WO2021036008A1 - Inhibitory activity of polycarboxylic acid compounds on appressorium formation of fungi and oomycete and their use in controlling plant diseases - Google Patents

Inhibitory activity of polycarboxylic acid compounds on appressorium formation of fungi and oomycete and their use in controlling plant diseases Download PDF

Info

Publication number
WO2021036008A1
WO2021036008A1 PCT/CN2019/119063 CN2019119063W WO2021036008A1 WO 2021036008 A1 WO2021036008 A1 WO 2021036008A1 CN 2019119063 W CN2019119063 W CN 2019119063W WO 2021036008 A1 WO2021036008 A1 WO 2021036008A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
polycarboxylic acid
colletotrichum
compound
control
Prior art date
Application number
PCT/CN2019/119063
Other languages
French (fr)
Inventor
Youliang Peng
Xi Zhang
Hongchao GUO
Wensheng Zhao
Hanwen Ni
Daolong Dou
Xiaodan Wang
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Publication of WO2021036008A1 publication Critical patent/WO2021036008A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/36Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/02Saturated carboxylic acids or thio analogues thereof; Derivatives thereof
    • A01N37/04Saturated carboxylic acids or thio analogues thereof; Derivatives thereof polybasic

Definitions

  • the present invention relates to novel uses of polycarboxylic acid compounds, and in particular to inhibitory activity of such compounds on appressorium formation of fungi and oomycete and the use for controlling plant diseases.
  • the polycarboxylic acid compounds represented by the formula I are a class of known compounds and are widely used in the fields of chemical industry, food, medicine, materials, textiles, cosmetics, electronics, metallurgy and other fields.
  • 2-hydroxypropane-1, 2, 3-tricarboxylic acid (citric acid) of formula II which is one representative of such compounds, is used as a food additive for carbonated drinks, fruit drinks, and lactic acid beverages;
  • citric acid is used for improving soil environment and soil quality, reducing planting production costs and improving output and quality of crop production; citric acid also has a certain antibacterial effect, and has a good effect on killing bacterial spores in combination with high temperature, and can effectively kill contaminated bacterial spores in the hemodialysis machine pipeline.
  • Filamentous eukaryotic pathogens include oomycetes. Several or even dozens of fungal diseases can be found on one crop, for examples, achlya spp causing rice seedling rot, pythium spp causing seedling damping-off and fruit rot, phytophthora spp causing tobacco black shank and potato late blight, peronospora spp causing downy mildew.
  • Filamentous eukaryotic pathogens also include fungi, especially disease-causing ascomycetes, for examples, erysiphe causing powdery mildew, gaeumannomyces causing rice bakanae disease and wheat scab, venturia causing apple scab and pear scab, rust fungus in basidiomycota causing rust disease, smut fungus causing smut disease, and imperfect fungus causing rice blast, rice brown spot, corn northern leaf blight, corn southern leaf blight, etc.
  • fungi especially disease-causing ascomycetes, for examples, erysiphe causing powdery mildew, gaeumannomyces causing rice bakanae disease and wheat scab, venturia causing apple scab and pear scab, rust fungus in basidiomycota causing rust disease, smut fungus causing smut disease, and imperfect fungus causing rice blast, rice brown spot, corn
  • Common symptoms include downy mildew, white powder, white rust, black powder, rust powder, sooty mold, tar spot, mildew, mushroom, cotton floc, granule, cording, sticky granule, petiole spot, etc.
  • rice blast caused by Pyricularia oryzae is the most serious destructive disease of rice, which may lead to a significant reduction in production, and in severe cases, the yield is reduced by 40%-50%, or even with no grain harvest at all.
  • Rice blast occurs not only all over the world, but also at various growth stages of rice. After occurrence, it may lead to varying degrees of yield reduction, and in particular, rice panicle blast may cause white head and even no production. Rice blast may occur in any year and at any growth stage in the provincial area, and therefore, its harm to agricultural production is extremely serious.
  • downy mildew and late blight caused by oomycetes are also significant diseases in many crops.
  • the diseases such as downy mildew in various melons and grapes, late blight in potatoes and tomatoes and phytophthora blight in peppers can cause huge losses to agricultural production.
  • Chemicals are generally used to control plant diseases caused by filamentous eukaryotic pathogens, and cultivation management measures are also used to promote plant health and reduce pathogens.
  • the commonly used pesticides for chemical control include bordeaux mixture, DTMZ, chlorothalonil, thiophanate-methyl, carbendazim, pyraclostrobin, and prochloraz.
  • polycarboxylic acid compounds shown in formulas I have significant inhibitory activity on the appressorium formation of many phytopathogenic fungi and oomycetes, and their use in plant disease control has been confirmed by field experiments.
  • One of the objects of the present invention is to provide a new use of polycarboxylic acid compounds, thereby providing a novel plant protective agent for controlling rice blast, anthracnose, downy mildew, phytophthora blight, gray mold or powdery mildew in various plants, including food crops such as rice, wheat, sorghum and corn, melons and fruits such as apple, persimmon, citrus, mango, walnut, kiwifruit, jujube, litchi, longan, loquat, pomegranate, grape, watermelon and pitaya, and vegetables such as pepper, cucumber, eggplant, bitter gourd, wild pepper, long bean and Chinese cabbage.
  • food crops such as rice, wheat, sorghum and corn
  • melons and fruits such as apple, persimmon, citrus, mango, walnut, kiwifruit, jujube, litchi, longan, loquat, pomegranate, grape, watermelon and pitaya
  • vegetables such as pepper, cucumber, eggplant, bitter go
  • polycarboxylic acid compounds for controlling plant diseases, wherein the polycarboxylic acid compound is selected from compounds of formulas I, as well as isomers, hydrates or salts thereof:
  • m is an integer of 0-20, that is the portion of the compound has 0-20 carbons
  • n is an integer of 0-20, that is the portion of the compound has 0-20 carbons
  • x is an integer of 0-20, that is the portion of the compound has 0-20 carbons
  • R 1 is hydrogen, alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or glycosyl
  • R 2 is hydrogen, alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or glycosyl
  • the compound of the formula I contains at least 3 carboxyl groups; m is an integer of 0 to 10, that is the portion of the compound is 0 to 10 carbons; n is an integer of 0 to 10, that is, the portion of the compound is 0 to 10 carbons; x is an integer of 0 to 10, that is, the portion of the compound is 0 to 10 carbons.
  • the compounds of formula I include, but are not limited to, linear compounds, and also include branched chain isomers thereof.
  • m of the formula I is 0; n is 0; x is 1; R 1 is hydrogen; R 2 is hydrogen; R 3 is hydroxy, i.e., the compound of formula I is selected from the following II compound:
  • the plant protection agent contains a polycarboxylic acid compound selected from the formula I, and optionally, an auxiliary.
  • a second object of the present invention is to provide a plant protective agent or bactericide, containing a carboxylic acid compound selected from formulas I, and optionally, an auxiliary.
  • a novel plant protective agent is provided for the prevention of rice blast, anthracnose, downy mildew, phytophthora blight, gray mold, and powdery mildew in plants.
  • the diseases are selected from rice blast, melon downy mildew, pepper anthracnose, tomato gray mold, potato late blight, pepper phytophthora blight and wheat powdery mildew.
  • the new use of the polycarboxylic acid compounds provided by the present invention has the following advantages:
  • the invention is the first time to discover that a class of polycarboxylic acid compound currently available has the effect of inhibiting appressorium formation of fungi and oomycetes.
  • Many pathogenic fungi and oomycetes that are parasitic on plants expand at the top of their germ tubes or aged hyphae, and secrete mucous substances, helping the pathogens to firmly adhere to the surface of the host and invade plant tissues. This structure is called appressorium.
  • Appressorium formation is directly related to whether the pathogens can successfully intrude into host tissues, and it is the key to the pathogenesis of plant diseases such as rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, and powdery mildew.
  • An appressorium formation inhibitor is a substance that can effectively inhibit appressorium formation and thus hinder the occurrence of various plant diseases caused by fungi or oomycetes.
  • polycarboxylic acid compounds can effectively prevent pathogenic germs from infecting plants through inhibiting appressorium formation, and can be used for controlling plant diseases that are extremely harmful, including rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, and gray mold, thus providing a new choice for plant protective agents.
  • the present inventors have found that some specific polycarboxylic acid compounds with specific structures can effectively inhibit appressorium formation of fungi and oomycetes at a concentration of 10-500 ppm, and the control effects on plant diseases such as rice blast, anthracnose, gray mold, downy mildew, phytophthora blight and powdery mildew have reached more than 80%.
  • the polycarboxylic acid compounds of the present invention have the advantages of being pollution-free, environmental friendliness, low residue, and good safety, besides the definite control effects in inhibiting appressorium formation activity, especially in controlling rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, and powdery mildew.
  • the polycarboxylic acid compounds of the present invention are known and widely used, with easy availability of raw materials, well-established synthetic processes, fully investigated impurities, and well controlled qualities, thus have the advantages of being more convenient and readily available.
  • the plant protective agent described in the present invention for inhibiting appressorium formation activity may be referred to as an appressorium formation inhibitor.
  • polycarboxylic acid compounds to which the present invention relates namely the compounds having formulas I and II are known compounds, and can be obtained commercially or by literature methods.
  • specific polycarboxylic acid compounds tested in the present invention are listed in Table 1.
  • Pathogens to be tested A total of 20 Colletotrichum strains were grape Colletotrichum, sorghum Colletotrichum, camellia oleifera Colletotrichum, apple Colletotrichum, pear Colletotrichum, strawberry Colletotrichum, pepper Colletotrichum acutata, pepper Colletotrichum dematium, disporopsis pernyi Colletotrichum (8270) , disporopsis pernyi Colletotrichum (8069) , millettia specisoa Colletotrichum, yellow pear Colletotrichum, cucumber Colletotrichum, momordica grosvenori Colletotrichum, camellia azalea Colletotrichum (9053) , camellia azalea Colletotrichum (9059) , cherry Colletotrichum, cruciferous vegetable Colletotrichum, walnut Colletotrichum and corn Colletotrichum, respectively.
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 500 ppm, 250 ppm, 100 ppm, 75 ppm and 50 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
  • Counting Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of its appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
  • Test results The test showed that polycarboxylic acid compounds have good inhibitory activity on some types of Colletotrichum strains, see Tables 2, 3 and 4 for specific results.
  • Pathogen to be tested Rice blast pathogen (Magnaporthe oryzae) P131.
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 500 ppm and 300 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
  • Counting Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
  • Test results The results showed that the polycarboxylic acid compounds had a certain inhibitory effect on the appressorium formation of rice blast isolate P131. See Table 5 for the specific results.
  • Pathogen to be tested Rubber anthracnose pathogen (Colletotrichum acutatum) YN42.
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 500 ppm and 300 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
  • Counting Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC50 value was determined.
  • Test results The results showed that polycarboxylic acid compounds had a certain inhibitory effect on appressorium formation of rubber acutatum YN42. The specific results are shown in Table 6.
  • Pathogen to be tested Mango anthracnose pathogen (Colletotrichum gloeosporioides) r13.
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 300 ppm and 500 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
  • Counting Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
  • Test results The results showed that a variety of polycarboxylic acid compounds had a certain inhibitory effect on appressorium formation of mango Colletotrichum gloeosporioides r13. See Table 7 for the specific results.
  • Pathogen to be tested Tomato gray mold pathogen (Botrytis cinerea) .
  • Activation of botrytis cinerea a PDA medium was poured onto a plate in an ultra-clean workbench. After the medium was cooled and solidified, a small number of the strains of botrytis cinerea were picked by an inoculation ring and placed into individual culture dishes, respectively. The culture dishes were placed into an incubator at 28 °C and incubated in an inverted manner. The first activation time was one week. After their hyphae turned grayish-green in color and overgrew the plate, a secondary activation was carried out according to the above method.
  • target compounds were formulated into pesticide solutions with a final concentration of 500 ppm and 300 ppm (control pesticide: prochloraz) , sprayed evenly on tomato leaves and left for moisturing. After 24 h, the leaves were blown dry, until there were no water drops on surfaces. After that, the prepared spore suspension was spotted on the tomato leaves, with 2 drops of the spore suspension spotted for each leaf, and each drop of spore suspension was 20 ⁇ L. Moisturizing incubation was carried out at 20 °C, and diseases were observed 3 days later.
  • control pesticide prochloraz
  • Leaf diseases of tomatoes (20 °C) were recorded 72 hours after inoculation with 20 ⁇ L spore solution of botrytis cinerea B05.10 (1 x 10 4 spores/mL) .
  • the spore solution contained 1/10 PDB.
  • Test results The results showed that the polycarboxylic acid compound P1 had good control effect on controlling tomato gray mold.
  • the P1 compound of 500 ppm had excellent controlling effect. See Table 8 for specific results.
  • Pathogen to be tested Arabidopsis anthracnose pathogen (Colletotrichum gloeosporioides) .
  • the target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 500 ppm and 300 ppm, sprayed onto arabidopsis leaves. Seven days later, the diseases were counted and the control effects (%) were calculated.
  • Test results When the spore solution was treated with 500 ppm of P1 compound, the disease was relatively mild. Compared with CK, the number of diseased leaves and the degree of disease were decreased in the presence of 300 ppm P1 compound. The specific results are shown in Table 9.
