WO2020251048A1 - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
WO2020251048A1
WO2020251048A1 PCT/JP2020/023311 JP2020023311W WO2020251048A1 WO 2020251048 A1 WO2020251048 A1 WO 2020251048A1 JP 2020023311 W JP2020023311 W JP 2020023311W WO 2020251048 A1 WO2020251048 A1 WO 2020251048A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
rotation speed
fan
control unit
light
Prior art date
Application number
PCT/JP2020/023311
Other languages
English (en)
French (fr)
Inventor
立松 呉
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to KR1020217042989A priority Critical patent/KR20220019720A/ko
Priority to EP20823150.6A priority patent/EP3984750A4/en
Priority to US17/618,422 priority patent/US11674680B2/en
Priority to CN202080051068.6A priority patent/CN114144313B/zh
Publication of WO2020251048A1 publication Critical patent/WO2020251048A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/61Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00212Controlling the irradiation means, e.g. image-based controlling of the irradiation zone or control of the duration or intensity of the irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/67Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by the arrangement of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D1/00Devices using naturally cold air or cold water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/044Drying sheets, e.g. between two printing stations
    • B41F23/045Drying sheets, e.g. between two printing stations by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00214Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00218Constructional details of the irradiation means, e.g. radiation source attached to reciprocating print head assembly or shutter means provided on the radiation source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/377Cooling or ventilating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light source device that emits light, and more particularly to a light source device including a cooling fan that cools heat emitted from the light source.
  • a printing device that prints using UV ink that is cured by irradiation with ultraviolet light.
  • a printing device is provided with an ultraviolet irradiation device, and is configured to eject ink from a nozzle of a head onto a medium and then irradiate dots formed on the medium with ultraviolet light.
  • an ultraviolet irradiation device a large number of ultraviolet LEDs are used as a light source (for example, Patent Document 1).
  • the ultraviolet irradiation device described in Patent Document 1 includes an ultraviolet irradiation head having a large number of ultraviolet LED elements as a light source and a controller for controlling lighting of the LED elements.
  • an ultraviolet irradiation head having a large number of ultraviolet LED elements as a light source and a controller for controlling lighting of the LED elements.
  • the LED element is used as the light source in this way, since most of the input electric power becomes heat, there arises a problem that the luminous efficiency and the life are lowered due to the heat generated by the LED element itself. Further, such a problem becomes more serious in the case of a device equipped with a large number of LED elements, such as the ultraviolet irradiation device of Patent Document 1, because the number of LED elements serving as a heat source increases.
  • the ultraviolet irradiation device of Patent Document 1 includes a heat sink that efficiently transfers heat generated in the LED element and a plurality of fan devices that supply cooling air to the heat sink, and drives the fan device at the same time as the LED element is turned on. At the same time that the LED element is turned off, the fan device is stopped to suppress the heat generation of the LED element.
  • the configuration of Patent Document 1 is such that the fan device is driven at the same time as the LED element is turned on and the fan device is stopped at the same time when the LED element is turned off. Therefore, when the LED element is turned off, heat is generated inside the housing of the ultraviolet irradiation device. There is a problem that the housing does not cool at all even though the LED element is turned off due to muffled. Further, since the fan device always rotates at 100% rotation speed when the LED element is lit, there is a problem that surrounding dust and the like are easily sucked from the intake port (or the fan device), and the risk of failure increases. Further, if the time for the fan device to rotate at 100% rotation speed becomes long, there is a problem that the life of the fan device is shortened.
  • the present invention has been made in view of the above circumstances, and suppresses heat from being trapped inside the housing when the LED element is turned off, and also has a risk of sucking dust or the like into the housing and the life of the fan device.
  • An object of the present invention is to provide a light source device capable of reducing a risk.
  • the light source device of the present invention includes a light source, a light source control unit that controls on / off of the light source and the amount of light, a cooling fan that cools the light source, and fan control that controls the rotation speed of the cooling fan.
  • the fan control unit controls the cooling fan to have a first rotation speed according to the amount of light of the light source when the light source is on, and when the light source is turned off, a predetermined value is provided. It is characterized in that the cooling fan is controlled to have a second rotation speed lower than the first rotation speed after waiting for a standby time.
  • the cooling fan keeps rotating, so that heat does not stay inside the housing. Further, since the rotation speed of the cooling fan is lowered while the light source is off, the risk of sucking dust or the like into the housing and the risk of the life of the cooling fan are reduced.
  • the light source device of the present invention is based on a light source, a light source control unit that controls on / off of the light source, a cooling fan that cools the light source, and a cooling fan based on the on / off of the light source.
  • the fan control unit includes a fan control unit that controls the rotation speed of the light source, and controls the cooling fan to have the first rotation speed when the light source is turned on, and a predetermined value when the light source is turned off. It is characterized in that the cooling fan is controlled to have a second rotation speed lower than the first rotation speed after waiting for a standby time.
  • the light source device of the present invention includes a light source, a light source control unit that controls on / off of the light source, a temperature sensor that detects the temperature of the light source, a cooling fan that cools the light source, and a light source.
  • a fan control unit that controls the rotation speed of the cooling fan based on the on / off and the detection result of the temperature sensor is provided, and the fan control unit sets the cooling fan to the first rotation speed when the light source is turned on.
  • the light source is turned off, wait for the detection result of the temperature sensor to fall below a predetermined value, and then set the cooling fan to a second rotation speed lower than the first rotation speed. It is characterized by controlling.
  • the fan control unit controls the rotation speed of the cooling fan so as to satisfy the following conditional expression (2) when the first rotation speed is R1 and the light amount of the light source is P.
  • R1 a ⁇ P + b (a and b are arbitrary constants) ...
  • the second rotation speed is set to approximately 40% of the maximum rotation speed of the cooling fan.
  • the light source device can reduce the risk of sucking dust or the like into the housing and the risk of the life of the fan device without heat being trapped in the housing when the LED element is turned off. Is realized.
  • FIG. 1 is an external view of a light irradiation device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an internal configuration of a light irradiation device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating an electrical connection of the internal configuration of the light irradiation device according to the embodiment of the present invention.
  • FIG. 4 is a flowchart of a control program executed by the light irradiation device according to the embodiment of the present invention.
  • FIG. 5 is a timing chart corresponding to the flowchart of FIG.
  • FIG. 6 is a block diagram illustrating an electrical connection of the internal configuration of the light irradiation device according to the first modification of the present invention.
  • FIG. 7 is a flowchart of a control program executed by the light irradiation device according to the modified example of the present invention.
  • FIG. 8 is a flowchart of a control program executed by the light irradiation device according to the second modification of the present invention.
  • FIG. 9 is a timing chart corresponding to the flowchart of FIG.
  • FIG. 1 is an external view of the light irradiation device 1 (light source device) according to the embodiment of the present invention
  • FIG. 1 (a) is a plan view of the light irradiation device 1 according to the embodiment of the present invention.
  • 1 (b) is a right side view of the light irradiation device 1 of FIG. 1 (a)
  • FIG. 1 (c) is a bottom view of the light irradiation device 1 of FIG. 1 (a).
  • 1 (d) is a front view of the light irradiation device 1 of FIG. 1 (a).
