WO2020252680A1 - 具有气流通道的致冷模块及具有致冷模块的空调装置 - Google Patents

具有气流通道的致冷模块及具有致冷模块的空调装置 Download PDF

Info

Publication number
WO2020252680A1
WO2020252680A1 PCT/CN2019/091833 CN2019091833W WO2020252680A1 WO 2020252680 A1 WO2020252680 A1 WO 2020252680A1 CN 2019091833 W CN2019091833 W CN 2019091833W WO 2020252680 A1 WO2020252680 A1 WO 2020252680A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
cold
temperature
refrigeration module
air flow
Prior art date
Application number
PCT/CN2019/091833
Other languages
English (en)
French (fr)
Inventor
林世轩
Original Assignee
林世轩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林世轩 filed Critical 林世轩
Priority to PCT/CN2019/091833 priority Critical patent/WO2020252680A1/zh
Publication of WO2020252680A1 publication Critical patent/WO2020252680A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect

Definitions

  • a refrigeration module with an air flow channel and an air conditioner with a refrigeration module in particular, the low temperature generated by the low temperature measurement of the refrigeration module can be transmitted to a structure with an air flow channel and good thermal conductivity, thereby generating cold in the air channel Air, cold air can be brought into the environmental space through natural convection or forced convection, which reduces the temperature in the environmental space.
  • Refrigeration chip (Thermoelectric Cooling Chip) is a kind of semiconductor element composed of N-type semiconductor and P-type semiconductor material through a circuit connected to form a galvanic pair. After direct current is passed into the circuit, energy transfer can be generated, and it can be freely controlled to perform Cooling, heating, temperature control. The temperature difference between the two sides of the wafer is affected by the magnitude of the current, and the greater the current, the greater the temperature difference.
  • the refrigeration chip Compared with the general refrigeration cycle using compressors and refrigerants, the refrigeration chip has the following characteristics: no mechanical parts, no noise; no refrigerant is used, which is more environmentally friendly; small, lightweight, and easy to select in shape; only input current It can be cooled or heated; long life, simple operation and easy maintenance.
  • Taiwan New Patent Announcement No. M571113 “Fan Mechanism Cooled by Refrigeration Chips”, which includes at least one fan; at least one cold air evaporator, including a water flow line located in front of or behind the fan, and an external water system
  • the water flow line is injected, and the injected water flows out through the water flow line; the fan can draw air through the cold air evaporator and the fan to form a cool breeze; the same cooling group is connected to the cold air evaporator for cooling the water flow
  • the cooling water of the platoon; a pumping device is connected to the water pipe of the refrigeration group to drive water to flow between the refrigeration group and the water flow line; the refrigeration group includes at least a uniform cooling device, the The cooling device includes: a heat exchange box through which the water flow of the water flow line passes through the heat exchange box; a consistent cold chip is attached to one side of the heat exchange box for absorbing the heat of the water flow in the heat exchange box to reduce the water temperature; A water cooling mechanism is attached to the other side
  • the cooling chip is used to cool the water flow line, and the wind flow of the fan can produce cool breeze, it is only a cool breeze after all, which is quite different from the temperature of the air outlet of the air conditioner about 13-15 degrees Celsius, so
  • the fan mechanism using the cooling chip can only be used as a cooler, but cannot be used as a household air conditioner.
  • the above patent uses water cooling on both sides of the cooling chip to cool or dissipate heat.
  • the cooling surface of the cooling chip cools the water.
  • the cooling water will flow through the water flow line of the cold air evaporator.
  • the cold method evaporates the cooling air and is carried out by the fan.
  • the heat load of the cooling water will rise when it flows through the water flow line of the air-conditioning evaporator, and the water flow line is located in the air-conditioning evaporator.
  • the outside temperature of the air-conditioning evaporator is slightly higher than the water flow line; even, the fan extracts the outside air outside the air-conditioning evaporator. When the temperature of the outside air is high, even if the outside temperature of the air-conditioning evaporator is low, it will be blown out by the fan. The temperature of the wind is only lower than the outside air.
  • a refrigeration module with airflow channels including a refrigeration chip, a high-temperature conduction structure and a low-temperature conduction structure; the refrigeration chip has a cold-generating surface that generates low temperatures and a heat-generating surface that generates high temperatures; the high-temperature conductive structure is substantially in contact with the The heat generating surface contains a flowable heat exchange fluid inside, the heat exchange fluid will be discharged from the high-temperature conduction structure and be cooled, and the cooled heat exchange fluid will be returned to the high-temperature conduction structure;
  • One side of the conductive structure is substantially close to the cold generating surface and has a plurality of air flow channels for gas to pass through.
  • the low temperature of the cold generating surface is directly transmitted to the surface of the air flow channel and then transferred to the air flow channel by heat radiation.
  • the low-temperature conduction structure includes a substrate and a plurality of spacers.
  • the substrate has two sides with larger surface areas. One side is attached to the cold generating surface, and the other side is connected to one end of the spacer. Connected, an air flow channel is defined by any two spacers and the base plate, and any two spacers are separated by a gap.
  • a cover plate is further provided, and the cover plate is connected to the free end of the spacer plate on one side corresponding to the substrate, and the air flow channel is formed by the cover plate, the two spacer plates and the substrate. Define.
  • the surface of a spacer is flat, wavy or irregular.
  • an airflow channel or the airflow channel penetrates longitudinally, laterally, or diagonally through the low-temperature conductive structure.
  • the low temperature conductive structure is a honeycomb structure or a grid structure.
  • a heat dissipation device is further included to receive the fluid led out by the high-temperature conductive structure to cool the fluid, and then transport the fluid to the high-temperature conductive structure and repeat the cycle.
  • An air conditioner with a refrigeration module which includes a main body, a fan, and a refrigeration module; the main body has an air duct which penetrates the main body, and an air inlet and an air outlet are formed on both sides of the main body.
  • the duct is between the air inlet and the air outlet; the fan is arranged at the air inlet and can generate an air flow.
  • the refrigeration module includes a refrigeration chip, a high-temperature conduction structure, and a low-temperature conduction structure; the refrigeration chip has a cold-generating surface that generates low temperatures and a heat-generating surface that generates high temperatures; the high-temperature conductive structure is substantially in contact with the heat-generating surface, and the internal volume Set a flowable heat exchange fluid, the heat exchange fluid will be discharged from the high-temperature conduction structure and be cooled, and the cooled heat exchange fluid is then returned to the high-temperature conduction structure; one side of the low-temperature conduction structure is essentially It abuts on the cold generating surface and has a plurality of air flow channels for gas to pass through. The low temperature of the cold generating surface is directly transmitted to the surface of the air flow channel and then transferred into the air flow channel by heat radiation.
  • an air conditioner with a refrigeration module which includes a main body, a fan, a plurality of refrigeration modules, and a high-temperature conduction structure.
