WO2020253077A1 - Use of dicarboxylic acid compounds for controlling plant diseases - Google Patents

Use of dicarboxylic acid compounds for controlling plant diseases Download PDF

Info

Publication number
WO2020253077A1
WO2020253077A1 PCT/CN2019/119065 CN2019119065W WO2020253077A1 WO 2020253077 A1 WO2020253077 A1 WO 2020253077A1 CN 2019119065 W CN2019119065 W CN 2019119065W WO 2020253077 A1 WO2020253077 A1 WO 2020253077A1
Authority
WO
WIPO (PCT)
Prior art keywords
colletotrichum
compound
dicarboxylic acid
test
anthracnose
Prior art date
Application number
PCT/CN2019/119065
Other languages
French (fr)
Inventor
Youliang Peng
Xi Zhang
Hongchao GUO
Daowang LAI
Hanwen Ni
Daolong Dou
Xiaodan Wang
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Publication of WO2020253077A1 publication Critical patent/WO2020253077A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/02Saturated carboxylic acids or thio analogues thereof; Derivatives thereof
    • A01N37/04Saturated carboxylic acids or thio analogues thereof; Derivatives thereof polybasic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/06Unsaturated carboxylic acids or thio analogues thereof; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/10Aromatic or araliphatic carboxylic acids, or thio analogues thereof; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides

Definitions

  • the present invention relates to novel uses of dicarboxylic acid compounds, and in particular to the use of such compounds for controlling plant diseases.
  • Dicarboxylic acid compounds shown in formulas I, II, III, and IV are known compounds, and are widely used in chemical industry, food, medicine, materials, textile and other fields.
  • dicarboxylic acid compounds are often used for producing nylon materials, e.g. succinic acid can be used for the synthesis of nylon x, 4, glutaric acid is used for producing nylon 5, 5 products, and adipic acid is used for producing nylon x, 6 products.
  • Azelaic acid is mainly used for producing dioctyl azelate plasticizer, and can also be used as a raw material for producing perfumes, lubricating oils, oil agents, and polyamide resins; it also has antibacterial properties, and can be used as a food preservative; when used in mouthwash, it is beneficial for the prevention and treatment of dental caries, and when used in soap, it can avoid cracking on the soap surface; it has good permeability to skin, and can be used in cream cosmetics to enhance the absorption function of the skin; it has multiple pharmaceutical effects, and is useful in dermatological plasters; it has skin lightening and whitening functions; azelaic acid or its zinc salt is used in combination with vitamin B6 for hair care products useful for treating male hormonal alopecia in males with exuberant endocrine and stimulating hair growth at the same time.
  • dicarboxylic acid compounds for controlling plant diseases such as rice blast, anthracnose, downy mildew, phytopht
  • Filamentous eukaryotic pathogens include oomycetes, such as Achlya spp which causes rice seedling rot, Pythium spp which causes seedling damping-off and fruit rot, Phytophthora spp which causes tobacco black shank and potato late blight, and Peronospora spp which causes downy mildew; filamentous eukaryotic pathogens also include fungi, especially disease-causing ascomycetes, such as Erysiphe which causes powdery mildew, Gaeumannomyces which causes rice bakanae disease and wheat scab, Venturia which causes apple scab and pear scab; rust fungus in basidiomycota, which causes rust disease, smut fungus which causes smut disease, and imperfect fungus
  • Common symptoms include downy mildew, white powder, white rust, black powder, rust powder, sooty mold, tar spot, mildew, mushroom, cotton floc, granule, cording, sticky granule, petiole spot, etc.
  • rice blast caused by Pyricularia oryzae is the most serious destructive disease of rice, which may lead to a significant reduction in production, and in severe cases, the yield is reduced by 40%-50%, or even with no grain harvest at all.
  • Rice blast occurs not only all over the world, but also at various growth stages of rice. After occurrence, it may lead to varying degrees of yield reduction, and in particular, neck blast may cause white head and even no production. Rice blast may occur in any year and at any growth period in the provincial area, and therefore, its harm to agricultural production is extremely serious.
  • downy mildew and phytophthora blight caused by oomycetes are also significant diseases in many crops, such as downy mildew in various melons and grapes, late blight in potatoes and tomatoes, and phytophthora blight in peppers, all of which can cause huge losses to agricultural production.
  • Chemical agents are generally used to control plant diseases caused by filamentous eukaryotic pathogens, and measures to improve cultivation and management are utilized to promote plant health and reduce pathogens.
  • the commonly used pesticides for chemical control include bordeaux mixture, DTMZ, chlorothalonil, thiophanate-methyl, carbendazim, pyraclostrobin, and prochloraz.
  • dicarboxylic acid compounds shown in formulas I, II, III or IV By investigation of dicarboxylic acid compounds shown in formulas I, II, III or IV, the present invention provides new uses useful for inhibiting appressorium formation and controlling plant diseases, as distinct from prior art for dicarboxylic acid compounds.
  • One of the objects of the present invention is to provide a new use of dicarboxylic acid compounds, thereby providing a novel plant protective agent for controlling rice blast, anthracnose, downy mildew, phytophthora blight or gray mold in various plants, including food crops such as rice, wheat, sorghum and corn, melons and fruits such as apple, persimmon, citrus, mango, walnut, kiwifruit, jujube, litchi, longan, loquat, pomegranate, grape, watermelon and pitaya, and vegetables such as pepper, cucumber, eggplant, bitter gourd, wild pepper and long bean.
  • food crops such as rice, wheat, sorghum and corn
  • melons and fruits such as apple, persimmon, citrus, mango, walnut, kiwifruit, jujube, litchi, longan, loquat, pomegranate, grape, watermelon and pitaya
  • vegetables such as pepper, cucumber, eggplant, bitter gourd, wild pepper and long bean.
  • One technical solution of the present invention relates to the use of a dicarboxylic acid compound for controlling plant diseases, wherein the dicarboxylic acid compound is selected from compounds of formulas I, II, III and IV, as well as isomers, hydrates or salts thereof.
  • n is an integer of 0-100, i.e., that portion of the compound has 0-100 carbons
  • m is an integer of 1-50, i.e., that portion of the compound has 1-50 olefinic bonds
  • x is an integer of 0-50, i.e., that portion of the compound has 0-50 carbons
  • R is alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or glycosyl.
  • the compound of formula I has carboxyl functional groups at both ends of its chain, n is 0-30, i.e., that portion of the compound may have 0-30 carbons; and m is 1-16, i.e., that portion of the compound may have 1-16 olefinic bonds.
  • the compound of formula I includes, but is not limited to, linear compounds, and also branched isomers, as well as olefinic cis-trans isomers and positional isomers thereof.
  • n in the formula I is 6; and m is 1, i.e., the compound of formula I is selected from compounds of the following formula V:
  • the compound of formula II has carboxyl functional groups at both ends of its chain, n is 0-48, i.e., that portion of the compound may have 0-48 carbons.
  • the compound of formula II includes, but is not limited to, linear compounds, and also branched isomers, as well as olefinic cis-trans isomers and positional isomers thereof.
  • the compound of formula III has carboxyl functional groups at both ends of its chain, n is 0-30, i.e., that portion of the compound may have 0-30 carbons; and x is 0-30, i.e., that portion of the compound may have 0-30 carbons.
  • the compound of formula III includes, but is not limited to, linear compounds, as well as branched isomers and stereoisomers thereof.
  • the compound of formula IV has carboxyl functional groups at both ends of its chain, n is 0-10, i.e., that portion of the compound may have 0-10 carbons; and x is 0-10, i.e., that portion of the compound may have 0-10 carbons.
  • the compound of formula IV includes, but is not limited to, linear compounds, and also branched isomers, as well as positional isomers on phenyl ring thereof.
  • a second object of the present invention is to provide a plant protective agent or bactericide, containing a dicarboxylic acid compound selected from formulas I, II, III or IV, and optionally, an auxiliary.
  • a novel plant protective agent is provided for the prevention of rice blast, anthracnose, downy mildew, phytophthora blight, and gray mold in plants.
  • the diseases are selected from rice blast, melon downy mildew, pepper anthracnose, tomato gray mold, potato late blight, and pepper phytophthora blight.
  • the new use of the dicarboxylic acid compound provided by the present invention has the following advantages:
  • a class of dicarboxylic acid compounds currently available has the effect of inhibiting appressorium formation of fungi.
  • Many pathogenic fungi and oomycetes that are parasitic on plants expand at the tops of germ tubes or hyphae, and secrete mucous substances, helping the pathogenic germs to adhere firmly to the surface of the host, and intrude into plant tissues.
  • This structure is called appressorium, and the appressorium formation of pathogenic germs is directly related to whether the pathogenic germs can successfully intrude into the host tissues, and is the key to the pathogenesis of plant diseases such as rice blast, anthracnose, downy mildew, phytophthora blight, gray mold, etc.
  • An appressorium formation inhibitor is a substance that can effectively inhibit appressorium formation and thus hinder the occurrence of various plant diseases caused by fungi or oomycetes.
  • the dicarboxylic acid compounds can effectively prevent pathogenic germs from infecting plants by inhibiting appressorium formation, and can be used for controlling plant diseases that are extremely harmful, including rice blast, anthracnose, downy mildew, phytophthora blight, and gray mold, thus providing a new choice for plant protective agents.
  • the present inventors have found that some specific dicarboxylic acid compounds with specific structures can effectively inhibit appressorium formation of fungi at a concentration of 10-100 ppm, and the control effects on plant diseases such as rice blast, anthracnose, downy mildew, phytophthora blight, gray mold, etc. have reached more than 80%.
  • the dicarboxylic acid compounds of the present invention have the advantages of being pollution-free, environmental friendliness, low residue, and good safety, besides the definite control effects in inhibiting appressorium formation activity, especially in controlling rice blast, anthracnose, downy mildew, phytophthora blight, and gray mold.
  • the dicarboxylic acid compounds of the present invention are known and widely used, with easy availability of raw materials, well-established synthetic processes, fully investigated impurities, and well controlled qualities, thus have the advantages of being more convenient and readily available.
  • the plant protective agent described in the present invention for inhibiting appressorium formation activity may be referred to as an appressorium formation inhibitor.
  • the dicarboxylic acid compounds to which the present invention relates namely the compounds having formulas I, II, III, IV and V, are known compounds, and can be obtained commercially or by literature methods.
  • specific dicarboxylic acid compounds tested in the present invention are listed in Table 1.
  • Pathogenic isolates to be tested A total of 20 Colletotrichum strains were grape Colletotrichum, sorghum Colletotrichum, camellia oleifera Colletotrichum, apple Colletotrichum, pear Colletotrichum, strawberry Colletotrichum, pepper Colletotrichum acutata, pepper Colletotrichum dematium, disporopsis pernyi Colletotrichum (8270) , disporopsis pernyi Colletotrichum (8069) , millettia specisoa Colletotrichum, yellow pear Colletotrichum, cucumber Colletotrichum, momordica grosvenori Colletotrichum, camellia azalea Colletotrichum (9053) , camellia azalea Colletotrichum (9059) , cherry Colletotrichum, cruciferous vegetable Colletotrichum, walnut Colletotrichum and corn Colletotrichum, respectively.
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
  • Test results The inhibitory activities of 10 compounds against 20 Colletotrichum strains.
  • D90 millettia specisoa Colletotrichum - 12 D90 yellow pear Colletotrichum - 13 D90 cucumber Colletotrichum - 14 D90 momordica grosvenori Colletotrichum - 15 D90 camellia azalea Colletotrichum (9053) - 16 D90 camellia azalea Colletotrichum (9059) 50 17 D90 cherry Colletotrichum 68 18 D90 cruciferous vegetable Colletotrichum 45 19 D90 walnut Colletotrichum 61 20 D90 corn Colletotrichum 58
  • Pathogenic isolates to be tested Rice blast pathogen (Magnaporthe oryzae) P131.
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
  • Pathogenic isolate to be tested Rubber anthracnose pathogen (Colletotrichum acutatum) YN42.
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
  • Test results Inhibition of appressorium formation of rubber acutatum YN42 by 20 compounds.
  • Pathogen to be tested Mango anthracnose pathogen (Colletotrichum gloeosporioides) r13.
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
  • Test results Inhibition of appressorium formation of mango Colletotrichum gloeosporioides r13 by 20 compounds.
  • Tomato gray mold pathogen Botrytis cinerea
  • Activation of botrytis cinerea a PDA medium was poured onto a plate in a ultra-clean workbench. After the medium was cooled and solidified, a small number of the strains of botrytis cinerea were picked by an inoculation ring and placed into individual culture dishes, respectively. The culture dishes were placed into an incubator at 28 °C and incubated in an inverted manner. The first activation time was one week. After their hyphae turned grayish-green in color and overgrew the plate, a secondary activation was carried out according to the above method.
  • Leaf diseases of tomatoes (20 °C) were recorded 72 hours after inoculation with 20 ⁇ L spore solution of botrytis cinerea B05.10 (1 x 10 4 spores/mL) .
  • the spore solution contained 1/10 PDB.
  • test results showed that compounds D9, D51 and D68 of 100 ppm had better disease prevention effects, among which no diseases were observed at all for compounds D51 and D68 of 100 ppm. No disease was observed for control pesticide (prochloraz) either.
  • Pathogenic isolates to be tested Arabidopsis anthracnose pathogen (Colletotrichum gloeosporioides) .
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm and 50 ppm, sprayed onto arabidopsis leaves. Seven days later, the diseases were counted and the control effects (%) were calculated.
  • Example 7 Control effects of dicarboxylic acid compounds on potato late blight
  • Pathogenic isolates to be tested potato late blight isolates (Phytophthora infestans) .
  • Potato variety "Xisen No. 6" was a high-sensitivity late blight cultivar.
  • Phytophthora infestans strains MZ15-30 were inoculated into a rye medium, and a total of 10 plates (90 mm diameter) were incubated until day 13 to check for contamination. The contamination-free plates were retained. 10 mL of sterile distilled water was added to each plate on a sterile operating table, and the plates were incubated for 3-4 h in a refrigerator at 4°C to rupture sporangia and release zoospores.
  • the zoospores were carefully transferred to 50 mL centrifuge tubes. For one centrifuge tube, 4 plates were transferred, and centrifuged at a low speed of 2500 rpm for 10 minutes. The supernatant was carefully poured out, 200 uL liquid was left at the bottom of the tube, and the precipitate was resuspended in 2 mL sterile distilled water. 10 ⁇ L of resuspended zoospores were 1: 10 diluted with sterile distilled water, and counted using a hemocytometer (Modified Fuchs Rosenthal Counting Chamber, depth 0.2 mm; Weber Scientific International, Teddington, UK) under a biological microscope.
  • a hemocytometer Modified Fuchs Rosenthal Counting Chamber, depth 0.2 mm; Weber Scientific International, Teddington, UK
  • the diluted zoospores were thoroughly and uniformly mixed by a pipette, and loaded on both sides of the hemocytometer.
  • the total number of zoospores in 16 squares of the hemocytometer was counted, and then an average number of zoospores in each square was calculated by dividing by 4. By multiplying this number by 10,000, the total concentration of zoospores per milliliter was obtained.
  • the spores for inoculation were required to be diluted with sterile distilled water to a concentration of 15,000 spores per milliliter.
  • Pesticide solutions of 100 ppm were prepared and sprayed evenly on potato leaves with a seedling age of 20 days for moisturizing and incubating in an artificial climate chamber. After 24 h, the prepared pathogen liquids were then sprayed evenly on the potato leaves for moisturizing and incubating in the artificial climate chamber (20 °C, 18 h light and 6 h dark) . After 4-5 days, the disease indexes were counted. As the strains used in the experiments were moderately strong pathogenic strains, the counting was generally started after 4 days of inoculation, the disease indexes and control effects were counted for three consecutive days, and photo records were taken.
  • Pesticide solvent DMSO, concentration 1 ⁇
  • Example 8 Four field tests of dicarboxylic acid compounds for controlling wax gourd downy mildew (Bailianluoyi Village)
  • Control agent Yinfali (687.5g/L fluopicolide ⁇ propamocarb) -Bayer
  • Soil moisture was sufficient to facilitate plant growth.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade 1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade 3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade 5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade 7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area.
  • Example 9 Four field test reports of dicarboxylic acid compounds for controlling pumpkin anthracnose (Bailianluoyi Village)
  • Control target pumpkin anthracnose
  • Soil moisture was sufficient to facilitate plant growth.
  • pumpkin anthracnose As the occurrence of pumpkin anthracnose before the test, it was a remedial test. Each treatment area was 20 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and all the leaves of each plant were surveyed. The sizes of anthracnose spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
  • control effects were surveyed 10 days after the first administration and 7 days after the second administration, respectively.
  • Grade1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area.
  • D29 was 43.71%and was lower than that of the control agent Nadiwen or Zhengjia. Over time, 10 days after the second administration, it was found that the control effects were all improved to varying degrees, the control effect of D9 by 1000 times dilution was the highest, reaching 62.61%, followed by D51, the control effect of which was slightly higher than that of the control agent 75%Nadiwen by 2000 times dilution (58.80%) .
  • the control effect of D2 could reach 57.73%, which was equivalent to that of the control agent Nadiwen by 2000 times dilution or Zhengjia by 750 times dilution, while the control effect of D29 was only 50.80%, which was lower than that of the control agent Nadiwen by 2000 times dilution or Zhengjia by 750 times dilution.
  • Example 10 Four control tests of dicarboxylic acid compounds on melon downy mildew
  • Control target melon downy mildew
  • Test agents D2, D29, D9 and D51 of 100 ppm.
  • Control agent azoxystrobin (25%)
  • Treatment agent Dilution fold 1 10%sample D2 1000 times 2 10%sample D29 1000 times 3 10%sample D9 1000 times 5 10%sample D51 1000 times 6
  • Random block arrangement was used for cells of test agent, control agent and blank control.
  • Dosage 4 replicates per agent, with a total of 10 L water, and a final concentration of 100 ppm.
  • control effects were surveyed 8 days after the first administration and 8 days after the second administration, respectively.
  • Grade1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area.
  • Example 11 Four field test reports of samples for controlling cowpea anthracnose
  • Control target cowpeas anthracnose
  • the pesticides were administered twice, dated March 13, 2019 and March 20, 2019. After the first administration, the cowpeas grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in a middle to late stage of the occurrence of anthracnose.
  • Soil moisture was sufficient to facilitate plant growth.
  • cowpea anthracnose As the occurrence of cowpea anthracnose before the test, it was a remedial test. Each treatment area was 50 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and cowpea leaves on each plant were surveyed. The sizes of anthracnose spots on the leaves were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area.
  • control effects of 4 samples on cowpea anthracnose reached more than 50%, among which the control effect of the sample D29 was the highest, reaching 61.50%, the control effects of the samples D2 and D51 reached approximately 57%, while the control effect of the sample D9 was slightly lower, being only 51%between Nadiwen and Zhengjia.
  • Example 12 Four field tests of dicarboxylic acid compounds for controlling pepper anthracnose
  • the pesticides were administered twice, dated February 13, 2019 and February 20, 2019. After the first administration, the peppers grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in the middle stage of the occurrence of anthracnose.
  • Soil moisture was sufficient to facilitate plant growth.
  • each treatment area was 20 square meters.
  • a random 5-point survey method was used, two plants were surveyed at each point, and all the leaves of each plant were surveyed. The sizes of anthracnose spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area.
  • test results showed that from the whole process of the test, it could be seen that the disease index of pepper before administration was at a higher level, indicating that the disease was in the middle stage.
  • the control effects of the samples D2, D29, D9 and D51 by 1000 times dilution were 50.13%, 37.20%, 62.11%and 50.34%, respectively, the control effect of the control agent Nadiwen by 2000 times dilution was 49.50%, and the control effects of D2, D9 and D51 were all higher than that of the control agent;
  • the control effect of D9 by 1000 times dilution was the best, up to 62.11%, while the control effect of D51 by 1000 times dilution was the second, reaching 50.34%;
  • the control effect of D2 was 50.13%, which was equivalent to that of the control agent Nadiwen by 2000 times dilution, while the control effect of D29 was the lowest, as low as 37.20%.
  • control effect of D9 by 1000 times dilution was the highest, reaching 82.11%, significantly higher than that of the control agent 75%Nadiwen by 2000 times dilution (58.10%) .
  • the control effect of D2 could reach 74.93%, while the control effect of D29 was 54.64%, which was lower than that of the control agent Nadiwen by 2000 times dilution.
  • Example 13 Four field tests of dicarboxylic acid compounds for controlling pepper fruit anthracnose
  • the pesticides were administered twice, dated March 11, 2019 and March 18, 2019. After the first administration, the peppers grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in a middle to late stage of the occurrence of anthracnose.
  • Soil moisture was sufficient to facilitate plant growth.
  • each treatment area was 50 square meters.
  • a random 5-point survey method was used, two plants were surveyed at each point, and the number of pepper fruits on each plant as a whole was surveyed. The sizes of anthracnose spots on the fruits were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade 1 The area of diseased spots accounted for less than 5%of the total fruit area
  • Grade 3 The area of diseased spots accounted for less than 6%-10%of the total fruit area
  • Grade 5 The area of diseased spots accounted for less than 11%-20%of the total fruit area
  • Grade 7 The area of diseased spots accounted for less than 21%-50%of the total fruit area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total fruit area.
  • Test target rice blast
  • Test location Panjin city, liaoning province
  • a five-point random sampling survey method was used. Ten plants were surveyed at each point, and the sizes of rice blast spots were counted. The disease index of each treated plant was surveyed and counted 14 days after administration by adopting an international grading method.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed is the use of a dicarboxylic acid compound for controlling plant diseases by fungi and oomycetes, wherein a dicarboxylic acid compound is selected from compounds of formulas (I), (II), (III) and (IV), as well as isomers, hydrates or salts thereof. The dicarboxylic acid compounds have remarkably inhibitory activity against appressorium formation by fungi or oomycetes, and therefore, can be used for controlling diseases, such as rice blast, anthracnose, downy mildew, phytophthora blight, gray mold, etc., with no obvious phytotoxicity and good safety. Compared with fungicides currently used for controlling plant diseases such as rice blast, anthracnose, downy mildew, phytophthora blight, gray mold, etc., the dicarboxylic acid compounds have characteristics such as good preventive effect, environmental friendliness, non-toxicity, low residue, and safety.

