WO2020250359A1 - Highly chemically resistant concrete structure and production method - Google Patents

Highly chemically resistant concrete structure and production method Download PDF

Info

Publication number
WO2020250359A1
WO2020250359A1 PCT/JP2019/023365 JP2019023365W WO2020250359A1 WO 2020250359 A1 WO2020250359 A1 WO 2020250359A1 JP 2019023365 W JP2019023365 W JP 2019023365W WO 2020250359 A1 WO2020250359 A1 WO 2020250359A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
concrete
protective layer
binder
chemically resistant
Prior art date
Application number
PCT/JP2019/023365
Other languages
French (fr)
Japanese (ja)
Inventor
昌紀 塩見
清武 大森
Original Assignee
ゼニス羽田株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ゼニス羽田株式会社 filed Critical ゼニス羽田株式会社
Priority to JP2019531844A priority Critical patent/JP6654273B1/en
Priority to PCT/JP2019/023365 priority patent/WO2020250359A1/en
Publication of WO2020250359A1 publication Critical patent/WO2020250359A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/20Producing shaped prefabricated articles from the material by centrifugal or rotational casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/02Methods or machines specially adapted for the production of tubular articles by casting into moulds
    • B28B21/10Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means
    • B28B21/22Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means using rotatable mould or core parts
    • B28B21/30Centrifugal moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/02Methods or machines specially adapted for the production of tubular articles by casting into moulds
    • B28B21/10Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means
    • B28B21/22Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means using rotatable mould or core parts
    • B28B21/30Centrifugal moulding
    • B28B21/32Feeding the material into the moulds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/08Diatomaceous earth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/26Cements from oil shales, residues or waste other than slag from raw materials containing flue dust, i.e. fly ash
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a highly chemically resistant concrete structure and a manufacturing method having excellent chemical resistance such as acid resistance and salt damage resistance, which can be applied to concrete structures such as hume pipes and manholes.
  • the concrete pipe to be replaced is an acid-resistant pipe that is resistant to corrosion by acid.
  • Known acid-resistant pipes include resin lining pipes in which the surface of concrete pipes is coated with resins such as epoxy resin, urethane resin, and acrylic resin, and resin concrete pipes using unsaturated polyester resin as a substitute for cement ( Patent Documents 1 to 3).
  • Patent Document 4 a concrete pipe in which 70% or more of the cement content in the cement concrete compound is replaced with blast furnace slag fine powder has been proposed.
  • Japanese Unexamined Patent Publication No. 52-13020 Japanese Unexamined Patent Publication No. 63-264676 JP-A-2002-248637 Japanese Patent No. 5878258
  • the conventional acid-resistant pipe and its manufacturing technology have the following points to be improved.
  • the resin lining pipe is based on a concrete pipe manufactured by a centrifugal molding machine.
  • sludge components are discharged to the inner surface of the concrete pipe. Since this sludge component is strongly alkaline and has a small amount of cement component, it is difficult to reuse it as a concrete product, and it takes a lot of labor and cost to process the sludge component, and an effective treatment method for the sludge component is in the industry. It has been an issue for many years.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a highly chemically resistant concrete structure and a manufacturing method, which are excellent in productivity and can be manufactured at a low cost. ..
  • the present invention is a highly chemically resistant concrete structure produced by centrifugation, which is latent hydraulic or pozzolan hardened by a concrete layer containing a cement-based binder A and a sludge component discharged to the inner surface of the concrete layer. It contains at least a reactive binder B and a fine aggregate C, and comprises an inner surface protective layer laminated on the inner surface of the concrete layer and centrifugally formed at the same time as the concrete layer.
  • the binder B is a latent hydraulic or pozzolan-reactive binder, for example, one or more selected from blast furnace slag fine powder, fly ash, silica fume, volcanic ash, silicic acid clay, and diatomaceous earth group. Is.
  • the fine aggregate C of the inner surface protective layer supplied to the inner surface of the concrete layer is any one or a plurality of slag-based fine aggregates, silica sand, and natural fine aggregates.
  • the inner surface protective layer comprises a buffer layer formed as a continuous structure on the inner surface side of the concrete layer and a chemical resistance layer formed as a continuous structure on the inner surface side of the buffer layer. The resistance layer has a relationship in which the amount of sludge mixed from the concrete layer is smaller than that of the buffer layer.
  • the chemical resistance layer is composed of at least a mixture of binder B, fine aggregate C and sludge water.
  • the present invention is a method for manufacturing a highly chemically resistant concrete structure manufactured by a centrifugal molding machine, in which concrete is supplied into a formwork of the centrifugal molding machine, the concrete layer is centrifugally molded and compacted, and the concrete layer is compacted.
  • a mixed material containing at least a latent hydraulic or pozzolan-reactive binder B and fine aggregate C, which is hardened by the sludge component discharged to the inner surface of the concrete layer at the time of compaction, is supplied to the inner surface of the concrete layer to provide concrete.
  • the layer and the inner surface protective layer are simultaneously centrifugally molded to be integrally molded.
  • a dry mixed material containing the binder B and the fine aggregate C is supplied to the inner surface of the concrete layer being centrifuged, or the binder B and the fine aggregate C are kneaded.
  • a paste-like mixed material containing water is supplied.
  • the binder B of the inner surface protective layer is a latent hydraulic or pozzolan-reactive binder, and is selected from, for example, blast furnace slag fine powder, fly ash, silica fume, volcanic ash, silicic acid clay, and diatomaceous earth group. It is more than one kind that was done.
  • the fine aggregate C of the inner surface protective layer is one or more selected from the slag-based fine aggregate, silica sand, and natural fine aggregate group.
  • the present invention has at least one of the following effects. ⁇ 1> Since the cement-based binder A is used as the binder of the concrete layer which occupies most of the frame of the concrete structure, the concrete layer can be easily manufactured and the binder B having high chemical resistance is used. Since the inner surface protective layer is formed at the same time as the concrete layer, a highly chemically resistant concrete structure can be manufactured in a short period of time at low cost. Furthermore, since it can be manufactured using a known centrifugal molding machine, no special additional equipment is required. ⁇ 2> In the present invention, the pipe making process can be completed and the final curing process can be started in about several tens of minutes to 2 hours while simultaneously molding the concrete layer and the inner surface protective layer.
  • the resin does not adhere until after the concrete pipe is manufactured and the inner surface is dried by steam curing, so the resin lining pipe requires a minimum of two days to manufacture, and the material reacts with the polymerization during centrifugation and is chemically hardened.
  • the time and labor required to manufacture a highly chemically resistant concrete structure can be significantly reduced, and productivity can be greatly improved. .. ⁇ 3> Since the binder B having high chemical resistance is used only for the inner protective layer that requires protection of the concrete structure, the amount of the binder B used is kept low and the chemical resistance of the inner protective layer is effective. Can be enhanced to.
  • the mixed material of the inner surface protective layer does not contain the cement-based binder A, and when the inner surface protective layer is cured by utilizing sludge water, the inner surface protective layer is contained by the binder B such as blast furnace slag or fly ash. Since the calcium hydroxide is consumed, the calcium component of the finally formed inner protective layer is significantly reduced. Therefore, the chemical resistance of the inner protective layer is significantly higher than that of the conventional one.
  • the concrete layer and the inner surface protection layer can be integrated, and the entire cross section of the concrete structure becomes a continuous structure without a clear boundary. Therefore, even if an impact is applied, the phenomenon that the inner surface protective layer is peeled off from the concrete layer is less likely to occur, and the good chemical resistance of the concrete structure can be maintained for a long period of time.
  • the buffer layer Even if a part of the chemical resistance layer of the inner protective layer is damaged, the buffer layer continues to function as the protective layer of the concrete layer, so that the guarantee period of the chemical resistance of the inner protective layer becomes extremely long. ..
  • the mixed material of the inner surface protective layer When the mixed material of the inner surface protective layer is supplied in a dry state, the sludge or sludge water discharged from the concrete layer can be used to cure the inner surface protective layer, so that sludge or sludge water that had to be discarded until now can be cured. The final recovery amount and disposal amount can be reduced.
  • binder B such as blast furnace slag fine powder and fly ash
  • high-quality, highly chemically resistant concrete structures can be economically manufactured.
  • the mixed material of the inner protective layer can be easily packaged and transported in the easily available region and country.
  • Blast furnace slag and fly ash are by-products of steelmaking, thermal power generation, etc., and the amount of CO 2 generated when manufacturing binder B with high chemical resistance is zero, which contributes to the reduction of environmental load. can do.
  • the present invention will be described below with reference to the drawings.
  • the "chemical resistance” used in the present invention means acid resistance, salt damage resistance, corrosion resistance, chemical resistance and the like.
  • the highly chemically resistant concrete structure is a concrete pipe 10 such as a hume pipe or a manhole manufactured by centrifugal molding.
  • FIG. 1 shows an enlarged cross-sectional view of the inner surface side of the concrete pipe 10.
  • the concrete pipe 10 is composed of a concrete layer 11 made of concrete formed into a cylindrical shape and an inner surface protective layer 12 formed into a tubular shape on the inner surface of the concrete layer 11.
  • the concrete layer 11 is a cylindrical tube obtained by centrifuging concrete obtained by adding and kneading cement-based binder A, an admixture such as an expansion material, fine aggregate, and coarse aggregate.
  • the cement-based binder A is not particularly limited, and for example, ordinary Portland cement, early-strength Portland cement, ultra-early-strength Portland cement, moderate heat Portland cement, low heat Portland cement, sulfuric acid-resistant Portland cement and the like can be applied.
  • the composition of the concrete layer 11 is known and is not a special formulation.
  • the inner surface protective layer 12 is a hard layer that prevents sulfuric acid and the like from penetrating into the concrete layer 11.
  • the inner protective layer 12 is composed of at least a latent hydraulic or pozzolan-reactive binder B and a fine aggregate C. These mixed materials are supplied to the inner surface of the concrete layer 11 in a dry state containing no water or a paste state containing kneading water to simultaneously form the concrete layer 11 and the inner surface protective layer 12.