  • the main body has a plurality of air ducts penetrating through the main body.
  • On both sides of the main body are an air inlet and an air outlet.
  • the air duct is between the air inlet and the air outlet; the fan is arranged at the air inlet and Can produce a wind current.
  • Each cold module includes a refrigeration chip and a low-temperature conduction structure; the refrigeration chip has a cold-generating surface and a heat-generating surface; the low-temperature conductive structure is arranged on the cold-generating surface and is in substantial contact, and has multiple airflow channels for gas to pass through, The low temperature of the cold generating surface is directly transmitted to the surface of the air flow channel, and then is transferred into the air flow channel in the manner of heat radiation to generate cold air in the air flow channel; the high-temperature conduction structure is simultaneously in contact with the refrigeration
  • the heat generating surface of the component contains a heat exchange fluid that can flow inside. The heat exchange fluid will be discharged from the high-temperature conductive structure and be cooled, and the heat-exchanged fluid after cooling is returned to the high-temperature conductive structure .
  • the refrigeration module is arranged at intervals in an air duct, the low-temperature conduction structure of the refrigeration module must be located in the air duct, and the air flow channel of the refrigeration module is connected to the air duct; when the fan During operation, each wind flow is generated in the air duct, and the wind flow will pass through the air duct and the air flow channel to bring the cold air of the air flow channel out of the air outlet.
  • the high-temperature conductive structure is further provided with one or more heat dissipation holes, which can improve the heat dissipation effect.
  • Fig. 1 is a schematic diagram showing an assembly of a refrigeration module according to an embodiment described.
  • Fig. 2 is a schematic cross-sectional view of a refrigeration module in a top view showing an embodiment described.
  • FIG. 3 shows a schematic diagram of the low temperature conduction structure according to the described embodiment.
  • Figure 4 shows a schematic diagram of the low-temperature conductive structure further including a cover plate.
  • Fig. 5 shows a schematic diagram of a wave-shaped spacer plate of the low-temperature conductive structure.
  • Figure 6 shows a schematic diagram of the low-temperature conductive structure being a grid-like structure.
  • FIG. 7 shows a schematic diagram of the low-temperature conductive structure as a honeycomb structure.
  • Fig. 8a shows a three-dimensional assembly view of an air conditioner with a refrigeration module according to the described embodiment.
  • Fig. 8b is a schematic horizontal sectional view taken along the line A-A of Fig. 8a.
  • Figure 9a shows a three-dimensional assembly view of an air conditioner with a refrigeration module according to the described embodiment.
  • Figure 9b shows a schematic diagram of the main body of Figure 9a.
  • Fig. 9c is a schematic horizontal cross-sectional view taken along the line A-A of Fig. 9a.
  • heat or high temperature means relatively higher (greater than)
  • cold or low temperature refers to a temperature phenomenon that is relatively lower (less than) hot or high temperature, and there will be a temperature difference between hot and cold.
  • the refrigeration chip referred to in the following embodiments is also called a refrigeration chip or an electric refrigeration chip.
  • FIG. 1 is a schematic diagram showing the assembly of the refrigeration module of an embodiment described
  • FIG. 2 is a schematic cross-sectional view of the refrigeration module of the described embodiment when viewed from above.
  • the refrigeration module 1 may include a refrigeration chip 11, a high-temperature conductive structure 12 and a low-temperature conductive structure 13.
  • the refrigerating chip 11 is a kind of semiconductor element composed of N-type semiconductor and P-type semiconductor material through a circuit connected to form a galvanic pair. When a direct current is passed through the circuit, energy transfer can be generated to generate the cold of the refrigerating chip 11
  • the surface 11a has an endothermic effect to lower the temperature, and the opposite heat generating surface 11b has an exothermic effect to increase the temperature.
  • the high-temperature conductive structure 12 has a body 120.
  • the body 120 can be formed into a rectangular body with a hollow inner space 121 or other suitable shapes using copper alloy materials or aluminum alloy materials, and is appropriately positioned on the side walls of the body 120.
  • At least one inlet 122 connecting the inner space 121 and the outside, and at least one outlet 123 connecting the inner space 121 and the outside are provided at the position; for example, the inlet 122 and the outlet 123 may be arranged on opposite sides of the main body 120, or The inlet 122 and the outlet 123 are arranged on the same side of the body 120.
  • the inlet 122 and outlet 123 of the high-temperature conductive structure 12 are respectively connected to the fluid input pipe 124A and the fluid output pipe 124B, and then the heat exchange fluid is input into the body 120 through the fluid input pipe 124A; the heat exchange fluid can be water or any suitable Fluid.
  • the heat exchange fluid can be water or any suitable Fluid.
  • the heat exchange fluid in the body 120 can absorb heat to the heat generating surface 11b of the refrigerating wafer 11 for heat exchange, and then the heat exchange fluid flows out through the fluid output pipe 124B, and the heat exchange fluid after the flow out can pass through another
  • the heat exchange equipment (not shown in the figure) dissipates heat and is recycled. That is, the heat exchange fluid cooled by the external heat sink will be transported back to the body 120, so the heat exchange fluid will follow the external heat sink
  • the high-temperature conductive structures flow between each other.
  • a thermal conductive glue can be used to coat the opposite sides of the refrigerating chip 11, that is, the cold generating surface 11a and the heat generating surface 11b, the heat generating surface 11b of the refrigerating chip 11 is adhered to the outer side wall of the main body 120 of the high temperature conductive structure 12 through the thermally conductive glue, and the cold generating surface 11a of the refrigerating chip 11 is adhered by the thermally conductive glue Adhere to one side of the low-temperature conductive structure 13.
  • FIG. 3 shows a schematic diagram of a low-temperature conduction structure according to the described embodiment.
  • the low-temperature conduction structure 13 includes a substrate 131 and a plurality of spacer plates 133.
  • the substrate 131 and the plurality of spacer plates 133 constitute a plurality of airflows.
  • the base plate 131 and the spacer plate 133 are plates with appropriate thicknesses, and the base plate 131 includes two opposite sides.
  • the two opposite sides of the base plate 131 will be described as the surface area in the following text.
  • the larger left side and right side are illustrated; at different angles, the two opposite side surfaces of the substrate 131 can also be regarded as the top surface and the bottom surface.
  • the whole substrate 131 is parallel to the refrigerating wafer 11, or the surface of the substrate 131 with the largest surface area corresponds to the cold generating surface of the refrigerating wafer 11, for example, the right side of the substrate 231 can be attached to or Covering the cold generating surface, preferably, the area of the right side surface of the substrate 231 may be slightly larger than the cold generating surface 11a of the refrigerating chip 11, so as to spread the low temperature with a larger area.
  • the plurality of spacer plates 133 are not parallel to the refrigerating chip 11 as a whole; for example, in terms of their relative relationship, an angle or a right angle is formed between the plurality of spacer plates 133 and the refrigerating chip 11 or between the spacer plate 133 and the substrate 131 , And a substrate 131 is arranged between the spacer 133 and the refrigerating chip.
