WO2020252728A1 - 一种玻璃粉组合物、导电浆料及太阳能电池 - Google Patents

一种玻璃粉组合物、导电浆料及太阳能电池 Download PDF

Info

Publication number
WO2020252728A1
WO2020252728A1 PCT/CN2019/092012 CN2019092012W WO2020252728A1 WO 2020252728 A1 WO2020252728 A1 WO 2020252728A1 CN 2019092012 W CN2019092012 W CN 2019092012W WO 2020252728 A1 WO2020252728 A1 WO 2020252728A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass frit
powder
frit composition
composition
glass
Prior art date
Application number
PCT/CN2019/092012
Other languages
English (en)
French (fr)
Inventor
周欣山
汪山
包娜
Original Assignee
苏州晶银新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶银新材料股份有限公司 filed Critical 苏州晶银新材料股份有限公司
Priority to PCT/CN2019/092012 priority Critical patent/WO2020252728A1/zh
Priority to CN201980086037.1A priority patent/CN113228302A/zh
Publication of WO2020252728A1 publication Critical patent/WO2020252728A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes

Definitions

  • the invention relates to a composition, in particular to a glass frit composition of a solar cell, and belongs to the technical field of solar cells.
  • Solar cells are devices that use semiconductor PN junction photovoltaic effect to convert light energy into electrical energy.
  • Crystalline silicon solar cells form PN junctions on monocrystalline or polycrystalline silicon wafers by doping phosphorus and boron.
  • P-type crystalline silicon cells implant phosphorus on the side of the boron-doped silicon wafer, and the phosphorus diffuses into the silicon wafer to form an N-type
  • the junction of the semiconductor and the P-type semiconductor forms a PN junction.
  • the N-type crystalline silicon cell is the opposite of the P-type, which diffuses into the side of the phosphorus-doped silicon wafer to form a PN junction.
  • the surface of the single crystal silicon is etched with alkali to expose 111 crystal planes, forming several hundred per square centimeter of silicon surface. Ten thousand tetrahedral pyramids are inverted pyramid structures. Generally, the pitch of the pyramid holes is 1-5 ⁇ m. The smaller the hole pitch, the higher the conversion efficiency of the battery.
  • the surface of polycrystalline silicon is etched with acid to form a rough surface; black silicon solar cell is a layer of uniformly distributed nano-pore structure formed by metal particle-assisted chemical etching on the surface of the silicon substrate.
  • This light-trapping nano-texture structure has reflectivity in the infrared band Very low, can reach 5% or less, effectively improving the conversion efficiency of solar cells.
  • the size of the suede hole is less than 1 ⁇ m as a small-sized hole.
  • an anti-reflection layer should be coated on the surface of the suede, which is generally a dielectric material with good insulation, such as one or more of SiNx, TiO 2 , Al 2 O 3 , and SiO 2 .
  • Positive and negative electrodes must be made on the battery to derive the carriers generated by the PN junction to form a current.
  • a screen printing process is used to print front electrode silver paste on the light-receiving surface, and aluminum back field and back silver electrodes on the backlight surface.
  • the paste is placed on the printing screen, and is squeezed by the rubber scraper on the squeegee of the printing machine.
  • the paste is printed on the surface of the battery through the opening of the screen pattern, and then dried, quickly sintered, and formed after metalization electrode.
  • the front electrode silver paste used on the light-receiving surface will block the light, so it needs to be printed into a fine line type.
  • the anti-reflection layer (passivation layer) of the light-receiving surface must be burnt through, and the silicon base fleece A good ohmic contact is formed on the surface to improve the photoelectric conversion efficiency of the solar cell.
  • the front electrode silver paste of solar cells is generally composed of silver powder, glass powder composition and organic carrier.
  • Silver powder is used as the conductive phase.
  • the glass powder composition is mainly sintered with silver powder and forms good ohmic contact and adhesion with the silicon base.
  • the organic carrier is to uniformly and stably disperse the silver powder and glass powder in it, so that the positive silver paste has good fineness. Line printing capability.
  • the glass powder During the sintering process of the silver paste of the front electrode, the glass powder must have good wettability with the silicon substrate and the silver powder, especially forming ohmic contact and adhesion with the silicon substrate.
  • the size of the suede surface gets smaller and smaller, it is difficult to penetrate the glass composition after melting, causing problems such as poor contact with the silicon base and low welding tension.
  • the molten glass is required to have low surface tension, low viscosity at high temperature, and good flowability, but it will not cause the electrode to be insufficiently fine due to spreading too wide, which will affect the conversion efficiency of the battery.
  • the purpose of the present invention is to provide a glass frit composition with lower surface tension, and the solar cell prepared therefrom has higher welding tension and photoelectric conversion efficiency.
  • the present invention first provides a glass frit composition which contains tungsten and molybdenum in a molar ratio of 1:3-3:1; wherein, in terms of oxide, tungsten and molybdenum
  • the total weight of the glass powder composition is 5%-25%, and the total amount of the glass powder composition is 100%.
  • the glass frit composition of the present invention contains metal tungsten and molybdenum at the same time.
  • the glass frit composition of the present invention has a lower melting surface tension and reduces small-sized pores.
  • the capillary effect can form a good wettability with the suede, and the contact with the silicon base at the bottom of the hole is more sufficient, and the expansion coefficient is low, which can maintain the fine line type of the electrode grid line, and improve the ohmic contact and adhesion between the electrode and the silicon base Performance, thereby improving the photoelectric conversion efficiency of solar cells.
  • the glass powder composition further contains any one or a combination of lithium, tellurium, lead, and bismuth.