  • Example 7 Control effects of polycarboxylic acid compounds on potato late blight
  • Pathogen to be tested potato late blight pathogen (Phytophthora infestans)
  • Potato variety "Desiree” was a high-sensitivity late blight cultivar.
  • Phytophthora infestans strains MZ15-30 were inoculated into a rye medium, and a total of 10 plates (90 mm diameter) were incubated until day 13 to check for contamination. The contamination-free plates were retained. 10 mL of sterile distilled water was added to each plate on a sterile operating table, and the plates were incubated for 3-4 h in a refrigerator at 4 °C to rupture sporangia and release zoospores.
  • the zoospores were carefully transferred to 50 mL centrifuge tubes. For one centrifuge tube, 4 plates were transferred, and centrifuged at a low speed of 2500 rpm for 10 minutes. The supernatant was carefully poured out, 200 uL liquid was left at the bottom of the tube, and the precipitate was resuspended in 2 mL sterile distilled water. 10 ⁇ L of resuspended zoospores were 1: 10 diluted with sterile distilled water, and counted using a hemocytometer (Modified Fuchs Rosenthal Counting Chamber, depth 0.2 mm; Weber Scientific International, Teddington, UK) under a biological microscope.
  • a hemocytometer Modified Fuchs Rosenthal Counting Chamber, depth 0.2 mm; Weber Scientific International, Teddington, UK
  • the diluted zoospores were thoroughly and uniformly mixed by a pipette, and loaded on both sides of the hemocytometer.
  • the total number of zoospores in 16 squares of the hemocytometer was counted, and then an average number of zoospores in each square was calculated by dividing by 4. By multiplying this number by 10,000, the total concentration of zoospores per milliliter was obtained.
  • the spores for inoculation were required to be diluted with sterile distilled water to a concentration of 15,000 spores per milliliter.
  • Pesticide solutions of 300 ppm were prepared and sprayed evenly on potato leaves with a seedling age of 20 days for moisturizing and incubating in an artificial climate chamber. After 24 h, the prepared pathogen liquids were then sprayed evenly on the potato leaves for moisturizing and incubating in the artificial climate chamber (20 °C, 18 h light and 6 h dark) . After 4-5 days, the disease indexes were counted. As the strains used in the experiments were moderately strong pathogenic strains, the counting was generally started after 4 days of inoculation, the disease indexes and control effects were counted for three consecutive days, and photo records were taken.
  • the compound P1 showed certain control effects on potato late blight, with the control effect reaching 46%, and the specific results are shown in Table 10.
  • the tested wheat variety is Nannong 06Y86.
  • the wheat powdery mildew pathogen is a small species E26.
  • the strain was inoculated indoors on wheat leaves at 15-20 °C.
  • Inoculation method The wheat seeds with full grain were chosen, were soaked with water, and were placed in a 20 °C incubator to germination until the seeds were white. And then these seeds were evenly spread in the feeding block loaded with the sandy loam, and were kept warm and moisturizing until 2-3 leaves grow out for use.
  • Experimental group 1 The P1 agent was sprayed evenly on the wheat leaves. After 8 hours, these leaves were inoculated with wheat powdery mildew E26.
  • Experimental group 2 The P1 agent was sprayed evenly on the wheat leaves. After 0.5 hours (the liquid on the surface of the leaves became dry) , the leaves were inoculated with wheat powdery mildew E26.
  • Blank control The leaves were sprayed with water. After water on the surface of the leaves dry, the leaves were inoculated with wheat white powder fungus E26. The incidence was statistically investigated after seven days.
  • Control agent Yinfali (687.5g/L fluopicolide ⁇ propamocarb) -Bayer
  • Agent Dilution fold 1 15%P1 500 times 2 Yinfali (687.5g/L fluopicolide ⁇ propamocarb) 1000 times 3 CK 0
  • Soil moisture was sufficient to facilitate plant growth.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade 1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade 3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade 5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade 7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area
  • test results showed that from the whole process of the test, it could be seen that the disease index of wax gourd before administration was at a higher level, indicating that the disease was in a middle to late stage.
  • Seven days after the first administration it was found that the control effects of the sample P1 by 500 times dilution were 68.82%, respectively, and the control effect of the control agent Yinfali by 1000 times dilution was 63.86%; the control effect and control agent of P1 was higher than that of the control agent.
  • the diseased spots of the infected leaves of wax gourds could be effectively controlled, while the downy mildew of the control blank group was continuously expanding.
  • Control target pumpkin anthracnose
  • Soil moisture was sufficient to facilitate plant growth.
  • pumpkin anthracnose As the occurrence of pumpkin anthracnose before the test, it was a remedial test. Each treatment area was 20 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and all the leaves of each plant were surveyed. The sizes of anthracnose spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
  • control effects were surveyed 10 days after the first administration and 7 days after the second administration, respectively.
  • Grade1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area
  • control effects were all improved to varying degrees, the control effect reaching 73.26%, which was higher than that of the control agent Nadiwen by 2000 times dilution or Zhengjia by 750 times dilution.
  • Control target melon downy mildew
  • Test agents 15%P1 by 200 times dilution
  • Control agent azoxystrobin (25%)
  • Random block arrangement was used for cells of test agent, control agent and blank control.
  • control effects were surveyed 8 days after the first administration and 8 days after the second administration, respectively.
  • Grade1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area
  • test results showed that from the whole process of the test, it could be seen that the disease index of melon before administration was at a lower level, indicating that the disease was in the early stage.
  • Seven days after the first administration it was found that the control effects of the sample P1 was 57.29%, respectively, and the control effect of the control agent azoxystrobin by 2500 times dilution was 49.58%; After one administration experiment, the diseased spots of the infected leaves of melons could be effectively controlled, while the downy mildew of the control blank group was continuously expanding.
  • Example 12 Field test reports of polycarboxylic acid compounds for controlling cowpea anthracnose
  • Control target cowpeas anthracnose
  • the pesticides were administered twice, dated March 13, 2019 and March 20, 2019. After the first administration, the cowpeas grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in a middle to late stage of the occurrence of anthracnose.
  • Soil moisture was sufficient to facilitate plant growth.
  • cowpea anthracnose As the occurrence of cowpea anthracnose before the test, it was a remedial test. Each treatment area was 50 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and cowpea leaves on each plant were surveyed. The sizes of anthracnose spots on the leaves were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area
  • the test results showed that from the whole process of the test, it could be seen that the disease index of cowpea before administration was at a higher level, indicating that the disease was in a middle to late stage.
  • Seven days after the first administration it was found that the control effect of the sample P1 by 500 times dilution was 87.94%, respectively, the control effect of the control agent Nadiwen by 2000 times dilution was 89.69%, and the control effect of Zhengjia by 750 times dilution was 66.91%. 7 days after the second administration, it was found that the control effect of the sample P1 by 500 times dilution was 82.33%, The control effect is good.
  • Control agent Nadiwen (25%trifloxystrobin ⁇ 50%tebuconazole) -Bayer
  • Agent Dilution fold 1 15%sample P1 500 times 2 15%sample P1 1000 times 3 Nadiwen (25%trifloxystrobin ⁇ 50%tebuconazole) 2000 times 4 CK conventional treatment 0
  • the pesticides were administered twice, dated June 13, 2019 and June 20, 2019. After the first administration, the peppers grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred.
  • Soil moisture was sufficient to facilitate plant growth.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade 1 The area of diseased spots accounted for less than 5%of the total fruit area
  • Grade 3 The area of diseased spots accounted for less than 6%-10%of the total fruit area
  • Grade 5 The area of diseased spots accounted for less than 11%-20%of the total fruit area
  • Grade 7 The area of diseased spots accounted for less than 21%-50%of the total fruit area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total fruit area
  • the test results showed that from the whole process of the test, it could be seen that the whole disease base was low, which indicated that it belonged to the early stage of pepper anthracnose. Seven days after the first administration, the control effect is low.
  • the highest control effect of P1 by 500 times dilution on pepper anthracnose was only about 58%, the control effect was lower than that of 2000 times of control agent (70.09%) , and the lower control effect was from 1000 times of P1.7 days after the second administration, over time, it was found that the control effects of each treatment on pepper anthracnose were all improved to varying degrees, the highest control effect was 75.29%for P1 by 500 times dilution, which was lower than the control agent by 2000 times dilution, and the control effect was about 60%for P1 by 1000 times dilution, which was lower than the control agent by 2000 times dilution.
  • Control agent Zengweiyinglv (10%fluthiazolylacetophenone) -DuPont
  • the pesticides were administered twice, dated May 15, 2019 and May 22, 2019.
  • the Luffa aegyptiaca grew well, Loofah belongs to the early stage of fruit-hanging, the soil humidity was suitable for crop growth, and other diseases were less.
  • downy mildew occurred, being in the middle stage of the occurrence of downy mildew.
  • Soil moisture was sufficient to facilitate plant growth.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area
  • Example 15 Control effect of polycarboxylic acid compounds on taro blight
  • Control target taro phytophthora blight
  • Control agent Zengweiyinglv (10%fluorothiazolpyridone) -DuPont
  • Soil moisture was sufficient to facilitate plant growth.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area
  • Example 16 Control effect of polycarboxylic acid compounds on pepper blight
  • Control object pepper blight
  • Control agent Zengweiyinglv (10%fluorothiazolpyridone) -DuPont
  • the pesticides were administered twice, dated June 18, 2019 and June 25, 2019. After the first administration, the pepper grew well. Pepper is a fruit-hanging period, soil moisture is suitable for crop growth, and other diseases are less. There is no disease before the test, which is in the early stage of the disease.
  • Soil moisture was sufficient to facilitate plant growth.
  • each treatment area was 50-100 square meters.
  • a random 5-point survey method was used, 3-5 plants were surveyed at each point, and all fruits of each plant were surveyed.
  • the sizes of pepper blight spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade 1 The area of diseased spots accounted for less than 5%of the total fruit area
  • Grade 3 The area of diseased spots accounted for less than 6%-10%of the total fruit area
  • Grade 5 The area of diseased spots accounted for less than 11%-20%of the total fruit area
  • Grade 7 The area of diseased spots accounted for less than 21%-50%of the total fruit area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total fruit area
  • Control object cucumber downy mildew
  • Soil moisture was sufficient to facilitate plant growth.
  • each treatment area was 50-100 square meters.
  • a random 5-point survey method was used, two plants were surveyed at each point, and the leaves in the upper part of each plant were surveyed.
  • the sizes of downy mildew spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
  • control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
  • Grade 1 The area of diseased spots accounted for less than 5%of the total leaf area
  • Grade 3 The area of diseased spots accounted for less than 6%-10%of the total leaf area
  • Grade 5 The area of diseased spots accounted for less than 11%-20%of the total leaf area
  • Grade 7 The area of diseased spots accounted for less than 21%-50%of the total leaf area
  • Grade 9 The area of diseased spots accounted for more than 51%of the total leaf area
  • the test results showed that from the whole test process it could be seen that the disease index of pepper blight before administration is in the middle stage of the occurrence of downy mildew. 7 Days after the first administration, the control effect of P1 agent by 500 and 1000 times dilution was 95.70%and 92.53%, respectively, and the control effect of the control agent Zengweiyinglv by 3000 times dilution was 93.67%.
  • the control effect of P1 by 500 times dilution was higher than that of the control agent Zengweiyinglv by 3000 times dilution.
  • the control effect of P1 by 1000 times dilution was similar to that of the control agent Zengweiyinglv by 3000 times dilution.
  • Test crop rice (Mongolia rice)
  • Test target rice blast
  • Test location Panjin city, Liaoning province
  • a five-point random sampling survey method was used. Ten plants were surveyed at each point, and the sizes of rice blast spots were counted. The disease index of each treated plant was surveyed and counted 14 days after administration by adopting an international grading method.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The inhibitory activity of polycarboxylic acid compounds on appressorium formation of fungi and oomycetes and their use in controlling plant diseases are disclosed, wherein the polycarboxylic acid compound is selected from compounds of formulas I, as well as isomers, hydrates or salts thereof. The polycarboxylic acid compounds have remarkable inhibitory activity against appressorium formation of fungi and oomycetes, and therefore, can be used for preventing plant diseases, such as rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, powdery mildew etc., with no obvious phytotoxicity and good safety. Compared with the existing compounds for controlling plant diseases such as rice blast, anthracnose, gray mold, downy mildew, phytophthora, powdery mildew, etc., the polycarboxylic acid compounds disclosed by the present invention have characteristics such as good preventive effect, environmental friendliness and non-toxicity, low residue and safety. Such compounds are known and widely used, with ready availability of raw materials, well-established synthetic processes, thorough researched environmental toxicology and impact, thus having the advantages of convenience, easy availability, environmental friendliness, and safety.