  • the inner surface protective layer 12 is composed of a buffer layer 14 formed as a continuous structure with the concrete layer 11 on the inner surface side of the concrete layer 11, and a chemical resistance layer 15 formed as a continuous structure on the inner surface side of the buffer layer 14.
  • the inner surface protective layer 12 has an appropriate layer thickness at which sulfuric acid does not penetrate into the concrete layer 11.
  • the layer thickness of the inner surface protective layer 12 varies depending on the pipe diameter, but when the layer thickness is about 3 to 50 mm, it takes a long time for sulfuric acid to permeate into the concrete layer 11, and the chemical resistance of the concrete pipe 10 and two The anti-peeling effect of the water gypsum film can be guaranteed for a long period of time. It is desirable that the minimum layer thickness of the inner surface protective layer 12 is selected in consideration of the layer thickness capable of suppressing the pop-out phenomenon.
  • Binder B As the binder of the inner surface protective layer 12, a binder B having a property of combining with the sludge component (cement mortar component) of the concrete layer 11 and hardening is used.
  • the mixed material of the inner surface protective layer 12 before supply does not contain a cement-based binder.
  • the sludge component is a slurry containing cement-based binder A, fine aggregate, water, etc., and means sludge containing a large amount of solid components or sludge water containing a large amount of water components with extremely few solid components.
  • the binder B means a latent hydraulic binder or a pozzolan-reactive binder having silica or alumina that is not cured only by mixing with water but is cured by alkaline stimulation.
  • the latent hydraulic binder B for example, one or more of blast furnace slag fine powder, blast furnace granulated slag, blast furnace slow cooling slag, steelmaking slag and the like can be used.
  • the blast furnace slag fine powder defined in JIS A 6206 "Blast furnace slag fine powder for concrete" has a latent hydraulic property that densifies the structure of the inner surface protective layer 12 to improve sulfuric acid resistance and salt damage resistance.
  • pozzolan-reactive binder B for example, one or more of fly ash, silica fume, etc. can be used, and soluble silicon dioxide (SiO 2 ) is produced during hydration of cement calcium hydroxide (Ca (OH)). Combines with 2 ) to turn into insoluble hydrate.
  • volcanic ash, silicic acid white clay, or the like can be used as the binder B.
  • Fine aggregate C As the fine aggregate C for the inner surface protective layer, for example, slag fine aggregate, silica sand, natural fine aggregate and the like can be used. Since the inner surface protective layer 12 has a lower calcium content than the concrete layer 11, the chemical resistance is improved. If a slag fine aggregate is used as the fine aggregate C, the chemical resistance of the inner surface protective layer 12 is further improved.
  • Blending ratio of binder B and fine aggregate C The blending ratio of binder B and fine aggregate C is about 1: 2 as a guide.
  • the blending ratio of the binder B and the fine aggregate C is not limited to this range, and is appropriately selected in consideration of the usage of the concrete pipe 10 and the usage environment.
  • the inner surface protective layer 12 does not have a homogeneous structure mainly composed of the binder B and the fine aggregate C which are hardened by combining with the sludge component.
  • the reason why the structure is not homogeneous is that the sludge component of the concrete layer 11 is mixed with the inner surface protective layer 12 under the influence of the rotational centrifugal force, and the amount of the sludge mixed is different depending on the site. Therefore, the closer the inner surface protective layer 12 is to the inner surface of the concrete layer 11, the larger the amount of sludge mixed in, and the farther away from the inner surface of the concrete layer 11 is, the smaller the amount of sludge mixed in.
  • the buffer layer 14 laminated on the inner surface of the concrete layer 11 is mainly a mixed material of a binder B and a fine aggregate C which is hardened by combining with a sludge component. It is an intermediate protective layer formed between the concrete layer 11 and the chemical resistance layer 15. A part of the sludge component of the concrete layer 11 is mixed and compounded in the cushioning layer 14 during the molding of the inner surface protective layer 12. The amount of sludge mixed is gradually reduced from the outer surface to the inner surface of the buffer layer 14.
  • the buffer layer 14 supports chemical resistance when the chemical resistance layer 15 is damaged.
  • the chemical resistance layer 15 laminated on the inner surface of the buffer layer 14 is a protective layer mainly composed of a mixed material of a binder B and a fine aggregate C, and is formed during molding of the inner surface protective layer 12. Combines with sludge water.
  • the chemical resistance layer 15 has a relationship in which the amount of sludge mixed is smaller than that of the buffer layer 14.
  • the chemical resistance layer 15 contains almost no sludge due to centrifugal molding, and contains almost 100% of the binder B and the fine aggregate C.
  • the formwork 20 is composed of an outer frame 21 and a donut-shaped wife formwork 22, and there is no inner formwork.
  • FIG. 3 shows a cross section of the formwork 20 and the concrete layer 11 at the time of centrifugal molding.
  • the amount of concrete charged is less than the predetermined pipe thickness, and the pipe thickness of the concrete layer 11 is reduced in anticipation of the layer thickness of the inner surface protective layer 12 to be molded in the next step. deep.
  • the estimated thickness of the inner surface protective layer 12 may be set to about 3 to 50 mm depending on the diameter of the concrete pipe 10, but it is appropriately selected in consideration of the usage conditions, usage environment, etc. of the concrete pipe 10.
  • Example of mixed material for inner surface protective layer As the mixed material of the inner surface protective layer 12, for example, the following combinations can be applied. ⁇ Blast furnace slag fine powder, etc. binder B, ⁇ Slag fine aggregate C, ⁇ Fly ash, ⁇ Silica fume, -A lime-gypsum composite (expansion material) containing 1 to 15% by mass of aluminum oxide as a chemical component.
  • kneading water When supplied in a paste state An appropriate amount of kneading water may be added to the mixed material of the inner surface protective layer 12 and kneaded in advance, and then supplied in a paste state. When supplied in a paste state, cement particles, aggregate fine particles, etc. are screened and it becomes difficult to pass through the inner surface protective layer 12 as compared with the dry state, so that the sludge of the inner surface protective layer 12 is reduced, but the sludge component. Considering the amount of water recovered, the kneading water should be the minimum amount of water that can secure the fluidity that can supply the mixed material.
  • the inner surface protective layer 12 is not a homogeneous structure as a whole, and a portion adjacent to the inner surface of the concrete layer 11 is formed as a buffer layer 14 in which a large amount of sludge is mixed, and the inner surface of the concrete layer 11 is formed. It is formed as a chemical resistance layer 15 in which the amount of sludge mixed is small as the portion is separated from the concrete resistance layer 15 (FIG. 1).
  • the cement-based binder A reacts with the kneading water and hardening proceeds.
  • the latent hydraulic or pozzolan-reactive binder B combines with sludge or sludge water 13 to proceed with hardening.
  • the mold 20 is removed from the centrifugal molding machine, and the concrete pipe 10 is moved to a predetermined curing place with the concrete pipe 10 in the mold 20.
  • the curing means for example, steam curing can be used. Demolding can be accelerated by steam curing.
  • the steam curing temperature of the concrete pipe 10 is selected as appropriate so as not to adversely affect the physical properties of the concrete pipe 10.
  • the curing method is not limited to steam curing, and natural curing may be performed.
  • the concrete pipe 10 When the concrete pipe 10 reaches a predetermined demolding strength, the concrete pipe 10 is taken out from the mold 20 and a series of operations is completed.
  • the concrete layer 11 and the inner surface protective layer 12 are simultaneously molded before hardening, the inner surface of the concrete layer 11 and the inner surface protective layer 12 become more familiar, and the concrete layer 11 and the inner surface protective layer 12 become more familiar.
  • the boundary between the two and the buffer layer 14 and the chemical resistance layer 15 forming the inner surface protective layer 12 is mixed and integrated into a continuous structure. That is, the cross section of the concrete pipe 10 does not have a clear boundary surface as seen in the cross section of the conventional resin lining pipe.
  • the adhesiveness (integration) between the concrete layer 11 and the inner surface protective layer 12 is remarkably improved. Get better.
  • the cross-sectional structure of the concrete pipe 10 has an integrated continuous structure in this way, even if the inner surface of the concrete pipe 10 receives an impact, the peeling phenomenon of the inner surface protective layer 12 is unlikely to occur.
  • the inner surface protective layer 12 is a protective layer containing a latent hydraulic or pozzolan-reactive binder B as a main component, and is said to be the most sensitive to acid among cement hydrates.
  • the content of calcium hydroxide (Ca (OH) 2 ) to be produced is significantly reduced.
  • the binder B is a latent hydraulic binder typified by blast furnace slag fine powder
  • the inner surface protective layer 12 is required to be stimulated by an alkali with sludge or sludge water 13 to cure the binder B.
  • the calcium hydroxide contained in the sludge component is further consumed, the calcium component of the inner surface protective layer 12 is further reduced, and the chemical resistance is improved.
  • the binder B is pozzolan-reactive, the calcium hydroxide contained in the sludge component is combined with silicon dioxide and consumed in the curing of the binder B, so that the calcium component of the inner protective layer 12 is consumed. It decreases and the chemical resistance improves.
  • the calcium component of the buffer layer 14 is much smaller than that of the concrete layer 11, so it takes a short time. Corrosion does not proceed, and corrosion due to sulfuric acid can be continuously suppressed as the thickness of the dihydrate gypsum layer increases.
  • the presence of the buffer layer 14 not only serves as a quasi-chemical resistance layer against capillary penetration, but also easily corrodes the concrete layer 11 even if the chemical resistance layer 15 is lost due to an external impact. It also serves as a fail-safe that does not exert any effect. Since the dihydrate gypsum layer can be formed over the entire cross section of the inner surface protective layer 12, it takes an extremely long time for sulfuric acid to reach the concrete layer 11, and chemical resistance is compared with that of conventional ordinary concrete. The sexual guarantee period is dramatically extended.
  • the dihydrate gypsum layer is automatically formed when it comes into contact with acid in a common environment, but the concrete pipe 10 is preliminarily treated with sulfuric acid before shipping in a factory with a well-established manufacturing environment. It may be formed on the inner surface.
  • Example 1 The mixed material for the inner surface protective layer in Example 1 was kneaded at a ratio of blast furnace slag fine powder: blast furnace slag fine aggregate to 1: 2 and a water cement ratio of 40%.
  • Example 1 of the present invention the tube thickness (mass) was increased due to the precipitation and formation of dihydrate gypsum, but it was not dissolved in sulfuric acid. On the other hand, in the specimen of Comparative Example 1, it was confirmed that the tube thickness (mass) was significantly reduced by dissolving in sulfuric acid from the surface.

