WO2020250445A1 - Power converter, service life diagnosis device for semiconductor chip, and method for diagnosing service life of semiconductor chip - Google Patents

Power converter, service life diagnosis device for semiconductor chip, and method for diagnosing service life of semiconductor chip Download PDF

Info

Publication number
WO2020250445A1
WO2020250445A1 PCT/JP2019/023754 JP2019023754W WO2020250445A1 WO 2020250445 A1 WO2020250445 A1 WO 2020250445A1 JP 2019023754 W JP2019023754 W JP 2019023754W WO 2020250445 A1 WO2020250445 A1 WO 2020250445A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
life
current
series circuit
current value
Prior art date
Application number
PCT/JP2019/023754
Other languages
French (fr)
Japanese (ja)
Inventor
紀彦 奥村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980097338.4A priority Critical patent/CN113939989B/en
Priority to JP2019567383A priority patent/JP6656501B1/en
Priority to PCT/JP2019/023754 priority patent/WO2020250445A1/en
Publication of WO2020250445A1 publication Critical patent/WO2020250445A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention provides a power conversion device for diagnosing the life of a semiconductor chip equipped with a semiconductor switching element for power conversion (hereinafter, abbreviated as "semiconductor element”), a semiconductor chip life diagnosis device, and a semiconductor chip life diagnosis method. Regarding.
  • Patent Document 1 in a power converter in which a plurality of semiconductor chips are mounted, the number of repetitions of the maximum output current value of the power converter in order to diagnose the life of the semiconductor chip such as thermal cycle life and power cycle life Is disclosed, and a technique for comparing the measured value with a predetermined reference value is disclosed.
  • the life of the semiconductor chip does not depend only on the number of repetitions of the maximum output current value of the power converter, but also on the degree of temperature change of each of the plurality of semiconductor chips mounted on the power converter. It is affected. For this reason, the conventional technique has a problem that accurate life diagnosis cannot be performed.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device capable of more accurately diagnosing the life of a semiconductor chip.
  • the power conversion device includes a mounting portion having a first semiconductor chip and a second semiconductor chip mounted on a heat radiating member by a bonding material, and a first. It includes a control unit that controls the operation of a bridge circuit including a series circuit unit in which the first semiconductor chip and the second semiconductor chip are electrically connected in series with each other. The control unit diagnoses the life of the first semiconductor chip based on the thermal resistance calculated based on the electrical characteristics of the first semiconductor chip.
  • the life diagnosis of the semiconductor chip can be performed more accurately.
  • Block diagram showing the configuration of the power conversion device according to the first embodiment A circuit diagram showing a detailed configuration of the inverter circuit shown in FIG.
  • the figure which shows typically the heat dissipation structure of a general semiconductor chip The figure which shows the example of the crack which occurred in the solder layer of the heat dissipation structure part shown in FIG.
  • FIG. The figure which shows the example of the temperature characteristic of the IGBT provided in the explanation of the life diagnosis method in Embodiment 1.
  • Circuit diagram of the main part to be used for the explanation of the life diagnosis method in the first embodiment. A time chart provided for explaining the life diagnosis method according to the first embodiment.
  • the power conversion device, the semiconductor chip life diagnosis device, and the semiconductor chip life diagnosis method according to the embodiment of the present invention will be described in detail with reference to the accompanying drawings below.
  • the present invention is not limited to the following embodiments.
  • FIG. 1 is a block diagram showing a configuration of the power conversion device 1 according to the first embodiment.
  • the power conversion device 1 includes a rectifier circuit 10, an inverter circuit 11, a smoothing capacitor 13, a control unit 14, and a gate drive circuit 15.
  • the power conversion device 1 is a device that supplies AC power 18 as driving power to the electric motor 3 which is a load.
  • the rectifier circuit 10 rectifies the AC voltage applied from the AC power supply 2 and converts it into a DC voltage.
  • An example of the rectifier circuit 10 is a full-wave rectifier circuit including six diodes connected in a full bridge.
  • An inverter circuit 11 having a plurality of semiconductor chips 12 is connected to the output end of the rectifier circuit 10.
  • the rectifier circuit 10 and the inverter circuit 11 are connected by a DC bus 16 on the high potential side and a DC bus 17 on the low potential side.
  • a smoothing capacitor 13 is arranged between the DC bus 16 and the DC bus 17.
  • the voltage between the DC bus 16 and the DC bus 17 is called the "bus voltage".
  • the smoothing capacitor 13 serves to smooth the bus voltage and stabilize the bus voltage.
  • the inverter circuit 11 converts the DC voltage smoothed by the smoothing capacitor 13 into an AC voltage and applies it to the motor 3.
  • the electric motor 3 is driven by the AC power 18 supplied from the inverter circuit 11.
  • the control unit 14 includes a processor 14a and a memory 14b.
  • the processor 14a generates a drive signal 19 for controlling the semiconductor chip 12 of the inverter circuit 11.
  • An example of the drive signal 19 is a pulse width modulation (PWM) signal.
  • PWM pulse width modulation
  • the control unit 14 diagnoses the life of the semiconductor chip 12.
  • a semiconductor element is mounted inside the semiconductor chip 12.
  • An example of a semiconductor device is the illustrated IGBT.
  • the semiconductor element may be provided with diodes connected in antiparallel.
  • the gate drive circuit 15 generates a drive voltage 20 based on the drive signal 19.
  • the drive voltage 20 is a gate drive voltage for driving the semiconductor chip 12 of the inverter circuit 11.
  • the processor 14a may be referred to as a microprocessor, a microcomputer, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • a microprocessor a microcomputer
  • a microcomputer a microcomputer
  • a CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 14b stores a program read by the processor 14a, parameters referenced by the processor 14a, data obtained by processing of the processor 14a, and the like.
  • the memory 14b is also used as a work area when the processor 14a performs arithmetic processing.
  • the memory 14b is generally a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a flash memory, an EPROM (Erasable Project ROM), or an EEPROM (registered trademark) (Electrically EPROM).
  • the AC power supply 2 is a three-phase power supply, but the present invention is not limited to this.
  • the AC power supply 2 may be a single-phase power supply.
  • the rectifier circuit 10 is configured to match the single-phase power supply.
  • An example of the electric motor 3 is a three-phase motor.
  • the inverter circuit 11 also has a three-phase circuit configuration.
  • FIG. 2 is a circuit diagram showing a detailed configuration of the inverter circuit 11 shown in FIG.
  • the inverter circuit 11 has legs 12A, legs 12B and legs 12C, as shown in FIG.
  • the legs 12A, 12B and 12C are connected in parallel to each other between the DC bus 16 and the DC bus 17.
  • the leg 12A is a series circuit unit in which the semiconductor chip 12UP of the upper arm and the semiconductor chip 12UN of the lower arm of the U phase are electrically connected in series with each other.
  • the leg 12B is a series circuit unit in which the semiconductor chip 12VP of the upper arm and the semiconductor chip 12VN of the lower arm of the V phase are electrically connected in series with each other.
  • the leg 12C is a series circuit unit in which the semiconductor chip 12WP of the upper arm and the semiconductor chip 12WN of the lower arm of the W phase are electrically connected in series with each other. That is, the inverter circuit 11 is a bridge circuit including three legs which are a series circuit unit.
  • the semiconductor chip 12UP has a gate terminal 12a, a first terminal 12b, and a second terminal 12c.
  • the gate terminal 12a is a terminal electrically connected to the gate electrode of the IGBT, and is a terminal to which a gate voltage for controlling the continuity of the IGBT is applied.
  • the first terminal 12b is a terminal electrically connected to the source electrode of the IGBT, and is a terminal on the side where the current flowing through the IGBT flows out.
  • the second terminal 12c is a terminal electrically connected to the drain electrode of the IGBT, and is a terminal on the side on which the current flowing through the IGBT flows.
  • each of the other semiconductor chips 12UN, 12VP, 12VN, 12WP, and 12WN also has a gate terminal 12a, a first terminal 12b, and a second terminal 12c. ..
  • the electric motor 3 which is a load is a three-phase electric motor, but the present invention is not limited to this.
  • the electric motor 3 may be a single-phase electric motor.
  • a single-phase inverter circuit is used.
  • the single-phase inverter circuit is a bridge circuit including two legs which are a series circuit unit.
  • the load is an electric motor, but the load is not limited to this.
  • the load may be a rechargeable storage battery.
  • a DCDC (Direct Current to Direct Current) converter is used instead of the inverter circuit 11.
  • the minimum configuration of a DCDC converter is a half-bridge circuit with one leg.
  • FIG. 3 is a diagram schematically showing a heat dissipation structure of a general semiconductor chip.
  • FIG. 4 is a diagram showing an example of cracks generated in the solder layer of the heat dissipation structure portion shown in FIG. In FIG. 4, the portion indicated by reference numeral 22 in FIG. 3 is not shown.
  • the semiconductor chip 12 When the semiconductor chip 12 is a semiconductor component for electric power having a large calorific value, the semiconductor chip 12 generally has a structure mounted on a metal base as shown in FIG. In the example shown in FIG. 3, the semiconductor chip 12 is mounted on the insulating substrate 21 and fixed by being soldered to the wiring pattern 22 on the surface of the insulating substrate 21. A metal wire 23 is drawn from the semiconductor chip 12 and connected to another wiring pattern 24 on the insulating substrate 21. The insulating substrate 21 on which the semiconductor chip 12 is mounted is mounted on the metal base 25 and fixed by being soldered to the wiring pattern 26 on the back surface of the insulating substrate 21.
  • the heat dissipation structure of the semiconductor chip 12 becomes a structure that is electrically connected to the metal base 25 via the solder layer 27 on the front surface of the insulating substrate 21 and the solder layer 28 on the back surface of the insulating substrate 21. ..
  • the insulating substrate 21 and the metal base 25 are constituent members for mounting the semiconductor chip 12, and are also heat radiating members for cooling the temperature of the semiconductor chip 12.
  • the structure in which the semiconductor chip 12 is joined to the heat radiating member by the solder layer 27 is called a mounting portion.
  • the semiconductor chip 12 is attached to constituent members such as the semiconductor chip 12 and the insulating substrate 21 by soldering. Therefore, when the semiconductor chip 12 is repeatedly energized, the solder layer 27 may have cracks 29 as shown in FIG. 4 due to the thermal stress generated between the semiconductor chips 12 and the constituent members. When the crack 29 is generated, the thermal conductivity is lowered and the heat dissipation performance is deteriorated. If the semiconductor chip 12 is continuously used in a state where the heat dissipation performance is deteriorated, the temperature rise rate of the semiconductor chip 12 increases, which may cause sudden damage. In order to prevent sudden damage to the semiconductor chip 12, it is desired to accurately diagnose the life of the semiconductor chip 12.
  • the life diagnosis of the semiconductor chip in the present embodiment refers to the life diagnosis of the semiconductor chip affected by the deterioration of the joint portion such as solder as described above.
  • FIG. 5 is a diagram showing an example of the output characteristics of the IGBT used for the description of the life diagnosis method in the first embodiment.
  • FIG. 6 is a diagram showing an example of the temperature characteristics of the IGBT used for the description of the life diagnosis method in the first embodiment.
  • FIG. 7 is a circuit diagram of a main part for explaining the life diagnosis method according to the first embodiment.
  • FIG. 8 is a time chart provided for explaining the life diagnosis method according to the first embodiment.
  • FIG. 5 shows the output characteristics of the IGBT alone.
  • the horizontal axis shows the collector-emitter voltage
  • the vertical axis shows the collector current as a% value of the rated current.
  • VCE collector-emitter voltage
  • IC collector current
  • the size of the IC in the IGBT changes depending on the VGE, which is the gate voltage applied between the emitter and the gate of the IGBT.
  • VGE the gate voltage applied between the emitter and the gate of the IGBT.
  • the size of the IC can be controlled by VGE.
  • the upper limit value of the IC can be controlled by VGE.
  • the region where the IC increases as the VCE increases is called the "saturation region”.
  • a region where IC is saturated and hardly increases even if VCE increases is called an "active region”.
  • the region where the IC is not saturated with respect to the change in VCE is the "saturated region”
  • the region where the IC is saturated with respect to the change in VCE is the "active region”.
  • the IGBT has the temperature characteristics as shown in FIG.
  • the horizontal axis is the temperature of the semiconductor chip.
  • the vertical axis shows the collector-emitter saturation voltage and the gate-emitter threshold voltage.
  • the temperature of the semiconductor chip is referred to as "chip temperature”.
  • the saturation voltage between the collector and the emitter is described as "VCE (sat)”
  • the threshold voltage between the gate and the emitter is described as "VGE (th)”.
  • VCE (sat) the straight line represented by the solid line
  • VGE (th) the straight line represented by the alternate long and short dash line
  • both VCE (sat) and VGE (th) are properties that decrease with increasing chip temperature.
  • the slope of VCE (sat) is represented by "m1”
  • the slope of VGE (th) is represented by "m2”
  • FIG. 7 shows a leg for one phase in the inverter circuit 11 as a configuration of a main part for explaining the life diagnosis method in the first embodiment.
  • the IGBT of the upper arm is referred to as “IGBT (P)”
  • the IGBT of the lower arm is referred to as “IGBT (N)”.
  • the gate drive circuit 15 includes a drive circuit power supply 15a whose voltage can be changed and a drive circuit 15b.
  • One set of the drive circuit power supply 15a and one set of the drive circuit 15b is provided for one IGBT.
  • the drive circuit 15b applies a gate voltage to the IGBT.
  • the magnitude of the gate voltage can be changed by the drive circuit power supply 15a.
  • the physical quantities in each IGBT are expressed in alphabets, and the meanings of the respective notations are as follows.
  • FIG. 8 shows a flow of processing for calculating the thermal resistance of the IGBT (P). Each process shown in FIG. 8 is performed in a state of being mounted on the actual machine.
  • VGE (P1) The IGBT (P) is turned on by VGE (P1) and the IGBT (N) is turned on by VGE (N1).
  • VGE (P1) is a voltage that can be used in the saturation region of FIG. 5 in which the IC (P) is not saturated with the voltage of VPN. As shown in FIG. 5, the IC is controllable by VGE.
  • VGE (P1) is about 15V.
  • An example of VGE (N1) is 10V.
  • IC (N1) IC (P1)
  • IC (P1) is a value of 40% of the rated current.
  • the control unit 14 measures the VCE (P) in the IGBT (P) when the IC (P1) is flowing in the IGBT (P), and sets the measured value as the VCE (sat) 1.
  • the VCE (P) is measured by using a voltage detector (not shown). In general, the voltage detector already installed in the inverter circuit 11 may be used. The same applies to the following description.
  • VCE (sat) 1 The measured value of VCE (sat) 1 is stored in the memory 14b of the control unit 14.
  • VCE (sat) 1 is assumed to be about 2V, but is not limited to this.
  • the collector-emitter voltage of VCE (N1), that is, the IGBT (N) is 309V.
  • VGE (P2) is turned on by VGE (P2)
  • VGE (N2) is turned on by VGE (N2).
  • VGE (N2) is a voltage that can be used in the saturation region of FIG. 5 in which the IC is not saturated with the voltage of VPN. As shown in FIG. 5, the IC can be controlled by VGE.
  • VGE (N2) is about 15V.
  • VGE (P2) is a voltage at which a desired IC (P2) can be obtained.
  • An example of VGE (P2) is 9V.
  • the power applied to the IGBT (P) is obtained by IC (P2) ⁇ VCE (P2).
  • VCE (sat) 2 Measurement of VCE (sat) 2
  • power is applied to the IGBT (P) in the phase (ii) to consume the power, and then the IGBT (i) is subjected to the same conditions as the measurement phase (i). It is intended to measure the VCE (P) in P).
  • the measurement conditions are the same as in (i), and the description here is omitted.
  • the measured value is VCE (sat) 2.
  • the value of VCE (sat) 2 is stored in the memory 14b of the control unit 14. Due to the characteristics of the IGBT, there is a relationship of VCE (sat) 1> VCE (sat) 2 between VCE (sat) 1 and VCE (sat) 2.
  • the thermal resistance calculated by the above equation (1) is compared with the initial value thermal resistance.
  • the control unit 14 diagnoses that the IGBT (P) has reached the end of its life when the calculated value of the thermal resistance becomes larger than the first set value. Further, the control unit 14 diagnoses that the IGBT (P) is at an abnormal level when the calculated value of the thermal resistance becomes larger than the second set value. The second set value is a value smaller than the first set value. Further, the control unit 14 predicts the life of the IGBT (P) based on the difference between the first set value and the calculated value of the thermal resistance. The difference between the first set value and the calculated value of thermal resistance indicates the degree of deterioration. Therefore, it is possible to predict the life by grasping the transition of the difference.
  • the IGBT (N) can also calculate and diagnose the thermal resistance by the same process. .. Specifically, the above processing may be performed by exchanging the relationships between the IGBT (P) and the IGBT (N).
  • processes (i) to (v) above are generally performed immediately before driving the electric motor 3, which is a load, but are not limited to this. Depending on the application, this may be performed during the operation of the electric motor 3 and during the drive stop period of the electric motor 3.
  • the inverter circuit 11 is a three-phase inverter circuit
  • all phases that is, three phases may be diagnosed at one time.
  • one phase may be diagnosed at a time, and all phases may be diagnosed three times.
  • the inverter circuit 11 shown in FIG. 2 has a configuration in which the voltage applied to the electric motor 3 which is a load has two levels, but is not limited to this configuration. It can also be used in an inverter circuit in which the voltage applied to the electric motor 3 is three levels.
  • FIG. 9 is a circuit diagram for one phase of the three-level inverter shown as an application target of the life diagnosis method in the first embodiment.
  • one leg has a configuration in which four semiconductor chips 12UP1, 12UP2, 12UN1, and 12UN2 are electrically connected in series. Therefore, one leg may be divided into two series circuit units 12P and 12N, and the above-described processes (i) to (v) may be performed on each of the two series circuit units 12P and 12N. Thereby, the life diagnosis of each semiconductor chip in the two series circuit units 12P and 12N can be performed.
  • the series circuit portion in which the two semiconductor chips are connected in series is the minimum configuration, but the series circuit portion in which three or more semiconductor chips are connected in series is described above (i).
  • (V) may be performed.
  • the first semiconductor chip is an IGBT (P) and the second and third semiconductor chips are IGBTs.
  • N the life diagnosis of the first semiconductor chip can be performed.
  • the life diagnosis of the second and third semiconductor chips can be performed.
  • the semiconductor element of the semiconductor chip 12 is an IGBT
  • the present invention is not limited to this.
  • the above method can also be applied when the semiconductor element of the semiconductor chip 12 is a metal oxide semiconductor field effect transistor (MOSFET) of a Metal Oxide Semiconductor Field Effect Transistor (MOSFET). Since the MOSFET is a voltage drive element controlled by the voltage applied to the gate terminal like the IGBT, the control is performed in consideration of the output characteristics shown in FIG. 5 and the temperature characteristics shown in FIG. 6 in the MOSFET. Therefore, the life diagnosis can be performed.
  • MOSFET metal oxide semiconductor field effect transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the collector-emitter saturation voltage which is one of the characteristics, is measured.
  • the thermal resistance of the heat radiating member is calculated based on the measured collector-emitter saturation voltage. Then, by comparing the calculated thermal resistance with the initial value, an abnormality or a life due to deterioration of the first and second semiconductor chips is diagnosed. That is, the power conversion device according to the first embodiment performs abnormality diagnosis or life diagnosis of the semiconductor chip from the change in the electrical characteristics of the semiconductor element. As a result, it is possible to perform more accurate abnormality diagnosis or life diagnosis as compared with the prior art.