Description

Use of Dicarboxylic Acid Compounds for Controlling Plant Diseases Technical field
The present invention relates to novel uses of dicarboxylic acid compounds, and in particular to the use of such compounds for controlling plant diseases.
Background art
Dicarboxylic acid compounds shown in formulas I, II, III, and IV are known compounds, and are widely used in chemical industry, food, medicine, materials, textile and other fields. For example, dicarboxylic acid compounds are often used for producing nylon materials, e.g. succinic acid can be used for the synthesis of nylon x, 4, glutaric acid is used for producing nylon 5, 5 products, and adipic acid is used for producing nylon x, 6 products. Azelaic acid is mainly used for producing dioctyl azelate plasticizer, and can also be used as a raw material for producing perfumes, lubricating oils, oil agents, and polyamide resins; it also has antibacterial properties, and can be used as a food preservative; when used in mouthwash, it is beneficial for the prevention and treatment of dental caries, and when used in soap, it can avoid cracking on the soap surface; it has good permeability to skin, and can be used in cream cosmetics to enhance the absorption function of the skin; it has multiple pharmaceutical effects, and is useful in dermatological plasters; it has skin lightening and whitening functions; azelaic acid or its zinc salt is used in combination with vitamin B6 for hair care products useful for treating male hormonal alopecia in males with exuberant endocrine and stimulating hair growth at the same time. However, there have been no reports on the use of such dicarboxylic acid compounds for controlling plant diseases such as rice blast, anthracnose, downy mildew, phytophthora blight, gray mold, etc.
Figure PCTCN2019119065-appb-000001
Plant diseases caused by plant filamentous eukaryotic pathogens account for about 70-80%of plant diseases. Several or even dozens of diseases caused by such pathogens may be found on one type of crop. Filamentous eukaryotic pathogens include oomycetes, such as Achlya spp which causes rice seedling rot, Pythium spp which causes seedling damping-off and fruit rot, Phytophthora spp which causes tobacco black shank and potato  late blight, and Peronospora spp which causes downy mildew; filamentous eukaryotic pathogens also include fungi, especially disease-causing ascomycetes, such as Erysiphe which causes powdery mildew, Gaeumannomyces which causes rice bakanae disease and wheat scab, Venturia which causes apple scab and pear scab; rust fungus in basidiomycota, which causes rust disease, smut fungus which causes smut disease, and imperfect fungus which causes rice blast, rice brown spot, corn northern leaf blight, corn southern leaf blight, etc. Common symptoms include downy mildew, white powder, white rust, black powder, rust powder, sooty mold, tar spot, mildew, mushroom, cotton floc, granule, cording, sticky granule, petiole spot, etc.
These diseases are mainly spread by airflow and waterflow in the field; in addition, insects can also spread fungal and oomycete diseases. These diseases are extremely harmful to the production of grains, fruits and vegetables. For example, rice blast caused by Pyricularia oryzae is the most serious destructive disease of rice, which may lead to a significant reduction in production, and in severe cases, the yield is reduced by 40%-50%, or even with no grain harvest at all. Rice blast occurs not only all over the world, but also at various growth stages of rice. After occurrence, it may lead to varying degrees of yield reduction, and in particular, neck blast may cause white head and even no production. Rice blast may occur in any year and at any growth period in the provincial area, and therefore, its harm to agricultural production is extremely serious. For a long time, rice blast has caused more than 3 billion kilograms of grain loss in China every year, and even threatens global grain security. Anthracnose, another important fungal disease on plants, is caused by Colletotrichum spp. The pathogens are transmitted by wind and rain as well as splashed droplets, and wounds are conducive to intrusion. High temperature and humidity, heavy rain, improper fertilization, mismanagement during transportation and poor plant growth are all conducive to the occurrence of diseases. A variety of crops, fruit trees and vegetables such as peppers, tomatoes, cucumbers and apples are infectable by anthracnose, which has a great impact on agricultural production.
In addition, downy mildew and phytophthora blight caused by oomycetes are also significant diseases in many crops, such as downy mildew in various melons and grapes, late blight in potatoes and tomatoes, and phytophthora blight in peppers, all of which can cause huge losses to agricultural production.
Chemical agents are generally used to control plant diseases caused by filamentous eukaryotic pathogens, and measures to improve cultivation and management are utilized to promote plant health and reduce pathogens. Currently, the commonly used pesticides for chemical control include bordeaux mixture, DTMZ, chlorothalonil, thiophanate-methyl, carbendazim, pyraclostrobin, and prochloraz.
The control of the above diseases has always been a key technical issue in agricultural production, so it is of great significance to continue to develop green chemical pesticides against these diseases. Many filamentous eukaryotic pathogens that are parasitic on plants expand at the tops of their spore germ tubes or aged hyphae, and secrete mucous substances, thus firmly adhered to the surface of the host and engaged in intrusion, which is called appressorium. Appressorium formation is directly related to whether the pathogens can successfully intrude into host tissues, and is a key step for pyricularia, Colletotrichum spp and oomycetes to cause plant diseases. If there are compounds or measures that can effectively inhibit appressorium formation, the occurrence of these diseases can be effectively reduced and controlled. Therefore, the  development of appressorium formation inhibitors is of great significance for controlling plant diseases caused by fungi and oomycetes.
By investigation of dicarboxylic acid compounds shown in formulas I, II, III or IV, the present invention provides new uses useful for inhibiting appressorium formation and controlling plant diseases, as distinct from prior art for dicarboxylic acid compounds.
Summary of the Invention
One of the objects of the present invention is to provide a new use of dicarboxylic acid compounds, thereby providing a novel plant protective agent for controlling rice blast, anthracnose, downy mildew, phytophthora blight or gray mold in various plants, including food crops such as rice, wheat, sorghum and corn, melons and fruits such as apple, persimmon, citrus, mango, walnut, kiwifruit, jujube, litchi, longan, loquat, pomegranate, grape, watermelon and pitaya, and vegetables such as pepper, cucumber, eggplant, bitter gourd, wild pepper and long bean.
One technical solution of the present invention relates to the use of a dicarboxylic acid compound for controlling plant diseases, wherein the dicarboxylic acid compound is selected from compounds of formulas I, II, III and IV, as well as isomers, hydrates or salts thereof.
Figure PCTCN2019119065-appb-000002
wherein, n is an integer of 0-100, i.e., that portion of the compound has 0-100 carbons; m is an integer of 1-50, i.e., that portion of the compound has 1-50 olefinic bonds; x is an integer of 0-50, i.e., that portion of the compound has 0-50 carbons; and R is alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or glycosyl.
Preferably, in the formula I, the compound of formula I has carboxyl functional groups at both ends of its chain, n is 0-30, i.e., that portion of the compound may have 0-30 carbons; and m is 1-16, i.e., that portion of the compound may have 1-16 olefinic bonds. The compound of formula I includes, but is not limited to, linear compounds, and also branched isomers, as well as olefinic cis-trans isomers and positional isomers thereof.
More preferably, n in the formula I is 6; and m is 1, i.e., the compound of formula I is selected from compounds of the following formula V:
Figure PCTCN2019119065-appb-000003
Preferably, in the formula II, the compound of formula II has carboxyl functional groups at both ends of its chain, n is 0-48, i.e., that portion of the compound may have 0-48 carbons. The compound of formula II includes, but is not limited to, linear compounds, and also branched isomers, as well as olefinic cis-trans isomers and positional isomers thereof.
Preferably, in the formula III, the compound of formula III has carboxyl functional groups at both ends of its chain, n is 0-30, i.e., that portion of the compound may have 0-30 carbons; and x is 0-30, i.e., that portion of the compound may have 0-30 carbons. The compound of formula III includes, but is not limited to, linear compounds, as well as branched isomers and stereoisomers thereof.
Preferably, in the formula IV, the compound of formula IV has carboxyl functional groups at both ends of its chain, n is 0-10, i.e., that portion of the compound may have 0-10 carbons; and x is 0-10, i.e., that portion of the compound may have 0-10 carbons. The compound of formula IV includes, but is not limited to, linear compounds, and also branched isomers, as well as positional isomers on phenyl ring thereof.
A second object of the present invention is to provide a plant protective agent or bactericide, containing a dicarboxylic acid compound selected from formulas I, II, III or IV, and optionally, an auxiliary.
Preferably, a novel plant protective agent is provided for the prevention of rice blast, anthracnose, downy mildew, phytophthora blight, and gray mold in plants.
Still preferably, the diseases are selected from rice blast, melon downy mildew, pepper anthracnose, tomato gray mold, potato late blight, and pepper phytophthora blight.
The new use of the dicarboxylic acid compound provided by the present invention has the following advantages:
i. The present inventors have for the first time found that, a class of dicarboxylic acid compounds currently available has the effect of inhibiting appressorium formation of fungi. Many pathogenic fungi and oomycetes that are parasitic on plants expand at the tops of germ tubes or hyphae, and secrete mucous substances, helping the pathogenic germs to adhere firmly to the surface of the host, and intrude into plant tissues. This structure is called appressorium, and the appressorium formation of pathogenic germs is directly related to whether the pathogenic germs can successfully intrude into the host tissues, and is the key to the pathogenesis of plant diseases such as rice blast, anthracnose, downy mildew, phytophthora blight, gray mold, etc. An appressorium formation inhibitor is a substance that can effectively inhibit appressorium formation and thus hinder the occurrence of various plant diseases caused by fungi or oomycetes.
Researches have shown that the dicarboxylic acid compounds of formulas I, II, III and IV can effectively inhibit appressorium formation of fungi or oomycetes.
ii. The present inventors have found that the dicarboxylic acid compounds can effectively prevent pathogenic germs from infecting plants by inhibiting appressorium formation, and can be used for controlling plant diseases that are extremely harmful, including rice blast, anthracnose, downy mildew, phytophthora blight, and gray mold, thus providing a new choice for plant protective agents.
iii. The present inventors have found that some specific dicarboxylic acid compounds with specific structures can effectively inhibit appressorium formation of fungi at a concentration of 10-100 ppm, and the control effects on plant diseases such as rice blast, anthracnose, downy mildew, phytophthora blight, gray mold, etc. have reached more than 80%.
iv. The dicarboxylic acid compounds of the present invention have the advantages of being pollution-free, environmental friendliness, low residue, and good safety, besides the definite control effects in inhibiting appressorium formation activity, especially in controlling rice blast, anthracnose, downy mildew, phytophthora blight, and gray mold.
v. Compared with compounds currently available for controlling rice blast, anthracnose, downy mildew, phytophthora blight, and gray mold, the dicarboxylic acid compounds of the present invention are known and widely used, with easy availability of raw materials, well-established synthetic processes, fully investigated impurities, and well controlled qualities, thus have the advantages of being more convenient and readily available.
Detailed description
The following examples are provided to illustrate the present invention without limiting its scope.
Note: All ratios mentioned herein are weight ratios, and refer to the ratios for free substances or anhydrous substances, excluding salt ions or crystalline water.
The plant protective agent described in the present invention for inhibiting appressorium formation activity may be referred to as an appressorium formation inhibitor.
The dicarboxylic acid compounds to which the present invention relates, namely the compounds having formulas I, II, III, IV and V, are known compounds, and can be obtained commercially or by literature methods. For example, specific dicarboxylic acid compounds tested in the present invention are listed in Table 1.