  • the thickness of the plurality of spacer plates 133 does not need to be the same, and the spacing between each other does not need to be equal.
  • the substrate 131 and the plurality of spacer plates 133 are integrally formed, or formed by combining, welding and other suitable methods to form a low-temperature conductive structure.
  • the substrate 131 and the plurality of spacer plates 133 are made of high thermal conductivity. Metal or thermally conductive plastic.
  • the substrate 131 Since the right side of the substrate 131 is flatly attached to the cold generating surface 11a of the refrigerating chip 11, the low temperature energy generated by the cold generating surface 11a is directly transmitted to the right side of the substrate 131.
  • the substrate 131 has good thermal conductivity. With a metal material and an appropriate thickness, the substrate 131 can quickly and uniformly conduct low temperature from the right side to its left side and the surface of the spacers. The low temperature on the surface of the substrate 131 and the spacers is caused by heat radiation. The effect is transmitted to the air flow channel 135 formed by the plurality of partition plates 133, so that the air flow channel 135 is filled with cold air.
  • the plurality of spacer plates 133 are arranged in parallel with each other, and one end of the plurality of spacer plates 133 is connected to the left side of the substrate 131, and any two adjacent spacer plates 133 have a proper interval.
  • the space enclosed by the plate 133 and the base plate 131 constitutes an air flow channel 135.
  • a cover plate 137 is further provided; basically, the cover plate 137 is the same as the base plate 131 in terms of structure and arrangement, except that the base plate 131 is connected to the right side of the spacer plate 133, and the cover plate 137 It is connected to the left side of the spacer plate 133; that is, the cover plate 137 corresponds to the side of the base plate 131 and is connected to the free ends of the spacer plates.
  • the low-temperature conducting structure 13 has only the front side and the rear side
  • the box on the open side as shown in FIG. 4, allows the air flow channel 135 to penetrate in only a single direction, so that the cold air is not easily scattered outside.
  • the surface of the spacer plate 133 is flat, or the surface of the spacer plate 133 is a wavy (refer to FIG. 5), uneven surface, etc., so as to improve the spacer 133 Surface area, and make the surface area of low temperature larger.
  • the low-temperature conductive structure 13 is a grid-like structure, a honeycomb structure, or other structures with channels.
  • FIG. 8a shows a three-dimensional assembly view of an air conditioner with a refrigeration module according to the described embodiment
  • FIG. 8b is a schematic horizontal cross-sectional view along the AA section line of FIG. 8a; as shown in FIG. 8a, a refrigeration module
  • the air-conditioning device 100 includes a refrigeration module 1, a main body 3, and a fan 5.
  • the main body 3 has an air duct 31 and the air duct 31 penetrates the main body 3.
  • the penetrating direction of the air duct 31 through the main body can match the direction of the air flow channel of the refrigeration module 1, for example, the two are in the same direction.
  • the air duct 31 penetrates through the main body 3 along the horizontal direction, and is kept in the same direction as the air flow channel 135 surrounded by the partition plate 133, so that the air duct 31 can be connected to the air flow.
  • the channel 135 can be connected, but is not limited to this, that is, the penetrating direction of the air channel 31 and the manner of the air flow channel depend on actual requirements, and in principle, as long as the air channel can be connected to the air channel.
  • An air inlet 33 and an air outlet 35 are provided on both sides of the main body 3.
  • the air inlet 33 and the air outlet 35 are provided on opposite sides of the main body 3, and the air duct 31 is between the air inlet 33 and the air outlet 35 It is connected to the air inlet 33 and the air outlet 35; the fan 5 is set at the air inlet 33 of the main body 3. When the fan 5 is running, it will generate air flow, and the air flow generated by the fan 5 will pass through the air duct 31 and then from the air outlet 35 flows out to the outside world.
  • the structure of the refrigeration module 1 is roughly the same as the previous embodiment, but mainly the low-temperature conduction structure 13 is to be arranged in the air duct 31, so each air flow channel 135 of the low-temperature conduction structure 13 will be connected to the air duct 31; when the refrigeration module 1 When the power is turned on, each air flow channel 135 will gradually be filled with cold air, so the air flow generated when the fan is running, because the air flow will pass through the air duct and the air flow channel, so the air flow will bring the cold air of the air flow channel out of the air outlet and enter Into the environmental space.
  • Multiple sets of refrigeration modules 1 are provided in the air duct 31, and the refrigeration modules can be arranged in pairs.
  • the multiple sets of refrigeration modules are arranged in the air duct at an interval from each other. Therefore, when each refrigeration module is powered on, each The cold air in the airflow channel of the refrigeration module will be filled in the air duct, so that the air duct is filled with cold air. If the wind speed of the fan is faster, it may also produce a wind chill effect, which can effectively reduce the temperature of the environmental space.
  • Figure 9b shows another structure that can be implemented for the main body of the air conditioner.
  • the main body 3 is formed with two air ducts 31, 32, and the two air ducts 31, 32 can independently penetrate the main body 3 and the main body 3
  • the two opposite outer side walls have a plurality of openings 37, and the openings 37 are in communication with the air duct.
  • two upper and lower refrigeration modules can be arranged, and only the lower refrigeration module is shown in Fig. 9c;
  • the setting principles and principles of the embodiment are basically the same as those of the previous embodiment, and the following only describes the implementation if the main body has two air ducts or more than two air ducts.
  • each air duct 31 in Fig. 9c multiple groups of refrigeration modules 1 are also provided in each air duct 31 in Fig. 9c, and the multiple groups of refrigeration modules 1 are arranged in the air ducts 31, 32 at an interval from each other.
  • Each refrigeration module 1 can be arranged in the air ducts 31 and 32 through the opening 37, and the low-temperature conduction structure 13 of each refrigeration module 1 is arranged in the air ducts 31 and 32.
  • the refrigeration modules 1 share a high-temperature conduction structure 12, that is, the high-temperature conduction structure 12 is substantially in contact with the heat generating surfaces of the refrigeration modules (refrigeration modules arranged in the same air duct) at the same time, and the high-temperature conduction
  • the inside of the structure contains a heat exchange fluid that can flow, and the heat exchange fluid will be discharged from the high-temperature conductive structure and be cooled, and the cooled heat exchange fluid is then returned to the high-temperature conductive structure; and
  • the high-temperature conductive structure is further provided with one or more heat dissipation holes to increase the heat dissipation efficiency.
  • the advantage of this embodiment is that the refrigeration chips arranged in the same air duct can share the same high-temperature conductive structure 12, and the number of high-temperature conductive structures 12 can be saved, and the high-temperature conductive structure 12 can further be provided with an appropriate number of heat dissipation holes 125 , In order to improve the heat dissipation effect.
  • each refrigeration module when each refrigeration module is powered on, the cold air in the airflow channel of each refrigeration module will be filled in the air duct, so that the air duct is filled with cold air. If the wind speed of the fan is faster, the wind chill effect may also occur. And can effectively reduce the temperature of the environmental space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