  • the conventional technique represented by the above-mentioned Patent Document 1 is a method of predicting with a life curve, and has a drawback that machine machine variation cannot be taken into consideration. If the machine stand variation cannot be taken into consideration, the life is diagnosed in the direction of shortening the life in consideration of the risk, so that the accuracy is lowered. Further, the conventional technique is a method of performing a life diagnosis under one condition, and has a drawback that variation due to the usage of the power conversion device cannot be taken into consideration.
  • the life diagnosis in the first embodiment is performed in a state of being mounted on an actual machine, and the electrical characteristics of the semiconductor chip are directly measured. Therefore, it is possible to include variations in the machine base and variations due to the usage of the power conversion device. As a result, it is possible to perform abnormality diagnosis or life diagnosis with higher accuracy than the prior art.
  • the target of abnormality diagnosis or life diagnosis can be changed by changing the leg for measuring the electrical characteristics.
  • the frequency of the PWM signal for switching control of the semiconductor chip.
  • the frequency of the PWM signal it is possible to prevent the electric motor 3 from stopping unintentionally. Alternatively, the operating electric motor 3 can be safely stopped.
  • the control of the semiconductor chip when it is determined that at least one of the semiconductor chips has reached the end of its life, it is preferable to stop the control of the semiconductor chip. By stopping the control of the semiconductor chip, it is possible to prevent the electric motor 3 from being stopped unintentionally. Alternatively, the operating electric motor 3 can be safely stopped. Alternatively, it is possible to prevent the failure of the semiconductor chip from extending to other parts.
  • FIG. 10 is a flowchart showing a processing procedure according to the life diagnosis method according to the first embodiment. The processing of each of the following steps is performed under the control of the control unit 14.
  • step S11 the gate voltage of the first value is applied to the gate terminal of the first semiconductor chip, and the gate voltage of the second value is applied to the gate terminal of the second semiconductor chip to the series circuit portion.
  • the process of passing the current of the current value of 1 is performed.
  • the series circuit unit means a circuit unit in which the first semiconductor chip and the second semiconductor chip are electrically connected in series with each other, and in the configuration of FIG. IGBTs (P) and IGBTs (N) correspond to this.
  • the gate voltage of the first value corresponds to VGE (P1) in the time chart of FIG.
  • the gate voltage of the second value corresponds to VGE (N1) in the time chart of FIG.
  • the first current value corresponds to the IC (P1) and IC (N1) in the measurement phase of VCE (sat) 1 in the time chart of FIG.
  • step S12 the first voltage applied to the first semiconductor chip when the current of the first current value flows through the series circuit unit is measured. That is, the first voltage is a voltage generated between the first terminal and the second terminal of the first semiconductor chip, and is an electrical characteristic of the first semiconductor chip. In addition, this electrical characteristic may be referred to as a "first characteristic".
  • the first voltage corresponds to VCE (sat) 1 in the time chart of FIG.
  • step S13 after step S12, a third value gate voltage is applied to the gate terminal of the first semiconductor chip, and a fourth value gate voltage is applied to the gate terminal of the second semiconductor chip. A process of passing a current having a second current value through the series circuit unit is performed.
  • the gate voltage of the third value corresponds to VGE (P2) in the time chart of FIG.
  • the gate voltage of the fourth value corresponds to VGE (N2) in the time chart of FIG.
  • the second current value corresponds to the IC (P2) and IC (N2) in the time chart of FIG.
  • step S14 after step S13, the gate voltage of the first value is applied to the gate terminal of the first semiconductor chip, and the gate voltage of the second value is applied to the gate terminal of the second semiconductor chip.
  • a process of passing a current of a third current value through the series circuit unit is performed.
  • the gate voltage of the first value is the VGE (P1) described above
  • the gate voltage of the second value is the VGE (N1) described above
  • the third current value corresponds to the IC (P1) and IC (N1) in the VCE (sat) 2 measurement phase of the time chart of FIG.
  • step S15 the second voltage generated between the first terminal and the second terminal when the current of the third current value flows through the series circuit portion is measured.
  • the second voltage is an electrical characteristic of the first semiconductor chip and may be referred to as a "second characteristic".
  • step S15 the second voltage corresponds to VCE (sat) 2 in the time chart of FIG.
  • step S16 the temperature characteristics of the first and second semiconductor chips, the measured value of the first voltage, the measured value of the second voltage, the second current value, and the second current value flow through the first semiconductor chip.
  • the thermal resistance of the first semiconductor chip is calculated based on the voltage generated between the first terminal and the second terminal of the first semiconductor chip.
  • the temperature characteristics of the first and second semiconductor chips correspond to the saturation voltage between the collector and the emitter of the IGBT in FIG.
  • the voltage generated between the first terminal and the second terminal of the first semiconductor chip corresponds to VCE (P2) in the time chart of FIG.
  • step S17 the abnormality or life of the first and second semiconductor chips is diagnosed by comparing the thermal resistance calculated in step S16 with the initial value.
  • control unit 14 performs the life diagnosis and the abnormality diagnosis of the first and second semiconductor chips based on the change in the thermal resistance due to the current of the second current value flowing through the series circuit unit.
  • the above processes from step S11 to step S17 are embodied in the form of a program and can be implemented in the control unit 14.
  • This program is stored in the memory 14b as described above and read by the processor 14a. Then, the processing by this program is executed under the control of the processor 14a, and the above-mentioned life diagnosis and abnormality diagnosis are realized.
  • the life diagnosis and abnormality diagnosis functions of the control unit 14 may be configured as a life diagnosis device of the semiconductor chip separately from the power conversion function of the power conversion device 1.
  • the life diagnosis device of the semiconductor chip may be configured inside the power conversion device 1, or may be configured as a separate device outside the power conversion device 1.
  • the life level may be set in a plurality of stages, and the time when the abnormality occurs may be set as the first stage life.
  • the user can appropriately determine the usage conditions or the end-of-use judgment according to the life level.
  • Embodiment 2 In the first embodiment, the case where the temperature characteristic of the first and second semiconductor chips is the saturation voltage between the collector and the emitter of the IGBT has been described. On the other hand, in the second embodiment, the case where the temperature characteristic of the first and second semiconductor chips is the threshold voltage between the gate and the emitter of the IGBT will be described.
  • FIG. 11 is a time chart provided for explaining the life diagnosis method according to the second embodiment.
  • FIG. 11 shows a flow of processing for calculating the thermal resistance of the IGBT (P). As in FIG. 8, each process shown in FIG. 11 is performed in a state of being mounted on the actual machine.
  • VGE (I) Measurement of VGE (th) 1 The IGBT (N) is turned on by the VGE (N1), and the VGE applied to the IGBT (P) is increased to allow the IC (P) to flow through the IGBT (P).
  • the VGE (P) when P) becomes IC (P1) is measured. Whether or not the IC (P) becomes the set value IC (P1) is confirmed by using a current detector (not shown).
  • the current detector already installed in the inverter circuit 11 may be used. The same applies to the following description.
  • the current detector may be arranged on the DC bus 16 on the high potential side or the DC bus 17 on the low potential side.
  • between the DC bus 16 on the high potential side and the collector of the IGBT (P), or between the emitter of the IGBT (P) and the IGBT (P). ) May be arranged between the drive circuit 15b and the connection point on the low potential side.
  • the control unit 14 sets the measured VGE (P) value to VGE (th) 1.
  • the measured value of VGE (th) 1 is stored in the memory 14b of the control unit 14.
  • VGE (P) when the IC (P) becomes the IC (P1) is VGE (P1)
  • VGE (P1) between VGE (P1) and VGE (N1)
  • VGE (P1) ⁇ VGE ( There is a relationship of N1).
  • the VGE (N1) is a voltage that can be used in the saturation region of FIG. 5 in which the IC (N) is not saturated with the VPN voltage.
  • VGE (N1) is about 15V.
  • the IC (P1) is a specified current and assumes a current of 1 [A] or less, but is not limited to this.
  • VCE (N1) is assumed to be about 2V, but is not limited to this.
  • the VCE (P2) which is the collector-emitter voltage of the IGBT (P), becomes 309V.
  • IC (P2) is a voltage at which a desired IC (P2) can be obtained.
  • An example of VGE (P2) is about 9 [V].
  • FIG. 11 illustrates a case where there is a relationship of IC (P1) ⁇ IC (P2) between IC (P1) and IC (P2), but the present invention is not limited to this example, and IC ( The relationship may be P1) ⁇ IC (P2). That is, the magnitude relationship between the IC (P1) and the IC (P2) does not matter. Further, FIG. 11 illustrates a case where there is a relationship of VGE (P2)> VGE (th) 1 between VGE (P2) and VGE (th) 1 measured in the phase (i). However, the relationship is not limited to this example, and the relationship may be VGE (P2) ⁇ VGE (th) 1. That is, the magnitude relationship between VGE (P2) and VGE (th) 1 does not matter.
  • VGE (th) 2 Measurement of VGE (th) 2
  • power is applied to the IGBT (P) in the phase (ii) to consume the power, and then the IGBT (i) is subjected to the same conditions as the measurement phase (i). It is intended to measure the VGE (P) in P).
  • the measurement conditions are the same as in (i), and the description here is omitted.
  • the measured value is VGE (th) 2
  • the value of VGE (th) 2 is stored in the memory 14b of the control unit 14. Due to the characteristics of the IGBT, there is a relationship of VGE (th) 1> VGE (th) 2 between VGE (th) 1 and VGE (th) 2. Further, FIG.
  • the relationship is not limited to this example, and the relationship may be VGE (P2) ⁇ VGE (th) 2. That is, the magnitude relationship between VGE (P2) and VGE (th) 2 does not matter.
  • the thermal resistance calculated by the above equation (2) is compared with the initial value thermal resistance.
  • the control unit 14 diagnoses that the IGBT (P) has reached the end of its life when the calculated value of the thermal resistance becomes larger than the third set value. Further, the control unit 14 diagnoses that the IGBT (P) is at an abnormal level when the calculated value of the thermal resistance becomes larger than the fourth set value. The fourth set value is smaller than the third set value. Further, the control unit 14 predicts the life of the IGBT (P) based on the difference between the third set value and the calculated value of the thermal resistance.
  • the first set value used in the first embodiment may be used instead of the third set value. Further, instead of the fourth set value, the second set value used in the first embodiment may be used.
  • the IGBT (N) can also calculate and diagnose the thermal resistance by the same process. .. Specifically, the above processing may be performed by exchanging the relationships between the IGBT (P) and the IGBT (N).
  • processes (i) to (v) above are generally performed immediately before driving the electric motor 3, which is a load, but are not limited to this. Depending on the application, this may be performed during the operation of the electric motor 3 and during the drive stop period of the electric motor 3.
  • the inverter circuit 11 is a three-phase inverter circuit
  • all phases that is, three phases may be diagnosed at one time.
  • one phase may be diagnosed at a time, and all phases may be diagnosed three times.
  • the method of the second embodiment can also be used for a three-level inverter circuit as in the first embodiment. Further, the method of the second embodiment can be applied to the case where the semiconductor element of the semiconductor chip 12 is a MOSFET, as in the first embodiment.
  • the power conversion device is one of the electrical characteristics of the first and second semiconductor chips in a state where the first and second semiconductor chips are mounted on the actual machine. Measure the gate-emitter threshold voltage. In addition, the thermal resistance of the heat dissipation structure including the constituent members is calculated based on the measured threshold voltage between the gate and the emitter. Then, by comparing the calculated thermal resistance with the initial value, an abnormality or a life due to deterioration of the first and second semiconductor chips is diagnosed. That is, the power conversion device according to the second embodiment performs abnormality diagnosis or life diagnosis of the semiconductor chip from the change in the electrical characteristics of the semiconductor element. As a result, it is possible to perform more accurate abnormality diagnosis or life diagnosis as compared with the prior art.
  • the life diagnosis in the second embodiment is performed in a state of being mounted on an actual machine, and the electrical characteristics of the semiconductor chip are directly measured. Therefore, it is possible to include variations in the machine base and variations due to the usage of the power conversion device. As a result, it is possible to perform abnormality diagnosis or life diagnosis with higher accuracy than the prior art.
  • FIG. 12 is a flowchart showing a processing procedure according to the life diagnosis method according to the second embodiment. The processing of each of the following steps is performed under the control of the control unit 14.
  • step S21 the gate voltage of the first value for conducting the second semiconductor chip is applied to the gate terminal of the second semiconductor chip, and the gate voltage applied to the gate terminal of the first semiconductor chip is increased.
  • a process is performed in which a current is passed through the series circuit section, and the first voltage applied to the gate terminal of the first semiconductor chip when the current flowing through the series circuit section becomes the first current value is measured.
  • the series circuit unit means a circuit unit in which the first semiconductor chip and the second semiconductor chip are electrically connected in series with each other, and in the configuration of FIG. IGBTs (P) and IGBTs (N) correspond to this.
  • the gate voltage of the first value corresponds to VGE (N1) in the time chart of FIG.
  • the first current value corresponds to the IC (P1) in the measurement phase of VGE (th) 1 in the time chart of FIG.
  • step S22 after step S21, the gate voltage of the first value applied to the gate terminal of the second semiconductor chip is maintained, and the gate voltage of the second value is maintained at the gate terminal of the first semiconductor chip. Is applied to pass a current of a second current value through the series circuit unit.
  • the gate voltage of the first value is the VGE (N1) described above
  • the gate voltage of the second value corresponds to the VGE (P2) in the time chart of FIG.
  • the second current value corresponds to the IC (P2) and IC (N2) in the time chart of FIG.
  • step S23 after step S22, the gate voltage of the first value applied to the gate terminal of the second semiconductor chip is maintained, and the application of the gate voltage to the gate terminal of the first semiconductor chip is cut off. Processing is performed.
  • the gate voltage of the first value is VGE (N1) described above.
  • step S24 after step S23, the gate voltage of the first value applied to the gate terminal of the second semiconductor chip is maintained, and the gate voltage applied to the gate terminal of the first semiconductor chip is increased. A current is passed through the series circuit section, and the second voltage applied to the gate terminal of the first semiconductor chip when the current flowing through the series circuit section becomes the first current value is measured.
  • the gate voltage of the first value is the above-mentioned VGE (N1)
  • the gate voltage of the second value is the above-mentioned VGE (P2).
  • the first current value is the IC (P1) described above.
  • step S25 the temperature characteristics of the first and second semiconductor chips, the measured value of the first voltage, the measured value of the second voltage, the second current value, and the current of the second current value to the first semiconductor chip.
  • the thermal resistance of the first semiconductor chip is calculated based on the voltage generated between the first terminal and the second terminal of the first semiconductor chip when the current is applied.
  • the temperature characteristics of the first and second semiconductor chips correspond to the threshold voltage between the gate and emitter of the IGBT in FIG.
  • the first terminal is a terminal on the side where the first current flows out, and corresponds to 12b in the semiconductor chip 12UP of FIG.
  • the second terminal is a terminal on the side where the first current flows, and corresponds to 12c in the semiconductor chip 12UP of FIG.
  • the voltage generated between the first terminal and the second terminal of the first semiconductor chip corresponds to VCE (P2) in the time chart of FIG.
  • step S26 the abnormality or life of the first and second semiconductor chips is diagnosed by comparing the thermal resistance calculated in step S25 with the initial value.
  • step S21 to step S26 are embodied in the form of a program and can be implemented in the control unit 14.
  • This program is stored in the memory 14b as described above and read by the processor 14a. Then, the processing by this program is executed under the control of the processor 14a, and the above-mentioned life diagnosis and abnormality diagnosis are realized.
  • FIG. 13 is a diagram showing an example of the characteristics of thermal resistance provided for the description of the life diagnosis method in the third embodiment. Specifically, FIG. 13 shows an example of thermal resistance characteristics in the heat dissipation structure shown in FIG. The horizontal axis represents time, and the vertical axis represents the thermal resistance of the heat-dissipating structure portion shown in FIG. 3, including the metal base. Thermal resistance is a physical quantity that expresses the difficulty of transmitting temperature. As a unit of thermal resistance, "° C./W" is generally used.
  • the thermal resistance shown in FIG. 13 indicates the temperature difference when the semiconductor chip 12 consumes 1 W of electric power in the heat dissipation structure portion shown in FIG.
  • the temperature difference referred to here is the difference between the temperature of the semiconductor chip 12 and the ambient temperature.
  • the heat generated by the semiconductor chip 12 is conducted over time. Therefore, the value of thermal resistance is a function of time as shown in FIG. According to the example of FIG. 13, it increases with time up to about 0.3 s, and becomes a flat characteristic after 0.3 s.
  • the influence of the heat generated by the semiconductor chip 12 exceeds the solder layer 28 on the back surface of the insulating substrate 21 and reaches the metal base 25 in the flat characteristic portion in FIG. ..
  • the influence of the heat generated by the semiconductor chip 12 does not reach the solder layer 28 in the characteristic portion that increases linearly.
  • the structural diagnostic site can be changed.
  • the power application time for causing the semiconductor chip 12 to consume power is controlled. Specifically, in the flowchart of FIG. 10, the power application time in step S13 is made shorter than the first time. In the flowchart of FIG. 12, the power application time in step S22 is shorter than the first time. In other words, the power application is stopped before the first time elapses. By making the power application time shorter than the first time, cracks in the solder layer 27 on the surface of the insulating substrate 21 can be diagnosed. In the case of the example of thermal resistance shown in FIG. 13, about 0.03 s is set as the first time.
  • the power application time in step S13 is made longer than the second time.
  • the power application time in step S22 is made longer than the second time. In other words, the power application is stopped after the second time has elapsed.
  • the second time is longer than the first time. In the case of the example of thermal resistance shown in FIG. 13, about 0.4 s is set as the second time.
  • the second diagnostic process of making the power application time longer than the second time is used in combination with the first diagnostic process of making the power application time shorter than the first time.
  • the state of the solder layer 27 on the surface of the insulating substrate 21 can be diagnosed from the first diagnostic result obtained by the first diagnostic process. Further, the state of the solder layer 28 on the back surface of the insulating substrate 21 can be diagnosed based on the first diagnosis result and the second diagnosis result obtained by the second diagnosis process.
  • the power application time for causing the semiconductor chip to consume power is controlled. This makes it possible to change the structural diagnostic site in the heat dissipation structure including the component on which the semiconductor chip is mounted.
  • the configuration shown in the above embodiment shows an example of the content of the present invention, can be combined with another known technique, and is configured without departing from the gist of the present invention. It is also possible to omit or change a part of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

