WO2020253173A1 - 全地形车 - Google Patents

全地形车 Download PDF

Info

Publication number
WO2020253173A1
WO2020253173A1 PCT/CN2019/125919 CN2019125919W WO2020253173A1 WO 2020253173 A1 WO2020253173 A1 WO 2020253173A1 CN 2019125919 W CN2019125919 W CN 2019125919W WO 2020253173 A1 WO2020253173 A1 WO 2020253173A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
impeller
pump
terrain vehicle
housing
Prior art date
Application number
PCT/CN2019/125919
Other languages
English (en)
French (fr)
Inventor
王军贤
袁章平
Original Assignee
赛格威科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=70145877&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020253173(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 赛格威科技有限公司 filed Critical 赛格威科技有限公司
Publication of WO2020253173A1 publication Critical patent/WO2020253173A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers

Definitions

  • the present disclosure relates to the technical field of all-terrain vehicles, and in particular to an all-terrain vehicle.
  • the water pump of the all-terrain vehicle in the related art usually uses a brush motor, which not only occupies a large space, but also generates heat and consumes energy due to frictional resistance, resulting in low energy conversion efficiency.
  • a brush motor which not only occupies a large space, but also generates heat and consumes energy due to frictional resistance, resulting in low energy conversion efficiency.
  • the electromagnetic interference generated by the brush motor will affect other electrical components of the vehicle, reducing the reliability of performance.
  • an objective of the present disclosure is to propose an all-terrain vehicle, which has the advantages of high space utilization, high energy conversion efficiency, and reliable performance.
  • an all-terrain vehicle includes a water pump, the water pump includes: a pump housing, the pump housing is provided with a water inlet and a water outlet; an impeller, the impeller is rotatably arranged In the pump casing, when the impeller rotates, water is introduced from the water inlet and discharged from the water outlet; a brushless motor, the brushless motor is arranged in the pump casing, and the brushless motor It is connected with the impeller and drives the impeller to rotate; a control assembly, the control assembly is arranged in the pump housing and connected with the brushless motor.
  • the all-terrain vehicle according to the embodiment of the present disclosure has the advantages of high space utilization, high energy conversion efficiency, reliable performance, and the like.
  • the brushless motor includes: a stator; a rotor, the rotor is rotatably provided in the stator, and the rotor is drivingly connected to the impeller.
  • the pump housing defines an electric room, a stator room, and an impeller room
  • the control assembly is arranged in the electric room
  • the stator is arranged in the stator room
  • the impeller is arranged in the impeller room.
  • Both the water inlet and the water outlet are in communication with the impeller chamber.
  • the pump housing includes: a housing; an end cover installed on the housing and defining the electrical compartment together with the housing; a middle housing, the middle housing installed in The casing and the casing jointly define the stator chamber; the pump head, the pump head is installed in the middle casing and defines the impeller chamber together with the middle casing, the inlet A water port and the water outlet are formed in the pump head, and the rotor is rotatably mounted on the middle casing and the pump head.
  • the rotor is provided in the impeller chamber and is integrated with the impeller.
  • the middle housing is provided with a first support platform
  • the pump head is provided with a second support platform
  • the rotor is provided with a rotating shaft, one end of the rotating shaft is rotatably fitted to the first support platform and The other end is rotatably fitted to the second support platform.
  • the housing is provided with a plug connector, and a plug terminal connected to the controller assembly is provided in the plug connector.
  • a thermally conductive pad is provided between the end cover and the control assembly.
  • control assembly has an inverter circuit that converts the input direct current into alternating current in the coil of the stator.
  • the all-terrain vehicle further includes: a frame; an engine, where the engine is mounted on the frame; a power motor, where the power motor is mounted on the frame; an engine radiator, The engine radiator is connected to the engine through an engine cooling water pipe; a motor radiator is connected to the power motor through a motor cooling water pipe; the water pump is arranged in the motor cooling water pipe.
  • the power motor is connected with a controller component
  • the controller component is connected to the motor cooling water pipe and is located between the power motor and the motor radiator
  • the water pump is arranged on the controller component And the motor cooling water pipe between the motor radiator.
