与DSRC一样,同样需要射频通信技术,因此难以避免地存在电磁干扰问题及无线通信物理层安全等问题。
磁感通信是一种利用磁场来传递信息的近场通信技术,在传统射频、声及光无线通信低效的场景中,磁感通信却能够大展拳脚。基于近场通信的磁感,不向远场辐射信号,可以在个人网络设备周围产生一个通信范围可控的隐私网路,因此磁感通信成为提供隐私保护、高安全等级无线个人局域网络(Wireless Personal Area Network,WPAN)的最佳选择。基于磁感通信的众多优点,目前已有磁感通信技术应用于车载电脑网络的研究与运用,但磁感通信技术在V2X,特别是车辆控制方面的应用却亟待开发。
发明内容
本申请提供了一种车辆控制的装置及方法,可以实现不占用额外频谱资源完成车辆轨迹控制,同时提高现有车联网通信的安全性。
以下从多个方面介绍本申请,容易理解的是,该以下多个方面的实现方式可互相参考。
第一方面,本申请提供一种车辆控制装置,该车辆控制装置包括一个或多个第一线圈、处理器和通信接口,所述一个或多个第一线圈与所述处理器耦合,所述处理器与所述通信接口耦合;所述第一线圈被配置为接收沿预定行车方向布放的第二线圈的第一信号,所述第一线圈和所述第二线圈具有预设的相对位置关系,当装有所述汽车控制装置的车辆偏离所述预定行车方向时,所述第一线圈根据所述第一线圈和所述第二线圈的相对位置关系的变化生成电动势信号,所述处理器被配置为根据所述电动势信号输出第二信号,所述第二信号用于指示车辆调整运行轨迹以按照所述预定行车方向行驶。
第二方面,本申请提供一种具有车道保持和通信功能的汽车,包括汽车控制装置、转 向系统和传动系统,所述汽车控制装置分别和转向系统、传动系统耦合,所述汽车控制装置包括一个或多个第一线圈、处理器和通信接口,所述一个或多个第一线圈与所述处理器耦合,所述处理器与所述通信接口耦合;所述第一线圈被配置为接收沿预定行车方向布放的第二线圈的第一信号,所述第一线圈和所述第二线圈具有预设的相对位置关系,当装有所述汽车控制装置的车辆偏离所述预定行车方向时,所述第一线圈根据所述第一线圈和所述第二线圈的相对位置关系的变化生成电动势信号,所述处理器根据所述电动势信号输出第二信号,所述第二信号用于指示车辆调整运行轨迹以按照所述预定行车方向行驶。
可以看出,第二方面涉及一种安装了第一方面的车辆控制装置的车辆,以上两个方面均是该汽车控制装置利用第二线圈(磁波导)磁感线空间结构特性或者磁波导磁场能量空间分布特性来对车道位置进行判断。具体来讲,该车辆控制装置可以磁感通信实现自动车道保持、先后车距自动保持等功能,配合相邻车道磁波导的铺设还可以实现自动变道等功能。和传统视觉传感器装置相比能够提高自动驾驶在多种天气、路况下的可靠度。同时,无需在路边建设大量路侧单元RSUs、无需占用昂贵频谱资源;仅需沿预设行车轨迹铺设磁波导,工程量小,建设成本低;通信低功耗;还具有近场通信不易被监听,天然拥有更高的物理层安全属性的特点。
在上述方面的一些实现方式下,当所述汽车控制装置用于接收沿预定行车方向布放的第二线圈的第一信号时,所述第一线圈垂直于所述第二线圈,所述第二线圈平行于地面铺设且沿所述预定行车方向排布成一列。
为了便于理解,可以认为磁波导(第二线圈)平行于地面铺设且仅沿车道中心布放,这样可以实现最经济的布放、并且对于单车道或多车道系统均适用。平行于地面铺设相比与潜埋地下布置,具有施工量小,成本低,铺设快速等优势。
在上述方面的一些实现方式下,当车辆向第一方向偏离所述预定行车方向时,所述一个或多个第一线圈产生所述电动势信号,所述电动势信号包括第一方向电动势,所述处理器根据所述第一方向电动势输出所述第二信号,所述第二信号用于指示车辆向第二方向调整运行轨迹以按照所述预定行车方向行驶。
当车辆向第二方向偏离所述预定行车方向时,所述一个或多个第一线圈产生所述电动势信号,所述电动势信号包括第二方向电动势,所述处理器根据所述第二方向电动势输出所述第二信号,所述第二信号用于指示车辆向第一方向调整运行轨迹以按照所述预定行车方向行驶,其中所述第一方向和所述第二方向相反。
在该实现方式中,汽车控制装置中的第一线圈所在平面平行于车辆行进方向。在偏离预定行车方向时会激发感应电流,利用感应电流方向的不同来进行驶方向的纠偏。实现方案简单,易于实现。
在上述方面的一些实现方式下,当车辆偏离所述预定行车方向时,所述一个或多个第一线圈产生所述电动势信号,所述电动势信号包括在预定时间间隔内的电动势幅度信息,所述处理器根据所述电动势幅度信息输出第二信号,所述第二信号用于指示车辆调整运行轨迹以按照所述预定行车方向行驶,其中所述电动势幅度信息包括以下信息中的至少一个:电动势的峰峰值、电动势最大值或最小值的绝对值、所述预定时间间隔内电动势全部或部分积分。
更具体地,当所述预定时间间隔内的滤波后的所述电动势幅度信息小于下一个预定时间间隔内的滤波后的电动势幅度信息时,所述下一个预定时间间隔对应的所述第二信号指示的调整方向和所述预定时间间隔对应的所述第二信号指示的调整方向相反;
当所述预定时间间隔内的滤波后的所述电动势幅度信息大于下一个预定时间间隔内的滤波后的电动势幅度信息时,所述下一个预定时间间隔对应的所述第二信号指示的调整方向和所述预定时间间隔对应的所述第二信号指示的调整方向相同。
在该实现方式和该方式的具体内容中,汽车控制装置中的第一线圈所在平面垂直于车辆行进方向。在偏离预定行车方向时会激发感应电流,跟踪周期内感应电流的特征值(如:峰峰值)来进行驶方向的纠偏。实现方案较简单,这种布置方案可以利用同一个第一线圈发 射信号给磁波导进行车联网通信。
在上述方面的一些实现方式下,至少两个所述第一线圈对称布置于车辆的左右两侧,当一侧所述第一线圈产生的所述电动势幅度信息大于另一侧所述第一线圈产生的所述电动势幅度信息时,所述第二信号指示车辆向第一方向调整运行轨迹以按照所述预定行车方向行驶;当一侧所述第一线圈产生的所述电动势幅度信息小于另一侧所述第一线圈产生的所述电动势幅度信息时,所述第二信号指示车辆向第二方向调整运行轨迹以按照所述预定行车方向行驶,其中所述第一方向和所述第二方向相反。
在上一个实现方式的启发下,该实现方式中汽车控制装置中的存在至少两个第一线圈,且该第一线圈所在平面垂直于车辆行进方向。该方案通过判断接收线圈阵列中各个线圈在单位时间内输出感应电动势滤波信号的幅度。如果最大幅度线圈不在中央位置,车辆控制器向着幅度最大位置的接收线圈方向改变前进方向,直至中央线圈为最大幅度输出线圈。可以看出,该实现方式更加简单、直接,能够降低算法的复杂度。
在上述方面的一些实现方式下,所述处理器还被配置为接收来自所述通信接口的第三信号,所述通信接口被配置为接收来自装有所述汽车控制装置的车辆的信号;所述处理器根据所述第三信号生成电动势信号;所述第一线圈被配置为根据所述电动势信号发送第四信号,所述第四信号用于标识所述装有所述汽车控制装置的车辆以及指示所述车辆的运行信息。
可以看出,磁波导(第二线圈)同时进行无线传感和无线通信,利用磁波导搭建磁感位置标识的同时,为近场磁感通信公路上的车辆或设施传递信号,实现V2X通信。该方面的实现方式利用一项物理层空口技术完成两大类工作目标。
在上述方面的一些实现方式下,所述汽车控制装置通过总线与整车控制单元VCU通信,所述整车控制单元VCU用于车辆动力系统的协调与控制。
可选的,在上述方面的一些实现方式下,所述通信接口被配置为接收以下信号中的至少一个:来自所述汽车控制装置部署车辆的总线信号、无线信号。
具体地,在上述方面的一些实现方式下,所述汽车控制装置与车载专用处理器通信,所述车载专用处理器用于运行车载信息娱乐IVI系统。
在上述方面的一些实现方式下,汽车控制装置还包括无线通信模块,所述无线通信模块与所述处理器耦合,所述无线通信模块用于通过无线接入网络与核心网通信。
在上述方面的一些实现方式下,所述第一信号由通信网络中的网元产生,所述网元与至少一个所述第二线圈耦合,其中,所述网元包括装有所述汽车控制装置的车辆、交通基础设施。
在上述方面的一些实现方式下,所述汽车控制装置包括无线通信模块,所述无线通信模块用于通过无线接入网络与核心网通信。