  • the light irradiation device 1 of the present embodiment is a light source device mounted on a printing device or the like to cure an ultraviolet curable ink or an ultraviolet curable resin, is arranged above an irradiation target object, and has a line with respect to the irradiation target object. It emits ultraviolet light.
  • the direction in which the LED (Light Emitting Diode) element 210 described later emits ultraviolet light is the X-axis direction
  • the arrangement direction of the LED elements 210 is the Y-axis direction.
  • the directions orthogonal to the X-axis direction and the Y-axis direction will be defined as the Z-axis direction and will be described.
  • the light irradiation device 1 of the present embodiment has a thin box-shaped case 100 (housing) accommodating a light source unit 200, a heat radiating member 400, and the like inside, and is attached to the front surface of the case 100 and is ultraviolet. It includes a glass window 105 from which light is emitted, and three fans 110 (cooling fans) provided on the back surface of the case 100 and exhausting the air inside the case 100. Further, on the bottom surface of the case 100, an intake port 102 that takes in air from the outside is formed in the case 100.
  • FIG. 2 is a diagram for explaining the internal configuration of the light irradiation device 1 according to the embodiment of the present invention
  • FIG. 2A is a perspective perspective view of the light irradiation device 1 when viewed in a plan view.
  • FIG. 2B is a side perspective view of the light irradiation device 1 when viewed from the right side.
  • FIG. 2C is a front perspective view of the light irradiation device 1 when viewed from the front.
  • FIG. 3 is a block diagram illustrating an electrical connection of the internal configuration of the light irradiation device 1 according to the embodiment of the present invention.
  • the light irradiation device 1 of the present embodiment includes a light source unit 200, a control board 300, a heat radiating member 400, and the like inside the case 100.
  • the light source unit 200 includes a rectangular substrate 205 defined in the Y-axis direction and the Z-axis direction, and 16 LED elements 210 having the same characteristics.
  • the 16 LED elements 210 are arranged in a row on the surface of the substrate 205 at predetermined intervals in the Y-axis direction with the optical axes aligned in the X-axis direction, and are electrically connected to the substrate 205. There is.
  • the board 205 is connected to the LED drive circuit 330 of the control board 300 by a cable (not shown), and the drive current from the LED drive circuit 330 is supplied to each LED element 210 via the board 205. (Fig. 3).
  • each LED element 210 When a drive current is supplied to each LED element 210, ultraviolet light (for example, a wavelength of 365 nm) having an amount of light corresponding to the drive current is emitted from each LED element 210, and a line parallel to the Y-axis direction is emitted from the light source unit 200. Ultraviolet light is emitted.
  • Each LED element 210 of the present embodiment has a drive current adjusted to be supplied to each LED element 210 so as to emit ultraviolet light having a substantially uniform amount of light, and has a line shape emitted from the light source unit 200.
  • the ultraviolet light of the above has a substantially uniform light amount distribution in the Y-axis direction.
  • the user can adjust the amount of ultraviolet light emitted from the light source unit 200 by operating the operation unit 500 (not shown in FIGS. 1 and 2) connected to the control board 300. (Details will be described later).
  • the heat radiating member 400 is a member that radiates heat generated from the light source unit 200.
  • the heat radiating member 400 of the present embodiment is arranged in close contact with the back surface of the substrate 205 of the light source unit 200, and has a plate-shaped base plate 410 that conducts heat generated by each LED element 210 and the X-axis direction from the base plate 410. It is composed of heat-dissipating fins 420 that are erected in opposite directions and dissipate heat transmitted to the base plate 410 into the air (FIGS. 2A and 2B).
  • the fan 110 rotates, the air inside the case 100 is exhausted from the fan 110, and the outside air is taken in from the intake port 102. Then, an air flow is generated so that the air taken in from the intake port 102 flows on the surface of the heat radiation fin 420, and the heat radiation fin 420 is efficiently cooled.
  • control board 300 is a circuit board that includes a control unit 310, a storage unit 320, an LED drive circuit 330, and a fan drive circuit 340, and controls the light source unit 200 and the fan 110. is there.
  • the control unit 310 is composed of a CPU that executes logical operations, a RAM that temporarily stores data, and the like, and has a function of controlling the entire light irradiation device 1.
  • the control unit 310 is electrically connected to the storage unit 320, the LED drive circuit 330, the fan drive circuit 340, and the operation unit 500, and is stored in the storage unit 320 when the power is input to the light irradiation device 1.
  • the control program is read and each of these parts is controlled. That is, the control unit 310 of the present embodiment has a function of controlling the LED drive circuit 330 (light source control unit) and a function of controlling the fan drive circuit 340 (fan control unit).
  • the storage unit 320 is a so-called non-volatile memory that stores the control program executed by the control unit 310.
  • the operation unit 500 is a so-called user interface in which input from the user is performed, and the amount of ultraviolet light emitted from the light source unit 200 can be adjusted, the on / off of the ultraviolet light, and the like can be set via the operation unit 500. It is configured as follows.
  • the LED drive circuit 330 is a circuit that is electrically connected to the light source unit 200 and supplies a drive current to each LED element 210.
  • the LED drive circuit 330 turns on / off the LED element 210 according to an instruction (signal) from the control unit 310, and outputs a predetermined drive current to each LED element 210.
  • the fan drive circuit 340 is a circuit that is electrically connected to the fan 110 and supplies drive power to the fan 110.
  • the fan drive circuit 340 turns the fan 110 on and off according to an instruction (signal) from the control unit 310, and rotates the fan 110 at a predetermined rotation speed.
  • the control program is a process that is read from the storage unit 320 and executed by the control unit 310 when the power is input to the light irradiation device 1.
  • FIG. 5 is a timing chart corresponding to each step of the control program of FIG. 4, and shows the state of the light source unit 200 and the fan 110 at each step of the control program.
  • step S101 determines whether or not the user has turned on the main switch of the light irradiation device 1 via the operation unit 500. If it is determined that the main switch is not ON (step S101: NO), step S101 is repeated until the main switch is ON, and the light source unit 200 and the fan 110 are turned off (that is, the amount of ultraviolet light: 0, the fan rotation). The state of number: 0) is maintained (FIG. 5: t0 to t1). Then, when the main switch is turned on (step S101: YES), the process proceeds to step S103.
  • step S103 the control unit 310 controls the fan drive circuit 340 and drives the fan 110 at a predetermined rotation speed R2 (for example, 40% of the maximum rotation speed (rpm)) (FIG. 5: t1). ..
  • a predetermined rotation speed R2 for example, 40% of the maximum rotation speed (rpm)
  • step S105 the control unit 310 determines whether or not the user has turned on the light source switch (switch for operating the light source unit 200) via the operation unit 500.
  • steps S103 and S105 are repeated until the light source switch is turned on (FIGS. 5: t1 to t2), and when the light source switch is turned on (step S105). : YES)
  • the process proceeds to step S107.
  • step S107 the control unit 310 controls the LED drive circuit 330 and applies a drive current to each LED element 210 of the light source unit 200 so that the ultraviolet light emitted from the light source unit 200 has a predetermined light amount P (W).
  • Supply Fig. 5: t2
  • step S109 the process proceeds to step S109.
  • step S109 the control unit 310 controls the fan drive circuit 340 and drives the fan 110 at a predetermined rotation speed R1 (for example, 90% of the maximum rotation speed (rpm)) higher than the rotation speed R2.
  • a predetermined rotation speed R1 for example, 90% of the maximum rotation speed (rpm)
  • step S111 the control unit 310 determines whether or not the user has turned off the light source switch via the operation unit 500. If it is determined that the light source switch is not turned off (step S111: NO), step S111 is repeated until the light source switch is turned off, and the light source unit 200 and the fan 110 are turned on (that is, the amount of ultraviolet light: P, fan rotation). The state of number: R1) is maintained (FIG. 5: t2 to t3). Then, when the light source switch is turned off (step S111: YES), the process proceeds to step S113.
  • step S113 the control unit 310 controls the LED drive circuit 330 to turn off the ultraviolet light emitted from the light source unit 200 (FIG. 5: t3).
  • step S115 the process proceeds to step S115.
  • step S115 the control unit 310 waits for a predetermined time td (for example, 2 seconds) (FIG. 5: t4), and the process proceeds to step S117.