Abstract

[Problem] To provide a highly chemically resistant concrete structure having excellent productivity as well as low production cost, and a production method. [Solution] A concrete layer 11 and an inner surface protective layer 12, comprising a concrete layer 11 molded by supplying concrete to the form of a centrifugal molding machine and an inner surface protective layer 12 molded by supplying a mixed material, including at least a binder B having the property of being cured by a sludge component discharged to the inner surface of the concrete layer 11 and a fine aggregate C, to the inner surface of the concrete layer 11 and laminating, are centrifugally molded simultaneously to create an integrated construction having continuity.

Description

高化学抵抗性コンクリート構造体および製造方法Highly chemically resistant concrete structure and manufacturing method
 本発明はヒューム管やマンホール等のコンクリート構造体に適用可能な耐酸性、耐塩害性等の化学抵抗性に優れた高化学抵抗性コンクリート構造体および製造方法に関する。 The present invention relates to a highly chemically resistant concrete structure and a manufacturing method having excellent chemical resistance such as acid resistance and salt damage resistance, which can be applied to concrete structures such as hume pipes and manholes.
 我が国の下水道インフラを支えている下水道管路は、標準耐用年数とされる築造後50年を経過する管路が急増していくなかで、今後は長寿命化を図る等の適切なストックマネジメントが求められている。
 このような背景を持つ下水道管路の再構築事業は、劣化したコンクリート管の更生や入れ替えが中心となる。
As for the sewerage pipelines that support Japan's sewerage infrastructure, the number of pipelines that have been built for 50 years, which is considered to be the standard service life, is rapidly increasing, and in the future, appropriate stock management such as extending the life will be required. It has been demanded.
The sewerage pipeline reconstruction project with such a background focuses on the rehabilitation and replacement of deteriorated concrete pipes.
 一般にコンクリート管の損傷には不等沈下によるたるみ、木の根等の異物混入、ひび割れ等の様々な形態があるが、硫化水素生成から硫酸に至る酸の働きによるコンクリートの腐食は特に深刻な損傷形態である。
 このように酸による腐食でコンクリート管の断面が大きく欠損した場合は早急に新たなコンクリート管に入れ替える必要があり、放置しておくと載荷重や振動等の外的要因が引き金となり道路陥没を誘発する危険がある。
In general, there are various forms of damage to concrete pipes such as sagging due to uneven subsidence, foreign matter contamination such as tree roots, and cracks, but concrete corrosion due to the action of acid from hydrogen sulfide generation to sulfuric acid is a particularly serious form of damage. is there.
If the cross section of the concrete pipe is greatly damaged due to acid corrosion, it is necessary to replace it with a new concrete pipe immediately. If left unattended, external factors such as load and vibration will trigger the road to collapse. There is a danger of doing.
 入れ替えするコンクリート管には酸による腐食に強い耐酸管が望まれる。
 耐酸管としては、コンクリート管の表面をエポキシ樹脂、ウレタン樹脂、アクリル樹脂等の樹脂で被覆した樹脂ライニング管や、セメントの代替材として不飽和ポリエステル樹脂を用いたレジンコンクリート管が知られている(特許文献1~3)。
It is desirable that the concrete pipe to be replaced is an acid-resistant pipe that is resistant to corrosion by acid.
Known acid-resistant pipes include resin lining pipes in which the surface of concrete pipes is coated with resins such as epoxy resin, urethane resin, and acrylic resin, and resin concrete pipes using unsaturated polyester resin as a substitute for cement ( Patent Documents 1 to 3).
 また低価格の耐酸管として、セメントコンクリートの配合中のセメント分の70%以上を高炉スラグ微粉末に置き換えたコンクリート管が提案されている(特許文献4)。 Further, as a low-priced acid-resistant pipe, a concrete pipe in which 70% or more of the cement content in the cement concrete compound is replaced with blast furnace slag fine powder has been proposed (Patent Document 4).
特開昭52-132020号公報Japanese Unexamined Patent Publication No. 52-13020 特開昭63-264676号公報Japanese Unexamined Patent Publication No. 63-264676 特開2002-248637号公報JP-A-2002-248637 特許第5878258号公報Japanese Patent No. 5878258
 従来の耐酸管およびその製造技術にはつぎのような改善すべき点ある。
<1>樹脂ライニング管は遠心成形機により製造したコンクリート管を基にしている。
 コンクリート管を遠心成形する際に、コンクリート管の内面にスラッジ成分を排出する。
 このスラッジ成分は強アルカリ性でセメント成分が少ないために、コンクリート製品として再利用することが難しく、スラッジ成分の処理に多くの労力とコストを要しており、スラッジ成分の有効な処理方法が業界の長年に亘る課題となっている。
<2>樹脂ライニング管を製造するには、コンクリート管の遠心成形、養生、脱型を経て、硬化したコンクリート管の表面へプライマー処理、樹脂のコーティング等といった数多くの作業が必要であることにくわえて、コンクリート管内に流し込んだコーティング樹脂が完全硬化するまで長時間に亘ってコンクリート管の回転を継続しなければならない。
 そのため、樹脂ライニング管の生産性が甚だ悪く、しかも製造コストが非常に高くなる。
<3>コンクリート管の表面を樹脂で被覆した樹脂ライニング管では、コンクリート管との間に境界ができて被覆樹脂が界面剥離を発生し易い。
<4>レジンコンクリート管は、セメントの10倍以上の価格の不飽和ポリエステル樹脂を使用するために製造コストが非常に高額となるだけでなく、遠心成型する場合は不飽和ポリエステル樹脂が重合結合しレジンコンクリートが硬化するまで型枠を回転させ続ける必要があり、レジンコンクリート管の生産性は非常に悪い。
 このような理由からレジンコンクリート管の採用実績がきわめて少ない。
<5>耐酸性をよくするためにセメント分の70%以上を高炉スラグ微粉末に置換したコンクリート管は、コンクリートの粘性が高くなるために遠心成形がし難い。
<6>耐酸性をよくするためにセメントに替えて高炉スラグ微粉末やフライアッシュの置換量を増やしたコンクリート管では、製鉄や火力発電の副産物である高炉スラグやフライアッシュ等が、大量入手が困難な発展途上の地域や国が多く、そのような地域や国で製造した場合は製品コストが高騰する。
<7>一般に高炉スラグ微粉末を大量に使用したコンクリートは初期強度の発現が低いため、脱型までに長時間を要し生産性を悪化させる。
The conventional acid-resistant pipe and its manufacturing technology have the following points to be improved.
<1> The resin lining pipe is based on a concrete pipe manufactured by a centrifugal molding machine.
When the concrete pipe is centrifuged, sludge components are discharged to the inner surface of the concrete pipe.
Since this sludge component is strongly alkaline and has a small amount of cement component, it is difficult to reuse it as a concrete product, and it takes a lot of labor and cost to process the sludge component, and an effective treatment method for the sludge component is in the industry. It has been an issue for many years.
<2> In addition, in order to manufacture a resin lining pipe, a lot of work such as centrifugation, curing, and demolding of the concrete pipe, primer treatment on the surface of the hardened concrete pipe, resin coating, etc. is required. Therefore, the concrete pipe must be continuously rotated for a long time until the coating resin poured into the concrete pipe is completely cured.
Therefore, the productivity of the resin lining pipe is extremely poor, and the manufacturing cost is very high.
<3> In a resin lining pipe in which the surface of the concrete pipe is coated with a resin, a boundary is formed between the concrete pipe and the coated resin, and the coating resin is liable to cause interfacial peeling.
<4> Resin concrete pipes use unsaturated polyester resin, which is more than 10 times more expensive than cement, so the manufacturing cost is very high. In addition, unsaturated polyester resin polymerizes and bonds when centrifugally molded. The formwork needs to be kept rotating until the resin concrete hardens, and the productivity of the resin concrete pipe is very poor.
For this reason, there are very few records of using resin concrete pipes.
<5> A concrete pipe in which 70% or more of the cement content is replaced with blast furnace slag fine powder in order to improve acid resistance is difficult to centrifuge because the viscosity of the concrete becomes high.
<6> For concrete pipes with increased replacement amount of blast furnace slag fine powder and fly ash instead of cement to improve acid resistance, large quantities of blast furnace slag and fly ash, which are by-products of steelmaking and thermal power generation, are available. There are many difficult developing regions and countries, and if manufactured in such regions and countries, product costs will rise.
<7> Generally, concrete using a large amount of blast furnace slag fine powder has a low initial strength, so it takes a long time to demold and deteriorates productivity.
 本発明は以上の点に鑑みて成されたもので、その目的とするところは生産性に優れ、製造コストも低廉に抑えられる、高化学抵抗性コンクリート構造体および製造方法を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide a highly chemically resistant concrete structure and a manufacturing method, which are excellent in productivity and can be manufactured at a low cost. ..
 本発明は、遠心成形により製作された高化学抵抗性コンクリート構造体であって、セメント系結合材Aを含むコンクリート層と、コンクリート層の内面に排出されるスラッジ成分によって硬化する潜在水硬性またはポゾラン反応性の結合材Bと細骨材Cを少なくとも含み、前記コンクリート層の内面に積層してコンクリート層と同時に遠心成形された内面保護層とからなる。
 本発明の他の形態において、前記結合材Bは潜在水硬性またはポゾラン反応性の結合材であり、例えば高炉スラグ微粉末、フライアッシュ、シリカフューム、火山灰、珪酸白土、珪藻土群より選択された一種以上である。
 本発明の他の形態において、前記コンクリート層の内面に供給される内面保護層の細骨材Cがスラグ系細骨材、珪砂、天然細骨材群の何れか一種または複数種である。
 本発明の他の形態において、前記内面保護層がコンクリート層の内面側に連続組織として成形された緩衝層と、緩衝層の内面側に連続組織として成形された化学抵抗層とからなり、前記化学抵抗層が緩衝層と比べてコンクリート層からのスラッジの混入量が少ない関係にある。
 本発明の他の形態において、前記化学抵抗層が少なくとも結合材B、細骨材Cおよびスラッジ水の混練物で構成されている。
 本発明は、遠心成形機により製造する高化学抵抗性コンクリート構造体の製造方法であって、遠心成形機の型枠内にコンクリートを供給してコンクリート層を遠心成形して締め固め、前記コンクリート層の締固時に、コンクリート層の内面に排出されるスラッジ成分によって硬化する潜在水硬性またはポゾラン反応性の結合材Bと細骨材Cとを少なくとも含む混合材料をコンクリート層の内面に供給してコンクリート層と内面保護層とを同時に遠心成形して一体成形する。
 本発明の他の形態において、遠心成形中の前記コンクリート層の内面に結合材Bと細骨材Cとを含むドライ状態の混合材料を供給するか、または結合材Bと細骨材Cと混練水とを含むペースト状の混合材料を供給する。
 本発明の他の形態において、前記内面保護層の結合材Bが潜在水硬性またはポゾラン反応性の結合材であり、例えば高炉スラグ微粉末、フライアッシュ、シリカフューム、火山灰、珪酸白土、珪藻土群より選択された一種以上である。
 本発明の他の形態において、前記内面保護層の細骨材Cがスラグ系細骨材、珪砂、天然細骨材群より選択された一種以上である。
The present invention is a highly chemically resistant concrete structure produced by centrifugation, which is latent hydraulic or pozzolan hardened by a concrete layer containing a cement-based binder A and a sludge component discharged to the inner surface of the concrete layer. It contains at least a reactive binder B and a fine aggregate C, and comprises an inner surface protective layer laminated on the inner surface of the concrete layer and centrifugally formed at the same time as the concrete layer.
In another embodiment of the present invention, the binder B is a latent hydraulic or pozzolan-reactive binder, for example, one or more selected from blast furnace slag fine powder, fly ash, silica fume, volcanic ash, silicic acid clay, and diatomaceous earth group. Is.
In another embodiment of the present invention, the fine aggregate C of the inner surface protective layer supplied to the inner surface of the concrete layer is any one or a plurality of slag-based fine aggregates, silica sand, and natural fine aggregates.