  • Fig. 1 is a schematic structural diagram of an all-terrain vehicle according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic structural diagram of a water pump of an all-terrain vehicle according to an embodiment of the present disclosure.
  • Fig. 3 is a cross-sectional view of a water pump of an all-terrain vehicle according to an embodiment of the present disclosure.
  • Pump housing 100 water inlet 101, water outlet 102, electrical room 103, stator room 104, impeller room 105,
  • Housing 110 end cover 120, middle housing 130, pump head 140, first support 150, second support 160, plug connector 170, plug terminal 180,
  • Brushless motor 300 stator 310, rotor 320, shaft 330,
  • first feature and “second feature” may include one or more of these features.
  • the all-terrain vehicle 1 includes a frame 10, an engine 20, a power motor 30, an engine radiator 40, a motor radiator 50 and a water pump 60.
  • the engine 20 is installed on the frame 10, the power motor 30 is installed on the frame 10, and the power motor 30 is connected to the controller assembly 31.
  • the power motor 30 is arranged on the frame 10 through the engine 20, and the power motor 30 may be fixed to one side of the engine 20 through a connecting flange. That is, the power motor 30 is fixed on one side of the engine 20, and the power motor 30 is in transmission connection with the engine 20.
  • the power motor 30 can generate electricity under the drive of the engine 20, and can also output power to drive wheels.
  • the power motor 30 may be a pure motor or a power generator.
  • the engine radiator 40 and the motor radiator 50 are both arranged on the frame 10, and the engine radiator 40 is connected to the engine 20 through the engine cooling water pipe 41.
  • the coolant can flow between the engine radiator 40 and the engine 20 and work in the engine 20.
  • the high-temperature coolant can flow into the engine radiator 40, and the engine radiator 40 can effectively dissipate heat, so that the temperature of the coolant can be lowered, and the coolant can be returned to the engine 20.
  • the motor radiator 50 is connected to the power motor 30 through the motor cooling water pipe 51, and the coolant can flow between the motor radiator 50 and the power motor 30. When the power motor 30 is working, the high temperature coolant can flow into the motor radiator 50.
  • the motor radiator 50 can effectively dissipate heat, thereby reducing the temperature of the coolant, and then allowing the coolant to flow back into the power motor 30.
  • the motor cooling water pipe 51 can be further connected with the controller assembly 31 to simultaneously dissipate the controller assembly 31 . It should be noted that the optimal operating temperature of the engine 20 and the power motor 30 are different, so a separate radiator can ensure that the engine 20 and the power motor 30 can be maintained at the optimal operating temperature.
  • the engine radiator 40 is provided at the front of the frame 10, and the motor radiator 50 is provided on the front surface of the engine radiator 40. Since the operating temperature of the power motor 30 is lower than the operating temperature of the engine 20, the motor radiator 50 is arranged on the front surface of the engine radiator 40 to ensure that the air cools the motor radiator 50 first, and then cools the engine radiator 40.
  • the motor radiator 50 is arranged on the upper half of the front surface of the engine radiator 40, so that the engine radiator 40 and the motor radiator 50 can be arranged together, which facilitates the overall arrangement of the radiator on the frame 10, and can The heat dissipation of the engine radiator 40 and the motor radiator 50 is facilitated, and the operating temperature of the engine 20 and the power motor 30 can be ensured.
  • the water pump 60 is provided in the motor cooling water pipe 51.
  • the power motor 30 is connected to a controller assembly 31, which is connected to the motor cooling water pipe 51 and is located between the power motor 30 and the motor radiator 50.
  • the water pump 60 is set in the control On the motor cooling water pipe 51 between the motor assembly 31 and the motor radiator 50.
  • the water pump 60 can provide power, so that the circulation loop composed of the motor radiator 50 and the power motor 30 can circulate smoothly.
  • the water pump is basically integrated inside the power motor. Due to the low installation position of the power motor, there will be a large height difference between the water pump and the motor radiator, which leads to the problem of insufficient pump lift, which in turn affects the cooling liquid circulation efficiency. It is not conducive to noise and heat dissipation.