Table 1 Some compounds of formulas I, II, III, IV and V, and corresponding compound Nos and CAS Nos
Figure PCTCN2019119065-appb-000004
Figure PCTCN2019119065-appb-000005
Figure PCTCN2019119065-appb-000006
Figure PCTCN2019119065-appb-000007
Figure PCTCN2019119065-appb-000008
Figure PCTCN2019119065-appb-000009
Figure PCTCN2019119065-appb-000010
Figure PCTCN2019119065-appb-000011
Example 1 Inhibition of appressorium formation of Anthracnose pathogens by dicarboxylic acid compounds
1. Pathogenic isolates to be tested: A total of 20 Colletotrichum strains were grape Colletotrichum, sorghum Colletotrichum, camellia oleifera Colletotrichum, apple Colletotrichum, pear Colletotrichum, strawberry Colletotrichum, pepper Colletotrichum acutata, pepper Colletotrichum dematium, disporopsis pernyi Colletotrichum (8270) , disporopsis pernyi Colletotrichum (8069) , millettia specisoa Colletotrichum, yellow pear Colletotrichum, cucumber Colletotrichum, momordica grosvenori Colletotrichum, camellia azalea Colletotrichum (9053) , camellia azalea Colletotrichum (9059) , cherry Colletotrichum, cruciferous vegetable Colletotrichum, walnut Colletotrichum and corn Colletotrichum, respectively.
2. Test method:
1) Production of a large number of conidia of Anthracnose pathogens: The selected strains to be activated were spotted on a potato agarose medium PDA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. All hyphae on the surface of the medium were washed off with sterilized water, rinsed thoroughly, dried in air, and light-incubated at 28 ℃ for approximately 48 hours, and a large number of conidia produced were observed on the surface of the PDA.
2) Preparation of a spore suspension: The spores on the spore production plate were washed off with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
4) Statistics: Three dots on each hydrophobic glass slide were used for statistics. For each dot, 50 conidia in the center were counted, and the number of its appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
3. Test results: The inhibitory activities of 10 compounds against 20 Colletotrichum strains.
Table 2 Determination of IC50 values of dicarboxylic acid compounds for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC50 (ppm)
1 D2 Grape Colletotrichum 37
2 D2 sorghum Colletotrichum -
3 D2 camellia oleifera Colletotrichum 46
4 D2 strawberry Colletotrichum 47
5 D2 pear Colletotrichum -
6 D2 apple Colletotrichum -
7 D2 pepper Colletotrichum acutata 5
8 D2 pepper Colletotrichum dematium 8
9 D2 disporopsis pernyi Colletotrichum (8270) -
10 D2 disporopsis pernyi Colletotrichum (8069) -
11 D2 millettia specisoa Colletotrichum -
12 D2 yellow pear Colletotrichum -
13 D2 cucumber Colletotrichum -
14 D2 momordica grosvenori Colletotrichum -
15 D2 camellia azalea Colletotrichum (9053) -
16 D2 camellia azalea Colletotrichum (9059) -
17 D2 cherry Colletotrichum 35
18 D2 cruciferous vegetable Colletotrichum 78
19 D2 walnut Colletotrichum 49
20 D2 corn Colletotrichum 62
Table 3 Determination of IC50 values of dicarboxylic acid compounds for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC50 (ppm)
1 D9 Grape Colletotrichum 14
2 D9 sorghum Colletotrichum -
3 D9 camellia oleifera Colletotrichum 70
4 D9 strawberry Colletotrichum -
5 D9 pear Colletotrichum -
6 D9 apple Colletotrichum -
7 D9 pepper Colletotrichum acutata 13
8 D9 pepper Colletotrichum dematium 3
9 D9 disporopsis pernyi Colletotrichum (8270) -
10 D9 disporopsis pernyi Colletotrichum (8069) -
11 D9 millettia specisoa Colletotrichum -
12 D9 yellow pear Colletotrichum -
13 D9 cucumber Colletotrichum -
14 D9 momordica grosvenori Colletotrichum -
15 D9 camellia azalea Colletotrichum (9053) -
16 D9 camellia azalea Colletotrichum (9059) -
17 D9 cherry Colletotrichum 87
18 D9 cruciferous vegetable Colletotrichum 86
19 D9 walnut Colletotrichum 64
20 D9 corn Colletotrichum 79
Table 4 Determination of IC50 values of dicarboxylic acid compounds for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC50 (ppm)
1 D29 Grape Colletotrichum 29
2 D29 sorghum Colletotrichum -
3 D29 camellia oleifera Colletotrichum 56
4 D29 strawberry Colletotrichum -
5 D29 pear Colletotrichum -
6 D29 apple Colletotrichum -
7 D29 pepper Colletotrichum acutata 15
8 D29 pepper Colletotrichum dematium 9
9 D29 disporopsis pernyi Colletotrichum (8270) -
10 D29 disporopsis pernyi Colletotrichum (8069) -
11 D29 millettia specisoa Colletotrichum -
12 D29 yellow pear Colletotrichum -
13 D29 cucumber Colletotrichum -
14 D29 momordica grosvenori Colletotrichum -
15 D29 camellia azalea Colletotrichum (9053) -
16 D29 camellia azalea Colletotrichum (9059) 35
17 D29 cherry Colletotrichum 78
18 D29 cruciferous vegetable Colletotrichum 49
19 D29 walnut Colletotrichum 62
20 D29 corn Colletotrichum 24
Table 5 Determination of IC50 values of dicarboxylic acid compounds for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC50 (ppm)
1 D68 Grape Colletotrichum 48
2 D68 sorghum Colletotrichum -
3 D68 camellia oleifera Colletotrichum 32
4 D68 strawberry Colletotrichum 90
5 D68 pear Colletotrichum 58
6 D68 apple Colletotrichum -
7 D68 pepper Colletotrichum acutata 7
8 D68 pepper Colletotrichum dematium 7
9 D68 disporopsis pernyi Colletotrichum (8270) -
10 D68 disporopsis pernyi Colletotrichum (8069) 60
11 D68 millettia specisoa Colletotrichum -
12 D68 yellow pear Colletotrichum -
13 D68 cucumber Colletotrichum -
14 D68 momordica grosvenori Colletotrichum -
15 D68 camellia azalea Colletotrichum (9053) -
16 D68 camellia azalea Colletotrichum (9059) 40
17 D68 cherry Colletotrichum 60
18 D68 cruciferous vegetable Colletotrichum 46
19 D68 walnut Colletotrichum 53
20 D68 corn Colletotrichum 68
Table 6 Determination of IC50 values of dicarboxylic acid compounds for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC50 (ppm)
1 D51 Grape Colletotrichum 50
2 D51 sorghum Colletotrichum -
3 D51 camellia oleifera Colletotrichum 28
4 D51 strawberry Colletotrichum 100
5 D51 pear Colletotrichum 56
6 D51 apple Colletotrichum -
7 D51 pepper Colletotrichum acutata 4
8 D51 pepper Colletotrichum dematium 13
9 D51 disporopsis pernyi Colletotrichum (8270) -
10 D51 disporopsis pernyi Colletotrichum (8069) 63
11 D51 millettia specisoa Colletotrichum -
12 D51 yellow pear Colletotrichum -
13 D51 cucumber Colletotrichum -
14 D51 momordica grosvenori Colletotrichum -
15 D51 camellia azalea Colletotrichum (9053) -
16 D51 camellia azalea Colletotrichum (9059) 45
17 D51 cherry Colletotrichum 59
18 D51 cruciferous vegetable Colletotrichum 50
19 D51 walnut Colletotrichum 56
20 D51 corn Colletotrichum 70
Table 7 Determination of IC50 values of dicarboxylic acid compounds for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC50 (ppm)
1 D67 Grape Colletotrichum 62
2 D67 sorghum Colletotrichum -
3 D67 camellia oleifera Colletotrichum 43
4 D67 strawberry Colletotrichum 56
5 D67 pear Colletotrichum 41
6 D67 apple Colletotrichum -
7 D67 pepper Colletotrichum acutata 18
8 D67 pepper Colletotrichum dematium 12
9 D67 disporopsis pernyi Colletotrichum (8270) 52
10 D67 disporopsis pernyi Colletotrichum (8069) 61
11 D67 millettia specisoa Colletotrichum -
12 D67 yellow pear Colletotrichum -
13 D67 cucumber Colletotrichum -
14 D67 momordica grosvenori Colletotrichum -
15 D67 camellia azalea Colletotrichum (9053) -
16 D67 camellia azalea Colletotrichum (9059) 51
17 D67 cherry Colletotrichum 61
18 D67 cruciferous vegetable Colletotrichum -
19 D67 walnut Colletotrichum 45
20 D67 corn Colletotrichum 80
Table 8 Determination of IC50 values of dicarboxylic acid compounds for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC50 (ppm)
1 D90 Grape Colletotrichum 41
2 D90 sorghum Colletotrichum -
3 D90 camellia oleifera Colletotrichum 35
4 D90 strawberry Colletotrichum 85
5 D90 pear Colletotrichum 67
6 D90 apple Colletotrichum -
7 D90 pepper Colletotrichum acutata 5
8 D90 pepper Colletotrichum dematium 19
9 D90 disporopsis pernyi Colletotrichum (8270) -
10 D90 disporopsis pernyi Colletotrichum (8069) 55
11 D90 millettia specisoa Colletotrichum -
12 D90 yellow pear Colletotrichum -
13 D90 cucumber Colletotrichum -
14 D90 momordica grosvenori Colletotrichum -
15 D90 camellia azalea Colletotrichum (9053) -
16 D90 camellia azalea Colletotrichum (9059) 50
17 D90 cherry Colletotrichum 68
18 D90 cruciferous vegetable Colletotrichum 45
19 D90 walnut Colletotrichum 61
20 D90 corn Colletotrichum 58
Table 9 Determination of IC50 values of dicarboxylic acid compounds for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC50 (ppm)
1 D103 Grape Colletotrichum 80
2 D103 sorghum Colletotrichum -
3 D103 camellia oleifera Colletotrichum 50
4 D103 strawberry Colletotrichum 45
5 D103 pear Colletotrichum 69
6 D103 apple Colletotrichum -
7 D103 pepper Colletotrichum acutata 17
8 D103 pepper Colletotrichum dematium 5
9 D103 disporopsis pernyi Colletotrichum (8270) 50
10 D103 disporopsis pernyi Colletotrichum (8069) 72
11 D103 millettia specisoa Colletotrichum -
12 D103 yellow pear Colletotrichum -
13 D103 cucumber Colletotrichum -
14 D103 momordica grosvenori Colletotrichum -
15 D103 camellia azalea Colletotrichum (9053) -
16 D103 camellia azalea Colletotrichum (9059) 58
17 D103 cherry Colletotrichum 76
18 D103 cruciferous vegetable Colletotrichum -
19 D103 walnut Colletotrichum 32
20 D103 corn Colletotrichum 88
Example 2 Inhibition of appressorium formation of rice blast pathogen by dicarboxylic acid compounds
1. Pathogenic isolates to be tested: Rice blast pathogen (Magnaporthe oryzae) P131.
2. Test method:
1) Production of a large number of conidia by rice blast pathogen: Rice blast strains to be activated were spotted on a tomato oat plate OTA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. The colonies on OTA were fully interrupted, then uniformly coated onto a new tomato juice oat plate, and incubated in a light incubator at a constant temperature of 28 ℃. When neonatal hyphae were visible to the naked eye growing out of the surface of medium, the hyphae were gently interrupted with a cotton swab, rinsed thoroughly with water and dried in air. The culture dish was covered with a single layer of gauze and light-incubated at 28 ℃ for approximately 48 hours, at which time a large number of conidia produced were observed on the surface of the OTA.
2) Preparation of a spore suspension of rice blast pathogen: The hyphae and spores on the spore production plate were washed off simultaneously with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
4) Statistics: Three dots on each hydrophobic glass slide were used for statistics. For each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
3. Test results: Inhibition of appressorium formation of rice blast isolate P131 by 20 compounds
Table 10 Inhibition of appressorium formation of rice blast isolate P131 by dicarboxylic acid compounds
Figure PCTCN2019119065-appb-000012
Figure PCTCN2019119065-appb-000013
Example 3 Inhibition of appressorium formation of rubber acutatum YN42 by dicarboxylic acid compounds
1. Pathogenic isolate to be tested: Rubber anthracnose pathogen (Colletotrichum acutatum) YN42.
2. Test method:
1) Production of a large number of conidia: Colletotrichum strains to be activated were spotted on a potato agarose medium PDA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. All hyphae on the surface of the medium were washed off with sterilized water, rinsed thoroughly, dried in air, and light-incubated at 28 ℃ for approximately 48 hours, and a large number of conidia produced were observed on the surface of the PDA.
2) Preparation of a spore suspension of Colletotrichum: The spores on the spore production plate were washed off with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
4) Statistics: Three dots on each hydrophobic glass slide were used for statistics. For each dot, 50 conidia in the center were counted, and the number of appressorium  formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
3. Test results: Inhibition of appressorium formation of rubber acutatum YN42 by 20 compounds.
Table 11 Inhibition of appressorium formation of rubber acutatum YN42 by dicarboxylic acid compounds
Figure PCTCN2019119065-appb-000014
Example 4 Inhibition of appressorium formation of mango anthracnose pathogen by dicarboxylic acid compounds
1. Pathogen to be tested: Mango anthracnose pathogen (Colletotrichum gloeosporioides) r13.
2. Test method:
1) Production of a large number of conidia: Colletotrichum strains to be activated were spotted on a potato agarose medium PDA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. All hyphae on the surface of the medium were washed off with sterilized water, rinsed thoroughly, dried in air, and light-incubated at 28 ℃ for approximately 48 hours, and a large number of conidia produced were observed on the surface of the PDA.
2) Preparation of a spore suspension: The spores on the spore production plate were washed off with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm, 70 ppm, 50 ppm and 30 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
4) Statistics: Three dots on each hydrophobic glass slide were used for statistics. For each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
3. Test results: Inhibition of appressorium formation of mango Colletotrichum gloeosporioides r13 by 20 compounds.