具有气流通道的致冷模块及具有致冷模块的空调装置,包含;一致冷晶片(11),具有产生低温的一冷产生面(11a)与产生高温的一热产生面(11b);一高温传导结构(12),实质接触于该热产生面(11b),内部容置能流动的一热交换流体,该热交换流体会被排出于该高温传导结构(12)并被降温,降温后的该热交换流体再被输回于该高温传导结构(12)内;以及一低温传导结构(13),一侧实质贴靠于该冷产生面(11a),并具有供气体通过的多个气流通道(135),该冷产生面(11a)的低温是直接传导于所述气流通道(135)的表面再以热辐射方式传递于该气流通道(135)之中。

Description

具有气流通道的致冷模块及具有致冷模块的空调装置 技术领域
一种具有气流通道的致冷模块及具有致冷模块的空调装置,尤其是致冷模块的低温测所产生的低温能传导到具有气流通道且导热性佳的结构体,进而在气流通道产生冷空气,冷空气能透过自然对流或强制对流方式被带到环境空间中,而使环境空间中的温度下降。
背景技术
致冷晶片(Thermoelectric Cooling Chip)是一种由N型半导体和P型半导体材料经由电路联成电偶对的半导体元件,将直流电流通入该电路后可以产生能量转移,并且可自由地控制以进行冷却、加热、温度控制。晶片两面的温差受到电流大小影响,电流越大则温差越大。
相对于采用压缩机、冷媒进行一般冷冻循环方式而言,致冷晶片具有以下特征:无机械零件,无噪音产生;不使用冷媒,较为环保;小型、轻量化,形状容易选定;仅输入电流即可进行冷却或加热;寿命长,操作简单,易于维修。
请参考中国台湾新型专利公告号M571113号“以致冷晶片冷却之风扇机构”一案,包含至少一风扇;至少一冷气蒸发器,包含一水流排线位在该风扇之前方或后方,外部的水系注入该水流排线,注入的水再经由该水流排线流出;该风扇可抽取空气通过该冷气蒸发器及该风扇以形成凉风;一致冷组连接该冷气蒸发器,用于冷却进入该水流排线的冷却水;一泵送装置连接于该致冷组的水管中,用以驱使水在该致冷组及该水流排线之间流动;该致冷组包含至少一致冷装置,该致冷装置包含:一热交换箱,该水流排线的水流通过该热交换箱;一致冷晶片贴附在该热交换箱的一侧,用于吸收该热交换箱中的水流热量以降低水温;一水冷机构贴附于该致冷晶片的另一侧,外部的水输入该水冷机构以对该致冷晶片进行散热,再从该水冷机构排出。
发明内容
虽然利用致冷晶片来冷却水流排线,并透过风扇的风流能产生凉风,但 是毕竟只是凉风,与冷气机的出风口温度约为摄氏温度13~15度的程度有相当差距,因此应用致冷晶片的风扇机构只能做为凉风机使用,而无法当作家用空调使用。
上述专利在致冷晶片的两侧都是利用水冷方式来降温或散热,比如在致冷晶片的制冷面把水冷却,冷却水会流过冷气蒸发器的水流排线,冷气蒸发器则以气冷方式把冷却空气蒸发出去,再被风扇带出,但显然易见的是,冷却水的热负载流经冷气蒸发器的水流排线时温度会上升,而水流排线位于冷气蒸发器之内,冷气蒸发器的外侧温度又比水流排线略高;甚至,风扇是透过抽取冷气蒸发器外的外界空气,当外界空气的温度高,即使冷气蒸发器的外侧温度低,经过风扇吹送出去的风的温度只比外界空气较低而已。
因此,需提供一种能有效发挥每一致冷晶片的效能,降低热负载效应、降低体积与能产生足量的冷空气的致冷模块,进而能应用于空调装置中而能当作家用空调使用。
提供具有气流通道的致冷模块,包含致冷晶片、高温传导结构与低温传导结构;致冷晶片具有产生低温的一冷产生面与产生高温的一热产生面;高温传导结构是实质接触于该热产生面,内部容置能流动的一热交换流体,该热交换流体会被排出于该高温传导结构并被降温,降温后的该热交换流体再被输回于该高温传导结构内;低温传导结构的一侧实质贴靠于该冷产生面,并具有供气体通过的多个气流通道,该冷产生面的低温是直接传导于所述气流通道的表面再以热辐射方式传递该气流通道之中。
在一实施例中,低温传导结构包含一基板与多个间隔板,该基板具有表面积较大的两侧面,一侧面是贴合于该冷产生面,另一侧面则与所述间隔板的一端相连结,一气流通道是由任两间隔板与该基板所界定而成,任两间隔板之间相距一间隔。
在一些实施例中,更设置一盖板,该盖板对应于该基板一侧是与所述间隔板的自由端相连结,所述气流通道由该盖板、该两间隔板与该基板所界定。
在一些实施例中,一间隔板的表面是平面、波浪或不规则凹凸状。
在一些实施例中,一气流通道或所述气流通道是纵向贯穿、横向贯穿或斜向贯穿于低温传导结构。
在一些实施例中,该低温传导结构是蜂巢状结构体或网格状结构体。
在一实施例中,更包含一散热装置,接受被该高温传导结构导出的该流体,以对该流体降温,再将该流体输送至该高温传导结构之中并重复循环。
提供一种具有致冷模块的空调装置,包含主体、风扇与致冷模块;主体具有一风道,风道是贯穿于该主体,该主体的两侧为一进风口与一出风口,该风道介于该进风口与该出风口之间;风扇是设置于该进风口并能产生一风流。
致冷模块包含致冷晶片、高温传导结构与低温传导结构;致冷晶片具有产生低温的一冷产生面与产生高温的一热产生面;高温传导结构是实质接触于该热产生面,内部容置能流动的一热交换流体,该热交换流体会被排出于该高温传导结构并被降温,降温后的该热交换流体再被输回于该高温传导结构内;低温传导结构的一侧实质贴靠于该冷产生面,并具有供气体通过的多个气流通道,该冷产生面的低温是直接传导于所述气流通道的表面再以热辐射方式传递该气流通道之中。
当该风扇运转时,会在该风道中产生一道风流,该风流会通过风道与所述气流通道,以将所述气流通道的冷空气从所述出风口带出。