  • the water pump 60 is arranged on the motor cooling water pipe 51 between the power motor 30, the controller assembly 31 and the motor radiator 50. The coolant flows from the motor radiator 51 to the water pump 60, and then flows into the controller assembly 31 and the power motor.
  • the water pump 60 is arranged outside the power motor 30, which can increase the installation height of the water pump 60, thereby increasing the lift of the water pump 60 and improving the circulation efficiency; in addition, because the water pump 60 is arranged outside the power motor 30, it is also convenient Repair of water pump 60.
  • the engine radiator 40 can independently dissipate heat for the coolant of the engine 20, and the motor radiator 50 can independently dissipate heat for the coolant of the power motor 30, so that the engine 20 and the power motor 30 can be at a suitable operating temperature, so that the engine 20 And the power motor 30 has high working efficiency and does not interfere with each other.
  • the water pump 60 according to an embodiment of the present disclosure is described below with reference to the drawings.
  • the water pump 60 includes a pump casing 100, an impeller 200, a brushless motor 300, and a control assembly 400.
  • the pump housing 100 is provided with a water inlet 101 and a water outlet 102.
  • the impeller 200 is rotatably arranged in the pump housing 100. When the impeller 200 rotates, water is introduced into the pump housing 100 from the water inlet 101 and out of the pump housing 100 from the water outlet 102.
  • the brushless motor 300 is arranged in the pump housing 100, and the brushless motor 300 is connected to the impeller 200 and drives the impeller 200 to rotate.
  • the control assembly 400 is arranged in the pump housing 100 and connected to the brushless motor 300.
  • the water pump 60 adopts the brushless motor 300, which not only reduces the overall mechanism size and requires less installation space, but also achieves the required performance under the same volume, thereby improving the space utilization of the entire vehicle.
  • the motor 30 has a brushless structure, no frictional resistance is generated, and no heat is generated to consume energy, so that energy loss is small and energy conversion efficiency is high.
  • the brushless motor 300 will not generate electromagnetic interference when it runs at high speed, thereby ensuring the performance reliability of other electrical components of the all-terrain vehicle 1, and the water pump 60 using the brushless motor 300 can easily pass the EMC (electromagnetic compatibility) test .
  • the all-terrain vehicle 1 according to the embodiment of the present disclosure has the advantages of high space utilization, high energy conversion efficiency, and reliable performance.
  • the water pump 60 of the all-terrain vehicle 1 is not limited to the above-mentioned embodiment provided on the motor cooling water pipe 51, and the water pump 60 can also be applied to the all-terrain vehicle 1 Any desired location.
  • the brushless motor 300 includes a stator 310 and a rotor 320.
  • the rotor 320 is rotatably disposed in the stator 310, and the rotor 320 is a permanent magnet and is drivingly connected to the impeller 200.
  • control assembly 400 has an inverter circuit that converts the input direct current into alternating current in the coil of the stator 310, thereby driving the rotor 320 to rotate, and the inverter circuit isolates the oscillation signal generated by the coil to prevent It is fed back into the DC circuit.
  • the pump housing 100 defines an electrical room 103 and a stator room. 104 and the impeller chamber 105, the control assembly 400 is set in the electrical chamber 103, the stator 310 is set in the stator chamber 104, the impeller 200 is set in the impeller chamber 105, and the water inlet 101 and the water outlet 102 are both connected with the impeller chamber 105.
  • the pump housing 100 includes a housing 110, an end cover 120, a middle housing 130 and a pump head 140.
  • the end cover 120 is installed on the housing 110, and the end cover 120 and the housing 110 jointly define an electrical room 103.
  • the middle casing 130 is installed on the casing 110, and the middle casing 130 and the casing 110 jointly define the stator chamber 104.
  • the pump head 140 is installed in the middle casing 130, and the pump head 140 and the middle casing 130 jointly define the impeller chamber 105, the water inlet 101 and the water outlet 102 are formed in the pump head 140, and the rotor 320 is rotatably installed in the middle casing 130
  • the pump head 140 that is, at least a part of the rotor 320 is located in the middle housing 130, and at least a part is located in the pump head 140.