  • lithium oxide can play a role in assisting burning.
  • Tellurium oxide can be used to lower the melting temperature of the glass powder composition and promote contact with the silicon base.
  • Lead oxide acts as a fluxing agent to lower the melting temperature of the glass frit composition, promote contact with the silicon base, and increase the density of the glass frit composition.
  • Bismuth oxide can lower the softening point of the glass powder composition and increase chemical activity.
  • the glass frit composition may contain both lithium and tellurium.
  • the weight content of lithium is 5%-30%, and the total amount of the glass powder composition is 100%.
  • the weight content of tellurium is 70% or less (preferably, the weight content of tellurium is 15%-70%), and the total amount of the glass powder composition is 100%.
  • the glass frit composition may contain lithium, tellurium and bismuth at the same time.
  • the weight content of bismuth is 30% or less (preferably, the weight content of bismuth is 2%-30%), and the total amount of the glass powder composition is 100%.
  • the glass frit composition may contain lithium, tellurium and lead at the same time.
  • the weight content of lead is less than 50% (preferably, the weight content of lead is 1%-30%), and the total amount of the glass frit composition is 100%.
  • the molar ratio of tungsten and molybdenum in the glass frit composition may be 1:2-2:1, for example, it may be 1:1, 0.3:1, 0.5:1, etc.
  • the glass powder composition also contains sodium, potassium, beryllium, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zinc, zirconium, One or a combination of two or more of niobium, silver, tantalum, boron, aluminum, gallium, indium, silicon, germanium, tin, phosphorus, antimony, selenium, rhenium, cerium, and rubidium.
  • it can be sodium, potassium, beryllium, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zinc, zirconium, niobium, silver, tantalum, boron, aluminum, gallium, indium , Silicon, germanium, tin, phosphorus, antimony, selenium, rhenium, cerium, rubidium cations or one or a combination of two or more of their compounds.
  • sodium, potassium, beryllium, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zinc, zirconium, niobium, silver, tantalum, boron, aluminum, gallium, indium, silicon, Germanium, tin, phosphorus, antimony, selenium, rhenium, cerium, and rubidium are added as additives to the glass powder composition.
  • the amount is generally greater than 0 and less than or equal to 5% based on oxides.
  • the glass frit composition of the present invention may be one or a combination of two or more of an amorphous glass frit composition, a crystalline glass frit composition, a partially crystalline glass frit composition, and a partially amorphous glass frit composition.
  • the present invention also provides a preparation method of the above-mentioned glass powder composition, the preparation method includes the following steps:
  • the glass frit composition fragments are obtained, and after grinding, the glass frit composition with the desired particle size distribution is obtained.
  • the raw material composition of the glass frit composition is selectively added with corresponding metal oxides or can be heated to be divided into corresponding metal oxide compounds according to the composition of the glass frit composition.
  • the raw material composition of the glass powder composition is tungsten oxide and molybdenum oxide.
  • the glass powder composition also contains one or a combination of two or more of oxides of lithium, tellurium, bismuth, and lead or compounds that can decompose the corresponding oxides on heating.
  • heating and melting can be performed in a resistance furnace.
  • the preparation method of the glass powder composition of the present invention has no special requirements on the cooling operation, and the roller can be cooled by water quenching, steel plate or stainless steel.
  • the purpose of grinding is to obtain a desired particle size.
  • a planetary ball mill can be used for ball milling to obtain a glass frit composition with a desired particle size distribution.
  • the present invention also provides a conductive paste which contains (70-93) parts by weight of metal powder, (0.5-15) parts by weight of the glass powder composition of the present invention, and (5-30) parts by weight The organic phase.
  • the metal powder used may include one or more alloys of silver powder, gold powder, platinum powder, tin powder, nickel powder, and aluminum powder; preferably, the metal powder may be silver powder And/or platinum powder; more preferably, the metal powder used is silver powder.
  • the shape of the metal powder particles may be one or a combination of two or more of spherical, flake, elongated and irregular shapes.
  • the organic phase used includes one or more of solvents, resins, thixotropic agents, plasticizers and other auxiliary agents.
  • the purpose of adding the organic phase is to make the conductive paste have good rheological properties, suitable for screen printing, and capable of forming fine lines.
  • the solvent may be terpineol, butyl carbitol acetate, or lauryl ester. Based on the total weight of the organic phase as 100%, the content of the solvent may be 60%-90%.
  • the resin may be one or a combination of two or more of cellulose, epoxy resin, acrylic resin, and polyester resin. Based on the total weight of the organic phase as 100%, the content of the resin may be 1%-20%.
  • the thixotropic agent may be hydrogenated castor oil, polyamide wax, fumed silica and the like. Based on the total weight of the organic phase as 100%, the content of the thixotropic agent is 1%-10%.
  • the plasticizer can be aliphatic dibasic acid esters, phthalates, terephthalates, benzene polyesters, benzoates, polyol ester epoxy, citrate, Polyester etc. Based on the total weight of the organic phase as 100%, the content of the plasticizer may be greater than 0 and less than or equal to 5%.
  • auxiliary agents may be surfactants, moisturizers and the like. Based on the total weight of the organic phase as 100%, the content of other additives may be greater than 0 and less than or equal to 10%.
