WO2020250338A1 - 血管モデル - Google Patents

血管モデル Download PDF

Info

Publication number
WO2020250338A1
WO2020250338A1 PCT/JP2019/023268 JP2019023268W WO2020250338A1 WO 2020250338 A1 WO2020250338 A1 WO 2020250338A1 JP 2019023268 W JP2019023268 W JP 2019023268W WO 2020250338 A1 WO2020250338 A1 WO 2020250338A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
lesion
blood vessel
aorta
polymer material
Prior art date
Application number
PCT/JP2019/023268
Other languages
English (en)
French (fr)
Inventor
聡志 浪間
Original Assignee
朝日インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日インテック株式会社 filed Critical 朝日インテック株式会社
Priority to JP2021525471A priority Critical patent/JP7270733B2/ja
Priority to PCT/JP2019/023268 priority patent/WO2020250338A1/ja
Publication of WO2020250338A1 publication Critical patent/WO2020250338A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine

Definitions

  • the present invention relates to a blood vessel model.
  • Patent Document 1 discloses a biological model for training including a lesion portion having a shape that narrows or occludes the lumen portion.
  • Patent Document 2 discloses a simulated blood vessel having a stenotic portion whose shape and softness are close to those of the vascular stenosis which is a lesion portion of atherosclerosis.
  • lesions occurring in the coronary artery include atherosclerotic lesions in which the lipid pool is transformed into a necrotic core, plaque lesions in which the necrotic core is enlarged, and bleeding in the plaque lesions, depending on the degree of progression. It is classified as a calcified lesion that occurs. These lesions differ in the extent, hardness, structure (for example, layer structure, presence / absence of calcification, type of calcification), etc. of the lesion. In this respect, in the training biological model described in Patent Document 1, since the lesion portion is formed of a single layer compound, there is a problem that the hardness of the lesion portion becomes uniform.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and an object of the present invention is to provide a vascular model capable of reproducing lesions of various modes depending on the degree of progression. To do.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following forms.
  • a blood vessel model includes a tubular blood vessel portion that imitates at least a part of a blood vessel, and a lesion portion that is provided inside the blood vessel portion and is formed of a polymer material containing calcium salts.
  • the blood vessel model is provided inside the tubular blood vessel part and includes a lesion part formed of a polymer material containing calcium salts. Since calcium salts are harder than polymer materials, calcification lesions can be simulated by calcium salts, and atherosclerotic lesions and plaque lesions can be simulated by polymer materials. In addition, by changing the distribution of calcium salts in the polymer material, it is possible to simulate calcified lesions uniformly generated in plaque lesions, calcified lesions generated at arbitrary locations in plaque lesions, and the like. Furthermore, by changing the shape of calcium salts, various forms of calcified lesions such as sand-granular calcification, plate-like calcification, and nodular calcification can be simulated. As described above, according to this configuration, it is possible to provide a blood vessel model capable of reproducing various modes of lesions depending on the degree of progression.
  • the lesion portion may block the inside of the blood vessel portion. According to this configuration, since the lesion portion occludes the inside of the blood vessel, it is possible to simulate the lesion portion in which the inside of the blood vessel is occluded.
  • the lesion portion is provided so that the region through which fluid can flow is smaller than the other portion of the blood vessel portion in the cross section of a part of the blood vessel portion. May be good. According to this configuration, the lesion portion is provided so that the region through which fluid can flow is smaller than the other portion of the blood vessel portion in the cross section of a part of the blood vessel portion. Therefore, it is possible to simulate a lesion portion in which the inside of a blood vessel is narrowed.
  • the content of the calcium salts in the portion of the lesion portion adjacent to the inner peripheral surface of the blood vessel portion is higher than the content of the calcium salts in the lesion portion.
  • the content of calcium salts in the portion of the lesion portion adjacent to the inner peripheral surface of the blood vessel portion is higher than the content of calcium salts in the lesion portion. Therefore, it is possible to simulate a lesion portion in which intimal calcification or medial calcification of blood vessels has occurred.