  • a thermal pad 410 is provided between the end cover 120 and the control assembly 400, and the thermal pad 410 may be a silicone pad. Sealing rings may be used between the end cover 120 and the housing 110, between the housing 110 and the middle housing 130, and between the middle housing 130 and the pump head 140 to improve the sealing performance after assembly.
  • the electrical chamber 103, the stator chamber 104 and the impeller chamber 105 can be reasonably defined in the pump housing 100, and by dividing the pump housing 100 into the housing 110, the end cover 120, the middle housing 130 and the pump head 140, It can facilitate the disassembly, assembly and maintenance of the internal components of the water pump 60.
  • the rotor 320 is provided in the impeller chamber 105, and the rotor 320 is integrated with the impeller 200, and the middle housing 130 is configured to separate the stator 310 and the rotor 320.
  • the middle housing 130 is provided with a first supporting platform 150
  • the pump head 140 is provided with a second supporting platform 160
  • the rotor 320 is provided with a rotating shaft 330.
  • One end of the rotating shaft 330 is rotatably fitted to the first supporting platform 150
  • the rotating shaft 330 The other end is rotatably fitted to the second support platform 160, so that the rotor 320 is rotatably installed in the middle housing 130 and the pump head 140, and the support is stable and reliable.
  • the housing 110 in order to facilitate the electrical connection of the water pump 60, the housing 110 is provided with a plug connector 170, and the plug connector 170 is provided with a plug terminal 180 connected to the control assembly 400.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种全地形车(1),全地形车(1)包括水泵(60),水泵(60):泵壳(100),泵壳(100)设有进水口(101)和出水口(102);叶轮(200),叶轮(200)可旋转地设于泵壳(100)内,叶轮(200)旋转时将水从进水口(101)导入并从出水口(102)导出;无刷电机(300),无刷电机(300)设于泵壳(100)内,无刷电机(300)与叶轮(200)相连且驱动叶轮(200)旋转;控制总成(400),控制总成(400)设于泵壳(100)内且与无刷电机(300)相连。

Description

全地形车
相关申请的交叉引用
本公开基于申请号为201920948484.0,申请日为2019年6月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及全地形车技术领域,尤其是涉及一种全地形车。