Table 12 Inhibition of appressorium formation of mango Colletotrichum gloeosporioides r13 by dicarboxylic acid compounds
Figure PCTCN2019119065-appb-000015
Figure PCTCN2019119065-appb-000016
Example 5 Inhibition of tomato gray mold by dicarboxylic acid compounds
1. Pathogenic isolates to be tested: Tomato gray mold pathogen (Botrytis cinerea) .
2. Test method:
1) Activation of botrytis cinerea: a PDA medium was poured onto a plate in a ultra-clean workbench. After the medium was cooled and solidified, a small number of the strains of botrytis cinerea were picked by an inoculation ring and placed into individual culture dishes, respectively. The culture dishes were placed into an incubator at 28 ℃ and incubated in an inverted manner. The first activation time was one week. After their hyphae turned grayish-green in color and overgrew the plate, a secondary activation was carried out according to the above method.
2) Preparation of a spore suspension of botrytis cinerea: The activated botrytis cinerea was incubated for another 7 days (28 ℃) , until the thalli gave rise to spores to be ready for use. The thalli were washed several times with sterile water to obtain the spore suspension, which was counted using a hemocytometer, and the spore suspension was diluted to a concentration of 1 x 10 4 spores /mL to be ready for use.
3) One day in advance, 5 target compounds were formulated into pesticide solutions with a final concentration of 100 ppm (control pesticide: prochloraz) , sprayed evenly on tomato leaves and left for moisturizing. After 24 h, the leaves were blown dry, until there were no water drops on surfaces. After that, the prepared spore suspension was spotted on the tomato leaves, with 2 drops of the spore suspension spotted for each leaf, and each drop of spore suspension was 20 μL. Moisturizing incubation was carried out at 20 ℃, and diseases were observed 3 days later. Leaf diseases of tomatoes (20 ℃) were recorded 72 hours after inoculation with 20 μL spore solution of botrytis cinerea B05.10 (1 x 10 4 spores/mL) . The spore solution contained 1/10 PDB.
Figure PCTCN2019119065-appb-000017
3. Test results:
The test results showed that compounds D9, D51 and D68 of 100 ppm had better disease prevention effects, among which no diseases were observed at all for compounds D51 and D68 of 100 ppm. No disease was observed for control pesticide (prochloraz) either.
Table 13 Control of tomato gray mold by dicarboxylic acid compounds
No. Compound Concentration (ppm) Control effect (%)
1 D2 10 10.10
2 D2 100 40.32
3 D9 10 20.04
4 D9 100 60.41
5 D29 10 3.62
6 D29 100 20.30
7 D51 10 78.33
8 D51 100 100.04
9 D68 10 60.82
10 D68 100 96.44
Example 6 Control effects of dicarboxylic acid compounds on Arabidopsis anthracnose
1. Pathogenic isolates to be tested: Arabidopsis anthracnose pathogen (Colletotrichum gloeosporioides) .
2. Test method:
1) Production of a large number of conidia: Colletotrichum gloeosporioides strains to be activated were spotted on a potato agarose medium PDA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. All hyphae on the surface of the medium were washed off with sterilized water, rinsed thoroughly, dried in air, and light-incubated at 28 ℃ for approximately 48 hours, and a large number of conidia produced were observed on the surface of the PDA.
2) Preparation of a spore suspension: The spores on the spore production plate were washed off with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 100 ppm and 50 ppm, sprayed onto arabidopsis leaves. Seven days later, the diseases were counted and the control effects (%) were calculated.
Figure PCTCN2019119065-appb-000018
3. Test results: The specific results are shown in Table 14.
Table 14 Control of Arabidopsis anthracnose by dicarboxylic acid compounds
No. Compound Concentration (ppm) Control effect (%)
1 D2 50 9.61
2 D2 100 44.42
3 D9 50 10.70
4 D9 100 30.51
5 D29 50 24.63
6 D29 100 56.84
7 D51 50 63.40
8 D51 100 98.71
9 D68 50 10.70
10 D68 100 38.73
Example 7 Control effects of dicarboxylic acid compounds on potato late blight
1. Pathogenic isolates to be tested: potato late blight isolates (Phytophthora infestans) .
2. Test method:
Potato variety "Xisen No. 6" was a high-sensitivity late blight cultivar.
1. Preparation of a spore suspension of Phytophthora infestans
Phytophthora infestans strains MZ15-30 were inoculated into a rye medium, and a total of 10 plates (90 mm diameter) were incubated until day 13 to check for contamination. The contamination-free plates were retained. 10 mL of sterile distilled water was added to each plate on a sterile operating table, and the plates were incubated for 3-4 h in a refrigerator at 4℃ to rupture sporangia and release zoospores.
The zoospores were carefully transferred to 50 mL centrifuge tubes. For one centrifuge tube, 4 plates were transferred, and centrifuged at a low speed of 2500 rpm for 10 minutes. The supernatant was carefully poured out, 200 uL liquid was left at the bottom of the tube, and the precipitate was resuspended in 2 mL sterile distilled water. 10 μL of resuspended zoospores were 1: 10 diluted with sterile distilled water, and counted using a hemocytometer (Modified Fuchs Rosenthal Counting Chamber, depth 0.2 mm; Weber Scientific International, Teddington, UK) under a biological microscope. The diluted zoospores were thoroughly and uniformly mixed by a pipette, and loaded on both sides of the hemocytometer. The total number of zoospores in 16 squares of the hemocytometer was counted, and then an average number of zoospores in each square  was calculated by dividing by 4. By multiplying this number by 10,000, the total concentration of zoospores per milliliter was obtained. The spores for inoculation were required to be diluted with sterile distilled water to a concentration of 15,000 spores per milliliter.
2. Adding target compounds to the spore suspension of P. infestans for inoculating subject plants in vivo
1) Pesticide solutions of 100 ppm were prepared and sprayed evenly on potato leaves with a seedling age of 20 days for moisturizing and incubating in an artificial climate chamber. After 24 h, the prepared pathogen liquids were then sprayed evenly on the potato leaves for moisturizing and incubating in the artificial climate chamber (20 ℃, 18 h light and 6 h dark) . After 4-5 days, the disease indexes were counted. As the strains used in the experiments were moderately strong pathogenic strains, the counting was generally started after 4 days of inoculation, the disease indexes and control effects were counted for three consecutive days, and photo records were taken.
Figure PCTCN2019119065-appb-000019
2) The sprayed compounds
Names: D2, D9, D29, D68 and D51
Concentration: 100 ppm (μg/mL)
Pesticide solvent: DMSO, concentration 1‰
3) The sprayed late blight pathogens
The sprayed late blight strain:
Strain No.: MZ
Physiological race: R1, R3, R4, R7, R9, R10, and R11
Characteristics of the strain: moderately strong strain, showing strong virulence and rapid onset.
Spore concentration: 250 zoospores /10 μL
3. Test results: All the 5 compounds showed certain control effects on potato late blight. Among them, D9, D29, D51 and D68 had significant control effects, with the control effects reaching more than 85%, while the compound D2 was slightly less effective than the other four compounds.
Table 15 Control of potato late blight by dicarboxylic acid compounds
No. Compound Concentration (ppm) Control effect (%)
1 D2 50 0.00
2 D2 100 31.53
3 D9 50 71.34
4 D9 100 93.20
5 D29 50 60.54
6 D29 100 90.65
7 D51 50 67.48
8 D51 100 95.66
9 D68 50 56.40
10 D68 100 88.04
Example 8 Four field tests of dicarboxylic acid compounds for controlling wax gourd downy mildew (Bailianluoyi Village)
1. Test conditions
1.1 Materials for testing
Test crop: wax gourd
Control target: wax gourd downy mildew
Test location: Bailianluoyi Village
1.2 Test agents
Control agent: Yinfali (687.5g/L fluopicolide ·propamocarb) -Bayer
1.3 Test Design
Table 16 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%D2 1000 times
2 15%D29 1000 times
3 15%D9 1000 times
4 15%D51 1000 times
5 Yinfali (687.5g/L fluopicolide ·propamocarb)  1000 times
6 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated April 5, 2019 and April 12, 2019. After the first administration, the wax gourds grew well. The wax gourds were in the middle stage of hanging, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, downy mildew occurred, being in the middle stage of the occurrence of downy mildew.
2 Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119065-appb-000020
Figure PCTCN2019119065-appb-000021
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method:
As the occurrence of wax gourd downy mildew before the test, it was a remedial test. Each treatment area was 20 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and the leaves in the upper part of each plant were surveyed. The sizes of downy mildew spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade 1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade 3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade 5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade 7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area.
Figure PCTCN2019119065-appb-000022
Figure PCTCN2019119065-appb-000023
3 Results and analysis
3.1 Test results
Table 17 Field test results of wax gourd downy mildew
Figure PCTCN2019119065-appb-000024
The test results showed that from the whole process of the test, it could be seen that the disease index of wax gourd before administration was at a higher level, indicating that the disease was in a middle to late stage. Seven days after the first administration, it was found that the control effects of the samples D2, D29, D9 and D51 by 1000 times dilution were 54.22%, 60.55%, 59.71%and 63.28%, respectively, and the control effect of the control agent Yinfali by 1000 times dilution was 61.92%; the control effect of D51 was higher than that of the control agent, reaching 63.28%, while the control effects of D29 and D9 on wax gourd downy mildew were equivalent to that of the control agent Yinfali; and the control effect of D2 agent was relatively low, being only 54.22%. After one administration experiment, the diseased spots of the infected leaves of wax gourds could be effectively controlled, while the downy mildew of the control blank group was continuously expanding.
Example 9 Four field test reports of dicarboxylic acid compounds for controlling pumpkin anthracnose (Bailianluoyi Village)
1. Test conditions
1.1 Materials for testing
Test crop: pumpkin
Control target: pumpkin anthracnose
Test location: Bailianluoyi Village
1.2 Test agents
Control agents:
Nadiwen (25%trifloxystrobin ·50%tebuconazole) -Bayer
Zhengjia (20%difenoconazole) -Hainan Zhengye Zhongnong Hi-Tech Co., Ltd.
1.3 Test Design
Table 18 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%D2 1000 times
2 15%D29 1000 times
3 15%D9 1000 times
4 15%D51 1000 times
5 Nadiwen (25%trifloxystrobin ·50%tebuconazole) 2000 times
6 Zhengjia (20%difenoconazole) 750 times
7 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated March 4, 2019 and March 11, 2019. After the first administration, the pumpkins grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in the middle stage of the occurrence of anthracnose.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119065-appb-000025
Figure PCTCN2019119065-appb-000026
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method:
As the occurrence of pumpkin anthracnose before the test, it was a remedial test. Each treatment area was 20 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and all the leaves of each plant were surveyed. The sizes of anthracnose spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 10 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area.
Figure PCTCN2019119065-appb-000027
Figure PCTCN2019119065-appb-000028
3 Results and analysis
3.1 Test results
Table 19 Field test results of pumpkin anthracnose
Figure PCTCN2019119065-appb-000029
The test results showed that from the whole process of the test, it could be seen that the disease index of pumpkin before administration was at a higher level, indicating that the disease was in the middle stage. Seven days after the first administration, it was found that the control effects of the samples D2, D29, D9 and D51 by 1000 times dilution were 50.33%, 43.71%, 59.82%and 55.30%, respectively, the control effect of the control agent Nadiwen by 2000 times dilution was 49.44%, and the control effect of Zhengjia by 750 times dilution was 46.91%; the control effects of both D9 and D51 were higher than those of the control agents; The control effect of D9 by 1000 times dilution was the best, up to 59.82%, while the control effect of D51 by 1000 times dilution was the second, reaching 55.30%. However, the value of D29 was 43.71%and was lower than that of the control agent Nadiwen or Zhengjia. Over time, 10 days after the second administration, it was found that the control effects were all improved to varying degrees, the control effect of D9 by 1000 times dilution was the highest, reaching 62.61%, followed by D51, the control effect of which was slightly higher than that of the control agent 75%Nadiwen by 2000 times dilution (58.80%) . The control effect of D2 could reach 57.73%, which was equivalent to that of the control agent Nadiwen by 2000 times dilution or Zhengjia by 750 times dilution, while the control effect of D29 was only 50.80%, which was lower than that of the control agent Nadiwen by 2000 times dilution or Zhengjia by 750 times dilution.