This power converter (1) is equiped with a plurality of semiconductor chips mounted to constituent members by soldering, and controls the operation of one or more bridge circuits containing at least one series circuit electrically connecting in series a first semiconductor chip (IGBT(P)) and a second semiconductor chip (IGBT(P)) from the plurality of semiconductor chips to one another. The power converter (1) measures the electrical characteristics of the first and second semiconductor chips (IGBT(P) and IGBT(N)) in a state of being mounted to the actual machine, and calculates the thermal resistance of the heat-dissipating structure which includes the constituent members on the basis of the measured electrical characteristics. The power converter (1) diagnoses abnormalities or service life by deterioration in the first and second semiconductor chips (IGBT(P) and (IGBT(N)) by comparing the calculated thermal resistance with initial values.

Description

電力変換装置、半導体チップの寿命診断装置、及び半導体チップの寿命診断方法Power conversion device, semiconductor chip life diagnosis device, and semiconductor chip life diagnosis method
 本発明は、電力変換用の半導体スイッチング素子(以下、「半導体素子」と略す)が搭載された半導体チップの寿命診断を行う電力変換装置、半導体チップの寿命診断装置、及び半導体チップの寿命診断方法に関する。 The present invention provides a power conversion device for diagnosing the life of a semiconductor chip equipped with a semiconductor switching element for power conversion (hereinafter, abbreviated as "semiconductor element"), a semiconductor chip life diagnosis device, and a semiconductor chip life diagnosis method. Regarding.
 下記特許文献1には、複数の半導体チップが実装された電力変換装置において、半導体チップのサーマルサイクル寿命及びパワーサイクル寿命といった寿命を診断するために、電力変換装置の出力電流最大値の繰り返しの回数を計測し、その計測値を予め定められた基準値と比較する技術が開示されている。 In Patent Document 1 below, in a power converter in which a plurality of semiconductor chips are mounted, the number of repetitions of the maximum output current value of the power converter in order to diagnose the life of the semiconductor chip such as thermal cycle life and power cycle life Is disclosed, and a technique for comparing the measured value with a predetermined reference value is disclosed.
特開2008-206217号公報Japanese Unexamined Patent Publication No. 2008-206217
 しかしながら、半導体チップの寿命は、電力変換装置の出力電流最大値の繰り返しの回数だけに左右されるものではなく、電力変換装置に実装される複数の半導体チップの各々の温度変化の度合いなどによっても影響されるものである。このため、従来技術では、精度の良い寿命診断ができないという問題があった。 However, the life of the semiconductor chip does not depend only on the number of repetitions of the maximum output current value of the power converter, but also on the degree of temperature change of each of the plurality of semiconductor chips mounted on the power converter. It is affected. For this reason, the conventional technique has a problem that accurate life diagnosis cannot be performed.
 本発明は、上記に鑑みてなされたものであって、半導体チップの寿命診断をより精度良く行うことができる電力変換装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device capable of more accurately diagnosing the life of a semiconductor chip.
 上述した課題を解決し、目的を達成するため、本発明に係る電力変換装置は、接合材により放熱部材に実装された第1の半導体チップと第2の半導体チップとを有する実装部と、第1の半導体チップと第2の半導体チップが電気的に互いに直列に接続された直列回路部を含むブリッジ回路の動作を制御する制御部と、を備える。制御部は、第1の半導体チップの電気的特性に基づいて算出した熱抵抗により、第1の半導体チップの寿命を診断する。 In order to solve the above-mentioned problems and achieve the object, the power conversion device according to the present invention includes a mounting portion having a first semiconductor chip and a second semiconductor chip mounted on a heat radiating member by a bonding material, and a first. It includes a control unit that controls the operation of a bridge circuit including a series circuit unit in which the first semiconductor chip and the second semiconductor chip are electrically connected in series with each other. The control unit diagnoses the life of the first semiconductor chip based on the thermal resistance calculated based on the electrical characteristics of the first semiconductor chip.
 本発明に係る電力変換装置によれば、半導体チップの寿命診断をより正確に行うことができるという効果を奏する。 According to the power conversion device according to the present invention, there is an effect that the life diagnosis of the semiconductor chip can be performed more accurately.
実施の形態1に係る電力変換装置の構成を示すブロック図Block diagram showing the configuration of the power conversion device according to the first embodiment 図1に示すインバータ回路の詳細な構成を示す回路図A circuit diagram showing a detailed configuration of the inverter circuit shown in FIG. 一般的な半導体チップの放熱構造を模式的に示す図The figure which shows typically the heat dissipation structure of a general semiconductor chip 図3に示す放熱構造部のはんだ層に生じた亀裂の例を示す図The figure which shows the example of the crack which occurred in the solder layer of the heat dissipation structure part shown in FIG. 実施の形態1における寿命診断手法の説明に供する絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)の出力特性の例を示す図The figure which shows the example of the output characteristic of the insulated gate bipolar transistor (IGBT) which provides the explanation of the life diagnosis method in Embodiment 1. FIG. 実施の形態1における寿命診断手法の説明に供するIGBTの温度特性の例を示す図The figure which shows the example of the temperature characteristic of the IGBT provided in the explanation of the life diagnosis method in Embodiment 1. 実施の形態1における寿命診断手法の説明に供する要部の回路図Circuit diagram of the main part to be used for the explanation of the life diagnosis method in the first embodiment. 実施の形態1における寿命診断手法の説明に供するタイムチャートA time chart provided for explaining the life diagnosis method according to the first embodiment. 実施の形態1における寿命診断手法の適用対象として示す3レベルインバータの1相分の回路図The circuit diagram for one phase of the three-level inverter shown as the application target of the life diagnosis method in the first embodiment. 実施の形態1に係る寿命診断方法による処理手順を示すフローチャートA flowchart showing a processing procedure according to the life diagnosis method according to the first embodiment. 実施の形態2における寿命診断手法の説明に供するタイムチャートA time chart provided for explaining the life diagnosis method according to the second embodiment. 実施の形態2に係る寿命診断方法による処理手順を示すフローチャートA flowchart showing a processing procedure according to the life diagnosis method according to the second embodiment. 実施の形態3における寿命診断手法の説明に供する熱抵抗の特性の例を示す図The figure which shows the example of the characteristic of the thermal resistance provided to the explanation of the life diagnosis method in Embodiment 3.
 以下に添付図面を参照し、本発明の実施の形態に係る電力変換装置、半導体チップの寿命診断装置、及び半導体チップの寿命診断方法について詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。 The power conversion device, the semiconductor chip life diagnosis device, and the semiconductor chip life diagnosis method according to the embodiment of the present invention will be described in detail with reference to the accompanying drawings below. The present invention is not limited to the following embodiments.
実施の形態1.
 図1は、実施の形態1に係る電力変換装置1の構成を示すブロック図である。電力変換装置1は、図1に示すように、整流回路10と、インバータ回路11と、平滑コンデンサ13と、制御部14と、ゲート駆動回路15とを備えている。電力変換装置1は、負荷である電動機3に駆動電力である交流電力18を供給する装置である。
Embodiment 1.
FIG. 1 is a block diagram showing a configuration of the power conversion device 1 according to the first embodiment. As shown in FIG. 1, the power conversion device 1 includes a rectifier circuit 10, an inverter circuit 11, a smoothing capacitor 13, a control unit 14, and a gate drive circuit 15. The power conversion device 1 is a device that supplies AC power 18 as driving power to the electric motor 3 which is a load.
 整流回路10は、交流電源2から印加される交流電圧を整流して直流電圧に変換する。整流回路10の一例は、フルブリッジ接続される6つのダイオードを備えた全波整流回路である。整流回路10の出力端には、複数の半導体チップ12を有するインバータ回路11が接続される。整流回路10とインバータ回路11とは、高電位側の直流母線16と低電位側の直流母線17とによって接続される。直流母線16と直流母線17との間には、平滑コンデンサ13が配置される。直流母線16と直流母線17との間の電圧は、「母線電圧」と呼ばれる。平滑コンデンサ13は、母線電圧を平滑して、母線電圧を安定化する役目を担う。 The rectifier circuit 10 rectifies the AC voltage applied from the AC power supply 2 and converts it into a DC voltage. An example of the rectifier circuit 10 is a full-wave rectifier circuit including six diodes connected in a full bridge. An inverter circuit 11 having a plurality of semiconductor chips 12 is connected to the output end of the rectifier circuit 10. The rectifier circuit 10 and the inverter circuit 11 are connected by a DC bus 16 on the high potential side and a DC bus 17 on the low potential side. A smoothing capacitor 13 is arranged between the DC bus 16 and the DC bus 17. The voltage between the DC bus 16 and the DC bus 17 is called the "bus voltage". The smoothing capacitor 13 serves to smooth the bus voltage and stabilize the bus voltage.
 インバータ回路11は、平滑コンデンサ13によって平滑された直流電圧を交流電圧に変換して電動機3に印加する。電動機3は、インバータ回路11から供給される交流電力18によって駆動される。 The inverter circuit 11 converts the DC voltage smoothed by the smoothing capacitor 13 into an AC voltage and applies it to the motor 3. The electric motor 3 is driven by the AC power 18 supplied from the inverter circuit 11.
 制御部14は、プロセッサ14aと、メモリ14bとを備える。プロセッサ14aは、インバータ回路11の半導体チップ12を制御するための駆動信号19を生成する。駆動信号19の例は、パルス幅変調(Pulse Width Modulation:PWM)信号である。詳細は後述するが、制御部14は、半導体チップ12の寿命診断を行う。半導体チップ12の内部には、半導体素子が実装されている。半導体素子の一例は、図示のIGBTである。半導体素子には、逆並列に接続されるダイオードが備えられていてもよい。 The control unit 14 includes a processor 14a and a memory 14b. The processor 14a generates a drive signal 19 for controlling the semiconductor chip 12 of the inverter circuit 11. An example of the drive signal 19 is a pulse width modulation (PWM) signal. Although the details will be described later, the control unit 14 diagnoses the life of the semiconductor chip 12. A semiconductor element is mounted inside the semiconductor chip 12. An example of a semiconductor device is the illustrated IGBT. The semiconductor element may be provided with diodes connected in antiparallel.
 ゲート駆動回路15は、駆動信号19に基づいて駆動電圧20を発生する。駆動電圧20は、インバータ回路11の半導体チップ12を駆動するためのゲート駆動電圧である。 The gate drive circuit 15 generates a drive voltage 20 based on the drive signal 19. The drive voltage 20 is a gate drive voltage for driving the semiconductor chip 12 of the inverter circuit 11.
 プロセッサ14aは、マイクロプロセッサ、マイコン、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)と称されるものでもよい。 The processor 14a may be referred to as a microprocessor, a microcomputer, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
 メモリ14bには、プロセッサ14aによって読みとられるプログラム、プロセッサ14aによって参照されるパラメータ、プロセッサ14aの処理によって得られるデータなどが保存される。メモリ14bは、プロセッサ14aが演算処理を行う際の作業領域としても使用される。メモリ14bは、RAM(Random Access Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリが一般的である。 The memory 14b stores a program read by the processor 14a, parameters referenced by the processor 14a, data obtained by processing of the processor 14a, and the like. The memory 14b is also used as a work area when the processor 14a performs arithmetic processing. The memory 14b is generally a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a flash memory, an EPROM (Erasable Project ROM), or an EEPROM (registered trademark) (Electrically EPROM).
 なお、図1では、交流電源2を三相電源としているが、これに限定されない。交流電源2は、単相電源でもよい。交流電源2が単相電源である場合、整流回路10は、単相電源に合わせた構成とされる。電動機3の一例は、三相モータである。電動機3が三相電動機である場合、インバータ回路11も、三相の回路構成となる。 Note that, in FIG. 1, the AC power supply 2 is a three-phase power supply, but the present invention is not limited to this. The AC power supply 2 may be a single-phase power supply. When the AC power supply 2 is a single-phase power supply, the rectifier circuit 10 is configured to match the single-phase power supply. An example of the electric motor 3 is a three-phase motor. When the electric motor 3 is a three-phase electric motor, the inverter circuit 11 also has a three-phase circuit configuration.
 図2は、図1に示すインバータ回路11の詳細な構成を示す回路図である。インバータ回路11は、図2に示されるように、レグ12A、レグ12B及びレグ12Cを有する。レグ12A、レグ12B及びレグ12Cは、直流母線16と直流母線17との間において、互いに並列に接続されている。レグ12Aは、U相の上アームの半導体チップ12UPと下アームの半導体チップ12UNとが電気的に互いに直列に接続された直列回路部である。レグ12Bは、V相の上アームの半導体チップ12VPと下アームの半導体チップ12VNとが電気的に互いに直列に接続された直列回路部である。レグ12Cは、W相の上アームの半導体チップ12WPと下アームの半導体チップ12WNとが電気的に互いに直列に接続された直列回路部である。即ち、インバータ回路11は、直列回路部であるレグを3つ含むブリッジ回路である。 FIG. 2 is a circuit diagram showing a detailed configuration of the inverter circuit 11 shown in FIG. The inverter circuit 11 has legs 12A, legs 12B and legs 12C, as shown in FIG. The legs 12A, 12B and 12C are connected in parallel to each other between the DC bus 16 and the DC bus 17. The leg 12A is a series circuit unit in which the semiconductor chip 12UP of the upper arm and the semiconductor chip 12UN of the lower arm of the U phase are electrically connected in series with each other. The leg 12B is a series circuit unit in which the semiconductor chip 12VP of the upper arm and the semiconductor chip 12VN of the lower arm of the V phase are electrically connected in series with each other. The leg 12C is a series circuit unit in which the semiconductor chip 12WP of the upper arm and the semiconductor chip 12WN of the lower arm of the W phase are electrically connected in series with each other. That is, the inverter circuit 11 is a bridge circuit including three legs which are a series circuit unit.
 半導体チップ12UPは、ゲート端子12a、第1端子12b及び第2端子12cを有する。ゲート端子12aは、IGBTのゲート電極に電気的に接続される端子であり、IGBTの導通を制御するためのゲート電圧が印加される端子である。第1端子12bは、IGBTのソース電極に電気的に接続される端子であり、IGBTに流れる電流が流出する側の端子である。第2端子12cは、IGBTのドレイン電極に電気的に接続される端子であり、IGBTに流れる電流が流入する側の端子である。なお、図2では、図示を省略しているが、他の半導体チップ12UN,12VP,12VN,12WP,12WNのそれぞれも、ゲート端子12a、第1端子12b及び第2端子12cを有することは言うまでもない。 The semiconductor chip 12UP has a gate terminal 12a, a first terminal 12b, and a second terminal 12c. The gate terminal 12a is a terminal electrically connected to the gate electrode of the IGBT, and is a terminal to which a gate voltage for controlling the continuity of the IGBT is applied. The first terminal 12b is a terminal electrically connected to the source electrode of the IGBT, and is a terminal on the side where the current flowing through the IGBT flows out. The second terminal 12c is a terminal electrically connected to the drain electrode of the IGBT, and is a terminal on the side on which the current flowing through the IGBT flows. Although not shown in FIG. 2, it goes without saying that each of the other semiconductor chips 12UN, 12VP, 12VN, 12WP, and 12WN also has a gate terminal 12a, a first terminal 12b, and a second terminal 12c. ..
 また、図1及び図2では、負荷である電動機3を三相電動機としているが、これに限定されない。電動機3は、単相電動機でもよい。電動機3が単相電動機である場合、単相インバータ回路が使用される。単相インバータ回路は、直列回路部であるレグを2つ含むブリッジ回路である。 Further, in FIGS. 1 and 2, the electric motor 3 which is a load is a three-phase electric motor, but the present invention is not limited to this. The electric motor 3 may be a single-phase electric motor. When the motor 3 is a single-phase motor, a single-phase inverter circuit is used. The single-phase inverter circuit is a bridge circuit including two legs which are a series circuit unit.
 また、図1及び図2では、負荷を電動機としているが、これに限定されない。負荷は充電可能な蓄電池であってもよい。負荷が蓄電池である場合、インバータ回路11に代えてDCDC(Direct Current to Direct Current)コンバータが用いられる。DCDCコンバータの最小構成は、1つのレグを備えたハーフブリッジ回路である。 Further, in FIGS. 1 and 2, the load is an electric motor, but the load is not limited to this. The load may be a rechargeable storage battery. When the load is a storage battery, a DCDC (Direct Current to Direct Current) converter is used instead of the inverter circuit 11. The minimum configuration of a DCDC converter is a half-bridge circuit with one leg.
 次に、寿命診断を行う必要性について、図3及び図4を参照して説明する。図3は、一般的な半導体チップの放熱構造を模式的に示す図である。図4は、図3に示す放熱構造部のはんだ層に生じた亀裂の例を示す図である。なお、図4では、図3において符号22で示している部位の図示を省略している。 Next, the necessity of performing a life diagnosis will be described with reference to FIGS. 3 and 4. FIG. 3 is a diagram schematically showing a heat dissipation structure of a general semiconductor chip. FIG. 4 is a diagram showing an example of cracks generated in the solder layer of the heat dissipation structure portion shown in FIG. In FIG. 4, the portion indicated by reference numeral 22 in FIG. 3 is not shown.
 半導体チップ12が発熱量の大きい電力用の半導体部品である場合、半導体チップ12は、図3に示すように、金属ベース上に搭載される構造が一般的である。図3に示す例では、半導体チップ12は、絶縁基板21に搭載され、絶縁基板21の表面にある配線パターン22にはんだ付けされることで固定される。半導体チップ12からは金属のワイヤ23が引き出され、絶縁基板21上の別の配線パターン24に接続される。半導体チップ12を搭載した絶縁基板21は、金属ベース25に搭載され、絶縁基板21の裏面にある配線パターン26にはんだ付けされることで固定される。これにより、半導体チップ12の放熱構造は、絶縁基板21の表面にあるはんだ層27と、絶縁基板21の裏面にあるはんだ層28とを介して金属ベース25に電気的に接続される構造となる。実施の形態1において、絶縁基板21及び金属ベース25は、半導体チップ12を実装するための構成部材であり、半導体チップ12の温度を冷却するための放熱部材でもある。なお、半導体チップ12がはんだ層27により放熱部材に接合された構造を実装部と呼ぶ。 When the semiconductor chip 12 is a semiconductor component for electric power having a large calorific value, the semiconductor chip 12 generally has a structure mounted on a metal base as shown in FIG. In the example shown in FIG. 3, the semiconductor chip 12 is mounted on the insulating substrate 21 and fixed by being soldered to the wiring pattern 22 on the surface of the insulating substrate 21. A metal wire 23 is drawn from the semiconductor chip 12 and connected to another wiring pattern 24 on the insulating substrate 21. The insulating substrate 21 on which the semiconductor chip 12 is mounted is mounted on the metal base 25 and fixed by being soldered to the wiring pattern 26 on the back surface of the insulating substrate 21. As a result, the heat dissipation structure of the semiconductor chip 12 becomes a structure that is electrically connected to the metal base 25 via the solder layer 27 on the front surface of the insulating substrate 21 and the solder layer 28 on the back surface of the insulating substrate 21. .. In the first embodiment, the insulating substrate 21 and the metal base 25 are constituent members for mounting the semiconductor chip 12, and are also heat radiating members for cooling the temperature of the semiconductor chip 12. The structure in which the semiconductor chip 12 is joined to the heat radiating member by the solder layer 27 is called a mounting portion.
 前述の通り、半導体チップ12は、はんだ付けにより、半導体チップ12及び絶縁基板21といった構成部材に取り付けられている。このため、半導体チップ12への通電が繰り返されると、構成部材との間において発生する熱応力によって、はんだ層27には、図4に示されるような亀裂29が生じ得る。亀裂29が発生すると、熱伝導率が低下し、放熱性能が劣化する。放熱性能が劣化した状態で半導体チップ12を使用し続けると、半導体チップ12の温度上昇率が高くなり、突発的に破損に至るおそれがある。半導体チップ12の突発的な破損を防止するために、半導体チップ12の寿命診断を正確に行うことが望まれている。 As described above, the semiconductor chip 12 is attached to constituent members such as the semiconductor chip 12 and the insulating substrate 21 by soldering. Therefore, when the semiconductor chip 12 is repeatedly energized, the solder layer 27 may have cracks 29 as shown in FIG. 4 due to the thermal stress generated between the semiconductor chips 12 and the constituent members. When the crack 29 is generated, the thermal conductivity is lowered and the heat dissipation performance is deteriorated. If the semiconductor chip 12 is continuously used in a state where the heat dissipation performance is deteriorated, the temperature rise rate of the semiconductor chip 12 increases, which may cause sudden damage. In order to prevent sudden damage to the semiconductor chip 12, it is desired to accurately diagnose the life of the semiconductor chip 12.
 なお、本実施の形態における半導体チップの寿命診断とは、上述の様に、はんだ等の接合部の劣化により影響される半導体チップの寿命診断のことを言う。 The life diagnosis of the semiconductor chip in the present embodiment refers to the life diagnosis of the semiconductor chip affected by the deterioration of the joint portion such as solder as described above.