背景技术
相关技术中的全地形车,其水泵通常采用有刷电机,不仅占用的空间较大,而且由于摩擦阻力,会产生热量而消耗能量,导致能量转化效率低。此外,水泵在运行时,有刷电机产生的电磁干扰会影响整车的其它电器元件,降低性能的可靠性。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种全地形车,该全地形车具有空间利用率高、能量转化效率高、性能可靠等优点。
根据本公开的实施例提出一种全地形车,所述全地形车包括水泵,所述水泵包括:泵壳,所述泵壳设有进水口和出水口;叶轮,所述叶轮可旋转地设于所述泵壳内,所述叶轮旋转时将水从所述进水口导入并从所述出水口导出;无刷电机,所述无刷电机设于所述泵壳内,所述无刷电机与所述叶轮相连且驱动所述叶轮旋转;控制总成,所述控制总成设于所述泵壳内且与所述无刷电机相连。
根据本公开的实施例的全地形车具有空间利用率高、能量转化效率高、性能可靠等优点。
根据本公开的一些具体实施例,所述无刷电机包括:定子;转子,所述转子可旋转地设于所述定子内,所述转子与所述叶轮传动连接。
进一步地,所述泵壳内限定出电气室、定子室和叶轮室,所述控制总成设于所述电 气室,所述定子设于所述定子室,所述叶轮设于所述叶轮室,所述进水口和所述出水口均与所述叶轮室连通。
进一步地,所述泵壳包括:壳体;端盖,所述端盖安装于所述壳体且与所述壳体共同限定出所述电气室;中壳体,所述中壳体安装于所述壳体且与所述壳体共同限定出所述定子室;泵头,所述泵头安装于所述中壳体且与所述中壳体共同限定出所述叶轮室,所述进水口和所述出水口形成于所述泵头,所述转子可旋转地安装于所述中壳体和所述泵头。
进一步地,所述转子设于所述叶轮室且与所述叶轮形成一体。
进一步地,所述中壳体设有第一支撑台,所述泵头设有第二支撑台,所述转子设有转轴,所述转轴的一端可旋转地配合于所述第一支撑台且另一端可旋转地配合于所述第二支撑台。
根据本公开的一些具体示例,所述壳体设有插接头,所述插接头内设有与所述控制器总成相连的插接端子。
根据本公开的一些具体示例,所述端盖和所述控制总成之间设有导热垫。
根据本公开的一些具体示例,所述控制总成具有逆变电路,所述逆变电路将输入的直流电转换成所述定子的线圈中的交流电。
根据本公开的一些具体实施例,所述全地形车还包括:车架;发动机,所述发动机安装于所述车架;动力电机,所述动力电机安装于所述车架;发动机散热器,所述发动机散热器通过发动机冷却水管与所述发动机相连;电机散热器,所述电机散热器通过电机冷却水管与所述动力电机相连;所述水泵,所述水泵设于所述电机冷却水管。
进一步地,所述动力电机连接有控制器组件,所述控制器组件与所述电机冷却水管相连且位于所述动力电机和所述电机散热器之间,所述水泵设置在所述控制器组件与所述电机散热器之间的电机冷却水管上。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的全地形车的结构示意图。
图2是根据本公开实施例的全地形车的水泵的结构示意图。
图3是根据本公开实施例的全地形车的水泵的剖视图。
附图标记:
全地形车1、
车架10、发动机20、动力电机30、控制器组件31、
发动机散热器40、发动机冷却水管41、
电机散热器50、电机冷却水管51、
水泵60、
泵壳100、进水口101、出水口102、电气室103、定子室104、叶轮室105、
壳体110、端盖120、中壳体130、泵头140、第一支撑台150、第二支撑台160、插接头170、插接端子180、
叶轮200、
无刷电机300、定子310、转子320、转轴330、
控制总成400、导热垫410。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。在本公开的描述中,“第一特征”、“第二特征”可以包括一个或者更多个该特征。
下面参考附图描述根据本公开实施例的全地形车1。
如图1-图3所示,根据本公开实施例的全地形车1包括车架10、发动机20、动力电机30、发动机散热器40、电机散热器50和水泵60。
发动机20安装于车架10,动力电机30安装于车架10,动力电机30连接有控制器组件31。例如,动力电机30通过发动机20设置在车架10上,动力电机30可以通过连接法兰固定在发动机20的一侧。即动力电机30固定于发动机20的一侧,且动力电机30与发动机20传动连接,动力电机30可以在发动机20的驱动下进行发电,同时也可以输出动力,驱动车轮。其中,动力电机30可以为纯电机,也可以为动力发电机。
发动机散热器40和电机散热器50均设置在车架10上,发动机散热器40通过发动 机冷却水管41与发动机20相连,冷却液可以在发动机散热器40和发动机20之间流动,在发动机20工作时,高温冷却液可以流动至发动机散热器40内,发动机散热器40可以有效散热,从而可以降低冷却液的温度,再使得冷却液回流到发动机20中。电机散热器50通过电机冷却水管51与动力电机30相连,冷却液可以在电机散热器50和动力电机30之间流动,在动力电机30工作时,高温冷却液可以流动至电机散热器50内,电机散热器50可以有效散热,从而可以降低冷却液的温度,再使得冷却液回流到动力电机30中,电机冷却水管51可以进一步地与控制器组件31相连,以同时对控制器组件31进行散热。需要说明的是,发动机20和动力电机30的最佳工作温度不同,因此单独设置散热器,可以保证发动机20和动力电机30能够保持在最佳运行温度。
