WO2020253726A1 - 一种铈锆铝基复合材料、cGPF催化剂及其制备方法 - Google Patents

一种铈锆铝基复合材料、cGPF催化剂及其制备方法 Download PDF

Info

Publication number
WO2020253726A1
WO2020253726A1 PCT/CN2020/096584 CN2020096584W WO2020253726A1 WO 2020253726 A1 WO2020253726 A1 WO 2020253726A1 CN 2020096584 W CN2020096584 W CN 2020096584W WO 2020253726 A1 WO2020253726 A1 WO 2020253726A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium
cerium
aluminum
composite material
catalyst
Prior art date
Application number
PCT/CN2020/096584
Other languages
English (en)
French (fr)
Inventor
李大成
王金凤
兰丽
叶辉
杨兰
张锋
杨怡
程永香
罗甜甜
董银华
王云
李云
陈启章
Original Assignee
中自环保科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中自环保科技股份有限公司 filed Critical 中自环保科技股份有限公司
Priority to US17/619,391 priority Critical patent/US20220363603A1/en
Publication of WO2020253726A1 publication Critical patent/WO2020253726A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • B01D53/865Simultaneous elimination of the components characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • B01D53/8653Simultaneous elimination of the components characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • B01J35/31
    • B01J35/40
    • B01J35/613
    • B01J35/615
    • B01J35/633
    • B01J35/635
    • B01J35/638
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2066Praseodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the field of exhaust gas purification materials, in particular to a cerium-zirconium-aluminum-based composite material, a cGPF catalyst and a preparation method thereof
  • Gasoline engine exhaust emissions are one of the main sources of urban pollution in China.
  • the main pollutants in the exhaust gas emitted by gasoline engine engines are carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO X ) and particulate matter (PM), etc. .
  • CO carbon monoxide
  • HC hydrocarbons
  • NO X nitrogen oxides
  • PM particulate matter
  • the traditional three-way catalyst can only effectively purify CO, HC and NO X in the exhaust gas, but cannot control the concentration of particulate matter in the exhaust gas. It can be predicted that gasoline engine particles can significantly reduce the concentration of particulate matter in the exhaust gas.
  • the trap catalyst cGPF will be widely used.
  • the catalyst coatings in today’s cGPF catalysts mostly use mixed cerium-zirconium-based materials and alumina-based materials. Although it has an excellent purification effect on gasoline engine particulate matter, it can effectively control the emission concentration of particulate matter and make gasoline engine exhaust gas comply with national standards. 6, but due to its low density and large volume, after filling it into the pores of the cGPF carrier, it will occupy a larger volume of the pores, thereby reducing the pore diameter and pore volume, resulting in increased catalyst back pressure and resistance to ash The decrease in accumulation capacity is not conducive to the large-scale application of cGPF catalyst.
  • the purpose of the present invention is to overcome the defect that the cerium-zirconium-based material and alumina-based material in the existing cGPF catalyst occupy too much volume of the catalyst carrier pores, which results in poor ash accumulation resistance of the cGPF catalyst, and proposes a cerium-zirconium-aluminum-based composite material, cGPF catalyst and its preparation method; the present invention adopts a step-by-step precipitation method to first prepare aluminum-based pretreatment material, then co-precipitate it with zirconium and cerium sol, and finally obtain a cerium-zirconium-aluminum composite material after high-temperature roasting.
  • the matrix composite material has better compactness and higher density.
  • the volume of the pores on the catalyst carrier is smaller, so that the cGPF catalyst has lower back pressure and better resistance to ash accumulation
  • the capacity is conducive to the large-scale application of cGPF catalyst.
  • the present invention provides a method for preparing a cerium-zirconium-aluminum-based composite material, which includes the following steps:
  • the mixture precipitate is first calcined at a temperature of 500-600°C for 1-10h, and then calcined at a temperature of 800-1100°C for 1-10h to obtain a cerium-zirconium-aluminum-based composite material.
  • the mass fraction of citric acid in the citric acid aqueous solution is 5-20%; the preferred mass fraction of citric acid has a fast reaction speed and a more thorough reaction.
  • the ammonia concentration in steps (1) and (2) is 20-30wt%; the preferred ammonia concentration, the reaction speed is controllable, and the reaction time is shorter.
  • the resulting cerium-zirconium-aluminum-based composite material can catalyze the exhaust gas The purification effect is better.
  • the drying temperature in steps (1) and (2) is 60-150°C, and the time is 1-12h; the preferred drying temperature and time have faster drying speed, lower energy consumption, and will not cause dry matter A chemical reaction occurs due to high temperature.
  • the mixed sol in step (2) is a sol that further contains one or more of yttrium ion, lanthanum ion, neodymium ion, praseodymium ion, palladium ion, and strontium ion; the preferred mixed sol contains more rare earth metals Element, the density is smaller, and the prepared cerium-zirconium-aluminum-based composite material has a better catalytic purification effect on exhaust gas.
  • the present invention provides a cerium-zirconium-aluminum-based composite material, which is prepared by the above-mentioned preparation method.
  • the cerium-zirconium aluminum matrix composites comprising the following components: 4-30wt% of CeO 2, 1-30wt% of ZrO 2, 40-95wt% of Al 2 O 3 0-20wt% of rare earth metals and oxide; and most preferably, the aluminum-cerium-zirconium composite material comprises the following components: 10-20wt% of CeO 2, 5-15wt% of ZrO 2, 60-75wt% of Al 2 O 3 and 5-10wt % Of rare earth metal oxides; the rare earth metal oxides include one or more of Y 2 O 3 , La 2 O 3 , Nd 2 O 3 , Pr 6 O 11 , BaO, and SrO; the composition of the material affects The performance of the material, the preferred composition of the cerium-zirconium-aluminum composite material, has a larger specific surface area, a larger pore volume, and a higher density, which is more conducive to reducing the occupation of the pore volume of the catalyst carrier by the coating,