提供一种具有致冷模块的空调装置,包含一主体、风扇、多个致冷模块与高温传导结构。该主体具有多个风道贯穿于该主体,该主体的两侧为一进风口与一出风口,所述风道介于该进风口与该出风口之间;该风扇设置于该进风口并能产生一风流。
每一致冷模块包含致冷晶片与低温传导结构;致冷晶片具有一冷产生面与一热产生面;低温传导结构设置于该冷产生面并实质接触,具有供气体通过的多个气流通道,该冷产生面的低温是直接传导于所述气流通道的表面,再以热辐射方式传递所述气流通道之中而于所述气流通道中产生冷空气;高温传导结构同时接触于所述致冷组件的热产生面,内部容置能流动的一热交换流体,该热交换流体会被排出于该高温传导结构并被降温,降温后的该热交换流体再被输回于该高温传导结构内。
其中,一风道中间隔设置有所述致冷模块,所述致冷模块的低温传导结构皆须位于该风道中,且所述致冷模块的所述气流通道连通于该风道;当该风扇运转时,会在所述风道中各产生一道风流,该风流会通过风道与所述气流通道,以将所述气流通道的冷空气从所述出风口带出。
较佳的,该高温传导结构更设置一个或多个散热孔,而能提升散热效果。
附图说明
图1是显示被描述之一实施例的致冷模块的组合示意图。
图2是显示被描述之一实施例的致冷模块的俯视时的剖面示意图。
图3所示的为依据被描述的实施例的低温传导结构示意图。
图4所示的为低温传导结构更包含盖板的示意图。
图5所示的为低温传导结构的间隔版为波浪状的示意图。
图6所示的为低温传导结构为网格状结构体的示意图。
图7所示的为低温传导结构为蜂巢状结构体的示意图。
图8a所示的为依据被描述的实施例的具致冷模块的空调装置的立体组立图。
图8b为图8a的A-A剖面线的水平剖面示意图。
图9a所示的为依据被描述的实施例的具致冷模块的空调装置的立体组立图。
图9b所示的为图9a的主体示意图。
图9c为图9a的A-A剖面线的水平剖面示意图。
其中,附图标记说明如下:
1 致冷模块
11 致冷晶片
12 高温传导结构
13 低温传导结构
11a 冷产生面
11b 热产生面
120 本体
121 内空间
122 入口
123 出口
124A 流体输入管
124B 流体输出管
125 散热孔
131 基板
133 间隔板
135 气流通道
137 盖板
100 具致冷模块的空调装置
3 主体
31、32 风道
33 进风口
35 出风口
37 开口
5 风扇
具体实施方式
以下配合图示及附图标记对本发明之实施方式做更详细的说明,使熟悉本领域的技术人员在研读本说明书后能据以实施。
以下实施例中所提的“热”或者“高温”、“冷”或者“低温”等两物理量,是一种存在于两物理量之间相对的概念,热或者高温是指相对高于(大于)冷或者低温之温度现象,反之冷或者低温是指相对低于(小于)热或者高温的温度现象,热和冷之间会存在温度差。
以下实施例所称的致冷晶片亦称制冷晶片或者电致冷晶片。
图1是显示被描述的一实施例的致冷模块的组合示意图,图2是显示被描述的一实施例的致冷模块的俯视时的剖面示意图。如图1所展示,致冷模块1可以包括致冷晶片11、高温传导结构12与低温传导结构13。
致冷晶片11是一种由N型半导体和P型半导体材料经由电路联成电偶对的半导体元件,当直流电流被通入该电路后可以产生能量转移,以在致冷晶片11的冷产生面11a产生吸热作用而降低温度,相对的热产生面11b产生放热作用而升高温度。
参阅图1与图2,高温传导结构12具有本体120,本体120可以使用铜合金材料或铝合金材料形成为具有中空的内空间121的矩形体或其他适当形 状,并且在本体120的侧壁适当位置处设置至少一个连通内空间121与外部的入口122,以及至少一个连通内空间121与外部的出口123;例如,可以将入口122与出口123分别设置在本体120的相对两侧,或是将入口122与出口123设置在本体120的相同一侧。
在高温传导结构12的入口122与出口123分别连接流体输入管124A与流体输出管124B,然后将热交换流体通过流体输入管124A输入本体120内;热交换流体可以是水或是任何一种适当的流体。当致冷晶片11被通入电流时可以使其冷产生面11a因吸热而降低温度,并且热产生面11b因放热而升高温度。
此时,在本体120的热交换流体可以对致冷晶片11的热产生面11b吸收热量以进行热交换,然后使热交换流体通过流体输出管124B而流出,流出后的热交换流体可以经由另外的热交换设备(图中未显示)予以散热后再循环使用,也就是被外部的散热装置降温后的热交换流体会再被输送回本体120中,因此热交换流体会在外部的散热装置跟高温传导结构之间相互流转。
在第一实施例中,将致冷晶片11与高温传导结构12及低温传导结构13共同组成致冷模块1时,可以使用导热胶涂布在致冷晶片11的相对两侧,即冷产生面11a与热产生面11b,再通过该导热胶将致冷晶片11的热产生面11b粘附于高温传导结构12的本体120的外侧壁,以及通过导热胶将致冷晶片11的冷产生面11a粘附于低温传导结构13的一侧。
图3所示的为依据被描述的实施例的低温传导结构示意图,如图3所示,低温传导结构13包含基板131与多个间隔板133,基板131跟多个间隔板133构成多个气流通道135。
在一实施例中,基板131与间隔板133是具有适当厚度的板体,基板131并包含相对的两侧面,为更清楚说明此实施例,基板131的相对的两侧面在后文中将以表面积较大的左侧面与右侧面来说明;在不同角度下,基板131的相对的两侧面也可被视为顶面与底面。
在一实施例中,基板131整体是平行于致冷晶片11,或者基板131以表面积最大的一面对应于致冷晶片11的冷产生面,比如是使基板231的右侧面能贴合于或覆盖于冷产生面上,较佳的,基板231的右侧面的面积是可略大于致冷晶片11的冷产生面11a,以有更大一些的面积来散布低温。