  • the conductive paste of the present invention adopts the glass powder composition of the present invention to form good ohmic contact with the small-size suede battery after sintering the conductive paste, and form fine electrodes, thereby improving solar cell conversion efficiency and welding tension.
  • the present invention further provides a preparation method of the above-mentioned conductive paste.
  • the preparation method includes the following steps:
  • Organic phase preparation mix resin and organic solvent evenly, at room temperature or heating and stirring evenly;
  • Slurry preparation mixing metal powder, glass powder composition, and organic phase, grinding and dispersing, and the average scraper fineness reaches 10 ⁇ m (preferably 5 ⁇ m) or less to obtain conductive silver paste.
  • the present invention provides a solar cell, which contains a component made of the conductive paste of the present invention.
  • the solar cell of the present invention includes but is not limited to crystalline silicon solar cell.
  • the solar cell of the present invention is prepared through the following steps:
  • the semiconductor substrate is a boron-doped P-type silicon substrate or a 4-phosphorus N-type silicon substrate.
  • the silicon substrate is a 180-250 ⁇ m thick 125 ⁇ 125mm or 156 ⁇ 156mm or other typical size silicon wafer;
  • the first step is to etch one side of the silicon substrate with a corrosive solution to form a pyramidal (single crystal) or uneven (polycrystalline) anti-reflective suede, or use wet or dry black silicon technology to make black silicon Nano suede
  • an N(P) type diffusion layer is formed on the other side of the P(N) type silicon substrate to make a PN junction.
  • the N type diffusion layer can be a gas phase thermal diffusion method with gaseous phosphorus oxychloride as the diffusion source , Or phosphorus ion implantation method, or thermal diffusion method of coating slurry containing phosphorus pentoxide;
  • the third step is to deposit a layer of SiNx anti-reflection layer on the suede side of the silicon substrate, or add a layer of aluminum oxide passivation layer, or other similar coatings with good anti-reflection effect; SiNx can also be used And aluminum oxide or silicon oxide form a passivation layer on the back of the battery as a back reflector to increase the absorption of long-wave light.
  • the fourth step is to print or coat the Al electrode layer and the main grid silver electrode layer on the side of the P or N silicon substrate.
  • the conductive paste of the present invention is formed on the anti-reflection film on the side of the light-receiving silicon substrate by screen printing, coating or inkjet printing to form vertical and horizontal main grids and fine grids.
  • the peak temperature of sintering is 600°C-950°C, and the electrode body is formed by co-firing to obtain a solar cell.
  • the solar cell of the present invention adopts a conductive paste formed by a specific glass powder composition as a slurry, so that the solar cell has a higher welding tension and photoelectric conversion efficiency.
  • FIG. 1 is an image of the conductive paste of Example 20 after printing and firing.
  • Figure 2 is an image of the conductive paste of Comparative Example 1 after printing and sintering.
  • This embodiment provides a glass powder composition, the specific composition of which is shown in Table 1.
  • This embodiment also provides a conductive paste, which contains (70-93) parts by weight of silver powder and (0.5-15) parts by weight of the glass powder composition shown in Table 1, (5-30) Parts by weight of the organic phase;
  • the organic phase includes (60-90) parts by weight of butyl carbitol acetate, (1-5) parts by weight of ethyl cellulose, (1-5) Parts by weight of epoxy resin, (0.5-3) parts by weight of polyamide wax, (1-3) parts by weight of phthalate, and (0.5-3) parts by weight of methyl silicone oil.
  • the semiconductor substrate is a boron-doped P-type silicon substrate or a 4-phosphorus N-type silicon substrate.
  • the silicon substrate is a 180-250 ⁇ m thick 125 ⁇ 125mm or 156 ⁇ 156mm or other typical size silicon wafer;
  • the first step is to etch one side of the silicon substrate with a corrosive solution to form a pyramidal (single crystal) or uneven (polycrystalline) anti-reflective suede, or use wet or dry black silicon technology to make black silicon Nano suede
  • the third step is to deposit a layer of SiNx anti-reflection layer on the suede side of the silicon substrate, or add a layer of aluminum oxide passivation layer, or other similar coatings with good anti-reflection effect; SiNx can also be used And aluminum oxide or silicon oxide form a passivation layer on the back of the battery as a back reflector to increase the absorption of long-wave light.
  • the fourth step is to print or coat the Al electrode layer and the main grid silver electrode layer on the side of the P or N silicon substrate.
  • the conductive paste of this embodiment is formed on the anti-reflection film on the side of the light-receiving silicon substrate by screen printing, coating or inkjet printing to form vertical and horizontal main grids and fine grids, and under a certain sintering temperature program ,
  • the peak temperature of sintering is 600°C-950°C, and the electrode body is formed by co-firing to obtain a solar cell.
  • a conductive paste was prepared with the glass frit compositions of Comparative Example 1 and Comparative Example 2 in Table 1, and the metal powder and organic phase of the conductive paste were the same as in this example. And according to the above method to prepare the corresponding solar cell.
  • the conductive paste formed in Example 20 in FIG. 1 has a width of 35 ⁇ m after printing and sintering
  • the conductive paste formed in Comparative Example 1 in FIG. 2 has a width of 45 ⁇ m after printing and sintering. It can be seen that after sintering, the conductive paste of the present invention has a fine line shape and no edge overflow, indicating that the glass composition does not significantly flow and spread on the suede surface of small-sized holes after melting.
  • the solar cell prepared by using the conductive paste formed by the glass frit composition of the present invention as a slurry has higher welding tension and photoelectric conversion efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