  • the cerium-zirconium aluminum matrix composite s specific surface area of 50-200m 2 / g; most preferably, the cerium-zirconium aluminum matrix composites specific surface area of 80-120m 2 / g; specific surface area and density of the material It is inversely proportional, and the larger the specific surface area, the larger the contact surface with the exhaust gas, and the better the catalytic purification effect. However, the smaller the material density, the larger the proportion of the coating to the catalyst carrier pores and the worse the ash accumulation resistance.
  • the specific surface area of the cerium-zirconium-aluminum-based composite material can make the catalyst have a good catalytic purification effect on the exhaust gas while ensuring a good ash accumulation resistance.
  • the pore volume of the cerium-zirconium-aluminum-based composite material is 0.2-2.0ml/g; most preferably, the pore volume of the cerium-zirconium-aluminum-based composite material is 0.4-1.5ml/g; the pore volume and density of the material Inversely proportional, and the larger the pore volume, the larger the contact surface with the exhaust gas, the better the catalytic purification effect, but the smaller the density, the larger the proportion of the catalyst carrier pores and the worse the ash accumulation resistance.
  • the preferred cerium zirconium aluminum The pore volume of the matrix composite material can make the catalyst have a good catalytic purification effect on the exhaust gas, while ensuring a good resistance to ash accumulation.
  • the density of the cerium-zirconium-aluminum-based composite material is 0.5-1.5g/ml; most preferably, the density of the cerium-zirconium-aluminum-based composite material is 0.8-1.2ml/g; the density and pores of the material
  • the volume is inversely proportional to the specific surface area, and the higher the density, the smaller the proportion of pores in the catalyst carrier, the better the resistance to ash accumulation, but the higher the density, the smaller the specific surface area and pore volume, and the smaller the contact surface with the exhaust gas.
  • the present invention provides a cGPF catalyst, the catalyst coating of the cGPF catalyst contains the above-mentioned cerium-zirconium-aluminum-based composite material.
  • the present invention provides a method for preparing cGPF catalyst, including the following steps:
  • the cerium-zirconium-based material described in step (1) includes 20-80wt% CeO 2 , 10-70wt% ZrO 2 and 0-10wt% rare earth metal oxide; the rare earth metal The oxide includes one or more of Y 2 O 3 , La 2 O 3 , Nd 2 O 3 , Pr 6 O 11 , BaO, and SrO; the preferred cerium-zirconium-based material has better catalytic performance, and the resulting cGPF catalyst The overall performance is better.
  • the mass ratio of the cerium-zirconium-aluminum-based composite material and the cerium-zirconium-based material in step (1) is 1:3-3:1;
  • the mass ratio can make the catalyst have a good ability to resist ash accumulation and at the same time have a good catalytic purification effect on exhaust gas.
  • the amount of aluminum sol in step (1) is 1-5% of the total mass of the slurry; the preferred amount of aluminum sol, the coating is not easy to fall off, can make the catalyst have a good resistance to ash accumulation and at the same time The catalytic purification effect of exhaust gas is also good.
  • the amount of pore former in step (1) is 1-20% of the mass of the slurry; the preferred amount of pore former has good pore-forming effect, and the density of the catalyst coating is small, which can make the catalyst resistant to While the ash accumulation capacity is good, the catalytic purification effect of exhaust gas is also good.
  • the pore former is one or more of polyether, polyester, polyamide, polyurethane, cellulose, sugar, polyethylene, and polystyrene; the preferred pore former is pore-forming The effect is good, and the effect on the anti-ash accumulation ability of the cGPF catalyst is small.
  • the particle size D 50 of the coating slurry is not higher than 5 ⁇ m; most preferably, the particle size D 50 of the coating slurry is 2-3 ⁇ m; the preferred coating slurry Particle size, good coatability, more uniform coating.
  • the solid content of the coating slurry is 20-40 wt%; the preferred solid content of the coating slurry has good coating properties and more uniform coating.
  • the coating amount of the coating slurry is 20-140g/L; most preferably, the coating amount of the coating slurry is 60-100g/L; the preferred coating amount
  • the catalyst carrier occupies a small pore volume while ensuring the thickness of the catalyst coating, so that the catalyst has a good ash accumulation resistance and a good catalytic purification effect on exhaust gas.
  • the drying temperature is 90-150° C., and the drying time is 3-10 h; the preferred drying temperature has low energy consumption and a time period that does not affect the adhesion of the coating.
  • the calcination temperature is 500-600° C., and the calcination time is 1-4 h; the preferred calcination temperature has low energy consumption, short time, and stable catalyst performance.
  • the preparation method of the present invention utilizes a combination of step precipitation and co-precipitation to increase the compactness of the cerium-zirconium-aluminum-based composite material, and the density of the prepared cerium-zirconium-aluminum-based composite material is smaller.
  • the cerium-zirconium-aluminum-based composite material prepared by the present invention is used for the cGPF catalyst, which can reduce the volume of the pores of the catalyst carrier, thereby reducing the back pressure of the cGPF catalyst and increasing the ash accumulation resistance of the cGPF catalyst.
  • the preparation method of the cerium-zirconium-aluminum-based composite material of the present invention is simple and reliable, and is suitable for large-scale production of the cerium-zirconium-aluminum-based composite material.
  • the cerium-zirconium-aluminum-based composite material contained in the cGPF catalyst of the present invention has a higher density, a smaller volume of the catalyst carrier pores occupied, a lower back pressure, and a stronger ash accumulation resistance.
  • the preparation method of the cGPF catalyst of the present invention is simple and reliable, and is suitable for large-scale production of the cGPF catalyst.
  • a cerium-zirconium-aluminum-based composite material is composed of the following components: 20% CeO 2 , 25% ZrO 2 , 2.5% La 2 O 3 , 2.5% Y 2 O 3 , 50% Al 2 O 3 , and the preparation method is as follows:
  • the mixture precipitate is first baked at a temperature of 550°C for 5 hours, and then baked at a temperature of 1000°C for 3 hours to obtain a cerium-zirconium-aluminum-based composite material;