 次に、実施の形態1における寿命診断の要点及びその手法(以下、「寿命診断手法」と略す)について、図5から図8の図面を参照して説明する。図5は、実施の形態1における寿命診断手法の説明に供するIGBTの出力特性の例を示す図である。図6は、実施の形態1における寿命診断手法の説明に供するIGBTの温度特性の例を示す図である。図7は、実施の形態1における寿命診断手法の説明に供する要部の回路図である。図8は、実施の形態1における寿命診断手法の説明に供するタイムチャートである。 Next, the main points of the life diagnosis and the method thereof (hereinafter, abbreviated as "life diagnosis method") in the first embodiment will be described with reference to the drawings of FIGS. 5 to 8. FIG. 5 is a diagram showing an example of the output characteristics of the IGBT used for the description of the life diagnosis method in the first embodiment. FIG. 6 is a diagram showing an example of the temperature characteristics of the IGBT used for the description of the life diagnosis method in the first embodiment. FIG. 7 is a circuit diagram of a main part for explaining the life diagnosis method according to the first embodiment. FIG. 8 is a time chart provided for explaining the life diagnosis method according to the first embodiment.
 まず、前提条件について説明する。図5には、IGBT単体の出力特性が示されている。横軸はコレクタ・エミッタ間電圧であり、縦軸はコレクタ電流を定格電流の%値で示している。以下、コレクタ・エミッタ間電圧を「VCE」と表記し、コレクタ電流を「IC」と表記する。図示のように、IGBTにおけるICは、IGBTのエミッタとゲートとの間に印加されるゲート電圧であるVGEによって、その大きさが変化する。図5の特性から理解できるように、ICの大きさは、VGEによって制御することが可能である。また、ICの上限値は、VGEによって制御することが可能である。 First, the prerequisites will be explained. FIG. 5 shows the output characteristics of the IGBT alone. The horizontal axis shows the collector-emitter voltage, and the vertical axis shows the collector current as a% value of the rated current. Hereinafter, the collector-emitter voltage is referred to as "VCE", and the collector current is referred to as "IC". As shown in the figure, the size of the IC in the IGBT changes depending on the VGE, which is the gate voltage applied between the emitter and the gate of the IGBT. As can be understood from the characteristics of FIG. 5, the size of the IC can be controlled by VGE. Further, the upper limit value of the IC can be controlled by VGE.
 また、図5の出力特性において、VCEの増加に従ってICが増加する領域は「飽和領域」と呼ばれる。これに対し、VCEが増加しても、ICが飽和して殆ど増加しない領域は「活性領域」と呼ばれる。簡単に言うと、VCEの変化に対してICが飽和しない領域が「飽和領域」であり、VCEの変化に対してICが飽和する領域が「活性領域」である。なお、詳細は後述するが、実施の形態1では、飽和領域と活性領域の双方を使用して寿命診断を行う。 Further, in the output characteristics of FIG. 5, the region where the IC increases as the VCE increases is called the "saturation region". On the other hand, a region where IC is saturated and hardly increases even if VCE increases is called an "active region". Simply put, the region where the IC is not saturated with respect to the change in VCE is the "saturated region", and the region where the IC is saturated with respect to the change in VCE is the "active region". Although the details will be described later, in the first embodiment, the life diagnosis is performed using both the saturated region and the active region.
 また、IGBTは、図6に示すような温度特性を有している。横軸は、半導体チップの温度である。縦軸は、コレクタ・エミッタ間飽和電圧及びゲート・エミッタ間しきい値電圧を示している。以下、半導体チップの温度を「チップ温度」と呼ぶ。また、コレクタ・エミッタ間の飽和電圧を「VCE(sat)」と表記し、ゲート・エミッタ間のしきい値電圧を「VGE(th)」と表記する。 Further, the IGBT has the temperature characteristics as shown in FIG. The horizontal axis is the temperature of the semiconductor chip. The vertical axis shows the collector-emitter saturation voltage and the gate-emitter threshold voltage. Hereinafter, the temperature of the semiconductor chip is referred to as "chip temperature". Further, the saturation voltage between the collector and the emitter is described as "VCE (sat)", and the threshold voltage between the gate and the emitter is described as "VGE (th)".
 図6において、実線で表す直線はVCE(sat)を表し、一点鎖線の直線はVGE(th)を表している。図示のように、VCE(sat)及びVGE(th)は共に、チップ温度の増加に従って減少する特性である。VCE(sat)の傾きを「m1」、VGE(th)の傾きを「m2」で表すと、m1の絶対値は、m2の絶対値よりも小さいのが一般的な特性である。IGBTの種類によっても異なり、個体差によるばらつきもあるが、一例を示すと、m1=-2mV/℃、m2=-8mV/℃程度である。 In FIG. 6, the straight line represented by the solid line represents VCE (sat), and the straight line represented by the alternate long and short dash line represents VGE (th). As shown, both VCE (sat) and VGE (th) are properties that decrease with increasing chip temperature. When the slope of VCE (sat) is represented by "m1" and the slope of VGE (th) is represented by "m2", the absolute value of m1 is generally smaller than the absolute value of m2. It differs depending on the type of IGBT and varies depending on individual differences, but to give an example, it is about m1 = -2 mV / ° C. and m2 = -8 mV / ° C.
 図7には、実施の形態1における寿命診断手法を説明するための要部の構成として、インバータ回路11における1相分のレグが示されている。図7では、上アームのIGBTを「IGBT(P)」、下アームのIGBTを「IGBT(N)」と表記している。ゲート駆動回路15は、電圧が可変できる駆動回路電源15aと、駆動回路15bとを備えている。駆動回路電源15a及び駆動回路15bの組は、1つのIGBTに対して1つずつ設けられている。駆動回路15bは、IGBTにゲート電圧を印加する。ゲート電圧の大きさは、駆動回路電源15aによって変更することができる。なお、図7では、それぞれのIGBTにおける物理量をアルファベットで表記しているが、それぞれの表記の意味は、以下の通りである。 FIG. 7 shows a leg for one phase in the inverter circuit 11 as a configuration of a main part for explaining the life diagnosis method in the first embodiment. In FIG. 7, the IGBT of the upper arm is referred to as “IGBT (P)”, and the IGBT of the lower arm is referred to as “IGBT (N)”. The gate drive circuit 15 includes a drive circuit power supply 15a whose voltage can be changed and a drive circuit 15b. One set of the drive circuit power supply 15a and one set of the drive circuit 15b is provided for one IGBT. The drive circuit 15b applies a gate voltage to the IGBT. The magnitude of the gate voltage can be changed by the drive circuit power supply 15a. In FIG. 7, the physical quantities in each IGBT are expressed in alphabets, and the meanings of the respective notations are as follows.
 VGE(P):IGBT(P)に印加するゲート電圧
 VGE(N):IGBT(N)に印加するゲート電圧
 VCE(P):IGBT(P)のエミッタとコレクタとの間に生じる電圧
 VCE(N):IGBT(N)のエミッタとコレクタとの間に生じる電圧
 IC(P):IGBT(P)に流れる電流(コレクタ電流)
 IC(N):IGBT(N)に流れる電流(コレクタ電流)
 VPN:IGBT(P)とIGBT(N)の直列回路部に印加される直流電圧
 なお、以下の説明において、VPNは、実効値220Vの交流電圧を整流して得られる311Vであるとする。
VGE (P): Gate voltage applied to the IGBT (P) VGE (N): Gate voltage applied to the IGBT (N) VCE (P): Voltage generated between the emitter and collector of the IGBT (P) VCE (N) ): Voltage generated between the emitter and collector of the IGBT (N) IC (P): Current flowing through the IGBT (P) (collector current)
IC (N): Current flowing through the IGBT (N) (collector current)
VPN: DC voltage applied to the series circuit section of the IGBT (P) and IGBT (N) In the following description, it is assumed that the VPN is 311V obtained by rectifying the AC voltage having an effective value of 220V.
 次に、具体的な動作及び制御の流れについて、図8のタイムチャートを用いて説明する。図8には、IGBT(P)の熱抵抗を算出する処理の流れが示されている。図8に示す各処理は、実機に搭載された状態で行われる。 Next, the specific operation and control flow will be described using the time chart of FIG. FIG. 8 shows a flow of processing for calculating the thermal resistance of the IGBT (P). Each process shown in FIG. 8 is performed in a state of being mounted on the actual machine.
 (i)VCE(sat)1の測定
 IGBT(P)をVGE(P1)で、IGBT(N)をVGE(N1)でオンする。ここで、VGE(P1)とVGE(N1)との間には、VGE(P1)>VGE(N1)の関係がある。また、VGE(P1)は、VPNの電圧でIC(P)が飽和しない図5の飽和領域で使用できる電圧とする。図5に示されるように、ICは、VGEで制御可能である。なお、一般的にVGE(P1)は、15V程度である。また、VGE(N1)は、所望のIC(N1)=IC(P1)が得られる電圧とする。VGE(N1)の一例は、10Vである。また、IC(N1)(=IC(P1))の一例は、定格電流の40%値である。制御部14は、IGBT(P)にIC(P1)が流れているときのIGBT(P)におけるVCE(P)を測定し、測定した値をVCE(sat)1とする。VCE(P)の測定は、図示を省略した電圧検出器を用いて行う。なお、一般的にインバータ回路11に既設されている電圧検出器を用いてもよい。以降の説明においても同様である。
(I) Measurement of VCE (sat) 1 The IGBT (P) is turned on by VGE (P1) and the IGBT (N) is turned on by VGE (N1). Here, there is a relationship of VGE (P1)> VGE (N1) between VGE (P1) and VGE (N1). Further, VGE (P1) is a voltage that can be used in the saturation region of FIG. 5 in which the IC (P) is not saturated with the voltage of VPN. As shown in FIG. 5, the IC is controllable by VGE. Generally, VGE (P1) is about 15V. Further, VGE (N1) is a voltage at which a desired IC (N1) = IC (P1) can be obtained. An example of VGE (N1) is 10V. An example of IC (N1) (= IC (P1)) is a value of 40% of the rated current. The control unit 14 measures the VCE (P) in the IGBT (P) when the IC (P1) is flowing in the IGBT (P), and sets the measured value as the VCE (sat) 1. The VCE (P) is measured by using a voltage detector (not shown). In general, the voltage detector already installed in the inverter circuit 11 may be used. The same applies to the following description.
 測定されたVCE(sat)1の値は、制御部14のメモリ14bに記憶される。VCE(sat)1としては、2V程度を想定しているが、これに限定されるものではない。なお、VCE(sat)1が2Vであるとき、VCE(N1)、即ちIGBT(N)のコレクタ・エミッタ間電圧は、309Vになる。 The measured value of VCE (sat) 1 is stored in the memory 14b of the control unit 14. VCE (sat) 1 is assumed to be about 2V, but is not limited to this. When VCE (sat) 1 is 2V, the collector-emitter voltage of VCE (N1), that is, the IGBT (N) is 309V.
 (ii)パワー印加
 次に、IGBT(P)をVGE(P2)でオンし、IGBT(N)をVGE(N2)でオンする。このとき、VGE(P2)とVGE(N2)と間には、VGE(P2)<VGE(N2)の関係がある。また、VGE(N2)は、VPNの電圧でICが飽和しない図5の飽和領域で使用できる電圧とする。図5に示されるように、ICはVGEで制御可能である。なお、一般的にVGE(N2)は、15V程度である。また、VGE(P2)は、所望のIC(P2)が得られる電圧とする。VGE(P2)の一例は、9Vである。また、IC(P2)(=IC(N2))の一例は、定格電流の70%値である。また、このパワー印加フェーズにおいて、IGBT(P)に印加される電力は、IC(P2)×VCE(P2)で求められる。
(Ii) Power application Next, the IGBT (P) is turned on by VGE (P2), and the IGBT (N) is turned on by VGE (N2). At this time, there is a relationship of VGE (P2) <VGE (N2) between VGE (P2) and VGE (N2). Further, VGE (N2) is a voltage that can be used in the saturation region of FIG. 5 in which the IC is not saturated with the voltage of VPN. As shown in FIG. 5, the IC can be controlled by VGE. Generally, VGE (N2) is about 15V. Further, VGE (P2) is a voltage at which a desired IC (P2) can be obtained. An example of VGE (P2) is 9V. An example of IC (P2) (= IC (N2)) is a 70% value of the rated current. Further, in this power application phase, the power applied to the IGBT (P) is obtained by IC (P2) × VCE (P2).
 (iii)VCE(sat)2の測定
 この測定フェーズは、(ii)のフェーズにおいてIGBT(P)に電力を印加して電力を消費させ、その後に(i)の測定フェーズと同じ条件でIGBT(P)におけるVCE(P)を測定することを意図している。なお、測定の条件は、(i)と同じであり、ここでの説明は割愛する。測定値はVCE(sat)2とされる。VCE(sat)2の値は、制御部14のメモリ14bに記憶される。なお、IGBTの特性上、VCE(sat)1とVCE(sat)2との間には、VCE(sat)1>VCE(sat)2の関係がある。
(Iii) Measurement of VCE (sat) 2 In this measurement phase, power is applied to the IGBT (P) in the phase (ii) to consume the power, and then the IGBT (i) is subjected to the same conditions as the measurement phase (i). It is intended to measure the VCE (P) in P). The measurement conditions are the same as in (i), and the description here is omitted. The measured value is VCE (sat) 2. The value of VCE (sat) 2 is stored in the memory 14b of the control unit 14. Due to the characteristics of the IGBT, there is a relationship of VCE (sat) 1> VCE (sat) 2 between VCE (sat) 1 and VCE (sat) 2.
 (iv)熱抵抗(Rth)の算出
 このフェーズでは、次式を用いて、IGBT(P)の熱抵抗Rthが算出される。
 Rth=[(VCE(sat)2-VCE(sat)1)/m1]/(IC(P2)×VCE(P2))…(1)
 なお、m1は、前述したVCE(sat)カーブの傾きである。
(Iv) Calculation of thermal resistance (Rth) In this phase, the thermal resistance Rth of the IGBT (P) is calculated using the following equation.
Rth = [(VCE (sat) 2-VCE (sat) 1) / m1] / (IC (P2) x VCE (P2)) ... (1)
In addition, m1 is the slope of the VCE (sat) curve described above.
 (v)診断
 この診断フェーズでは、上記(1)式で算出された熱抵抗が初期値の熱抵抗と比較される。制御部14は、熱抵抗の算出値が、第1の設定値よりも大きくなった場合に、IGBT(P)が寿命に達したと診断する。また、制御部14は、熱抵抗の算出値が、第2の設定値よりも大きくなった場合に、IGBT(P)は異常レベルにあると診断する。第2の設定値は、第1の設定値よりも小さな値である。また、制御部14は、第1の設定値と熱抵抗の算出値との差分に基づいて、IGBT(P)の寿命を予測する。第1の設定値と熱抵抗の算出値との差分は、劣化の度合いを表すものである。このため、差分の推移を把握することにより、寿命の予測が可能になる。
(V) Diagnosis In this diagnostic phase, the thermal resistance calculated by the above equation (1) is compared with the initial value thermal resistance. The control unit 14 diagnoses that the IGBT (P) has reached the end of its life when the calculated value of the thermal resistance becomes larger than the first set value. Further, the control unit 14 diagnoses that the IGBT (P) is at an abnormal level when the calculated value of the thermal resistance becomes larger than the second set value. The second set value is a value smaller than the first set value. Further, the control unit 14 predicts the life of the IGBT (P) based on the difference between the first set value and the calculated value of the thermal resistance. The difference between the first set value and the calculated value of thermal resistance indicates the degree of deterioration. Therefore, it is possible to predict the life by grasping the transition of the difference.
 なお、上記(i)から(v)では、IGBT(P)の熱抵抗を算出して診断する処理について説明したが、IGBT(N)も同じ処理で熱抵抗の算出及び診断を行うことができる。具体的には、IGBT(P)とIGBT(N)との関係を入れ替えて上記の処理を行えばよい。 In addition, in the above (i) to (v), the process of calculating and diagnosing the thermal resistance of the IGBT (P) has been described, but the IGBT (N) can also calculate and diagnose the thermal resistance by the same process. .. Specifically, the above processing may be performed by exchanging the relationships between the IGBT (P) and the IGBT (N).
 また、上記(i)から(v)の処理は、負荷である電動機3を駆動する直前に行うことが一般的であるが、これに限定されない。アプリケーションによっては、電動機3の運転中において、電動機3の駆動停止期間中に行ってもよい。 Further, the processes (i) to (v) above are generally performed immediately before driving the electric motor 3, which is a load, but are not limited to this. Depending on the application, this may be performed during the operation of the electric motor 3 and during the drive stop period of the electric motor 3.
 また、インバータ回路11が三相インバータ回路である場合、一度に全ての相、即ち3つの相の診断を行ってもよい。或いは、一度に1つの相の診断を行い、3回の診断で全ての相の診断を行うようにしてもよい。 Further, when the inverter circuit 11 is a three-phase inverter circuit, all phases, that is, three phases may be diagnosed at one time. Alternatively, one phase may be diagnosed at a time, and all phases may be diagnosed three times.
 また、図2に示すインバータ回路11は、負荷である電動機3に印加する電圧が2レベルの構成であるが、この構成に限定されない。電動機3に印加する電圧が3レベルのインバータ回路に用いることもできる。図9は、実施の形態1における寿命診断手法の適用対象として示す3レベルインバータの1相分の回路図である。 Further, the inverter circuit 11 shown in FIG. 2 has a configuration in which the voltage applied to the electric motor 3 which is a load has two levels, but is not limited to this configuration. It can also be used in an inverter circuit in which the voltage applied to the electric motor 3 is three levels. FIG. 9 is a circuit diagram for one phase of the three-level inverter shown as an application target of the life diagnosis method in the first embodiment.
 3レベルの構成の場合、1つのレグは、4つの半導体チップ12UP1,12UP2,12UN1,12UN2が電気的に直列に接続される構成となる。このため、1つのレグを2つの直列回路部12P,12Nに区分し、2つの直列回路部12P,12Nのそれぞれに対して、上述した(i)から(v)の処理を行えばよい。これにより、2つの直列回路部12P,12Nにおけるそれぞれの半導体チップの寿命診断を行うことができる。 In the case of a three-level configuration, one leg has a configuration in which four semiconductor chips 12UP1, 12UP2, 12UN1, and 12UN2 are electrically connected in series. Therefore, one leg may be divided into two series circuit units 12P and 12N, and the above-described processes (i) to (v) may be performed on each of the two series circuit units 12P and 12N. Thereby, the life diagnosis of each semiconductor chip in the two series circuit units 12P and 12N can be performed.
 なお、上述したように、2つの半導体チップが直列に接続される直列回路部が最小構成となるが、3つ以上の半導体チップが直列に接続される直列回路部に対して上述した(i)から(v)の処理を行ってもよい。例えば、第1、第2及び第3の半導体チップが直列に接続されるものを直列回路部とした場合、第1の半導体チップをIGBT(P)とし、第2及び第3の半導体チップをIGBT(N)とすることで第1の半導体チップの寿命診断を行うことができる。そして、第1、第2及び第3の半導体チップの役割を順次入れ替えることで、第2及び第3の半導体チップの寿命診断を行うことができる。 As described above, the series circuit portion in which the two semiconductor chips are connected in series is the minimum configuration, but the series circuit portion in which three or more semiconductor chips are connected in series is described above (i). (V) may be performed. For example, when a series circuit unit is formed by connecting the first, second, and third semiconductor chips in series, the first semiconductor chip is an IGBT (P) and the second and third semiconductor chips are IGBTs. By setting (N), the life diagnosis of the first semiconductor chip can be performed. Then, by sequentially switching the roles of the first, second, and third semiconductor chips, the life diagnosis of the second and third semiconductor chips can be performed.
 また、上記では、半導体チップ12の半導体素子がIGBTである場合を例示したが、これに限定されない。半導体チップ12の半導体素子が金属酸化物半導体電界効果トランジスタ(Metal Oxide Semiconductor Field Effect Transistor:MOSFET)である場合にも、上記の手法は適用可能である。MOSFETは、IGBTと同様に、ゲート端子に印加する電圧によって制御される電圧駆動素子であるため、MOSFETにおける、図5に示される出力特性、及び図6に示される温度特性を考慮した制御とすることで、寿命診断を行うことができる。 Further, in the above, the case where the semiconductor element of the semiconductor chip 12 is an IGBT is illustrated, but the present invention is not limited to this. The above method can also be applied when the semiconductor element of the semiconductor chip 12 is a metal oxide semiconductor field effect transistor (MOSFET) of a Metal Oxide Semiconductor Field Effect Transistor (MOSFET). Since the MOSFET is a voltage drive element controlled by the voltage applied to the gate terminal like the IGBT, the control is performed in consideration of the output characteristics shown in FIG. 5 and the temperature characteristics shown in FIG. 6 in the MOSFET. Therefore, the life diagnosis can be performed.
 以上説明したように、実施の形態1に係る電力変換装置は、第1及び第2の半導体チップが実機に搭載された状態で、互いに直列に接続された第1及び第2の半導体チップの電気的特性の1つであるコレクタ・エミッタ間飽和電圧を測定する。また、測定したコレクタ・エミッタ間飽和電圧に基づいて放熱部材の熱抵抗を算出する。そして、算出した熱抵抗を初期値と比較することにより、第1及び第2の半導体チップの劣化による異常又は寿命を診断する。即ち、実施の形態1に係る電力変換装置は、半導体素子の電気的特性の変化から半導体チップの異常診断又は寿命診断を行う。これにより、従来技術に比してより高精度な異常診断又は寿命診断を行うことができる。 As described above, in the power conversion device according to the first embodiment, the electricity of the first and second semiconductor chips connected in series with each other in a state where the first and second semiconductor chips are mounted on the actual machine. The collector-emitter saturation voltage, which is one of the characteristics, is measured. In addition, the thermal resistance of the heat radiating member is calculated based on the measured collector-emitter saturation voltage. Then, by comparing the calculated thermal resistance with the initial value, an abnormality or a life due to deterioration of the first and second semiconductor chips is diagnosed. That is, the power conversion device according to the first embodiment performs abnormality diagnosis or life diagnosis of the semiconductor chip from the change in the electrical characteristics of the semiconductor element. As a result, it is possible to perform more accurate abnormality diagnosis or life diagnosis as compared with the prior art.