  • the content of the calcium salt in the lesion may gradually increase from the outside of the lesion toward the center of the lesion. According to this configuration, the calcium salt content of the lesion gradually increases from the outside of the lesion toward the center of the lesion. Therefore, it is possible to simulate a lesion in which calcification occurs on the inside (a position farther from a blood vessel).
  • the content of the calcium salt in the lesion may gradually increase from the center of the lesion toward the outside of the lesion. According to this configuration, the calcium salt content of the lesion gradually increases from the center of the lesion toward the outside of the lesion. Therefore, it is possible to simulate a lesion portion in which calcification occurs on the outside (position closer to the blood vessel).
  • the polymer material forming the lesion may be a polysaccharide. According to this configuration, a lesion can be easily constructed by using a hydrophilic polysaccharide.
  • the polysaccharide forming the lesion may be agarose. According to this configuration, the lesion can be more easily constructed by using agarose, which is a neutral polysaccharide that easily gels.
  • the present invention can be realized in various aspects, for example, in the form of a blood vessel model, an organ model including a blood vessel model, a human body simulation device including a blood vessel model, a control method of the human body simulation device, and the like. be able to.
  • the human body simulation device 1 of the present embodiment is used to simulate a treatment or examination procedure using a medical device in the living lumen of the human body such as the circulatory system, digestive system, and respiratory system. It is a device. Medical device means a device for minimally invasive treatment or examination, such as a catheter or guide wire.
  • the human body simulation device 1 includes a model 10, a housing unit 20, a control unit 40, an input unit 45, a pulsation unit 50, a pulsation unit 60, and a breathing motion unit 70.
  • the model 10 includes a heart model 110 that imitates the human heart, a lung model 120 that imitates the lung, a diaphragm model 170 that imitates the diaphragm, a brain model 130 that imitates the brain, and a liver.
  • a liver model 140 imitating the above, a lower limb model 150 imitating the lower limbs, and an aorta model 160 imitating the aorta are provided.
  • the heart model 110, the lung model 120, the diaphragm model 170, the brain model 130, the liver model 140, and the lower limb model 150 are collectively referred to as a “biological model”.
  • the heart model 110, the brain model 130, the liver model 140, and the lower limb model 150 are collectively referred to as an "organ model”.
  • the lung model 120 and the diaphragm model 170 are also collectively referred to as a "respiratory model”.
  • Each biological model (ie, each organ model) except the lung model 120 and the diaphragm model 170 is connected to the aorta model 160. Details of the model 10 will be described later.
  • the accommodating portion 20 includes a water tank 21 and a covering portion 22.
  • the water tank 21 is a substantially rectangular parallelepiped water tank having an open upper portion.
  • the model 10 is submerged in the fluid by placing the model 10 on the bottom surface of the water tank 21 in a state where the inside of the water tank 21 is filled with the fluid. Since water (liquid) is used as the fluid in this embodiment, the model 10 can be kept in a wet state like an actual human body.
  • another liquid for example, physiological saline, an aqueous solution of an arbitrary compound, etc.
  • the fluid filled in the water tank 21 is taken into the inside of the aorta model 160 of the model 10 and functions as “simulated blood” that simulates blood.
  • the covering portion 22 is a plate-shaped member that covers the opening of the water tank 21.
  • the covering portion 22 By placing the covering portion 22 in a state where one surface of the covering portion 22 is in contact with the fluid and the other surface is in contact with the outside air, the covering portion 22 functions as a wave-eliminating plate. As a result, it is possible to suppress a decrease in visibility due to the waviness of the fluid inside the water tank 21. Since the water tank 21 and the covering portion 22 of the present embodiment are made of a synthetic resin (for example, acrylic resin) having high X-ray transparency and high transparency, the visibility of the model 10 from the outside can be improved.
  • the water tank 21 and the covering portion 22 may be formed by using another synthetic resin, or the water tank 21 and the covering portion 22 may be formed of different materials.