一种玻璃粉组合物、导电浆料及太阳能电池,该玻璃粉组合物中含有摩尔比为1:3-3:1的钨和钼;以氧化物计,钨和钼的总重量为5%-25%。提供含有该玻璃粉组合物的导电浆料以及含有该导电浆料形成的部件的太阳能电池。

Description

一种玻璃粉组合物、导电浆料及太阳能电池 技术领域
本发明涉及一种组合物,尤其涉及一种太阳能电池的玻璃粉组合物,属于太阳能电池技术领域。
背景技术
太阳能电池是利用半导体PN结光生伏特效应,将光能转化成电能的装置。晶硅太阳能电池是在单晶或多晶硅片上通过掺杂磷和硼形成PN结,如P型晶硅电池为在掺杂硼的硅片一侧注入磷,磷扩散进入硅片内部,形成N型半导体和P型半导体交界,形成PN结。N型晶硅电池与P型相反,其是在掺杂磷的硅片一侧扩散进入硼,形成PN结。
为了提高光利用率,降低硅片反射,需要在硅片一测(受光测)进行绒面处理,如单晶硅表面用碱腐蚀,暴露出111晶面,在每平方厘米硅表面形成几百万个四面方椎体即倒金字塔结构,一般金字塔孔间距为1-5μm,孔间距越小电池转化效率越高。多晶硅表面用酸腐蚀,形成凹凸粗糙面;黑硅太阳能电池是在硅基底表面通过金属粒子辅助化学刻蚀形成一层均匀分布的纳米孔结构,这种陷光纳米绒面结构在红外波段反射率极低,可以达到5%以下,有效提高太阳能电池转化效率。对于本领域技术人员,一般认为绒面孔尺寸在1μm以下为小尺寸孔。
为了进一步提高光利用率,还要在绒面表面涂覆防反射层,一般为绝缘性好的介电材料,如SiNx、TiO 2、Al 2O 3、SiO 2中的一种或多种。
在电池上还要制作正、负电极,将PN结产生的载流子导出形成电流。电极制作方法很多,一般通过丝网印刷工艺,在受光面印刷正面电极银浆,在背光面印刷铝背场和背银电极。将浆料置于印刷网版上,经过印刷机刮刀上橡胶刮条的挤压,浆料透过网版图形的开口被印刷在电池的表面,然后经过烘干、快速烧结,金属化后形成电极。用在受光面的正面电极银浆,由于用在受光面,会遮挡光线,所以要印刷成精细的线型,另外,还要烧透受光面防反射层(钝化层),与硅基绒面形成良好欧姆接触,提高太阳能电池的光电转化效率。
太阳能电池正面电极银浆一般主要由银粉、玻璃粉组合物和有机载体组成。银粉作为导电相,玻璃粉组合物主要是银粉烧结,并与硅基形成良好欧姆接触及粘附性,有机载体为了将银粉和玻璃粉均匀稳定分散在其中,使正银浆料具有良好的精细线印刷能力。
在正面电极银浆烧结过程中,玻璃粉熔融与硅基底和银粉要具有良好的浸润性,尤其与硅基底形成欧姆接触和粘附性。但随着绒面孔尺寸越来越小,进入纳米级别,玻璃组合物熔融后很难渗入,造成与硅基接触不良、焊接拉力低等问题,为了能更好的渗入电池表面的绒面结构,要求熔融的玻璃液表面张力低、高温粘度低、流淌性好,但又不会由于铺展太宽带来电极不够精细,影响电池转化效率。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种具有较低的表面张力的玻璃粉组合物,并且其制备的太阳能电池具有较高的焊接拉力和光电转化效率。
为了实现上述技术目的,本发明首先提供了一种玻璃粉组合物,该玻璃粉组合物中含有摩尔比为1∶3-3∶1的钨和钼;其中,以氧化物计,钨和钼的总重量为5%-25%,该玻璃粉组合物的总量为100%。
本发明的玻璃粉组合物中同时含有金属钨和钼,通过限定二者特定摩尔比,以及所占百分含量,使本发明的玻璃粉组合物具有较低的熔融表面张力,降低小尺寸孔的毛细管效应,可以与绒面形成良好的浸润性,与孔底部硅基的接触更加充分,而且膨胀系数低,能够保持电极栅线的精细线型,提高电极与硅基的欧姆接触及粘附性,从而提高太阳能电池的光电转化效率。
在本发明的一具体实施方式中,该玻璃粉组合物中还含有锂、碲、铅和铋中任意一种或两种以上的组合。
其中,氧化锂可以起到助烧作用。氧化碲可以用于降低玻璃粉组合物的熔融温度,促进与硅基接触。氧化铅作为助熔试剂,降低玻璃粉组合物的熔融温度,促进与硅基的接触,增大玻璃粉组合物的致密度。氧化铋可以降低玻璃粉组合物的软化点,增加化学活性。
在本发明的一具体实施方式中,该玻璃粉组合物中可以同时含有锂和碲。
具体地,以氧化物计,锂的重量含量为5%-30%,该玻璃粉组合物的总量为100%。
具体地,以氧化物计,碲的重量含量为70%以下(优选碲的重量含量为15%-70%),该玻璃粉组合物的总量为100%。
在本发明的一具体实施方式中,该玻璃粉组合物中可以同时含有锂、碲和铋。