可以看出,一方面,V2V,V2I,V2P等通信中的小数据量控制信息的传递可以无需占用蜂窝网空口资源、减少端到端的时延。另一方面,可以通过行驶在磁波导上的装有该汽车控制装置的汽车与蜂窝网络相联接,也可以通过将磁波导与转发器或移动基站相连。磁波导V2X可以成为蜂窝网的一部分,辅助或增强C-V2X的功能及覆盖能力。利用磁波导搭建磁感位置标识的同时,为近场磁感通信公路上的车辆或设施传递信号,实现V2X通信。
第三方面,本申请提供一种车辆控制方法,该方法包括:沿预定行车方向布放的第二线圈发射第一信号,所述第二线圈平行于地面铺设且沿所述预定行车方向排布成一列;装有汽车控制装置的车辆接收所述第二线圈的第一信号,所述汽车控制装置根据所述第一信号生成第二信号,所述第二信号用于指示车辆调整运行轨迹以按照所述预定行车方向行驶。
可以看出,汽车控制装置利用第二线圈(磁波导)磁感线空间结构特性或者磁波导磁场能量空间分布特性来对车道位置进行判断。具体来讲,该车辆控制装置可以实现自动车道保持、先后车距自动保持等功能,配合相邻车道磁波导的铺设还可以实现自动变道等功能。特别是和传统视觉传感器装置相比能够提高自动驾驶在多种天气、路况下的可靠度。同时,无需在路边建设大量路侧单元RSUs、无需占用昂贵频谱资源;仅需沿预设行车轨迹铺设磁波 导,工程量小,建设成本低;通信低功耗;还具有近场通信不易被监听,天然拥有更高的物理层安全属性的特点。为了便于理解,可以认为磁波导(第二线圈)平行于地面铺设且仅沿车道中心布放,这样可以实现最经济的布放、并且对于单车道或多车道系统均适用。平行于地面铺设相比与潜埋地下布置,具有施工量小,成本低,铺设快速等优势。
在上述方面的一些实现方式下,所述第一信号由通信网络中的网元产生,所述网元与至少一个所述第二线圈耦合,其中,所述网元包括装有所述汽车控制装置的车辆、交通基础设施。
可以看出,第二线圈(磁波导)同时进行无线传感和无线通信,利用磁波导搭建磁感位置标识的同时,为近场磁感通信公路上的车辆或设施传递信号,实现V2X通信。该方面的实现方式利用一项物理层空口技术完成两大类工作目标。
在上述方面的一些实现方式下,所述汽车控制装置接收所述装有汽车控制装置的车辆的第三信号;所述汽车控制装置基于所述第三信号发送第四信号给所述第二线圈,所述第四信号用于标识所述装有所述汽车控制装置的车辆以及指示所述车辆的运行信息。
具体来看,当所述汽车控制装置发送所述第四信号时,所述第二线圈传递所述第四信号至另一车辆或者网络中允许通信的网元;或者所述第二线圈传递并放大所述第四信号至另一车辆或者网络中允许通信的网元。
在上述方面的一些实现方式下,所述磁波导线圈的谐振频率可调,所述谐振频率通过外围自适应耦合控制电路调节。
在上述方面的一些实现方式下,所述磁波导线圈潜埋于地下;或者所述磁波导线圈固定在道路表面。
在本申请实施例中,汽车控制装置中的第一线圈接收沿预定行车方向布放的第二线圈的第一信号,该第一线圈和该第二线圈具有预设的相对位置关系,当装有该汽车控制装置的车辆偏离该预定行车方向时,该第一线圈根据两线圈相对位置关系的变化生成电动势信号,该处理器根据该电动势信号输出第二信号,该信号指示车辆调整运行轨迹以按照预定行车方向行驶。该车辆控制装置可以实现自动车道保持等功能,在特定场景下可靠度更高。同时无需占用频谱资源,还具有近场通信的安全属性。另外第二线圈(磁波导)能够为近场磁感通信公路上的车辆或设施传递信号,实现V2X通信。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1a是磁感通信信道模型的MI收发机示意图;
图1b是磁感通信信道模型的互感器模型示意图;
图1c是磁感通信信道模型的互感器模型的等效电路示意图;
图2是本申请实施例提供的一种基于磁感波导的磁感通信系统框图;
图3是本申请实施例提供的一种车辆控制装置1000;
图4是本申请实施例提供的一种具有车道保持和通信功能的汽车2000;
图5是本申请实施例提供的一种车辆控制方法框图;
图6是车辆控制装置与地面磁波导相对位置的示意图;
图7是本申请实施例提供的一种车辆控制方法流程图;
图8a是两个线圈的相对位置关系以及接收线圈所在车辆的行进方向示意图;
图8b是接收线圈感应电流/电动势方向0示意图;
图8c是接收线圈感应电流/电动势方向1所示;
图8d是接收线圈感应电流/电动势方向2所示;
图9是本申请实施例提供的另一种车辆控制方法流程图;
图10a是采用单个第一线圈检测第二线圈(磁波导线圈)位置的示意图;
图10b是采用第一线圈阵列的方式检测第二线圈(磁波导线圈)位置的示意图;
图11是本申请实施例提供的一种车联网通信方法示意图;
图12a是本申请实施例提供一种利用磁感波导线圈与蜂窝终端通信联接的V2N实现举例示意图;
图12b是本申请实施例提供一种利用磁感波导线圈与交通基础设施联接的V2I实现举例示意图;
图12c是本申请实施例提供一种利用磁感波导线圈通过无线磁感通信方式与行人便携设备相连的V2P实现举例示意图;
图12d是本申请实施例提供一种利用磁感波导线圈通过无线磁感通信方式与车辆或车载转发器相连的V2V及V2N实现举例示意图;
图13a是本申请实施例提供一种磁感波导线圈1004(第二线圈)示意图;
图13b是本申请实施例提供的另一种磁感波导线圈1004(第二线圈)示意图;
图13c是本申请实施例提供的另一种磁感波导线圈1004(第二线圈)示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请中使用的术语"部件"、"模块"、"系统"等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。需要说明的是,本申请方法实施例中步骤的编号,只具有标识方法中各步骤的作用,并不限定各编号步骤之间的先后顺序。
在介绍本申请的具体实施例之前,先对用到的磁感应的原理进行介绍。
磁感应(Magnetic Induction,MI)的原理来源于法拉利电磁感应定律,该定律指出任何封闭电路中感应电动势的大小,等于穿过这一电路磁通量的变化率。当考虑封闭电路为N砸线圈时,该定律可以公式化表示为:
Figure PCTCN2020097270-appb-000001
其中N为线圈数,φ B为磁通量,其定义为磁场强度和线圈投影面积的乘积:
φ B=B⊥A=BA sinα      (2)
其中B为磁场强度,A为线圈面积。如果要完成磁感通信,那么其系统内必定包含一对闭合回路,一个用来发射信号、一个用来接收。图1a是磁感通信的信道模型示意图,其中图1a、图1b、图1c分别是MI收发机、互感器模型以及等效电路示意图,如图1a所示,图中a t和a r分别为发射线圈和接收线圈的半径,r是发射机与接收机之间的距离,(90°-α)是两个耦合线圈轴线间的夹角。
假设发送端线圈中的信号是一个正弦电流,如I=I 0·e -jωt,其中ω是发射信号的角频率。根据上文讲到的法拉第电磁感应定律可知,发射端交变电流产生交变的磁场;接收端线圈内有交变的磁通量,从而产生接收端的交变电流,这就实现磁感通信的基本过程。
在应用方面,磁感应通信是一种利用磁场来传递信息的近场通信技术,其在水下无线传感器网络(Underwater Wireless Sensor Networks,UWSNs)和地下无线传感器网络(Wireless Underground Sensor Networks,WUSNs)展现出信道不变性(不受空-时信道环境参数变换影响)、时延可忽略性及远覆盖距离性。在传统射频、声及光无线通信低效的场景中,磁感通信却能够大展拳脚,让无线网络入地下海。基于近场通信(Near Field Communication,NFC)的磁感,不向远场辐射信号,可以在个人网络设备周围产生一个通信范围可控的隐私网路,因此MI通信成为了提供隐私保护、高安全等级的无线个人局域网络(Wireless Personal Area Network,WPAN)的最佳选择。
基于MI原理,本申请提供了一种车辆控制的装置、方法及装有该车辆控制装置的汽车。可以应用于自动驾驶,车联网,智能交通系统(Intelligent Transport System,ITS),以及各种存在无线局域通信与无线传感需求的场景中。还可应用于物联网(Internet of Things,IoT)的其他场景,具体地,如智能工厂、智能货架、智能停车场及大型舰船甲板等场景。