  • the control unit 40 includes a CPU, ROM, RAM, and storage unit (not shown), and by expanding and executing a computer program stored in the ROM in the RAM, the pulsation unit 50, the pulsation unit 60, and the breathing operation are performed. Controls the operation of unit 70.
  • the input unit 45 is various interfaces used by the user to input information to the human body simulation device 1. As the input unit 45, for example, a touch panel, a keyboard, an operation button, an operation dial, a microphone, or the like can be adopted. Hereinafter, the touch panel will be illustrated as the input unit 45.
  • the pulsating unit 50 is a "fluid supply unit” that sends out the pulsated fluid to the aorta model 160. Specifically, the pulsating portion 50 circulates the fluid in the water tank 21 and supplies it to the aorta model 160 of the model 10, as shown by the white arrows in FIG.
  • the pulsating portion 50 of the present embodiment includes a filter 55, a circulation pump 56, and a pulsating pump 57.
  • the filter 55 is connected to the opening 21O of the water tank 21 via a tubular body 31.
  • the filter 55 removes impurities (for example, contrast medium used in the procedure) in the fluid by filtering the fluid passing through the filter 55.
  • the circulation pump 56 is, for example, a non-volumetric centrifugal pump that circulates a fluid supplied from the water tank 21 via the tubular body 31 at a constant flow rate.
  • the pulsation pump 57 is, for example, a positive displacement reciprocating pump that applies pulsation to the fluid sent from the circulation pump 56.
  • the pulsation pump 57 is connected to the aortic model 160 of model 10 via a tubular body 51 (FIG. 2). Therefore, the fluid delivered from the pulsation pump 57 is supplied to the lumen of the aortic model 160.
  • a rotary pump operated at a low speed may be used instead of the reciprocating pump.
  • the filter 55 and the circulation pump 56 may be omitted.
  • the tubular body 31 and the tubular body 51 are flexible tubes made of a synthetic resin (for example, silicon) made of a soft material having X-ray transparency.
  • the pulsating unit 60 beats the heart model 110. Specifically, the pulsating portion 60 expands the heart model 110 by delivering a fluid into the lumen of the heart model 110, as shown by the diagonally hatched arrows in FIG. 1, and the heart model 110 The cardiac model 110 is contracted by sucking fluid from the lumen. The pulsating unit 60 realizes the pulsating motion (expansion and contraction motion) of the heart model 110 by repeating these sending and sucking motions.
  • the fluid hereinafter, also referred to as “expansion medium” used in the pulsating unit 60, a liquid may be used as in the simulated blood, or a gas such as air may be used.
  • the expansion medium is preferably an organic solvent such as benzene or ethanol, or a radiation-permeable liquid such as water.
  • the pulsating portion 60 can be realized by using, for example, a positive displacement reciprocating pump.
  • the pulsating portion 60 is connected to the heart model 110 of the model 10 via a tubular body 61 (FIG. 2).
  • the tubular body 61 is a flexible tube made of a synthetic resin (for example, silicon) made of a soft material having X-ray transparency.
  • the respiratory movement unit 70 causes the lung model 120 and the diaphragm model 170 to perform a movement simulating the respiratory movement. Specifically, the respiratory movement unit 70 expands the lung model 120 by sending fluid to the lumen of the lung model 120 and the diaphragm model 170, as indicated by the arrows with dot hatching in FIG. At the same time, the diaphragm model 170 is contracted. In addition, the respiratory movement unit 70 contracts the lung model 120 and relaxes the diaphragm model 170 by sucking fluid from the lumen of the lung model 120 and the diaphragm model 170. The breathing motion unit 70 realizes the breathing motion of the lung model 120 and the diaphragm model 170 by repeating these sending and sucking motions.
  • a liquid may be used as in the simulated blood, and a gas such as air may be used.
  • the breathing motion unit 70 can be realized by using, for example, a positive displacement reciprocating pump.
  • the respiratory movement unit 70 is connected to the lung model 120 of the model 10 via the tubular body 71, and is connected to the diaphragm model 170 via the tubular body 72 (FIG. 2).