In another embodiment of the present invention, the inner surface protective layer comprises a buffer layer formed as a continuous structure on the inner surface side of the concrete layer and a chemical resistance layer formed as a continuous structure on the inner surface side of the buffer layer. The resistance layer has a relationship in which the amount of sludge mixed from the concrete layer is smaller than that of the buffer layer.
In another embodiment of the present invention, the chemical resistance layer is composed of at least a mixture of binder B, fine aggregate C and sludge water.
The present invention is a method for manufacturing a highly chemically resistant concrete structure manufactured by a centrifugal molding machine, in which concrete is supplied into a formwork of the centrifugal molding machine, the concrete layer is centrifugally molded and compacted, and the concrete layer is compacted. A mixed material containing at least a latent hydraulic or pozzolan-reactive binder B and fine aggregate C, which is hardened by the sludge component discharged to the inner surface of the concrete layer at the time of compaction, is supplied to the inner surface of the concrete layer to provide concrete. The layer and the inner surface protective layer are simultaneously centrifugally molded to be integrally molded.
In another embodiment of the present invention, a dry mixed material containing the binder B and the fine aggregate C is supplied to the inner surface of the concrete layer being centrifuged, or the binder B and the fine aggregate C are kneaded. A paste-like mixed material containing water is supplied.
In another embodiment of the present invention, the binder B of the inner surface protective layer is a latent hydraulic or pozzolan-reactive binder, and is selected from, for example, blast furnace slag fine powder, fly ash, silica fume, volcanic ash, silicic acid clay, and diatomaceous earth group. It is more than one kind that was done.
In another embodiment of the present invention, the fine aggregate C of the inner surface protective layer is one or more selected from the slag-based fine aggregate, silica sand, and natural fine aggregate group.
 本発明は少なくとも次のひとつの効果を奏する。
<1>コンクリート構造体の躯体の大半を占めるコンクリート層の結合材にセメント系結合材Aを使用するのでコンクリート層の製造が容易であることに加えて、化学抵抗性の高い結合材Bを使用した内面保護層をコンクリート層と同時成形するので、高化学抵抗性コンクリート構造体を短期間で低コストに製造できる。
 さらに公知の遠心成形機を用いて製造できるので、特殊な追加設備はまったく不要である。
<2>本発明ではコンクリート層と内面保護層を同時成形しながら、数10分~2時間程度で製管工程を終了して最終の養生工程に移行できる。
 したがって、コンクリート管を製造し、蒸気養生にて内面を乾燥させた後でないと樹脂が付着しないため最低2日の製造日数を要する樹脂ライニング管や、遠心成形時に材料が重合反応し化学的に硬化しないと回転を停止することのできないレジンコンクリート管等の従来の製造技術と比べて、高化学抵抗性コンクリート構造体の製造に要する時間と労力を大幅に削減できて、生産性を大幅に向上できる。
<3>コンクリート構造体の保護を必要とする内面保護層のみに化学抵抗性の高い結合材Bを使用するので、結合材Bの使用量を低く抑えて内面保護層の化学抵抗性を効果的に高めることができる。
<4>管厚の大半をコンクリート層が占めるために強度発現時間が早く、脱型までに長時間を必要としない。
<5>内面保護層の混合材料にセメント系結合材Aを含まないうえに、スラッジ水を活用して内面保護層を硬化させる際に高炉スラグやフライアッシュ等の結合材Bによって内面保護層中の水酸化カルシウムが消費されるので、最終的に成形された内面保護層のカルシウム成分が大幅に減少する。
 そのため、従来と比べて内面保護層の化学抵抗性が格段に高くなる。
<6>コンクリート層と内面保護層を同時成形することで、コンクリート層と内面保護層間の一体化が図れ、コンクリート構造体の全断面が明確な境界のない連続組織となる。
 そのため、衝撃を受けても内面保護層がコンクリート層から剥離する現象が生じ難くなり、コンクリート構造体の良好な化学抵抗性を長期間に亘って持続できる。
<7>仮に内面保護層の化学抵抗層の一部が破損しても、緩衝層がコンクリート層の保護層としての機能を継続するので、内面保護層の化学抵抗性の保証期間が極めて長くなる。
<8>内面保護層の混合材料をドライ状態で供給すると、コンクリート層から排出されるスラッジまたはスラッジ水を活用して内面保護層を硬化できるので、これまで廃棄するしかなかったスラッジやスラッジ水の最終回収量と処分量を少なくできる。
<9>高炉スラグ微粉末やフライアッシュ等の結合材Bの調達が困難な発展途上の地域や国であっても、高品質の高化学抵抗性コンクリート構造体を経済的に製作できる。
 内面保護層の混合材料の入手が困難な地域や国であっても、入手が容易な地域や国において内面保護層の混合材料を予めパッケージングして容易に輸送することができる。
<10>高炉スラグやフライアッシュは製鉄や火力発電等の副産物であり、化学抵抗性の高い結合材Bを製造する際のCOの発生量がゼロとなることから、環境負荷の低減に寄与することができる。
The present invention has at least one of the following effects.
<1> Since the cement-based binder A is used as the binder of the concrete layer which occupies most of the frame of the concrete structure, the concrete layer can be easily manufactured and the binder B having high chemical resistance is used. Since the inner surface protective layer is formed at the same time as the concrete layer, a highly chemically resistant concrete structure can be manufactured in a short period of time at low cost.
Furthermore, since it can be manufactured using a known centrifugal molding machine, no special additional equipment is required.
<2> In the present invention, the pipe making process can be completed and the final curing process can be started in about several tens of minutes to 2 hours while simultaneously molding the concrete layer and the inner surface protective layer.
Therefore, the resin does not adhere until after the concrete pipe is manufactured and the inner surface is dried by steam curing, so the resin lining pipe requires a minimum of two days to manufacture, and the material reacts with the polymerization during centrifugation and is chemically hardened. Compared with conventional manufacturing techniques such as resin concrete pipes whose rotation cannot be stopped without it, the time and labor required to manufacture a highly chemically resistant concrete structure can be significantly reduced, and productivity can be greatly improved. ..
<3> Since the binder B having high chemical resistance is used only for the inner protective layer that requires protection of the concrete structure, the amount of the binder B used is kept low and the chemical resistance of the inner protective layer is effective. Can be enhanced to.
<4> Since the concrete layer occupies most of the pipe thickness, the strength development time is fast, and it does not require a long time to demold.
<5> The mixed material of the inner surface protective layer does not contain the cement-based binder A, and when the inner surface protective layer is cured by utilizing sludge water, the inner surface protective layer is contained by the binder B such as blast furnace slag or fly ash. Since the calcium hydroxide is consumed, the calcium component of the finally formed inner protective layer is significantly reduced.
Therefore, the chemical resistance of the inner protective layer is significantly higher than that of the conventional one.
<6> By simultaneously molding the concrete layer and the inner surface protection layer, the concrete layer and the inner surface protection layer can be integrated, and the entire cross section of the concrete structure becomes a continuous structure without a clear boundary.
Therefore, even if an impact is applied, the phenomenon that the inner surface protective layer is peeled off from the concrete layer is less likely to occur, and the good chemical resistance of the concrete structure can be maintained for a long period of time.
<7> Even if a part of the chemical resistance layer of the inner protective layer is damaged, the buffer layer continues to function as the protective layer of the concrete layer, so that the guarantee period of the chemical resistance of the inner protective layer becomes extremely long. ..
<8> When the mixed material of the inner surface protective layer is supplied in a dry state, the sludge or sludge water discharged from the concrete layer can be used to cure the inner surface protective layer, so that sludge or sludge water that had to be discarded until now can be cured. The final recovery amount and disposal amount can be reduced.
<9> Even in developing regions and countries where it is difficult to procure binder B such as blast furnace slag fine powder and fly ash, high-quality, highly chemically resistant concrete structures can be economically manufactured.
Even in regions and countries where it is difficult to obtain the mixed material of the inner protective layer, the mixed material of the inner protective layer can be easily packaged and transported in the easily available region and country.
<10> Blast furnace slag and fly ash are by-products of steelmaking, thermal power generation, etc., and the amount of CO 2 generated when manufacturing binder B with high chemical resistance is zero, which contributes to the reduction of environmental load. can do.
高化学抵抗性コンクリート構造体であるコンクリート管の表層部の拡大断面図Enlarged sectional view of the surface layer of a concrete pipe, which is a highly chemically resistant concrete structure. 遠心成形機のモデル図Model diagram of centrifugal molding machine 一部を省略したコンクリート層の成形時におけるコンクリート管の横断面図Cross-sectional view of a concrete pipe when forming a concrete layer with a part omitted 一部を省略した内面保護層の成形時におけるコンクリート管の横断面図Cross-sectional view of the concrete pipe when forming the inner protective layer with a part omitted 硬化後におけるコンクリート管の拡大断面図Enlarged sectional view of concrete pipe after hardening 耐酸試験における実施例1および比較例1の各供試体の管厚変化の説明図Explanatory drawing of change in tube thickness of each specimen of Example 1 and Comparative Example 1 in the acid resistance test
 以下に図面を参照しながら本発明について説明する。
 なお、本発明で用いる「化学抵抗性」とは、耐酸性、耐塩害性、耐食性、耐薬品性等を意味する。
The present invention will be described below with reference to the drawings.
The "chemical resistance" used in the present invention means acid resistance, salt damage resistance, corrosion resistance, chemical resistance and the like.
<1>高化学抵抗性コンクリート構造体
 本例では高化学抵抗性コンクリート構造体が遠心成形により製造するヒューム管やマンホール等のコンクリート管10である形態について説明する。
<1> Highly Chemically Resistant Concrete Structure In this example, a form in which the highly chemically resistant concrete structure is a concrete pipe 10 such as a hume pipe or a manhole manufactured by centrifugal molding will be described.
 図1にコンクリート管10の内面側の拡大断面図を示す。
 コンクリート管10は、円筒状に成形したコンクリート製のコンクリート層11と、コンクリート層11の内面で筒状に成形した内面保護層12とよりなる。