Example 10 Four control tests of dicarboxylic acid compounds on melon downy mildew
1. Test conditions
1.1 Materials for testing
Test crop: melon
Control target: melon downy mildew
Test location: Shunyi district, Beijing
1.2 Test agents
Test agents: D2, D29, D9 and D51 of 100 ppm.
Control agent: azoxystrobin (25%)
1.3 Test Design
Table 20 Concentration Design for Test Agents
No. Treatment agent Dilution fold
1 10%sample D2 1000 times
2 10%sample D29 1000 times
3 10%sample D9 1000 times
5 10%sample D51 1000 times
6 Control agent: azoxystrobin (25%) 2500 times
8 CK  
1.4 Cell arrangement
Random block arrangement was used for cells of test agent, control agent and blank control.
Cell area: 10-12 m 2
Times of repetition: 4
Dosage: 4 replicates per agent, with a total of 10 L water, and a final concentration of 100 ppm.
2 Methods of survey, recording and measurement
2.1 Survey method:
Melon downy mildew occurred before the test. A 10-point random sampling method was used. Ten melon seedlings were randomly selected from each row, and all the leaves were surveyed. The percentage of diseased spot area on each leaf to the total leaf area was graded.
2.2 Survey time and frequency
The control effects were surveyed 8 days after the first administration and 8 days after the second administration, respectively.
2.3 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade1: The area of diseased spots accounted for less than 5%of the total leaf area; 
Grade3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area.
Figure PCTCN2019119065-appb-000030
3 Results and analysis
Table 21 Field test results of melon downy mildew
Figure PCTCN2019119065-appb-000031
The test results showed that from the whole process of the test, it could be seen that the disease index of melon before administration was at a lower level, indicating that the disease was in the early stage. Seven days after the first administration, it was found that the control effects of the samples D2, D29, D9 and D51 by 1000 times dilution were 22.45%, 75.88%, 26.63%and 34.51%, respectively, and the control effect of the control agent azoxystrobin by 2500 times dilution was 49.58%; the control effect of D29 was higher than that of the control agent, reaching 75.88%, while the control effect of D51 on melon downy mildew was lower than that of the control agent azoxystrobin; the control effects of agents D2 and D9 were relatively low, being only 22.45%and 26.63%. After one administration experiment, the diseased spots of the infected leaves of melons could be effectively controlled, while the downy mildew of the control blank group was continuously expanding.
Example 11 Four field test reports of samples for controlling cowpea anthracnose
1. Test conditions
1.1 Materials for testing
Test crop: cowpea
Control target: cowpeas anthracnose
Test location: Shanneipo Village
1.2 Test agents
Control agents:
Nadiwen (25%trifloxystrobin ·50%tebuconazole) -Bayer
Zhengjia (20%difenoconazole) -Hainan Zhengye Zhongnong Hi-Tech Co., Ltd.
1.3 Test Design
Table 22 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%D2 1000 times
2 15%D29 1000 times
3 15%D9 1000 times
4 15%D51 1000 times
5 Nadiwen (25%trifloxystrobin ·50%tebuconazole) 2000 times
6 Zhengjia (20%difenoconazole) 750 times
7 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated March 13, 2019 and March 20, 2019. After the first administration, the cowpeas grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in a middle to late stage of the occurrence of anthracnose.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119065-appb-000032
Figure PCTCN2019119065-appb-000033
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method:
As the occurrence of cowpea anthracnose before the test, it was a remedial test. Each treatment area was 50 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and cowpea leaves on each plant were surveyed. The sizes of anthracnose spots on the leaves were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area.
Figure PCTCN2019119065-appb-000034
Figure PCTCN2019119065-appb-000035
3 Results and analysis
3.1 Test results
Table 23 Field test results of cowpea anthracnose
Figure PCTCN2019119065-appb-000036
Figure PCTCN2019119065-appb-000037
The test results showed that from the whole process of the test, it could be seen that the disease index of cowpea before administration was at a higher level, indicating that the disease was in a middle to late stage. Seven days after the first administration, it was found that the control effects of the samples D2, D29, D9 and D51 by 1000 times dilution were 48.21%, 55.33%, 42.80%and 44.61%, respectively, the control effect of the control agent Nadiwen by 2000 times dilution was 46.82%, and the control effect of Zhengjia by 750 times dilution was 36.64%. Over time, 7 days after the second administration, it was found that the control effects were all improved to varying degrees. The control effects of 4 samples on cowpea anthracnose reached more than 50%, among which the control effect of the sample D29 was the highest, reaching 61.50%, the control effects of the samples D2 and D51 reached approximately 57%, while the control effect of the sample D9 was slightly lower, being only 51%between Nadiwen and Zhengjia.
Example 12 Four field tests of dicarboxylic acid compounds for controlling pepper anthracnose
1. Test conditions
1.1 Materials for testing
Test crop: pepper
Control target: pepper anthracnose
Test location: Bailianluoyi Village
1.2 Test agents
Control agent:
Nadiwen (25%trifloxystrobin ·50%tebuconazole) -Bayer
1.3 Test Design
Table 24 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%D2 1000 times
2 15%D29 1000 times
3 15%D9 1000 times
4 15%D51 1000 times
5 Nadiwen (25%trifloxystrobin ·50%tebuconazole) 2000 times
6 CK 0
1.4Administration time and method
During the test, the pesticides were administered twice, dated February 13, 2019 and February 20, 2019. After the first administration, the peppers grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in the middle stage of the occurrence of anthracnose.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119065-appb-000038
Figure PCTCN2019119065-appb-000039
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method:
As the occurrence of pepper anthracnose before the test, it was a remedial test. Each treatment area was 20 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and all the leaves of each plant were surveyed. The sizes of anthracnose spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area.
Figure PCTCN2019119065-appb-000040
Figure PCTCN2019119065-appb-000041
3 Results and analysis
3.1 Test results
Table 25 Field test results of pepper anthracnose
Figure PCTCN2019119065-appb-000042
Figure PCTCN2019119065-appb-000043
The test results showed that from the whole process of the test, it could be seen that the disease index of pepper before administration was at a higher level, indicating that the disease was in the middle stage. Seven days after the first administration, it was found that the control effects of the samples D2, D29, D9 and D51 by 1000 times dilution were 50.13%, 37.20%, 62.11%and 50.34%, respectively, the control effect of the control agent Nadiwen by 2000 times dilution was 49.50%, and the control effects of D2, D9 and D51 were all higher than that of the control agent; The control effect of D9 by 1000 times dilution was the best, up to 62.11%, while the control effect of D51 by 1000 times dilution was the second, reaching 50.34%; The control effect of D2 was 50.13%, which was equivalent to that of the control agent Nadiwen by 2000 times dilution, while the control effect of D29 was the lowest, as low as 37.20%. Over time, 7 days after the second administration, it was found that the control effects were all improved to varying degrees, the control effect of D9 by 1000 times dilution was the highest, reaching 82.11%, significantly higher than that of the control agent 75%Nadiwen by 2000 times dilution (58.10%) . The control effect of D2 could reach 74.93%, while the control effect of D29 was 54.64%, which was lower than that of the control agent Nadiwen by 2000 times dilution.
Example 13 Four field tests of dicarboxylic acid compounds for controlling pepper fruit anthracnose
1. Test conditions
1.1 Materials for testing
Test crop: pepper
Control target: pepper anthracnose
Test location: Shanneipo Village
1.2 Test agents
Control agents:
Nadiwen (25%trifloxystrobin ·50%tebuconazole) -Bayer
Zhengjia (20%difenoconazole) -Hainan Zhengye Zhongnong Hi-Tech Co., Ltd.
1.3 Test Design
Table 26 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%D2 1000 times
2 15%D29 1000 times
3 15%D9 1000 times
4 15%D51 1000 times
5 Nadiwen (25%trifloxystrobin ·50%tebuconazole)  2000 times
6 Zhengjia (20%difenoconazole) 750 times
7 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated March 11, 2019 and March 18, 2019. After the first administration, the peppers grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in a middle to late stage of the occurrence of anthracnose.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119065-appb-000044
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method:
As the occurrence of pepper anthracnose before the test, it was a remedial test. Each treatment area was 50 square meters. A random 5-point survey method was used, two  plants were surveyed at each point, and the number of pepper fruits on each plant as a whole was surveyed. The sizes of anthracnose spots on the fruits were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for fruit diseases:
Grade 0: No disease spots
Grade 1: The area of diseased spots accounted for less than 5%of the total fruit area;
Grade 3: The area of diseased spots accounted for less than 6%-10%of the total fruit area;
Grade 5: The area of diseased spots accounted for less than 11%-20%of the total fruit area;
Grade 7: The area of diseased spots accounted for less than 21%-50%of the total fruit area;
Grade 9: The area of diseased spots accounted for more than 51%of the total fruit area.
Figure PCTCN2019119065-appb-000045
Figure PCTCN2019119065-appb-000046
2 Results and analysis
2.1 Test results
Table 27 Field test results of pepper fruit anthracnose
Figure PCTCN2019119065-appb-000047
The test results showed that from the whole process of the test, it could be seen that the disease index of pepper before administration was at a higher level, indicating that the disease was in a middle to late stage. Seven days after the first administration, it was found that the control effects of the samples D2, D29, D9 and D51 by 1000 times dilution  were 42.84%, 54.90%, 52.31%and 47.00%, respectively, the control effect of the control agent Nadiwen by 2000 times dilution was 42.64%, and the control effect of Zhengjia by 750 times dilution was 41.83%; Over time, 7 days after the second administration, it was found that the control effects were all improved to varying degrees, The control effects of the samples D29 and D9 on pepper fruit anthracnose could reach above 65%, and the control effects of samples D2 and D51 could reach approximately 51.71%and 53.23%, respectively, which were equivalent to that of the control agent Nadiwen by 2000 times dilution (53.80%) or Zhengjia by 750 times dilution (52.32%) .
Example 14 Five control tests of dicarboxylic acid compounds on rice blast
1. Test conditions
1) Test crop: rice (mongol rice variety)
Test target: rice blast
Test location: Panjin city, liaoning province
2) Test agents: D2, D29, D9, D51 and D68
3) Agent concentration: 100 ppm
4) Spraying period: rupturing stage and full heading stage
5) Control solvent concentration: 1%DMSO
2. Experimental Scheme
A five-point random sampling survey method was used. Ten plants were surveyed at each point, and the sizes of rice blast spots were counted. The disease index of each treated plant was surveyed and counted 14 days after administration by adopting an international grading method.
Figure PCTCN2019119065-appb-000048
Figure PCTCN2019119065-appb-000049
3. Test results
Table 28 Control tests of dicarboxylic acid compounds on rice blast
Figure PCTCN2019119065-appb-000050
The results showed that from the whole process of the test, it could be seen that rice blast had not occurred before spraying. After two administrations, the control effects of the samples D2, D29, D9, D5 and D68 by 1000 times dilution were 72.18%, 42.90%, 6.30%, 74.67%and 41.00%, respectively. It could be seen that the two agents D2 and D51 had better protection and control effects on rice blast, while D29 and D68 had lower control effects, both being approximately 50%. The control effect of the sample D9 was low because it almost had no protection and control effects on rice blast.
While the present invention has been described in detail with a general description, specific embodiments and tests above, those skilled in the art can make some modifications or improvements on the basis of the present invention. Therefore, all such modifications or improvements made without departing from the spirit of the present invention fall within the scope of the present invention.

