WO2020251383A1 - Conteneur pour le transport et le stockage d'assemblages de pastilles de combustible usé - Google Patents
Conteneur pour le transport et le stockage d'assemblages de pastilles de combustible usé Download PDFInfo
- Publication number
- WO2020251383A1 WO2020251383A1 PCT/RU2019/000415 RU2019000415W WO2020251383A1 WO 2020251383 A1 WO2020251383 A1 WO 2020251383A1 RU 2019000415 W RU2019000415 W RU 2019000415W WO 2020251383 A1 WO2020251383 A1 WO 2020251383A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel assemblies
- container
- spent fuel
- spacer
- segments
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F5/00—Transportable or portable shielded containers
Definitions
- Container for transportation and / or storage of spent fuel assemblies
- the invention relates to nuclear technology, in particular to protective transport containers, and can be used in transport packaging sets for placement during transportation and / or storage of spent fuel assemblies.
- the protective shipping container consists of a body and a cover placed inside the body.
- the design of the canister must ensure subcriticality, i.e. reduction of the effective neutron multiplication factor (K E ff) to K E ff ⁇ 0.95, and at the same time it is quite effective to remove heat from the spent fuel assemblies to the container body.
- Neutron and radiation protection is usually structurally integrated into the container body.
- the container body consists of an inner and an outer shell, between which a neutron-protective material is placed to protect the environment and service personnel from radioactive radiation, as well as heat-removing elements to prevent overheating of the container contents.
- Known container for transportation and long-term storage of spent fuel assemblies of nuclear power plants containing an outer casing with a lid, an inner casing with a lid, placed in the inner casing a cover with slots for spent fuel assemblies and shock absorbers.
- Channels are made in the outer casing along its longitudinal axis, which are filled with a neutron-absorbing hydrogen-containing material (patent RU .Nb 123207).
- the disadvantage of the specified container is the complexity of the implementation in the outer container of the channels for the neutron-absorbing hydrogen-containing material, which is due to the need for placement in the housing of neutron protection.
- the container contains inner and outer shells, between which there are annular shielding layers of protection from g-radiation and from neutrons, respectively.
- the g-radiation shielding layer is located on the inner side of the neutron shielding layer perimeter.
- Inner and outer shell are made of carbon or stainless steel.
- a plurality of rows of heat-conducting fins are arranged evenly around the circumference between the inner and outer shells at a predetermined interval, which provide heat removal from the inner cavity of the container.
- the heat-conducting ribs are L-shaped.
- the gamma-ray shielding layer is composed of hard-to-deform blocks formed of lead or a lead alloy housed in a tubular member that has higher elasticity than a block formed of lead or lead alloy.
- the tubular element has a higher thermal conductivity than the mentioned hard-to-deform blocks and is made of aluminum or aluminum alloy, copper or copper alloy.
- the neutron shielding layer is made of an organic material including hydrogen and is composed of a plurality of blocks. Each neutron shielding unit is partially covered (covered) by adjacent heat-conducting L-shaped ribs having a higher elasticity than that of the neutron shielding unit. These L-shaped fins have a higher thermal conductivity than neutron shielding blocks and are made of aluminum or aluminum alloy, copper or copper alloy.
- the known container involves a high manufacturing complexity and hence a high cost.
- the design of the container does not exclude the possibility of a "direct shot" of neutrons along the radially installed heat-conducting ribs.
- the disadvantage of the known container design is the need to use a welding operation to connect the bridges, which is due to the design of the container body.
- fast neutrons it is possible for fast neutrons to hit the environment through heat dissipating elements connecting the outer and inner shells and passing through the neutron-absorbing material.
- Known container for transportation and / or storage of spent nuclear fuel (patent RU 2348085), containing a metal body, including a bottom, outer and inner cylindrical shells, the cavity between which is filled with material for absorbing neutrons.
- Elements with high thermal conductivity made in the form of radial longitudinal sheet elements, which are attached to the outer and inner cylindrical shells of the body with compression by means of threaded elements, are passed through the neutron absorption material.
- Radial longitudinal sheet elements have through holes and / or discontinuous edges with the formation of recesses in the inner cavity of which a spacer grid (cover) is installed. In an embodiment of the invention, it can accommodate up to 19 spent fuel assemblies with spent nuclear fuel with a maximum total heat release of 30-40 kW.