  • the specific surface of the cerium-zirconium-aluminum-based composite material is 76.2m 2 /g, the pore volume is 0.8ml/g, and the density is 1.23g/ml.
  • a cerium-zirconium-aluminum-based composite material is composed of the following components: 20% CeO 2 , 25% ZrO 2 , 2.5% La 2 O 3 , 2.5% Y 2 O 3 , 50% Al 2 O 3 , and the preparation method is as follows:
  • the specific surface of the cerium-zirconium-aluminum-based composite material is 74.8 m 2 /g, the pore volume is 0.73 ml/g, and the density is 1.25 g/ml.
  • a cerium-zirconium-aluminum-based composite material is composed of the following components: 20% CeO 2 , 25% ZrO 2 , 2.5% La 2 O 3 , 2.5% Y 2 O 3 , 50% Al 2 O 3 , and the preparation method is as follows:
  • the specific surface of the cerium-zirconium-aluminum-based composite material is 78.5m 2 /g, the pore volume is 0.83ml/g, and the density is 1.21g/ml.
  • a cerium-zirconium-aluminum-based composite material is composed of the following components: 10% CeO 2 , 10% ZrO 2 , 2.5% La 2 O 3 , 2.5% Y 2 O 3 , 75% Al 2 O 3 , and the preparation method is as follows:
  • the mixture precipitate is first baked at a temperature of 550°C for 5 hours, and then baked at a temperature of 1000°C for 3 hours to obtain a cerium-zirconium-aluminum-based composite material;
  • the specific surface of the cerium-zirconium-aluminum-based composite material is 92.3m 2 /g, the pore volume is 0.89ml/g, and the density is 1.13g/ml.
  • a cerium-zirconium-aluminum-based composite material is composed of the following components: 10% CeO 2 , 10% ZrO 2 , 2.5% La 2 O 3 , 2.5% Y 2 O 3 , 75% Al 2 O 3 , and the preparation method is as follows:
  • the specific surface of the cerium-zirconium-aluminum-based composite material is 91.8 m 2 /g, the pore volume is 0.87 ml/g, and the density is 1.14 g/ml.
  • a cerium-zirconium-aluminum-based composite material is composed of the following components: 10% CeO 2 , 10% ZrO 2 , 2.5% La 2 O 3 , 2.5% Y 2 O 3 , 75% Al 2 O 3 , and the preparation method is as follows:
  • the specific surface of the cerium-zirconium-aluminum-based composite material is 95.3 m 2 /g, the pore volume is 0.91 ml/g, and the density is 1.11 g/ml.
  • a cerium-zirconium-aluminum composite material directly mixed with 20% CeO 2 , 25% ZrO 2 , 2.5% La 2 O 3 , 2.5% Y 2 O 3 and 50% Al 2 O 3 .
  • the specific surface of the cerium-zirconium-aluminum composite material is 103.2 m 2 /g, the pore volume is 0.97 ml/g, and the density is 1.06 g/ml.
  • a cerium-zirconium-aluminum-based composite material is composed of the following components: 20% CeO 2 , 25% ZrO 2 , 2.5% La 2 O 3 , 2.5% Y 2 O 3 , 50% Al 2 O 3 , and the preparation method is as follows:
  • the mixture precipitate is first baked at a temperature of 550°C for 5 hours, and then baked at a temperature of 1000°C for 3 hours to obtain a cerium-zirconium-aluminum-based composite material;
  • the specific surface of the cerium-zirconium-aluminum-based composite material is 93.7 m 2 /g, the pore volume is 0.90 ml/g, and the density is 1.12 g/ml.
  • a cerium-zirconium-aluminum-based composite material is composed of the following components: 20% CeO 2 , 25% ZrO 2 , 2.5% La 2 O 3 , 2.5% Y 2 O 3 , 50% Al 2 O 3 , and the preparation method is as follows:
  • the specific surface of the cerium-zirconium-aluminum-based composite material is 96.8 m 2 /g, the pore volume is 0.93 ml/g, and the density is 1.09 g/ml.
  • a cerium-zirconium-aluminum composite material directly mixed with 10% CeO 2 , 10% ZrO 2 , 2.5% La 2 O 3 , 2.5% Y 2 O 3 and 75% Al 2 O 3 .
  • the specific surface of the cerium-zirconium-aluminum composite material is 134.3m 2 /g, the pore volume is 1.31ml/g, and the density is 0.83g/ml.
  • a cerium-zirconium-aluminum-based composite material is composed of the following components: 10% CeO 2 , 10% ZrO 2 , 2.5% La 2 O 3 , 2.5% Y 2 O 3 , 75% Al 2 O 3 , and the preparation method is as follows:
  • the mixture precipitate is first baked at a temperature of 550°C for 5 hours, and then baked at a temperature of 1000°C for 3 hours to obtain a cerium-zirconium-aluminum-based composite material;
  • the specific surface of the cerium-zirconium-aluminum-based composite material is 125.7 m 2 /g, the pore volume is 1.26 ml/g, and the density is 0.87 g/ml.
  • a cerium-zirconium-aluminum-based composite material is composed of the following components: 10% CeO 2 , 10% ZrO 2 , 2.5% La 2 O 3 , 2.5% Y 2 O 3 , 75% Al 2 O 3 , and the preparation method is as follows:
  • the specific surface of the cerium-zirconium-aluminum-based composite material is 128.4 m 2 /g, the pore volume is 1.28 ml/g, and the density is 0.85 g/ml.
  • Coating Coating the coating slurry on the wall-flow cordierite carrier, the coating height is 90% of the carrier height, and the coating amount is 50g/L
  • the cGPF catalyst prepared above was installed on a 1.8L TGDI engine, and ash was loaded according to the SBC cycle conditions in GB18352.6-2016 Light Vehicle Pollutant Emission Limits and Measurement Methods (China Phase 6). Burning method, the maximum circulating bed temperature during loading is 980°C, and the target loading of ash is 30g/L.
  • Emission test was conducted on a 1.6TGDI car. Type I emission test was carried out in accordance with "GB18352.6-2016 Light-duty Vehicle Pollutant Emission Limits and Measurement Methods (China Phase 6)".
  • pressure pipes are installed at the inlet and outlet of the cGPF catalyst to detect the back pressure under the WLTC cycle. The results of the cyclic emission of the catalyst under 1800s and the maximum back pressure difference ⁇ P are recorded as follows:
  • Example 1 0.220 0.033 0.037 2.4*10 11 10.5
  • Example 2 0.218 0.031 0.036 2.3*10 11 10.1
  • Example 3 0.223 0.034 0.038 2.4*10 11 10.8
  • Example 4 0.224 0.038 0.040 2.1*10 11 12.3
  • Example 5 0.226 0.037 0.039 2.0*10 11 11.8
  • Example 6 0.225 0.039 0.041 2.1*10 11 12.7
  • Comparative example 2 0.355 0.044 0.043 1.5*10 11 14.4
  • Comparative example 3 0.361 0.046 0.045 1.6*10 11 14.7 Comparative example 4 0.372 0.048 0.050 1.2*10 11 18.2 Comparative example 5 0.371 0.047 0.049 1.3*10 11 17.5 Comparative example 6 0.369 0.048 0.049 1.3*10 11 17.9
  • the density of the cerium-zirconium-aluminum-based composite material in the Comparative Example is significantly reduced, so that the When used in a cGPF catalyst, it will occupy more volume of the pores on the catalyst carrier, so that the porosity of the cGPF catalyst prepared by using the cerium-zirconium-aluminum-based composite material of the example is higher than that of the comparative example, and the dynamic mass transfer of the cGPF catalyst is better.
  • the exhaust gas purification ability is better, and the ability to capture particulate matter in the exhaust gas decreases.