  • a predetermined time td for example, 2 seconds
  • step S117 the control unit 310 determines whether or not the user has turned on the light source switch via the operation unit 500. If it is determined that the light source switch is not ON (step S117: NO), the process proceeds to step S119, and if it is determined that the light source switch is ON (step S117: YES), the process proceeds to step S107. move on.
  • step S121 the control unit 310 confirms the setting of the fan drive circuit 340 and determines whether or not the rotation speed of the fan 110 has reached the rotation speed R2. If the rotation speed of the fan 110 is not the rotation speed R2 (step S121: NO), steps S117 to S121 are repeated (FIG. 5: t4 to t5), and the rotation speed of the fan 110 becomes the rotation speed R2. If so (step S121: YES), the process proceeds to step S123 (FIG. 5: t5).
  • step S123 the control unit 310 determines whether or not the user has turned off the main switch via the operation unit 500. If it is determined that the main switch is not turned off (step S123: NO), the process proceeds to step S103, and if it is determined that the main switch is turned off (step S123: YES), the control unit 310 The fan 110 is stopped (step S125), and the control program ends.
  • the light source unit 200 emits a predetermined amount of light P.
  • the ultraviolet light is emitted, and the fan 110 is driven at the rotation speed R1 (FIG. 5: t2 to t3).
  • the rotation speed of the fan 110 gradually decreases after waiting for a predetermined time td (FIG. 5: t3 to t5), and the fan 110 waits at the rotation speed R2 (FIG. 5). 5: t5 to t6).
  • the fan 110 continues to rotate even after the ultraviolet light is turned off, heat does not stay in the case 100. Further, when the ultraviolet light is turned off and the fan 110 is in the standby state, the rotation speed of the fan 110 is lowered, so that the risk of sucking dust or the like into the case 100 and the risk of the life of the fan 110 are reduced.
  • t6 to t9 show a state in which the user turns on the light source switch via the operation unit 500 while the rotation speed of the fan 110 is being reduced in step S119. That is, in FIG. 4, when the ON of the light source switch is detected at a time T2 shorter than the transition time T1 while repeating steps S117 to S121 (FIG. 5: t8 to t9), the rotation speed of the fan 110 is the rotation speed. Since it has not decreased to R2, the process proceeds to step S107 (step S117: YES).
  • the control unit 310 controls the LED drive circuit 330 and supplies a drive current to each LED element 210 of the light source unit 200 so that the ultraviolet light emitted from the light source unit 200 has a predetermined amount of light P (FIG. 5). : T9).
  • the control unit 310 controls the LED drive circuit 330 and supplies a drive current to each LED element 210 of the light source unit 200 so that the ultraviolet light emitted from the light source unit 200 has a predetermined amount of light P (FIG. 5). : T9).
  • the ON of the light source switch is detected during the transition time T1
  • the processing of steps S117 to S121 is interrupted
  • the light source unit 200 emits ultraviolet light having a predetermined amount of light P, and the fan.
  • the 110 is driven by the rotation speed R1 (FIG. 5: t9).
  • t9 to t11 show a state in which the user turns on the light source switch via the operation unit 500 while waiting for td for a predetermined time in step S115. That is, in step S115 of FIG. 4, if ON of the light source switch is detected while waiting for td for a predetermined time, the process proceeds from step S117 to step S107 (that is, it does not proceed to step S119). Then, the control unit 310 controls the LED drive circuit 330 and supplies a drive current to each LED element 210 of the light source unit 200 so that the ultraviolet light emitted from the light source unit 200 has a predetermined light amount P (FIG. 5). : T11).
  • the processes of steps S117 to S121 are not performed (that is, the rotation speed of the fan 110 decreases).
  • the light source unit 200 emits ultraviolet light having a predetermined amount of light P, and the fan 110 is driven to maintain the rotation speed R1 (FIG. 5: t11).
  • the rotation speed R2 has been described as being 40% of the maximum rotation speed, but the present invention is not limited to such a configuration, and the heat generation amount and heat dissipation of the light source unit 200 are not limited. It can be appropriately set depending on the cooling capacity of the member 400 and the fan 110.
  • step S115 of the present embodiment it has been described as waiting for a predetermined time td (for example, 2 seconds), but the present invention is not limited to such a configuration, and the predetermined time td generates heat of the light source unit 200. It can be appropriately set depending on the amount, the cooling capacity of the heat radiating member 400 and the fan 110, and the like.
  • a predetermined time td for example, 2 seconds
  • the light irradiation device 1 of the present embodiment has been described as having the heat radiating member 400 inside the case 100, it is sufficient that the light source unit 200 can be cooled by the fan 110, and the heat radiating member 400 is not always necessary.
  • FIG. 6 is a block diagram illustrating an electrical connection of the internal configuration of the light irradiation device 1A according to the first modification of the present invention. Further, FIG. 7 is a flowchart of a control program executed by the control unit 310 of this modification.
  • the light irradiation device 1A of the present modification has a temperature sensor 600 for detecting the temperature of the light source unit 200, and has a step S116 instead of the step S115 of the control program of the present embodiment. Is different from the configuration of this embodiment.
  • the control unit 310 waits until the detection result of the temperature sensor 600 becomes a predetermined value (for example, 40 °) or less (S116: NO), when the detection result of the temperature sensor 600 becomes equal to or less than a predetermined value, the rotation speed of the fan 110 is gradually reduced (steps S117 to S121).
  • the light source unit 200 can be reliably cooled by controlling the rotation speed of the fan 110 based on the detection result of the temperature sensor 600.
  • FIG. 8 is a flowchart of a control program executed by the control unit 310 of the light irradiation device 1B (not shown in FIG. 8) according to the second modification of the present invention.
  • FIG. 9 is a timing chart corresponding to each step of the control program of FIG. 8, and shows the state of the light source unit 200 and the fan 110 at each step of the control program.
  • the configuration of the light irradiation device 1B according to this modification is the same as that of the light irradiation device 1 of the present embodiment, and only the control program is different.
  • control program of the light irradiation device 1B of the present modification has the light irradiation device 1 of the present embodiment in that step S110a, step S110b and step S110c are provided between steps S109 and S101. It is different from the control program of.
  • step S110a the control unit 310 determines whether or not the user has performed an operation of changing the light intensity via the operation unit 500 (that is, whether or not an operation of changing the light intensity P has been performed). If it is determined that the light intensity change operation has not been performed (step S110a: NO), the process proceeds to step S111, and if it is determined that the light intensity change operation has been performed (step S110a: YES), the process proceeds to step S111. Proceed to S110b.
  • step S110b the control unit 310 controls the LED drive circuit 330 based on the user operation input to the operation unit 500, and the ultraviolet light emitted from the light source unit 200 has a predetermined amount of light P'(“ P'” is , The amount of light after the change) is supplied to each LED element 210 of the light source unit 200 (FIG. 9: t2a).
  • P' “ P'” is , The amount of light after the change
  • step S110c the process proceeds to step S111.
  • step S111 the control unit 310 determines whether or not the user has turned off the light source switch via the operation unit 500. If it is determined that the light source switch is not turned off (step S111: NO), the process returns to step S109, and the processes from step S110a to step S110c are repeated (FIGS. 9: t2a to t3). Then, when the light source switch is turned off (step S111: YES), the process proceeds to step S113.
  • the light amount P is changed based on the user operation, and the changed light amount P'is further changed.
  • the rotation speed R1 of the fan 110 is also changed to R1'in response (FIG. 9: t2a to t3).
  • the rotation speed of the fan 110 gradually decreases after waiting for a predetermined time td (FIG. 9: t3 to t5), and the fan 110 waits at the rotation speed R2 (FIG. 9). 9: t5 to t6).
  • Light irradiation device 1A Light irradiation device 1B: Light irradiation device 100: Case 102: Intake port 105: Window 110: Fan 200: Light source unit 205: Board 210: LED element 300: Control board 310: Control unit 320: Storage unit 330: LED drive circuit 340: Fan drive circuit 400: Heat dissipation member 410: Base plate 420: Heat dissipation fin 500: Operation unit 600: Temperature sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)
  • Ink Jet (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