 また、上記特許文献1に代表される従来技術は、寿命カーブで予測する手法であり、機台ばらつきが考慮できないという欠点がある。機台ばらつきが考慮できない場合、リスクを考慮して、寿命が短くなる方向の寿命診断が行われるので、精度が低下する。また、従来技術は、1つの条件で寿命診断を行う手法であり、電力変換装置の使用法によるばらつきが考慮できないという欠点がある。これに対し、実施の形態1における寿命診断は、実機に搭載された状態で行われ、且つ、半導体チップの電気的特性がダイレクトに測定される。このため、機台ばらつき及び電力変換装置の使用法によるばらつきを包含できる。これにより、従来技術よりも精度の良い異常診断又は寿命診断を行うことができる。 Further, the conventional technique represented by the above-mentioned Patent Document 1 is a method of predicting with a life curve, and has a drawback that machine machine variation cannot be taken into consideration. If the machine stand variation cannot be taken into consideration, the life is diagnosed in the direction of shortening the life in consideration of the risk, so that the accuracy is lowered. Further, the conventional technique is a method of performing a life diagnosis under one condition, and has a drawback that variation due to the usage of the power conversion device cannot be taken into consideration. On the other hand, the life diagnosis in the first embodiment is performed in a state of being mounted on an actual machine, and the electrical characteristics of the semiconductor chip are directly measured. Therefore, it is possible to include variations in the machine base and variations due to the usage of the power conversion device. As a result, it is possible to perform abnormality diagnosis or life diagnosis with higher accuracy than the prior art.
 なお、互いに直列に接続された第1及び第2の半導体チップを含むレグが複数ある場合、電気的特性を測定するレグを変更すれば、異常診断又は寿命診断の対象を変更することができる。 When there are a plurality of legs including the first and second semiconductor chips connected in series with each other, the target of abnormality diagnosis or life diagnosis can be changed by changing the leg for measuring the electrical characteristics.
 また、半導体チップのうちの少なくとも1つが異常レベルにあると判定された場合、前記半導体チップをスイッチング制御するPWM信号の周波数を小さくすることが好ましい。PWM信号の周波数を小さくすることで、電動機3の意図しない停止を防止することができる。或いは、運転中の電動機3を安全に停止することができる。 Further, when it is determined that at least one of the semiconductor chips is at an abnormal level, it is preferable to reduce the frequency of the PWM signal for switching control of the semiconductor chip. By reducing the frequency of the PWM signal, it is possible to prevent the electric motor 3 from stopping unintentionally. Alternatively, the operating electric motor 3 can be safely stopped.
 また、半導体チップのうちの少なくとも1つが異常レベルにある、又は寿命に達したと判定された場合にはアラームを出力することが好ましい。アラームを出力することで、運用者又は管理者に電力変換装置の状態を報知することができる。 Further, it is preferable to output an alarm when it is determined that at least one of the semiconductor chips is at an abnormal level or has reached the end of its life. By outputting an alarm, it is possible to notify the operator or the administrator of the status of the power conversion device.
 また、半導体チップのうちの少なくとも1つが寿命に達したと判定された場合には、半導体チップに対する制御を停止することが好ましい。半導体チップに対する制御を停止することにより、電動機3の意図しない停止を防止することができる。或いは、運転中の電動機3を安全に停止することができる。或いは、半導体チップの故障が他の部位に及ぶのを防止することができる。 Further, when it is determined that at least one of the semiconductor chips has reached the end of its life, it is preferable to stop the control of the semiconductor chip. By stopping the control of the semiconductor chip, it is possible to prevent the electric motor 3 from being stopped unintentionally. Alternatively, the operating electric motor 3 can be safely stopped. Alternatively, it is possible to prevent the failure of the semiconductor chip from extending to other parts.
 次に、実施の形態1に係る寿命診断方法におけるより一般化した処理手順について説明する。図10は、実施の形態1に係る寿命診断方法による処理手順を示すフローチャートである。以下の各ステップの処理は、制御部14の制御下で行われる。 Next, a more generalized processing procedure in the life diagnosis method according to the first embodiment will be described. FIG. 10 is a flowchart showing a processing procedure according to the life diagnosis method according to the first embodiment. The processing of each of the following steps is performed under the control of the control unit 14.
 ステップS11では、第1の半導体チップのゲート端子に第1の値のゲート電圧を印加すると共に、第2の半導体チップのゲート端子に第2の値のゲート電圧を印加して直列回路部に第1の電流値の電流を流す処理が行われる。 In step S11, the gate voltage of the first value is applied to the gate terminal of the first semiconductor chip, and the gate voltage of the second value is applied to the gate terminal of the second semiconductor chip to the series circuit portion. The process of passing the current of the current value of 1 is performed.
 上記のステップS11の処理において、直列回路部は、第1の半導体チップと、第2の半導体チップとが電気的に互いに直列に接続された回路部を意味し、図7の構成で言えば、IGBT(P)及びIGBT(N)がこれに対応する。第1の値のゲート電圧は、図8のタイムチャートにおけるVGE(P1)に対応する。第2の値のゲート電圧は、図8のタイムチャートにおけるVGE(N1)に対応する。第1の電流値は、図8のタイムチャートのVCE(sat)1の測定フェーズにおけるIC(P1),IC(N1)に対応する。 In the process of step S11 described above, the series circuit unit means a circuit unit in which the first semiconductor chip and the second semiconductor chip are electrically connected in series with each other, and in the configuration of FIG. IGBTs (P) and IGBTs (N) correspond to this. The gate voltage of the first value corresponds to VGE (P1) in the time chart of FIG. The gate voltage of the second value corresponds to VGE (N1) in the time chart of FIG. The first current value corresponds to the IC (P1) and IC (N1) in the measurement phase of VCE (sat) 1 in the time chart of FIG.
 ステップS12では、直列回路部に第1の電流値の電流が流れたときに第1の半導体チップに印加される第1電圧が測定される。即ち、第1電圧は、第1の半導体チップの第1端子と第2端子との間に発生する電圧であり、第1の半導体チップの電気的特性である。なお、この電気的特性を「第1の特性」と呼ぶ場合がある。 In step S12, the first voltage applied to the first semiconductor chip when the current of the first current value flows through the series circuit unit is measured. That is, the first voltage is a voltage generated between the first terminal and the second terminal of the first semiconductor chip, and is an electrical characteristic of the first semiconductor chip. In addition, this electrical characteristic may be referred to as a "first characteristic".
 上記のステップS12の処理において、第1電圧は、図8のタイムチャートにおけるVCE(sat)1に対応する。 In the process of step S12 above, the first voltage corresponds to VCE (sat) 1 in the time chart of FIG.
 ステップS13では、ステップS12の後に、第1の半導体チップのゲート端子に第3の値のゲート電圧を印加すると共に、第2の半導体チップのゲート端子に第4の値のゲート電圧を印加して直列回路部に第2の電流値の電流を流す処理が行われる。 In step S13, after step S12, a third value gate voltage is applied to the gate terminal of the first semiconductor chip, and a fourth value gate voltage is applied to the gate terminal of the second semiconductor chip. A process of passing a current having a second current value through the series circuit unit is performed.
 上記のステップS13の処理において、第3の値のゲート電圧は、図8のタイムチャートにおけるVGE(P2)に対応する。第4の値のゲート電圧は、図8のタイムチャートにおけるVGE(N2)に対応する。第2の電流値は、図8のタイムチャートにおけるIC(P2),IC(N2)に対応する。 In the process of step S13 above, the gate voltage of the third value corresponds to VGE (P2) in the time chart of FIG. The gate voltage of the fourth value corresponds to VGE (N2) in the time chart of FIG. The second current value corresponds to the IC (P2) and IC (N2) in the time chart of FIG.
 ステップS14では、ステップS13の後に、第1の半導体チップのゲート端子に第1の値のゲート電圧を印加すると共に、第2の半導体チップのゲート端子に第2の値のゲート電圧を印加して直列回路部に第3の電流値の電流を流す処理が行われる。 In step S14, after step S13, the gate voltage of the first value is applied to the gate terminal of the first semiconductor chip, and the gate voltage of the second value is applied to the gate terminal of the second semiconductor chip. A process of passing a current of a third current value through the series circuit unit is performed.
 上記のステップS14の処理において、第1の値のゲート電圧は、前述したVGE(P1)であり、第2の値のゲート電圧は、前述したVGE(N1)である。第3の電流値は、図8のタイムチャートのVCE(sat)2測定フェーズにおけるIC(P1),IC(N1)に対応する。 In the process of step S14 described above, the gate voltage of the first value is the VGE (P1) described above, and the gate voltage of the second value is the VGE (N1) described above. The third current value corresponds to the IC (P1) and IC (N1) in the VCE (sat) 2 measurement phase of the time chart of FIG.
 ステップS15では、直列回路部に第3の電流値の電流が流れたときに第1端子と第2端子との間に発生する第2電圧が測定される。なお、第2電圧は、第1の半導体チップの電気的特性であり、「第2の特性」と呼ぶ場合がある。 In step S15, the second voltage generated between the first terminal and the second terminal when the current of the third current value flows through the series circuit portion is measured. The second voltage is an electrical characteristic of the first semiconductor chip and may be referred to as a "second characteristic".
 上記のステップS15の処理において、第2電圧は、図8のタイムチャートにおけるVCE(sat)2に対応する。 In the process of step S15 above, the second voltage corresponds to VCE (sat) 2 in the time chart of FIG.
 ステップS16では、第1及び第2の半導体チップの温度特性、第1電圧の測定値、第2電圧の測定値、第2の電流値、及び第1の半導体チップに第2の電流値を流したときに第1の半導体チップの第1端子と第2端子との間に発生する電圧に基づいて第1の半導体チップの熱抵抗が算出される。 In step S16, the temperature characteristics of the first and second semiconductor chips, the measured value of the first voltage, the measured value of the second voltage, the second current value, and the second current value flow through the first semiconductor chip. The thermal resistance of the first semiconductor chip is calculated based on the voltage generated between the first terminal and the second terminal of the first semiconductor chip.
 上記のステップS16の処理において、第1及び第2の半導体チップの温度特性は、図6におけるIGBTのコレクタ・エミッタ間飽和電圧に対応する。第1の半導体チップの第1端子と第2端子との間に発生する電圧は、図8のタイムチャートにおけるVCE(P2)に対応する。 In the process of step S16 described above, the temperature characteristics of the first and second semiconductor chips correspond to the saturation voltage between the collector and the emitter of the IGBT in FIG. The voltage generated between the first terminal and the second terminal of the first semiconductor chip corresponds to VCE (P2) in the time chart of FIG.
 ステップS17では、ステップS16で算出した熱抵抗を初期値と比較することで第1及び第2の半導体チップの異常又は寿命が診断される。 In step S17, the abnormality or life of the first and second semiconductor chips is diagnosed by comparing the thermal resistance calculated in step S16 with the initial value.
 以上のように、制御部14は、直列回路部に第2の電流値の電流が流れたことによる熱抵抗の変化に基づいて第1及び第2の半導体チップの寿命診断及び異常診断を行う。上記のステップS11からステップS17までの処理は、プログラムという形式で具現され、制御部14に実装することができる。このプログラムは、前述したようにメモリ14bに保存され、プロセッサ14aによって読みとられる。そして、このプログラムによる処理は、プロセッサ14aの制御下において実行され、上述した寿命診断及び異常診断が実現される。 As described above, the control unit 14 performs the life diagnosis and the abnormality diagnosis of the first and second semiconductor chips based on the change in the thermal resistance due to the current of the second current value flowing through the series circuit unit. The above processes from step S11 to step S17 are embodied in the form of a program and can be implemented in the control unit 14. This program is stored in the memory 14b as described above and read by the processor 14a. Then, the processing by this program is executed under the control of the processor 14a, and the above-mentioned life diagnosis and abnormality diagnosis are realized.
 なお、制御部14における寿命診断及び異常診断の機能は、電力変換装置1における電力変換の機能とは別個に半導体チップの寿命診断装置として構成されてもよい。半導体チップの寿命診断装置は、電力変換装置1の内部に構成されていてもよいし、電力変換装置1の外部に別個の装置として構成されていてもよい。 The life diagnosis and abnormality diagnosis functions of the control unit 14 may be configured as a life diagnosis device of the semiconductor chip separately from the power conversion function of the power conversion device 1. The life diagnosis device of the semiconductor chip may be configured inside the power conversion device 1, or may be configured as a separate device outside the power conversion device 1.
 なお、本実施の形態では寿命診断および異常診断を例として説明したが、寿命のレベルを複数段階的に設け、異常が発生した時点を第1段階の寿命としてもよい。複数段階の寿命を診断することで、ユーザが寿命のレベルに応じた使用条件、あるいは使用終了判断を適宜決めることができる。 Although the life diagnosis and the abnormality diagnosis have been described as an example in the present embodiment, the life level may be set in a plurality of stages, and the time when the abnormality occurs may be set as the first stage life. By diagnosing the life in multiple stages, the user can appropriately determine the usage conditions or the end-of-use judgment according to the life level.
 本実施の形態では、接合材としてはんだの場合を説明したが、Ag、Cu等を含む他の接合材を用いてもよいことは言うまでもない。 In the present embodiment, the case of solder as the bonding material has been described, but it goes without saying that other bonding materials containing Ag, Cu, etc. may be used.
実施の形態2.
 実施の形態1では、第1及び第2の半導体チップの温度特性がIGBTのコレクタ・エミッタ間飽和電圧である場合について説明した。これに対し、実施の形態2では、第1及び第2の半導体チップの温度特性がIGBTのゲート・エミッタ間しきい値電圧である場合について説明する。
Embodiment 2.
In the first embodiment, the case where the temperature characteristic of the first and second semiconductor chips is the saturation voltage between the collector and the emitter of the IGBT has been described. On the other hand, in the second embodiment, the case where the temperature characteristic of the first and second semiconductor chips is the threshold voltage between the gate and the emitter of the IGBT will be described.
 図11は、実施の形態2における寿命診断手法の説明に供するタイムチャートである。図11には、IGBT(P)の熱抵抗を算出する処理の流れが示されている。なお、図8と同様に、図11に示す各処理は、実機に搭載された状態で行われる。 FIG. 11 is a time chart provided for explaining the life diagnosis method according to the second embodiment. FIG. 11 shows a flow of processing for calculating the thermal resistance of the IGBT (P). As in FIG. 8, each process shown in FIG. 11 is performed in a state of being mounted on the actual machine.
 (i)VGE(th)1の測定
 IGBT(N)をVGE(N1)でオンすると共に、IGBT(P)に印加するVGEを増加させてIGBT(P)にIC(P)を流し、IC(P)がIC(P1)になるときのVGE(P)を測定する。なお、IC(P)が、設定値であるIC(P1)になるか否かの確認は、図示を省略した電流検出器を用いて行う。なお、一般的にインバータ回路11に既設されている電流検出器を用いてもよい。以降の説明においても同様である。なお、電流検出器は、図7の回路図において、高電位側の直流母線16又は低電位側の直流母線17に配置されていてもよい。或いは、図7のIGBT(P)とIGBT(N)とからなるレグにおいて、高電位側の直流母線16とIGBT(P)のコレクタとの間、又はIGBT(P)のエミッタと、IGBT(P)における駆動回路15bの低電位側の接続点との間に配置されていてもよい。或いは、IGBT(P)における駆動回路15bの低電位側の接続点と、IGBT(N)のコレクタとの間、又はIGBT(N)のエミッタと、IGBT(N)における駆動回路15bの低電位側の接続点との間に配置されていてもよい。或いは、IGBT(N)における駆動回路15bの低電位側の接続点と、低電位側の直流母線17との間に配置されていてもよい。
(I) Measurement of VGE (th) 1 The IGBT (N) is turned on by the VGE (N1), and the VGE applied to the IGBT (P) is increased to allow the IC (P) to flow through the IGBT (P). The VGE (P) when P) becomes IC (P1) is measured. Whether or not the IC (P) becomes the set value IC (P1) is confirmed by using a current detector (not shown). In general, the current detector already installed in the inverter circuit 11 may be used. The same applies to the following description. In the circuit diagram of FIG. 7, the current detector may be arranged on the DC bus 16 on the high potential side or the DC bus 17 on the low potential side. Alternatively, in the leg composed of the IGBT (P) and the IGBT (N) in FIG. 7, between the DC bus 16 on the high potential side and the collector of the IGBT (P), or between the emitter of the IGBT (P) and the IGBT (P). ) May be arranged between the drive circuit 15b and the connection point on the low potential side. Alternatively, between the connection point on the low potential side of the drive circuit 15b in the IGBT (P) and the collector of the IGBT (N), or between the emitter of the IGBT (N) and the low potential side of the drive circuit 15b in the IGBT (N). It may be arranged between the connection point and the connection point of. Alternatively, it may be arranged between the connection point on the low potential side of the drive circuit 15b in the IGBT (N) and the DC bus 17 on the low potential side.
 制御部14は、測定したVGE(P)の値をVGE(th)1とする。測定されたVGE(th)1の値は、制御部14のメモリ14bに記憶される。ここで、IC(P)がIC(P1)になるときのVGE(P)をVGE(P1)とすると、VGE(P1)とVGE(N1)との間には、VGE(P1)<VGE(N1)の関係がある。VGE(N1)は、VPNの電圧でIC(N)が飽和しない図5の飽和領域で使用できる電圧とする。一般的にVGE(N1)は、15V程度である。IC(P1)は、規定の電流であり、1[A]以下の電流を想定しているが、これに限定されるものではない。また、VCE(N1)は、2V程度を想定しているが、これに限定されるものではない。なお、VCE(N1)が2Vであるとき、IGBT(P)のコレクタ・エミッタ間電圧であるVCE(P2)は、309Vになる。 The control unit 14 sets the measured VGE (P) value to VGE (th) 1. The measured value of VGE (th) 1 is stored in the memory 14b of the control unit 14. Here, assuming that the VGE (P) when the IC (P) becomes the IC (P1) is VGE (P1), between VGE (P1) and VGE (N1), VGE (P1) <VGE ( There is a relationship of N1). The VGE (N1) is a voltage that can be used in the saturation region of FIG. 5 in which the IC (N) is not saturated with the VPN voltage. Generally, VGE (N1) is about 15V. The IC (P1) is a specified current and assumes a current of 1 [A] or less, but is not limited to this. Further, VCE (N1) is assumed to be about 2V, but is not limited to this. When the VCE (N1) is 2V, the VCE (P2), which is the collector-emitter voltage of the IGBT (P), becomes 309V.
 (ii)パワー印加
 次に、IGBT(N)のゲート端子に印加されているVGE(N1)を維持してIGBT(N)をオンし続けると共に、IGBT(P)のゲート端子にVGE(P2)を印加してIGBT(P)にIC(P2)(=IC(N2))の電流を流す。このとき、VGE(P2)とVGE(N1)と間には、VGE(P2)<VGE(N1)の関係がある。VGE(P2)は、所望のIC(P2)が得られる電圧とする。VGE(P2)の一例は、9[V]程度である。また、IC(P2)(=IC(N2))は、5~10A程度の範囲の電流である。このパワー印加期間において、IGBT(P)に印加される電力は、IC(P2)×VCE(P2)で求められる。なお、図11では、IC(P1)とIC(P2)との間に、IC(P1)<IC(P2)の関係がある場合を例示しているが、この例に限定されず、IC(P1)≧IC(P2)の関係であってもよい。即ち、IC(P1)とIC(P2)との大小関係は、不問である。また、図11では、VGE(P2)と、(i)のフェーズで測定したVGE(th)1との間に、VGE(P2)>VGE(th)1の関係がある場合を例示しているが、この例に限定されず、VGE(P2)≦VGE(th)1の関係であってもよい。即ち、VGE(P2)とVGE(th)1との大小関係は、不問である。
(Ii) Power application Next, while maintaining the VGE (N1) applied to the gate terminal of the IGBT (N) and keeping the IGBT (N) on, the VGE (P2) is applied to the gate terminal of the IGBT (P). Is applied to pass the current of IC (P2) (= IC (N2)) through the IGBT (P). At this time, there is a relationship of VGE (P2) <VGE (N1) between VGE (P2) and VGE (N1). VGE (P2) is a voltage at which a desired IC (P2) can be obtained. An example of VGE (P2) is about 9 [V]. Further, the IC (P2) (= IC (N2)) is a current in the range of about 5 to 10 A. In this power application period, the power applied to the IGBT (P) is obtained by IC (P2) × VCE (P2). Note that FIG. 11 illustrates a case where there is a relationship of IC (P1) <IC (P2) between IC (P1) and IC (P2), but the present invention is not limited to this example, and IC ( The relationship may be P1) ≧ IC (P2). That is, the magnitude relationship between the IC (P1) and the IC (P2) does not matter. Further, FIG. 11 illustrates a case where there is a relationship of VGE (P2)> VGE (th) 1 between VGE (P2) and VGE (th) 1 measured in the phase (i). However, the relationship is not limited to this example, and the relationship may be VGE (P2) ≤ VGE (th) 1. That is, the magnitude relationship between VGE (P2) and VGE (th) 1 does not matter.
 (iii)VGE(th)2の測定
 この測定フェーズは、(ii)のフェーズにおいてIGBT(P)に電力を印加して電力を消費させ、その後に(i)の測定フェーズと同じ条件でIGBT(P)におけるVGE(P)を測定することを意図している。なお、測定の条件は、(i)と同じであり、ここでの説明は割愛する。測定値はVGE(th)2とされ、VGE(th)2の値は、制御部14のメモリ14bに記憶される。なお、IGBTの特性上、VGE(th)1とVGE(th)2との間には、VGE(th)1>VGE(th)2の関係がある。また、図11では、VGE(P2)と、(i)のフェーズで測定したVGE(th)2との間に、VGE(P2)>VGE(th)2の関係がある場合を例示しているが、この例に限定されず、VGE(P2)≦VGE(th)2の関係であってもよい。即ち、VGE(P2)とVGE(th)2との大小関係は、不問である。
(Iii) Measurement of VGE (th) 2 In this measurement phase, power is applied to the IGBT (P) in the phase (ii) to consume the power, and then the IGBT (i) is subjected to the same conditions as the measurement phase (i). It is intended to measure the VGE (P) in P). The measurement conditions are the same as in (i), and the description here is omitted. The measured value is VGE (th) 2, and the value of VGE (th) 2 is stored in the memory 14b of the control unit 14. Due to the characteristics of the IGBT, there is a relationship of VGE (th) 1> VGE (th) 2 between VGE (th) 1 and VGE (th) 2. Further, FIG. 11 illustrates a case where there is a relationship of VGE (P2)> VGE (th) 2 between VGE (P2) and VGE (th) 2 measured in the phase (i). However, the relationship is not limited to this example, and the relationship may be VGE (P2) ≤ VGE (th) 2. That is, the magnitude relationship between VGE (P2) and VGE (th) 2 does not matter.
 (iv)熱抵抗(Rth)の算出