Description

Inhibitory Activity of Polycarboxylic Acid Compounds on Appressorium Formation of Fungi and Oomycete and Their Use in Controlling Plant Diseases Technical field
The present invention relates to novel uses of polycarboxylic acid compounds, and in particular to inhibitory activity of such compounds on appressorium formation of fungi and oomycete and the use for controlling plant diseases.
Background art
The polycarboxylic acid compounds represented by the formula I are a class of known compounds and are widely used in the fields of chemical industry, food, medicine, materials, textiles, cosmetics, electronics, metallurgy and other fields. For example, 2-hydroxypropane-1, 2, 3-tricarboxylic acid (citric acid) of formula II, which is one representative of such compounds, is used as a food additive for carbonated drinks, fruit drinks, and lactic acid beverages; citric acid is used for improving soil environment and soil quality, reducing planting production costs and improving output and quality of crop production; citric acid also has a certain antibacterial effect, and has a good effect on killing bacterial spores in combination with high temperature, and can effectively kill contaminated bacterial spores in the hemodialysis machine pipeline. Treatment of the cotton fabric with butane-1, 2, 3, 4-tetracarboxylic acid, which is one of the polycarboxylic acid compounds represented by the formula I, can significantly improve the wrinkle resistance, washing resistance, abrasion resistance, dyeability, malleability, wash and wear property of the cotton fabric. However, the inhibitory activity of such polycarboxylic acid compounds on appressorium formation of fungi and oomycete has not been reported.
Figure PCTCN2019119063-appb-000001
Diseases caused by plant filamentous eukaryotic pathogens account for about 70-80%of plant diseases. Filamentous eukaryotic pathogens include oomycetes. Several or even dozens of fungal diseases can be found on one crop, for examples, achlya spp causing rice seedling rot, pythium spp causing seedling damping-off and fruit rot, phytophthora spp causing tobacco black shank and potato late blight, peronospora spp causing downy mildew. Filamentous eukaryotic pathogens also include fungi, especially disease-causing ascomycetes, for examples, erysiphe causing powdery mildew, gaeumannomyces causing  rice bakanae disease and wheat scab, venturia causing apple scab and pear scab, rust fungus in basidiomycota causing rust disease, smut fungus causing smut disease, and imperfect fungus causing rice blast, rice brown spot, corn northern leaf blight, corn southern leaf blight, etc. Common symptoms include downy mildew, white powder, white rust, black powder, rust powder, sooty mold, tar spot, mildew, mushroom, cotton floc, granule, cording, sticky granule, petiole spot, etc.
These diseases are mainly spread by soil, airflow and waterflow in the field. In addition, insects can also spread fungal and oomycete diseases. These diseases are extremely harmful to the production of grains, fruits and vegetables. For example, rice blast caused by Pyricularia oryzae is the most serious destructive disease of rice, which may lead to a significant reduction in production, and in severe cases, the yield is reduced by 40%-50%, or even with no grain harvest at all. Rice blast occurs not only all over the world, but also at various growth stages of rice. After occurrence, it may lead to varying degrees of yield reduction, and in particular, rice panicle blast may cause white head and even no production. Rice blast may occur in any year and at any growth stage in the provincial area, and therefore, its harm to agricultural production is extremely serious. For a long time, rice blast has caused more than 3 billion kilograms of grain loss in China every year, and even threatens global grain security. Anthracnose, another important fungal disease on plants, is caused by Colletotrichum spp. The pathogens are transmitted by wind and rain as well as splashed droplets, and wounds are conducive to intrusion. High temperature and humidity, heavy rain, improper fertilization, mismanagement during transportation and poor plant growth are all conducive to the occurrence of diseases. A variety of crops, fruit trees and vegetables such as peppers, tomatoes, cucumbers and apples are infectible by anthracnose, which has a great impact on agricultural production.
In addition, downy mildew and late blight caused by oomycetes are also significant diseases in many crops. The diseases such as downy mildew in various melons and grapes, late blight in potatoes and tomatoes and phytophthora blight in peppers can cause huge losses to agricultural production.
Chemicals are generally used to control plant diseases caused by filamentous eukaryotic pathogens, and cultivation management measures are also used to promote plant health and reduce pathogens. Currently, the commonly used pesticides for chemical control include bordeaux mixture, DTMZ, chlorothalonil, thiophanate-methyl, carbendazim, pyraclostrobin, and prochloraz.
The control of the above diseases has always been a key technical issue in agricultural production, so it is of great significance to continue to develop green pesticides against these diseases. Many filamentous eukaryotic pathogens that are parasitic on plants expand at the top of their spore germ tubes or aged hyphae, and secrete mucous substances, thus firmly adhere to the surface of the host and produce huge swell  pressure to invade, this structure is called appressorium. Appressorium formation is directly related to whether the pathogens can successfully intrude into host tissues, and is a key step for pyricularia, colletotrichum spp and oomycetes to cause plant diseases. If there are compounds or measures that can effectively inhibit appressorium formation, the occurrence of these diseases can effectively be reduced and controlled. Therefore, the development of appressorium formation inhibitors are of great significance for controlling plant diseases caused by fungi and oomycetes.
Through extensive investigation on the polycarboxylic acid compounds shown in formulas I, it was found in the present invention that the polycarboxylic acid compounds have significant inhibitory activity on the appressorium formation of many phytopathogenic fungi and oomycetes, and their use in plant disease control has been confirmed by field experiments.
Summary of the invention
One of the objects of the present invention is to provide a new use of polycarboxylic acid compounds, thereby providing a novel plant protective agent for controlling rice blast, anthracnose, downy mildew, phytophthora blight, gray mold or powdery mildew in various plants, including food crops such as rice, wheat, sorghum and corn, melons and fruits such as apple, persimmon, citrus, mango, walnut, kiwifruit, jujube, litchi, longan, loquat, pomegranate, grape, watermelon and pitaya, and vegetables such as pepper, cucumber, eggplant, bitter gourd, wild pepper, long bean and Chinese cabbage.
One technical solution of the present invention relates to the use of polycarboxylic acid compounds for controlling plant diseases, wherein the polycarboxylic acid compound is selected from compounds of formulas I, as well as isomers, hydrates or salts thereof:
Figure PCTCN2019119063-appb-000002
wherein m is an integer of 0-20, that is the portion of the compound has 0-20 carbons; n is an integer of 0-20, that is the portion of the compound has 0-20 carbons; x is an integer of 0-20, that is the portion of the compound has 0-20 carbons; R 1 is hydrogen, alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or glycosyl; R 2 is hydrogen, alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or  glycosyl; R 3 is hydrogen, alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or glycosyl.
Preferably, in the formula I, the compound of the formula I contains at least 3 carboxyl groups; m is an integer of 0 to 10, that is the portion of the compound is 0 to 10 carbons; n is an integer of 0 to 10, that is, the portion of the compound is 0 to 10 carbons; x is an integer of 0 to 10, that is, the portion of the compound is 0 to 10 carbons. The compounds of formula I include, but are not limited to, linear compounds, and also include branched chain isomers thereof.
More preferably, m of the formula I is 0; n is 0; x is 1; R 1 is hydrogen; R 2 is hydrogen; R 3 is hydroxy, i.e., the compound of formula I is selected from the following II compound:
Figure PCTCN2019119063-appb-000003
The plant protection agent contains a polycarboxylic acid compound selected from the formula I, and optionally, an auxiliary.
A second object of the present invention is to provide a plant protective agent or bactericide, containing a carboxylic acid compound selected from formulas I, and optionally, an auxiliary.
Preferably, a novel plant protective agent is provided for the prevention of rice blast, anthracnose, downy mildew, phytophthora blight, gray mold, and powdery mildew in plants.
Still preferably, the diseases are selected from rice blast, melon downy mildew, pepper anthracnose, tomato gray mold, potato late blight, pepper phytophthora blight and wheat powdery mildew.
The new use of the polycarboxylic acid compounds provided by the present invention has the following advantages:
1. The invention is the first time to discover that a class of polycarboxylic acid compound currently available has the effect of inhibiting appressorium formation of fungi and oomycetes. Many pathogenic fungi and oomycetes that are parasitic on plants expand at the top of their germ tubes or aged hyphae, and secrete mucous substances, helping the  pathogens to firmly adhere to the surface of the host and invade plant tissues. This structure is called appressorium. Appressorium formation is directly related to whether the pathogens can successfully intrude into host tissues, and it is the key to the pathogenesis of plant diseases such as rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, and powdery mildew. An appressorium formation inhibitor is a substance that can effectively inhibit appressorium formation and thus hinder the occurrence of various plant diseases caused by fungi or oomycetes.
Researchers have shown that the polycarboxylic acid compounds of the formula I can effectively inhibit the formation of appressorium of fungal and oomycetes.
2. The present inventors have found that the polycarboxylic acid compounds can effectively prevent pathogenic germs from infecting plants through inhibiting appressorium formation, and can be used for controlling plant diseases that are extremely harmful, including rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, and gray mold, thus providing a new choice for plant protective agents.
3. The present inventors have found that some specific polycarboxylic acid compounds with specific structures can effectively inhibit appressorium formation of fungi and oomycetes at a concentration of 10-500 ppm, and the control effects on plant diseases such as rice blast, anthracnose, gray mold, downy mildew, phytophthora blight and powdery mildew have reached more than 80%.
4. The polycarboxylic acid compounds of the present invention have the advantages of being pollution-free, environmental friendliness, low residue, and good safety, besides the definite control effects in inhibiting appressorium formation activity, especially in controlling rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, and powdery mildew.
5. Compared with compounds currently available for controlling rice blast, anthracnose, gray mold, downy mildew, phytophthora blight, and powdery mildew, the polycarboxylic acid compounds of the present invention are known and widely used, with easy availability of raw materials, well-established synthetic processes, fully investigated impurities, and well controlled qualities, thus have the advantages of being more convenient and readily available.
Detailed description
The following examples are provided to illustrate the present invention without limiting its scope.
Note: All ratios mentioned herein are weight ratios, and refer to the ratios for free substances or anhydrous substances, excluding salt ions or crystalline water.
The plant protective agent described in the present invention for inhibiting appressorium formation activity may be referred to as an appressorium formation  inhibitor.
The polycarboxylic acid compounds to which the present invention relates, namely the compounds having formulas I and II are known compounds, and can be obtained commercially or by literature methods. For example, specific polycarboxylic acid compounds tested in the present invention are listed in Table 1.
Table 1 Nos and CAS Nos of Some compounds in formulas I and II
Figure PCTCN2019119063-appb-000004
Figure PCTCN2019119063-appb-000005
Figure PCTCN2019119063-appb-000006
Example 1 Inhibition of appressorium formation of Anthracnose pathogens by polycarboxylic acid compounds
1. Pathogens to be tested: A total of 20 Colletotrichum strains were grape Colletotrichum, sorghum Colletotrichum, camellia oleifera Colletotrichum, apple Colletotrichum, pear Colletotrichum, strawberry Colletotrichum, pepper Colletotrichum acutata, pepper Colletotrichum dematium, disporopsis pernyi Colletotrichum (8270) , disporopsis pernyi Colletotrichum (8069) , millettia specisoa Colletotrichum, yellow pear Colletotrichum, cucumber Colletotrichum, momordica grosvenori Colletotrichum, camellia azalea Colletotrichum (9053) , camellia azalea Colletotrichum (9059) , cherry Colletotrichum, cruciferous vegetable Colletotrichum, walnut Colletotrichum and corn Colletotrichum, respectively.
2. Test method
1) Production of a large number of conidia by Anthracnose pathogens: The selected strains to be activated were spotted on a potato agarose medium PDA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. All hyphae on the surface of the medium were washed off with sterilized water, rinsed thoroughly, dried in air, and light-incubated at 28 ℃ for approximately 48 hours, and a large number of conidia produced were observed on the surface of the PDA.
2) Preparation of a spore suspension: The spores on the spore production plate were washed off with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 500 ppm, 250 ppm, 100 ppm, 75 ppm and 50 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
4) Counting: Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of its appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate  was calculated, and IC 50 value was determined.
3. Test results: The test showed that polycarboxylic acid compounds have good inhibitory activity on some types of Colletotrichum strains, see Tables 2, 3 and 4 for specific results.
Table 2 Determination of IC 50 values of polycarboxylic acid compound P1 for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC 50 (ppm)
1 P1 Grape Colletotrichum 264
2 P1 sorghum Colletotrichum --