Abstract

提供一种铈锆铝基复合材料、cGPF催化剂及其制备方法。所述铈锆铝基复合材料采用分步沉淀的方法,先制备铝基预处理材料,再将其与锆、铈溶胶共沉淀,最后经过高温焙烧得到铈锆铝基复合材料。所述铈锆铝基复合材料具有更好的致密性,密度更大,将其用于cGPF催化剂中时,占据的催化剂载体上孔道的体积更小,使cGPF催化剂具有更低的背压和更好的抗灰分累积能力,有利于cGPF催化剂的大规模应用。

Description

一种铈锆铝基复合材料、cGPF催化剂及其制备方法 技术领域
本发明涉及尾气净化材料领域,具体涉及一种铈锆铝基复合材料、cGPF催化剂及其制备方法
背景技术
汽油机尾气排放物是构成中国城市污染的主要来源之一,汽油机发动机排放的尾气中主要污染物为一氧化碳(CO)、碳氢化合物(HC)、氮氧化合物(NO X)和颗粒物(PM)等。随着能源和环境问题的日趋紧迫,为了保护环境,中国对机动车尾气的排放提出了更高的要求,中国即将在2020年实施国6排放标准,而不少区域甚至将法规提前至2019年开始实施。国6排放标准将尾气中颗粒物的浓度作为了重要限定标准,因而,控制尾气中颗粒物的浓度成为今后汽油机发动机尾气净化的重点。然而,传统的三效催化剂(TWC)只能有效的净化尾气中的CO、HC和NO X,却不能控制尾气中颗粒物的浓度,由此可以预见,能显著降低尾气中颗粒物的浓度的汽油机颗粒捕集器催化剂(cGPF)将会被大规模推广使用。
汽油机发动机颗粒物的组成虽然复杂,但其中的大部分组分都可以通过燃烧去除(如cGPF催化剂),进而实现对颗粒物的排放浓度控制,使汽油机发动机尾气达到国6的排放标准。然而,颗粒物中的碳烟(Soot)等组分燃烧后仍然会有一部分最终转化为不可燃烧去除的灰分(Ash),并沉积在cGPF催化剂孔道内,造成催化剂背压升高和性能下降,最终导致cGPF催化剂失效或发生安全风险。因此,提高cGPF催化剂的抗高灰分累积能力,是降低催化剂背压并保持催化性能,降低安全风险的必要保障。
现今的cGPF催化剂中催化剂涂层大多是采用混合的铈锆基材料和氧化铝基材料,虽然其对汽油机发动机颗粒物具有优异的净化效果,从而能有效控制颗粒物的排放浓度,使汽油机发动机尾气符合国6的排放标准,但由于其密度小,体积大,在将其填充到cGPF载体孔道后,会占据孔道较大的体积,从而减小孔道孔径和孔容,导致催化剂背压升高,抗灰分累积能力下降,不利于cGPF催化剂的大规模应用。
发明内容
本发明的目的在于克服现有cGPF催化剂中的铈锆基材料和氧化铝基材料占用催化剂载体孔道体积过大而导致cGPF催化剂抗灰分累积能力差的缺陷,提出一种铈锆铝基复合材料、cGPF催化剂及其制备方法;本发明采用分步沉淀的方法先制备铝基预处理材料,再将 其与锆、铈溶胶共沉淀,最后经过高温焙烧得到铈锆铝基复合材料,该铈锆铝基复合材料具有更好的致密性,密度更大,将其用于cGPF催化剂中时,占据的催化剂载体上孔道的体积更小,使cGPF催化剂具有更低的背压和更好的抗灰分累积能力,有利于cGPF催化剂的大规模应用。
为了实现上述发明目的,本发明提供了一种铈锆铝基复合材料的制备方法,包括以下步骤:
(1)将拟薄水铝石用柠檬酸水溶液溶解后,再用氨水调节pH值到4-10,搅拌反应完成后,过滤、干燥得到沉淀物;将沉淀物在200-400℃的温度下进行焙烧处理0.1-5h,得到预处理材料;所述拟薄水铝石与柠檬酸的质量之比为5-20︰1;
(2)将预处理材料加入到混合溶胶溶液中,溶解完成后,再用氨水调节pH值到4-10,搅拌反应完成后,过滤、干燥得到混合物沉淀;所述的混合溶胶为含有含铈离子和锆离子的溶胶;
(3)将混合物沉淀先在500-600℃的温度下焙烧1-10h,再在800-1100℃温度下焙烧1-10h,得到铈锆铝基复合材料。
优选的,步骤(1)中,所述的柠檬酸水溶液中,柠檬酸的质量分数为5-20%,;优选的柠檬酸质量分数,反应速度快,反应更彻底。
优选的,步骤(1)和(2)中所述的氨水浓度为20-30wt%;优选的氨水浓度,反应速度可控,反应时间更短,得到的铈锆铝基复合材料对尾气的催化净化效果更好。
优选的,步骤(1)和(2)中的干燥温度为60-150℃,时间为1-12h;优选的干燥温度和时间,干燥速度更快,能耗更低,也不会导致干燥物因高温而发生化学反应。
优选的,步骤(2)中的混合溶胶为还含有钇离子、镧离子、钕离子、镨离子、钯离子、锶离子中一种或几种的溶胶;优选的混合溶胶含有更多的稀土金属元素,密度更小,制备得到的铈锆铝基复合材料对尾气的催化净化效果更好。
为了实现上述发明目的,进一步的,本发明提供了一种铈锆铝基复合材料,该铈锆铝基复合材料是通过上述制备方法制备得到的。
优选的,所述的铈锆铝基复合材料包括以下组分:4-30wt%的CeO 2、1-30wt%的ZrO 2、40-95wt%的Al 2O 3和0-20wt%的稀土金属氧化物;最优选的,所述的铈锆铝基复合材料包括以下组分:10-20wt%的CeO 2、5-15wt%的ZrO 2、60-75wt%的Al 2O 3和5-10wt%的稀土金属氧化物;所述的稀土金属氧化物包括Y 2O 3、La 2O 3、Nd 2O 3、Pr 6O 11、BaO、SrO中的一种或几种;材料的组成影响材料的性能,优选的铈锆铝基复合材料组成,比表面积更 大,孔容更大,密度更大,更有利于减小涂层对催化剂载体上孔道体积的占据,从而更好的降低催化剂背压,提高抗灰分累积能力,对尾气的催化净化效果也会更好。
优选的,所述的铈锆铝基复合材料比表面为50-200m 2/g;最优选的,所述的铈锆铝基复合材料比表面为80-120m 2/g;材料比表面积与密度成反比,而比表面积越大,与尾气的接触面越大,催化净化效果越好,但材料密度越小,涂层对催化剂载体孔洞的占比会越大,抗灰分累积能力越差,优选的铈锆铝基复合材料比表面,能使催化剂在对尾气的催化净化效果好的同时,保证抗灰分累积能力也很好。
优选的,所述的铈锆铝基复合材料孔容为0.2-2.0ml/g;最优选的,所述的铈锆铝基复合材料孔容为0.4-1.5ml/g;材料孔容与密度成反比,而孔容越大,与尾气的接触面越大,催化净化效果越好,但密度越小,对催化剂载体孔洞的占比越大,抗灰分累积能力越差,优选的铈锆铝基复合材料孔容,能使催化剂在对尾气的催化净化效果好的同时,保证抗灰分累积能力也很好。
优选的,所述的铈锆铝基复合材料的密度为0.5-1.5g/ml;最优选的,所述的铈锆铝基复合材料的密度为0.8-1.2ml/g;材料的密度与孔容和比表面积成反比,而密度越大,对催化剂载体孔洞的占比越小,抗灰分累积能力越好,但密度越大,比表面积和孔容就越小,与尾气的接触面越小,催化净化效果越差,优选的铈锆铝基复合材料密度,能使催化剂在抗灰分累积能力很好的同时,对尾气的催化净化效果也好。
更进一步的,本发明提供了一种cGPF催化剂,所述cGPF催化剂的催化剂涂层中含有上述铈锆铝基复合材料。
更进一步的,本发明提供了一种cGPF催化剂的制备方法,包括以下步骤:
(1)制备浆料:将铈锆铝基复合材料、铈锆基材料、铝溶胶和去离子水混合球磨后,加入造孔剂,混合球磨后,再加入钯盐溶液和铑盐溶液,混合球磨得到涂层浆料;
(2)涂覆:将涂层浆料涂覆在催化剂载体上;
(3)焙烧:将涂覆好的催化剂载体进行干燥、焙烧,得到cGPF催化剂。
其中,优选的,步骤(1)中所述的铈锆基材料中包括20-80wt%的CeO 2、10-70wt%的ZrO 2和0-10wt%的稀土金属氧化物;所述的稀土金属氧化物包括Y 2O 3、La 2O 3、Nd 2O 3、Pr 6O 11、BaO、SrO中的一种或几种;优选的铈锆基材料的催化性能更好,得到的cGPF催化剂综合性能更好。