具体地,如图1所示,发动机散热器40设置在车架10的前部,电机散热器50设置在发动机散热器40的前表面上。由于动力电机30运行温度低于发动机20的运行温度,因此将电机散热器50设置在发动机散热器40的前表面上,保证空气先对电机散热器50降温,然后再对发动机散热器40降温。例如,电机散热器50设置在发动机散热器40的前表面上半部分,这样可以将发动机散热器40和电机散热器50设置在一起,可以方便散热器在车架10上的整体布置,而且可以方便发动机散热器40和电机散热器50的散热,可以保证发动机20和动力电机30的工作温度。
水泵60设于电机冷却水管51,具体地,动力电机30连接有控制器组件31,控制器组件31与电机冷却水管51相连且位于动力电机30和电机散热器50之间,水泵60设置在控制器组件31与电机散热器50之间的电机冷却水管51上。水泵60可以提供动力,这样可以使得电机散热器50和动力电机30组成的循环回路循环顺畅。
现有技术中,基本是将水泵集成在动力电机内部,由于动力电机安装位置较低,所以水泵会与电机散热器存在较大高度差,导致水泵扬程不够的问题,进而影响冷却液循环效率,不利于响散热。本发明通过将水泵60设置在动力电机30、控制器组件31与电机散热器50之间的电机冷却水管51上,冷却液由电机散热器51到水泵60,再流入控制器组件31和动力电机30内,即水泵60设置在动力电机30的外部,可以提高水泵60的设置高度,进而提高水泵60的扬程,提高循环效率;另外,由于将水泵60设置在动力电机30的外部,还可以方便水泵60的维修。
由此,发动机散热器40可以单独为发动机20的冷却液散热,电机散热器50可以单独为动力电机30的冷却液散热,从而使得发动机20和动力电机30能够处于适宜的工作温度,这样发动机20和动力电机30工作效率高,并且互不干涉。
下面参考附图描述根据本公开实施例的水泵60。
如图2和图3所示,根据本公开实施例的水泵60包括泵壳100、叶轮200、无刷电 机300和控制总成400。
泵壳100设有进水口101和出水口102,叶轮200可旋转地设于泵壳100内,叶轮200旋转时将水从进水口101导入泵壳100并从出水口102导出泵壳100。无刷电机300设于泵壳100内,无刷电机300与叶轮200相连且驱动叶轮200旋转。控制总成400设于泵壳100内且与无刷电机300相连。
根据本公开实施例的全地形车1,水泵60采用无刷电机300,不仅整体机构尺寸变小、安装空间需求小,能够在相同体积下达到需要的性能,从而提高整车的空间利用率,而且电机30由于为无电刷结构,不会产生摩擦阻力,也不会产生热量消耗能量,从而能量损失小,能量转换效率高。此外,无刷电机300高速运转时不会产生电磁干扰,从而保证全地形车1其它电器元件的性能可靠性,且采用无刷电机300的水泵60在EMC(电磁兼容)法规测试中较易通过。
因此,根据本公开的实施例的全地形车1具有空间利用率高、能量转化效率高、性能可靠等优点。
本领域的技术人员可以理解地是,根据本公开实施例的全地形车1的水泵60不限于应用在上述设置在电机冷却水管51上的实施例,水泵60也可以应用于全地形车1的任何需要的位置。
在本公开的一些具体实施例中,如图3所示,无刷电机300包括定子310和转子320。
转子320可旋转地设于定子310内,转子320为永磁件且与叶轮200传动连接。
进一步地,控制总成400具有逆变电路,所述逆变电路将输入的直流电转换成定子310的线圈中的交流电,从而带动转子320旋转,且逆变电路隔离了线圈产生的振荡信号,防止其反馈至直流电路中。
在本公开的一些具体示例中,如图3所示,为了合理利用泵壳100内的空间,避免水泵60内各部件之间相互影响和干涉,泵壳100内限定出电气室103、定子室104和叶轮室105,控制总成400设于电气室103,定子310设于定子室104,叶轮200设于叶轮室105,进水口101和出水口102均与叶轮室105连通。
具体而言,如图3所示,泵壳100包括壳体110、端盖120、中壳体130和泵头140。
端盖120安装于壳体110,且端盖120与壳体110共同限定出电气室103。中壳体130安装于壳体110,且中壳体130与壳体110共同限定出定子室104。泵头140安装于中壳体130,且泵头140与中壳体130共同限定出叶轮室105,进水口101和出水口102形成于泵头140,转子320可旋转地安装于中壳体130和泵头140,即转子320的至少一部分位于中壳体130,至少一部分位于泵头140。
其中,端盖120和控制总成400之间设有导热垫410,导热垫410可以为硅胶垫。端盖120与壳体110之间,壳体110与中壳体130之间以及中壳体130与泵头140之间可以分别通过密封圈提高装配后的密封性。