筐体内に熱がこもることなく、かつ、筐体内に埃等を吸い込むリスクやファン装置の寿命のリスクを低減可能な光源装置を提供する。 光源装置は、光源と、光源のオン/オフ及び光量を制御する光源制御部と、光源を冷却する冷却ファンと、冷却ファンの回転数を制御するファン制御部と、を備え、ファン制御部は、光源がオンしているときに、冷却ファンが光源の光量に応じた第1の回転数となるように制御し、光源がオフしたときに、所定の待機時間を待って、冷却ファンが第1の回転数よりも低い第2の回転数となるように制御する。

Description

光源装置
 この発明は、光を出射する光源装置に関し、特に、光源から発せられる熱を冷却する冷却ファンを備えた光源装置に関する。
 従来、紫外光の照射によって硬化するUVインクを用いて印刷を行なう印刷装置が知られている。このような印刷装置では、紫外線照射装置を備え、ヘッドのノズルから媒体にインクを吐出した後、媒体に形成されたドットに紫外光を照射するように構成されている。そして、このような紫外線照射装置には、光源に多数の紫外線LEDが使用されている(例えば、特許文献1)。
 特許文献1に記載の紫外線照射装置は、光源として多数の紫外線LED素子を有する紫外線照射ヘッドとLED素子の点灯制御等を行うコントローラを備えている。このように光源としてLED素子を用いる場合、投入した電力の大半が熱となることから、LED素子自身が発熱する熱によって発光効率と寿命が低下するといった問題が発生する。そして、かかる問題は、特許文献1の紫外線照射装置のように、多数のLED素子が搭載された装置の場合、熱源となるLED素子が増えることから、さらに深刻なものとなる。このため、特許文献1の紫外線照射装置においては、LED素子に生じた熱を効率よく伝達するヒートシンクとヒートシンクに冷却風を供給する複数のファン装置を備え、LED素子の点灯と同時にファン装置を駆動し、LED素子の消灯と同時にファン装置を停止して、LED素子の発熱を抑えている。
特許第6349098号公報
 特許文献1に記載の紫外線照射装置によれば、ファン装置の駆動制御によってLED素子の発熱を抑えることができる。しかしながら、特許文献1の構成は、LED素子の点灯と同時にファン装置を駆動し、LED素子の消灯と同時にファン装置を停止する構成であるため、LED素子の消灯時に紫外線照射装置の筐体内に熱がこもってしまい、LED素子を消灯したにも拘わらず筐体が一向に冷めないといった問題がある。また、LED素子の点灯時にはファン装置が常に100%の回転数で回るため、周囲の埃等を吸気口(又はファン装置)から吸い込み易く、故障のリスクが増えるといった問題もある。また、ファン装置が100%の回転数で回る時間が長くなると、ファン装置の寿命が短くなるといった問題も発生する。
 本発明は、上記の事情に鑑みてなされたものであり、LED素子を消灯したときに筐体内に熱がこもることを抑制し、かつ、筐体内に埃等を吸い込むリスクやファン装置の寿命のリスクを低減することが可能な光源装置を提供することを目的とする。
 上記目的を達成するため、本発明の光源装置は、光源と、光源のオン/オフ及び光量を制御する光源制御部と、光源を冷却する冷却ファンと、冷却ファンの回転数を制御するファン制御部と、を備え、ファン制御部は、光源がオンしているときに、冷却ファンが光源の光量に応じた第1の回転数となるように制御し、光源がオフしたときに、所定の待機時間を待って、冷却ファンが第1の回転数よりも低い第2の回転数となるように制御することを特徴とする。
 このような構成によれば、光源がオフしたときにも、冷却ファンが回転し続けるため、筐体内に熱がこもることがない。また、光源がオフしている期間、冷却ファンの回転数が低くなるため、筐体内に埃等を吸い込むリスクや冷却ファンの寿命のリスクが低減する。
 また、別の観点からは、本発明の光源装置は、光源と、光源のオン/オフを制御する光源制御部と、光源を冷却する冷却ファンと、光源のオン/オフに基づいて、冷却ファンの回転数を制御するファン制御部と、を備え、ファン制御部は、光源がオンしたときに、冷却ファンを第1の回転数となるように制御し、光源がオフしたときに、所定の待機時間を待って、冷却ファンを第1の回転数よりも低い第2の回転数となるように制御することを特徴とする。
 また、別の観点からは、本発明の光源装置は、光源と、光源のオン/オフを制御する光源制御部と、光源の温度を検出する温度センサと、光源を冷却する冷却ファンと、光源のオン/オフ及び温度センサの検出結果に基づいて、冷却ファンの回転数を制御するファン制御部と、を備え、ファン制御部は、光源がオンしたときに、冷却ファンを第1の回転数となるように制御し、光源がオフしたときに、温度センサの検出結果が所定値以下となるのを待って、冷却ファンを第1の回転数よりも低い第2の回転数となるように制御することを特徴とする。
 また、ファン制御部は、第1の回転数をR1、第2の回転数をR2、第1の回転数から第2の回転数までの移行時間をTとしたときに、以下の条件式(1)を満たすように冷却ファンの回転数を制御することが望ましい。
    (R2-R1)/T=k(kは、任意の定数)・・・(1)
 また、この場合、ファン制御部は、移行時間内に光源がオンした場合、移行時間の経過を待たずに、冷却ファンが第1の回転数となるように制御することが望ましい。
 また、ファン制御部が、第1の回転数をR1、光源の光量をPとしたときに、以下の条件式(2)を満たすように冷却ファンの回転数を制御することが望ましい。
    R1=a・P+b(a、bは、任意の定数)・・・(2)
 また、第2の回転数が、冷却ファンの最大回転数の略40%に設定されていることが望ましい。
 以上のように、本発明によれば、LED素子を消灯したときに筐体内に熱がこもることなく、かつ、筐体内に埃等を吸い込むリスクやファン装置の寿命のリスクを低減可能な光源装置が実現される。
図1は、本発明の実施形態に係る光照射装置の外観図である。 図2は、本発明の実施形態に係る光照射装置の内部構成を説明する図である。 図3は、本発明の実施形態に係る光照射装置の内部構成の電気的な接続を説明するブロック図である。 図4は、本発明の実施形態に係る光照射装置で実行される制御プログラムのフローチャートである。 図5は、図4のフローチャートに対応するタイミングチャートである。 図6は、本発明の第1の変形例に係る光照射装置の内部構成の電気的な接続を説明するブロック図である。 図7は、本発明の変形例に係る光照射装置で実行される制御プログラムのフローチャートである。 図8は、本発明の第2の変形例に係る光照射装置で実行される制御プログラムのフローチャートである。 図9は、図8のフローチャートに対応するタイミングチャートである。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、図中同一又は相当部分には同一の符号を付してその説明は繰り返さない。