其中,优选的,步骤(1)中所述的铈锆铝基复合材料与铈锆基材料的质量比为1︰3-3︰1;优选的铈锆铝基复合材料与铈锆基材料的质量比,能使催化剂在抗灰分累积能力 很好的同时,对尾气的催化净化效果也好。
其中,优选的,步骤(1)中铝溶胶的用量为浆料总质量的1-5%;优选的铝溶胶用量,涂层不易脱落,能使催化剂在抗灰分累积能力很好的同时,对尾气的催化净化效果也好。
其中,优选的,步骤(1)中造孔剂的用量为浆料质量的1-20%;优选的造孔剂用量,造孔效果好,催化剂涂层的密度较小,能使催化剂在抗灰分累积能力很好的同时,对尾气的催化净化效果也好。
其中,优选的,所述的造孔剂为聚醚、聚酯、聚酰胺、聚氨酯、纤维素、糖类、聚乙烯、聚苯乙烯中的一种或几种;优选的造孔剂造孔效果好,对cGPF催化剂的抗灰分累积能力影响作用小。
其中,优选的,步骤(1)中,涂层浆料的粒度D 50不高于5μm;最优选的,所述的涂层浆料的粒度D 50为2-3μm;优选的涂层浆料粒度,涂覆性好,涂覆更均匀。
其中,优选的,步骤(1)中,涂层浆料的固含量为20-40wt%;优选的涂层浆料固含量,涂覆性好,涂覆更均匀。
其中,优选的,步骤(2)中,涂层浆料的涂覆量为20-140g/L;最优选的,涂层浆料的涂覆量为60-100g/L;优选的涂覆量,占据的催化剂载体孔容较小的同时,又能保证催化剂涂层厚度,使催化剂在抗灰分累积能力很好的同时,对尾气的催化净化效果也好。
其中,优选的,步骤(3)中,干燥温度为90-150℃,干燥时间为3-10h;优选的干燥温度,能耗低,时间段,不影响涂层的粘附性。
其中,优选的,步骤(3)中,焙烧的温度为500-600℃,焙烧的时间为1-4h;优选的焙烧温度,能耗低,时间短,催化剂性能稳定。
与现有技术相比,本发明的有益效果:
1、本发明制备方法利用分步沉淀与共沉淀相结合的方法,使铈锆铝基复合材料的致密性增加,制备得到的铈锆铝基复合材料的密度更小。
2、本发明制备得到的铈锆铝基复合材料用于cGPF催化剂,能减小占用催化剂载体孔道的体积,从而降低cGPF催化剂的背压,增加cGPF催化剂的抗灰分累积能力。
3、本发明铈锆铝基复合材料的制备方法简单、可靠,适用于铈锆铝基复合材料的大规模生产。
4、本发明cGPF催化剂中含有的铈锆铝基复合材料密度更大,占用的催化剂载体孔道体积小,背压更低,抗灰分累积能力更强。
5、本发明cGPF催化剂的制备方法简单、可靠,适用于cGPF催化剂的大规模生产。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例1
一种铈锆铝基复合材料,由以下组分构成:20%CeO 2、25%ZrO 2、2.5%La 2O 3、2.5%Y 2O 3、50%Al 2O 3,制备方法如下:
(1)将拟薄水铝石用质量分数为10%的柠檬酸水溶液溶解后,再用氨水调节pH值到7,搅拌反应完成后,过滤、干燥得到沉淀物;将沉淀物在300℃的温度下进行焙烧处理3h,得到预处理材料;
(2)将预处理材料加入到铈、锆、镧、钇的混合溶胶(通常为氢氧化物溶胶,例如用盐类混合后和氨水等碱反应制备)溶液中,溶解完成后,再用氨水调节pH值到7,搅拌反应完成后,过滤、干燥得到混合物沉淀;
(3)将混合物沉淀先在550℃的温度下焙烧5h,再在1000℃温度下焙烧3h,得到铈锆铝基复合材料;
经检测,该铈锆铝基复合材料的比表面为76.2m 2/g,孔容为0.8ml/g,密度为1.23g/ml。
实施例2
一种铈锆铝基复合材料,由以下组分构成:20%CeO 2、25%ZrO 2、2.5%La 2O 3、2.5%Y 2O 3、50%Al 2O 3,制备方法如下:
(1)将拟薄水铝石用质量分数为5%的柠檬酸水溶液溶解后,再用氨水调节pH值到4,搅拌反应完成后,过滤、干燥得到沉淀物;将沉淀物在200℃的温度下进行焙烧处理5h,得到预处理材料;
(2)将预处理材料加入到铈、锆、镧、钇的混合溶胶溶液中,溶解完成后,再用氨水调节pH值到4,搅拌反应完成后,过滤、干燥得到混合物沉淀;
(3)将混合物沉淀先在500℃的温度下焙烧10h,再在1100℃温度下焙烧1h,得到铈锆铝基复合材料;
经检测,该铈锆铝基复合材料的比表面为74.8m 2/g,孔容为0.73ml/g,密度为1.25g/ml。
实施例3
一种铈锆铝基复合材料,由以下组分构成:20%CeO 2、25%ZrO 2、2.5%La 2O 3、 2.5%Y 2O 3、50%Al 2O 3,制备方法如下:
(1)将拟薄水铝石用质量分数为15%的柠檬酸水溶液溶解后,再用氨水调节pH值到10,搅拌反应完成后,过滤、干燥得到沉淀物;将沉淀物在400℃的温度下进行焙烧处理0.1h,得到预处理材料;
(2)将预处理材料加入到铈、锆、镧、钇的混合溶胶溶液中,溶解完成后,再用氨水调节pH值到10,搅拌反应完成后,过滤、干燥得到混合物沉淀;
(3)将混合物沉淀先在600℃的温度下焙烧1h,再在800℃温度下焙烧10h,得到铈锆铝基复合材料;
经检测,该铈锆铝基复合材料的比表面为78.5m 2/g,孔容为0.83ml/g,密度为1.21g/ml。
实施例4
一种铈锆铝基复合材料,由以下组分构成:10%CeO 2、10%ZrO 2、2.5%La 2O 3、2.5%Y 2O 3、75%Al 2O 3,制备方法如下:
(1)将拟薄水铝石用质量分数为12%的柠檬酸水溶液溶解后,再用氨水调节pH值到7,搅拌反应完成后,过滤、干燥得到沉淀物;将沉淀物在300℃的温度下进行焙烧处理3h,得到预处理材料;
(2)将预处理材料加入到铈、锆、镧、钇的混合溶胶溶液中,溶解完成后,再用氨水调节pH值到7,搅拌反应完成后,过滤、干燥得到混合物沉淀;
(3)将混合物沉淀先在550℃的温度下焙烧5h,再在1000℃温度下焙烧3h,得到铈锆铝基复合材料;
经检测,该铈锆铝基复合材料的比表面为92.3m 2/g,孔容为0.89ml/g,密度为1.13g/ml。
实施例5
一种铈锆铝基复合材料,由以下组分构成:10%CeO 2、10%ZrO 2、2.5%La 2O 3、2.5%Y 2O 3、75%Al 2O 3,制备方法如下:
(1)将拟薄水铝石用质量分数为10%的柠檬酸水溶液溶解后,再用氨水调节pH值到4,搅拌反应完成后,过滤、干燥得到沉淀物;将沉淀物在200℃的温度下进行焙烧处理5h,得到预处理材料;
(2)将预处理材料加入到铈、锆、镧、钇的混合溶胶溶液中,溶解完成后,再用氨水调节pH值到4,搅拌反应完成后,过滤、干燥得到混合物沉淀;
(3)将混合物沉淀先在500℃的温度下焙烧10h,再在1100℃温度下焙烧1h,得到铈锆铝基复合材料;
经检测,该铈锆铝基复合材料的比表面为91.8m 2/g,孔容为0.87ml/g,密度为1.14g/ml。
实施例6
一种铈锆铝基复合材料,由以下组分构成:10%CeO 2、10%ZrO 2、2.5%La 2O 3、2.5%Y 2O 3、75%Al 2O 3,制备方法如下:
(1)将拟薄水铝石用质量分数为20%的柠檬酸水溶液溶解后,再用氨水调节pH值到10,搅拌反应完成后,过滤、干燥得到沉淀物;将沉淀物在400℃的温度下进行焙烧处理0.1h,得到预处理材料;
(2)将预处理材料加入到铈、锆、镧、钇的混合溶胶溶液中,溶解完成后,再用氨水调节pH值到10,搅拌反应完成后,过滤、干燥得到混合物沉淀;