3 P1 camellia oleifera Colletotrichum 101
4 P1 strawberry Colletotrichum --
5 P1 pear Colletotrichum --
6 P1 apple Colletotrichum --
7 P1 pepper Colletotrichum acutata 8
8 P1 pepper Colletotrichum dematium 10
9 P1 disporopsis pernyi Colletotrichum (8270) --
10 P1 disporopsis pernyi Colletotrichum (8069) --
11 P1 millettia specisoa Colletotrichum --
12 P1 yellow pear Colletotrichum --
13 P1 cucumber Colletotrichum --
14 P1 momordica grosvenori Colletotrichum --
15 P1 camellia azalea Colletotrichum (9053) --
16 P1 camellia azalea Colletotrichum (9059) 150
17 P1 cherry Colletotrichum 159
18 P1 cruciferous vegetable Colletotrichum 91
19 P1 walnut Colletotrichum 198
20 P1 corn Colletotrichum 84
Table 3 Determination of IC 50 values of polycarboxylic acid compound P8 for 20 Colletotrichum strains
No. Compound Colletotrichum Strains IC 50 (ppm)
1 P8 Grape Colletotrichum 300
2 P8 sorghum Colletotrichum --
3 P8 camellia oleifera Colletotrichum 200
4 P8 strawberry Colletotrichum --
5 P8 pear Colletotrichum --
6 P8 apple Colletotrichum --
7 P8 pepper Colletotrichum acutata 100
8 P8 pepper Colletotrichum dematium 100
9 P8 disporopsis pernyi Colletotrichum (8270) --
10 P8 disporopsis pernyi Colletotrichum (8069) --
11 P8 millettia specisoa Colletotrichum --
12 P8 yellow pear Colletotrichum --
13 P8 cucumber Colletotrichum --
14 P8 momordica grosvenori Colletotrichum --
15 P8 camellia azalea Colletotrichum (9053) --
16 P8 camellia azalea Colletotrichum (9059) 400
17 P8 cherry Colletotrichum 200
18 P8 cruciferous vegetable Colletotrichum 200
19 P8 walnut Colletotrichum 300
20 P8 corn Colletotrichum 200
Table 4 Determination of IC 50 values of polycarboxylic acid compound P9 for 20 Colletotrichum strains
No. Compound Colletotrichum Strain IC 50 (ppm)
1 P9 Grape Colletotrichum 300
2 P9 sorghum Colletotrichum --
3 P9 camellia oleifera Colletotrichum 220
4 P9 strawberry Colletotrichum --
5 P9 pear Colletotrichum --
6 P9 apple Colletotrichum --
7 P9 pepper Colletotrichum acutata 100
8 P9 pepper Colletotrichum dematium 100
9 P9 disporopsis pernyi Colletotrichum (8270) --
10 P9 disporopsis pernyi Colletotrichum (8069) --
11 P9 millettia specisoa Colletotrichum --
12 P9 yellow pear Colletotrichum --
13 P9 cucumber Colletotrichum --
14 P9 momordica grosvenori Colletotrichum --
15 P9 camellia azalea Colletotrichum (9053) --
16 P9 camellia azalea Colletotrichum (9059) 300
17 P9 cherry Colletotrichum 100
18 P9 cruciferous vegetable Colletotrichum 200
19 P9 walnut Colletotrichum 200
20 P9 corn Colletotrichum 200
Example 2 Inhibition of appressorium formation of rice blast pathogen by polycarboxylic acid compounds
1. Pathogen to be tested: Rice blast pathogen (Magnaporthe oryzae) P131.
2. Test method:
1) Production of a large number of conidia by rice blast pathogen: Rice blast strains to be activated were spotted on a tomato oat plate OTA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. The colonies on OTA were fully interrupted, then uniformly coated onto a new tomato juice oat plate, and incubated in a light incubator at a constant temperature of 28 ℃. When neonatal hyphae were visible to the naked eye growing out of the surface of medium, the hyphae were gently interrupted with a cotton swab, rinsed thoroughly with water and dried in air. The culture dish was covered with a single layer of gauze and light-incubated at 28 ℃ for approximately 48 hours, at which time a large number of conidia produced were observed on the surface of the OTA.
2) Preparation of a spore suspension of rice blast pathogen: The hyphae and spores on the spore production plate were washed off simultaneously with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 500 ppm and 300 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
4) Counting: Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
3. Test results: The results showed that the polycarboxylic acid compounds had a certain inhibitory effect on the appressorium formation of rice blast isolate P131. See Table 5 for the specific results.
Table 5 Inhibition of appressorium formation of rice blast isolate P131 by polycarboxylic acid compounds
No. Compound Concentration (ppm) Appressorium formation rate (%)
1 P1 300 0
2 P2 500 0
3 P3 500 0
4 P4 500 0
5 P5 500 0
6 P6 500 0
7 P7 500 0
8 P8 500 0
9 P9 400 0
10 P10 500 0
11 P11 500 0
12 P12 500 0
Example 3 Inhibition of appressorium formation of rubber acutatum YN42 by polycarboxylic acid compounds
1. Pathogen to be tested: Rubber anthracnose pathogen (Colletotrichum acutatum) YN42.
2. Test method:
1) Production of a large number of conidia: The selected strains to be activated were spotted on a potato agarose medium PDA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. All hyphae on the surface of the medium were washed off with sterilized water, rinsed thoroughly, dried in air, and light-incubated at 28 ℃ for approximately 48 hours, and a large number of conidia produced were observed on the surface of the PDA.
2) Preparation of a spore suspension: The spores on the spore production plate were washed off with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 500 ppm and 300 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
4) Counting: Three dots on each hydrophobic glass slide were used for counting. For  each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC50 value was determined.
3. Test results: The results showed that polycarboxylic acid compounds had a certain inhibitory effect on appressorium formation of rubber acutatum YN42. The specific results are shown in Table 6.
Table 6 Inhibition of appressorium formation of rubber acutatum YN42 by polycarboxylic acid compounds
No. Compound Concentration (ppm) Appressorium formation rate (%)
1 P1 300 0
2 P2 500 0
3 P3 500 0
Example 4 Inhibition of appressorium formation of mango anthracnose pathogen r13 by polycarboxylic acid compounds
1. Pathogen to be tested: Mango anthracnose pathogen (Colletotrichum gloeosporioides) r13.
2. Test method:
1) Production of a large number of conidia: The selected strains to be activated were spotted on a potato agarose medium PDA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. All hyphae on the surface of the medium were washed off with sterilized water, rinsed thoroughly, dried in air, and light-incubated at 28 ℃ for approximately 48 hours, and a large number of conidia produced were observed on the surface of the PDA.
2) Preparation of a spore suspension: The spores on the spore production plate were washed off with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 300 ppm and 500 ppm, sequentially spotted on hydrophobic glass slides with four dots on each glass slide, and treated by dark moisturizing. At 12 h after inoculation, the appressorium formation rate of the conidia was observed under microscope and counted.
4) Counting: Three dots on each hydrophobic glass slide were used for counting. For each dot, 50 conidia in the center were counted, and the number of appressorium formation was counted. Three sets of data were averaged, the appressorium formation rate was calculated, and IC 50 value was determined.
3. Test results: The results showed that a variety of polycarboxylic acid compounds had a certain inhibitory effect on appressorium formation of mango Colletotrichum gloeosporioides r13. See Table 7 for the specific results.
Table 7 Inhibition of appressorium formation of mango Colletotrichum gloeosporioides r13 by polycarboxylic acid compounds
No. Compound Concentration (ppm) Appressorium formation rate (%)
1 P1 300 0
2 P2 500 0
3 P3 500 0
Example 5 Inhibition of tomato gray mold by polycarboxylic acid compound P1
1. Pathogen to be tested: Tomato gray mold pathogen (Botrytis cinerea) .
2. Test method:
1) Activation of botrytis cinerea: a PDA medium was poured onto a plate in an ultra-clean workbench. After the medium was cooled and solidified, a small number of the strains of botrytis cinerea were picked by an inoculation ring and placed into individual culture dishes, respectively. The culture dishes were placed into an incubator at 28 ℃ and incubated in an inverted manner. The first activation time was one week. After their hyphae turned grayish-green in color and overgrew the plate, a secondary activation was carried out according to the above method.
2) Preparation of a spore suspension of botrytis cinerea: The activated botrytis cinerea was incubated for another 7 days (28 ℃) , until the thalli gave rise to spores to be ready for use. The thalli were washed several times with sterile water to obtain the spore suspension, which was counted using a hemocytometer, and the spore suspension was diluted to a concentration of 1 x 10 4 spores /mL to be ready for use.
3) One day in advance, target compounds were formulated into pesticide solutions with a final concentration of 500 ppm and 300 ppm (control pesticide: prochloraz) , sprayed evenly on tomato leaves and left for moisturing. After 24 h, the leaves were blown dry, until there were no water drops on surfaces. After that, the prepared spore suspension was spotted on the tomato leaves, with 2 drops of the spore suspension spotted for each leaf, and each drop of spore suspension was 20 μL. Moisturizing incubation was carried out at 20 ℃, and diseases were observed 3 days later. Leaf diseases of tomatoes (20 ℃) were recorded 72 hours after inoculation with 20 μL spore solution of botrytis cinerea B05.10 (1 x 10 4 spores/mL) . The spore solution contained 1/10 PDB.
Figure PCTCN2019119063-appb-000007
3. Test results: The results showed that the polycarboxylic acid compound P1 had good control effect on controlling tomato gray mold. The P1 compound of 500 ppm had excellent controlling effect. See Table 8 for specific results.
Table 8 Control of tomato gray mold by polycarboxylic acid compounds
No. Compound Concentration (ppm) Control effect (%)
1 P1 300 55.10
2 P1 500 95.68
Example 6 Control effects of polycarboxylic acid compounds on arabidopsis anthracnose
1. Pathogen to be tested: Arabidopsis anthracnose pathogen (Colletotrichum gloeosporioides) .
2. Test method:
1) Production of a large number of conidia: The selected strain to be activated were spotted on a potato agarose medium PDA, and placed in a light incubator at a constant temperature of 28 ℃ for incubation. After 3-5 days, colonies well grown on the surface of culture dish could be used. All hyphae on the surface of the medium were washed off with sterilized water, rinsed thoroughly, dried in air, and light-incubated at 28 ℃ for approximately 48 hours, and a large number of conidia produced were observed on the surface of the PDA.
2) Preparation of a spore suspension: The spores on the spore production plate were washed off with sterile water, filtered through a three-layered filter paper, and then counted using a hemocytometer to adjust the concentration to 2 x 10 5 spores /mL.
3) The target compound was added to the spore suspension according to different concentration gradients to make target solutions with concentrations of 500 ppm and 300 ppm, sprayed onto arabidopsis leaves. Seven days later, the diseases were counted and the control effects (%) were calculated.
Figure PCTCN2019119063-appb-000008
3. Test results: When the spore solution was treated with 500 ppm of P1 compound, the disease was relatively mild. Compared with CK, the number of diseased leaves and the degree of disease were decreased in the presence of 300 ppm P1 compound. The specific results are shown in Table 9.
Table 9 Control of Arabidopsis anthracnose by polycarboxylic acid compound P1
No. Compound Concentration (ppm) Control effect (%)
1 P1 300 40.35
2 P1 500 84.36
Example 7 Control effects of polycarboxylic acid compounds on potato late blight
1. Pathogen to be tested: potato late blight pathogen (Phytophthora infestans)
2. Test method:
Potato variety "Desiree" was a high-sensitivity late blight cultivar.
1. Preparation of a spore suspension of Phytophthora infestans
Phytophthora infestans strains MZ15-30 were inoculated into a rye medium, and a total of 10 plates (90 mm diameter) were incubated until day 13 to check for contamination. The contamination-free plates were retained. 10 mL of sterile distilled water was added to each plate on a sterile operating table, and the plates were incubated for 3-4 h in a refrigerator at 4 ℃ to rupture sporangia and release zoospores. 
The zoospores were carefully transferred to 50 mL centrifuge tubes. For one centrifuge tube, 4 plates were transferred, and centrifuged at a low speed of 2500 rpm for 10 minutes. The supernatant was carefully poured out, 200 uL liquid was left at the bottom of the tube, and the precipitate was resuspended in 2 mL sterile distilled water. 10 μL of resuspended zoospores were 1: 10 diluted with sterile distilled water, and counted using a hemocytometer (Modified Fuchs Rosenthal Counting Chamber, depth 0.2 mm; Weber Scientific International, Teddington, UK) under a biological microscope. The diluted zoospores were thoroughly and uniformly mixed by a pipette, and loaded on both sides of the hemocytometer. The total number of zoospores in 16 squares of the hemocytometer was counted, and then an average number of zoospores in each square was calculated by dividing by 4. By multiplying this number by 10,000, the total concentration of zoospores per milliliter was obtained. The spores for inoculation were required to be diluted with sterile distilled water to a concentration of 15,000 spores per milliliter.
2. Adding target compounds to the spore suspension of P. infestans for inoculating subject plants in vivo
1) Pesticide solutions of 300 ppm were prepared and sprayed evenly on potato leaves with a seedling age of 20 days for moisturizing and incubating in an artificial climate chamber. After 24 h, the prepared pathogen liquids were then sprayed evenly on the potato leaves for moisturizing and incubating in the artificial climate chamber (20 ℃, 18 h light and 6 h dark) . After 4-5 days, the disease indexes were counted. As the strains used in the experiments were moderately strong pathogenic strains, the counting was generally started after 4 days of inoculation, the disease indexes and control effects were counted  for three consecutive days, and photo records were taken.
2)The sprayed compound: P1, Concentration: 300 ppm (μg/mL)
3)The sprayed late blight strain: Strain No.: MZ
4) Spore concentration: 250 zoospores /10 μL
Figure PCTCN2019119063-appb-000009
3. Test results
The compound P1 showed certain control effects on potato late blight, with the control effect reaching 46%, and the specific results are shown in Table 10.
Table 10 Control of potato late blight by P1
No. Compound Concentration (ppm) Control effect (%)
1 P1 300 46%
Example 8 Control effect of polycarboxylic acid compounds on wheat powdery mildew
1. Disease to be tested: wheat powdery mildew (Blumeria graminis (DC. ) Speer) .
2. Test method
1) The tested wheat variety is Nannong 06Y86. The wheat powdery mildew pathogen is a small species E26. The strain was inoculated indoors on wheat leaves at 15-20 ℃.