Claims (8)

  1. Use of a dicarboxylic acid compound for preventing appressorium formation that is essential to many plant diseases caused by fungi and oomycetes, wherein the dicarboxylic acid compound is selected from compounds of formulas I, II, III and IV, as well as isomers, hydrates or salts thereof,
    Figure PCTCN2019119065-appb-100001
    wherein n is an integer of 0-100, i.e., that portion of the compound has 0-100 carbons; m is an integer of 1-50, i.e., that portion of the compound has 1-50 olefinic bonds; x is an integer of 0-50, i.e., that portion of the compound has 0-50 carbons; and R is alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or glycosyl.
  2. The use according to claim 1, characterized in that, the compound of formula I has carboxyl functional groups at both ends of its chain, n is 0-30, i.e., that portion of the compound has 0-30 carbons; and m is 1-16, i.e., that portion of the compound has 1-16 olefinic bonds.
  3. The use according to claim 1, characterized in that, the compound of formula II has carboxyl functional groups at both ends of its chain, and n is 0-48, i.e., that portion of the compound has 0-48 carbons.
  4. The use according to claim 1, characterized in that, the compound of formula III has carboxyl functional groups at both ends of its chain, n is 0-30, i.e., that portion of the  compound has 0-30 carbons; and x is 0-30, i.e., that portion of the compound has 0-30 carbons.
  5. The use according to claim 1, characterized in that, the compound of formula IV has carboxyl functional groups at both ends of its chain, n is 0-10, i.e., that portion of the compound has 0-10 carbons; and x is 0-10, i.e., that portion of the compound has 0-10 carbons.
  6. The use according to claim 2, characterized in that, the compound of formula I is a compound selected from formula V.
    Figure PCTCN2019119065-appb-100002
  7. The use according to claim 1, characterized in that, the dicarboxylic acid compound is used as a plant protective agent or a fungicide.
  8. The use according to claim 1, characterized in that, the dicarboxylic acid compound is used for controlling rice blast, anthracnose, downy mildew, phytophthora blight, and gray mold in plants.
PCT/CN2019/119065 2019-06-21 2019-11-18 Use of dicarboxylic acid compounds for controlling plant diseases WO2020253077A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910542730.7A CN112106774A (en) 2019-06-21 2019-06-21 Application of dicarboxylic acid compound in preventing and treating plant diseases
CN201910542730.7 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020253077A1 true WO2020253077A1 (en) 2020-12-24