- the spacer grate provides a strictly defined arrangement of spent fuel assemblies in the inner cavity of the container and the transfer of heat generated by the spent nuclear fuel to the container body.
- the spacer grill is made, for example, in the form of a composite cylinder of separate aluminum blocks, inside which are arranged according to the principle of "honeycomb" hexagonal pipes for installing spent fuel assemblies.
- the outer surface of the hexagonal tubes is coated with a self-fluxing boron-containing alloy that absorbs neutrons emitted by spent nuclear fuel.
- the disadvantages of the known invention are the high labor intensity of manufacturing the cover, which is due to the implementation of the cover is composite in the form of aluminum blocks enclosed in a sealed stainless steel shell, inside which are located hexagonal pipes, the complexity of assembling elements with high thermal conductivity passing through the material for absorbing neutrons when assembling the container, and Also, the housing is made of two parts, which is due to the need to place the neutron protection in the housing.
- Known container for transportation and storage of spent nuclear fuel (patent RU 2686457), including a cast housing with an internal volume for a cover, designed to accommodate fuel assemblies with spent nuclear fuel.
- a neutron-protective barrier made of a material with a melting temperature higher than the melting temperature of the body material and a thermal conductivity coefficient not less than that of the cast body material is poured into the wall of the cast body. In this case, the neutron-protective barrier forms a solid wall.
- This container is free from the drawbacks associated with the placement of heat-conducting inserts inside the container body, however, the need to place the neutron-protective material inside the body increases the complexity of the process of its manufacture, including several operations, including the operation of pouring the neutron-protective material into the wall of the body.
- Known container cover for transportation and storage of spent nuclear fuel (patent RU 2686476), including a cast body with molded shaped metal pipes with flat edges, forming channels for the installation of fuel assemblies, in which the pipes are installed in annular rows close to each other with mating along flat edges around the central pipe, the outer surfaces of the flat faces of the pipes mating with each other are lined with copper sheets, the space between the outer surface of the pipes of the outer ring row and the inner surface of the cast body is filled with inserts made of neutron-protective material with a melting temperature higher than the melting point of the material of the cast body, forming a solid wall preventing free flight of neutrons in radial directions.
- the disadvantages of the described design of the cover include the complexity of its manufacture (the need for lining the edges of the pipes with copper sheets), as well as low maintainability, which is due to the manufacture of the cover in the form of a monolithic structure.
- Spent fuel assemblies are characterized by a high residual thermal energy release and a level of radiation radiation, which requires the use of special protective containers for their safe transportation and / or storage.
- the problem to be solved by the claimed invention is to create a high-tech design of a container for transportation and / or storage of spent fuel assemblies, providing neutron protection, efficient heat removal from spent fuel assemblies, meeting nuclear safety requirements for subcriticality, as well as fitting into the weight and dimensions existing transport and packaging kits.
- the technical result consists in improving the manufacturability of the container, which makes it possible to reduce the labor intensity of manufacturing the cover, as well as the cost of manufacturing the container body while maintaining the effectiveness of neutron protection and heat removal from spent fuel assemblies.
- a container for transporting and / or storing spent fuel assemblies including a metal body, covers and a cover containing spacer grids having holes with pipe channels for spent fuel assemblies located in them, and holes for metal ties
- the central part of the spacer grids in contact with the pipe channels is made of a material with high thermal conductivity
- the outer part of the spacer grids forming a ring is made of a composite material also with high thermal conductivity, but at the same time providing absorption of neutrons.
- the outer part of the spacer grid is made of a composite material based on aluminum and boron carbide, and the inner part is made of an aluminum melt.
- the spacer grid structurally consists of separate segments located close to each other, forming a perforated disk when stacked in a row.
- the thickness of the outer part of the spacer is at least 50 mm, and its width is no more than 140 mm.
- the spacer grid made of a material with high thermal conductivity ensures heat removal from the spent fuel assemblies to the container body.
- the declared design of the container ensures the fulfillment of nuclear safety requirements, efficient heat removal from spent fuel assemblies to the container body, and includes neutron protection and radiation protection.
- the proposed container for transportation and storage of spent fuel assemblies can be implemented as follows.
- FIG. 1 shows a longitudinal section of the cover.
- FIG. 2, 3 show two types of segments of spacer elements.
- FIG. 4, 5 show the assembly diagrams of spacer elements of two types of segments.