多个间隔板133整体则是不平行于致冷晶片11;比如两者在相对关系上,多个间隔板133与致冷晶片11之间或间隔板133与基板131之间形成有夹角或直角,而在间隔板133与致冷晶片之间系设置基板131。
多个间隔板133的厚度不需一致,彼此之间的间隔也不须均等。
在一些实施例中,基板131与多个间隔板133之间是一体成形,或者透过组合、焊接等其他适当方式而构成低温传导结构,基板131与多个间隔板133的材质是具高导热性的金属或导热塑胶。
由于基板131的右侧面是平整贴合于致冷晶片11的冷产生面11a,因此冷产生面11a所产生的低温能直接传导给基板131的右侧面,如基板131是导热性佳的金属材质且有适当厚度,则基板131能将低温快速且均匀的从右侧面直接传导至其左侧面与多个间隔板的表面,基板131与各间隔板的表面上的低温因热辐射作用而传递到由多个间隔板133所构成的气流通道135中,而使气流通道135中充斥冷空气。
在一实施例中,多个间隔板133是相互平行排列,且多个间隔板133的一端连结于基板131的左侧面,而任两相邻的间隔板133之间具有适当间隔,两间隔板133与基板131所围设出的空间即构成气流通道135。
此外,如图4所示,更设置盖板137;基本上,盖板137是跟基板131在结构本身与设置方式是相同,只是基板131是连接于间隔板133的右侧,而盖板137是连接于间隔板133的左侧;也就是,盖板137对应于基板131一侧与多个间隔板的自由端相连结,以外观来看,低温传导结构13是只有前侧与后侧是开放侧的箱体,如图4所示,藉此使气流通道135仅朝单一方向贯穿,而使冷空气不易外散。
在一些实施例中,间隔板133的板体表面是平整的,或者间隔板133的板体表面是波浪状(参图5)、凹凸状等有起伏型态的表面,藉以提高间隔板133的表面积,而使产生低温的的表面积更大。
如图6、7所示,低温传导结构13是网格状结构体、蜂巢状结构体或其他具有通道的结构体。
图8a所示的为依据被描述的实施例的具致冷模块的空调装置的立体组立图,图8b为图8a的A-A剖面线的水平剖面示意图;如图8a所示,具致冷模块的空调装置100包含致冷模块1、主体3与风扇5。
主体3内具有风道31且风道31是贯穿于主体3,风道31贯穿于主体的贯穿方向可以配合致冷模块1的气流通道的方向,比如是两者是同方向。
在被描述的较佳实施例中,风道31是沿着水平方向贯穿于主体3,以与间隔板133所围设而成的气流通道135保持于同一方向,而使风道31能与气流通道135能连通,但并不限于此,也就是风道31的贯穿方向与气流通道的方式视实际需求而定,原则上只要气流通道的能连通于风道即可。
主体3的两侧设置有进风口33与出风口35,较佳的,进风口33与出风口35是设置在主体3的相对两侧,风道31介于进风口33与出风口35之间并连通于进风口33与出风口35;风扇5是设置于主体3的进风口33处,风扇5运转时会产生风流,风扇5运转时所产生的风流会通过风道31,然后从出风口35流出至外界。
致冷模块1的结构与前述实施例大致相同,但主要是低温传导结构13要配置于风道31中,因此低温传导结构13的各气流通道135会连通于该风道31;当致冷模块1通电时,各气流通道135会逐渐充满冷空气,因此当风扇运转时所产生的风流,因为风流会通过风道与气流通道,因此风流会把气流通道的冷空气从出风口带出而进入到环境空间中。
风道31中设置了多组致冷模块1,且致冷模块可以两两成对设置,多组致冷模块彼此相距一间隔的设置于风道中,因此当各致冷模块通电操作时,各致冷模块的气流通道中的冷空气会充斥于风道中,使得风道内都充斥冷空气,如风扇的风速更快,也可能产生风寒效应,而能将环境空间的温度有效下降。
图9b所示的是空调装置的主体的另一种可被实施的结构,主体3中是形成两风道31、32、,两风道31、32可以各自独立贯穿于主体3,主体3的相对两外侧壁具有多个开口37,开口37与风道为相互连通,在图9b的风道中可设置上下两层的致冷模块,而在图9c中只展示了下层的致冷模块;此实施例的设置原则跟原理与前述实施例基本上是相同,后文仅是说明若主体有两风道或两风道以上的实施方式。
与图8b所示的实施例一样,在图9c中的各风道31中也设置了多组致冷模块1,多组致冷模块1彼此相距一间隔的设置于风道31、32中,各致冷模块1可透过开口37而配置于风道31、32中,且各致冷模块1的低温传导 结构13是配置于风道31、32中。
较佳的,各致冷模块1是共用一高温传导结构12,也就是高温传导结构12同时实质接触于各致冷模块(设置于同一个风道的致冷模块)的热产生面,高温传导结构的内部是容置能流动的一热交换流体,该热交换流体会被排出于该高温传导结构并被降温,降温后的该热交换流体再被输回于该高温传导结构内;且该高温传导结构更设置一个或多个散热孔,而增加散热效率。
此种实施方式的好处在于,设置在同一风道的致冷晶片可共用同一个高温传导结构12,而能节省高温传导结构12的数量,且高温传导结构12更能设置适当数量的散热孔125,以提高散热效果。
同样的,当各致冷模块通电操作时,各致冷模块的气流通道中的冷空气会充斥于风道中,使得风道内都充斥冷空气,如风扇的风速更快,也可能产生风寒效应,而能将环境空间的温度有效下降。
以上所述仅为用以解释本发明的较佳实施例,并非企图据以对本发明做任何形式上的限制,因此,凡有在相同之发明精神下所作有关本发明的任何修饰或变更,皆仍应包括在本发明意图保护的范畴。