在进行具体实施例介绍之前,先将本申请中各实施例系统使用到的概念进行介绍:
磁感波导(磁波导):磁感信号是一种近场通信方式,其能有效传播的距离有限,往往不能达到一个波长;但在指定方向上布放多个无源线圈,当交变电流引发一个线圈中的磁通量变化时,就会感生其相邻线圈产生交变电流,而这个过程会进一步感生下一个相邻线圈产生交变电流,这个不断重复的过程就如同一个传播的波,因此称为磁感波导。磁感波导可以提供磁感信号的无源中继传递,构成网络通信通道及无线磁感传感的位置参考信号。磁感波导/磁波导在本申请中也称为第二线圈,含义相同,不做区分。
车载接收线圈:可以同时检测磁波导的磁场特性来感知当前车辆行驶方位与磁感波导布放位置间的关系,以及接收磁感通信网络中其它设备发来的通信信号。
车载发射线圈:可以同时为磁感波导提供产生无线磁感传感的标记能量,及向磁感通信网络内的其它设备发送通信信号。车载接收线圈和车载发射线圈的数量可以根据具体应用要求作出调整。两者还可以合并成一个车载收发线圈,利用诸如不同频点工作来进行收发。同样的,车载收发线圈的数量也可以根据情况和要求作出改变。出于方便理解的考虑,在本申请文件中车载接收线圈、车载发射线圈、车载收发线圈均统称为第一线圈,含义相同,不做区分。
图2是本申请实施例提供的一种基于磁感波导的磁感通信系统100框图,该系统实现了无线局域网络通信与无线传感的结合。该系统包括:磁感波导105,第一车载磁感发射器101,第一车载磁感接收器102。还可以包括:第二车载磁感发射器108,第二车载磁感接收器109,行人磁感收发器103,磁感蜂窝转发器104,交通基础设施设备106,蜂窝基站107等等。容易理解,车载磁感发射器和磁感接收器可以在车辆控制装置中用一个或一类线圈实现相关功能,也可以分别使用两个或两类线圈实现相关功能。另外,出于成本、功能限制或其他方面的考虑,车辆控制装置可以只包含车载接收器或发射器。其中,磁感波导提供磁感信号的中继传递,构成网络通信通道,传递无线磁感传感的位置参考信号。车载发射线圈,可以同时为磁感波导提供产生无线磁感传感的标记能量,以及向磁感通信网络内的其它设备发送通信信号。车载接收线圈,可以同时检测磁波导的磁场特性来感知当前车辆行驶方位与磁感波导布放位置间的关系,以及接收磁感通信网络中其它设备发来的通信信号。
本系统接入磁感通信网络的转发器104将磁感信号与无线蜂窝信号相互转发,实现V2N通信等,接入磁感通信网络的行人设备103实现V2P通信,接入磁感通网络的基础设施设备106实现V2I通信以及接入磁感通信网络的蜂窝网络基站107实现V2N通信。行人磁感收发器103,磁感蜂窝转发器104,交通基础设施106,蜂窝基站107等等可以近似看作是磁感通信网络中装有车辆控制装置的车辆(其他网元),以实现车载控制装置的相关功能,特别是在磁 感通信网络中实现通信功能。
本申请实施例将重点讲述该车辆控制装置的结构、工作原理和该车辆控制装置与磁波导交互的方法。
首先请参考图3,图3是本申请实施例提供的一种车辆控制装置1000,该车辆控制装置1000包括一个或多个第一线圈1001、处理器1002和通信接口1003,该一个或多个第一线圈1001与该处理器1002耦合,该处理器1002与该通信接口1003耦合;该第一线圈1001被配置为接收沿预定行车方向布放的第二线圈1004的第一信号,该第一线圈1001和该第二线圈1004具有预设的相对位置关系,当装有该汽车控制装置的车辆2000偏离该预定行车方向时,该第一线圈1001根据该第一线圈1001和该第二线圈1004的相对位置关系的变化生成电动势信号,该处理器1002被配置为根据该电动势信号输出第二信号,该第二信号用于指示车辆2000调整运行轨迹以按照该预定行车方向行驶。
该第一信号可以由通信网络中的网元产生,该网元与至少一个该第二线圈耦合,其中,该网元可以是该装有汽车控制装置的车辆、交通基础设施或其他车辆。
从两类线圈的相位位置上看,当该汽车控制装置用于接收沿预定行车方向布放的第二线圈1004的第一信号时,该第一线圈1001垂直于该第二线圈1004,该第二线圈1004平行于地面铺设且沿该预定行车方向排布成一列。为了便于理解,可以认为磁波导(第二线圈)1004平行于地面铺设且仅沿车道中心布放,这样可以实现最经济的布放、并且对于单车道或多车道系统均适用。平行于地面铺设相比与潜埋地下布置,具有施工量小,成本低,铺设快速等优势。
可选的,本申请基于车辆控制装置1000提供第一种车道保持的方案。当车辆向第一方向(例如左)偏离该预定行车方向时,第一线圈1001产生该电动势信号,该电动势信号包括第一方向电动势,处理器1002根据该第一方向电动势输出该第二信号,该第二信号用于指示车辆向第二方向(例如右)调整运行轨迹以按照该预定行车方向行驶。
当车辆向第二方向(如向右)偏离该预定行车方向时,第一线圈1001产生该电动势信号,该电动势信号包括第二方向电动势,该处理器根据该第二方向电动势输出该第二信号,该第二信号用于指示车辆向左调整运行轨迹以按照该预定行车方向行驶。
在该具体实施例中,汽车控制装置1000中的第一线圈1001所在平面平行于车辆行进方向。在偏离预定行车方向时会激发感应电流,利用感应电流方向的不同来进行驶方向的纠偏。实现方案简单,易于实现。
可选的,基于车辆控制装置1000提供第二种车道保持的方案。和第一种利用感生电动势方向来判断偏离方向的方法不同,该第二方案利用追踪电动势幅度信息最大值来进行纠偏。
当车辆偏离该预定行车方向时,该一个或多个第一线圈1001产生该电动势信号,该电动势信号包括在预定时间间隔内的电动势幅度信息,该处理器1002根据该电动势幅度信息输出第二信号,该第二信号用于指示车辆调整运行轨迹以按照该预定行车方向行驶,其中该电动势幅度信息包括以下信息中的至少一个:电动势的峰峰值、电动势最大值或最小值的绝对值、该预定时间间隔内电动势全部或部分积分。
更具体地,当该预定时间间隔内的滤波后的该电动势幅度信息小于下一个预定时间间隔内的滤波后的电动势幅度信息时(认为下一个预定时间间隔内的车辆纠正方向有误,处理器判断应该和该纠正方向相反),该下一个预定时间间隔对应的该第二信号指示的调整方向和该预定时间间隔对应的该第二信号指示的调整方向相反。在一个具体实施例中,该预定时间间隔对应的该第二信号指示的调整方向为向右,但是该预定时间间隔内的滤波后的该电动势峰峰值小于下一个预定时间间隔内的滤波后的电动势峰峰值,则下一个预定时间间隔对应的该第二信号指示的调整方向为向左。当该预定时间间隔内的滤波后的该电动势幅度信息大于下一个预定时间间隔内的滤波后的电动势幅度信息时(认为下一个预定时间间隔内的车辆纠正方向正确,处理器判断应该和该纠正方向相同。更具体地,转向的角度可以由两个时间间隔的滤波后的电动势幅度信息的该变量决定,例如该变量超过阈值则减小转向角度,如果 没有超过阈值则增加或保持转向角度。同理,车辆的行进速度也适应于这种考虑),该下一个预定时间间隔对应的该第二信号指示的调整方向和该预定时间间隔对应的该第二信号指示的调整方向相同,在一个具体实施例中,该预定时间间隔对应的该第二信号指示的调整方向为向右,但是该预定时间间隔内的滤波后的该电动势峰峰值大于下一个预定时间间隔内的滤波后的电动势峰峰值,则下一个预定时间间隔对应的该第二信号指示的调整方向保持向右。
在该实现方式和该方式的具体内容中,汽车控制装置中的第一线圈所在平面垂直于车辆行进方向。在偏离预定行车方向时会激发感应电流,跟踪周期内感应电流的特征值(如:峰峰值)来进行驶方向的纠偏。实现方案较简单,这种布置方案可以利用同一个第一线圈发射信号给磁波导进行车联网通信。
可选的,基于车辆控制装置1000提供第三种车道保持的方案。该方案可以参考图10b以及对应的文字描述。和第一种利用感生电动势方向来判断偏离方向的方法不同,该第三方案在第二种方案基础上利用两个或多个线圈追踪电动势信息最大值进行纠偏。