(3)将混合物沉淀先在600℃的温度下焙烧1h,再在800℃温度下焙烧10h,得到铈锆铝基复合材料;
经检测,该铈锆铝基复合材料的比表面为95.3m 2/g,孔容为0.91ml/g,密度为1.11g/ml。
对比例1
一种铈锆铝复合材料,直接由20%CeO 2、25%ZrO 2、2.5%La 2O 3、2.5%Y 2O 3和50%Al 2O 3混合而成。
经检测,该铈锆铝复合材料的比表面为103.2m 2/g,孔容为0.97ml/g,密度为1.06g/ml。
对比例2
一种铈锆铝基复合材料,由以下组分构成:20%CeO 2、25%ZrO 2、2.5%La 2O 3、2.5%Y 2O 3、50%Al 2O 3,制备方法如下:
(1)将拟薄水铝石用质量分数为10%的柠檬酸水溶液溶解后,加入到铈、锆、镧、钇的混合溶胶溶液中,溶解完成后,再用氨水调节pH值到7,搅拌反应完成后,过滤、干燥得到混合物沉淀;
(2)将混合物沉淀先在550℃的温度下焙烧5h,再在1000℃温度下焙烧3h,得到铈锆铝基复合材料;
经检测,该铈锆铝基复合材料的比表面为93.7m 2/g,孔容为0.90ml/g,密度为1.12g/ml。
对比例3
一种铈锆铝基复合材料,由以下组分构成:20%CeO 2、25%ZrO 2、2.5%La 2O 3、2.5%Y 2O 3、50%Al 2O 3,制备方法如下:
(1)将拟薄水铝石用质量分数为10%的柠檬酸水溶液溶解后,再用氨水调节pH值到7,搅 拌反应完成后,过滤、干燥得到沉淀物;将沉淀物在300℃的温度下进行焙烧处理3h,得到预处理材料;
(2)将铈、锆、镧、钇的混合溶胶溶液用氨水调节pH值到7,搅拌反应完成后,过滤、干燥得到混合物沉淀;
(3)将混合物沉淀和预处理材料混合均质后,先在550℃的温度下焙烧5h,再在1000℃温度下焙烧3h,得到铈锆铝基复合材料;
经检测,该铈锆铝基复合材料的比表面为96.8m 2/g,孔容为0.93ml/g,密度为1.09g/ml。
对比例4
一种铈锆铝复合材料,直接由10%CeO 2、10%ZrO 2、2.5%La 2O 3、2.5%Y 2O 3、75%Al 2O 3混合而成。
经检测,该铈锆铝复合材料的比表面为134.3m 2/g,孔容为1.31ml/g,密度为0.83g/ml。
对比例5
一种铈锆铝基复合材料,由以下组分构成:10%CeO 2、10%ZrO 2、2.5%La 2O 3、2.5%Y 2O 3、75%Al 2O 3,制备方法如下:
(1)将拟薄水铝石用质量分数为10%的柠檬酸水溶液溶解后,加入到铈、锆、镧、钇的混合溶胶溶液中,溶解完成后,再用氨水调节pH值到7,搅拌反应完成后,过滤、干燥得到混合物沉淀;
(2)将混合物沉淀先在550℃的温度下焙烧5h,再在1000℃温度下焙烧3h,得到铈锆铝基复合材料;
经检测,该铈锆铝基复合材料的比表面为125.7m 2/g,孔容为1.26ml/g,密度为0.87g/ml。
对比例6
一种铈锆铝基复合材料,由以下组分构成:10%CeO 2、10%ZrO 2、2.5%La 2O 3、2.5%Y 2O 3、75%Al 2O 3,制备方法如下:
(1)将拟薄水铝石用质量分数为10%的柠檬酸水溶液溶解后,再用氨水调节pH值到7,搅拌反应完成后,过滤、干燥得到沉淀物;将沉淀物在300℃的温度下进行焙烧处理3h,得到预处理材料;
(2)将铈、锆、镧、钇的混合溶胶溶液用氨水调节pH值到7,搅拌反应完成后,过滤、干燥得到混合物沉淀;
(3)将混合物沉淀和预处理材料混合均质后,先在550℃的温度下焙烧5h,再在1000℃温度下焙烧3h,得到铈锆铝基复合材料;
经检测,该铈锆铝基复合材料的比表面为128.4m 2/g,孔容为1.28ml/g,密度为0.85g/ml。
cGPF催化剂的制备:
(1)制备浆料:将铈锆铝基复合材料(由实施例1-6或对比例1-6中制备得到)、铈锆基材料(40%CeO 2、50%ZrO 2、5%La 2O 3、5%Y 2O 3)按1:1混合,然后加入铝溶胶(占浆料含量的2%)、聚氨酯(占浆料含量的5%)和去离子水,加入硝酸钯溶液(保证涂层中Pd的含量密度为5g/ft 3),球磨搅拌5min;加入硝酸铑溶液(保证涂层中Rh的含量密度为5g/ft 3),球磨搅拌5min,制备得到涂层浆料,控制浆料的粒度D 50为2.4μm,固含量为33wt%;
(2)涂覆:将涂层浆料涂覆在壁流式堇青石载体上,涂覆高度为载体高度的90%,涂覆量50g/L
(3)焙烧:将涂覆好的催化剂载体在马弗炉中120℃干燥3h,然后在马弗炉中550℃焙烧3h,得到cGPF催化剂。
实验例:
台架灰分加载试验:
将上述制备得到的cGPF催化剂分别安装于1.8L TGDI发动机上按GB18352.6-2016轻型汽车污染物排放限值及测量方法(中国第六阶段)中的SBC循环工况进行灰分加载,采用机油掺烧方法,加载时循环最高床层温度980℃,灰分目标加载量为30g/L。
整车WLTC排放测试试验:
将上述制备得到的cGPF催化剂分别作为底盘催化剂,另外选用TWC催化剂(Φ118.4*100-750/2,Pd=103g/ft 3,Rh=8g/ft 3)作为紧耦合催化剂组成后处理系统,在一款1.6TGDI车进行排放试验。按照“GB18352.6-2016轻型汽车污染物排放限值及测量方法(中国第六阶段)”进行I型排放试验。另外在cGPF催化剂的入口和出口安装压力管检测WLTC循环下的背压。催化剂在1800s下的循环排放结果和最高背压差值ΔP记录如下:
编号 CO(g/km) THC(g/km) NO x(g/km) PN(个/km) ΔP(kpa)
实施例1 0.220 0.033 0.037 2.4*10 11 10.5
实施例2 0.218 0.031 0.036 2.3*10 11 10.1
实施例3 0.223 0.034 0.038 2.4*10 11 10.8
实施例4 0.224 0.038 0.040 2.1*10 11 12.3
实施例5 0.226 0.037 0.039 2.0*10 11 11.8
实施例6 0.225 0.039 0.041 2.1*10 11 12.7
对比例1 0.358 0.045 0.044 1.5*10 11 14.5
对比例2 0.355 0.044 0.043 1.5*10 11 14.4
对比例3 0.361 0.046 0.045 1.6*10 11 14.7
对比例4 0.372 0.048 0.050 1.2*10 11 18.2
对比例5 0.371 0.047 0.049 1.3*10 11 17.5
对比例6 0.369 0.048 0.049 1.3*10 11 17.9
通过上述实验数据可知,将实施例1-6中采用本发明方法制备得到的密度更大的铈锆铝基复合材料用于cGPF催化剂后,得到的cGPF催化剂在加载灰分后,其背压显著低于常规材料的cGPF催化剂,其对尾气的净化效果也更好,因而,本发明方法制备得到的铈锆铝基复合材料能显著提高cGPF催化剂的抗灰分累积能力,有利于cGPF催化剂的大规模生产和应用。而对比例1-3与实施例1、对比例4-6与实施例3中制备得到的铈锆铝基复合材料相比,对比例中的铈锆铝基复合材料密度显著降低,从而在应用于cGPF催化剂中时,会占据催化剂载体上孔隙的更多体积,从而使采用实施例铈锆铝基复合材料制备得到的cGPF催化剂的孔隙率高于对比例,cGPF催化剂的动态传质更好,对尾气的净化能力更好,对尾气中颗粒物的捕捉能力下降。