 図1は、本発明の実施形態に係る光照射装置1(光源装置)の外観図であり、図1(a)は、本発明の実施形態に係る光照射装置1の平面図である。また、図1(b)は、図1(a)の光照射装置1の右側面図であり、図1(c)は、図1(a)の光照射装置1の底面図であり、図1(d)は、図1(a)の光照射装置1の正面図である。本実施形態の光照射装置1は、印刷装置等に搭載されて、紫外線硬化型インキや紫外線硬化樹脂を硬化させる光源装置であり、照射対象物の上方に配置され、照射対象物に対してライン状の紫外光を出射する。なお、本明細書においては、図1の座標に示すように、後述するLED(Light Emitting Diode)素子210が紫外光を出射する方向をX軸方向、LED素子210の配列方向をY軸方向、ならびにX軸方向及びY軸方向に直交する方向をZ軸方向と定義して説明する。
 図1に示すように、本実施形態の光照射装置1は、内部に光源ユニット200や放熱部材400等を収容する薄い箱形のケース100(筐体)と、ケース100の前面に取り付けられ紫外光が出射されるガラス製の窓部105と、ケース100の背面に設けられ、ケース100内の空気を排気する3つのファン110(冷却ファン)とを備えている。また、ケース100の底面には、ケース100に外部から空気を取り込む吸気口102が形成されている。
 図2は、本発明の実施形態に係る光照射装置1の内部構成を説明する図であり、図2(a)は、光照射装置1を平面視したときの平面透視図である。また、図2(b)は、光照射装置1を右側面から見たときの側面透視図である。また、図2(c)は、光照射装置1を正面から見たときの正面透視図である。また、図3は、本発明の実施形態に係る光照射装置1の内部構成の電気的な接続を説明するブロック図である。
 図2に示すように、本実施形態の光照射装置1は、光源ユニット200と、制御基板300と、放熱部材400等をケース100内部に備えている。
 図2に示すように、光源ユニット200は、Y軸方向及びZ軸方向で規定される矩形状の基板205と、同じ特性を有する16個のLED素子210とを備えている。
 16個のLED素子210は、X軸方向に光軸が揃えられた状態で、Y軸方向に所定の間隔をおいて基板205の表面に一列に配置され、基板205と電気的に接続されている。基板205は、制御基板300のLED駆動回路330と不図示のケーブルによって接続されており、各LED素子210には、基板205を介してLED駆動回路330からの駆動電流が供給されるようになっている(図3)。各LED素子210に駆動電流が供給されると、各LED素子210からは駆動電流に応じた光量の紫外光(例えば、波長365nm)が出射され、光源ユニット200からはY軸方向に平行なライン状の紫外光が出射される。なお、本実施形態の各LED素子210は、略一様な光量の紫外光を出射するように各LED素子210に供給される駆動電流が調整されており、光源ユニット200から出射されるライン状の紫外光は、Y軸方向において略均一な光量分布を有している。なお、本実施形態においては、ユーザが、制御基板300に接続された操作部500(図1、図2において不図示)を操作することによって光源ユニット200から出射される紫外光の光量を調整できるようになっている(詳細は後述)。
 放熱部材400は、光源ユニット200から発せられた熱を放熱する部材である。本実施形態の放熱部材400は、光源ユニット200の基板205の裏面に密着して配置され、各LED素子210で発せられた熱を伝導する板状のベースプレート410と、ベースプレート410からX軸方向と相反する方向に立設し、ベースプレート410に伝わった熱を空気中に放熱する放熱フィン420とで構成されている(図2(a)、(b))。ファン110が回転すると、ケース100内の空気がファン110から排気され、吸気口102からは外部の空気が取り込まれる。そして、吸気口102から取り込まれた空気が放熱フィン420の表面を流れるように気流が発生し、放熱フィン420が効率よく冷却されるようになっている。
 図3に示すように、制御基板300は、制御部310と、記憶部320と、LED駆動回路330と、ファン駆動回路340と、を有し、光源ユニット200及びファン110を制御する回路基板である。
 制御部310は、論理演算を実行するCPU、データ等が一時的にストアされるRAM等から構成され、光照射装置1全体を制御する機能を備えている。制御部310は、記憶部320、LED駆動回路330、ファン駆動回路340、操作部500と電気的に接続されており、光照射装置1に電源が入力されると、記憶部320に記憶された制御プログラムを読み出し、これら各部を制御する。つまり、本実施形態の制御部310は、LED駆動回路330を制御する機能(光源制御部)と、ファン駆動回路340を制御する機能(ファン制御部)とを兼ね備えている。
 記憶部320は、制御部310で実行される制御プログラムを保存する、いわゆる不揮発性メモリである。
 操作部500は、ユーザからの入力が行われる、いわゆるユーザインターフェースであり、操作部500を介して、光源ユニット200から出射される紫外光の光量の調整、紫外光のオン・オフ等を設定できるように構成されている。
 LED駆動回路330は、光源ユニット200と電気的に接続され、各LED素子210に駆動電流を供給する回路である。LED駆動回路330は、制御部310からの指示(信号)に従って、LED素子210をオン・オフし、所定の駆動電流を各LED素子210に出力する。
 ファン駆動回路340は、ファン110と電気的に接続され、ファン110に駆動電力を供給する回路である。ファン駆動回路340は、制御部310からの指示(信号)に従って、ファン110をオン・オフし、所定の回転数でファン110を回転させる。
 次に、図4のフローチャートを参照し、制御部310で実行される制御プログラムについて説明する。制御プログラムは、光照射装置1に電源が入力されたときに、記憶部320から読み出され、制御部310で実行される処理である。また、図5は、図4の制御プログラムの各ステップに対応するタイミングチャートであり、制御プログラムの各ステップにおける光源ユニット200とファン110の様子を示している。
 図4に示すように、制御プログラムが実行されると、制御部310は、ユーザが操作部500を介して光照射装置1のメインスイッチをONしたか否かを判断する。メインスイッチがONしていないと判断した場合は(ステップS101:NO)、メインスイッチがONするまでステップS101を繰り返し、光源ユニット200及びファン110はオフ(つまり、紫外光の光量:0、ファン回転数:0)の状態を維持する(図5:t0~t1)。そして、メインスイッチがONされると(ステップS101:YES)処理はステップS103に進む。