2) Inoculation method: The wheat seeds with full grain were chosen, were soaked with water, and were placed in a 20 ℃ incubator to germination until the seeds were white. And then these seeds were evenly spread in the feeding block loaded with the sandy loam, and were kept warm and moisturizing until 2-3 leaves grow out for use. 
3) When healthy wheat seedlings have two leaves, the P1 compound was sprayed on the foliage. The concentration was set to be diluted 1000 times and diluted 500 times with the mother liquor. The spray water was set as a blank control agent.
Two experimental groups were set up. Experimental group 1: The P1 agent was sprayed evenly on the wheat leaves. After 8 hours, these leaves were inoculated with wheat powdery mildew E26. Experimental group 2: The P1 agent was sprayed evenly on the wheat leaves. After 0.5 hours (the liquid on the surface of the leaves became dry) , the leaves were inoculated with wheat powdery mildew E26. Blank control: The leaves were sprayed with water. After water on the surface of the leaves dry, the leaves were inoculated with wheat white powder fungus E26. The incidence was statistically  investigated after seven days.
Figure PCTCN2019119063-appb-000010
3. Test results
The results in Table 11 showed that P1 agent had inhibitory effect on powdery mildew at 150ppm and 300ppm, respectively. The inhibition effect at the 300ppm was significant. Especially, when wheat leaves were treated with the P1 agent for 0.5 hours (the liquid on the surface of the leaves dry) and were then inoculated with wheat powdery mildew, the control effect on wheat powdery mildew was better than that resulted from treatment of leaves with the P1 agent for 8 hours under otherwise identical conditions.
Table 11 Control effect of P1 compound on wheat powdery mildew
No. Treatment Concentration (ppm) Control effect (%)
1 Experimental group 1 150 50
2 Experimental group 1 300 91.67
3 Experimental group 2 150 91.67
4 Experimental group 2 300 100
Example 9 Field tests of polycarboxylic acid compounds for controlling wax gourd downy mildew (Bailianluoyi Village)
1. Test conditions
1.1 Materials for testing
Test crop: wax gourd
Control target: wax gourd downy mildew
Test location: Bailianluoyi Village
1.2 Test agents
Control agent: Yinfali (687.5g/L fluopicolide·propamocarb) -Bayer
1.3 Test Design
Table 12 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%P1 500 times
2 Yinfali (687.5g/L fluopicolide·propamocarb) 1000 times
3 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated April 5, 2019 and April 12, 2019. After the first administration, the wax gourds grew well. The wax gourds were in the middle stage of fruit-hanging, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, downy mildew occurred, being in the middle stage of the occurrence of downy mildew.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119063-appb-000011
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method
As the occurrence of wax gourd downy mildew before the test, it was a remedial test. Each treatment area was 20 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and the leaves in the upper part of each plant were surveyed. The sizes of downy mildew spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade 1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade 3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade 5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade 7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area;
Figure PCTCN2019119063-appb-000012
Figure PCTCN2019119063-appb-000013
3 Results and analysis
3.1 Test results
Table 13 Field test results of wax gourd downy mildew
Figure PCTCN2019119063-appb-000014
The test results showed that from the whole process of the test, it could be seen that the disease index of wax gourd before administration was at a higher level, indicating that the disease was in a middle to late stage. Seven days after the first administration, it was found that the control effects of the sample P1 by 500 times dilution were 68.82%, respectively, and the control effect of the control agent Yinfali by 1000 times dilution was 63.86%; the control effect and control agent of P1 was higher than that of the control agent. After one administration experiment, the diseased spots of the infected leaves of wax gourds could be effectively controlled, while the downy mildew of the control blank group was continuously expanding.
Example 10 Field test reports of polycarboxylic acid compounds for controlling pumpkin anthracnose
1. Test conditions
1.1 Materials for testing
Test crop: pumpkin
Control target: pumpkin anthracnose
Test location: Bailianluoyi Village
1.2 Test agents
Control agents:
Nadiwen (25%trifloxystrobin·50%tebuconazole) -Bayer
Zhengjia (20%difenoconazole) -Hainan Zhengye Zhongnong Hi-Tech Co., Ltd.
1.3 Test Design
Table 14 Concentration Design for Test Agents
Figure PCTCN2019119063-appb-000015
1.4 Administration time and method
During the test, the pesticides were administered twice, dated March 4, 2019 and March 11, 2019. After the first administration, the pumpkins grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in the middle stage of the occurrence of anthracnose.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119063-appb-000016
Figure PCTCN2019119063-appb-000017
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method
As the occurrence of pumpkin anthracnose before the test, it was a remedial test. Each treatment area was 20 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and all the leaves of each plant were surveyed. The sizes of anthracnose spots were counted, and the disease index of each treated plant was surveyed  and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 10 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area;
Figure PCTCN2019119063-appb-000018
Figure PCTCN2019119063-appb-000019
3 Results and analysis
3.1 Test results
Table 15 Field test results of pumpkin anthracnose
Figure PCTCN2019119063-appb-000020
The test results (see Table 15) showed thatfrom the whole process of the test, it could be seen that the disease index of pumpkin before administration was at a higher level, indicating that the disease was in the middle stage. Seven days after the first administration,  it was found that the control effects of the sample P1 by 500 times dilution was 69.87%, respectively, the control effect of the control agent Nadiwen by 2000 times dilution was 60.72%, and the control effect of Zhengjia by 750 times dilution was 64.17%. The control effect of P1 was higher than that of control agent. Over time, 10 days after the second administration, it was found that the control effects were all improved to varying degrees, the control effect reaching 73.26%, which was higher than that of the control agent Nadiwen by 2000 times dilution or Zhengjia by 750 times dilution.
Example 11 Control tests of polycarboxylic acid compounds on melon downy mildew
1. Test conditions
1.1 Materials for testing
Test crop: melon
Control target: melon downy mildew
Test location: Shunyi district, Beijing
1.2 Test agents
Test agents: 15%P1 by 200 times dilution
Control agent: azoxystrobin (25%) 
1.3 Test Design
Table 16 Concentration Design for Test Agents
No. Treatment agent Dilution fold
1 10%sample P1 500 times
2 Control agent: azoxystrobin (25%) 2500 times
3 CK  
1.4 Cell arrangement
Random block arrangement was used for cells of test agent, control agent and blank control.
Cell area: 10-12 m 2
Times of repetition: 4
2 Methods of survey, recording and measurement
2.1 Survey method:
Melon downy mildew occurred before the test. A 10-point random sampling method was used. Ten melon seedlings were randomly selected from each row, and all the leaves were surveyed. The percentage of diseased spot area on each leaf to the total leaf area was graded.
2.2 Survey time and frequency
The control effects were surveyed 8 days after the first administration and 8 days after  the second administration, respectively.
2.3 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area;
Figure PCTCN2019119063-appb-000021
Figure PCTCN2019119063-appb-000022
3 Results and analysis
Table 17 Field test results of melon downy mildew
Figure PCTCN2019119063-appb-000023
The test results showed that from the whole process of the test, it could be seen that the disease index of melon before administration was at a lower level, indicating that the disease was in the early stage. Seven days after the first administration, it was found that the control effects of the sample P1 was 57.29%, respectively, and the control effect of the control agent azoxystrobin by 2500 times dilution was 49.58%; After one administration experiment, the diseased spots of the infected leaves of melons could be effectively controlled, while the downy mildew of the control blank group was continuously expanding.
Example 12 Field test reports of polycarboxylic acid compounds for controlling  cowpea anthracnose
1. Test conditions
1.1 Materials for testing
Test crop: cowpea
Control target: cowpeas anthracnose
Test location: Shanneipo Village
1.2 Test agents
Control agents:
Nadiwen (25%trifloxystrobin·50%tebuconazole) -Bayer
Zhengjia (20%difenoconazole) -Hainan Zhengye Zhongnong Hi-Tech Co., Ltd.
1.3 Test Design
Table 18 Concentration Design for Test Agents
Figure PCTCN2019119063-appb-000024
1.4 Administration time and method
During the test, the pesticides were administered twice, dated March 13, 2019 and March 20, 2019. After the first administration, the cowpeas grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred, being in a middle to late stage of the occurrence of anthracnose.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119063-appb-000025
Figure PCTCN2019119063-appb-000026
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method
As the occurrence of cowpea anthracnose before the test, it was a remedial test. Each treatment area was 50 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and cowpea leaves on each plant were surveyed. The sizes of anthracnose spots on the leaves were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade3: The area of diseased spots accounted for less than 6%-10%of the total leaf  area;
Grade5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area;
Figure PCTCN2019119063-appb-000027
Figure PCTCN2019119063-appb-000028
3 Results and analysis
3.1 Test results
Table 19 Field test results of cowpea anthracnose
Figure PCTCN2019119063-appb-000029
The test results (see Table 19) showed that from the whole process of the test, it could be seen that the disease index of cowpea before administration was at a higher level, indicating that the disease was in a middle to late stage. Seven days after the first administration, it was found that the control effect of the sample P1 by 500 times dilution was 87.94%, respectively, the control effect of the control agent Nadiwen by 2000 times dilution was 89.69%, and the control effect of Zhengjia by 750 times dilution was 66.91%. 7 days after the second administration, it was found that the control effect of the sample P1 by 500 times dilution was 82.33%, The control effect is good.
Example 13 Field tests of polycarboxylic acid compounds for controlling pepper fruit anthracnose
1. Test conditions
1.1 Materials for testing
Test crop: pepper
Control target: pepper anthracnose
Test location: Shouguangchangzhi Village
1.2 Test agents
Test agent: Ccompound P1
Control agent: Nadiwen (25%trifloxystrobin ·50%tebuconazole) -Bayer
1.3 Test Design
Table 20 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%sample P1 500 times
2 15%sample P1 1000 times
3 Nadiwen (25%trifloxystrobin·50%tebuconazole) 2000 times
4 CK conventional treatment 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated June 13, 2019 and June 20, 2019. After the first administration, the peppers grew well, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, anthracnose occurred.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119063-appb-000030
Figure PCTCN2019119063-appb-000031
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method
As the occurrence of pepper anthracnose before the test, it was a remedial test. A random 10-point survey method was used, 5 plants were surveyed at each point, and investigate all the peppers in the plant. The sizes of anthracnose spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for fruit diseases:
Grade 0: No disease spots
Grade 1: The area of diseased spots accounted for less than 5%of the total fruit area;
Grade 3: The area of diseased spots accounted for less than 6%-10%of the total fruit area;
Grade 5: The area of diseased spots accounted for less than 11%-20%of the total fruit area;
Grade 7: The area of diseased spots accounted for less than 21%-50%of the total  fruit area;
Grade 9: The area of diseased spots accounted for more than 51%of the total fruit area;
Figure PCTCN2019119063-appb-000032
Figure PCTCN2019119063-appb-000033
2 Results and analysis
2.1 Test results
Table 21 Field test results of pepper leaves anthracnose
Figure PCTCN2019119063-appb-000034
The test results (see Table 21) showed that from the whole process of the test, it could be seen that the whole disease base was low, which indicated that it belonged to the early stage of pepper anthracnose. Seven days after the first administration, the control effect is low. The highest control effect of P1 by 500 times dilution on pepper anthracnose was only about 58%, the control effect was lower than that of 2000 times of control agent (70.09%) , and the lower control effect was from 1000 times of P1.7 days after the second administration, over time, it was found that the control effects of each treatment on pepper anthracnose were all improved to varying degrees, the highest control effect was 75.29%for P1 by 500 times dilution, which was lower than the control agent by 2000 times dilution, and the control effect was about 60%for P1 by 1000 times dilution, which was lower than the control agent by 2000 times dilution.
Through this experiment, it was found that the control effect of P1 on pepper anthracnose was significantly improved after two times of treatment, and the number of diseased fruit and disease condition were constantly effectively controlled. The control effect of P1 by 500 times dilution on pepper anthracnose was 75.29%, which is slightly lower than the control effect (83.53%) of the control agent Nadiwen by 2000 times dilution, but the control effect of P1 by 1000 times dilution having low concentration was  relatively low, only about 60%.
Example 14 Control tests of polycarboxylic acid compounds on Loofah downy mildew
1. Test conditions
1.1 Materials for testing
Test crop: Luffa aegyptiaca
Control target: Loofah downy mildew
Test location: Shanmenpo Village
1.2 Test agents
Control agent: Zengweiyinglv (10%fluthiazolylacetophenone) -DuPont
1.3 Test Design
Table 22 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%P1 500 times