FIG. 1 shows an enlarged cross-sectional view of the inner surface side of the concrete pipe 10.
The concrete pipe 10 is composed of a concrete layer 11 made of concrete formed into a cylindrical shape and an inner surface protective layer 12 formed into a tubular shape on the inner surface of the concrete layer 11.
<2>コンクリート層
 コンクリート層11はセメント系結合材A、膨張材等の混和材、細骨材、粗骨材等に加水して混練したコンクリートを遠心成形した円筒管である。
 セメント系結合材Aとしては特に限定されず、例えば普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸性ポルトランドセメント等が適用可能である。
 コンクリート層11の組成は公知であり、特別な配合にはなっていない。
<2> Concrete layer The concrete layer 11 is a cylindrical tube obtained by centrifuging concrete obtained by adding and kneading cement-based binder A, an admixture such as an expansion material, fine aggregate, and coarse aggregate.
The cement-based binder A is not particularly limited, and for example, ordinary Portland cement, early-strength Portland cement, ultra-early-strength Portland cement, moderate heat Portland cement, low heat Portland cement, sulfuric acid-resistant Portland cement and the like can be applied.
The composition of the concrete layer 11 is known and is not a special formulation.
<3>内面保護層
 内面保護層12は硫酸等がコンクリート層11へ浸透するのを阻止する硬質層である。
 内面保護層12は、少なくとも潜在水硬性またはポゾラン反応性の結合材Bと細骨材Cとからなる。
 これらの混合材料は水を含まないドライ状態、または混練水を含んだペースト状態でコンクリート層11の内面に供給してコンクリート層11と内面保護層12を同時に成形する。
 内面保護層12は、コンクリート層11の内面側にコンクリート層11と連続組織として形成した緩衝層14と、緩衝層14の内面側に連続組織として形成した化学抵抗層15とからなる。
<3> Inner surface protective layer The inner surface protective layer 12 is a hard layer that prevents sulfuric acid and the like from penetrating into the concrete layer 11.
The inner protective layer 12 is composed of at least a latent hydraulic or pozzolan-reactive binder B and a fine aggregate C.
These mixed materials are supplied to the inner surface of the concrete layer 11 in a dry state containing no water or a paste state containing kneading water to simultaneously form the concrete layer 11 and the inner surface protective layer 12.
The inner surface protective layer 12 is composed of a buffer layer 14 formed as a continuous structure with the concrete layer 11 on the inner surface side of the concrete layer 11, and a chemical resistance layer 15 formed as a continuous structure on the inner surface side of the buffer layer 14.
<3.1>内面保護層を形成した理由
 コンクリート層11の内面を内面保護層12で被覆するのは、コンクリート層11が例えば硫酸に触れたとき、コンクリート層11に大量に含まれる水酸化カルシウムと硫酸が激しく反応して、粗で脆弱な二水石膏が生成されては剥離する腐食が進行するのを抑止するためである。
<3.1> Reason for forming the inner surface protective layer The reason why the inner surface of the concrete layer 11 is covered with the inner surface protective layer 12 is that when the concrete layer 11 comes into contact with sulfuric acid, for example, a large amount of calcium hydroxide is contained in the concrete layer 11. This is to prevent the progress of corrosion that peels off when coarse and fragile dihydrate gypsum is produced by the violent reaction of sulfuric acid.
<3.2>内面保護層の層厚
 内面保護層12は、硫酸がコンクリート層11へ浸透しない適宜の層厚を有している。
 内面保護層12の層厚は管径によって異なるが、層厚が3~50mm程度であると、硫酸がコンクリート層11へ浸透するまでに長時間を要し、コンクリート管10の化学抵抗作用および二水石膏膜の剥落防止作用を長期間に亘って保証できる。
 なお、内面保護層12の最低層厚はポップアウト現象を抑止し得る層厚を考慮して選択することが望ましい。
<3.2> Layer thickness of inner surface protective layer The inner surface protective layer 12 has an appropriate layer thickness at which sulfuric acid does not penetrate into the concrete layer 11.
The layer thickness of the inner surface protective layer 12 varies depending on the pipe diameter, but when the layer thickness is about 3 to 50 mm, it takes a long time for sulfuric acid to permeate into the concrete layer 11, and the chemical resistance of the concrete pipe 10 and two The anti-peeling effect of the water gypsum film can be guaranteed for a long period of time.
It is desirable that the minimum layer thickness of the inner surface protective layer 12 is selected in consideration of the layer thickness capable of suppressing the pop-out phenomenon.
<3.3>結合材B
 内面保護層12の結合材には、コンクリート層11のスラッジ成分(セメントモルタル成分)と化合して硬化する性質の結合材Bを使用する。供給前における内面保護層12の混合材料にはセメント系結合材を含んでいない。
 スラッジ成分とは、セメント系結合材A、細骨材、水等を含むスラリー状物で、固形成分を多く含むスラッジ、または固形成分が極めて少なく水成分を多量に含むスラッジ水を意味する。
 結合材Bとは、水を混ぜ合わせただけでは硬化しないが、アルカリ刺激により硬化する潜在水硬性の結合材またはシリカやアルミナを有するポゾラン反応性の結合材を意味する。
<3.3> Binder B
As the binder of the inner surface protective layer 12, a binder B having a property of combining with the sludge component (cement mortar component) of the concrete layer 11 and hardening is used. The mixed material of the inner surface protective layer 12 before supply does not contain a cement-based binder.
The sludge component is a slurry containing cement-based binder A, fine aggregate, water, etc., and means sludge containing a large amount of solid components or sludge water containing a large amount of water components with extremely few solid components.
The binder B means a latent hydraulic binder or a pozzolan-reactive binder having silica or alumina that is not cured only by mixing with water but is cured by alkaline stimulation.
 潜在水硬性の結合材Bとしては、例えば高炉スラグ微粉末、高炉水砕スラグ、高炉徐冷スラグ、製鋼スラグ等の一種以上を使用することができる。
 特に、JIS A 6206「コンクリート用高炉スラグ微粉末」で規定される高炉スラグ微粉末は、潜在水硬性により内面保護層12の組織を緻密化して耐硫酸性や耐塩害性が向上する。
As the latent hydraulic binder B, for example, one or more of blast furnace slag fine powder, blast furnace granulated slag, blast furnace slow cooling slag, steelmaking slag and the like can be used.
In particular, the blast furnace slag fine powder defined in JIS A 6206 "Blast furnace slag fine powder for concrete" has a latent hydraulic property that densifies the structure of the inner surface protective layer 12 to improve sulfuric acid resistance and salt damage resistance.
 ポゾラン反応性の結合材Bとしては、例えばフライアッシュ、シリカフューム等の一種以上を使用でき、可溶性の二酸化ケイ素(SiO)がセメントの水和の際に生成される水酸化カルシウム(Ca(OH)2)と化合して不溶性の水和物に変わる。
 その他に結合材Bとしては、火山灰、珪けい酸白土等を使用することも可能である。
As the pozzolan-reactive binder B, for example, one or more of fly ash, silica fume, etc. can be used, and soluble silicon dioxide (SiO 2 ) is produced during hydration of cement calcium hydroxide (Ca (OH)). Combines with 2 ) to turn into insoluble hydrate.
In addition, volcanic ash, silicic acid white clay, or the like can be used as the binder B.
<3.4>細骨材C
 内面保護層用の細骨材Cとしては、例えばスラグ細骨材、珪砂、天然細骨材等を使用できる。
 内面保護層12は、コンクリート層11と比較してカルシウム分が少ないので化学抵抗性がよくなる。細骨材Cとしてスラグ細骨材を用いれば、内面保護層12の化学抵抗性がさらに向上する。
<3.4> Fine aggregate C
As the fine aggregate C for the inner surface protective layer, for example, slag fine aggregate, silica sand, natural fine aggregate and the like can be used.
Since the inner surface protective layer 12 has a lower calcium content than the concrete layer 11, the chemical resistance is improved. If a slag fine aggregate is used as the fine aggregate C, the chemical resistance of the inner surface protective layer 12 is further improved.
<3.5>結合材Bと細骨材Cの配合比率
 結合材Bと細骨材Cの配合比率は、1:2程度を目安とする。
 結合材Bと細骨材Cの配合比率はこの範囲に限定されず、コンクリート管10の使途や使用環境等を考慮して適宜選択する。
<3.5> Blending ratio of binder B and fine aggregate C The blending ratio of binder B and fine aggregate C is about 1: 2 as a guide.
The blending ratio of the binder B and the fine aggregate C is not limited to this range, and is appropriately selected in consideration of the usage of the concrete pipe 10 and the usage environment.
<3.6>内面保護層が均質組織とならない理由
 内面保護層12はスラッジ成分と化合して硬化する結合材Bと細骨材Cを主体とした均質な組織とはならない
 内面保護層12が均質な組織とはならないのは、回転遠心力の影響を受けて、内面保護層12に対してコンクリート層11のスラッジ成分が混入し、部位によりそのスラッジの混入量に差が生じるからである。
 そのため、内面保護層12は、コンクリート層11の内面に近いほどスラッジの混入量が多くなり、コンクリート層11の内面から離れるほどスラッジの混入量が少なくなる。
<3.6> Reason why the inner surface protective layer does not have a homogeneous structure The inner surface protective layer 12 does not have a homogeneous structure mainly composed of the binder B and the fine aggregate C which are hardened by combining with the sludge component. The reason why the structure is not homogeneous is that the sludge component of the concrete layer 11 is mixed with the inner surface protective layer 12 under the influence of the rotational centrifugal force, and the amount of the sludge mixed is different depending on the site.
Therefore, the closer the inner surface protective layer 12 is to the inner surface of the concrete layer 11, the larger the amount of sludge mixed in, and the farther away from the inner surface of the concrete layer 11 is, the smaller the amount of sludge mixed in.
<3.7>緩衝層
 図1を参照して説明すると、コンクリート層11の内面に積層した緩衝層14は、スラッジ成分と化合して硬化する結合材Bと細骨材Cの混合材料を主体とし、コンクリート層11と化学抵抗層15の間に形成した中間保護層である。
 緩衝層14には内面保護層12の成形中にコンクリート層11のスラッジ成分の一部が混入して化合する。スラッジの混入量は緩衝層14の外面から内面へ向けて漸減している。
 緩衝層14は化学抵抗層15が損傷した際に化学抵抗性をサポートする。
<3.7> Buffer layer Explaining with reference to FIG. 1, the buffer layer 14 laminated on the inner surface of the concrete layer 11 is mainly a mixed material of a binder B and a fine aggregate C which is hardened by combining with a sludge component. It is an intermediate protective layer formed between the concrete layer 11 and the chemical resistance layer 15.
A part of the sludge component of the concrete layer 11 is mixed and compounded in the cushioning layer 14 during the molding of the inner surface protective layer 12. The amount of sludge mixed is gradually reduced from the outer surface to the inner surface of the buffer layer 14.
The buffer layer 14 supports chemical resistance when the chemical resistance layer 15 is damaged.
<3.8>化学抵抗層
 緩衝層14の内面に積層した化学抵抗層15は、結合材Bと細骨材Cの混合材料を主体とした保護層であり、内面保護層12の成形中にスラッジ水と化合する。
 化学抵抗層15は緩衝層14と比べてスラッジの混入量が少ない関係にある。
 化学抵抗層15は遠心成形によるスラッジの混入がほとんどみられず、結合材Bと細骨材Cのほぼ100%の配合となる。
<3.8> Chemical resistance layer The chemical resistance layer 15 laminated on the inner surface of the buffer layer 14 is a protective layer mainly composed of a mixed material of a binder B and a fine aggregate C, and is formed during molding of the inner surface protective layer 12. Combines with sludge water.