具体地,至少两个该第一线圈对称布置于车辆的左右两侧,当一侧(例如左侧)该第一线圈产生的该电动势幅度信息大于另一侧(例如右侧)该第一线圈产生的该电动势幅度信息时,该第二信号指示车辆向第一方向(例如左侧)调整运行轨迹以按照该预定行车方向行驶;当一侧(例如左侧)该第一线圈产生的该电动势幅度信息小于另一侧(例如右侧)该第一线圈产生的该电动势幅度信息时,该第二信号指示车辆向第二方向(例如右侧)调整运行轨迹以按照该预定行车方向行驶,其中该第一方向和该第二方向相反。可以理解,这里的左右是相对概念,从面向车头的方向和面向车位的方向看,左右可以互相倒换,但是本申请实施例中的左右都是从一个方向(车头或者车位)看的,在一种实施情况下保持统一。
该实现方式中汽车控制装置中的存在至少两个第一线圈,且该第一线圈所在平面垂直于车辆行进方向。在一个较优实施例中,可以参考图10b,装置中有3个第一线圈1001,装有该装置的车辆的行驶方向垂直纸面向里,3个线圈1001固定在汽车控制装置1000中,同时线圈1001所在的平面垂直于汽车的行驶方向。该方案通过判断接收线圈阵列中各个线圈在单位时间内输出感应电动势滤波信号的幅度。如果最大幅度线圈不在中央位置,车辆控制器向着幅度最大位置的接收线圈方向改变前进方向,直至中央线圈为最大幅度输出线圈。可以看出,该实现方式更加简单、直接,能够降低算法的复杂度。
可以看出,该汽车控制装置利用第二线圈(磁波导线圈1004)磁感线空间结构特性或者磁波导磁场能量空间分布特性来对车道位置进行判断。具体来讲,该车辆控制装置1000可以取代传统视觉传感器装置来实现自动车道保持、先后车距自动保持等功能,配合相邻车道磁波导的铺设还可以实现自动变道等功能。特别是和传统视觉传感器装置相比能够提高自动驾驶在多种天气、路况下的可靠度。如夜晚视觉传感器需要依赖车辆自身灯光和路灯的照明效果,而该车辆控制装置1000基于磁感通信实现车道保持,从原理上避免了对环境光的依赖。同时,该车辆控制装置1000与配套使用的磁波导线圈1004之间基于磁感应通信,避免了目前常用的射频通信的资源占用问题,与目前基于射频的车道保持方法相比,更无需在路边建设大量路侧单元RSUs、无需占用昂贵频谱资源。仅需沿预设行车轨迹铺设磁波导线圈1004,工程量小,建设成本低;通信低功耗;还具有近场通信不易被监听,天然拥有更高的物理层安全属性的特点。
该处理器1002还可以被配置为接收来自该通信接口1003的第三信号,该通信接口1003被配置为接收来自装有该汽车控制装置的车辆2000的信号;该处理器1002根据该第三信号生成电动势信号;该第一线圈1001被配置为根据该电动势信号发送第四信号,该第四信号用于标识该装有该汽车控制装置的车辆以及指示该车辆的运行信息。该车辆控制装置1000除了测量第二线圈的磁场之外,还可以通过第一线圈1001以磁感应信号的形式发送车辆的标识和信息,即所述的第四信号。其中,第三信号可以是车辆的当前车速、单位时间车速变化、该车辆接收到的基础设施设备信息等内容。
该汽车控制装置1000接收该装有汽车控制装置的车辆2000的第三信号;该汽车控制装 置1000基于该第三信号发送第四信号给该第二线圈1004,该第四信号用于标识该装有该汽车控制装置的车辆以及指示该车辆的运行信息。
具体来看,当该汽车控制装置1000发送该第四信号时,该第二线圈1004传递该第四信号至另一支持磁感通信的车辆或者网元;或者该第二线圈1004传递并放大该第四信号至另一支持磁感通信的车辆或者网元。
可选的,该汽车控制装置1000通过总线1005与整车控制单元VCU1006通信,该整车控制单元VCU1006用于车辆动力系统的协调与控制。一般来讲,VCU中会存有该车辆传动系统相关信息,通过总线传递相关信息给该汽车控制装置1000,该汽车控制装置1000也可以传递车辆轨迹调整信息给VCU。
可选的,在上述方面的一些实现方式下,该通信接口被配置为接收以下信号中的至少一个:来自该汽车控制装置部署车辆的总线信号、无线信号。该无线信号可以来自与通信接口耦合的蓝牙模块1004,该蓝牙模块1004可以与装有该车辆控制装置的车辆上的其他蓝牙模块1009通信。
具体地,在上述方面的一些实现方式下,该汽车控制装置1000与车载专用处理器1007通信,该车载专用处理器用于运行车载信息娱乐IVI系统。
在上述方面的一些实现方式下,汽车控制装置还包括无线通信模块1008,该无线通信模块1008与该处理器1002耦合,该无线通信模块1008用于通过无线接入网络1200与核心网通信。
可以看出,一方面,V2V,V2I,V2P等通信中的小数据量控制信息(例如紧急制动,突然变道)的传递可以无需占用蜂窝网空口资源、减少端到端的时延,提高行车安全性。另一方面,可以通过行驶在磁波导上的装有该汽车控制装置的汽车与蜂窝网络相联接,磁波导V2X可以成为蜂窝网的一部分,辅助或增强C-V2X的功能及覆盖能力。利用磁波导搭建磁感位置标识的同时,为近场磁感通信公路上的车辆或设施传递信号,实现V2X通信。
出于实施和应用的考虑,图4是本申请实施例提供的一种具有车道保持和通信功能的汽车2000,包括汽车控制装置1000、转向系统2001和传动系统2002,该汽车控制装置1000分别和转向系统2001、传动系统2002通过总线2003耦合,该汽车控制装置1000与上述汽车控制装置功能相同,因此不再赘述,仅需要进行通信接口的联接和该装置的安装固定,装置的输出信号用于指示转向系统2001和传动系统2002调整以按照所述预定行车方向行驶。可以认为是该装置的具体应用。该转向系统2001是指用于改变或保持汽车行驶或倒退方向的一系列装置,该传动系统2002一般由离合器、变速器、万向传动装置、主减速器、差速器和半轴等组成。其基本功用是将发动机发出的动力传给汽车的驱动车轮,产生驱动力,使汽车能在一定速度上行驶。
基于该车辆控制装置,在磁感通信的交通系统中,装有该车辆控制装置的汽车2000还可以用于主动发送装有该装置车辆的信息给磁波导1004,以使和磁波导耦合的其他网元交互信息,例如另一辆可通信的车辆、基础设施、可磁感通信的蜂窝网络等。
可以看出,磁波导(第二线圈)1004可以同时进行无线传感和无线通信,利用磁波导搭建磁感位置标识的同时,为近场磁感通信公路上的车辆或设施传递信号,实现V2X通信。该方面的实现方式利用一项物理层空口技术完成两大类工作目标。
利用上述的车辆控制装置或者装有该装置的汽车,图5是本申请实施例提供的一种车辆控制方法框图,该方法可以参考图6车辆控制装置与地面磁波导相对位置的示意图,该示意图包括:车辆控制装置内的第一线圈1001,第二线圈1004,该第二线圈1004沿路面平行铺设,且沿着预设的行车方向铺设,图示第二线圈1004有三个,所示数量仅用于示意,在某时刻时,三个第二线圈1004的磁场方向如图6所示保持一致:向上,装有该车辆控制装置的车辆沿预设的行车方向(图上的箭头方向)行驶。以帮助理解本申请技术方案。该方法包括:
S101,沿预定行车方向布放的第二线圈1004发射第一信号,该第二线圈1004平行于地面铺设且沿该预定行车方向排布成一列;
S102,装有汽车控制装置的车辆接收该第二线圈1004的第一信号,该汽车控制装置根据该第一信号生成第二信号,该第二信号用于指示车辆调整运行轨迹以按照该预定行车方向行驶。
更具体地,图7是本申请实施例提供的一种车辆控制方法流程图,该方法主要包括以下步骤:
S1,磁感波导线圈(即第二线圈)沿车道中线且平行于车道布放。
其产生的磁场中线垂直于地面,其交变磁场通过波导从其它波导线圈感应产生。在磁波导线圈所在平面,距离线圈圆心越远,单位面积上的磁通量变化越少。
应当理解,本申请实施例将磁感波导运用到车道保持技术中,该磁感波导可以是当前车辆的发射线圈感生到磁感波导上的;也可以是其它车辆的发射线圈感生到磁感波导上的;也可以是磁感通信网络上的任意设备感生到磁波导上的能量。该交变磁场可以通过波导从其它波导线圈感传递过来,由波导从远方感应产生。该交变磁场的能量可能会在波导传播中发生损失,所以在磁感波导中间可以加入中继器或者信号增强装置以减少磁场的能量损失,具体实施细节不在本申请的讨论范围内。
S2,车辆控制装置通过垂直于磁波导的线圈测量沿车道中线布放磁波导的磁场,来判断车体行进中线与车道中线的关系。该车辆控制装置内的接收线圈所在平面平行于行进方向。