具体地,以氧化物计,铋的重量含量为30%以下(优选铋的重量含量为2%-30%),该玻璃粉组合物的总量为100%。
在本发明的一具体实施方式中,该玻璃粉组合物中可以同时含有锂、碲和铅。
具体地,以氧化物计,铅的重量含量为50%以下(优选铅的重量含量为1%-30%),该玻璃粉组合物的总量为100%。
在本发明的一具体实施方式中,该玻璃粉组合物中钨和钼的摩尔比可以为1∶2-2∶1,比如,可以为1∶1、0.3∶1、0.5∶1等。
在本发明的一具体实施方式中,该玻璃粉组合物中还含有钠、钾、铍、镁、钙、锶、钡、钛、钒、铬、锰、铁、钴、镍、锌、锆、铌、银、钽、硼、铝、镓、铟、硅、锗、锡、磷、锑、硒、铼、铈、铷中的一种或两种以上的组合。
具体地,可以是钠、钾、铍、镁、钙、锶、钡、钛、钒、铬、锰、铁、钴、镍、锌、锆、铌、银、钽、硼、铝、镓、铟、硅、锗、锡、磷、锑、硒、铼、铈、铷的阳离子或其化合物中的一种或两种以上的组合。
其中,钠、钾、铍、镁、钙、锶、钡、钛、钒、铬、锰、铁、钴、镍、锌、锆、铌、银、钽、硼、铝、镓、铟、硅、锗、锡、磷、锑、硒、铼、铈、铷作为助剂添加到玻璃粉组合物中,以氧化物计,用量一般为大于0小于等于5%。
本发明的玻璃粉组合物可以为无定型玻璃粉组合物、结晶玻璃粉组合物、部分结晶玻璃粉组合物、部分无定型玻璃粉组合物中的一种或两种以上的组合。
本发明还提供了上述玻璃粉组合物的制备方法,该制备方法包括以下步骤:
将玻璃粉组合物的原料组成混合,在700℃-1000℃下加热熔融30min-120min;
后经冷却,得到玻璃粉组合物碎片,经研磨,得到所需粒径分布的玻璃粉组合物。
在本发明的玻璃粉组合物的制备方法中,玻璃粉组合物的原料组成根据玻璃粉组合物的组成选择性添加相应的金属的氧化物或可以加热分为相应金属氧化物的化合物。
比如,该玻璃粉组合物的原料组成为钨的氧化物、钼的氧化物。该玻璃粉组合物还含有锂、碲、铋、铅的氧化物或加热可分解相应氧化物的化合物中的一种或两种以上的组合。
在本发明的一具体实施方式中,进行加热熔融时,可以在电阻炉中进行。
本发明的玻璃粉组合物的制备方法对冷却的操作没有特殊要求,可以通过水淬、钢板或不锈钢对辊机进行冷却。
在本发明的玻璃粉组合物的制备方法中,研磨的目的是获得所需粒径,比如可以通过行星式球磨机进行球磨,得到所需粒径分布的玻璃粉组合物。
本发明又提供了一种导电浆料,该导电浆料含有(70-93)重量份的金属粉、(0.5-15)重量份的本发明的玻璃粉组合物,(5-30)重量份的有机相。
在本发明的一具体实施方式中,采用的金属粉可以包括银粉、金粉、铂粉、锡粉、镍粉、铝粉中的一种或两种以上的合金;优选地,金属粉可以为银粉和/或铂粉;更优选地,采用的金属粉为银粉。
在本发明的导电浆料中,金属粉颗粒的形状可以为球形、片形、长条形和不规则形状中一种或两种以上的组合。
在本发明的一具体实施方式中,采用的有机相包括溶剂、树脂、触变剂、塑形剂和其它助剂中的一种或多种。添加有机相的目的是使导电浆料具备良好的流变特性,适于丝网印刷,能够形成精细线型。
具体地,溶剂可以为松油醇、丁基卡必醇醋酸酯、十二醇酯。以有机相的总重量为100%计,溶剂的含量可以为60%-90%。
具体地,树脂可以为纤维素、环氧树脂、丙烯酸树脂、聚酯树脂中的一种或两种以上的组合。以有机相的总重量为100%计,树脂的含量可以为1%-20%。
具体地,触变剂可以为氢化蓖麻油、聚酰胺蜡、气相二氧化硅等。以有机相的总重量为100%计,触变剂的含量1%-10%。
具体地,塑形剂可以为脂肪族二元酸酯、邻苯二甲酸酯、对苯二甲酸酯、苯多酸酯、苯甲酸酯、多元醇酯类环氧、柠檬酸酯、聚酯等。以有机相的总重量为100%计,塑形剂的含量可以为大于0小于等于5%。
具体地,其它助剂可以为表面活性剂、保湿剂等。以有机相的总重量为100%计,其他助剂的含量可以大于0小于等于10%。
本发明的导电浆料通过采用本发明的玻璃粉组合物,使导电浆料烧结后与小尺寸绒面电池形成良好欧姆接触,并形成精细电极,提高太阳能电池转化效率和焊接拉力。
本发明又提供了上述导电浆料的制备方法,该制备方法包括以下步骤:
有机相制备:将树脂和有机溶剂混合均匀,室温或加热搅拌均匀;
浆料制备:将金属粉、玻璃粉组合物、有机相混合,研磨分散,平均刮板细度达到10μm(优选5μm)以下,得到导电银浆。
最后,本发明提供了一种太阳能电池,该太阳能电池含有本发明的导电浆料制成的部件。本发明的太阳能电池包括但不限于晶硅太阳能电池。
本发明的太阳能电池通过以下步骤制备得到:
半导体衬底选择掺杂硼的P型硅基底或4磷的N型硅基底,硅基底为180-250μm厚的125×125mm或156×156mm或其它典型尺寸的硅片;
第一步,用腐蚀性溶液对硅基底一侧进行腐蚀制成金字塔形(单晶)或凹凸不平(多 晶)减反射绒面,也可以用湿法或干法黑硅技术制成黑硅纳米绒面;
第二步,在P(N)型硅基底另一侧形成N(P)型扩散层制成PN结,其中,N型扩散层可以是以气态三氯氧磷作为扩散源的气相热扩散法,或者磷离子注入法,或者含有五氧化二磷的浆料涂覆热扩散法等;
第三步,在硅基底绒面一侧沉覆一层SiNx减反层,或再加一层氧化铝钝化层,也可以是相近的其它具有良好减反射效果的涂层;也可以利用SiNx和氧化铝或氧化硅在电池背面形成钝化层,作为背反射器,增加长波光的吸收。
第四步,在P或N型硅基底一侧印刷或涂覆Al电极层和主栅银电极层,
第五步,将本发明的导电浆料在受光硅基底一侧减反膜上通过丝网印刷、涂覆或喷墨打印等方式形成纵横的主栅和细栅,在一定烧结温度程序下,烧结峰值温度为600℃-950℃,共烧形成电极体,得到太阳能电池。
本发明的太阳能电池通过采用特定的玻璃粉组合物形成的导电浆料作为浆料,使得该太阳能电池具有较高的焊接拉力和光电转化效率。
附图说明
图1是实施例20的导电浆料印刷烧结后的图像。
图2为对比例1的导电浆料印刷烧结后的图像。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例
本实施例提供了一种玻璃粉组合物,其具体组成如表1所示。
本实施例还提供了一种导电浆料,该导电浆料含有(70-93)重量份的银粉、(0.5-15)重量份的表1所示的玻璃粉组合物,(5-30)重量份的有机相;
其中,以有机相的总质量为100份计,有机相包括(60-90)重量份的丁基卡必醇醋酸酯、(1-5)重量份的乙基纤维素、(1-5)重量份的环氧树脂、(0.5-3)重量份的聚酰胺蜡、(1-3)重量份的邻苯二甲酸酯、(0.5-3)重量份的甲基硅油。
本实施例的太阳能电池通过以下步骤制备得到:
半导体衬底选择掺杂硼的P型硅基底或4磷的N型硅基底,硅基底为180-250μm 厚的125×125mm或156×156mm或其它典型尺寸的硅片;
第一步,用腐蚀性溶液对硅基底一侧进行腐蚀制成金字塔形(单晶)或凹凸不平(多晶)减反射绒面,也可以用湿法或干法黑硅技术制成黑硅纳米绒面;
第二步,在P(N)型硅基底另一侧形成N(P)型扩散层制成PN结,其中,N型扩散层可以是以气态三氯氧磷作为扩散源的气相热扩散法,或者磷离子注入法,或者含有五氧化二磷的浆料涂覆热扩散法等;
第三步,在硅基底绒面一侧沉覆一层SiNx减反层,或再加一层氧化铝钝化层,也可以是相近的其它具有良好减反射效果的涂层;也可以利用SiNx和氧化铝或氧化硅在电池背面形成钝化层,作为背反射器,增加长波光的吸收。
第四步,在P或N型硅基底一侧印刷或涂覆Al电极层和主栅银电极层,
第五步,将本实施例的导电浆料在受光硅基底一侧减反膜上通过丝网印刷、涂覆或喷墨打印等方式形成纵横的主栅和细栅,在一定烧结温度程序下,烧结峰值温度为600℃-950℃,共烧形成电极体,得到太阳能电池。
对本实施例的太阳能电池进行电性能测试,具体是:
使用太阳能模拟电效率测试仪,在标准条件下测试(大气质量AM1.5,光照强度1000W/m 2,测试温度25℃),结果如表1所示。
对本实施例的太阳能电池进行焊接拉力测试方法,具体是:
选用1.2×0.25mm焊条,电烙铁设置温度350℃,用拉力测试机180°匀速测试,取平均值为本次测试拉力值。每个配方测试5片电池片,然后取平均值。结果如表1所示。
为了进行对比,以表1中的对比例1和对比例2的玻璃粉组合物制备得到导电浆料,导电浆料的金属粉、有机相与本实施例相同。并按照上述方法制备得到相应的太阳能电池。
图1中实施例20形成的导电浆料印刷烧结后印刷烧结后宽度为35μm,图2中对比例1形成的导电浆料印刷烧结后宽度为45μm。可见,本发明的导电浆料在烧结后不但线型精细,且边缘没有溢边,说明玻璃组合物在熔融后在小尺寸孔绒面上没有明显流淌扩散。
Figure PCTCN2019092012-appb-000001
Figure PCTCN2019092012-appb-000002
通过表1可以看出,通过本发明的玻璃粉组合物形成的导电浆料作为浆料制备得到的太阳能电池,该太阳能电池具有较高的焊接拉力和光电转化效率。