 このフェーズでは、次式を用いて、IGBT(P)の熱抵抗Rthが算出される。
 Rth=[(VGE(th)2-VGE(th)1)/m2]/(IC(P2)×VCE(P2))…(2)
 なお、m2は、前述したVGE(th)カーブの傾きである。
(Iv) Calculation of thermal resistance (Rth) In this phase, the thermal resistance Rth of the IGBT (P) is calculated using the following equation.
Rth = [(VGE (th) 2-VGE (th) 1) / m2] / (IC (P2) x VCE (P2)) ... (2)
Note that m2 is the slope of the VGE (th) curve described above.
 (v)診断
 この診断フェーズでは、上記(2)式で算出された熱抵抗が初期値の熱抵抗と比較される。制御部14は、熱抵抗の算出値が、第3の設定値よりも大きくなった場合に、IGBT(P)が寿命に達したと診断する。また、制御部14は、熱抵抗の算出値が、第4の設定値よりも大きくなった場合に、IGBT(P)は異常レベルにあると診断する。第4の設定値は、第3の設定値よりも小さな値である。また、制御部14は、第3の設定値と熱抵抗の算出値との差分に基づいて、IGBT(P)の寿命を予測する。なお、第3の設定値に代えて、実施の形態1で用いた第1の設定値を使用してもよい。また、第4の設定値に代えて、実施の形態1で用いた第2の設定値を使用してもよい。
(V) Diagnosis In this diagnostic phase, the thermal resistance calculated by the above equation (2) is compared with the initial value thermal resistance. The control unit 14 diagnoses that the IGBT (P) has reached the end of its life when the calculated value of the thermal resistance becomes larger than the third set value. Further, the control unit 14 diagnoses that the IGBT (P) is at an abnormal level when the calculated value of the thermal resistance becomes larger than the fourth set value. The fourth set value is smaller than the third set value. Further, the control unit 14 predicts the life of the IGBT (P) based on the difference between the third set value and the calculated value of the thermal resistance. The first set value used in the first embodiment may be used instead of the third set value. Further, instead of the fourth set value, the second set value used in the first embodiment may be used.
 なお、上記(i)から(v)では、IGBT(P)の熱抵抗を算出して診断する処理について説明したが、IGBT(N)も同じ処理で熱抵抗の算出及び診断を行うことができる。具体的には、IGBT(P)とIGBT(N)との関係を入れ替えて上記の処理を行えばよい。 In addition, in the above (i) to (v), the process of calculating and diagnosing the thermal resistance of the IGBT (P) has been described, but the IGBT (N) can also calculate and diagnose the thermal resistance by the same process. .. Specifically, the above processing may be performed by exchanging the relationships between the IGBT (P) and the IGBT (N).
 また、上記(i)から(v)の処理は、負荷である電動機3を駆動する直前に行うことが一般的であるが、これに限定されない。アプリケーションによっては、電動機3の運転中において、電動機3の駆動停止期間中に行ってもよい。 Further, the processes (i) to (v) above are generally performed immediately before driving the electric motor 3, which is a load, but are not limited to this. Depending on the application, this may be performed during the operation of the electric motor 3 and during the drive stop period of the electric motor 3.
 また、インバータ回路11が三相インバータ回路である場合、一度に全ての相、即ち3つの相の診断を行ってもよい。或いは、一度に1つの相の診断を行い、3回の診断で全ての相の診断を行うようにしてもよい。 Further, when the inverter circuit 11 is a three-phase inverter circuit, all phases, that is, three phases may be diagnosed at one time. Alternatively, one phase may be diagnosed at a time, and all phases may be diagnosed three times.
 なお、実施の形態2の手法は、実施の形態1と同様に、3レベルのインバータ回路に用いることもできる。また、実施の形態2の手法は、実施の形態1と同様に、半導体チップ12の半導体素子がMOSFETである場合にも適用可能である。 Note that the method of the second embodiment can also be used for a three-level inverter circuit as in the first embodiment. Further, the method of the second embodiment can be applied to the case where the semiconductor element of the semiconductor chip 12 is a MOSFET, as in the first embodiment.
 以上説明したように、実施の形態2に係る電力変換装置は、第1及び第2の半導体チップが実機に搭載された状態で第1及び第2の半導体チップの電気的特性の1つであるゲート・エミッタ間しきい値電圧を測定する。また、測定したゲート・エミッタ間しきい値電圧に基づいて構成部材を含む放熱構造の熱抵抗を算出する。そして、算出した熱抵抗を初期値と比較することにより、第1及び第2の半導体チップの劣化による異常又は寿命を診断する。即ち、実施の形態2に係る電力変換装置は、半導体素子の電気的特性の変化から半導体チップの異常診断又は寿命診断を行う。これにより、従来技術に比してより高精度な異常診断又は寿命診断を行うことができる。 As described above, the power conversion device according to the second embodiment is one of the electrical characteristics of the first and second semiconductor chips in a state where the first and second semiconductor chips are mounted on the actual machine. Measure the gate-emitter threshold voltage. In addition, the thermal resistance of the heat dissipation structure including the constituent members is calculated based on the measured threshold voltage between the gate and the emitter. Then, by comparing the calculated thermal resistance with the initial value, an abnormality or a life due to deterioration of the first and second semiconductor chips is diagnosed. That is, the power conversion device according to the second embodiment performs abnormality diagnosis or life diagnosis of the semiconductor chip from the change in the electrical characteristics of the semiconductor element. As a result, it is possible to perform more accurate abnormality diagnosis or life diagnosis as compared with the prior art.
 また、実施の形態2における寿命診断は、実機に搭載された状態で行われ、且つ、半導体チップの電気的特性がダイレクトに測定される。このため、機台ばらつき及び電力変換装置の使用法によるばらつきを包含できる。これにより、従来技術よりも精度の良い異常診断又は寿命診断を行うことができる。 Further, the life diagnosis in the second embodiment is performed in a state of being mounted on an actual machine, and the electrical characteristics of the semiconductor chip are directly measured. Therefore, it is possible to include variations in the machine base and variations due to the usage of the power conversion device. As a result, it is possible to perform abnormality diagnosis or life diagnosis with higher accuracy than the prior art.
 次に、実施の形態2に係る寿命診断方法におけるより一般化した処理手順について説明する。図12は、実施の形態2に係る寿命診断方法による処理手順を示すフローチャートである。以下の各ステップの処理は、制御部14の制御下で行われる。 Next, a more generalized processing procedure in the life diagnosis method according to the second embodiment will be described. FIG. 12 is a flowchart showing a processing procedure according to the life diagnosis method according to the second embodiment. The processing of each of the following steps is performed under the control of the control unit 14.
 ステップS21では、第2の半導体チップのゲート端子に第2の半導体チップを導通させるための第1の値のゲート電圧を印加すると共に、第1の半導体チップのゲート端子に印加するゲート電圧を増加させて直列回路部に電流を流し、直列回路部に流れる電流が第1の電流値になるときの第1の半導体チップのゲート端子に印加された第1電圧を測定する処理が行われる。 In step S21, the gate voltage of the first value for conducting the second semiconductor chip is applied to the gate terminal of the second semiconductor chip, and the gate voltage applied to the gate terminal of the first semiconductor chip is increased. A process is performed in which a current is passed through the series circuit section, and the first voltage applied to the gate terminal of the first semiconductor chip when the current flowing through the series circuit section becomes the first current value is measured.
 上記のステップS21の処理において、直列回路部は、第1の半導体チップと、第2の半導体チップとが電気的に互いに直列に接続された回路部を意味し、図7の構成で言えば、IGBT(P)及びIGBT(N)がこれに対応する。第1の値のゲート電圧は、図11のタイムチャートにおけるVGE(N1)に対応する。第1の電流値は、図11のタイムチャートのVGE(th)1の測定フェーズにおけるIC(P1)に対応する。 In the process of step S21 described above, the series circuit unit means a circuit unit in which the first semiconductor chip and the second semiconductor chip are electrically connected in series with each other, and in the configuration of FIG. IGBTs (P) and IGBTs (N) correspond to this. The gate voltage of the first value corresponds to VGE (N1) in the time chart of FIG. The first current value corresponds to the IC (P1) in the measurement phase of VGE (th) 1 in the time chart of FIG.
 ステップS22では、ステップS21の後に、第2の半導体チップのゲート端子に印加されている第1の値のゲート電圧を維持すると共に、第1の半導体チップのゲート端子に第2の値のゲート電圧を印加して直列回路部に第2の電流値の電流を流す処理が行われる。 In step S22, after step S21, the gate voltage of the first value applied to the gate terminal of the second semiconductor chip is maintained, and the gate voltage of the second value is maintained at the gate terminal of the first semiconductor chip. Is applied to pass a current of a second current value through the series circuit unit.
 上記のステップS22の処理において、第1の値のゲート電圧は、前述したVGE(N1)であり、第2の値のゲート電圧は、図11のタイムチャートにおけるVGE(P2)に対応する。第2の電流値は、図11のタイムチャートにおけるIC(P2),IC(N2)に対応する。 In the process of step S22 above, the gate voltage of the first value is the VGE (N1) described above, and the gate voltage of the second value corresponds to the VGE (P2) in the time chart of FIG. The second current value corresponds to the IC (P2) and IC (N2) in the time chart of FIG.
 ステップS23では、ステップS22の後に、第2の半導体チップのゲート端子に印加されている第1の値のゲート電圧を維持すると共に、第1の半導体チップのゲート端子へのゲート電圧の印加を遮断する処理が行われる。 In step S23, after step S22, the gate voltage of the first value applied to the gate terminal of the second semiconductor chip is maintained, and the application of the gate voltage to the gate terminal of the first semiconductor chip is cut off. Processing is performed.
 上記のステップS23の処理において、第1の値のゲート電圧は、前述したVGE(N1)である。 In the process of step S23 described above, the gate voltage of the first value is VGE (N1) described above.
 ステップS24では、ステップS23の後に、第2の半導体チップのゲート端子に印加されている第1の値のゲート電圧を維持すると共に、第1の半導体チップのゲート端子に印加するゲート電圧を増加させて直列回路部に電流を流し、直列回路部に流れる電流が第1の電流値になるときの第1の半導体チップのゲート端子に印加された第2電圧が測定される。 In step S24, after step S23, the gate voltage of the first value applied to the gate terminal of the second semiconductor chip is maintained, and the gate voltage applied to the gate terminal of the first semiconductor chip is increased. A current is passed through the series circuit section, and the second voltage applied to the gate terminal of the first semiconductor chip when the current flowing through the series circuit section becomes the first current value is measured.
 上記のステップS24の処理において、第1の値のゲート電圧は、前述したVGE(N1)であり、第2の値のゲート電圧は、前述したVGE(P2)である。第1の電流値は、前述したIC(P1)である。 In the process of step S24, the gate voltage of the first value is the above-mentioned VGE (N1), and the gate voltage of the second value is the above-mentioned VGE (P2). The first current value is the IC (P1) described above.
 ステップS25では、第1及び第2の半導体チップの温度特性、第1電圧の測定値、第2電圧の測定値、第2の電流値、及び第1の半導体チップに第2の電流値の電流を流したときに第1の半導体チップの第1端子と第2端子との間に発生する電圧に基づいて第1の半導体チップの熱抵抗が算出される。 In step S25, the temperature characteristics of the first and second semiconductor chips, the measured value of the first voltage, the measured value of the second voltage, the second current value, and the current of the second current value to the first semiconductor chip. The thermal resistance of the first semiconductor chip is calculated based on the voltage generated between the first terminal and the second terminal of the first semiconductor chip when the current is applied.
 上記のステップS25の処理において、第1及び第2の半導体チップの温度特性は、図6におけるIGBTのゲート・エミッタ間しきい値電圧に対応する。第1端子は、第1電流が流出する側の端子であり、図2の半導体チップ12UPにおける12bに対応する。第2端子は、第1電流が流入する側の端子であり、図2の半導体チップ12UPにおける12cに対応する。第1の半導体チップの第1端子と第2端子との間に発生する電圧は、図11のタイムチャートにおけるVCE(P2)に対応する。 In the process of step S25 above, the temperature characteristics of the first and second semiconductor chips correspond to the threshold voltage between the gate and emitter of the IGBT in FIG. The first terminal is a terminal on the side where the first current flows out, and corresponds to 12b in the semiconductor chip 12UP of FIG. The second terminal is a terminal on the side where the first current flows, and corresponds to 12c in the semiconductor chip 12UP of FIG. The voltage generated between the first terminal and the second terminal of the first semiconductor chip corresponds to VCE (P2) in the time chart of FIG.
 ステップS26では、ステップS25で算出した熱抵抗を初期値と比較することで第1及び第2の半導体チップの異常又は寿命が診断される。 In step S26, the abnormality or life of the first and second semiconductor chips is diagnosed by comparing the thermal resistance calculated in step S25 with the initial value.
 上記のステップS21からステップS26までの処理は、プログラムという形式で具現され、制御部14に実装することができる。このプログラムは、前述したようにメモリ14bに保存され、プロセッサ14aによって読みとられる。そして、このプログラムによる処理は、プロセッサ14aの制御下において実行され、上述した寿命診断及び異常診断が実現される。 The above processes from step S21 to step S26 are embodied in the form of a program and can be implemented in the control unit 14. This program is stored in the memory 14b as described above and read by the processor 14a. Then, the processing by this program is executed under the control of the processor 14a, and the above-mentioned life diagnosis and abnormality diagnosis are realized.
実施の形態3.
 図13は、実施の形態3における寿命診断手法の説明に供する熱抵抗の特性の例を示す図である。具体的に、図13には、図3に示す放熱構造における熱抵抗特性の例が示されている。横軸は時間であり、縦軸は図3に示す放熱構造部における金属ベースを含む部位の熱抵抗を示している。熱抵抗は、温度の伝えにくさを表す物理量である。熱抵抗の単位としては、一般的に“℃/W”が用いられる。図13に示す熱抵抗は、図3に示す放熱構造部において、半導体チップ12が1Wの電力を消費したときの温度差を示している。ここで言う温度差は、半導体チップ12の温度と周囲温度との差である。
Embodiment 3.
FIG. 13 is a diagram showing an example of the characteristics of thermal resistance provided for the description of the life diagnosis method in the third embodiment. Specifically, FIG. 13 shows an example of thermal resistance characteristics in the heat dissipation structure shown in FIG. The horizontal axis represents time, and the vertical axis represents the thermal resistance of the heat-dissipating structure portion shown in FIG. 3, including the metal base. Thermal resistance is a physical quantity that expresses the difficulty of transmitting temperature. As a unit of thermal resistance, "° C./W" is generally used. The thermal resistance shown in FIG. 13 indicates the temperature difference when the semiconductor chip 12 consumes 1 W of electric power in the heat dissipation structure portion shown in FIG. The temperature difference referred to here is the difference between the temperature of the semiconductor chip 12 and the ambient temperature.
 図3の放熱構造において、半導体チップ12によって発生した熱は、時間をかけて伝導して行く。このため、熱抵抗の値は、図13に示されるように時間の関数となる。図13の例によれば、約0.3sまでは、時間と共に増加し、0.3s以降では、フラットな特性となる。図13におけるフラットな特性部分は、図3の放熱構造において、半導体チップ12によって発生した熱の影響が絶縁基板21の裏面にあるはんだ層28を超えて、金属ベース25まで達していると考えられる。一方、図13において、リニアに増加する特性部分は、半導体チップ12によって発生した熱の影響がはんだ層28に達していないと考えられる。これらの特性を考慮すると、図8及び図11に示されるパワー印加フェーズにおける印加時間(以下、「パワー印加時間」と呼ぶ)を制御することで、半導体チップ12の寿命に影響をもたらす放熱部材の構造上の診断部位を変更することができる。 In the heat dissipation structure of FIG. 3, the heat generated by the semiconductor chip 12 is conducted over time. Therefore, the value of thermal resistance is a function of time as shown in FIG. According to the example of FIG. 13, it increases with time up to about 0.3 s, and becomes a flat characteristic after 0.3 s. In the heat dissipation structure of FIG. 3, it is considered that the influence of the heat generated by the semiconductor chip 12 exceeds the solder layer 28 on the back surface of the insulating substrate 21 and reaches the metal base 25 in the flat characteristic portion in FIG. .. On the other hand, in FIG. 13, it is considered that the influence of the heat generated by the semiconductor chip 12 does not reach the solder layer 28 in the characteristic portion that increases linearly. Considering these characteristics, the heat radiating member that affects the life of the semiconductor chip 12 by controlling the application time (hereinafter, referred to as “power application time”) in the power application phase shown in FIGS. 8 and 11. The structural diagnostic site can be changed.
 以上の点を踏まえ、実施の形態3に係る寿命診断では、半導体チップ12に電力消費を行わせるパワー印加時間を制御する。具体的には、図10のフローチャートにおいて、ステップS13におけるパワー印加時間を第1の時間よりも短くする。図12のフローチャートであれば、ステップS22におけるパワー印加時間を第1の時間よりも短くする。言い替えると、第1の時間が経過する前にパワー印加を停止する。パワー印加時間を第1の時間よりも短くすることで、絶縁基板21の表面にあるはんだ層27の亀裂を診断することができる。なお、図13に示される熱抵抗の例の場合、第1の時間としては、0.03s程度が設定される。 Based on the above points, in the life diagnosis according to the third embodiment, the power application time for causing the semiconductor chip 12 to consume power is controlled. Specifically, in the flowchart of FIG. 10, the power application time in step S13 is made shorter than the first time. In the flowchart of FIG. 12, the power application time in step S22 is shorter than the first time. In other words, the power application is stopped before the first time elapses. By making the power application time shorter than the first time, cracks in the solder layer 27 on the surface of the insulating substrate 21 can be diagnosed. In the case of the example of thermal resistance shown in FIG. 13, about 0.03 s is set as the first time.
 また、図10のフローチャートにおいて、ステップS13におけるパワー印加時間を第2の時間よりも長くする。図12のフローチャートであれば、ステップS22におけるパワー印加時間を第2の時間よりも長くする。言い替えると、第2の時間が経過した後にパワー印加を停止する。第2の時間は、第1の時間よりも長い時間である。図13に示される熱抵抗の例の場合、第2の時間としては、0.4s程度が設定される。 Further, in the flowchart of FIG. 10, the power application time in step S13 is made longer than the second time. In the flowchart of FIG. 12, the power application time in step S22 is made longer than the second time. In other words, the power application is stopped after the second time has elapsed. The second time is longer than the first time. In the case of the example of thermal resistance shown in FIG. 13, about 0.4 s is set as the second time.
 パワー印加時間を第2の時間よりも長くする第2の診断処理は、パワー印加時間を第1の時間よりも短くする第1の診断処理と併用する。第1の診断処理によって得た第1の診断結果により、絶縁基板21の表面にあるはんだ層27の状態を診断することができる。また、この第1の診断結果と、第2の診断処理によって得た第2の診断結果とに基づいて、絶縁基板21の裏面にあるはんだ層28の状態を診断することができる。 The second diagnostic process of making the power application time longer than the second time is used in combination with the first diagnostic process of making the power application time shorter than the first time. The state of the solder layer 27 on the surface of the insulating substrate 21 can be diagnosed from the first diagnostic result obtained by the first diagnostic process. Further, the state of the solder layer 28 on the back surface of the insulating substrate 21 can be diagnosed based on the first diagnosis result and the second diagnosis result obtained by the second diagnosis process.
 以上説明したように、実施の形態3に係る寿命診断では、半導体チップに電力消費を行わせるパワー印加時間を制御する。これにより、半導体チップが実装される構成部材を含む放熱構造における構造上の診断部位の変更が可能となる。 As described above, in the life diagnosis according to the third embodiment, the power application time for causing the semiconductor chip to consume power is controlled. This makes it possible to change the structural diagnostic site in the heat dissipation structure including the component on which the semiconductor chip is mounted.
 なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment shows an example of the content of the present invention, can be combined with another known technique, and is configured without departing from the gist of the present invention. It is also possible to omit or change a part of.
 1 電力変換装置、2 交流電源、3 電動機、10 整流回路、11 インバータ回路、12,12UN,12UN1,12UN2,12UP,12UP1,12UP2,12VN,12VP,12WN,12WP 半導体チップ、12A,12B,12C レグ、12N,12P 直列回路部、12a ゲート端子、12b 第1端子、12c 第2端子、13 平滑コンデンサ、14 制御部、14a プロセッサ、14b メモリ、15 ゲート駆動回路、15a 駆動回路電源、15b 駆動回路、16,17 直流母線、18 交流電力、19 駆動信号、20 駆動電圧、21 絶縁基板、22,24,26 配線パターン、23 ワイヤ、25 金属ベース、27,28 はんだ層、29 亀裂。 1 power converter, 2 AC power supply, 3 electric motor, 10 rectifier circuit, 11 inverter circuit, 12, 12UN, 12UN 1, 12UN 2, 12UP, 12UP1, 12UP2, 12VN, 12VP, 12WN, 12WP semiconductor chip, 12A, 12B, 12C leg , 12N, 12P series circuit unit, 12a gate terminal, 12b first terminal, 12c second terminal, 13 smoothing capacitor, 14 control unit, 14a processor, 14b memory, 15 gate drive circuit, 15a drive circuit power supply, 15b drive circuit, 16, 17 DC bus, 18 AC power, 19 drive signal, 20 drive voltage, 21 insulation board, 22, 24, 26 wiring pattern, 23 wires, 25 metal base, 27, 28 solder layer, 29 cracks.