具体地,图8a是两个线圈的相对位置关系以及接收线圈所在车辆的行进方向示意图,主要包括:车辆控制装置中的第一线圈1001,水平铺设在路面上且仅沿行车方向铺设的第二线圈1004。与目前很多技术实现中水平线圈(功能相当于第一线圈)感应左右两侧标记线圈(功能相当于第二线圈)的磁场来进行位置判断不同。在这种实施例的相对位置关系下,本具体实施例仅需要判断感生电动势/电流的方向,硬件实现的复杂度低。不需要利用车道两侧线圈的磁场叠加信号来进行判断,功耗较小、灵密度高。
S3,该车道保持方法利用第二线圈的磁感线空间结构特性进行判断,如图8b所示为接收线圈感应电流/电动势方向0的示意图,当第一线圈1001处于第二线圈1004磁场的中线时,第一线圈1001中不会有感应电流。
S4.如图8c所示为接收线圈感应电流/电动势方向1,车辆行进方向垂直纸面向里,当车体向右偏离车道时,第一线圈1001处于第二线圈1004磁场的右侧,车体线圈内变化的磁通量会在第一线圈1001内产生第一方向感应电流及第一方向感应电动势,车辆控制装置可检测到第一方向电动势,并输出控制信号。
S5.如图8d所示为接收线圈感应电流/电动势方向2,车辆行进方向垂直纸面向里,当车体向左偏离车道时,第一线圈1001处于第二线圈1004磁场的左侧,车体线圈会变化的磁通量会在第一线圈1001内产生第二方向感应电流及第二方向感应电动势,车辆控制装置可检测到第二方向电动势,并输出控制信号。
S6.装有该车辆控制装置的车辆通过输出的控制信号感知车道的偏离方向,来自动调整驾驶方向,并始终保持车辆沿磁波导中线行进。
图9是本申请实施例提供的另一种车辆控制方法流程图,包括:
S1,磁感波导线圈(第二线圈)沿车道中线且平行于车道布放,具体内容不再赘述。
S2,车辆控制装置通过垂直于磁波导线圈的第一线圈来测量沿车道中线布放磁感波导线圈的磁场,来判断车体行进中线与车道中线的关系。该车辆控制装置内的第一线圈所在平面垂直于行进方向。
线圈中心指向行进方向的第一线圈来检测所述磁场变化的强弱,通过检测第一线圈产生的感应电动势/感应电流的大小来判断第二线圈所在位置。
S3,车辆通过追踪感应电动势的峰峰值的最大值来判断的磁感波导线圈的位置来调整行进方向。(根据磁感波导线圈的空间能量分布来对车道位置进行判断)
下面以一个具体情况进行举例说明,假设车速为v,磁波导内线圈的间距为d,磁波 导内已经激发的磁场信号变化频率为f 1,那么车在行进过程中,车载线圈感生的电信号频率
Figure PCTCN2020097270-appb-000002
在通常市区道路,车辆行驶速度为30km/h,磁波导内线圈距离为1m,磁波导内激发的磁场频率为200Hz,那么车载线圈感生信号频率为1.67kHz。
与接收线圈相连的信号处理电路会在信号滤波后(例如常见的低通或带通滤波,可以滤除因为一些外在干扰引入的噪声),分析单位时间Δt内的线圈电动势的峰峰值V p。分析的单位时间
Figure PCTCN2020097270-appb-000003
是接收感应信号的m个周期。M为大于1的正整数,通常取值为2~5。假设M为4,那么需要的分析时间为2.4ms。可选的,除了线圈电动势的峰峰值,还可以选用单位时间内的电动势的部分积分或电动势绝对值的全部积分。
如图10a所示是采用单个第一线圈检测第二线圈(磁波导线圈)位置的示意图,沿车道中线布放磁波导线圈1004构成磁感波导以传递第一信号,当装有车辆控制装置1000的车辆靠近车道中心的时候,第一线圈电动势的峰峰值V p大,如果偏离中心,V p能够达到的最大幅度一定比非中线位置小。因此,车辆处理器会通过改变车的前进方向来追踪各个单位时间内第一线圈内V p变化,通知整车控制器VCU改变行进方向。如果V p变小则向反方向调节,如果变大则保持调整方向不变。具体调整的幅度,可以通过行车控制单元内的自动化控制电路(如VCU),依据经典PID控制方法或者机器学习算法来决定。出于工程实现的考虑,该最大幅度值可以是预先设定的某个数值。
如图10b所示是采用第一线圈阵列的方式检测第二线圈(磁波导线圈)位置的示意图,图中示出了3个磁波导线圈,分别布置在车辆控制装置1000内的左、中、右三个位置,左右两侧第一线圈关于中间的第一线圈对称布置,在一个优选实施例中,装置1000以中间的第一线圈为基准点布置在车辆的轴线上。沿车道中线布放磁波导线圈1004构成磁感波导以传递第一信号,可以通过比较第一线圈阵列中各个线圈的电动势的峰峰值V p(i)来确定车道保持情况。如果V p(i)最大幅度线圈不在中央位置(或者关于中央位置对称),车辆控制器向着V p(i)幅度最大位置的第一线圈方向改变前进方向,直至中央线圈为最大幅度输出线圈。可以理解,第一线圈阵列可以是2个,4个或者更多的第一线圈组成,本实施例举例并不构成实际限制,仅提供第一线圈阵列原理的思路。当阵列为偶数个第一线圈时,车辆控制器向着中央两个第一线圈的V p(i)幅度增大的方向改变前进方向,直至中央的两个第一线圈同时达到最大值(或者设定的阈值)。
图11是本申请实施例提供的一种车联网通信方法示意图。该方法包括:
S1,磁感波导线圈(即上述第二线圈)水平于路面分布放置或者垂直于路面分布放置,利用磁感波导线圈将仅在近场分布的磁感信号(仅存在交变的磁场、可以忽略的电场,无法向远场传输)沿着波导进行传输,搭建车辆与车辆之间、或者车辆与其他网元之间的磁感通信网络。
现有V2X技术往往采用射频远场信号(磁场与电场相互感生,会向无限空间辐射)来建立无线通信网络。与之相比,本申请实施例的方案可以不用占用额外的频谱资源。
S2,车辆V1将需要传递的信息(如车速、前方路况、前车急刹车预警,后车超车预警等)通过发射线圈调制在变化的磁场中,变化的磁场会依次感生邻近及远方的波导线圈产生包含相同信息的交变磁场,车辆V2通过接收线圈提取车辆V1信息。
所述的车辆V1和车辆V2的发射线圈可以同时垂直放置,也可以同时水平放置,也可以一个垂直、一个水平放置;但都垂直放置能保证有更多的磁感线同时穿过接收/发射线圈与磁波导,有着更好的耦合效果。
可选的,磁感波导线圈传递的信号由通信网络中的网元产生,该网元与至少一个磁感波导线圈耦合,其中,该网元包括装有汽车控制装置的车辆、交通基础设施。
图12a是本申请实施例提供一种利用磁感波导线圈与蜂窝终端通信联接的V2N实现举例示意图,包括:铺设在固定设施上的磁感波导线圈1004(第二线圈)及位于移动车辆上的车辆控制装置1000,以及与磁波导线圈1004通过链接线缆或者连接设备4000相连的蜂窝设备4000,如无线蜂窝中继器或无线蜂窝基站,从而实现V2N通信。信息可以汇聚到核心网、边缘计算站等,实现交投流量控制、车队引导等功能。在与蜂窝设备4001相连后能够与C-V2X相融合。
图12b是本申请实施例提供一种利用磁感波导线圈与交通基础设施联接的V2I实现举例示意图。包括:铺设在固定设施或路面上的磁感波导线圈1004(第二线圈)及位于移动车辆上的车辆控制装置1000,以及与磁波导线圈1004通过链接线缆或者连接设备4000相连的基础设施4002,如信号灯,从而实现V2I通信。保证V2I通信时,车辆与邻近的交通设施相通信,车辆获取附近的交通信息,而且不会造成过量的信息冗余。
图12c是本申请实施例提供一种利用磁感波导线圈通过无线磁感通信方式与行人便携设备相连的V2P实现举例示意图。包括:铺设在固定设施或路面上的磁感波导线圈1004(第二线圈)及位于移动车辆上的车辆控制装置1000,以及携带磁感通信设备4003的行人,从而实现V2P通信。对行人实现来往车辆警示,对车辆实现紧急制动控制等。所述磁感通信设备4003可集成到手机等移动设备当中。
图12d是本申请实施例提供一种利用磁感波导线圈通过无线磁感通信方式与车辆或车载转发器相连的V2V及V2N实现举例示意图。包括:铺设在固定设施或路面上的磁感波导线圈1004(第二线圈)及位于移动车辆上的车辆控制装置1000(多个车辆上装有该装置1000),第一移动车辆4004通过蜂窝与核心网相连。第二移动车辆4005可以借助磁感波导线圈1004与第一移动车辆4004实现磁感通信后,通过第一移动车辆4004完成与核心网连接。在V2V及V2N通信中,传递车况、路况信息,或者接收流量调控、车队调度信息等。