The chemical resistance layer 15 has a relationship in which the amount of sludge mixed is smaller than that of the buffer layer 14.
The chemical resistance layer 15 contains almost no sludge due to centrifugal molding, and contains almost 100% of the binder B and the fine aggregate C.
[製造方法]
 つぎにコンクリート管10の製造方法について説明する。
[Production method]
Next, a method of manufacturing the concrete pipe 10 will be described.
<1>コンクリート層の成形
 図2~5を参照しながらコンクリート層11の成形工程について説明する。
<1> Molding of Concrete Layer The molding process of the concrete layer 11 will be described with reference to FIGS. 2 to 5.
<1.1>鉄筋篭のセット
 図2を参照して説明すると、筒状に編成した鉄筋篭を内部にセットして型枠20を組み立てる。型枠20は外枠21とドーナツ形の妻型枠22よりなり、内型枠は存在しない。
<1.1> Reinforcing bar cage setting Explaining with reference to FIG. 2, the reinforcing bar cage knitted in a tubular shape is set inside to assemble the formwork 20. The formwork 20 is composed of an outer frame 21 and a donut-shaped wife formwork 22, and there is no inner formwork.
<1.2>コンクリートの供給
 次いで組み立てた型枠20の中にコンベア等の供給装置23を通じてミキサ等で混練したセメント系結合材Aを含むコンクリートを供給しながら、遠心成形機上で型枠20を回転させる。コンクリートの配合は公知である。
<1.2> Supply of concrete Next, while supplying concrete containing the cement-based binder A kneaded with a mixer or the like through a supply device 23 such as a conveyor into the assembled formwork 20, the formwork 20 is placed on the centrifugal molding machine. To rotate. The composition of concrete is known.
<1.3>型枠の回転
 成形初期は型枠20を低速(2~3G)で回転してコンクリートを全体に拡散させ、その後に中速(10~15G)に回転速度を上げてコンクリートをある程度締め固め、最後に高速回転(30G程度)によりコンクリートを密実に締め固めて円筒形のコンクリート層11を成形する。
<1.3> Rotation of formwork At the initial stage of molding, the formwork 20 is rotated at a low speed (2 to 3 G) to diffuse the concrete throughout, and then the rotation speed is increased to a medium speed (10 to 15 G) to make the concrete. The concrete is compacted to some extent, and finally the concrete is compacted densely by high-speed rotation (about 30 G) to form the cylindrical concrete layer 11.
<1.4>コンクリート層の層厚
 図3は遠心成形時における型枠20とコンクリート層11の断面を示している。
 コンクリート層11の成形工程において、コンクリートの投入量は所定の管厚分より少ない量とし、コンクリート層11の管厚は、次工程で成形する内面保護層12の層厚分を見込んで薄くしておく。
 内面保護層12の見込み厚はコンクリート管10の径に応じて3~50mm程度に設定すればよいが、コンクリート管10の使用条件、使用環境等を考慮して適宜選択する。
 内面保護層12との一体化のためには、コンクリート層11の内面を完全に平滑に仕上げずに粗面のままにしておくことが望ましい。
<1.4> Layer thickness of concrete layer FIG. 3 shows a cross section of the formwork 20 and the concrete layer 11 at the time of centrifugal molding.
In the molding process of the concrete layer 11, the amount of concrete charged is less than the predetermined pipe thickness, and the pipe thickness of the concrete layer 11 is reduced in anticipation of the layer thickness of the inner surface protective layer 12 to be molded in the next step. deep.
The estimated thickness of the inner surface protective layer 12 may be set to about 3 to 50 mm depending on the diameter of the concrete pipe 10, but it is appropriately selected in consideration of the usage conditions, usage environment, etc. of the concrete pipe 10.
For integration with the inner surface protection layer 12, it is desirable to leave the inner surface of the concrete layer 11 as a rough surface without finishing it completely smooth.
<2>内面保護層の成形
 図4を参照しながら内面保護層12の成形工程について説明する。
<2> Molding of Inner Surface Protective Layer The molding process of the inner surface protective layer 12 will be described with reference to FIG.
<2.1>内面保護層用の混合材料例
 内面保護層12の混合材料としては、例えば以下の組み合わせを適用できる。
 ・高炉スラグ微粉末等の結合材B、
 ・スラグ細骨材C、
 ・フライアッシュ、
 ・シリカフューム、
 ・化学成分で1~15質量%の酸化アルミニウムを含む石灰・石膏複合物(膨張材)。
<2.1> Example of mixed material for inner surface protective layer As the mixed material of the inner surface protective layer 12, for example, the following combinations can be applied.
・ Blast furnace slag fine powder, etc. binder B,
・ Slag fine aggregate C,
・ Fly ash,
・ Silica fume,
-A lime-gypsum composite (expansion material) containing 1 to 15% by mass of aluminum oxide as a chemical component.
<2.2>混合材料の供給形態
 これらの混合材料は、水を含まないドライ状態でコンクリート層11の内面へ供給してもよいし、予め混練水と混練したペースト状態で供給してもよい。
<2.2> Supply form of mixed material These mixed materials may be supplied to the inner surface of the concrete layer 11 in a dry state without containing water, or may be supplied in a paste state previously kneaded with kneaded water. ..
<2.2.1>ドライ状態で供給する場合
 コンクリート層11の遠心成形時において、コンクリート層11の内面に、水、セメント成分、骨材微粒子分等を含んだスラッジ成分が遠心分離により排出される。
 次に内面保護層12の混合材料をドライ状態でコンクリート層11の内面に供給すると、混合材料中をスラッジ成分が遠心力により通過する過程において、混合材料と混じり合って内面保護層12がペースト状になる。
 内面保護層12の混合材料をドライ状態で供給する場合には、内面保護層12をペースト化する際にスラッジ成分の消費量が増えるので、最終的なスラッジ成分の回収量がさらに少なくなる。
<2.2.1> When supplying in a dry state When the concrete layer 11 is centrifuged, sludge components containing water, cement components, aggregate fine particles, etc. are discharged to the inner surface of the concrete layer 11 by centrifugation. To.
Next, when the mixed material of the inner surface protective layer 12 is supplied to the inner surface of the concrete layer 11 in a dry state, the sludge component is mixed with the mixed material in the process of passing through the mixed material by centrifugal force, and the inner surface protective layer 12 becomes a paste. become.
When the mixed material of the inner surface protective layer 12 is supplied in a dry state, the amount of sludge component consumed increases when the inner surface protective layer 12 is made into a paste, so that the final amount of sludge component recovered is further reduced.
<2.2.2>ペースト状態で供給する場合
 内面保護層12の混合材料に適量の混練水を加えて予め混練し、ペースト状態で供給してもよい。
 ペースト状態で供給した場合には、ドライ状態に比べてセメント粒子や骨材微粒子等がスクリーニングされて内面保護層12を通過し難くなるので、内面保護層12のスラッジがより少なくなるが、スラッジ成分の回収量を考慮すると、混練水は混合材料を供給可能な流動性を確保できる最低水量とした方がよい。
<2.2.2> When supplied in a paste state An appropriate amount of kneading water may be added to the mixed material of the inner surface protective layer 12 and kneaded in advance, and then supplied in a paste state.
When supplied in a paste state, cement particles, aggregate fine particles, etc. are screened and it becomes difficult to pass through the inner surface protective layer 12 as compared with the dry state, so that the sludge of the inner surface protective layer 12 is reduced, but the sludge component. Considering the amount of water recovered, the kneading water should be the minimum amount of water that can secure the fluidity that can supply the mixed material.
<2.3>型枠の回転
 内面保護層12を遠心成形する際にも、コンクリート層11の成形時と同様に低速回転、中速回転、高速回転と回転数を漸増させながら遠心力により締め固めてコンクリート層11の内面に密実組織の内面保護層12を成形する。
 内面保護層12の成形工程においても、高速回転に伴い内面保護層12の内面に透過したセメント成分をほとんど含まないスラッジ水が排出される。
 バーやヘラ等を使用して余分なスラッジ水を除去しながら内面を平滑に仕上げたら、型枠20の回転を停止する。
<2.3> Rotation of mold When the inner surface protection layer 12 is centrifugally molded, it is tightened by centrifugal force while gradually increasing the rotation speeds such as low speed rotation, medium speed rotation, and high speed rotation as in the case of molding the concrete layer 11. The inner surface protective layer 12 having a dense structure is formed on the inner surface of the concrete layer 11 by hardening.
Also in the molding process of the inner surface protective layer 12, sludge water containing almost no cement component permeated through the inner surface of the inner surface protective layer 12 is discharged as the inner surface protective layer 12 rotates at high speed.
When the inner surface is smoothed while removing excess sludge water using a bar or spatula, the rotation of the mold 20 is stopped.
<2.4>内面保護層の組成
 内面保護層12は全体が均質組織ではなく、コンクリート層11の内面に隣接した部位がスラッジの混入量が多い緩衝層14として形成され、コンクリート層11の内面から離隔した部位になるほどスラッジの混入量が少ない化学抵抗層15として形成される(図1)。
<2.4> Composition of inner surface protective layer The inner surface protective layer 12 is not a homogeneous structure as a whole, and a portion adjacent to the inner surface of the concrete layer 11 is formed as a buffer layer 14 in which a large amount of sludge is mixed, and the inner surface of the concrete layer 11 is formed. It is formed as a chemical resistance layer 15 in which the amount of sludge mixed is small as the portion is separated from the concrete resistance layer 15 (FIG. 1).
<3>硬化反応
 コンクリート管10は、締め固めと並行してコンクリート層11および内面保護層12に硬化反応を生じて強度が徐々に増していく。
<3> Curing reaction The concrete pipe 10 undergoes a curing reaction in the concrete layer 11 and the inner surface protective layer 12 in parallel with compaction, and the strength gradually increases.
 コンクリート層11ではセメント系結合材Aが混練水と反応して硬化が進行する。
 内面保護層12では、潜在水硬性またはポゾラン反応性の結合材Bがスラッジまたはスラッジ水13と化合して硬化が進行する。
In the concrete layer 11, the cement-based binder A reacts with the kneading water and hardening proceeds.
In the inner surface protective layer 12, the latent hydraulic or pozzolan-reactive binder B combines with sludge or sludge water 13 to proceed with hardening.
<4>養生、脱型
 遠心成形機から型枠20を取り外し、型枠20内にコンクリート管10を入れたまま所定の養生場所へ移動する。
 養生手段としては、例えば蒸気養生を用いることができる。蒸気養生をすることで脱型時期を早めることができる。
 コンクリート管10の蒸気養生温度はコンクリート管10の物性に悪影響が出ないように適宜の温度を選択する。
 尚、養生方法は蒸気養生に限定されるものではなく、自然養生を行ってもよい。
<4> Curing and demolding The mold 20 is removed from the centrifugal molding machine, and the concrete pipe 10 is moved to a predetermined curing place with the concrete pipe 10 in the mold 20.
As the curing means, for example, steam curing can be used. Demolding can be accelerated by steam curing.
The steam curing temperature of the concrete pipe 10 is selected as appropriate so as not to adversely affect the physical properties of the concrete pipe 10.
The curing method is not limited to steam curing, and natural curing may be performed.