 ステップS103では、制御部310は、ファン駆動回路340を制御し、ファン110を所定の回転数R2(例えば、最大回転数の40%の回転数(rpm))で駆動する(図5:t1)。ステップS103の処理が終了すると、処理はステップS105に進む。
 ステップS105では、制御部310は、ユーザが操作部500を介して光源スイッチ(光源ユニット200を機能させるためのスイッチ)をONしたか否かを判断する。光源スイッチがONしていないと判断した場合は(ステップS105:NO)、光源スイッチがONするまでステップS103、S105を繰り返し(図5:t1~t2)、光源スイッチがONされると(ステップS105:YES)処理はステップS107に進む。
 ステップS107では、制御部310は、LED駆動回路330を制御し、光源ユニット200から出射される紫外光が所定の光量P(W)となるように光源ユニット200の各LED素子210に駆動電流を供給する(図5:t2)。ステップS107の処理が終了すると、処理はステップS109に進む。
 ステップS109では、制御部310は、ファン駆動回路340を制御し、ファン110を回転数R2よりも高い所定の回転数R1(例えば、最大回転数の90%の回転数(rpm))で駆動する(図5:t2)。なお、本実施形態においては、回転数R1は、R1=a×P(aは任意の定数)となるように、光量Pに応じた回転数になっている。ステップS109の処理が終了すると、処理はステップS111に進む。
 ステップS111では、制御部310は、ユーザが操作部500を介して光源スイッチをOFFしたか否かを判断する。光源スイッチがOFFしていないと判断した場合は(ステップS111:NO)、光源スイッチがOFFするまでステップS111を繰り返し、光源ユニット200及びファン110はオン(つまり、紫外光の光量:P、ファン回転数:R1)の状態を維持する(図5:t2~t3)。そして、光源スイッチがOFFされると(ステップS111:YES)処理はステップS113に進む。
 ステップS113では、制御部310は、LED駆動回路330を制御し、光源ユニット200から出射される紫外光を消灯する(図5:t3)。ステップS113の処理が終了すると、処理はステップS115に進む。
 ステップS115では、制御部310は、所定時間td(例えば、2秒)だけ待機し(図5:t4)、処理はステップS117に進む。
 ステップS117では、制御部310は、ユーザが操作部500を介して光源スイッチをONしたか否かを判断する。光源スイッチがONしていないと判断した場合は(ステップS117:NO)、処理はステップS119に進み、光源スイッチがONされていると判断した場合は(ステップS117:YES)、処理はステップS107に進む。
 ステップS119では、制御部310は、ファン駆動回路340を制御し、ファン110の回転数を回転数R1から回転数R2まで所定の比率で低下させる(図5:t4~t5)。つまり、図5に示すように、本実施形態においては、回転数R1から回転数R2までの移行時間をT(例えば、10秒)としたときに、以下の条件式(1)を満たすように、ファン駆動回路340を制御する。
    (R2-R1)/T=k(kは、任意の定数)・・・(1)
 ステップS119の処理が終了すると、処理はステップS121に進む。
 ステップS121では、制御部310は、ファン駆動回路340の設定を確認し、ファン110の回転数が回転数R2になったか否かを判断する。そして、ファン110の回転数が回転数R2になっていない場合は(ステップS121:NO)、ステップS117~S121を繰り返し(図5:t4~t5)、ファン110の回転数が回転数R2になった場合は(ステップS121:YES)、処理はステップS123に進む(図5:t5)。
 ステップS123では、制御部310は、ユーザが操作部500を介してメインスイッチをOFFしたか否かを判断する。メインスイッチがOFFしていないと判断した場合は(ステップS123:NO)、処理はステップS103に進み、メインスイッチがOFFされていると判断した場合は(ステップS123:YES)、制御部310は、ファン110を停止させて(ステップS125)、制御プログラムを終了する。
 このように、本実施形態の光照射装置1においては(つまり、制御プログラムが実行されると)、ユーザが操作部500を介して光源スイッチをONにすると、光源ユニット200からは所定の光量Pの紫外光が出射され、ファン110は回転数R1で駆動される(図5:t2~t3)。そして、光源スイッチがOFFになると、紫外光が消灯された後、所定時間tdを待ってファン110の回転数が徐々に低下し(図5:t3~t5)、回転数R2で待機する(図5:t5~t6)。つまり、紫外光が消灯した後もファン110が回転し続けるため、ケース100内に熱がこもることはない。また、紫外光が消灯し、待機状態のときには、ファン110の回転数が低くなるため、ケース100内に埃等を吸い込むリスクやファン110の寿命のリスクが低減する。
 なお、図5において、t6~t9は、ステップS119において、ファン110の回転数を低下させているときに、ユーザが操作部500を介して光源スイッチをONにした場合の様子を示している。つまり、図4において、ステップS117~S121を繰り返しているときに(図5:t8~t9)、移行時間T1よりも短い時間T2で光源スイッチのONを検出すると、ファン110の回転数が回転数R2まで低下していないため、処理はステップS107に進む(ステップS117:YES)。そして、制御部310は、LED駆動回路330を制御し、光源ユニット200から出射される紫外光が所定の光量Pとなるように光源ユニット200の各LED素子210に駆動電流を供給する(図5:t9)。このように、本実施形態においては、移行時間T1中に光源スイッチのONを検出すると、ステップS117~S121の処理は中断され、光源ユニット200からは所定の光量Pの紫外光が出射され、ファン110は回転数R1で駆動されるようになっている(図5:t9)。
 また、図5において、t9~t11は、ステップS115において、所定時間tdだけ待機しているときに、ユーザが操作部500を介して光源スイッチをONにした場合の様子を示している。つまり、図4のステップS115において、所定時間tdだけ待機しているときに、光源スイッチのONを検出すると、処理はステップS117からステップS107に進む(つまり、ステップS119に進むことはない)。そして、制御部310は、LED駆動回路330を制御し、光源ユニット200から出射される紫外光が所定の光量Pとなるように光源ユニット200の各LED素子210に駆動電流を供給する(図5:t11)。このように、本実施形態においては、所定時間tdの待機中(T3の期間中)に光源スイッチのONを検出すると、ステップS117~S121の処理は行われず(つまり、ファン110の回転数は低下することなく)、光源ユニット200からは所定の光量Pの紫外光が出射され、ファン110は回転数R1を維持するように駆動されるようになっている(図5:t11)。