2 15%P1 1000 times
3 Zengweiyinglv 2000 times
4 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated May 15, 2019 and May 22, 2019. After the first administration, the Luffa aegyptiaca grew well, Loofah belongs to the early stage of fruit-hanging, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, downy mildew occurred, being in the middle stage of the occurrence of downy mildew.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119063-appb-000035
Figure PCTCN2019119063-appb-000036
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method:
As the occurrence of loofah downy mildew before the test, it was a remedial test. Each treatment area was 30 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and Investigate the leaves of the upper half part of each plant. The sizes of downy mildew spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade3: The area of diseased spots accounted for less than 6%-10%of the total leaf  area;
Grade5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area;
Figure PCTCN2019119063-appb-000037
Figure PCTCN2019119063-appb-000038
3 Results and analysis
3.1 Test results
Table 23 Field test results of Loofah downy mildew
Figure PCTCN2019119063-appb-000039
The test results (see Table 23) showed that from the whole test process, it coulf be seen that the disease index of Luffa before administration is not investigated, the incidence of Luffa in the same area is the same, unified management, and the incidence of Luffa belongs to the middle stage. Seven days after the first administration, with the rapid growth of loofah and new leaves, downy mildew occurs to varying degrees. Zhengye No. 4 agent by 1000 times dilution has a control effect of 48.99%, and the P1 agent by 500 times dilution has a control effect of up to 61.31%, the P1 agent by 1000 times dilution has a control effect of 47.25%against loofah downy mildew, and the control effect of the control agent Zengweiyinglv by 2000 times dilution is 67.03%. Seven days after the first administration, it was found that the control effect of the P1 agent by 500 times dilution is higher, and Zhengye No. 4 by 1000 times dilution and P1 agent by 1000 times dilution displayed similar control effect on loofah mildew disease, but all of them are lower than the  control agent Zengweiyinglv.
The investigation after the second administration showed that the incidence of downy mildew in each treatment increased as time went on. The disease index of the treatment with water was 59.43 and the disease index of other treatments was lower, indicating that the agent had a certain control effect. The control effect of Zhengye No. 4 was 51.86%, the control effect of P1 agent by 500 times dilution was 68.01%, and the control effect of P1 agent by 1000 times dilution was 62.4%, while the control effect of the control agent Zengweiyinglv by 2000 times dilution was 70.36%. After the second administration, P1 agent by 500 times dilution has stronger control effect, and the control effect of the Zhengye No. 4 by 1000 times dilution is lower, but both of which were lower than the control effect of the control agent Zengweiyinglv by 2000 times dilution.
Through two administrations, the growth rate of lesions in the susceptible loofah leaves of each treatment was reduced, and in comparison, the downy mildew in the control blank group continuously rapidly expanded, the newly-growing leaves had downy mildew lesions, and diseased leaves were constantly getting worse. The number of leaves, whose lesion area were >51%of the leaf area, increased continuously, indicating that in the course of this dynamic change, each agent has a certain control effect on loofah downy mildew, but the effect was lower than that of the control agent.
Example 15 Control effect of polycarboxylic acid compounds on taro blight
1. Test conditions
1.1 Materials for testing
Test crop: taro
Control target: taro phytophthora blight
Test location: Ding'anxinzhu
1.2 Test agent
Control agent: Zengweiyinglv (10%fluorothiazolpyridone) -DuPont
1.3 Test Design
Table 24 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%Zhengye No. 4 1000 times
2 15%P1 500 times
3 Zengweiyinglv 2000 times
4 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated May 9, 2019 and May 16, 2019. After the first administration, the taros grew well, the taro had been planted for  7-8 months, the soil humidity was suitable for crop growth, and other diseases were less. Before the test, taro blight occurred, being in the middle and later stage of the occurrence of taro blight.
2. Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119063-appb-000040
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method:
As the occurrence of taro blight before the test, it was a remedial test. Each treatment area was 100 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and all the leaves of each plant were surveyed. The sizes of taro blight spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area;
Figure PCTCN2019119063-appb-000041
Figure PCTCN2019119063-appb-000042
3 Results and analysis
3.1 Test results
Table 19 Field test results of taro blight
Figure PCTCN2019119063-appb-000043
Figure PCTCN2019119063-appb-000044
The test results (see Table 24) showed that from the whole test process it could be seen that the disease index of taro blight before administration is moderate, indicating that the disease was in the middle stage. 7 Days after the first administration, the control effect of the Zhengye No. 4 by 1000 times dilution was 93.84%, the control effect of P1 agent by 500 times dilution was 87.93%and the control effect of the control agent Zengweiyinglv by 2000 times dilution was 88.18%. The control effect of Zhengye No. 4 by 1000 times dilution was slightly higher than that of the control agent Zengweiyinglv by 2000 times dilution.
7 Days after of the second administration, it was found that as time went on, the effects of different treatments on the disease control of taro blight decreased with varying degrees. The control effect of Zhengye No. 4 by 1000 times dilution was 90.11%, the control effect of P1 agent by 500 times dilution was 85.89%, and the control effect of the control agent Zengweiyinglv by 2000 times dilution was 85.58%.
Example 16 Control effect of polycarboxylic acid compounds on pepper blight
1. Test conditions
1.1 Test materials
Test crop: pepper
Control object: pepper blight
Test location: Changzhi Village, Shouguang
Shouguangchangzhi Village
1.2 Test agent
Control agent: Zengweiyinglv (10%fluorothiazolpyridone) -DuPont
1.3 Test Design
Table 25 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%P1 500 times
2 15%P1 1000 times
3 Zengweiyinglv 3000 times
4 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated June 18, 2019 and June 25, 2019. After the first administration, the pepper grew well. Pepper is a fruit-hanging period, soil moisture is suitable for crop growth, and other diseases are less. There is no disease before the test, which is in the early stage of the disease.
2 Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119063-appb-000045
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method
As the occurrence of pepper blight before the test, it was a remedial test. Each treatment area was 50-100 square meters. A random 5-point survey method was used, 3-5 plants were surveyed at each point, and all fruits of each plant were surveyed. The sizes of pepper blight spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for fruit diseases:
Grade 0: No disease spots
Grade 1: The area of diseased spots accounted for less than 5%of the total fruit area;
Grade 3: The area of diseased spots accounted for less than 6%-10%of the total fruit area;
Grade 5: The area of diseased spots accounted for less than 11%-20%of the total fruit area;
Grade 7: The area of diseased spots accounted for less than 21%-50%of the total fruit area;
Grade 9: The area of diseased spots accounted for more than 51%of the total fruit area;
Figure PCTCN2019119063-appb-000046
Figure PCTCN2019119063-appb-000047
3 Results and analysis
3.1 Test results
Table 26 Field test results of pepper blight
Figure PCTCN2019119063-appb-000048
Figure PCTCN2019119063-appb-000049
The test results (see Table 26) showed that from the whole test process it could be seen that the disease index of pepper blight before administration is very low, indicating that the disease was in the early stage. 7 Days after the first administration, the control effect of P1 agent by 500 and 1000 times dilution was 72.92%and 64.67%, respectively, and the control effect of the control agent Zengweiyinglv by 3000 times dilution was 72.92%. The control effect of P1 by 500 times dilution was similar to that of the control agent Zengweiyinglv by 3000 times dilution.
7 Days after of the second administration, it was found that as time went on, the effects of all treatments on the disease control of pepper blight decreased with varying degrees. The reason might be related to field management of pepper in the late stage. The control effect of P1 by 500 times dilution was 64.67%, which was higher than that (63.00%) of the control agent Zengweiyinglv by 3000 times dilution. The control effect of P1 by 1000 times dilution was 53.67%, which was lower than that (63.00%) of the control agent Zengweiyinglv by 3000 times dilution.
Example 17 Control Effect of Polycarboxylic Acid Compounds on Cucumber Downy Mildew
1. Test conditions
1.1 Test materials
Test crop: cucumber
Control object: cucumber downy mildew
Test location: Liulv Village, Shouguang
1.2 Test agent
Control agent:
Zengweiyinglv (10%fluorothiazolpyridone) -DuPont
1.3 Test Design
Table 27 Concentration Design for Test Agents
No. Agent Dilution fold
1 15%P1 500 times
2 15%P1 1000 times
3 Zengweiyinglv 3000 times
4 CK 0
1.4 Administration time and method
During the test, the pesticides were administered twice, dated June 21, 2019 and June  28, 2019. After the first administration, the cucumber grew well. The cucumber was in the middle stage of fruit-hanging. The soil humidity was suitable for crop growth, and other diseases were less. Before the test, downy mildew occurred, being in the middle stage of the occurrence of downy mildew.
2 Methods of survey, recording and measurement
2.1 Meteorological and soil data
2.1.1 Meteorological data survey
Figure PCTCN2019119063-appb-000050
2.1.2 Soil data
Soil moisture was sufficient to facilitate plant growth.
2.1.3 Survey method:
As the occurrence of cucumber downy mildew before the test, it was a remedial test. Each treatment area was 50-100 square meters. A random 5-point survey method was used, two plants were surveyed at each point, and the leaves in the upper part of each plant were surveyed. The sizes of downy mildew spots were counted, and the disease index of each treated plant was surveyed and counted by adopting a national standard grading method.
2.1.4 Survey time and frequency
The control effects were surveyed 7 days after the first administration and 7 days after the second administration, respectively.
2.1.5 Calculation method of pesticide effect
Grading criteria for leaf diseases:
Grade 0: No disease spots
Grade 1: The area of diseased spots accounted for less than 5%of the total leaf area;
Grade 3: The area of diseased spots accounted for less than 6%-10%of the total leaf area;
Grade 5: The area of diseased spots accounted for less than 11%-20%of the total leaf area;
Grade 7: The area of diseased spots accounted for less than 21%-50%of the total leaf area;
Grade 9: The area of diseased spots accounted for more than 51%of the total leaf area;
Figure PCTCN2019119063-appb-000051
Figure PCTCN2019119063-appb-000052
3 Results and analysis
3.1 Test results
Table 28 Field test results of cucumber downy mildew
Figure PCTCN2019119063-appb-000053
Figure PCTCN2019119063-appb-000054
The test results (see Table 28) showed that from the whole test process it could be seen that the disease index of pepper blight before administration is in the middle stage of the occurrence of downy mildew. 7 Days after the first administration, the control effect of P1 agent by 500 and 1000 times dilution was 95.70%and 92.53%, respectively, and the control effect of the control agent Zengweiyinglv by 3000 times dilution was 93.67%. The control effect of P1 by 500 times dilution was higher than that of the control agent Zengweiyinglv by 3000 times dilution. The control effect of P1 by 1000 times dilution was similar to that of the control agent Zengweiyinglv by 3000 times dilution.
7 Days after of the second administration, it was found that as time went on, the control effect of P1 agent by 500 times dilution was 88.89%, which was higher than that (74.86%) of the control agent Zengweiyinglv by 3000 times dilution. But the control effect of P1 by 1000 times dilution was low, only 62.96%. Through two administrations, the growth rate of lesions in the susceptible cucumber leaves was reduced to varying degrees, and the incidence rate of the newly-growing leaves was decreased. Particularly, after treatment of new leaves with P1 by 500 times dilution, almost no disease was observed and much disease spot hyphae turned into dry and died, indicating that the control effect of P1 agent by 500 times dilution on cucumber downy mildew was good.
Example 18 Control tests of Polycarboxylic acid compounds against rice blast
1. Test conditions
1) Test crop: rice (Mongolia rice)
Test target: rice blast
Test location: Panjin city, Liaoning province
2) Test agents P1
3) Spraying period: rupturing stage and full heading stage
2. Experimental Scheme
A five-point random sampling survey method was used. Ten plants were surveyed at each point, and the sizes of rice blast spots were counted. The disease index of each treated plant was surveyed and counted 14 days after administration by adopting an international grading method.
Figure PCTCN2019119063-appb-000055
Figure PCTCN2019119063-appb-000056
3. Test results
Table 29 Field test results of rice blast
Figure PCTCN2019119063-appb-000057
The test results (see Table 29) showed that from the whole process of the test, it could be seen that rice blast had not occurred before spraying. After two administrations, it was found that the control effect of the agent P1 by 500 times dilution was 43.84%, showing certain control effects on rice blast.
While the present invention has been described in detail with a general description, specific embodiments and tests above, those skilled in the art can make some modifications or improvements on the basis of the present invention. Therefore, all such modifications or improvements made without departing from the essence of the present invention shall fall within the scope of the present invention. The present invention was not limited to the above tested plant pathogens. Therefore, using these compounds to control other plant pathogens without departing from the spirit of the present invention falls within the scope of the present invention.