Claims (10)

  1. 一种铈锆铝基复合材料的制备方法,其特征在于,包括以下步骤:
    (1)将拟薄水铝石用柠檬酸水溶液溶解后,再用氨水调节pH值到4-10,搅拌反应完成后,过滤、干燥得到沉淀物;将沉淀物在200-400℃的温度下进行焙烧处理0.1-5h,得到预处理材料;所述拟薄水铝石与柠檬酸的质量之比为5-20︰1;
    (2)将预处理材料加入到混合溶胶溶液中,溶解完成后,再用氨水调节pH值到4-10,搅拌反应完成后,过滤、干燥得到混合物沉淀;所述的混合溶胶为含有铈离子和锆离子的溶胶;
    (3)将混合物沉淀先在500-600℃的温度下焙烧1-10h,再在800-1100℃温度下焙烧1-10h,得到铈锆铝基复合材料。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中的混合溶胶为还含有钇离子、镧离子、钕离子、镨离子、钯离子、锶离子中一种或几种的溶胶。
  3. 一种铈锆铝基复合材料,其特征在于,通过权利要求1或2任一项所述制备方法制备得到。
  4. 根据权利要求3所述的复合材料,其特征在于,所述的铈锆铝基复合材料包括以下组分:4-30wt%的CeO 2、1-30wt%的ZrO 2、40-95wt%的Al 2O 3和0-20wt%的稀土金属氧化物。
  5. 根据权利要求3所述的复合材料,其特征在于,所述的铈锆铝基复合材料比表面为50-200m 2/g。
  6. 根据权利要求3所述的复合材料,其特征在于,所述的铈锆铝基复合材料孔容为0.2-2.0ml/g。
  7. 根据权利要求3所述的复合材料,其特征在于,所述的铈锆铝基复合材料的密度为0.5-1.5g/ml。
  8. 一种cGPF催化剂,其特征在于,所述cGPF催化剂的催化剂涂层中含有权利要求3-7任一项所述的铈锆铝基复合材料。
  9. 一种如权利要求8所述cGPF催化剂的制备方法,其特征在于,包括以下步骤:
    (1)制备浆料:将铈锆铝基复合材料、铈锆基材料、铝溶胶和去离子水混合球磨后,加入造孔剂,混合球磨后,再加入钯盐溶液和铑盐溶液,混合球磨得到涂层浆料;
    (2)涂覆:将涂层浆料涂覆在催化剂载体上;
    (3)焙烧:将涂覆好的催化剂载体进行干燥、焙烧,得到cGPF催化剂。
  10. 根据权利要求9所述的制备方法,其特征在于,步骤(1)中所述的铈锆铝基复合材料 与铈锆基材料的质量比为1︰3-3︰1。
PCT/CN2020/096584 2019-06-20 2020-06-17 一种铈锆铝基复合材料、cGPF催化剂及其制备方法 WO2020253726A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/619,391 US20220363603A1 (en) 2019-06-20 2020-06-17 Cerium-zirconium-aluminum-based composite material, cgpf catalyst and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910538169.5A CN110124659B (zh) 2019-06-20 2019-06-20 一种铈锆铝基复合材料、cGPF催化剂及其制备方法
CN201910538169.5 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020253726A1 true WO2020253726A1 (zh) 2020-12-24