 コンクリート管10が所定の脱型強度に達したら、型枠20からコンクリート管10を取り出して一連の作業を終了する。 When the concrete pipe 10 reaches a predetermined demolding strength, the concrete pipe 10 is taken out from the mold 20 and a series of operations is completed.
<5>コンクリート管の特性
 図5を参照してコンクリート管10の主要な特性について説明する。
<5> Characteristics of Concrete Pipe The main characteristics of the concrete pipe 10 will be described with reference to FIG.
<5.1>コンクリート層と内面保護層の一体性
 本発明のコンクリート管10は、先行して硬化させたコンクリート層11の内面に内面保護層12を打ち継ぎする製造方法ではないのでコールドジョイントが生じない。
<5.1> Integration of Concrete Layer and Inner Surface Protective Layer Since the concrete pipe 10 of the present invention is not a manufacturing method in which the inner surface protective layer 12 is joined to the inner surface of the concrete layer 11 hardened in advance, a cold joint is used. Does not occur.
 本発明のコンクリート管10は、硬化前にコンクリート層11と内面保護層12を同時成形するので、コンクリート層11の内面と内面保護層12間のなじみがよくなり、コンクリート層11と内面保護層12との間、および内面保護層12を構成する緩衝層14と化学抵抗層15との間の境界部が混然一体化した連続組織となる。
 すなわち、コンクリート管10の断面は、従来の樹脂ライニング管の断面で見られるような明確な境界面ができない。
 特にコンクリート層11の内面を平滑に仕上げずに、細かい凹凸が存在する粗面状態のまま内面保護層12を積層するので、コンクリート層11と内面保護層12との付着性(一体性)が格段によくなる。
In the concrete pipe 10 of the present invention, since the concrete layer 11 and the inner surface protective layer 12 are simultaneously molded before hardening, the inner surface of the concrete layer 11 and the inner surface protective layer 12 become more familiar, and the concrete layer 11 and the inner surface protective layer 12 become more familiar. The boundary between the two and the buffer layer 14 and the chemical resistance layer 15 forming the inner surface protective layer 12 is mixed and integrated into a continuous structure.
That is, the cross section of the concrete pipe 10 does not have a clear boundary surface as seen in the cross section of the conventional resin lining pipe.
In particular, since the inner surface protective layer 12 is laminated in a rough surface state in which fine irregularities exist without finishing the inner surface of the concrete layer 11 smoothly, the adhesiveness (integration) between the concrete layer 11 and the inner surface protective layer 12 is remarkably improved. Get better.
 このようにコンクリート管10の断面構造は一体化した連続組織になっているので、コンクリート管10の内面が衝撃を受けても内面保護層12の剥離現象が生じ難い。 Since the cross-sectional structure of the concrete pipe 10 has an integrated continuous structure in this way, even if the inner surface of the concrete pipe 10 receives an impact, the peeling phenomenon of the inner surface protective layer 12 is unlikely to occur.
<5.2>内面保護層の化学抵抗作用
 内面保護層12は潜在水硬性またはポゾラン反応性の結合材Bを主成分とした保護層であり、セメント水和物の中で最も酸に弱いとされる水酸化カルシウム(Ca(OH))の含有量が大幅に低減されている。
 例えば、結合材Bが高炉スラグ微粉末に代表される潜在水硬性の結合材である場合、結合材Bの硬化にはスラッジまたはスラッジ水13によるアルカリ刺激が必要であることから、内面保護層12が硬化する際にスラッジ成分に含まれる水酸化カルシウムが更に消費されて内面保護層12のカルシウム成分が更に減少して化学抵抗性が向上する。
 例えば、結合材Bがポゾラン反応性である場合には、結合材Bの硬化にはスラッジ成分に含まれる水酸化カルシウムが二酸化ケイ素と化合して消費されることから内面保護層12のカルシウム成分が減少して化学抵抗性が向上する。
<5.2> Chemical resistance action of inner surface protective layer The inner surface protective layer 12 is a protective layer containing a latent hydraulic or pozzolan-reactive binder B as a main component, and is said to be the most sensitive to acid among cement hydrates. The content of calcium hydroxide (Ca (OH) 2 ) to be produced is significantly reduced.
For example, when the binder B is a latent hydraulic binder typified by blast furnace slag fine powder, the inner surface protective layer 12 is required to be stimulated by an alkali with sludge or sludge water 13 to cure the binder B. When the slag is cured, the calcium hydroxide contained in the sludge component is further consumed, the calcium component of the inner surface protective layer 12 is further reduced, and the chemical resistance is improved.
For example, when the binder B is pozzolan-reactive, the calcium hydroxide contained in the sludge component is combined with silicon dioxide and consumed in the curing of the binder B, so that the calcium component of the inner protective layer 12 is consumed. It decreases and the chemical resistance improves.
 この内面保護層12に硫酸等が接触すると毛管現象により浸透していくが、水酸化カルシウムがほとんど存在しないので、激しい反応を生じることがなく、硫酸と内面保護層12に含まれるC-S-HやC-A-Hのカルシウム分とが反応し、内面保護層12の表面近傍に二水石膏層が時間をかけて積層されていく。
 この二水石膏は緻密組織であり、耐酸性を有していることから、コンクリート管10の内面が継続して硫酸に晒されても緻密な二水石膏層が積層された内面保護層12が硫酸の浸入を抑制して、硫酸によるコンクリート層11までの到達を効果的に防止することができる。
When sulfuric acid or the like comes into contact with the inner surface protective layer 12, it permeates due to a capillary phenomenon, but since calcium hydroxide is almost absent, a violent reaction does not occur, and sulfuric acid and CS-contained in the inner surface protective layer 12 do not occur. The calcium content of H and CAH reacts with each other, and a dihydrate gypsum layer is laminated near the surface of the inner surface protective layer 12 over time.
Since this dihydrate gypsum has a dense structure and has acid resistance, the inner surface protective layer 12 on which the dense dihydrate gypsum layer is laminated even if the inner surface of the concrete pipe 10 is continuously exposed to sulfuric acid is formed. It is possible to suppress the infiltration of sulfuric acid and effectively prevent the sulfuric acid from reaching the concrete layer 11.
 仮に数10年規模の経年変化によって化学抵抗層15の深層側の緩衝層14に硫酸が浸透到達したとしても、緩衝層14のカルシウム成分がコンクリート層11に比べて格段に少ないため、短時間で腐食が進行することがなく、二水石膏層の層厚が増すだけ継続して硫酸による腐食を抑制できる。
 このように緩衝層14の存在は毛管浸透に対する準化学抵抗層の役割を果たすだけでなく、外的衝撃により仮に化学抵抗層15が欠損することがあっても、容易にコンクリート層11に腐食を及ぼすことのないフェールセーフの役割も兼ねている。
 二水石膏層は内面保護層12の全断面に亘って形成可能であるから、硫酸がコンクリート層11へ到達するまでにはきわめて長い年月が必要であり、従来の普通コンクリートに比べて化学抵抗性の保証期間が飛躍的に長くなる。
Even if sulfuric acid permeates and reaches the buffer layer 14 on the deep side of the chemical resistance layer 15 due to aging on a scale of several decades, the calcium component of the buffer layer 14 is much smaller than that of the concrete layer 11, so it takes a short time. Corrosion does not proceed, and corrosion due to sulfuric acid can be continuously suppressed as the thickness of the dihydrate gypsum layer increases.
As described above, the presence of the buffer layer 14 not only serves as a quasi-chemical resistance layer against capillary penetration, but also easily corrodes the concrete layer 11 even if the chemical resistance layer 15 is lost due to an external impact. It also serves as a fail-safe that does not exert any effect.
Since the dihydrate gypsum layer can be formed over the entire cross section of the inner surface protective layer 12, it takes an extremely long time for sulfuric acid to reach the concrete layer 11, and chemical resistance is compared with that of conventional ordinary concrete. The sexual guarantee period is dramatically extended.
 二水石膏層は共用環境で酸と接触した場合に自動的に形成することを前提としているが、製造環境の整った工場で出荷前にコンクリート管10に硫酸処理を施して予めコンクリート管10の内面に形成しておいてもよい。 It is assumed that the dihydrate gypsum layer is automatically formed when it comes into contact with acid in a common environment, but the concrete pipe 10 is preliminarily treated with sulfuric acid before shipping in a factory with a well-established manufacturing environment. It may be formed on the inner surface.
 以下、本発明の実施例について詳細に説明する。 Hereinafter, examples of the present invention will be described in detail.
<1>使用材料
 コンクリート層11には次の材料を用いた。(数字は密度)
Figure JPOXMLDOC01-appb-I000001
<1> Materials used The following materials were used for the concrete layer 11. (Numbers are density)
Figure JPOXMLDOC01-appb-I000001
 内部保護層12には次の材料を用いた。(数字は密度)
Figure JPOXMLDOC01-appb-I000002
The following materials were used for the internal protective layer 12. (Numbers are density)
Figure JPOXMLDOC01-appb-I000002
<2>供試体
 上記材料を使用し、表1に示した配合によりコンクリート管10の供試体を製造した(実施例1、比較例1)。
<2> Specimen A specimen of concrete pipe 10 was manufactured by using the above materials and using the formulations shown in Table 1 (Example 1, Comparative Example 1).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1における内面保護層用の混合材料には、重量比で高炉スラグ微粉末:高炉スラグ細骨材を1:2とし水セメント比40%の比率で混錬した。 The mixed material for the inner surface protective layer in Example 1 was kneaded at a ratio of blast furnace slag fine powder: blast furnace slag fine aggregate to 1: 2 and a water cement ratio of 40%.
<3>耐酸性試験
 実施例1と比較例1のコンクリート配合で内径300mm、管厚30mm、長さ300mmの管体を作成し、管体から略100ミリ×150ミリの切片を切り出し、内面以外をエポキシ樹脂でコーティングした供試体を作成した。
 実施例1と比較例1の各供試体を5%硫酸液に浸せきして管厚の増減を測定した。その試験結果を表2に示し、図6に実際の各供試体を示す。
<3> Acid resistance test A pipe body with an inner diameter of 300 mm, a pipe thickness of 30 mm, and a length of 300 mm was prepared by blending the concrete of Example 1 and Comparative Example 1, and a section of approximately 100 mm × 150 mm was cut out from the pipe body, except for the inner surface. Was coated with an epoxy resin to prepare a specimen.
Each of the specimens of Example 1 and Comparative Example 1 was immersed in a 5% sulfuric acid solution, and the increase or decrease in the tube thickness was measured. The test results are shown in Table 2, and FIG. 6 shows each actual specimen.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の実施例1の供試体は、二水石膏の析出生成により管厚(質量)が増加しているが、硫酸で溶解してはいない。
 これに対し、比較例1の供試体では、表面から硫酸に溶解し大きく管厚(質量)が減少していることが確認された。
In the specimen of Example 1 of the present invention, the tube thickness (mass) was increased due to the precipitation and formation of dihydrate gypsum, but it was not dissolved in sulfuric acid.
On the other hand, in the specimen of Comparative Example 1, it was confirmed that the tube thickness (mass) was significantly reduced by dissolving in sulfuric acid from the surface.
10・・・コンクリート管(高化学抵抗性コンクリート構造体)
11・・・コンクリート層
12・・・内面保護層
13・・・スラッジまたはスラッジ水(スラッジ成分)
14・・・緩衝層
15・・・化学抵抗層
20・・・型枠
21・・・外枠
22・・・妻型枠
23・・・供給装置
 