- FIG. 6 shows a part of the boot element between the base and the intermediate steel disc.
- FIG. 7 shows an insert that secures the spacer segments to the B-pillar.
- FIG. 8 shows a general view of the container.
- FIG. 1 shows the following positions: segments of the spacer elements 1; intermediate discs 2; hexagonal pipe channels 3; support disk 4; upper disc 5; segment type "A” 6; segment type "B” 7; central pillar 8; annular central support 9; drain holes 10; capture socket 11; box 12; screeds 13; nuts with washers 14; guides 15; bushings 16, container body 17.
- the declared container for transportation and / or storage of spent fuel assemblies consists of a body, covers and a cover for spent fuel assemblies.
- the body is cylindrical and can be made of ductile iron or stainless steel.
- the walls of the body are made solid without any channels and inserts.
- the neutron protection is built into the case.
- the cover is a metal structure consisting of closely spaced segments of spacers 1 and intermediate steel discs 2. Segments 1 and intermediate discs 2 have hexagonal holes, into which eighteen hexagonal pipe channels 3 made of borated stainless steel are installed. Hexagonal pipe channels 3 are installed in a support disk 4 and fixed from above with an upper disk 5 made of high-strength corrosion-resistant steel.
- the segments of the spacer elements 1 consist of two standard sizes (Fig. 2, 3): a segment of type "A” 6 and a segment of type "B” 7.
- Segments 6, 7 in the outer part are made of a composite material based on aluminum and boron carbide, and in center (within the hexagonal holes) of aluminum alloy. This allows for intense heat removal and, at the same time, protection against neutron and gamma radiation.
- Segments of spacer elements 1 are made using known technologies as follows: boron carbide powder pre-compressed along the profile of the outer part of the segment is placed in a mold for casting aluminum under pressure, which coincides with the profile of the segment of type "A” or type "B". Next, a casting operation is carried out using an aluminum melt, as a result of which a monolithic segment is obtained, the outer part of which consists of boron carbide, impregnated with molten aluminum, and the central perforated part - only from molten aluminum.
- the thickness of the spacer element 1 is at least 50 mm, and the width of the ring made of the composite material is at most 140 mm.
- the specified dimensions guarantee effective neutron protection.
- a central post 1 is welded to the supporting disk 4, which serves as a carrier element of the cover, on which all its other components are located.
- the supporting disk 4 is reinforced from below with radial ribs (not shown in the figure) and an annular central support 9.
- the supporting disk 4 has eighteen drain holes 10 coinciding with the centers of the hexagonal pipe-channels.
- the stand in the upper part is equipped with a grip slot 11, with the help of which the empty cover is installed and removed from the container body.
- guides 16 are welded on the upper disc 5 along the perimeter of the hexagonal holes.
- the ribs (not shown in the figure) and the annular support 9 are welded to the periphery of the support disk 4 from below through the centers of the drain holes 14 to the periphery, and the post 8 is welded from above with a grip socket 11 welded to it in the upper part.
- eighteen ties 13 are screwed in, sleeve 15 is put on each tie and installed in the groove of the support disk 4, insert 12 is put on the rack 8.
- the insert 12 is put on the sleeve 15, passing through the holes through the ties 13, and the first row of segments is installed on insert 12 spacer elements 1, consisting of six segments type "A" 6 (Fig. 2).
- the perforation of the inner surface of the segments should coincide with the perforation of the support disk 4.
- the sleeve 15 is again put on each tie and installed in groove of the segment of the spacer elements 1, put the insert on the post 8 again
- the first and second tier of segments of the spacer 1 are formed of fourteen rows each, the third tier of segments - of twelve rows, the fourth, fifth, sixth tier of segments - of eleven rows each and the seventh tier consists of one row.
- eighteen hexagonal pipe channels 3 are installed into the hexagonal holes formed by the segments of the spacer 1 and the intermediate disks 2, from below they abut against the recesses of the support disk 4, and from above they abut against the recesses of the upper disk 5 installed with holes on the ties 13 and fixed with nuts and washers 14.
- the guides 16 are welded on the upper disc 5 along the edge of the perimeter of eighteen hexagonal holes.
- the assembled cover is placed in a cylindrical body 17 made of metal (cast iron or stainless steel).