Claims (5)

  1. The inhibitory activity of polycarboxylic acid compounds on appressorium formation of fungi and oomycete and their use in controlling plant diseases, wherein the polycarboxylic acid compound is selected from compounds of formulas I, as well as isomers, hydrates or salts thereof:
    Figure PCTCN2019119063-appb-100001
    wherein m is an integer of 0-20, i.e., that portion of the compound has 0-20 carbons; n is an integer of 0-20, i.e., that portion of the compound has 0-20 carbons; x is an integer of 0-20, i.e., that portion of the compound has 0-20 carbons; R 1 is hydrogen, alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or glycosyl; R 2 is hydrogen, alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or glycosyl; R 3 is hydrogen, alkyl, alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, alkenyl, alkynyl, hydroxy, amino, fluoro, chloro, bromo, iodo, nitro, nitroso, carboxyl, acyl, cyano or glycosyl.
  2. The use according to claim 1, characterized in that, the compound of formula I has at least 3 carboxyl groups, m is 0-10, i.e., that portion of the compound has 0-10 carbons; n is 0-10, i.e., that portion of the compound has 0-10 carbons; x is an integer of 0-10, i.e., that portion of the compound has 0-10 carbons.
  3. The use according to claim 1, characterized in that, the compound of formula I is a compound selected from formula II.
    Figure PCTCN2019119063-appb-100002
  4. The use according to claim 1, characterized in that, the polycarboxylic acid compound is used as a plant protection agent or a bactericide.
  5. The use according to claim 1, characterized in that, the polycarboxylic acid compound is used for controlling rice blast, anthracnose, downy mildew, phytophthora, gray mold, powdery mildew in plants.
PCT/CN2019/119063 2019-08-23 2019-11-18 Inhibitory activity of polycarboxylic acid compounds on appressorium formation of fungi and oomycete and their use in controlling plant diseases WO2021036008A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910784972.7 2019-08-23
CN201910784972.7A CN112400879B (en) 2019-08-23 2019-08-23 Inhibitory activity of polycarboxylic acid compounds on fungus and oomycete attachment cells and application of polycarboxylic acid compounds in prevention and treatment of plant diseases