Family

ID=67578895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096584 WO2020253726A1 (zh) 2019-06-20 2020-06-17 一种铈锆铝基复合材料、cGPF催化剂及其制备方法

Country Status (3)

Country Link
US (1) US20220363603A1 (zh)
CN (1) CN110124659B (zh)
WO (1) WO2020253726A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117285111A (zh) * 2023-10-04 2023-12-26 青岛鑫源环保集团有限公司 环保水处理药剂及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110124659B (zh) * 2019-06-20 2021-03-23 中自环保科技股份有限公司 一种铈锆铝基复合材料、cGPF催化剂及其制备方法
CN111821971B (zh) * 2020-07-30 2023-08-18 中自环保科技股份有限公司 一种碳烟催化再生的整体式催化剂及其制备方法
CN114100594B (zh) * 2021-11-26 2023-04-11 四川大学 铈锆-铝基氧化物微纳米复合催化材料及其制备方法
CN114849697B (zh) * 2022-05-23 2023-10-27 东风汽车集团股份有限公司 一种基于三元催化器陶瓷载体的催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126694A (ja) * 2001-10-25 2003-05-07 Toyota Motor Corp 排ガス浄化用触媒
CN1436592A (zh) * 2002-02-07 2003-08-20 中国石油化工股份有限公司 一种汽车尾气净化催化剂的制备方法
CN106179359A (zh) * 2016-06-22 2016-12-07 中国天辰工程有限公司 一种净化己二酸装置尾气的高效催化剂及其成型工艺方法
CN106946282A (zh) * 2017-02-27 2017-07-14 广东省稀有金属研究所 一种多孔铈基复合氧化物的制备方法
CN108561211A (zh) * 2018-04-20 2018-09-21 中自环保科技股份有限公司 一种具有低背压、低起燃温度催化层的dpf及其制备工艺
CN109876793A (zh) * 2019-03-17 2019-06-14 中自环保科技股份有限公司 一种具有高co净化能力的三效催化剂制备方法及其催化剂
CN110124659A (zh) * 2019-06-20 2019-08-16 中自环保科技股份有限公司 一种铈锆铝基复合材料、cGPF催化剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126694A (ja) * 2001-10-25 2003-05-07 Toyota Motor Corp 排ガス浄化用触媒
CN1436592A (zh) * 2002-02-07 2003-08-20 中国石油化工股份有限公司 一种汽车尾气净化催化剂的制备方法
CN106179359A (zh) * 2016-06-22 2016-12-07 中国天辰工程有限公司 一种净化己二酸装置尾气的高效催化剂及其成型工艺方法
CN106946282A (zh) * 2017-02-27 2017-07-14 广东省稀有金属研究所 一种多孔铈基复合氧化物的制备方法
CN108561211A (zh) * 2018-04-20 2018-09-21 中自环保科技股份有限公司 一种具有低背压、低起燃温度催化层的dpf及其制备工艺
CN109876793A (zh) * 2019-03-17 2019-06-14 中自环保科技股份有限公司 一种具有高co净化能力的三效催化剂制备方法及其催化剂
CN110124659A (zh) * 2019-06-20 2019-08-16 中自环保科技股份有限公司 一种铈锆铝基复合材料、cGPF催化剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117285111A (zh) * 2023-10-04 2023-12-26 青岛鑫源环保集团有限公司 环保水处理药剂及其制备方法
CN117285111B (zh) * 2023-10-04 2024-04-26 青岛鑫源环保集团有限公司 环保水处理药剂及其制备方法

Also Published As

Publication number Publication date
CN110124659A (zh) 2019-08-16
US20220363603A1 (en) 2022-11-17
CN110124659B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2020253726A1 (zh) 一种铈锆铝基复合材料、cGPF催化剂及其制备方法
CN108295851B (zh) 汽油车颗粒捕集器催化剂及其制备方法
CN107715875B (zh) 一种gpf四元催化剂及其制备方法
JP5361855B2 (ja) パラジウム−ロジウム単一層触媒
JP6386449B2 (ja) ガソリンパーティキュレートフィルタの上流側で使用するための始動時触媒
CN108979798B (zh) 一种汽油车颗粒捕集催化器及其制备方法
CN109603823B (zh) 柴油机尾气净化系统的稀燃NOx捕集催化剂及其制备方法
JP2016505380A (ja) 二金属層を有する自動車用触媒複合体
US20180071679A1 (en) Automotive Catalysts With Palladium Supported In An Alumina-Free Layer
CN105964253A (zh) 一种汽油车颗粒捕集催化剂及其制备方法
WO2008086662A1 (fr) Catalyseur à couplage direct pour la purification de gaz d'échappement, et préparation de celui-ci
KR19990076641A (ko) 엔진 배기 가스 처리 장치 및 사용 방법
CN102008958B (zh) 一种净化汽油车尾气的三元催化剂及其制备方法
AU615721B2 (en) Catalyst for purification of exhaust gas and process for production thereof
CN110201707A (zh) 用于当量燃烧间歇性氧过多工况下的NOx净化三效催化剂及其制备方法
JP2009285623A (ja) 排気ガス浄化用触媒
JPWO2018147408A1 (ja) 排ガス用浄化触媒組成物及びその製造方法、並びに自動車用排ガス浄化触媒
CN110665524A (zh) 一种贵金属高分散的单层涂覆三效催化剂的制备方法
CN113019363B (zh) 一种尾气处理催化剂及其用途
CN112717927B (zh) 汽车尾气处理催化剂的制备方法和应用
CN110201666B (zh) 一种汽油机颗粒捕集催化剂及其制备方法
CN112316961B (zh) 一种汽车尾气处理催化剂及其制备方法
CN111821971A (zh) 一种碳烟催化再生的整体式催化剂及其制备方法
CN113634286B (zh) 一种在dpf上涂覆三明治型催化剂涂层的方法及所得产品和应用
CN114575966B (zh) 一种汽油机颗粒捕集催化器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827610

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20827610

Country of ref document: EP

Kind code of ref document: A1