- the heat emitted by the fuel assemblies is transferred through the spacer elements 1 from the center to the periphery made of a heat-conducting neutron-absorbing composite material, through which the heat is then transferred to the wall of the housing 17 and is removed to the environment ...
- the neutron radiation emitted by the fuel assemblies will be delayed by a ring formed by segments 6, 7, which prevents the passage of neutrons in radial directions.
- the technical solution according to the invention can be used for transportation and / or long-term storage of spent fuel assemblies.
- the proposed design of a container for transportation and / or long-term storage of spent fuel assemblies under normal and emergency operating conditions ensures neutron and radiation safety in accordance with the requirements for containers of the specified designation by RF regulatory documents and IAEA recommendations.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Stackable Containers (AREA)
Abstract
La présente invention se rapporte au domaine de l'énergie nucléaire, concerne notamment des conteneurs de transport de protection, et peut être utilisée dans des complexes de conditionnement et de transport afin d'y placer lors du transport et/ou du stockage des assemblage de pastilles de combustible usé provenant de réacteurs à eau légère. Le but de la présente invention est de créer une structure de haute technologie d'un conteneur pour le transport et/ou le stockage d'assemblage de pastilles de combustible usé, assurant une protection contre les neutrons, une évacuation efficace de la chaleur provenant des assemblages de pastilles de combustible usé, le respect des exigences de sécurité nucléaire concernant la sous-criticité, et la compatibilité avec les valeurs de dimensions et de poids des complexes d'emballage et de transport existants. Ce conteneur pour le transport et/ou le stockage d'assemblages de pastilles de combustible usé comprend un corps métallique, des couvercles et une housse comprenant une grille de distanciation comportant des ouvertures dans lesquelles sont disposés des canaux tubulaires et des ouvertures pour des tendeurs métalliques. La partie centrale de la grille de distanciation entrant en contact avec les canaux tubulaires est faite d'un matériau ayant une conductivité thermique élevée, et la partie externe se présentant sous forme d'un anneau est également faite d'un matériau ayant une conductivité thermique élevée mais assurant aussi l'absorption de neutrons.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019118127A RU2707868C1 (ru) | 2019-06-11 | 2019-06-11 | Контейнер для транспортировки и/или хранения отработавших тепловыделяющих сборок |
RU2019118127 | 2019-06-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020251383A1 true WO2020251383A1 (fr) | 2020-12-17 |
Family
ID=68836479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2019/000415 WO2020251383A1 (fr) | 2019-06-11 | 2019-06-11 | Conteneur pour le transport et le stockage d'assemblages de pastilles de combustible usé |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2707868C1 (fr) |
WO (1) | WO2020251383A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113851240A (zh) * | 2021-08-18 | 2021-12-28 | 中国核电工程有限公司 | 一种乏燃料容器的吊篮用导轨组件 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1083577A1 (fr) * | 1999-09-09 | 2001-03-14 | Mitsubishi Heavy Industries, Ltd. | Conteneur, procédé de fabrication d'un conteneur et pièce de formage |
RU2593388C1 (ru) * | 2015-08-04 | 2016-08-10 | Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") | Чехол для размещения и хранения отработавших тепловыделяющих сборок реактора ввэр-1000 |
RU2642853C1 (ru) * | 2017-02-10 | 2018-01-29 | Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") | Чехол контейнера для транспортирования и хранения отработавшего ядерного топлива |
RU2686476C1 (ru) * | 2018-06-05 | 2019-04-29 | Александр Натанович Капилевич | Чехол контейнера для транспортировки и хранения отработавшего ядерного топлива |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE8236359U1 (de) * | 1982-12-24 | 1983-06-30 | Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen mbH, 3000 Hannover | Lagerbehaelter fuer radioaktives material |