Family

ID=73796247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119065 WO2020253077A1 (en) 2019-06-21 2019-11-18 Use of dicarboxylic acid compounds for controlling plant diseases

Country Status (2)

Country Link
CN (2) CN112106774A (en)
WO (1) WO2020253077A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022043874A1 (en) * 2020-08-24 2022-03-03 Adama Makhteshim Ltd. Pesticidal compounds and compositions, methods of use and processes of preparation thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115590023B (en) * 2022-04-18 2024-02-09 中国农业科学院烟草研究所 Application of decadienoic acid in preventing and treating phytophthora capsici of plants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412971A (en) * 2008-09-12 2009-04-22 中国农业大学 Paris polyphylla var. yunnanensis endogenetic Fusarium sp. for producing antibacterial activity component
CN105309503A (en) * 2015-11-18 2016-02-10 无锡市稼宝药业有限公司 Botanical fungicide for anthracnose

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053431A (en) * 2018-08-30 2018-12-21 北京清源保生物科技有限公司 Application of the ferulic acid or derivatives thereof in prevention and treatment bacteriosis or nosomycosis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412971A (en) * 2008-09-12 2009-04-22 中国农业大学 Paris polyphylla var. yunnanensis endogenetic Fusarium sp. for producing antibacterial activity component
CN105309503A (en) * 2015-11-18 2016-02-10 无锡市稼宝药业有限公司 Botanical fungicide for anthracnose

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
EILBERT FRANK ET AL.: "Fatty Acids and Their Derivatives as Modulators of Appressorium Formation in Magnaporthe grisea", BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, vol. 63, no. 5, 22 May 2014 (2014-05-22), pages 879 - 883, XP055766698, DOI: 20200308083430X *
GILBERT R. D. ET AL.: "Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea", PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, vol. 48, 31 December 1996 (1996-12-31), pages 335 - 346, XP055766695, DOI: 20200308082925X *
PODILA GOPI KRISHNA ET AL.: "Chemical Signals from Avocado Surface Wax Trigger Germination and Appressorium Formation in Colletotrichum gloeosporioides", PLANT PHYSIOL., vol. 103, 31 December 1993 (1993-12-31), pages 267 - 272, XP055766713, DOI: 20200308084110X *
SCHWEIZER P. ET AL.: "Induction of resistance in barley against Erysiphe graminis f.sp. hordei by free cutin monomers", PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, vol. 49, 31 December 1996 (1996-12-31), pages 103 - 120, XP055185099, DOI: 20200308084407A *
THINES ECKHARD ET AL.: "Inhibitors of appressorium formation in Magnaporthe grisea: a new approach to control rice blast disease", PEST MANAGEMENT SCIENCE, vol. 54, no. 3, 26 March 1999 (1999-03-26), pages 314 - 316, XP055766708, DOI: 20200308083850X *
WANG CHUNLIN ET AL.: "Relationship between cutinmonomers and tomato resistance to powdery mildew infection", PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, vol. 57, 31 December 2000 (2000-12-31), pages 55 - 61, XP029577730, DOI: 20200308083257X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022043874A1 (en) * 2020-08-24 2022-03-03 Adama Makhteshim Ltd. Pesticidal compounds and compositions, methods of use and processes of preparation thereof

Also Published As

Publication number Publication date
CN115039775B (en) 2023-07-21
CN112106774A (en) 2020-12-22
CN115039775A (en) 2022-09-13

Similar Documents

Publication Publication Date Title
JP6526011B2 (en) Isolate of Clonostachys rosea used as a biopesticide
US8460649B2 (en) Saccharomyces cerevisiae strains with phytosanitary capabilities
KR101073932B1 (en) Bacillus velezensis pb3 strain and method for the biological control of plant diseases using same
ES2825710T3 (en) Trichoderma compositions and procedures for use
De Costa et al. Effects of sodium bicarbonate on pathogenicity of Colletotrichum musae and potential for controlling postharvest diseases of banana
Thompson Inhibition of nodule bacteria by an antibiotic from legume seed coats
KR101589139B1 (en) Plant disease comprising and method for manufacturing the same
BG61345B1 (en) Isolate of trichoderma, fungicidal compositions containing said isolate and use against b.cinerea and s.sclerotium
CN102844319B (en) The compound of fungicidal and their using method
CN113301804A (en) Antifungal compositions and methods of use
MX2007008234A (en) New trichoderma atroviride strain, culture medium containing it, and use of the strain in particular as a stimulant for the germination and/or growth of plants .
Hassan et al. Effects of fungal strains on seeds germination of millet and Striga hermonthica
WO2020253077A1 (en) Use of dicarboxylic acid compounds for controlling plant diseases
Sehsah et al. Efficacy of Bacillus subtilis, Moringa oleifera seeds extract and potassium bicarbonate on Cercospora leaf spot on sugar beet
WO2020253076A1 (en) Use of hydroxycarboxylic acid compounds for controlling plant diseases
KR101143033B1 (en) Compositions for protecting Plant diseases
Farahani et al. Effect of two strains of antagonistic yeasts in combination with silicon against two isolates of Penicillium expansum on apple fruit
WO2021036008A1 (en) Inhibitory activity of polycarboxylic acid compounds on appressorium formation of fungi and oomycete and their use in controlling plant diseases
KR101905058B1 (en) Bacillus amyloliquefaciens strain AK-0 and microbial agent for prevention of ginseng root rot pathogens comprising the same
Eliwa et al. Control of root rot disease of sugar beet using certain antioxidants and fungicides.
CN109832273B (en) Application of branched chain amino acid in preparation of rice disease control agent
JP7141388B2 (en) Biological control of phytopathogenic microorganisms
Pershakova et al. Studying the antagonistic properties of bacillus subtilis bacteria to pathogens of fruits in in vitro and in vivo experiments
CN114586584B (en) Green, light and simple pest control method for sweet peppers based on full-period biological system
RU2010527C1 (en) Strain of micromycet trichoderma harzianum rifai for producing preparation against causative agent of grapevine gray rot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933254

Country of ref document: EP

Kind code of ref document: A1