 以上が本実施形態の説明であるが、本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲内において様々な変形が可能である。例えば、本実施形態のステップS109において、回転数R1は、R1=a×P(aは任意の定数)となるように設定されている(つまり、回転数R1と光量Pは正比例の関係にある)としたが、以下の条件式(2)に示すように、一次関数として一般化することができる。
    R1=a・P+b(a、bは、任意の定数)・・・(2)
 また、必ずしも回転数R1と光量Pは比例関係にある必要はなく、回転数R1が所定の回転数に設定されてもよい。
 また、本実施形態においては、回転数R2は、最大回転数の40%の回転数であるものとして説明したが、このような構成に限定されるものではなく、光源ユニット200の発熱量、放熱部材400やファン110の冷却能力等によって適宜設定することができる。
 また、本実施形態のステップS115において、所定時間td(例えば、2秒)だけ待機するものとして説明したが、このような構成に限定されるものではなく、所定時間tdは、光源ユニット200の発熱量、放熱部材400やファン110の冷却能力等によって適宜設定することができる。
 また、本実施形態の光照射装置1は、ケース100内部に放熱部材400を有するものとして説明したが、ファン110によって光源ユニット200を冷却することができればよく、必ずしも放熱部材400は必要ではない。
(第1の変形例)
 図6は、本発明の第1の変形例に係る光照射装置1Aの内部構成の電気的な接続を説明するブロック図である。また、図7は、本変形例の制御部310で実行される制御プログラムのフローチャートである。
 図6に示すように、本変形例の光照射装置1Aは、光源ユニット200の温度を検出する温度センサ600を有し、本実施形態の制御プログラムのステップS115に代えて、ステップS116を有する点で本実施形態の構成と異なっている。
 つまり、本変形例においては、光源スイッチがOFFした後(ステップS111、S113)、制御部310は、温度センサ600の検出結果が所定値(例えば、40°)以下になるまで待機し(S116:NO)、温度センサ600の検出結果が所定値以下になったらファン110の回転数を徐々に低下させる(ステップS117~S121)。このように、本変形によれば、温度センサ600の検出結果に基づいてファン110の回転数を制御することにより、光源ユニット200を確実に冷却することが可能となる。
(第2の変形例)
 図8は、本発明の第2の変形例に係る光照射装置1B(図8において不図示)の制御部310で実行される制御プログラムのフローチャートである。また、図9は、図8の制御プログラムの各ステップに対応するタイミングチャートであり、制御プログラムの各ステップにおける光源ユニット200とファン110の様子を示している。なお、本変形例に係る光照射装置1Bの構成は、本実施形態の光照射装置1と同一であり、制御プログラムのみ異なるものである。
 図8に示すように、本変形例の光照射装置1Bの制御プログラムは、ステップS109とステップS101の間に、ステップS110a、ステップS110b及びステップS110cを有する点で、本実施形態の光照射装置1の制御プログラムと異なっている。
 ステップS110aでは、制御部310は、ユーザが操作部500を介して光量の変更操作を行ったか否か(つまり、光量Pを変更する操作を行ったか否か)を判断する。光量の変更操作が行われていないと判断した場合は(ステップS110a:NO)、処理はステップS111に進み、光量の変更操作が行われたと判断した場合は(ステップS110a:YES)、処理はステップS110bに進む。
 ステップS110bでは、制御部310は、操作部500に入力されるユーザ操作に基づいてLED駆動回路330を制御し、光源ユニット200から出射される紫外光が所定の光量P´(「P´」は、変更後の光量)となるように光源ユニット200の各LED素子210に駆動電流を供給する(図9:t2a)。ステップS110bの処理が終了すると、処理はステップS110cに進む。
 ステップS110cでは、制御部310は、ステップS110bの光量P´に応じてファン駆動回路340を制御し、ファン110の回転数R1を回転数R1´に変更する(図9:t2a)。つまり、回転数R1´が、R1´=a×P´(aは任意の定数)となるように、回転数が変更される。ステップS110cの処理が終了すると、処理はステップS111に進む。
 ステップS111では、制御部310は、ユーザが操作部500を介して光源スイッチをOFFしたか否かを判断する。光源スイッチがOFFしていないと判断した場合は(ステップS111:NO)、処理はステップS109に戻り、ステップS110aからステップS110cまでの処理が繰り返される(図9:t2a~t3)。そして、光源スイッチがOFFされると(ステップS111:YES)処理はステップS113に進む。
 このように、本変形例の光照射装置1Bにおいては、ユーザが操作部500を介して光量の変更操作を行うと、ユーザ操作に基づいて光量Pが変更され、さらに変更後の光量P´に応じてファン110の回転数R1もR1´に変更される(図9:t2a~t3)。そして、光源スイッチがOFFになると、紫外光が消灯された後、所定時間tdを待ってファン110の回転数が徐々に低下し(図9:t3~t5)、回転数R2で待機する(図9:t5~t6)。つまり、本変形例においても、紫外光が消灯した後もファン110が回転し続けるため、ケース100内に熱がこもることはない。また、紫外光が消灯し、待機状態のときには、ファン110の回転数が低くなるため、ケース100内に埃等を吸い込むリスクやファン110の寿命のリスクが低減する。
 なお、今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1    :光照射装置
1A   :光照射装置
1B   :光照射装置
100  :ケース
102  :吸気口
105  :窓部
110  :ファン
200  :光源ユニット
205  :基板
210  :LED素子
300  :制御基板
310  :制御部
320  :記憶部
330  :LED駆動回路
340  :ファン駆動回路
400  :放熱部材
410  :ベースプレート
420  :放熱フィン
500  :操作部
600  :温度センサ