由此,可以合理在泵壳100内限定出电气室103、定子室104和叶轮室105,且通过将泵壳100分成壳体110、端盖120、中壳体130和泵头140等部分,能够方便水泵60内部元件的拆装和维护。
在本公开的一些具体实施例中,如图3所示,转子320设于叶轮室105,且转子320与叶轮200形成一体,中壳体130被构造成分隔定子310和转子320的结构。
具体地,中壳体130设有第一支撑台150,泵头140设有第二支撑台160,转子320设有转轴330,转轴330的一端可旋转地配合于第一支撑台150,转轴330的另一端可旋转地配合于第二支撑台160,从而将转子320可旋转地安装于中壳体130和泵头140,且支撑稳定可靠。
在本公开的一些具体示例中,如图3所示,为了便于水泵60的电连接,壳体110设有插接头170,插接头170内设有与控制总成400相连的插接端子180。
根据本公开实施例的全地形车1的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“具体实施例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (11)

  1. 一种全地形车,其特征在于,包括水泵,所述水泵包括:
    泵壳,所述泵壳设有进水口和出水口;
    叶轮,所述叶轮可旋转地设于所述泵壳内,所述叶轮旋转时将水从所述进水口导入并从所述出水口导出;
    无刷电机,所述无刷电机设于所述泵壳内,所述无刷电机与所述叶轮相连且驱动所述叶轮旋转;
    控制总成,所述控制总成设于所述泵壳内且与所述无刷电机相连。
  2. 根据权利要求1所述的全地形车,其特征在于,所述无刷电机包括:
    定子;
    转子,所述转子可旋转地设于所述定子内,所述转子与所述叶轮传动连接。
  3. 根据权利要求2所述的全地形车,其特征在于,所述泵壳内限定出电气室、定子室和叶轮室,所述控制总成设于所述电气室,所述定子设于所述定子室,所述叶轮设于所述叶轮室,所述进水口和所述出水口均与所述叶轮室连通。
  4. 根据权利要求3所述的全地形车,其特征在于,所述泵壳包括:
    壳体;
    端盖,所述端盖安装于所述壳体且与所述壳体共同限定出所述电气室;
    中壳体,所述中壳体安装于所述壳体且与所述壳体共同限定出所述定子室;
    泵头,所述泵头安装于所述中壳体且与所述中壳体共同限定出所述叶轮室,所述进水口和所述出水口形成于所述泵头,所述转子可旋转地安装于所述中壳体和所述泵头。
  5. 根据权利要求4所述的全地形车,其特征在于,所述转子设于所述叶轮室且与所述叶轮形成一体。
  6. 根据权利要求4所述的全地形车,其特征在于,所述中壳体设有第一支撑台,所述泵头设有第二支撑台,所述转子设有转轴,所述转轴的一端可旋转地配合于所述第一支撑台且另一端可旋转地配合于所述第二支撑台。
  7. 根据权利要求4所述的全地形车,其特征在于,所述壳体设有插接头,所述插接头内设有与所述控制器总成相连的插接端子。
  8. 根据权利要求4所述的全地形车,其特征在于,所述端盖和所述控制总成之间设有导热垫。
  9. 根据权利要求2所述的全地形车,其特征在于,所述控制总成具有逆变电路,所述逆变电路将输入的直流电转换成所述定子的线圈中的交流电。
  10. 根据权利要求1-9中任一项所述的全地形车,其特征在于,还包括:
    车架;
    发动机,所述发动机安装于所述车架;
    动力电机,所述动力电机安装于所述车架;
    发动机散热器,所述发动机散热器通过发动机冷却水管与所述发动机相连;
    电机散热器,所述电机散热器通过电机冷却水管与所述动力电机相连;
    所述水泵,所述水泵设于所述电机冷却水管。
  11. 根据权利要求10所述的全地形车,其特征在于,所述动力电机连接有控制器组件,所述控制器组件与所述电机冷却水管相连且位于所述动力电机和所述电机散热器之间,所述水泵设置在所述控制器组件与所述电机散热器之间的电机冷却水管上。
PCT/CN2019/125919 2019-06-21 2019-12-17 全地形车 WO2020253173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920948484.0U CN210309908U (zh) 2019-06-21 2019-06-21 全地形车
CN201920948484.0 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020253173A1 true WO2020253173A1 (zh) 2020-12-24

Family

ID=70145877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125919 WO2020253173A1 (zh) 2019-06-21 2019-12-17 全地形车