图13a是本申请实施例提供一种磁感波导线圈1004(第二线圈)示意图。该磁感波导线圈1004可以采用柔性PCB制造,印刷在柔性基材5000上,使得该磁感波导线圈1004可以如胶带般轻松铺设在现有固定设施上。一种柔性PCB磁感波导线圈1004为圆形,在一种优选实施例中,几何参数为:直径22毫米,线宽1毫米;线圈连接电容1004a,在一种优选实施例中,电容容量为270皮法;此时,线圈的谐振频率为46MHz,可用通信带宽为5MHz。
图13b是本申请实施例提供的另一种磁感波导线圈1004(第二线圈)示意图。该磁感波导线圈1004也采用柔性PCB制造,印刷在柔性基材5000上。柔性PCB磁感波导线圈为矩形,在一种优选实施例中,几何参数为:矩形外边长9.5mm,线宽1.5毫米,开口0.8毫米;线圈1004连接电容1004a,在一种优选实施例中,电容容量为22皮法,同时并联50欧电容1004b;此时,线圈的谐振频率为240MHz,可用通信带宽为45~70MHz。
所述印刷电路中线圈的电容可以为可变电容,通过外围自适应耦合控制电路实现波导线圈的共振频率调整,实现与S1中所述磁感发射端与磁感接收端的最佳耦合。
所述磁感波导线圈1004也可以如图13c(本申请实施例提供的另一种磁感波导线圈1004(第二线圈)示意图)所示共轴放置:磁感波导线圈1004沿道路方向的投影重合。采用硬质PCB板制造,潜埋在地下或者锚定在路表面。
本申请实施例中的总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者 可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种车辆控制装置,其特征在于,
    包括一个或多个第一线圈、处理器和通信接口,所述一个或多个第一线圈与所述处理器耦合,所述处理器与所述通信接口耦合;
    所述第一线圈被配置为接收沿预定行车方向布放的第二线圈的第一信号,所述第一线圈和所述第二线圈具有预设的相对位置关系,当装有所述汽车控制装置的车辆偏离所述预定行车方向时,所述第一线圈根据所述第一线圈和所述第二线圈的相对位置关系的变化生成电动势信号,所述处理器被配置为根据所述电动势信号输出第二信号,所述第二信号用于指示车辆调整运行轨迹以按照所述预定行车方向行驶。
  2. 一种具有车道保持和通信功能的汽车,其特征在于,
    包括汽车控制装置、转向系统和传动系统,所述汽车控制装置分别和转向系统、传动系统耦合,所述汽车控制装置包括一个或多个第一线圈、处理器和通信接口,所述一个或多个第一线圈与所述处理器耦合,所述处理器与所述通信接口耦合,
    所述第一线圈被配置为接收沿预定行车方向布放的第二线圈的第一信号,所述第一线圈和所述第二线圈具有预设的相对位置关系,当装有所述汽车控制装置的车辆偏离所述预定行车方向时,所述第一线圈根据所述第一线圈和所述第二线圈的相对位置关系的变化生成电动势信号,所述处理器根据所述电动势信号输出第二信号,所述第二信号用于指示所述转向系统和所述传动系统调整以按照所述预定行车方向行驶。
  3. 根据权利要求1所述的装置或权利要求2所述的汽车,其特征在于,
    当所述汽车控制装置用于接收沿预定行车方向布放的第二线圈的第一信号时,所述第一线圈垂直于所述第二线圈,所述第二线圈平行于地面铺设且沿所述预定行车方向排布成一列。
  4. 根据权利要求1所述的装置或权利要求2所述的汽车,其特征在于,
    当车辆向第一方向偏离所述预定行车方向时,所述一个或多个第一线圈产生所述电动势信号,所述电动势信号包括第一方向电动势,所述处理器根据所述第一方向电动势输出所述第二信号,所述第二信号用于指示车辆向第二方向调整运行轨迹以按照所述预定行车方向行驶;
    当车辆向第二方向偏离所述预定行车方向时,所述一个或多个第一线圈产生所述电动势信号,所述电动势信号包括第二方向电动势,所述处理器根据所述第二方向电动势输出所述第二信号,所述第二信号用于指示车辆向第一方向调整运行轨迹以按照所述预定行车方向行驶,其中所述第一方向和所述第二方向相反。
  5. 根据权利要求1所述的装置或权利要求2所述的汽车,其特征在于,
    当车辆偏离所述预定行车方向时,所述一个或多个第一线圈产生所述电动势信号,所述电动势信号包括在预定时间间隔内的电动势幅度信息,所述处理器根据所述电动势幅度信息输出第二信号,所述第二信号用于指示车辆调整运行轨迹以按照所述预定行车方向行驶,其中所述电动势幅度信息包括以下信息中的一个或多个:电动势的峰峰值、电动势最大值或最小值的绝对值、所述预定时间间隔内电动势全部或部分积分。
  6. 根据权利要求5所述的装置或汽车,其特征在于,
    当所述预定时间间隔内的滤波后的所述电动势幅度信息小于下一个预定时间间隔内的滤波后的电动势幅度信息时,所述下一个预定时间间隔对应的所述第二信号指示的调整方向和所述预定时间间隔对应的所述第二信号指示的调整方向相反;
    当所述预定时间间隔内的滤波后的所述电动势幅度信息大于下一个预定时间间隔内的滤波后的电动势幅度信息时,所述下一个预定时间间隔对应的所述第二信号指示的调整方向和所述预定时间间隔对应的所述第二信号指示的调整方向相同。
  7. 根据权利要求5所述的装置或汽车,其特征在于,
    至少两个所述第一线圈对称布置于车辆的左右两侧,当一侧所述第一线圈产生的所述电 动势幅度信息大于另一侧所述第一线圈产生的所述电动势幅度信息时,所述第二信号指示车辆向第一方向调整运行轨迹以按照所述预定行车方向行驶;当一侧所述第一线圈产生的所述电动势幅度信息小于另一侧所述第一线圈产生的所述电动势幅度信息时,所述第二信号指示车辆向第二方向调整运行轨迹以按照所述预定行车方向行驶,其中所述第一方向和所述第二方向相反。
  8. 根据权利要求1所述的装置或权利要求2所述的汽车,其特征在于,
    所述处理器还被配置为接收来自所述通信接口的第三信号,所述通信接口被配置为接收来自装有所述汽车控制装置的车辆的信号;所述处理器根据所述第三信号生成电动势信号;所述第一线圈被配置为根据所述电动势信号发送第四信号,所述第四信号用于标识所述装有所述汽车控制装置的车辆以及指示所述车辆的运行信息。
  9. 一种车辆控制方法,其特征在于,
    汽车控制装置接收沿预定行车方向布放的第二线圈发射的第一信号,所述第二线圈平行于地面铺设且沿所述预定行车方向排布成一列;
    所述汽车控制装置根据所述第一信号生成第二信号,所述第二信号用于指示车辆调整运行轨迹以按照所述预定行车方向行驶。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一信号由通信网络中的网元产生,所述网元与至少一个所述第二线圈耦合,其中,所述网元包括装有所述汽车控制装置的车辆或交通基础设施设备。
  11. 根据权利要求9或10所述的方法,其特征在于,
    所述汽车控制装置接收所述装有汽车控制装置的车辆的第三信号;
    所述汽车控制装置基于所述第三信号发送第四信号给所述第二线圈,所述第四信号用于标识所述装有所述汽车控制装置的车辆以及指示所述车辆的运行信息。
  12. 根据权利要求11所述的方法,其特征在于,
    当所述汽车控制装置发送所述第四信号时,所述第二线圈传递所述第四信号至另一支持磁感通信的车辆或者网元;或者
    所述第二线圈传递并放大所述第四信号至另一支持磁感通信的车辆或者网元。
PCT/CN2020/097270 2019-06-21 2020-06-20 基于磁感通信的车辆控制的装置和方法 WO2020253851A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20827469.6A EP3982227B1 (en) 2019-06-21 2020-06-20 Magnetic induction communication-based vehicle control apparatus and method