Claims (7)

  1.  光源と、
     前記光源のオン/オフ及び光量を制御する光源制御部と、
     前記光源を冷却する冷却ファンと、
     前記冷却ファンの回転数を制御するファン制御部と、
    を備え、
     前記ファン制御部は、
      前記光源がオンしているときに、前記冷却ファンが前記光源の光量に応じた第1の回転数となるように制御し、
      前記光源がオフしたときに、所定の待機時間を待って、前記冷却ファンが前記第1の回転数よりも低い第2の回転数となるように制御する
    ことを特徴とする光源装置。
  2.  光源と、
     前記光源のオン/オフを制御する光源制御部と、
     前記光源を冷却する冷却ファンと、
     前記光源のオン/オフに基づいて、前記冷却ファンの回転数を制御するファン制御部と、
    を備え、
     前記ファン制御部は、
      前記光源がオンしたときに、前記冷却ファンを第1の回転数となるように制御し、
      前記光源がオフしたときに、所定の待機時間を待って、前記冷却ファンを前記第1の回転数よりも低い第2の回転数となるように制御する
    ことを特徴とする光源装置。
  3.  光源と、
     前記光源のオン/オフを制御する光源制御部と、
     前記光源の温度を検出する温度センサと、
     前記光源を冷却する冷却ファンと、
     前記光源のオン/オフ及び前記温度センサの検出結果に基づいて、前記冷却ファンの回転数を制御するファン制御部と、
    を備え、
     前記ファン制御部は、
      前記光源がオンしたときに、前記冷却ファンを第1の回転数となるように制御し、
      前記光源がオフしたときに、前記温度センサの検出結果が所定値以下となるのを待って、前記冷却ファンを前記第1の回転数よりも低い第2の回転数となるように制御する
    ことを特徴とする光源装置。
  4.  前記ファン制御部は、前記第1の回転数をR1、前記第2の回転数をR2、前記第1の回転数から前記第2の回転数までの移行時間をTとしたときに、以下の条件式(1)を満たすように前記冷却ファンの回転数を制御することを特徴とする請求項1から請求項3のいずれか一項に記載の光源装置。
        (R2-R1)/T=k(kは、任意の定数)・・・(1)
  5.  前記ファン制御部は、前記移行時間内に前記光源がオンした場合、前記移行時間の経過を待たずに、前記冷却ファンが前記第1の回転数となるように制御することを特徴とする請求項4に記載の光源装置。
  6.  前記ファン制御部が、前記第1の回転数をR1、前記光源の光量をPとしたときに、以下の条件式(2)を満たすように前記冷却ファンの回転数を制御することを特徴とする請求項1から請求項5のいずれか一項に記載の光源装置。
        R1=a・P+b(a、bは、任意の定数)・・・(2)
  7.  前記第2の回転数が、前記冷却ファンの最大回転数の略40%に設定されていることを特徴とする請求項1から請求項6のいずれか一項に記載の光源装置。
PCT/JP2020/023311 2019-06-13 2020-06-12 光源装置 WO2020251048A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217042989A KR20220019720A (ko) 2019-06-13 2020-06-12 광원 장치
EP20823150.6A EP3984750A4 (en) 2019-06-13 2020-06-12 LIGHT SOURCE DEVICE
US17/618,422 US11674680B2 (en) 2019-06-13 2020-06-12 Light source device
CN202080051068.6A CN114144313B (zh) 2019-06-13 2020-06-12 光源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019110338A JP7300899B2 (ja) 2019-06-13 2019-06-13 光源装置
JP2019-110338 2019-06-13

Publications (1)

Publication Number Publication Date
WO2020251048A1 true WO2020251048A1 (ja) 2020-12-17

Family

ID=73742904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023311 WO2020251048A1 (ja) 2019-06-13 2020-06-12 光源装置

Country Status (6)

Country Link
US (1) US11674680B2 (ja)
EP (1) EP3984750A4 (ja)
JP (1) JP7300899B2 (ja)
KR (1) KR20220019720A (ja)
CN (1) CN114144313B (ja)
WO (1) WO2020251048A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022157844A (ja) * 2021-03-31 2022-10-14 Hoya株式会社 光照射装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349098B2 (ja) 1984-03-13 1988-10-03 Takashi Takahashi
JP2006147373A (ja) * 2004-11-19 2006-06-08 Sony Corp バックライト装置
JP2007087816A (ja) * 2005-09-22 2007-04-05 Sharp Corp 照明装置
JP2010197500A (ja) * 2009-02-23 2010-09-09 Casio Computer Co Ltd 発光装置及び光源装置並びにこの光源装置を用いたプロジェクタ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365327A (zh) * 2007-08-09 2009-02-11 鸿富锦精密工业(深圳)有限公司 风扇冷却系统
CN101463986B (zh) * 2007-12-21 2011-01-05 富士迈半导体精密工业(上海)有限公司 发光二极管灯具
TW201043851A (en) * 2009-06-08 2010-12-16 Star Ltd Co Ltd LED lamp with heat dissipating structure
JP5500341B2 (ja) * 2009-10-28 2014-05-21 カシオ計算機株式会社 光源ユニット及びプロジェクタ
WO2012025986A1 (ja) * 2010-08-24 2012-03-01 Necディスプレイソリューションズ株式会社 画像表示装置および光源冷却方法
JP6349098B2 (ja) * 2014-02-06 2018-06-27 パナソニック デバイスSunx株式会社 紫外線照射ヘッド及び紫外線照射装置
JP6069382B2 (ja) * 2014-04-04 2017-02-01 Hoya Candeo Optronics株式会社 光照射装置
CN104972742B (zh) * 2014-04-04 2018-11-27 豪雅冠得股份有限公司 光照射装置
US20160334091A1 (en) * 2015-05-15 2016-11-17 Posco Led Company Ltd. Led lighting apparatus
JP6126644B2 (ja) * 2015-05-29 2017-05-10 Hoya Candeo Optronics株式会社 光照射装置
JP6544322B2 (ja) * 2016-09-05 2019-07-17 株式会社デンソー 車両用灯具制御装置
CN108150979B (zh) * 2016-12-06 2020-02-18 通用电气照明解决方案有限公司 Led灯及控制led灯的风扇转速的方法及其系统
US10006619B1 (en) * 2016-12-28 2018-06-26 WLC Enterprises, Inc. Combination LED lighting and fan apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349098B2 (ja) 1984-03-13 1988-10-03 Takashi Takahashi
JP2006147373A (ja) * 2004-11-19 2006-06-08 Sony Corp バックライト装置
JP2007087816A (ja) * 2005-09-22 2007-04-05 Sharp Corp 照明装置
JP2010197500A (ja) * 2009-02-23 2010-09-09 Casio Computer Co Ltd 発光装置及び光源装置並びにこの光源装置を用いたプロジェクタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3984750A4

Also Published As

Publication number Publication date
US11674680B2 (en) 2023-06-13
EP3984750A1 (en) 2022-04-20
JP7300899B2 (ja) 2023-06-30
US20220349567A1 (en) 2022-11-03
JP2020202346A (ja) 2020-12-17
KR20220019720A (ko) 2022-02-17
CN114144313A (zh) 2022-03-04
EP3984750A4 (en) 2023-08-02
CN114144313B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
KR101848318B1 (ko) 광조사 장치
JP5385670B2 (ja) 車両用led灯具
KR100842391B1 (ko) Uv 경화용 uv led 제어루프 및 제어기
JP6505677B2 (ja) 内部偏向通気
KR101941093B1 (ko) 광조사장치
CN1841204A (zh) 外围曝光装置
WO2020251048A1 (ja) 光源装置
JP2007026517A (ja) 紫外線照射装置
JP6006379B2 (ja) 光照射装置
TW202001489A (zh) 散熱風扇
KR200485846Y1 (ko) 조명 모듈을 위한 랩 어라운드 윈도우
JP7216558B2 (ja) 車両用灯具
KR101330698B1 (ko) 벌룬 조명기
WO2008016116A1 (fr) Dispositif et procédé de recuit
JP3170758U (ja) 温度調節機能付きled放熱モジュール
KR20140106288A (ko) 램프모듈, 이를 포함하는 노광장치 및 노광장치의 구동방법
JP2017159657A (ja) 光照射装置
TW201802393A (zh) 用於窄寬度輻射的放射和經由窄寬度輻射的固化的方法和系統
JP2010118456A (ja) 紫外線発光ダイオードを利用した紫外線照射装置
TW200635072A (en) System in package high power high efficiency diode lamp
JP5820218B2 (ja) 光照射装置、基板処理装置および光照射装置の制御方法
US20210153383A1 (en) Methods and systems for operating a lighting device
KR101066874B1 (ko) Led 헤드 유닛
JP2022099824A (ja) 紫外線照射装置
KR20200035675A (ko) 자외선 광 조사 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217042989

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020823150

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020823150

Country of ref document: EP

Effective date: 20220113