Country Status (2)

Country Link
CN (1) CN210309908U (zh)
WO (1) WO2020253173A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113022292B (zh) * 2021-02-08 2022-08-16 浙江春风动力股份有限公司 一种全地形四轮车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913582A1 (en) * 1997-10-31 1999-05-06 Siemens Canada Limited Pump motor having sumbersible stator and rotor
CN203023076U (zh) * 2012-11-28 2013-06-26 瑞安市鑫品电子有限公司 直流无刷水泵
WO2014173232A1 (zh) * 2013-04-25 2014-10-30 常州雷利电机科技有限公司 排水泵用无刷电动机及排水泵
CN108252929A (zh) * 2018-01-10 2018-07-06 南京胜捷电机制造有限公司 一种采用直流无刷电机驱动的汽车水泵
CN208236678U (zh) * 2018-05-04 2018-12-14 浙江千佳汽车部件有限公司 一种汽车用无刷直流电机水泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913582A1 (en) * 1997-10-31 1999-05-06 Siemens Canada Limited Pump motor having sumbersible stator and rotor
CN203023076U (zh) * 2012-11-28 2013-06-26 瑞安市鑫品电子有限公司 直流无刷水泵
WO2014173232A1 (zh) * 2013-04-25 2014-10-30 常州雷利电机科技有限公司 排水泵用无刷电动机及排水泵
CN108252929A (zh) * 2018-01-10 2018-07-06 南京胜捷电机制造有限公司 一种采用直流无刷电机驱动的汽车水泵
CN208236678U (zh) * 2018-05-04 2018-12-14 浙江千佳汽车部件有限公司 一种汽车用无刷直流电机水泵

Also Published As

Publication number Publication date
CN210309908U (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
US10731659B2 (en) Energy-saving and endurable auto electric water pump
US8628309B2 (en) Turbomolecular pump device and controlling device thereof
CN105827066B (zh) 温控电机与控制器的风油混合冷却系统
TW201832452A (zh) 電機冷卻結構、動力電機及電驅動系統
CN106089739B (zh) 热水循环泵
CN2899258Y (zh) 混合冷却式发电机
US5529114A (en) Electric vehicle coolant pump assembly
CN205811775U (zh) 温控电机与控制器的风油混合冷却系统
CN204046357U (zh) 一种电动汽车水冷电机
WO2020253173A1 (zh) 全地形车
CN113555996A (zh) 一种高效高功率电子水泵
CN202550740U (zh) 无风扇的电机冷却结构
CN202048052U (zh) 用于液压系统装置的伺服电机结构
CN111608924A (zh) 新型液体自冷循环式大功率无刷电子水泵
CN215344183U (zh) 一种绕组散热稳定高效的ye4型三相异步电机
CN211183621U (zh) 一种电机外壳的降噪散热结构
WO2012041210A1 (zh) 碎纸机
JP6890651B1 (ja) 回転電機
CN107394969B (zh) 一种用于洗涤机的新型电机
CN220043158U (zh) 直驱电机装置
CN213125712U (zh) 一种空心杯电机快速散热机构
CN206481548U (zh) 一种控制器集成水冷无刷电机水泵
CN216564766U (zh) 一种风扇的驱动结构
CN110492652A (zh) 一种小体积稀土永磁发电机结构
CN215772776U (zh) 一种高效高功率电子水泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE