WO2020253076A1 - Use of hydroxycarboxylic acid compounds for controlling plant diseases - Google Patents

Use of hydroxycarboxylic acid compounds for controlling plant diseases Download PDF

Info

Publication number
WO2020253076A1
WO2020253076A1 PCT/CN2019/119064 CN2019119064W WO2020253076A1 WO 2020253076 A1 WO2020253076 A1 WO 2020253076A1 CN 2019119064 W CN2019119064 W CN 2019119064W WO 2020253076 A1 WO2020253076 A1 WO 2020253076A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
colletotrichum
hydroxycarboxylic acid
test
anthracnose
Prior art date
Application number
PCT/CN2019/119064
Other languages
French (fr)
Inventor
Youliang Peng
Xi Zhang
Hongchao GUO
Hanwen Ni
Daolong Dou
Xiaodan Wang
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Publication of WO2020253076A1 publication Critical patent/WO2020253076A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/36Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
    • A01N37/38Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system
    • A01N37/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system having at least one carboxylic group or a thio analogue, or a derivative thereof, and one oxygen or sulfur atom attached to the same aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/36Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids

Definitions

  • Hydroxycarboxylic acid compounds shown in formulas I, II, III, and IV are known compounds, and are widely used in chemical industry, food, medicine, materials, textile and other fields. Some of the compounds also have good antibacterial effects.
  • 10-hydroxy-2-decenoic acid of formula V which is one representative of such compounds, has good inhibitory effects on E. coli, B. subtilis and S. aureus.
  • hydroxycarboxylic acid compounds for controlling plant diseases such as rice blast, anthracnose, downy mildew, phytophthora blight, and gray mold.
  • Filamentous eukaryotic pathogens include oomycetes, such as Achlya spp which causes rice seedling rot, Pythium spp which causes seedling damping-off and fruit rot, Phytophthora spp which causes tobacco black shank and potato late blight, and Peronospora spp which causes downy mildew; filamentous eukaryotic pathogens also include fungi, especially disease-causing ascomycetes, such as Erysiphe which causes powdery mildew, Gaeumannomyces which causes rice bakanae disease and wheat scab, Venturia which causes apple scab and pear scab; rust fungus in basidiomycota, which causes rust disease, smut fungus which causes smut disease, and imperfect fungus which causes rice blast
  • Common symptoms include downy mildew, white powder, white rust, black powder, rust powder, sooty mold, tar spot, mildew, mushroom, cotton floc, granule, cording, sticky granule, petiole spot, etc.
  • rice blast caused by Pyricularia oryzae is the most serious destructive disease of rice, which may lead to a significant reduction in production, and in severe cases, the yield is reduced by 40%-50%, or even with no grain harvest at all.
  • Rice blast occurs not only all over the world, but also at various growth stages of rice. After occurrence, it may lead to varying degrees of yield reduction, and in particular, neck blast may cause white head and even no production. Rice blast may occur in any year and at any growth period in the provincial area, and therefore, its harm to agricultural production is extremely serious.
  • downy mildew and late blight caused by oomycetes are also significant diseases in many crops, such as downy mildew in various melons and grapes, late blight in potatoes and tomatoes, and phytophthora blight in peppers, all of which can cause huge losses to agricultural production.
  • Chemical agents are generally used to control plant diseases caused by filamentous eukaryotic pathogens, and measures to improve cultivation and management are utilized to promote plant health and reduce pathogens.
  • the commonly used pesticides for chemical control include bordeaux mixture, DTMZ, chlorothalonil, thiophanate-methyl, carbendazim, pyraclostrobin, and prochloraz.
  • One of the objects of the present invention is to provide a new use of hydroxycarboxylic acid compounds, thereby providing a novel plant protective agent for controlling rice blast, anthracnose, downy mildew, phytophthora blight or gray mold in various plants, including food crops such as rice, wheat, sorghum and corn, melons and fruits such as apple, persimmon, citrus, mango, walnut, kiwifruit, jujube, litchi, longan, loquat, pomegranate, grape, watermelon and pitaya, and vegetables such as pepper, cucumber, eggplant, bitter gourd, wild pepper and long bean.
  • food crops such as rice, wheat, sorghum and corn
  • melons and fruits such as apple, persimmon, citrus, mango, walnut, kiwifruit, jujube, litchi, longan, loquat, pomegranate, grape, watermelon and pitaya
  • vegetables such as pepper, cucumber, eggplant, bitter gourd, wild pepper and long bean
  • hydroxycarboxylic acid compound for controlling plant diseases, wherein the hydroxycarboxylic acid compound is selected from compounds of formulas I, II, III and IV, as well as isomers, hydrates or salts thereof:
  • n is an integer of 0-50, i.e., that portion of the compound has 0-50 carbons
  • m is an integer of 1-30, i.e., that portion of the compound has 1-30 olefinic bonds
  • x is an integer of 0-50, i.e., that portion of the compound has 0-50 carbons
  • R is alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or glycosyl.
  • the compound of formula I has a hydroxyl group at one end and a carboxyl functional group at the other end of the chain, n is 0-30, i.e., that portion of the compound may have 0-30 carbons; and m is 1-16, i.e., that portion of the compound may have 1-16 olefinic bonds.
  • the compound of formula I includes, but is not limited to, linear compounds, and also branched isomers, as well as olefinic cis-trans isomers and positional isomers thereof.
  • n in the formula I is 6; and m is 1, i.e., the compound of formula I is selected from the following V compound:
  • the compound of formula II has a hydroxyl group at one end and a carboxyl functional group at the other end of the chain, n is 0-30, i.e., that portion of the compound may have 0-30 carbons.
  • the compound of formula II includes, but is not limited to, linear compounds, and also branched isomers, as well as olefinic cis-trans isomers and positional isomers thereof.
  • the compound of formula III has a hydroxyl group at one end and a carboxyl functional group at the other end of the chain, n is 0-15, i.e., that portion of the compound may have 0-15 carbons; and x is 0-15, i.e., that portion of the compound may have 0-15 carbons.
  • the compound of formula III includes, but is not limited to, linear compounds, as well as branched isomers and stereoisomers thereof.
  • the compound of formula IV has a hydroxyl group at one end and a carboxyl functional group at the other end of the chain, n is 0-10, i.e., that portion of the compound may have 0-10 carbons; and x is 0-10, i.e., that portion of the compound may have 0-10 carbons.
  • the compound of formula IV includes, but is not limited to, linear compounds, and also branched isomers, as well as positional isomers on phenyl ring thereof.
  • the plant protective agent contains a hydroxycarboxylic acid compound selected from formulas I, II, III or IV, and optionally, an auxiliary.
  • a second object of the present invention is to provide a plant protective agent or bactericide, containing a dicarboxylic acid compound selected from formulas I, II, III or IV, and optionally, an auxiliary.
  • a novel plant protective agent is provided for the prevention of rice blast, anthracnose, downy mildew, phytophthora blight, and gray mold in plants.
  • the diseases are selected from rice blast, melon downy mildew, pepper anthracnose, tomato gray mold, potato late blight, and pepper phytophthora blight.
  • the new use of the hydroxycarboxylic acid compound provided by the present invention has the following advantages:
  • a class of hydroxycarboxylic acid compounds currently available has the effect of inhibiting appressorium formation of fungi.
  • Many pathogenic fungi and oomycetes that are parasitic on plants expand at the tops of germ tubes or hyphae, and secrete mucous substances, helping the pathogens to adhere firmly to the surface of the host, and intrude into plant tissues.
  • This structure is called appressorium, and the appressorium formation of pathogenic germs is directly related to whether the pathogens can successfully intrude into the host tissues, and is the key to the pathogenesis of plant diseases such as rice blast, anthracnose, downy mildew, phytophthora blight, gray mold, etc.
  • An appressorium formation inhibitor is a substance that can effectively inhibit appressorium formation and thus hinder the occurrence of various plant diseases.
  • hydroxycarboxylic acid compounds can effectively prevent pathogenic germs from infecting plants by inhibiting appressorium formation, and can be used for controlling plant diseases that are extremely harmful, including rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, etc., thus providing a new choice for plant protective agents.
  • the present inventors have found that some specific hydroxycarboxylic acid compounds with specific structures can effectively inhibit appressorium formation of fungi at a concentration of 10-100 ppm, and the control effects on plant diseases such as rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, etc. have reached more than 80%.
  • the hydroxycarboxylic acid compounds of the present invention have the advantages of being pollution-free, environmental friendliness, low residue, and good safety, besides the definite control effects in inhibiting appressorium formation activity, especially in controlling diseases such as rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, etc.
  • the hydroxycarboxylic acid compounds of the present invention are known and widely used, with easy availability of raw materials and known synthesis technologies, thus have the advantages of being more convenient and readily available.
  • the plant protective agent described in the present invention for inhibiting appressorium formation activity may be referred to as an appressorium formation inhibitor.
  • hydroxycarboxylic acid compounds to which the present invention relates namely the compounds having formulas I, II, III, IV and V, are known compounds, and can be obtained commercially or by literature methods.
  • specific hydroxycarboxylic acid compounds tested in the present invention are listed in Table 1.
  • Pathogenic isolates to be tested A total of 20 Colletotrichum strains were grape Colletotrichum, sorghum Colletotrichum, camellia oleifera Colletotrichum, apple Colletotrichum, pear Colletotrichum, strawberry Colletotrichum, pepper Colletotrichum acutata, pepper Colletotrichum dematium, disporopsis pernyi Colletotrichum (8270) , disporopsis pernyi Colletotrichum (8069) , millettia specisoa Colletotrichum, yellow pear Colletotrichum, cucumber Colletotrichum, momordica grosvenori Colletotrichum, camellia azalea Colletotrichum (9053) , camellia azalea Colletotrichum (9059) , cherry Colletotrichum, cruciferous vegetable Colletotrichum, walnut Colletotrichum and corn Colletotrichum, respectively.
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
  • Counting Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of its appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
  • Test results showed that a variety of hydroxyl compounds had good inhibitory activities against Anthracnose pathogens. The specific results were shown in Tables 2, 3, 4, 5 and 6.
  • H51 pepper Colletotrichum acutata 27 8 H51 pepper Colletotrichum dematium 18 9 H51 disporopsis pernyi Colletotrichum (8270) 70 10 H51 disporopsis pernyi Colletotrichum (8069) 85 11 H51 millettia specisoa Colletotrichum - 12 H51 yellow pear Colletotrichum - 13 H51 cucumber Colletotrichum - 14 H51 momordica grosvenori Colletotrichum - 15 H51 camellia azalea Colletotrichum (9053) - 16 H51 camellia azalea Colletotrichum (9059) 60 17 H51 cherry Colletotrichum 92 18 H51 cruciferous vegetable Colletotrichum - 19 H51 walnut Colletotrichum 50 20 H51 corn Colletotrichum 90
  • Pathogen to be tested Rice blast pathogen (Magnaporthe oryzae) P131.
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
  • Counting Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
  • Test results showed that a variety of hydroxycarboxylic acid compounds had significant inhibitory effects on appressorium formation of rice blast pathogen P131. The specific results were shown in Table 7.
  • Pathogen isolate to be tested Rubber anthracnose pathogen (Colletotrichum acutatum) YN42.
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
  • Counting Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC50 value was determined.
  • Test results showed that a variety of hydroxycarboxylic acid compounds had significant inhibitory effects on appressorium formation of rubber acutatum YN42. The specific results were shown in Table 8.
  • Pathogen to be tested Mango anthracnose pathogen (Colletotrichum gloeosporioides) r13.
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
  • Counting Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
  • Test results showed that a variety of hydroxycarboxylic acid compounds had significant inhibitory effects on appressorium formation of mango Colletotrichum gloeosporioides r13. The specific results were shown in Table 9.
  • Pathogen to be tested Tomato gray mold pathogen (Botrytis cinerea) .
  • Activation of botrytis cinerea a PDA medium was poured onto a plate in a ultra-clean workbench. After the medium was cooled and solidified, a small number of the strains of botrytis cinerea were picked by an inoculation ring and placed into individual culture dishes, respectively. The culture dishes were placed into an incubator at 28 °C and incubated in an inverted manner. The first activation time was one week. After their hyphae turned grayish-green in color and overgrew the plate, a secondary activation was carried out according to the above method.
  • the target compound was formulated into pesticide solution with a final concentration of 100 ppm (control pesticide: prochloraz) , sprayed evenly on tomato leaves and left for moisturizing. After 24 h, the leaves were blown dry, until there were no water drops on surfaces. After that, the prepared spore suspension was spotted on the tomato leaves, with 2 drops of the spore suspension spotted for each leaf, and each drop of spore suspension was 20 ⁇ L. Moisturizing incubation was carried out at 20 °C, and diseases were observed 3 days later.
  • control pesticide prochloraz
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm and 50 ppm, sprayed onto arabidopsis leaves. Seven days later, the diseases were counted and the control effects (%) were calculated.
  • Pathogen to be tested potato late blight pathogen (Phytophthora infestans) .
  • Potato variety "Xisen No. 6" was a high-sensitivity late blight cultivar.
  • Phytophthora infestans strains MZ15-30 were inoculated into a rye medium, and a total of 10 plates (90 mm diameter) were incubated until day 13 to check for contamination. The contamination-free plates were retained. 10 mL of sterile distilled water was added to each plate on a sterile operating table, and the plates were incubated for 3-4 h in a refrigerator at 4°C to rupture sporangia and release zoospores.
  • the zoospores were carefully transferred to 50 mL centrifuge tubes. For one centrifuge tube, 4 plates were transferred, and centrifuged at a low speed of 2500 rpm for 10 minutes. The supernatant was carefully poured out, 200 uL liquid was left at the bottom of the tube, and the precipitate was resuspended in 2 mL sterile distilled water. 10 ⁇ L of resuspended zoospores were 1: 10 diluted with sterile distilled water, and counted using a hemocytometer (Modified Fuchs Rosenthal Counting Chamber, depth 0.2 mm; Weber Scientific International, Teddington, UK) under a biological microscope.
  • a hemocytometer Modified Fuchs Rosenthal Counting Chamber, depth 0.2 mm; Weber Scientific International, Teddington, UK
  • the diluted zoospores were thoroughly and uniformly mixed by a pipette, and loaded on both sides of the hemocytometer.
  • the total number of zoospores in 16 squares of the hemocytometer was counted, and then an average number of zoospores in each square was calculated by dividing by 4. By multiplying this number by 10,000, the total concentration of zoospores per milliliter was obtained.
  • the spores for inoculation were required to be diluted with sterile distilled water to a concentration of 15,000 spores per milliliter.
  • Pesticide solutions of 100 ppm were prepared and sprayed evenly on potato leaves with a seedling age of 20 days for moisturizing and incubating in an artificial climate chamber. After 24 h, the prepared pathogen liquids were then sprayed evenly on the potato leaves for moisturizing and incubating in the artificial climate chamber (20 °C, 18 h light and 6 h dark) . After 4-5 days, the disease indexes were counted. As the strains used in the experiments were moderately strong pathogenic strains, the counting was generally started after 4 days of inoculation, the disease indexes and control effects were counted for three consecutive days, and photo records were taken.
  • strain no. MZ
  • physiological race R1, R3, R4, R7, R9, R10, and R11
  • characteristics of the strain moderately strong strain, showing strong virulence and rapid onset
  • spore concentration 250 zoospores/10 ⁇ L.
  • Test results The compound H59 showed certain control effects against potato late blight, and the control effect reached 95.13%.
  • Agent Dilution fold 1 15%H59 1000 times 2 Yinfali (687.5g/L fluopicolide ⁇ propamocarb) 1000 times 3 CK 0
  • Soil moisture was sufficient to facilitate plant growth.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade 1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade 3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade 5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade 7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Control target pumpkin anthracnose
  • Agent Dilution fold 1 15%H59 1000 times 2 Nadiwen (25%trifloxystrobin ⁇ 50%tebuconazole) 2000 times 3 Zhengjia (20%difenoconazole) 750 times 4 CK 0
  • Soil moisture was sufficient to facilitate plant growth.
  • pumpkin anthracnose As the occurrence of pumpkin anthracnose before the test, it was a remedial test. Each treatment area was 20 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and all the leaves of each plant were surveyed. The sizes of anthracnose spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
  • Grade5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Random block arrangement was used for cells of test agent, control agent and blank control.
  • control effects were surveyed 8 days after the first administration and 8 days after the second administration, respectively.
  • Grade1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area.
  • test results showed that from the whole process of the test, it could be seen that the disease index of melon before administration was at a lower level, indicating that the disease was in the early stage. Seven days after the first administration, it was found that the control effect of the H59 was 38.02%, and the control effect of the control agent azoxystrobin by 2500 times dilution was 49.58%; After one administration experiment, the diseased spots of the infected leaves of melons could be effectively controlled, while the downy mildew of the control blank group was continuously expanding.
  • Example 11 Field test reports of hydroxycarboxylic acid compounds for controlling cowpea anthracnose
  • Control target cowpea anthracnose
  • Agent Dilution fold 1 15%H59 1000 times 2 Nadiwen (25%trifloxystrobin ⁇ 50%tebuconazole) 2000 times 3 Zhengjia (20%difenoconazole) 750 times 4 CK 0
  • the pesticides were administered twice, dated March 13, 2019 and March 20, 2019. After the first administration, the cowpeas grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in a middle to late stage of the occurrence of anthracnose.
  • Soil moisture was sufficient to facilitate plant growth.
  • cowpea anthracnose As the occurrence of cowpea anthracnose before the test, it was a remedial test. Each treatment area was 50 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and cowpea leaves on each plant were surveyed. The sizes of anthracnose spots on the leaves were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area.
  • test results showed that from the whole process of the test, it could be seen that the disease index of cowpea before administration was at a higher level, indicating that the disease was in a middle to late stage.
  • Seven days after the first administration it was found that the control effect of the sample H59 by 1000 times dilution was 49.92%, the control effect of the control agent Nadiwen by 2000 times dilution was 46.80%, and the control effect of Zhengjia by 750 times dilution was 36.61%. Seven days after the second administration, it was found that the control effects were all improved to varying degrees, reaching 57.20%.
  • Agent Dilution fold 1 15%H59 1000 times 2 Nadiwen (25%trifloxystrobin ⁇ 50%tebuconazole) 2000 times 3 CK 0
  • the pesticides were administered twice, dated February 13, 2019 and February 20, 2019. After the first administration, the peppers grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in the middle stage of the occurrence of anthracnose.
  • Soil moisture was sufficient to facilitate plant growth.
  • each treatment area was 20 square meters.
  • a random 5-point survey method was used, two plants were surveyed at each point, and all the leaves of each plant were surveyed. The sizes of anthracnose spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area.
  • the pesticides were administered twice, dated March 11, 2019 and March 18, 2019. After the first administration, the peppers grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in a middle to late stage of the occurrence of anthracnose.
  • Soil moisture was sufficient to facilitate plant growth.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade 1 The area of diseased spots accounted for less than 5%of the total fruit area
  • Grade 3 The area of diseased spots accounted for less than 6%-10%of the total fruit area
  • Grade 5 The area of diseased spots accounted for less than 11%-20%of the total fruit area
  • Grade 7 The area of diseased spots accounted for less than 21%-50%of the total fruit area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total fruit area.
  • test results showed that from the whole process of the test, it could be seen that the disease index of pepper before administration was at a higher level, indicating that the disease was in a middle to late stage.
  • Seven days after the first administration it was found that the control effect of the sample H59 by 1000 times dilution was 50.22%, the control effect of the control agent Nadiwen by 2000 times dilution was 42.61%, and the control effect of Zhengjia by 750 times dilution was 41.80%. Over time, 7 days after the second administration, it was found that the control effects were all improved to varying degrees.
  • Test crop rice variety (mongol rice)
  • Test target rice blast
  • Test location Panjin city, liaoning province
  • a five-point random sampling survey method was used. Ten plants were surveyed at each point, and the sizes of rice blast spots were counted. The disease index of each treated plant was surveyed and counted 14 days after administration by adopting an international grading method.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Discloses the use of a hydroxycarboxylic acid compound for controlling plant diseases by fungi and oomycetes, wherein the hydroxycarboxylic acid compound is selected from compounds of formulas (I), (II), (III) and (IV), as well as isomers, hydrates or salts thereof. The hydroxycarboxylic acid have remarkable inhibitory activity against appressorium formation of fungi or oomycetes, and therefore, can be used for preventing plant diseases, such as rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, etc., with no obvious phytotoxicity and good safety. Compared with compounds currently available for controlling plant diseases such as rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, etc., the hydroxycarboxylic acid compounds have characteristics such as good preventive effect, environmental friendliness, non-toxicity, low residue, and safety.

Description

Use of Hydroxycarboxylic Acid Compounds for Controlling Plant Diseases Technical field
The present invention relates to novel uses of hydroxycarboxylic acid compounds, and in particular to the use of such compounds for controlling plant diseases.
Background art
Hydroxycarboxylic acid compounds shown in formulas I, II, III, and IV are known compounds, and are widely used in chemical industry, food, medicine, materials, textile and other fields. Some of the compounds also have good antibacterial effects. For example, 10-hydroxy-2-decenoic acid of formula V, which is one representative of such compounds, has good inhibitory effects on E. coli, B. subtilis and S. aureus. However, there have been no reports on the use of such hydroxycarboxylic acid compounds for controlling plant diseases such as rice blast, anthracnose, downy mildew, phytophthora blight, and gray mold.
Figure PCTCN2019119064-appb-000001
Plant diseases caused by plant filamentous eukaryotic pathogens account for about 70-80%of plant diseases. Several or even dozens of fungal diseases may be found on one type of crop. Filamentous eukaryotic pathogens include oomycetes, such as Achlya spp which causes rice seedling rot, Pythium spp which causes seedling damping-off and fruit rot, Phytophthora spp which causes tobacco black shank and potato late blight, and Peronospora spp which causes downy mildew; filamentous eukaryotic pathogens also include fungi, especially disease-causing ascomycetes, such as Erysiphe which causes powdery mildew, Gaeumannomyces which causes rice bakanae disease and wheat scab, Venturia which causes apple scab and pear scab; rust fungus in basidiomycota, which causes rust disease, smut fungus which causes smut disease, and imperfect fungus which causes rice blast, rice brown spot, corn northern leaf blight, corn southern leaf blight, etc. Common symptoms include downy mildew, white powder, white rust, black powder, rust powder, sooty mold, tar spot, mildew, mushroom, cotton floc, granule, cording, sticky granule, petiole spot, etc.
These diseases are mainly spread by airflow and waterflow in the field; in addition, insects can also spread fungal and oomycete diseases. These diseases are extremely  harmful to the production of grains, fruits and vegetables. For example, rice blast caused by Pyricularia oryzae is the most serious destructive disease of rice, which may lead to a significant reduction in production, and in severe cases, the yield is reduced by 40%-50%, or even with no grain harvest at all. Rice blast occurs not only all over the world, but also at various growth stages of rice. After occurrence, it may lead to varying degrees of yield reduction, and in particular, neck blast may cause white head and even no production. Rice blast may occur in any year and at any growth period in the provincial area, and therefore, its harm to agricultural production is extremely serious. For a long time, rice blast has caused more than 3 billion kilograms of grain loss in China every year, and even threatens global grain security. Anthracnose, another important fungal disease on plants, is caused by Colletotrichum spp. The pathogens are transmitted by wind and rain as well as splashed droplets, and wounds are conducive to intrusion. High temperature and humidity, heavy rain, improper fertilization, mismanagement during transportation and poor plant growth are all conducive to the occurrence of diseases. A variety of crops, fruit trees and vegetables such as peppers, tomatoes, cucumbers, apples and so on are infectible by anthracnose, which has a great impact on agricultural production.
In addition, downy mildew and late blight caused by oomycetes are also significant diseases in many crops, such as downy mildew in various melons and grapes, late blight in potatoes and tomatoes, and phytophthora blight in peppers, all of which can cause huge losses to agricultural production.
Chemical agents are generally used to control plant diseases caused by filamentous eukaryotic pathogens, and measures to improve cultivation and management are utilized to promote plant health and reduce pathogens. Currently, the commonly used pesticides for chemical control include bordeaux mixture, DTMZ, chlorothalonil, thiophanate-methyl, carbendazim, pyraclostrobin, and prochloraz.
The control of the above diseases has always been a key technical issue in agricultural production, so it is of great significance to continue to develop green pesticides against these diseases. Many filamentous eukaryotic pathogens that are parasitic on plants expand at the tops of their spore germ tubes or aged hyphae, and secrete mucous substances, thus firmly adhered to the surface of the host and engaged in intrusion, which is called appressorium. Appressorium formation is directly related to whether the pathogens can successfully intrude into host tissues, and is a key step for pyricularia, Colletotrichum spp and oomycetes to cause plant diseases. If there are compounds or measures that can effectively inhibit appressorium formation, the occurrence of these diseases can be effectively reduced and controlled. Therefore, the development of appressorium formation inhibitors, that is, substances that can effectively inhibit appressorium formation and thus control the occurrence of various plant diseases, is of great significance for controlling plant diseases caused by fungi and oomycetes.
By extensive investigation of hydroxycarboxylic acid compounds shown in formulas I, II, III or IV, the present invention provides new uses useful for inhibiting appressorium formation and controlling plant diseases, as distinct from prior art for hydroxycarboxylic acid compounds.
Summary of the Invention
One of the objects of the present invention is to provide a new use of hydroxycarboxylic acid compounds, thereby providing a novel plant protective agent for  controlling rice blast, anthracnose, downy mildew, phytophthora blight or gray mold in various plants, including food crops such as rice, wheat, sorghum and corn, melons and fruits such as apple, persimmon, citrus, mango, walnut, kiwifruit, jujube, litchi, longan, loquat, pomegranate, grape, watermelon and pitaya, and vegetables such as pepper, cucumber, eggplant, bitter gourd, wild pepper and long bean.
One technical solution of the present invention relates to the use of a hydroxycarboxylic acid compound for controlling plant diseases, wherein the hydroxycarboxylic acid compound is selected from compounds of formulas I, II, III and IV, as well as isomers, hydrates or salts thereof:
Figure PCTCN2019119064-appb-000002
wherein, n is an integer of 0-50, i.e., that portion of the compound has 0-50 carbons; m is an integer of 1-30, i.e., that portion of the compound has 1-30 olefinic bonds; x is an integer of 0-50, i.e., that portion of the compound has 0-50 carbons; and R is alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or glycosyl.
Preferably, in the formula I, the compound of formula I has a hydroxyl group at one end and a carboxyl functional group at the other end of the chain, n is 0-30, i.e., that portion of the compound may have 0-30 carbons; and m is 1-16, i.e., that portion of the compound may have 1-16 olefinic bonds. The compound of formula I includes, but is not limited to, linear compounds, and also branched isomers, as well as olefinic cis-trans isomers and positional isomers thereof.
More preferably, n in the formula I is 6; and m is 1, i.e., the compound of formula I is selected from the following V compound:
Figure PCTCN2019119064-appb-000003
Preferably, in the formula II, the compound of formula II has a hydroxyl group at one end and a carboxyl functional group at the other end of the chain, n is 0-30, i.e., that portion of the compound may have 0-30 carbons. The compound of formula II includes, but is not limited to, linear compounds, and also branched isomers, as well as olefinic cis-trans isomers and positional isomers thereof.
Preferably, in the formula III, the compound of formula III has a hydroxyl group at one end and a carboxyl functional group at the other end of the chain, n is 0-15, i.e., that portion of the compound may have 0-15 carbons; and x is 0-15, i.e., that portion of the compound may have 0-15 carbons. The compound of formula III includes, but is not limited to, linear compounds, as well as branched isomers and stereoisomers thereof.
Preferably, in the formula IV, the compound of formula IV has a hydroxyl group at one end and a carboxyl functional group at the other end of the chain, n is 0-10, i.e., that portion of the compound may have 0-10 carbons; and x is 0-10, i.e., that portion of the compound may have 0-10 carbons. The compound of formula IV includes, but is not limited to, linear compounds, and also branched isomers, as well as positional isomers on phenyl ring thereof.
The plant protective agent contains a hydroxycarboxylic acid compound selected from formulas I, II, III or IV, and optionally, an auxiliary.
A second object of the present invention is to provide a plant protective agent or bactericide, containing a dicarboxylic acid compound selected from formulas I, II, III or IV, and optionally, an auxiliary.
Preferably, a novel plant protective agent is provided for the prevention of rice blast, anthracnose, downy mildew, phytophthora blight, and gray mold in plants.
Still preferably, the diseases are selected from rice blast, melon downy mildew, pepper anthracnose, tomato gray mold, potato late blight, and pepper phytophthora blight.
The new use of the hydroxycarboxylic acid compound provided by the present invention has the following advantages:
i. The present inventors have for the first time found that, a class of hydroxycarboxylic acid compounds currently available has the effect of inhibiting appressorium formation of fungi. Many pathogenic fungi and oomycetes that are parasitic on plants expand at the tops of germ tubes or hyphae, and secrete mucous substances, helping the pathogens to adhere firmly to the surface of the host, and intrude into plant tissues. This structure is called appressorium, and the appressorium formation of pathogenic germs is directly related to whether the pathogens can successfully intrude into the host tissues, and is the key to the pathogenesis of plant diseases such as rice blast, anthracnose, downy mildew, phytophthora blight, gray mold, etc. An appressorium formation inhibitor is a substance that can effectively inhibit appressorium formation and thus hinder the occurrence of various plant diseases.
Researches have shown that the hydroxycarboxylic acid compounds of formulas I, II, III and IV can effectively inhibit fungal appressorium formation.
ii. The present inventors have found that the hydroxycarboxylic acid compounds can effectively prevent pathogenic germs from infecting plants by inhibiting appressorium formation, and can be used for controlling plant diseases that are extremely harmful, including rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, etc., thus providing a new choice for plant protective agents.
iii. The present inventors have found that some specific hydroxycarboxylic acid compounds with specific structures can effectively inhibit appressorium formation of fungi at a concentration of 10-100 ppm, and the control effects on plant diseases such as rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, etc. have reached more than 80%.
iv. The hydroxycarboxylic acid compounds of the present invention have the advantages of being pollution-free, environmental friendliness, low residue, and good safety, besides the definite control effects in inhibiting appressorium formation activity, especially in controlling diseases such as rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, etc.
v. Compared with compounds currently available for controlling rice blast, anthracnose, gray mold, downy mildew and phytophthora blight, the hydroxycarboxylic acid compounds of the present invention are known and widely used, with easy availability of raw materials and known synthesis technologies, thus have the advantages of being more convenient and readily available.
Detailed description
The following examples are provided to illustrate the present invention without limiting its scope.
Note: All ratios mentioned herein are weight ratios, and refer to the ratios for free substances or anhydrous substances, excluding salt ions or crystalline water.
The plant protective agent described in the present invention for inhibiting appressorium formation activity may be referred to as an appressorium formation inhibitor.
The hydroxycarboxylic acid compounds to which the present invention relates, namely the compounds having formulas I, II, III, IV and V, are known compounds, and can be obtained commercially or by literature methods. For example, specific hydroxycarboxylic acid compounds tested in the present invention are listed in Table 1.
Table 1 Some compounds of formulas I, II, III, IV and V, and corresponding compound Nos and CAS Nos
Figure PCTCN2019119064-appb-000004
Figure PCTCN2019119064-appb-000005
Figure PCTCN2019119064-appb-000006
Figure PCTCN2019119064-appb-000007
Figure PCTCN2019119064-appb-000008
Figure PCTCN2019119064-appb-000009
Example 1 Inhibition of appressorium formation of Anthracnose pathogens by hydroxycarboxylic acid compounds
1. Pathogenic isolates to be tested: A total of 20 Colletotrichum strains were grape Colletotrichum, sorghum Colletotrichum, camellia oleifera Colletotrichum, apple Colletotrichum, pear Colletotrichum, strawberry Colletotrichum, pepper Colletotrichum acutata, pepper Colletotrichum dematium, disporopsis pernyi Colletotrichum (8270) , disporopsis pernyi Colletotrichum (8069) , millettia specisoa Colletotrichum, yellow pear Colletotrichum, cucumber Colletotrichum, momordica grosvenori Colletotrichum, camellia azalea Colletotrichum (9053) , camellia azalea Colletotrichum (9059) , cherry Colletotrichum, cruciferous vegetable Colletotrichum, walnut Colletotrichum and corn Colletotrichum, respectively.
2. Test method:
1) Production of a large number of conidia by Anthracnose pathogens: The selected strains to be activated were spotted on a potato agarose medium PDA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies  well grown on the surface of culture dish could be used. All hyphae on the surface of the medium were washed off with sterilized water, rinsed thoroughly, dried in air, and light-incubated at 28 ℃ for approximately 48 hours, and a large number of conidia produced were observed on the surface of the PDA.
2) Preparation of a spore suspension: The spores on the spore production plate were washed off with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
4) Counting: Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of its appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
3. Test results: Tests showed that a variety of hydroxyl compounds had good inhibitory activities against Anthracnose pathogens. The specific results were shown in Tables 2, 3, 4, 5 and 6.
Table 2 Determination of IC50 values of hydroxycarboxylic acid compound H11 for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC50 (ppm)
1 H11 Grape Colletotrichum 40
2 H11 sorghum Colletotrichum -
3 H11 camellia oleifera Colletotrichum 39
4 H11 strawberry Colletotrichum 42
5 H11 pear Colletotrichum 80
6 H11 apple Colletotrichum -
7 H11 pepper Colletotrichum acutata 20
8 H11 pepper Colletotrichum dematium 15
9 H11 disporopsis pernyi Colletotrichum (8270) 80
10 H11 disporopsis pernyi Colletotrichum (8069) 90
11 H11 millettia specisoa Colletotrichum -
12 H11 yellow pear Colletotrichum -
13 H11 cucumber Colletotrichum -
14 H11 momordica grosvenori Colletotrichum -
15 H11 camellia azalea Colletotrichum (9053) -
16 H11 camellia azalea Colletotrichum (9059) -
17 H11 cherry Colletotrichum 40
18 H11 cruciferous vegetable Colletotrichum -
19 H11 walnut Colletotrichum 50
20 H11 corn Colletotrichum 105
Table 3 Determination of IC50 values of hydroxycarboxylic acid compound H37 for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC50 (ppm)
1 H37 Grape Colletotrichum 50
2 H37 sorghum Colletotrichum -
3 H37 camellia oleifera Colletotrichum 85
4 H37 strawberry Colletotrichum 100
5 H37 pear Colletotrichum 100
6 H37 apple Colletotrichum -
7 H37 pepper Colletotrichum acutata 20
8 H37 pepper Colletotrichum dematium 50
9 H37 disporopsis pernyi Colletotrichum (8270) 90
10 H37 disporopsis pernyi Colletotrichum (8069) 100
11 H37 millettia specisoa Colletotrichum -
12 H37 yellow pear Colletotrichum -
13 H37 cucumber Colletotrichum -
14 H37 momordica grosvenori Colletotrichum -
15 H37 camellia azalea Colletotrichum (9053) -
16 H37 camellia azalea Colletotrichum (9059) 50
17 H37 cherry Colletotrichum 105
18 H37 cruciferous vegetable Colletotrichum -
19 H37 walnut Colletotrichum 120
20 H37 corn Colletotrichum 110
Table 4 Determination of IC50 values of hydroxycarboxylic acid compound H51 for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC50 (ppm)
1 H51 Grape Colletotrichum 40
2 H51 sorghum Colletotrichum -
3 H51 camellia oleifera Colletotrichum 68
4 H51 strawberry Colletotrichum 70
5 H51 pear Colletotrichum 65
6 H51 apple Colletotrichum -
7 H51 pepper Colletotrichum acutata 27
8 H51 pepper Colletotrichum dematium 18
9 H51 disporopsis pernyi Colletotrichum (8270) 70
10 H51 disporopsis pernyi Colletotrichum (8069) 85
11 H51 millettia specisoa Colletotrichum -
12 H51 yellow pear Colletotrichum -
13 H51 cucumber Colletotrichum -
14 H51 momordica grosvenori Colletotrichum -
15 H51 camellia azalea Colletotrichum (9053) -
16 H51 camellia azalea Colletotrichum (9059) 60
17 H51 cherry Colletotrichum 92
18 H51 cruciferous vegetable Colletotrichum -
19 H51 walnut Colletotrichum 50
20 H51 corn Colletotrichum 90
Table 5 Determination of IC50 values of hydroxycarboxylic acid compound for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC50 (ppm)
1 H59 Grape Colletotrichum 73
2 H59 sorghum Colletotrichum -
3 H59 camellia oleifera Colletotrichum 37
4 H59 strawberry Colletotrichum 59
5 H59 pear Colletotrichum 62
6 H59 apple Colletotrichum -
7 H59 pepper Colletotrichum acutata 12
8 H59 pepper Colletotrichum dematium 9
9 H59 disporopsis pernyi Colletotrichum (8270) 57
10 H59 disporopsis pernyi Colletotrichum (8069) 70
11 H59 millettia specisoa Colletotrichum -
12 H59 yellow pear Colletotrichum -
13 H59 cucumber Colletotrichum -
14 H59 momordica grosvenori Colletotrichum -
15 H59 camellia azalea Colletotrichum (9053) -
16 H59 camellia azalea Colletotrichum (9059) 57
17 H59 cherry Colletotrichum 65
18 H59 cruciferous vegetable Colletotrichum -
19 H59 walnut Colletotrichum 35
20 H59 corn Colletotrichum 100
Table 6 Determination of IC50 values of hydroxycarboxylic acid compound for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC50 (ppm)
1 H85 Grape Colletotrichum 80
2 H85 sorghum Colletotrichum -
3 H85 camellia oleifera Colletotrichum 50
4 H85 strawberry Colletotrichum 90
5 H85 pear Colletotrichum 80
6 H85 apple Colletotrichum -
7 H85 pepper Colletotrichum acutata 20
8 H85 pepper Colletotrichum dematium 15
9 H85 disporopsis pernyi Colletotrichum (8270) 60
10 H85 disporopsis pernyi Colletotrichum (8069) 85
11 H85 millettia specisoa Colletotrichum -
12 H85 yellow pear Colletotrichum -
13 H85 cucumber Colletotrichum -
14 H85 momordica grosvenori Colletotrichum -
15 H85 camellia azalea Colletotrichum (9053) -
16 H85 camellia azalea Colletotrichum (9059) 60
17 H85 cherry Colletotrichum 80
18 H85 cruciferous vegetable Colletotrichum -
19 H85 walnut Colletotrichum 65
20 H85 corn Colletotrichum 120
Example 2 Inhibition of appressorium formation of rice blast pathogen by hydroxycarboxylic acid compounds
1. Pathogen to be tested: Rice blast pathogen (Magnaporthe oryzae) P131.
2. Test method:
1) Production of a large number of conidia by rice blast pathogen: Rice blast strains to be activated were spotted on a tomato oat plate OTA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. The colonies on OTA were fully interrupted, then uniformly coated onto a new tomato juice oat plate, and incubated in a light incubator at a constant temperature of 28 ℃. When neonatal hyphae were visible to the naked eye growing out of the surface of medium, the hyphae were gently interrupted with a cotton swab, rinsed thoroughly with water and dried in air. The culture dish was covered with a single layer of gauze and light-incubated at 28 ℃ for approximately 48 hours, at which time a large number of conidia produced were observed on the surface of the OTA.
2) Preparation of a spore suspension of rice blast pathogen: The hyphae and spores on the spore production plate were washed off simultaneously with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
4) Counting: Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
3. Test results: Tests showed that a variety of hydroxycarboxylic acid compounds had significant inhibitory effects on appressorium formation of rice blast pathogen P131. The specific results were shown in Table 7.
Table 7 Inhibition of appressorium formation of rice blast isolate P131 by hydroxycarboxylic acid compounds
No. Compound Concentration (ppm) Appressorium formation rate (%)
1 H11 60 0
2 H17 50 0
3 H37 80 0
4 H47 100 0
5 H51 50 0
6 H59 50 0
7 H69 50 0
8 H85 100 0
9 H86 100 0
10 H88 100 0
Example 3 Inhibition of appressorium formation of rubber acutatum YN42 by hydroxycarboxylic acid compounds
1. Pathogen isolate to be tested: Rubber anthracnose pathogen (Colletotrichum acutatum) YN42.
2. Test method:
1) Production of a large number of conidia: The selected strains to be activated were spotted on a potato agarose medium PDA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. All hyphae on the surface of the medium were washed off with sterilized water, rinsed thoroughly, dried in air, and light-incubated at 28 ℃ for approximately 48 hours, and a large number of conidia produced were observed on the surface of the PDA.
2) Preparation of a spore suspension: The spores on the spore production plate were washed off with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
4) Counting: Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC50 value was determined.
3. Test results: Tests showed that a variety of hydroxycarboxylic acid compounds had significant inhibitory effects on appressorium formation of rubber acutatum YN42. The specific results were shown in Table 8.
Table 8 Inhibition of appressorium formation of rubber acutatum YN42 by hydroxycarboxylic acid compounds
No. Compound Concentration (ppm) Appressorium formation rate (%)
1 H11 100 0
2 H17 120 0
3 H37 100 0
4 H47 100 0
5 H51 100 0
6 H59 100 0
7 H69 100 0
8 H85 100 0
9 H86 100 0
10 H88 100 0
Example 4 Inhibition of appressorium formation of mango anthracnose pathogen r13 by hydroxycarboxylic acid compounds
1. Pathogen to be tested: Mango anthracnose pathogen (Colletotrichum gloeosporioides) r13.
2. Test method:
1) Production of a large number of conidia: The selected strains to be activated were spotted on a potato agarose medium PDA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. All hyphae on the surface of the medium were washed off with sterilized water, rinsed thoroughly, dried in air, and light-incubated at 28 ℃ for approximately 48 hours, and a large number of conidia produced were observed on the surface of the PDA.
2) Preparation of a spore suspension: The spores on the spore production plate were washed off with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
4) Counting: Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
3. Test results: Tests showed that a variety of hydroxycarboxylic acid compounds had significant inhibitory effects on appressorium formation of mango Colletotrichum gloeosporioides r13. The specific results were shown in Table 9.
Table 9 Inhibition of appressorium formation of mango Colletotrichum gloeosporioides r13 by hydroxycarboxylic acid compounds
No. Compound Concentration (ppm) Appressorium formation rate (%)
1 H11 100 0
2 H17 100 0
3 H37 100 0
4 H47 100 0
5 H51 100 0
6 H59 100 0
7 H69 100 0
8 H85 100 0
9 H86 100 0
10 H88 100 0
Example 5 Inhibition of tomato gray mold by hydroxycarboxylic acid compound H59
1. Pathogen to be tested: Tomato gray mold pathogen (Botrytis cinerea) .
2. Test method:
1) Activation of botrytis cinerea: a PDA medium was poured onto a plate in a ultra-clean workbench. After the medium was cooled and solidified, a small number of the strains of botrytis cinerea were picked by an inoculation ring and placed into individual culture dishes, respectively. The culture dishes were placed into an incubator at 28 ℃ and incubated in an inverted manner. The first activation time was one week. After their hyphae turned grayish-green in color and overgrew the plate, a secondary activation was carried out according to the above method.
2) Preparation of a spore suspension of botrytis cinerea: The activated botrytis cinerea was incubated for another 7 days (28 ℃) , until the thalli gave rise to spores to be ready for use. The thalli were washed several times with sterile water to obtain the spore suspension, which was counted using a hemocytometer, and the spore suspension was diluted to a concentration of 1 x 10 4 spores /mL to be ready for use.
3) One day in advance, the target compound was formulated into pesticide solution with a final concentration of 100 ppm (control pesticide: prochloraz) , sprayed evenly on tomato leaves and left for moisturizing. After 24 h, the leaves were blown dry, until there were no water drops on surfaces. After that, the prepared spore suspension was spotted on the tomato leaves, with 2 drops of the spore suspension spotted for each leaf, and each drop of spore suspension was 20 μL. Moisturizing incubation was carried out at 20 ℃, and diseases were observed 3 days later. Leaf diseases of tomatoes (20 ℃) were recorded 72 hours after inoculation with 20 μL spore solution of botrytis cinerea B05.10 (1 x 10 4 spores/mL) . The spore solution contained 1/10 PDB.
Figure PCTCN2019119064-appb-000010
3. Test results: The results showed that the hydroxycarboxylic acid compound H59 had good control effects against tomato gray mold. The compound H59 of 100 ppm had a better disease prevention effect, with no disease at all, which was the same as that of the control pesticide (prochloraz) . The specific results were shown in Table 10.
Table 10 Control of tomato gray mold by hydroxycarboxylic acid compounds
No. Compound Concentration (ppm) Control effect (%)
1 H59 10 50.04
2 H59 100 100.32
Example 6 Control effects of hydroxycarboxylic acid compounds on arabidopsis anthracnose
1. Pathogen to be tested: Arabidopsis anthracnose pathogen (Colletotrichum gloeosporioides) .
2. Test method:
1) Production of a large number of conidia: The selected strains to be activated were spotted on a potato agarose medium PDA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. All hyphae on the surface of the medium were washed off with sterilized water, rinsed thoroughly, dried in air, and light-incubated at 28 ℃ for approximately 48 hours, and a large number of conidia produced were observed on the surface of the PDA.
2) Preparation of a spore suspension: The spores on the spore production plate were washed off with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm and 50 ppm, sprayed onto arabidopsis leaves. Seven days later, the diseases were counted and the control effects (%) were calculated.
Figure PCTCN2019119064-appb-000011
3. Test results: When the spore solution was treated with the compound H59 of 100 ppm, the disease was relatively mild, and when treated with the compound H59 of 50 ppm, compared with CK, the number of diseased leaves was decreased, and the disease was somewhat alleviated. The specific results were shown in Table 11.
Table 11 Control of arabidopsis anthracnose by hydroxycarboxylic acid compound H59
No. Compound Concentration (ppm) Control effect (%)
1 H59 50 30.23
2 H59 100 80.10
Example 7 Control effects of hydroxycarboxylic acid compounds on potato late blight
1. Pathogen to be tested: potato late blight pathogen (Phytophthora infestans) .
2. Test method:
Potato variety "Xisen No. 6" was a high-sensitivity late blight cultivar.
1. Preparation of a spore suspension of Phytophthora infestans
Phytophthora infestans strains MZ15-30 were inoculated into a rye medium, and a total of 10 plates (90 mm diameter) were incubated until day 13 to check for contamination. The contamination-free plates were retained. 10 mL of sterile distilled water was added to each plate on a sterile operating table, and the plates were incubated for 3-4 h in a refrigerator at 4℃ to rupture sporangia and release zoospores.
The zoospores were carefully transferred to 50 mL centrifuge tubes. For one centrifuge tube, 4 plates were transferred, and centrifuged at a low speed of 2500 rpm for 10 minutes. The supernatant was carefully poured out, 200 uL liquid was left at the bottom of the tube, and the precipitate was resuspended in 2 mL sterile distilled water. 10 μL of resuspended zoospores were 1: 10 diluted with sterile distilled water, and counted using a hemocytometer (Modified Fuchs Rosenthal Counting Chamber, depth 0.2 mm; Weber Scientific International, Teddington, UK) under a biological microscope. The diluted zoospores were thoroughly and uniformly mixed by a pipette, and loaded on both sides of the hemocytometer. The total number of zoospores in 16 squares of the hemocytometer was counted, and then an average number of zoospores in each square was calculated by dividing by 4. By multiplying this number by 10,000, the total concentration of zoospores per milliliter was obtained. The spores for inoculation were required to be diluted with sterile distilled water to a concentration of 15,000 spores per milliliter.
2. Adding target compounds to the spore suspension of P. infestans for inoculating subject plants in vivo
1) Pesticide solutions of 100 ppm were prepared and sprayed evenly on potato leaves with a seedling age of 20 days for moisturizing and incubating in an artificial climate chamber. After 24 h, the prepared pathogen liquids were then sprayed evenly on the potato leaves for moisturizing and incubating in the artificial climate chamber (20 ℃, 18 h light and 6 h dark) . After 4-5 days, the disease indexes were counted. As the strains used in the experiments were moderately strong pathogenic strains, the counting was generally started after 4 days of inoculation, the disease indexes and control effects were counted for three consecutive days, and photo records were taken.
2) The sprayed compound: hydroxycarboxylic acid compound H59; concentration: 100 ppm (μg/mL) ; pesticide solvent: DMSO, concentration: 1‰.
3) The sprayed late blight strain: strain no. : MZ; physiological race: R1, R3, R4, R7, R9, R10, and R11; characteristics of the strain: moderately strong strain, showing strong virulence and rapid onset; spore concentration: 250 zoospores/10 μL.
Figure PCTCN2019119064-appb-000012
3. Test results: The compound H59 showed certain control effects against potato late blight, and the control effect reached 95.13%.
Table 12 Control of potato late blight by hydroxycarboxylic acid compound H59
No. Compound Concentration (ppm) Control effect (%)
1 H59 50 40.02
2 H59 100 95.13
Example 8 Field tests of hydroxycarboxylic acid compounds for controlling wax gourd downy mildew (Bailianluoyi Village)
1. Test conditions
1.1 Materials for testing
Test crop: wax gourd
Control target: wax gourd downy mildew
Test location: Bailianluoyi Village
1.2 Test agents
Control agent: Yinfali (687.5g/L fluopicolide ·propamocarb) -Bayer
1.3 Test Design
Table 13 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%H59 1000 times
2 Yinfali (687.5g/L fluopicolide ·propamocarb) 1000 times
3 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated April 5, 2019 and April 12, 2019. After the first administration, the wax gourds grew well. The wax gourds were in the middle stage of hanging, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, downy mildew occurred, being in the middle stage of the occurrence of downy mildew.
2 Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119064-appb-000013
Figure PCTCN2019119064-appb-000014
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method:
As the occurrence of wax gourd downy mildew before the test, it was a remedial test. Each treatment area was 20 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and the leaves in the upper part of each plant were surveyed. The sizes of downy mildew spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade 1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade 3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade 5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade 7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area.
Figure PCTCN2019119064-appb-000015
Figure PCTCN2019119064-appb-000016
3 Results and analysis
3.1 Test results
Table 14 Field test results of wax gourd downy mildew
Figure PCTCN2019119064-appb-000017
The test results showed that from the whole process of the test, it could be seen that the disease index of wax gourd before administration was at a higher level, indicating that the disease was in a middle to late stage. Seven days after the first administration, it was found that the control effect of the sample H59 by 1000 times dilution was 64.55%, and the control effect of the control agent Yinfali by 1000 times dilution was 61.92%; the control effect of H59 was higher than that of the control agent. After one administration experiment, the diseased spots of the infected leaves of wax gourds could be effectively controlled, while the downy mildew of the control blank group was continuously expanding, thus it was found in this test that the control effect was relatively high.
Example 9 Field test reports of hydroxycarboxylic acid compounds for controlling pumpkin anthracnose (Bailianluoyi Village)
1. Test conditions
1.1 Materials for testing
Test crop: pumpkin
Control target: pumpkin anthracnose
Test location: Bailianluoyi Village
1.2 Test agents
Control agents:
Nadiwen (25%trifloxystrobin ·50%tebuconazole) -Bayer
Zhengjia (20%difenoconazole) -Hainan Zhengye Zhongnong Hi-Tech Co., Ltd.
1.3 Test Design
Table 15 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%H59 1000 times
2 Nadiwen (25%trifloxystrobin ·50%tebuconazole) 2000 times
3 Zhengjia (20%difenoconazole) 750 times
4 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated March 4, 2019 and March 11, 2019. After the first administration, the pumpkins grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in the middle stage of the occurrence of anthracnose.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119064-appb-000018
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method:
As the occurrence of pumpkin anthracnose before the test, it was a remedial test. Each treatment area was 20 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and all the leaves of each plant were surveyed. The sizes of anthracnose spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 10 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area.
Figure PCTCN2019119064-appb-000019
Figure PCTCN2019119064-appb-000020
3 Results and analysis
3.1 Test results
Table 16 Field test results of pumpkin anthracnose
Figure PCTCN2019119064-appb-000021
The test results showed that from the whole process of the test, it could be seen that the disease index of pumpkin before administration was at a higher level, indicating that the disease was in the middle stage. Seven days after the first administration, it was found that the control effect of the sample H59 by 1000 times dilution was 58.33%, the control effect of the control agent Nadiwen by 2000 times dilution was 49.41%, and the control effect of Zhengjia by 750 times dilution was 46.90%; the control effect of H59 was higher than those of the control agents. Over time, 10 days after the second administration, it was found that the control effect was improved to some extent, reaching 61.50%, which was equivalent to that of the control agent Nadiwen by 2000 times dilution or Zhengjia by 750 times dilution.
Example 10 Control tests of hydroxycarboxylic acid compounds on melon downy mildew
1. Test conditions
1.1 Materials for testing
Test crop: melon
Control target: melon downy mildew
Test location: Shunyi district, Beijing
1.2 Test agents
Test agent: H59 of 100 ppm. Control agent: azoxystrobin (25%)
1.3 Test Design
Table 17 Concentration Design for Test Agents
No. Treatment agent Dilution fold
1 10%sample H59 1000 times
2 Control agent: azoxystrobin (25%) 2500 times
3 CK  
1.4 Cell arrangement
Random block arrangement was used for cells of test agent, control agent and blank control.
Cell area: 10-12 m 2
Times of repetition: 4
Dosage: 4 replicates per agent, with a total of 10 L water, and a final concentration of 100 ppm.
2 Methods of survey, recording and measurement
2.1 Survey method:
Melon downy mildew occurred before the test. A 10-point random sampling method was used. Ten melon seedlings were randomly selected from each row, and all the leaves were surveyed. The percentage of diseased spot area on each leaf to the total leaf area was graded.
2.2 Survey time and frequency
The control effects were surveyed 8 days after the first administration and 8 days after the second administration, respectively.
2.3 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area.
Figure PCTCN2019119064-appb-000022
Figure PCTCN2019119064-appb-000023
3 Results and analysis
Table 18 Field test results of melon downy mildew
Figure PCTCN2019119064-appb-000024
The test results showed that from the whole process of the test, it could be seen that the disease index of melon before administration was at a lower level, indicating that the disease was in the early stage. Seven days after the first administration, it was found that the control effect of the H59 was 38.02%, and the control effect of the control agent azoxystrobin by 2500 times dilution was 49.58%; After one administration experiment, the diseased spots of the infected leaves of melons could be effectively controlled, while the downy mildew of the control blank group was continuously expanding.
Example 11 Field test reports of hydroxycarboxylic acid compounds for controlling cowpea anthracnose
1. Test conditions
1.1 Materials for testing
Test crop: cowpea
Control target: cowpea anthracnose
Test location: Shanneipo Village
1.2 Test agents
Control agents:
Nadiwen (25%trifloxystrobin ·50%tebuconazole) -Bayer
Zhengjia (20%difenoconazole) -Hainan Zhengye Zhongnong Hi-Tech Co., Ltd.
1.3 Test Design
Table 19 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%H59 1000 times
2 Nadiwen (25%trifloxystrobin ·50%tebuconazole) 2000 times
3 Zhengjia (20%difenoconazole) 750 times
4 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated March 13, 2019 and March 20, 2019. After the first administration, the cowpeas grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in a middle to late stage of the occurrence of anthracnose.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119064-appb-000025
Figure PCTCN2019119064-appb-000026
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method:
As the occurrence of cowpea anthracnose before the test, it was a remedial test. Each treatment area was 50 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and cowpea leaves on each plant were surveyed. The sizes of anthracnose spots on the leaves were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area.
Figure PCTCN2019119064-appb-000027
Figure PCTCN2019119064-appb-000028
3 Results and analysis
3.1 Test results
Table 20 Field test results of cowpea anthracnose
Figure PCTCN2019119064-appb-000029
The test results showed that from the whole process of the test, it could be seen that the disease index of cowpea before administration was at a higher level, indicating that the disease was in a middle to late stage. Seven days after the first administration, it was found that the control effect of the sample H59 by 1000 times dilution was 49.92%, the control effect of the control agent Nadiwen by 2000 times dilution was 46.80%, and the control effect of Zhengjia by 750 times dilution was 36.61%. Seven days after the second administration, it was found that the control effects were all improved to varying degrees, reaching 57.20%.
Example 12 Field tests of hydroxycarboxylic acid compounds for controlling anthracnose in pepper leaves
1. Test conditions
1.1 Materials for testing
Test crop: pepper
Control target: pepper anthracnose
Test location: Bailianluoyi Village
1.2 Test agents
Control agent:
Nadiwen (25%trifloxystrobin ·50%tebuconazole) -Bayer
1.3 Test Design
Table 21 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%H59 1000 times
2 Nadiwen (25%trifloxystrobin ·50%tebuconazole) 2000 times
3 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated February 13, 2019 and February 20, 2019. After the first administration, the peppers grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in the middle stage of the occurrence of anthracnose.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119064-appb-000030
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method:
As the occurrence of pepper anthracnose before the test, it was a remedial test. Each treatment area was 20 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and all the leaves of each plant were surveyed. The sizes of anthracnose spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area.
Figure PCTCN2019119064-appb-000031
Figure PCTCN2019119064-appb-000032
3 Results and analysis
3.1 Test results
Table 22 Field test results of pepper anthracnose
Figure PCTCN2019119064-appb-000033
The test results showed that from the whole process of the test, it could be seen that the disease index of pepper before administration was at a higher level, indicating that the disease was in the middle stage. Seven days after the first administration, it was found that the control effect of the sample H59 by 1000 times dilution was 53.83%, the control effect of the control agent Nadiwen by 2000 times dilution was 49.51%, higher than that of the control agent. Over time, 7 days after the second administration, it was found that the control effects were all improved to varying degrees, reaching 75.70%, significantly higher than that of the control agent 75%Nadiwen by 2000 times dilution (58.12%) .
Example 13 Field tests of hydroxycarboxylic acid compounds for controlling pepper fruit anthracnose
1. Test conditions
1.1 Materials for testing
Test crop: pepper
Control target: pepper anthracnose
Test location: Shanneipo Village
1.2 Test agents
Control agents:
Nadiwen (25%trifloxystrobin ·50%tebuconazole) -Bayer
Zhengjia (20%difenoconazole) -Hainan Zhengye Zhongnong Hi-Tech Co., Ltd.
1.3 Test Design
Table 23 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%H59 1000 times
2 Nadiwen (25%trifloxystrobin ·50%tebuconazole) 2000 times
3 Zhengjia (20%difenoconazole) 750 times
4 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated March 11, 2019 and March 18, 2019. After the first administration, the peppers grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in a middle to late stage of the occurrence of anthracnose.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119064-appb-000034
Figure PCTCN2019119064-appb-000035
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method:
As the occurrence of pepper anthracnose before the test, it was a remedial test. Each treatment area was 50 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and the number of pepper fruits on each plant as a whole was surveyed. The sizes of anthracnose spots on the fruits were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for fruit diseases:
Grade 0: No disease spots
Grade 1: The area of diseased spots accounted for less than 5%of the total fruit area;
Grade 3: The area of diseased spots accounted for less than 6%-10%of the total fruit area;
Grade 5: The area of diseased spots accounted for less than 11%-20%of the total fruit area;
Grade 7: The area of diseased spots accounted for less than 21%-50%of the total fruit area;
Grade 9: The area of diseased spots accounted for more than 51%of the total fruit area.
Figure PCTCN2019119064-appb-000036
Figure PCTCN2019119064-appb-000037
2 Results and analysis
2.1 Test results
Table 24 Field test results of pepper fruit anthracnose
Figure PCTCN2019119064-appb-000038
The test results showed that from the whole process of the test, it could be seen that the disease index of pepper before administration was at a higher level, indicating that the disease was in a middle to late stage. Seven days after the first administration, it was found that the control effect of the sample H59 by 1000 times dilution was 50.22%, the control effect of the control agent Nadiwen by 2000 times dilution was 42.61%, and the control effect of Zhengjia by 750 times dilution was 41.80%. Over time, 7 days after the second administration, it was found that the control effects were all improved to varying degrees. The control effect of the sample H59 against pepper fruit anthracnose reached 56.72%, which was equivalent to that of the control agent Nadiwen by 2000 times dilution (53.83%) or Zhengjia by 750 times dilution (52.33%) . After 14 days of follow-up survey, it was found that the diseased fruits were gradually reduced, and the dropped and rotten fruits decreased obviously.
Example 14 Control tests of hydroxycarboxylic acid compounds against rice blast
1. Test conditions
1) Test crop: rice variety (mongol rice)
Test target: rice blast
Test location: Panjin city, liaoning province
2) Test agent: H59
3) Agent concentration: 100 ppm
4) Spraying period: rupturing stage and full heading stage
5) Control solvent concentration: 1%DMSO
2. Experimental Scheme
A five-point random sampling survey method was used. Ten plants were surveyed at each point, and the sizes of rice blast spots were counted. The disease index of each treated plant was surveyed and counted 14 days after administration by adopting an international grading method.
Figure PCTCN2019119064-appb-000039
Figure PCTCN2019119064-appb-000040
3. Test results
Table 25 Field test results of rice blast
Figure PCTCN2019119064-appb-000041
The test results showed that from the whole process of the test, it could be seen that rice blast had not occurred before spraying. After two administrations, it was found that the control effect of the sample H59 by 1000 times dilution was 52.90%, showing certain protection and control effects on rice blast.
While the present invention has been described in detail with a general description, specific embodiments and tests above, those skilled in the art can make some modifications or improvements on the basis of the present invention. Therefore, all such modifications or improvements made without departing from the essence of the present invention shall fall within the scope of the present invention. The present invention was not limited to the above tested plant pathogens. Therefore, using these compounds to control other plant pathogens without departing from the spirit of the present invention falls within the scope of the present invention.

Claims (8)

  1. Use of a hydroxycarboxylic acid compound for preventing appressorium formation that is essential to many plant diseases caused by fungi and oomycetes, wherein the hydroxycarboxylic acid compound is selected from compounds of formulas I, II, III and IV, as well as isomers, hydrates or salts thereof:
    Figure PCTCN2019119064-appb-100001
    wherein n is an integer of 0-50, i.e., that portion of the compound has 0-50 carbons; m is an integer of 1-30, i.e., that portion of the compound has 1-30 olefinic bonds; x is an integer of 0-50, i.e., that portion of the compound has 0-50 carbons; and R is alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or glycosyl.
  2. The use according to claim 1, characterized in that, the compound of formula I has a hydroxyl group at one end and a carboxyl functional group at the other end of the chain, n is 0-30, i.e., that portion of the compound has 0-30 carbons; and m is 1-16, i.e., that portion of the compound has 1-16 olefinic bonds.
  3. The use according to claim 1, characterized in that, the compound of formula II has a hydroxyl group at one end and a carboxyl functional group at the other end of the chain, and n is 0-30, i.e., that portion of the compound has 0-30 carbons.
  4. The use according to claim 1, characterized in that, the compound of formula III has a hydroxyl group at one end and a carboxyl functional group at the other end of the chain, n is 0-15, i.e., that portion of the compound has 0-15 carbons; and x is 0-15, i.e., that portion of the compound has 0-15 carbons.
  5. The use according to claim 1, characterized in that, the compound of formula IV has a hydroxyl group at one end and a carboxyl functional group at the other end of the chain, n is 0-10, i.e., that portion of the compound has 0-10 carbons; and x is 0-10, i.e., that portion of the compound has 0-10 carbons.
  6. The use according to claim 2, characterized in that, the compound of formula I is a compound selected from formula V.
    Figure PCTCN2019119064-appb-100002
  7. The use according to claim 1, characterized in that, the hydroxycarboxylic acid compound is used as a plant protective agent or a fungicide.
  8. The use according to claim 1, characterized in that, the hydroxycarboxylic acid compound is used for controlling rice blast, anthracnose, downy mildew, phytophthora blight, and gray mold in plants.
PCT/CN2019/119064 2019-06-21 2019-11-18 Use of hydroxycarboxylic acid compounds for controlling plant diseases WO2020253076A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910543396.7 2019-06-21
CN201910543396.7A CN112106775B (en) 2019-06-21 2019-06-21 Application of hydroxycarboxylic acid compound in preventing and treating plant diseases