Claims (17)

  1. 一种玻璃粉组合物,其特征在于,该玻璃粉组合物中含有摩尔比为1∶3-3∶1的钨和钼;其中,以氧化物计,钨和钼的总重量为5%-25%,该玻璃粉组合物的总量为100%。
  2. 根据权利要求1所述的玻璃粉组合物,其特征在于,该玻璃粉组合物中还含有锂、碲、铅和铋中任意一种或两种以上的组合。
  3. 根据权利要求1所述的玻璃粉组合物,其特征在于,该玻璃粉组合物中含有锂和/或碲。
  4. 根据权利要求3所述的玻璃粉组合物,其特征在于,以氧化物计,锂的重量含量为5%-30%,该玻璃粉组合物的总量为100%。
  5. 根据权利要求3或4所述的玻璃粉组合物,其特征在于,以氧化物计,碲的重量含量为70%以下,该玻璃粉组合物的总量为100%;
    优选地,碲的重量含量为15%-70%。
  6. 根据权利要求1或2所述的玻璃粉组合物,其特征在于,该玻璃粉组合物中含有锂、碲和铋。
  7. 根据权利要求6所述的玻璃粉组合物,其特征在于,以氧化物计,铋的重量含量为30%以下,该玻璃粉组合物的总量为100%;
    优选地,铋的重量含量为2%-30%。
  8. 根据权利要求1或2所述的玻璃粉组合物,其特征在于,该玻璃粉组合物中含有锂、碲和铅。
  9. 根据权利要求8所述的玻璃粉组合物,其特征在于,以氧化物计,铅的重量含量为50%以下,该玻璃粉组合物的总量为100%;
    优选地,铅的重量含量为1%-30%。
  10. 根据权利要求1所述的玻璃粉组合物,其特征在于,该玻璃粉组合物中钨和钼的摩尔比为1∶2-2∶1。
  11. 根据权利要求1或2所述的玻璃粉组合物,其特征在于,该玻璃粉组合物中还含有钠、钾、铍、镁、钙、锶、钡、钛、钒、铬、锰、铁、钴、镍、锌、锆、铌、银、钽、硼、铝、镓、铟、硅、锗、锡、磷、锑、硒、铼、铈、铷中的一种或两种以上的组合。
  12. 权利要求1-11任一项所述的玻璃粉组合物的制备方法,其特征在于,该制备方法包括以下步骤:
    将玻璃粉组合物的原料组成混合,在700℃-1000℃下加热熔融30min-120min;
    后经冷却,得到玻璃粉组合物碎片,经研磨,得到所需粒径分布的玻璃粉组合物。
  13. 一种导电浆料,其特征在于,该导电浆料含有(70-93)重量份的金属粉、(0.5-15)重量份的权利要求1-11任一项所述的玻璃粉组合物,(5-30)重量份的有机相。
  14. 根据权利要求13所述的导电浆料,其特征在于,所述金属粉包括银粉、金粉、铂粉、锡粉、镍粉、铝粉中的一种或两种以上的合金;
    优选地,所述金属粉包括银粉、铂粉;
    更优选地,所述金属粉包括银粉。
  15. 根据权利要求13所述的导电浆料,其特征在于,所述有机相包括溶剂、树脂、触变剂、流平剂、塑形剂和其它助剂中的一种或多种。
  16. 权利要求13-15任一项所述的导电浆料的制备方法,其特征在于,该制备方法包括以下步骤:
    有机相制备:将树脂和有机溶剂混合均匀,室温或加热搅拌均匀;
    浆料制备:将金属粉、玻璃粉组合物、有机相混合,研磨分散,平均刮板细度达到10μm以下,得到导电浆料。
  17. 一种太阳能电池,其特征在于,该太阳能电池含有权利要求13-15任一项所述的导电浆料制成的部件。
PCT/CN2019/092012 2019-06-20 2019-06-20 一种玻璃粉组合物、导电浆料及太阳能电池 WO2020252728A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/092012 WO2020252728A1 (zh) 2019-06-20 2019-06-20 一种玻璃粉组合物、导电浆料及太阳能电池
CN201980086037.1A CN113228302A (zh) 2019-06-20 2019-06-20 一种玻璃粉组合物、导电浆料及太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/092012 WO2020252728A1 (zh) 2019-06-20 2019-06-20 一种玻璃粉组合物、导电浆料及太阳能电池