 
10 ... Concrete pipe (highly chemically resistant concrete structure)
11 ... Concrete layer 12 ... Inner surface protective layer 13 ... Sludge or sludge water (sludge component)
14 ... Buffer layer 15 ... Chemical resistance layer 20 ... Formwork 21 ... Outer frame 22 ... Wife formwork 23 ... Supply device

Claims (10)

  1.  遠心成形により製作された高化学抵抗性コンクリート構造体であって、
     セメント系結合材Aを含むコンクリート層と、
     コンクリート層の内面に排出されるスラッジ成分によって硬化する潜在水硬性またはポゾラン反応性の結合材Bと細骨材Cを少なくとも含み、前記コンクリート層の内面に積層してコンクリート層と同時に遠心成形された内面保護層とからなることを特徴とする、
     高化学抵抗性コンクリート構造体。
    A highly chemically resistant concrete structure manufactured by centrifugal molding.
    A concrete layer containing cement-based binder A and
    It contains at least a latent hydraulic or pozzolan-reactive binder B and fine aggregate C that are hardened by sludge components discharged to the inner surface of the concrete layer, and is laminated on the inner surface of the concrete layer and centrifuged at the same time as the concrete layer. It is characterized by being composed of an inner protective layer.
    Highly chemically resistant concrete structure.
  2.  前記結合材Bが、高炉スラグ微粉末、フライアッシュ、シリカフューム、火山灰、珪酸白土、珪藻土群より選択された一種以上であることを特徴とする、請求項1に記載の高化学抵抗性コンクリート構造体。 The highly chemically resistant concrete structure according to claim 1, wherein the binder B is at least one selected from the blast furnace slag fine powder, fly ash, silica fume, volcanic ash, silicate clay, and diatomaceous earth group. ..
  3.  前記コンクリート層の内面に供給される内面保護層の細骨材Cがスラグ系細骨材、珪砂、天然細骨材群の何れか一種または複数種であることを特徴とする、請求項1に記載の高化学抵抗性コンクリート構造体。 The first aspect of the present invention is characterized in that the fine aggregate C of the inner surface protective layer supplied to the inner surface of the concrete layer is any one or a plurality of slag-based fine aggregates, silica sand, and natural fine aggregates. The high chemical resistance concrete structure described.
  4.  前記内面保護層がコンクリート層の内面側に連続組織として成形された緩衝層と、緩衝層の内面側に連続組織として成形された化学抵抗層とからなり、前記化学抵抗層が緩衝層と比べてコンクリート層からのスラッジの混入量が少ない関係にあることを特徴とする、請求項1乃至3の何れか一項に記載の高化学抵抗性コンクリート構造体。 The inner surface protective layer is composed of a buffer layer formed as a continuous structure on the inner surface side of the concrete layer and a chemical resistance layer formed as a continuous structure on the inner surface side of the buffer layer, and the chemical resistance layer is compared with the buffer layer. The highly chemically resistant concrete structure according to any one of claims 1 to 3, wherein the amount of sludge mixed from the concrete layer is small.
  5.  前記化学抵抗層が少なくとも結合材B、細骨材Cおよびスラッジ水の混練物で構成されていることを特徴とする、請求項4に記載の高化学抵抗性コンクリート構造体。 The highly chemically resistant concrete structure according to claim 4, wherein the chemical resistance layer is composed of at least a binder B, a fine aggregate C, and a kneaded product of sludge water.
  6.  遠心成形機により製造する高化学抵抗性コンクリート構造体の製造方法であって、
     遠心成形機の型枠内にコンクリートを供給してコンクリート層を遠心成形して締め固め、
     前記コンクリート層の締固時にコンクリート層の内面に排出されるスラッジ成分によって硬化する潜在水硬性またはポゾラン反応性の結合材Bと細骨材Cとを少なくとも含む混合材料をコンクリート層の内面に供給してコンクリート層と内面保護層とを同時に遠心成形して一体成形したことを特徴とする、
     高化学抵抗性コンクリート構造体の製造方法。
    A method for manufacturing a highly chemically resistant concrete structure manufactured by a centrifugal molding machine.
    Supply concrete into the formwork of the centrifugal molding machine, centrifuge the concrete layer, and compact it.
    A mixed material containing at least a latent hydraulic or pozzolan-reactive binder B and fine aggregate C, which is hardened by a sludge component discharged to the inner surface of the concrete layer when the concrete layer is compacted, is supplied to the inner surface of the concrete layer. The concrete layer and the inner surface protective layer are simultaneously centrifugally molded and integrally molded.
    A method for manufacturing a highly chemically resistant concrete structure.
  7.  遠心成形中の前記コンクリート層の内面に結合材Bと細骨材Cとを含むドライ状態の混合材料を供給することを特徴とする、請求項6に記載の高化学抵抗性コンクリート構造体の製造方法。 The production of the highly chemically resistant concrete structure according to claim 6, wherein a dry mixed material containing the binder B and the fine aggregate C is supplied to the inner surface of the concrete layer during centrifugal molding. Method.
  8.  遠心成形中の前記コンクリート層の内面に結合材Bと細骨材Cと混練水とを含むペースト状の混合材料を供給することを特徴とする、請求項6に記載の高化学抵抗性コンクリート構造体の製造方法。 The highly chemically resistant concrete structure according to claim 6, wherein a paste-like mixed material containing a binder B, a fine aggregate C, and kneading water is supplied to the inner surface of the concrete layer during centrifugal molding. How to make a body.
  9.  前記結合材Bが、高炉スラグ微粉末、フライアッシュ、シリカフューム、火山灰、珪酸白土、珪藻土群より選択された一種以上であることを特徴とする、請求項6乃至8の何れか一項に記載の高化学抵抗性コンクリート構造体の製造方法。 The invention according to any one of claims 6 to 8, wherein the binder B is at least one selected from the blast furnace slag fine powder, fly ash, silica fume, volcanic ash, silicic acid clay, and diatomaceous earth group. A method for manufacturing a highly chemically resistant concrete structure.
  10.  前記内面保護層の細骨材Cがスラグ系細骨材、珪砂、天然細骨材群より選択された一種以上であることを特徴とする、請求項6乃至8の何れか一項に記載の高化学抵抗性コンクリート構造体の製造方法。

     
    The invention according to any one of claims 6 to 8, wherein the fine aggregate C of the inner surface protective layer is at least one selected from the slag-based fine aggregate, silica sand, and natural fine aggregate group. A method for manufacturing a highly chemically resistant concrete structure.

PCT/JP2019/023365 2019-06-12 2019-06-12 Highly chemically resistant concrete structure and production method WO2020250359A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019531844A JP6654273B1 (en) 2019-06-12 2019-06-12 Method for producing concrete structure with high chemical resistance
PCT/JP2019/023365 WO2020250359A1 (en) 2019-06-12 2019-06-12 Highly chemically resistant concrete structure and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023365 WO2020250359A1 (en) 2019-06-12 2019-06-12 Highly chemically resistant concrete structure and production method

Publications (1)

Publication Number Publication Date
WO2020250359A1 true WO2020250359A1 (en) 2020-12-17

Family

ID=69624578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023365 WO2020250359A1 (en) 2019-06-12 2019-06-12 Highly chemically resistant concrete structure and production method

Country Status (2)

Country Link
JP (1) JP6654273B1 (en)
WO (1) WO2020250359A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313843A (en) * 2006-05-29 2007-12-06 Denki Kagaku Kogyo Kk Manufacturing method of centrifugally formed concrete pipe, and centrifugally formed concrete pipe
JP2016204195A (en) * 2015-04-21 2016-12-08 ゼニス羽田株式会社 Sulfuric acid resistant cement hardened body and production method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166215A (en) * 1979-06-09 1980-12-25 Nippon Hume Pipe Method of tamping centrifugal force concrete pipe
JPS582048B2 (en) * 1980-10-07 1983-01-13 日本ヒユ−ム管株式会社 Manufacturing method for centrifugal concrete piles
JPS6013990B2 (en) * 1981-08-19 1985-04-10 電気化学工業株式会社 Manufacturing method of molded body
JPS61213103A (en) * 1985-03-18 1986-09-22 太平洋セメント株式会社 Manufacture of concrete product through centrifugal-force molding method
JPS62265155A (en) * 1986-05-12 1987-11-18 山陽国策パルプ株式会社 Manufacture of hume pipe
JPH01152010A (en) * 1987-12-09 1989-06-14 Takiron Co Ltd Manufacture of concrete pipe with coated inner surface
JP2726475B2 (en) * 1989-02-15 1998-03-11 電気化学工業株式会社 Lining material and method of manufacturing lining tube using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313843A (en) * 2006-05-29 2007-12-06 Denki Kagaku Kogyo Kk Manufacturing method of centrifugally formed concrete pipe, and centrifugally formed concrete pipe
JP2016204195A (en) * 2015-04-21 2016-12-08 ゼニス羽田株式会社 Sulfuric acid resistant cement hardened body and production method thereof

Also Published As

Publication number Publication date
JP6654273B1 (en) 2020-02-26
JPWO2020250359A1 (en) 2021-09-13

Similar Documents

Publication Publication Date Title
KR101528120B1 (en) Repairing and reinforcing material for concrete structure and method of repairing and reinforcing concrete structure using the same
JP7394194B2 (en) grout mortar
CN113387646B (en) Light expansion type ultrahigh-performance concrete and preparation method thereof
CN109265038A (en) A kind of modification regeneration coarse aggregate and its method for preparing regeneration concrete
Verma et al. Influence of acetic acid soaking and mechanical grinding treatment on the properties of treated recycled aggregate concrete
JP4809575B2 (en) Cement composition for civil engineering structure and concrete product using the same
WO2020250359A1 (en) Highly chemically resistant concrete structure and production method
JP2017210407A (en) Polymer cement mortar and method using polymer cement mortar
JP5069073B2 (en) Manufacturing method of cement concrete pipe using cement for centrifugal force forming and its cement concrete pipe
JP4999179B2 (en) Admixture for high-strength cement composition and high-strength cement composition using the same
JP4180949B2 (en) Acid resistant cement composition
JP2011132039A (en) Fluidizing agent for anti-washout underwater hydraulic composition
JP2009132002A (en) Method of manufacturing mortar lining pipe
JP2019048421A (en) Method of producing concrete
JP4468198B2 (en) Centrifugal force forming aid, concrete, and method for producing fume tube using the same
KR102076167B1 (en) Repair and Reinforcement Method using Lightweight Hybrid Mortar
JP7481874B2 (en) Method for manufacturing tubular body
JPS6234704B2 (en)
JP2021155292A (en) Covering material, manufacturing method of covering material, concrete molded body, tubular molded body, manufacturing method of tubular molded body, and, slurry
JP2006036607A (en) Polymer cement mortar hardened body
JP7460065B2 (en) Coating material, tubular molded body, manufacturing method for tubular molded body, and coating method
JP6327706B2 (en) Method for producing latex modified concrete
JP2004315333A (en) Draining type precast pavement plate
JPH07109151A (en) Cement composition for producing concrete pipe and finishing material
JP4113144B2 (en) Hume tube manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019531844

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932969

Country of ref document: EP

Kind code of ref document: A1