Claims (13)

  1.  接合材により放熱部材に実装された第1の半導体チップと第2の半導体チップとを有する実装部と、
     前記第1の半導体チップと前記第2の半導体チップが電気的に互いに直列に接続された直列回路部を含むブリッジ回路の動作を制御する制御部と、を備え、
     前記制御部は、
     前記第1の半導体チップの電気的特性に基づいて算出した熱抵抗により、前記第1の半導体チップの寿命を診断する
     ことを特徴とする電力変換装置。
    A mounting portion having a first semiconductor chip and a second semiconductor chip mounted on a heat radiating member by a bonding material,
    A control unit for controlling the operation of a bridge circuit including a series circuit unit in which the first semiconductor chip and the second semiconductor chip are electrically connected in series with each other is provided.
    The control unit
    A power conversion device characterized in that the life of the first semiconductor chip is diagnosed based on the thermal resistance calculated based on the electrical characteristics of the first semiconductor chip.
  2.  前記電気的特性は、前記直列回路部に第1の電流値の電流が流れたときに前記第1の半導体チップに発生する第1電圧であり、
     前記制御部は、前記直列回路部に第2の電流値の電流が流れたことによる前記熱抵抗の変化に基づいて前記第1の半導体チップの寿命を診断する
     ことを特徴とする請求項1に記載の電力変換装置。
    The electrical characteristic is a first voltage generated in the first semiconductor chip when a current having a first current value flows through the series circuit unit.
    The first aspect of the present invention is characterized in that the control unit diagnoses the life of the first semiconductor chip based on a change in the thermal resistance due to a current having a second current value flowing through the series circuit unit. The power converter described.
  3.  前記電気的特性は、前記直列回路部に流れる電流が第1の電流値になるときの前記第1の半導体チップのゲート端子に印加されたゲート電圧である
     ことを特徴とする請求項1に記載の電力変換装置。
    The first aspect of claim 1, wherein the electrical characteristic is a gate voltage applied to the gate terminal of the first semiconductor chip when the current flowing through the series circuit portion becomes the first current value. Power converter.
  4.  前記第2の電流値の電流を流す時間を制御することで、前記第1の半導体チップの寿命に影響をもたらす前記放熱部材の構造上の診断部位を変更する
     ことを特徴とする請求項2に記載の電力変換装置。
    The second aspect of the present invention is characterized in that the structural diagnostic site of the heat radiating member, which affects the life of the first semiconductor chip, is changed by controlling the time for passing the current of the second current value. The power converter described.
  5.  前記ブリッジ回路は、3つのレグを備えた三相インバータ回路である
     請求項1から4の何れか1項に記載の電力変換装置。
    The power conversion device according to any one of claims 1 to 4, wherein the bridge circuit is a three-phase inverter circuit including three legs.
  6.  前記第1の半導体チップの寿命が異常レベルにあると判定された場合、前記第1の半導体チップを制御するパルス幅変調信号の周波数をより小さくする
     請求項1から5の何れか1項に記載の電力変換装置。
    The present invention according to any one of claims 1 to 5, wherein when it is determined that the life of the first semiconductor chip is at an abnormal level, the frequency of the pulse width modulation signal for controlling the first semiconductor chip is made smaller. Power converter.
  7.  前記第1の半導体チップが寿命に達したと判定された場合には、前記第1の半導体チップに対する制御を停止する
     請求項1から6の何れか1項に記載の電力変換装置。
    The power conversion device according to any one of claims 1 to 6, wherein when it is determined that the first semiconductor chip has reached the end of its life, control of the first semiconductor chip is stopped.
  8.  前記第1の半導体チップが異常レベルにある、又は寿命に達したと判定された場合にはアラームを出力する
     請求項1から7の何れか1項に記載の電力変換装置。
    The power conversion device according to any one of claims 1 to 7, which outputs an alarm when it is determined that the first semiconductor chip is at an abnormal level or has reached the end of its life.
  9.  前記第1の半導体チップの劣化の推移により、前記第1の半導体チップの寿命を予測する
     請求項1から8の何れか1項に記載の電力変換装置。
    The power conversion device according to any one of claims 1 to 8, wherein the life of the first semiconductor chip is predicted based on the transition of deterioration of the first semiconductor chip.
  10.  第1の半導体チップと、第2の半導体チップとが電気的に互いに直列に接続された直列回路部を少なくとも1つ含むブリッジ回路に対し、前記第1及び第2の半導体チップが電気的に接続された状態で前記第1の半導体チップの寿命を診断する半導体チップの寿命診断装置であって、
     前記直列回路部に第1の電流値の電流を流し、前記直列回路部に前記第1の電流値の電流が流れたときの前記第1の半導体チップの電気的特性である第1の特性を測定し、前記第1の特性の測定後に、前記直列回路部に第2の電流値の電流を流し、その後に前記直列回路部に第3の電流値の電流を流し、前記直列回路部に前記第3の電流値の電流が流れたときの前記第1の半導体チップの電気的特性である第2の特性を測定し、前記第1の特性と、前記第2の特性と、に基づいて前記第1の半導体チップの熱抵抗を算出し、算出した前記熱抵抗を初期値と比較することで前記第1の半導体チップの異常又は寿命を診断する
     ことを特徴とする半導体チップの寿命診断装置。
    The first and second semiconductor chips are electrically connected to a bridge circuit including at least one series circuit unit in which the first semiconductor chip and the second semiconductor chip are electrically connected in series with each other. It is a semiconductor chip life diagnosis device that diagnoses the life of the first semiconductor chip in the state of being.
    The first characteristic which is the electrical characteristic of the first semiconductor chip when the current of the first current value flows through the series circuit part and the current of the first current value flows through the series circuit part. After the measurement and the measurement of the first characteristic, a current having a second current value is passed through the series circuit section, and then a current having a third current value is passed through the series circuit section, and the series circuit section is subjected to the measurement. The second characteristic, which is the electrical characteristic of the first semiconductor chip when a current having a third current value flows, is measured, and the second characteristic is based on the first characteristic and the second characteristic. A device for diagnosing a life of a semiconductor chip, which comprises calculating the thermal resistance of the first semiconductor chip and diagnosing an abnormality or a life of the first semiconductor chip by comparing the calculated thermal resistance with an initial value.
  11.  第1の半導体チップと、第2の半導体チップとが電気的に互いに直列に接続された直列回路部を少なくとも1つ含むブリッジ回路に適用され、前記第1及び第2の半導体チップが電気的に接続された状態で前記第1の半導体チップの寿命を診断する半導体チップの寿命診断方法であって、
     前記直列回路部に第1の電流値の電流を流す第1ステップと、
     前記直列回路部に前記第1の電流値の電流が流れたときの前記第1の半導体チップの電気的特性を測定する第2ステップと、
     前記第2ステップの後に、前記直列回路部に第2の電流値の電流を流す第3ステップと、
     前記第3ステップの後に、前記直列回路部に第3の電流値の電流を流す第4ステップと、
     前記直列回路部に前記第3の電流値の電流が流れたときの前記第1の半導体チップの電気的特性を測定する第5ステップと、
     前記第2ステップにおいて測定された前記第1の半導体チップの電気的特性と、前記第5ステップにおいて測定された前記第1の半導体チップの電気的特性と、に基づいて前記第1の半導体チップの熱抵抗を算出する第6ステップと、
     前記第6ステップで算出した前記熱抵抗を初期値と比較することで前記第1の半導体チップの異常又は寿命を診断する第7ステップと、
     を含む半導体チップの寿命診断方法。
    It is applied to a bridge circuit including at least one series circuit unit in which the first semiconductor chip and the second semiconductor chip are electrically connected in series with each other, and the first and second semiconductor chips are electrically connected to each other. A semiconductor chip life diagnosis method for diagnosing the life of the first semiconductor chip in a connected state.
    The first step of passing the current of the first current value through the series circuit section,
    A second step of measuring the electrical characteristics of the first semiconductor chip when a current of the first current value flows through the series circuit unit, and
    After the second step, a third step of passing a current of a second current value through the series circuit unit, and
    After the third step, a fourth step of passing a current of a third current value through the series circuit unit, and
    A fifth step of measuring the electrical characteristics of the first semiconductor chip when a current of the third current value flows through the series circuit unit, and
    The first semiconductor chip is based on the electrical characteristics of the first semiconductor chip measured in the second step and the electrical characteristics of the first semiconductor chip measured in the fifth step. The sixth step to calculate the thermal resistance and
    The seventh step of diagnosing the abnormality or life of the first semiconductor chip by comparing the thermal resistance calculated in the sixth step with the initial value,
    A method for diagnosing the life of a semiconductor chip including.
  12.  前記第2の電流値は、前記第1の電流値及び前記第3の電流値よりも大きい
     ことを特徴とする請求項11に記載の半導体チップの寿命診断方法。
    The method for diagnosing the life of a semiconductor chip according to claim 11, wherein the second current value is larger than the first current value and the third current value.
  13.  前記第3ステップには、前記直列回路部に前記第2の電流値の電流を流す時間を制御する処理が含まれる
     ことを特徴とする請求項11又は12に記載の半導体チップの寿命診断方法。
    The method for diagnosing the life of a semiconductor chip according to claim 11 or 12, wherein the third step includes a process of controlling the time for passing a current having the second current value in the series circuit unit.
PCT/JP2019/023754 2019-06-14 2019-06-14 Power converter, service life diagnosis device for semiconductor chip, and method for diagnosing service life of semiconductor chip WO2020250445A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980097338.4A CN113939989B (en) 2019-06-14 2019-06-14 Power conversion device, semiconductor chip life diagnosis device, and semiconductor chip life diagnosis method
JP2019567383A JP6656501B1 (en) 2019-06-14 2019-06-14 Power converter, semiconductor chip life diagnosis device, and semiconductor chip life diagnosis method
PCT/JP2019/023754 WO2020250445A1 (en) 2019-06-14 2019-06-14 Power converter, service life diagnosis device for semiconductor chip, and method for diagnosing service life of semiconductor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023754 WO2020250445A1 (en) 2019-06-14 2019-06-14 Power converter, service life diagnosis device for semiconductor chip, and method for diagnosing service life of semiconductor chip