Publications (1)

Publication Number Publication Date
WO2020252728A1 true WO2020252728A1 (zh) 2020-12-24

Family

ID=74036985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092012 WO2020252728A1 (zh) 2019-06-20 2019-06-20 一种玻璃粉组合物、导电浆料及太阳能电池

Country Status (2)

Country Link
CN (1) CN113228302A (zh)
WO (1) WO2020252728A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150243808A1 (en) * 2014-02-26 2015-08-27 Heraeus Precious Metals North America Conshohocken Llc Glass comprising molybdenum and lead in a solar cell paste
WO2016050668A1 (en) * 2014-10-01 2016-04-07 Ferro Gmbh Tellurate joining glass having processing temperatures ≤ 420 °c
CN107746184A (zh) * 2017-10-20 2018-03-02 苏州晶银新材料股份有限公司 一种玻璃粉组合物及含有其的导电银浆和制备方法
CN108665994A (zh) * 2017-03-27 2018-10-16 苏州晶银新材料股份有限公司 银电极浆料
CN108666008A (zh) * 2017-03-27 2018-10-16 苏州晶银新材料股份有限公司 用于太阳能电池的导电浆料
CN109427429A (zh) * 2017-09-01 2019-03-05 苏州晶银新材料股份有限公司 适合高速印刷的导电浆料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150243808A1 (en) * 2014-02-26 2015-08-27 Heraeus Precious Metals North America Conshohocken Llc Glass comprising molybdenum and lead in a solar cell paste
WO2016050668A1 (en) * 2014-10-01 2016-04-07 Ferro Gmbh Tellurate joining glass having processing temperatures ≤ 420 °c
CN108665994A (zh) * 2017-03-27 2018-10-16 苏州晶银新材料股份有限公司 银电极浆料
CN108666008A (zh) * 2017-03-27 2018-10-16 苏州晶银新材料股份有限公司 用于太阳能电池的导电浆料
CN109427429A (zh) * 2017-09-01 2019-03-05 苏州晶银新材料股份有限公司 适合高速印刷的导电浆料
CN107746184A (zh) * 2017-10-20 2018-03-02 苏州晶银新材料股份有限公司 一种玻璃粉组合物及含有其的导电银浆和制备方法

Also Published As

Publication number Publication date
CN113228302A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN107746184B (zh) 一种玻璃粉组合物及含有其的导电银浆和制备方法
CN106477897A (zh) 玻璃粉及应用该玻璃粉制得的正电极银浆、太阳能电池
JP5438113B2 (ja) アルミニウムペーストおよびシリコン太陽電池の製造におけるアルミニウムペーストの使用
KR101497038B1 (ko) 전극 형성용 은 페이스트 조성물 및 이의 제조 방법
JP2006313744A (ja) 導電性厚膜組成物、電極、およびそれから形成される半導体デバイス
TW201131799A (en) Process for the formation of a silver back electrode of a passivated emitter and rear contact silicon solar cell
CN112041994B (zh) 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池
KR20130042524A (ko) 은 페이스트 조성물 및 이를 이용한 태양전지
CN110603648A (zh) 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池
TW201312594A (zh) 鋁膏及其於鈍化射極及背接觸式矽太陽能電池之製造的使用
US20130056060A1 (en) Process for the production of lfc-perc silicon solar cells
CN111302638B (zh) 一种玻璃粉组合物及含有其的导电银浆和太阳能电池
CN105118578A (zh) 太阳能电池用无铅正面电极银浆的制备工艺
TWI504001B (zh) 在矽晶圓前側上形成柵極電極的方法
CN106024095A (zh) 一种太阳能电池无氧玻璃导电浆料
WO2020118781A1 (zh) 一种玻璃粉组合物及含有其的导电银浆和太阳能电池
CN105637046B (zh) 包含纳米级化学熔料的导电糊料或导电油墨
CN105118873A (zh) 晶体硅太阳能电池正面电极银浆
KR20130078667A (ko) 실리콘 태양전지의 전면전극 형성용 무기첨가제 및 이를 이용하여 제조된 실리콘 태양전지
WO2020252728A1 (zh) 一种玻璃粉组合物、导电浆料及太阳能电池
CN111302620A (zh) 一种玻璃粉组合物及含有其的导电银浆和太阳能电池
CN103021510A (zh) 一种晶体硅太阳能电池正面电极银浆及其制备方法
WO2012083154A1 (en) Low bow aluminum paste with an alkaline earth metal salt additive for solar cells
TWI482302B (zh) 形成n型擴散層的組成物、n型擴散層的製造方法及太陽電池元件的製造方法
CN114283963A (zh) 导电浆料组合物及其制备方法和应用、晶硅太阳能电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19933689

Country of ref document: EP

Kind code of ref document: A1