JP2004144653A (ja) * | 2002-10-25 | 2004-05-20 | Mitsubishi Heavy Ind Ltd | 放射性物質収納容器の製造方法及び放射性物質収納容器並びに異種材料の接合方法 |
JP2007139677A (ja) * | 2005-11-22 | 2007-06-07 | Hitachi Ltd | 放射性物質収納容器およびその製造方法 |
RU2463677C1 (ru) * | 2011-04-22 | 2012-10-10 | Открытое акционерное общество "Конструкторское бюро специального машиностроения" | Транспортный упаковочный комплект для отработавших тепловыделяющих сборок ядерных реакторов |
RU2611057C1 (ru) * | 2016-03-02 | 2017-02-21 | Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") | Контейнер для хранения и транспортирования отработавших тепловыделяющих сборок и чехол для их размещения |
-
2019
- 2019-06-11 RU RU2019118127A patent/RU2707868C1/ru active
- 2019-06-11 WO PCT/RU2019/000415 patent/WO2020251383A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1083577A1 (fr) * | 1999-09-09 | 2001-03-14 | Mitsubishi Heavy Industries, Ltd. | Conteneur, procédé de fabrication d'un conteneur et pièce de formage |
RU2593388C1 (ru) * | 2015-08-04 | 2016-08-10 | Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") | Чехол для размещения и хранения отработавших тепловыделяющих сборок реактора ввэр-1000 |
RU2642853C1 (ru) * | 2017-02-10 | 2018-01-29 | Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") | Чехол контейнера для транспортирования и хранения отработавшего ядерного топлива |
RU2686476C1 (ru) * | 2018-06-05 | 2019-04-29 | Александр Натанович Капилевич | Чехол контейнера для транспортировки и хранения отработавшего ядерного топлива |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113851240A (zh) * | 2021-08-18 | 2021-12-28 | 中国核电工程有限公司 | 一种乏燃料容器的吊篮用导轨组件 |
CN113851240B (zh) * | 2021-08-18 | 2023-11-24 | 中国核电工程有限公司 | 一种乏燃料容器的吊篮用导轨组件 |
Also Published As
Publication number | Publication date |
---|---|
RU2707868C1 (ru) | 2019-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2525229C2 (ru) | Устройство для хранения и/или транспортировки высокорадиоактивных отходов, а также способ его изготовления | |
US9293229B2 (en) | Ventilated system for storing high level radioactive waste | |
RU2348085C1 (ru) | Контейнер для транспортировки и/или хранения отработавшего ядерного топлива | |
EP2425436A2 (fr) | Appareil, système et procédé pour château de transport pour transporter et/ou stocker des déchets à activité élevée | |
RU2465662C1 (ru) | Контейнер для транспортировки и/или хранения отработавшего ядерного топлива | |
RU2642853C1 (ru) | Чехол контейнера для транспортирования и хранения отработавшего ядерного топлива | |
RU2707871C1 (ru) | Чехол контейнера для транспортирования и хранения отработавших тепловыделяющих сборок | |
KR20220050975A (ko) | 사용후 핵연료 캐스크용 방사선 차폐 인클로저 | |
RU2453006C1 (ru) | Контейнер для транспортирования отработавшего ядерного топлива | |
EP3594964A1 (fr) | Conteneur pour le stockage et le transport de combustible nucléaire épuisé | |
RU2707868C1 (ru) | Контейнер для транспортировки и/или хранения отработавших тепловыделяющих сборок | |
RU2084975C1 (ru) | Контейнер для транспортировки и/или хранения отработавшего ядерного топлива | |
RU75496U1 (ru) | Транспортный упаковочный комплект для транспортирования и хранения отработавшего ядерного топлива | |
RU2459295C1 (ru) | Транспортный упаковочный комплект для отработавших тепловыделяющих сборок ядерных реакторов | |
RU2510721C1 (ru) | Контейнер для транспортирования отработавшего ядерного топлива | |
JP5808303B2 (ja) | 放射性物質輸送貯蔵容器 | |
RU2743788C1 (ru) | Чехол транспортного упаковочного комплекта для облученных тепловыделяющих сборок | |
RU2463677C1 (ru) | Транспортный упаковочный комплект для отработавших тепловыделяющих сборок ядерных реакторов | |
EP0343410A2 (fr) | Château de transport pour combustible nucléaire | |
RU171956U1 (ru) | Биметаллический чехол для тук | |
RU2479876C1 (ru) | Контейнер для транспортировки и/или хранения отработавшего ядерного топлива | |
RU2686476C1 (ru) | Чехол контейнера для транспортировки и хранения отработавшего ядерного топлива | |
RU2458417C1 (ru) | Чехол для отработавших тепловыделяющих сборок | |
RU187096U1 (ru) | Контейнер для транспортировки и хранения отработавшего ядерного топлива | |
RU171909U1 (ru) | Контейнер для тук с несъемным чехлом |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19932873 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19932873 Country of ref document: EP Kind code of ref document: A1 |