Claims (18)

  1. 一种具有气流通道的致冷模块,其特征在于,包含;
    一致冷晶片,具有产生低温的一冷产生面与产生高温的一热产生面;
    一高温传导结构,实质接触于该热产生面,内部容置能流动的一热交换流体,该热交换流体会被排出于该高温传导结构并被降温,降温后的该热交换流体再被输回于该高温传导结构内;以及
    一低温传导结构,一侧实质贴靠于该冷产生面,并具有供气体通过的多个气流通道,该冷产生面的低温是直接传导于所述气流通道的表面再以热辐射方式传递于该气流通道之中。
  2. 根据权利要求1所述的具有气流通道的致冷模块,其特征在于,该低温传导结构包含一基板与多个间隔板,该基板具有表面积较大的两侧面,一侧面是贴合于该冷产生面,另一侧面则与所述间隔板的一端相连结,一气流通道是由任两间隔板与该基板所界定而成,任两间隔板之间相距一间隔。
  3. 根据权利要求2所述的具有气流通道的致冷模块,其特征在于,更设置一盖板,该盖板对应于该基板一侧是与所述间隔板的自由端相连结,所述气流通道由该盖板、该两间隔板与该基板所界定。
  4. 根据权利要求1所述的具有气流通道的致冷模块,其特征在于,一间隔板的表面是平面、波浪或不规则凹凸状。
  5. 根据权利要求2或3所述的具有气流通道的致冷模块,其特征在于,一气流通道或所述气流通道是纵向贯穿、横向贯穿或斜向贯穿于低温传导结构。
  6. 根据权利要求1所述的具有气流通道的致冷模块,其特征在于,该低温传导结构是蜂巢状结构体或网格状结构体。
  7. 根据权利要求1所述的具有气流通道的致冷模块,其特征在于,更包含一散热装置,接受被该高温传导结构导出的该流体,以对该流体降温,再将该流体输送至该高温传导结构之中。
  8. 一种具有致冷模块的空调装置,其特征在于,包含;
    一主体,具有一风道贯穿于该主体,该主体的两侧为一进风口与一出风口,该风道介于该进风口与该出风口之间;
    一风扇,设置于该进风口,并能产生一风流;以及
    一致冷模块,包含:
    一致冷晶片,具有一冷产生面与一热产生面;
    一散热装置,设置于该热产生面并实质接触;以及
    一低温传导结构,设置于该冷产生面并实质接触,具有供气体通过的多个气流通道,该低温传导结构是于位于该风道中,所述气流通道连通于该风道,该冷产生面的低温是直接传导于所述气流通道的表面,再以热辐射方式传递所述气流通道之中而于所述气流通道中产生冷空气;
    当该风扇运转时,会在该风道中产生一道风流,该风流会通过风道与所述气流通道,以将所述气流通道的冷空气从所述出风口带出。
  9. 根据权利要求8所述的具有气流通道的致冷模块,其特征在于,更包含多个致冷模块,所述致冷模块是间隔设置于所述风道中。
  10. 根据权利要求8所述的具有气流通道的致冷模块,其特征在于,该低温传导结构包含一基板与多个间隔板,该基板具有表面积较大的两侧面,一侧面是贴合于该冷产生面,另一侧面则与所述间隔板的一端相连结,一气流通道是由任两间隔板与该基板所界定而成,任两间隔板之间相距一间隔。
  11. 根据权利要求10所述的具有气流通道的致冷模块,其特征在于,更设置一盖板,该盖板对应于该基板一侧是与所述间隔板的自由端相连结,所述气流通道由该盖板、该两间隔板与该基板所界定。
  12. 根据权利要求8所述的具有气流通道的致冷模块,其特征在于,一间隔板的表面是平面、波浪或不规则凹凸状。
  13. 根据权利要求10或11所述的具有气流通道的致冷模块,其特征在于,一气流通道或所述气流通道是纵向贯穿、横向贯穿或斜向贯穿于低温传导结构。
  14. 根据权利要求8所述的具有气流通道的致冷模块,其特征在于,该低温传导结构是蜂巢状结构体或网格状结构体。
  15. 根据权利要求8所述的具有气流通道的致冷模块,其特征在于,更包含一散热装置,接受被该高温传导结构导出的该流体,以对该流体降温,再将该流体输送至该高温传导结构之中。
  16. 一种具有致冷模块的空调装置,其特征在于,包含;
    一主体,具有多个风道贯穿于该主体,该主体的两侧为一进风口与一出风口,所述风道介于该进风口与该出风口之间;
    一风扇,设置于该进风口,并能产生一风流;
    多个致冷模块,一致冷模块包含:
    一致冷晶片,具有一冷产生面与一热产生面;以及
    一低温传导结构,设置于该冷产生面并实质接触,具有供气体通过的多个气流通道,该冷产生面的低温是直接传导于所述气流通道的表面,再以热辐射方式传递所述气流通道之中而于所述气流通道中产生冷空气;以及
    一高温传导结构,同时接触于所述致冷组件的热产生面,内部容置能流动的一热交换流体,该热交换流体会被排出于该高温传导结构并被降温,降温后的该热交换流体再被输回于该高温传导结构内;
    其中,一风道中间隔设置有所述致冷模块,所述致冷模块的低温传导结构皆须位于该风道中,且所述致冷模块的所述气流通道连通于该风道;
    当该风扇运转时,会在所述风道中各产生一道风流,该风流会通过风道与所述气流通道,以将所述气流通道的冷空气从所述出风口带出。
  17. 根据权利要求16所述的具有致冷模块的空调装置,其特征在于,该低温传导结构包含一基板与多个间隔板,该基板具有表面积较大的两侧面,一侧面是贴合于该冷产生面,另一侧面则与所述间隔板的一端相连结,一气流通道是由任两间隔板与该基板所界定而成,任两间隔板之间相距一间隔。
  18. 根据权利要求16所述的具有致冷模块的空调装置,其特征在于,该高温传导结构更设置一个或多个散热孔。
PCT/CN2019/091833 2019-06-19 2019-06-19 具有气流通道的致冷模块及具有致冷模块的空调装置 WO2020252680A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091833 WO2020252680A1 (zh) 2019-06-19 2019-06-19 具有气流通道的致冷模块及具有致冷模块的空调装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091833 WO2020252680A1 (zh) 2019-06-19 2019-06-19 具有气流通道的致冷模块及具有致冷模块的空调装置