Publications (1)

Publication Number Publication Date
WO2020250445A1 true WO2020250445A1 (en) 2020-12-17

Family

ID=69997866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023754 WO2020250445A1 (en) 2019-06-14 2019-06-14 Power converter, service life diagnosis device for semiconductor chip, and method for diagnosing service life of semiconductor chip

Country Status (3)

Country Link
JP (1) JP6656501B1 (en)
CN (1) CN113939989B (en)
WO (1) WO2020250445A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188960A1 (en) * 2022-03-28 2023-10-05 パナソニックエナジー株式会社 Backup power supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254574A (en) * 2005-03-09 2006-09-21 Yaskawa Electric Corp Protective device of inverter
JP2012135119A (en) * 2010-12-21 2012-07-12 Sumitomo Heavy Ind Ltd Inverter device
JP2017184298A (en) * 2016-03-28 2017-10-05 株式会社日立製作所 Electric power conversion system
JP2019047641A (en) * 2017-09-04 2019-03-22 株式会社日立製作所 Power conversion system and controller

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3084857B2 (en) * 1991-11-27 2000-09-04 富士電機株式会社 Method for measuring thermal resistance of power semiconductor device
JPH06281693A (en) * 1992-08-28 1994-10-07 Fuji Electric Co Ltd Measuring method for thermal resistance of semiconductor device
JP2007240368A (en) * 2006-03-09 2007-09-20 Fuji Electric Holdings Co Ltd Method of detecting deterioration of semiconductor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254574A (en) * 2005-03-09 2006-09-21 Yaskawa Electric Corp Protective device of inverter
JP2012135119A (en) * 2010-12-21 2012-07-12 Sumitomo Heavy Ind Ltd Inverter device
JP2017184298A (en) * 2016-03-28 2017-10-05 株式会社日立製作所 Electric power conversion system
JP2019047641A (en) * 2017-09-04 2019-03-22 株式会社日立製作所 Power conversion system and controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188960A1 (en) * 2022-03-28 2023-10-05 パナソニックエナジー株式会社 Backup power supply

Also Published As

Publication number Publication date
JPWO2020250445A1 (en) 2021-09-13
CN113939989B (en) 2022-12-20
JP6656501B1 (en) 2020-03-04
CN113939989A (en) 2022-01-14

Similar Documents

Publication Publication Date Title
US9935577B2 (en) Semiconductor device and fault detecting method
JP6506644B2 (en) Drive unit
JP4830993B2 (en) Degradation detection method for semiconductor device
US10658921B2 (en) Overheat protection control device and vehicle-mounted power circuit device
JP2011258623A (en) Power semiconductor system
JP2002005989A (en) Deterioration determining method for electric power semiconductor element
JP6330350B2 (en) Power supply device and control method of power supply device
BR112014028724B1 (en) CONVERTER FOR AN ELECTRICAL MACHINE AND PROCESS FOR CONVERTING A VOLTAGE
JP5360019B2 (en) Power semiconductor device temperature measurement device
Chen et al. Driver Integrated Online R ds-on Monitoring Method for SiC Power Converters
JPWO2017126103A1 (en) Control circuit
WO2020250445A1 (en) Power converter, service life diagnosis device for semiconductor chip, and method for diagnosing service life of semiconductor chip
JP2007049870A (en) Power semiconductor module
JP7472663B2 (en) Power Conversion Equipment
JP4677756B2 (en) Power module
CN116500400B (en) Online in-situ characterization system and method for failure state of solder layer of silicon carbide power device
JP6877595B2 (en) Semiconductor equipment and power conversion equipment
JP6827595B1 (en) Semiconductor devices and power converters
US10958156B2 (en) Electronic circuit, power conversion device, driving device, vehicle, and elevator
JP2018057227A (en) Inverter device
JP7086511B2 (en) Status judgment device and elevator device
US11710683B2 (en) Heat conduction pattern for cooling a power module
WO2023135901A1 (en) Power conversion device
JP2018057226A (en) Inverter device
JP2024003849A (en) IGBT power system and deterioration diagnosis method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019567383

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932815

Country of ref document: EP

Kind code of ref document: A1