JP2021576059A JP7347748B2 (ja) 2019-06-21 2020-06-20 磁気誘導通信ベースの車両制御装置および方法
US17/556,639 US20220116079A1 (en) 2019-06-21 2021-12-20 Magnetic induction communication-based vehicle control apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910541482.4 2019-06-21
CN201910541482.4A CN112109706B (zh) 2019-06-21 2019-06-21 基于磁感通信的车辆控制的装置和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/556,639 Continuation US20220116079A1 (en) 2019-06-21 2021-12-20 Magnetic induction communication-based vehicle control apparatus and method

Publications (1)

Publication Number Publication Date
WO2020253851A1 true WO2020253851A1 (zh) 2020-12-24

Family

ID=73796245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097270 WO2020253851A1 (zh) 2019-06-21 2020-06-20 基于磁感通信的车辆控制的装置和方法

Country Status (5)

Country Link
US (1) US20220116079A1 (zh)
EP (1) EP3982227B1 (zh)
JP (1) JP7347748B2 (zh)
CN (1) CN112109706B (zh)
WO (1) WO2020253851A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117906728A (zh) * 2024-03-20 2024-04-19 四川开物信息技术有限公司 一种车辆称重系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114115266B (zh) * 2021-11-24 2024-06-21 广东嘉腾机器人自动化有限公司 Agv磁寻迹偏移量计算方法、存储介质及agv

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214641A (ja) * 1993-01-14 1994-08-05 Nippon Yusoki Co Ltd 無人搬送車の電磁誘導式操舵システム
CN202022205U (zh) * 2011-03-17 2011-11-02 交通运输部公路科学研究所 面向安全辅助驾驶的多源信息融合装置
CN102402226A (zh) * 2011-12-30 2012-04-04 长春艾希技术有限公司 非接触式供电自动导引车的电磁导引装置
CN202929482U (zh) * 2012-11-23 2013-05-08 岳阳千盟电子有限公司 基于感应无线技术的自动寻迹定位车系统
CN205139706U (zh) * 2015-11-19 2016-04-06 深圳市招科智控科技有限公司 自动导引运输车的导航定位系统
JP2018032901A (ja) * 2016-08-22 2018-03-01 富士通株式会社 無線通信装置の車内外判定システム、無線通信装置の車内外判定装置、および車内外判定制御プログラム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518864B2 (zh) * 1972-12-19 1980-05-22
US4657087A (en) * 1983-02-07 1987-04-14 Zvi Livneh Vehicle control system including vehicle with steering and elevation control relative to a filament
DE3690742T1 (zh) * 1986-11-07 1988-10-27
US5708427A (en) * 1996-04-18 1998-01-13 Bush; E. William Vehicle in-lane positional indication/control by phase detection of RF signals induced in completely-passive resonant-loop circuits buried along a road lane
JP4366674B2 (ja) * 2000-03-28 2009-11-18 マツダ株式会社 車両用制御装置
JP4984398B2 (ja) 2005-02-04 2012-07-25 富士電機株式会社 半導体装置およびその製造方法
KR101340503B1 (ko) * 2012-06-29 2013-12-12 부산대학교 산학협력단 양극형 자기유도 장치와 agv 유도 방법
CN109017346B (zh) * 2012-11-12 2022-01-25 奥克兰联合服务有限公司 车辆或移动对象检测
JP2014236539A (ja) * 2013-05-31 2014-12-15 小島プレス工業株式会社 非接触充電用送電装置及び電動車両の走行制御システム
GB2521676B (en) * 2013-12-31 2016-08-03 Electric Road Ltd System and method for powering an electric vehicle on a road
US20160064943A1 (en) * 2014-08-28 2016-03-03 Konkuk University Industrial Cooperation Corp. Controlling method and system of power transmission system
US9278691B1 (en) * 2014-09-18 2016-03-08 Flextronics Ap, Llc Vehicle lane departure system based on magnetic field flux detection
ES2703398T3 (es) * 2015-09-01 2019-03-08 Otis Elevator Co Comunicación inalámbrica de ascensor y sistema de transferencia de potencia
JP6947171B2 (ja) * 2016-04-28 2021-10-13 愛知製鋼株式会社 運転支援システム
US20170341519A1 (en) * 2016-05-25 2017-11-30 Delphi Technologies, Inc. Method of pairing a transmitter and receiver of a wireless charging system and apparatus for performing same
KR102550114B1 (ko) * 2016-06-16 2023-06-29 현대자동차주식회사 코일 정렬 방법 및 이를 이용하는 전기차 무선 전력 전송 장치
US20180056800A1 (en) * 2016-07-28 2018-03-01 Witricity Corporation Relative position determination and vehicle guidance in wireless power transfer systems