Publications (1)

Publication Number Publication Date
WO2021036008A1 true WO2021036008A1 (en) 2021-03-04

Family

ID=74685452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119063 WO2021036008A1 (en) 2019-08-23 2019-11-18 Inhibitory activity of polycarboxylic acid compounds on appressorium formation of fungi and oomycete and their use in controlling plant diseases

Country Status (2)

Country Link
CN (2) CN112400879B (en)
WO (1) WO2021036008A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022043874A1 (en) * 2020-08-24 2022-03-03 Adama Makhteshim Ltd. Pesticidal compounds and compositions, methods of use and processes of preparation thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048628A1 (en) * 1997-04-25 1998-11-05 Ishihara Sangyo Kaisha, Ltd. Composition for controlling harmful bio-organisms and method for controlling harmful bio-organisms using the same
EP1133918A1 (en) * 2000-03-14 2001-09-19 Sumitomo Chemical Co.,Ltd. Method for denaturing allergens using calcium or strontium salts
WO2002060248A2 (en) * 2001-01-29 2002-08-08 Agricare Ltd. Methods and compositions for controlling plant pathogen
WO2007123531A1 (en) * 2006-04-25 2007-11-01 Albaugh, Inc. Copper-based fungicide/bactericide
CN105340929A (en) * 2014-08-21 2016-02-24 陕西美邦农药有限公司 Pesticide composition containing tetramethyleneglutaric anhydride and pyraclostrobin
WO2017221237A1 (en) * 2016-06-19 2017-12-28 Avner Barazani - Innovative Advanced Development Ltd. Fungicidal compositions and methods for controlling plant pathogens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048628A1 (en) * 1997-04-25 1998-11-05 Ishihara Sangyo Kaisha, Ltd. Composition for controlling harmful bio-organisms and method for controlling harmful bio-organisms using the same
EP1133918A1 (en) * 2000-03-14 2001-09-19 Sumitomo Chemical Co.,Ltd. Method for denaturing allergens using calcium or strontium salts
WO2002060248A2 (en) * 2001-01-29 2002-08-08 Agricare Ltd. Methods and compositions for controlling plant pathogen
WO2007123531A1 (en) * 2006-04-25 2007-11-01 Albaugh, Inc. Copper-based fungicide/bactericide
CN105340929A (en) * 2014-08-21 2016-02-24 陕西美邦农药有限公司 Pesticide composition containing tetramethyleneglutaric anhydride and pyraclostrobin
WO2017221237A1 (en) * 2016-06-19 2017-12-28 Avner Barazani - Innovative Advanced Development Ltd. Fungicidal compositions and methods for controlling plant pathogens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022043874A1 (en) * 2020-08-24 2022-03-03 Adama Makhteshim Ltd. Pesticidal compounds and compositions, methods of use and processes of preparation thereof

Also Published As

Publication number Publication date
CN112400879B (en) 2021-10-12
CN113749095A (en) 2021-12-07
CN112400879A (en) 2021-02-26
CN113749095B (en) 2022-09-09

Similar Documents

Publication Publication Date Title
CN111356761B (en) Methods and compositions for biological control of plant pathogens
ABUBAKAR et al. Effect of pH on mycelial growth and sporulation of Aspergillus parasiticus
JP6526011B2 (en) Isolate of Clonostachys rosea used as a biopesticide
Thompson Inhibition of nodule bacteria by an antibiotic from legume seed coats
ES2825710T3 (en) Trichoderma compositions and procedures for use
De Costa et al. Effects of sodium bicarbonate on pathogenicity of Colletotrichum musae and potential for controlling postharvest diseases of banana
Lu et al. Screening of antagonistic Trichoderma strains and their application for controlling stalk rot in maize
CN113301804A (en) Antifungal compositions and methods of use
Hassan et al. Effects of fungal strains on seeds germination of millet and Striga hermonthica
Juliatti et al. Trichoderma as a biocontrol agent against Sclerotinia stem rot or white mold on soybeans in Brazil: usage and technology
Es-Soufi et al. Biocontrol potential of Bacillus amyloliquefaciens Bc2 and Trichoderma harzianum TR against strawberry anthracnose under laboratory and field conditions
El-Mougy et al. Salts application for suppressing potato early blight disease
WO2020253077A1 (en) Use of dicarboxylic acid compounds for controlling plant diseases
El-Mehy et al. Response of faba bean to intercropping, biological and chemical control against broomrape and root rot diseases
CN112029667B (en) Trichoderma, trichoderma spore suspension, trichoderma zymophyte powder and preparation method and application thereof
WO2021036008A1 (en) Inhibitory activity of polycarboxylic acid compounds on appressorium formation of fungi and oomycete and their use in controlling plant diseases
WO2020253076A1 (en) Use of hydroxycarboxylic acid compounds for controlling plant diseases
Naik et al. Characterization of phytotoxin producing Alternaria species isolatedfrom sesame leavesand their toxicity
Amiri et al. A new selective medium for the recovery and enumeration of Monilinia fructicola, M. fructigena, and M. laxa from stone fruits
CN104351231A (en) Application of 4-chlorocinnamaldehyde thiosemicarbazone in plant disease control
Eliwa et al. Control of root rot disease of sugar beet using certain antioxidants and fungicides
Kadhim et al. Biological control of fig root rot disease
EL-Ashmony Biological and chemical control of sunflower basal stem rot caused by Sclerotium rolfsii
Sharma et al. Efficacy of bioagents and fungicides against banded leaf and sheath blight of maize caused by Rhizoctonia solani f. sp. sasakii Kuhn
Shrestha Evaluation of Trichoderma harzianum as a biocontrol agent on fusarium wilt of tomato grown in eastern Nepal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943373

Country of ref document: EP

Kind code of ref document: A1