Publications (1)

Publication Number Publication Date
WO2020253076A1 true WO2020253076A1 (en) 2020-12-24

Family

ID=73795591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119064 WO2020253076A1 (en) 2019-06-21 2019-11-18 Use of hydroxycarboxylic acid compounds for controlling plant diseases

Country Status (2)

Country Link
CN (1) CN112106775B (en)
WO (1) WO2020253076A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115590023B (en) * 2022-04-18 2024-02-09 中国农业科学院烟草研究所 Application of decadienoic acid in preventing and treating phytophthora capsici of plants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108101778A (en) * 2017-09-06 2018-06-01 南京农业大学 A kind of 14 carbon chain fatty acid class antagonistic substances generated from bacillus amyloliquefaciens SQR9 and its application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107501086B (en) * 2017-09-06 2020-03-17 南京农业大学 Sixteen-carbon-chain fatty acid antagonistic substance generated by Bacillus amyloliquefaciens SQR9 and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108101778A (en) * 2017-09-06 2018-06-01 南京农业大学 A kind of 14 carbon chain fatty acid class antagonistic substances generated from bacillus amyloliquefaciens SQR9 and its application

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
C.WANG,ET AL.: "Relationship between cutinmonomers and tomato resistance to powdery", PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, vol. 57, 31 December 2000 (2000-12-31), pages 55 - 61, XP029577730, DOI: 20200307122736X *
P. SCHWEIZER,ET AL.: "Induction of resistance in barley against Erysiphe", PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, vol. 49, 31 December 1996 (1996-12-31), pages 103 - 120, XP002792325, DOI: 20200307122920X *
V.A.ISIDOROV,ET AL.: "Chemical composition and antimicrobial activity of Polish herbhoneys", FOOD CHEMISTRY, vol. 171, 6 September 2014 (2014-09-06), pages 84 - 88, XP029075008, DOI: 20200307123343A *
WANG RUI-XIA,ET AL.: "Inhibitory activity of antibiotic substances extraction induced by salicylic acid in rice leaves against Magnapor the grisea", JOURNAL OF HUAZHONG AGRICULTURAL UNIVERSITY, vol. 30, no. 2, 30 April 2011 (2011-04-30), pages 193 - 196, DOI: 20200307123102X *

Also Published As

Publication number Publication date
CN112106775B (en) 2022-04-22
CN112106775A (en) 2020-12-22

Similar Documents

Publication Publication Date Title
JP6526011B2 (en) Isolate of Clonostachys rosea used as a biopesticide
US8460649B2 (en) Saccharomyces cerevisiae strains with phytosanitary capabilities
ES2825710T3 (en) Trichoderma compositions and procedures for use
Jackson et al. Fungicidal activity of fluopicolide for suppression of Phytophthora capsici on squash
Thompson Inhibition of nodule bacteria by an antibiotic from legume seed coats
UA120152C2 (en) COMPOSITION AND METHOD FOR CONTROL OF FUSARIOSIS
BG61345B1 (en) Isolate of trichoderma, fungicidal compositions containing said isolate and use against b.cinerea and s.sclerotium
CN113301804A (en) Antifungal compositions and methods of use
Abada et al. Management Fusarium wilt of sweet pepper by Bacillus strains
WO2020253077A1 (en) Use of dicarboxylic acid compounds for controlling plant diseases
WO2020253076A1 (en) Use of hydroxycarboxylic acid compounds for controlling plant diseases
WO2021036008A1 (en) Inhibitory activity of polycarboxylic acid compounds on appressorium formation of fungi and oomycete and their use in controlling plant diseases
CN112029667A (en) Trichoderma, trichoderma spore suspension, trichoderma zymophyte powder and preparation method and application thereof
Sharma et al. Survival, epidemiology and management of Alternaria blight of cumin in Gujarat
KR101905058B1 (en) Bacillus amyloliquefaciens strain AK-0 and microbial agent for prevention of ginseng root rot pathogens comprising the same
Eliwa et al. Control of root rot disease of sugar beet using certain antioxidants and fungicides.
CN104351231A (en) Application of 4-chlorocinnamaldehyde thiosemicarbazone in plant disease control
Salih et al. A study of the effect of Bioagent Trichoderma harzianum Rifai, the fungicide topsin-m and their interaction on root rot disease of Okra Abelmoschus esculentus in the field
EP3476930B1 (en) Pseudozyma
Fayadh et al. Effect of some microelements and biological control agents in control of tomato seedling damping-off caused by Rhizoctonia solani kuhn
CN110122496B (en) Pharmaceutical composition containing sodium dichloroisocyanurate and oxine-copper and application thereof
RU2787400C1 (en) Agrobiovit p1
CN114586584B (en) Green, light and simple pest control method for sweet peppers based on full-period biological system
Abdou et al. Chemical control of tomato early blight caused by Alternaria solani using certain fungicides and chemical inducers
Porras et al. Biological control of anthracnose with Trichoderma in strawberry fields

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933673

Country of ref document: EP

Kind code of ref document: A1