JP6766527B2 (ja) * 2016-08-30 2020-10-14 愛知製鋼株式会社 車両用システム及び進路推定方法
US11119499B2 (en) 2017-03-28 2021-09-14 Aichi Steel Corporation Marker system
US10282984B2 (en) * 2017-05-30 2019-05-07 Ford Global Technologies, Llc Inductive loop detection systems and methods
JP7005943B2 (ja) 2017-06-06 2022-01-24 愛知製鋼株式会社 マーカシステム及び運用方法
US10977932B2 (en) * 2018-12-04 2021-04-13 At&T Intellectual Property I, L.P. Method and apparatus for electromagnetic wave communications associated with vehicular traffic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214641A (ja) * 1993-01-14 1994-08-05 Nippon Yusoki Co Ltd 無人搬送車の電磁誘導式操舵システム
CN202022205U (zh) * 2011-03-17 2011-11-02 交通运输部公路科学研究所 面向安全辅助驾驶的多源信息融合装置
CN102402226A (zh) * 2011-12-30 2012-04-04 长春艾希技术有限公司 非接触式供电自动导引车的电磁导引装置
CN202929482U (zh) * 2012-11-23 2013-05-08 岳阳千盟电子有限公司 基于感应无线技术的自动寻迹定位车系统
CN205139706U (zh) * 2015-11-19 2016-04-06 深圳市招科智控科技有限公司 自动导引运输车的导航定位系统
JP2018032901A (ja) * 2016-08-22 2018-03-01 富士通株式会社 無線通信装置の車内外判定システム、無線通信装置の車内外判定装置、および車内外判定制御プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117906728A (zh) * 2024-03-20 2024-04-19 四川开物信息技术有限公司 一种车辆称重系统
CN117906728B (zh) * 2024-03-20 2024-06-07 四川开物信息技术有限公司 一种车辆称重系统

Also Published As

Publication number Publication date
JP7347748B2 (ja) 2023-09-20
CN112109706B (zh) 2022-06-24
JP2022537414A (ja) 2022-08-25
EP3982227A4 (en) 2022-06-29
CN112109706A (zh) 2020-12-22
EP3982227B1 (en) 2023-08-02
US20220116079A1 (en) 2022-04-14
EP3982227A1 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
US10002536B2 (en) Apparatus and method for providing service in vehicle to everything communication system
KR102195939B1 (ko) 자율주행 차량의 배터리 충전 방법 및 이를 위한 장치
US20200007661A1 (en) Method and apparatus for setting connection between vehicle and server in automated vehicle & highway systems
US20190385450A1 (en) Method and apparatus for providing virtual traffic light service in automated vehicle and highway systems
Popescu-Zeletin et al. Vehicular-2-X communication: state-of-the-art and research in mobile vehicular ad hoc networks
US20200026294A1 (en) Method for controlling vehicle in autonomous driving system and apparatus thereof
US9959752B2 (en) Apparatus and method for a relay station for vehicle-to-vehicle messages
JP4468970B2 (ja) 車載通信装置
US20220116079A1 (en) Magnetic induction communication-based vehicle control apparatus and method
US20230256997A1 (en) Intelligent beam prediction method
US20200033885A1 (en) Method for controlling vehicle in autonomous driving system and apparatus thereof
US20200029191A1 (en) Method and apparatus for setting a server bridge in an autonomous driving system
Abualhoul et al. Enhancing the field of view limitation of visible light communication-based platoon
CN109993841A (zh) 多模路侧单元rsu设备与不停车电子收费etc系统
JP4670919B2 (ja) 車々間通信装置、及び車々間通信装置による経路修復方法
US10833737B2 (en) Method and apparatus for controlling multi-antenna of vehicle in autonomous driving system
JP2007108837A (ja) 車載通信装置及び車両間通信システム
CN112399347A (zh) 一种报文处理方法及设备
CN204129953U (zh) 车辆检测装置
JP4606453B2 (ja) 車載器
KR101274837B1 (ko) 교통량 통제시스템
Maitipe Development and field demonstration of DSRC-based traffic information system for the work zone.
JP4651246B2 (ja) 路車間通信用車載アンテナ
CN110060491A (zh) 车路协同的车道状态发布装置及系统
CN104637298A (zh) 车辆检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021576059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020827469

Country of ref document: EP

Effective date: 20220105