Publications (1)

Publication Number Publication Date
WO2020252680A1 true WO2020252680A1 (zh) 2020-12-24

Family

ID=74037202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091833 WO2020252680A1 (zh) 2019-06-19 2019-06-19 具有气流通道的致冷模块及具有致冷模块的空调装置

Country Status (1)

Country Link
WO (1) WO2020252680A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108326A (ja) * 1999-10-08 2001-04-20 Orion Mach Co Ltd 熱媒供給装置
US6418728B1 (en) * 2000-05-10 2002-07-16 Jerry Monroe Thermoelectric water pre-cooling for an evaporative cooler
CN2665624Y (zh) * 2003-11-28 2004-12-22 许东法 冷热两用电风扇
CN200961920Y (zh) * 2006-09-29 2007-10-17 曹爱国 一种热电空调单元及具有该热电空调单元的热电空调器
CN101319808A (zh) * 2008-07-04 2008-12-10 清华大学 一种利用土壤进行换热的太阳能半导体水冷空调系统
CN101329096A (zh) * 2008-08-01 2008-12-24 黄于展 液冷式半导体负氧离子空调
CN101625178A (zh) * 2009-08-06 2010-01-13 广东富信电子科技有限公司 半导体制冷、制热设备和空调

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108326A (ja) * 1999-10-08 2001-04-20 Orion Mach Co Ltd 熱媒供給装置
US6418728B1 (en) * 2000-05-10 2002-07-16 Jerry Monroe Thermoelectric water pre-cooling for an evaporative cooler
CN2665624Y (zh) * 2003-11-28 2004-12-22 许东法 冷热两用电风扇
CN200961920Y (zh) * 2006-09-29 2007-10-17 曹爱国 一种热电空调单元及具有该热电空调单元的热电空调器
CN101319808A (zh) * 2008-07-04 2008-12-10 清华大学 一种利用土壤进行换热的太阳能半导体水冷空调系统
CN101329096A (zh) * 2008-08-01 2008-12-24 黄于展 液冷式半导体负氧离子空调
CN101625178A (zh) * 2009-08-06 2010-01-13 广东富信电子科技有限公司 半导体制冷、制热设备和空调

Similar Documents

Publication Publication Date Title
WO2017036283A1 (zh) 一种用于循环冷却系统的半导体制冷装置
JP6138093B2 (ja) サーバ冷却システム及びその冷却方法
CN105555102A (zh) 具有热超导半导体制冷系统的密封机柜
CN210838441U (zh) 一种应用于半导体激光器的散热装置
CN109282340A (zh) 电暖器
CN205825570U (zh) 一种半导体冰箱的散热装置
CN210197551U (zh) 具有气流通道的致冷模块及具有致冷模块的空调装置
CN108174587B (zh) 一种显示装置
WO2020252680A1 (zh) 具有气流通道的致冷模块及具有致冷模块的空调装置
TWI708034B (zh) 具有氣流通道的致冷模組及具有致冷模組的空調裝置
KR20100060756A (ko) 액냉식 열전 냉각장치
US20050045313A1 (en) Heat sink
CN105466261A (zh) 换热装置及具有该换热装置的半导体制冷冰箱
CN110486853A (zh) 一种空调外机
WO2016192298A1 (zh) 传冷装置及具有该传冷装置的半导体制冷箱
CN201662759U (zh) 可提供冷风的散热装置
CN205537253U (zh) 换热装置及具有该换热装置的半导体制冷冰箱
US20120160454A1 (en) Heat exchanger
CN111366018B (zh) 半导体制冷用散热组件及半导体制冷设备
US11313625B2 (en) Intensified cassette-type heat dissipation module
CN105466100B (zh) 换热装置及具有该换热装置的半导体制冷冰箱
CN105485969B (zh) 换热装置及具有该换热装置的半导体制冷冰箱
CN220817931U (zh) 空调外机和空调系统
CN221127804U (zh) 热管散热器
CN219454122U (zh) 一种热电半导体空调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933317

Country of ref document: EP

Kind code of ref document: A1