  • the tubular bodies 71 and 72 are flexible tubes made of a synthetic resin (for example, silicon) made of a soft material having X-ray transparency.
  • FIG. 3 is a diagram showing a schematic configuration of the aorta model 160.
  • the aorta model 160 includes parts that imitate the human aorta, that is, the ascending aorta 161 that imitates the ascending aorta, the aorta arch 162 that imitates the aorta arch, the abdominal aorta 163 that imitates the abdominal aorta, and the common intestine. It is composed of a common iliac aorta portion 164 that imitates the bone aorta.
  • the aorta model 160 includes a second connecting portion 161J for connecting the heart model 110 at the end of the ascending aorta portion 161.
  • a first connection 162J for connecting the brain model 130 is provided, and in the vicinity of the abdominal aortic 163, a third connection 163Ja for connecting the liver model 140 is provided.
  • a third connection 163Ja for connecting the liver model 140 is provided.
  • the aorta model 160 includes a fluid supply unit connecting portion 163Jb for connecting the pulsating portion 50 in the vicinity of the abdominal aorta portion 163.
  • the fluid supply unit connection portion 163Jb is arranged not only in the vicinity of the abdominal aorta portion 163 but also in the vicinity of the ascending aorta portion 161 or in the vicinity of the cerebrovascular model 131 (for example, the common carotid artery).
  • the aorta model 160 may include a plurality of fluid supply unit connection portions 163Jb arranged at different positions.
  • the above-mentioned biological model connection part and fluid supply part connection part (first connection part 162J, second connection part 161J, third connection part 163Ja, two fourth connection parts 164J, fluid
  • Each open cavity 160L is formed in the supply unit connection unit 163Jb).
  • the lumen 160L functions as a flow path for transporting the simulated blood (fluid) supplied from the pulsating portion 50 to the heart model 110, the brain model 130, the liver model 140, and the lower limb model 150.
  • the aorta model 160 of this embodiment is formed of a synthetic resin (for example, polyvinyl alcohol (PVA), silicon, etc.) which is a soft material having X-ray permeability.
  • PVA polyvinyl alcohol
  • silicon silicon
  • the aorta model 160 can be produced, for example, as follows. First, prepare a mold that imitates the shape of the aorta of the human body. The type corresponds to the aorta among the human body model data generated by analyzing the actual computer tomography (CT) image of the human body, magnetic resonance imaging (MRI) image, and the like. It can be produced by inputting the partial data into, for example, a 3D printer and printing it.
  • the mold may be plaster, metal, or resin.
  • a liquefied synthetic resin material is applied to the inside of the prepared mold, and the synthetic resin material is cooled and solidified before being removed from the mold. In this way, the aorta model 160 having a lumen 160L can be easily produced.
  • FIG. 4 and 5 are diagrams showing a schematic configuration of the model 10.
  • the heart model 110 has a shape imitating a heart, and a lumen 110L is formed inside.
  • the heart model 110 of the present embodiment is formed of a synthetic resin (for example, silicon) made of a soft material having X-ray transparency, and like the aorta model 160, the synthetic resin is inside a mold prepared from human body model data. It can be produced by applying a material and removing the mold.
  • the heart model 110 also includes a tubular body 115 and is connected to a cardiovascular model 111.
  • the cardiovascular model 111 is a tubular blood vessel model that imitates a part of the ascending aorta and the coronary artery, and is formed of a synthetic resin (for example, PVA, silicon, etc.) made of a soft material having X-ray permeability.
  • the tubular body 115 is a flexible tube made of a synthetic resin (for example, silicon) made of a soft material having X-ray transparency.
  • the tubular body 115 is connected so that the tip 115D communicates with the lumen 110L of the heart model 110, and the proximal end 115P communicates with the tubular body 61 connecting to the beating portion 60.
  • the lung model 120 has a shape that imitates the right lung and the left lung, respectively, and one lumen 120L in which the right lung and the left lung are connected is formed inside.
  • the lung model 120 is arranged to cover the left and right sides of the heart model 110.
  • the materials and manufacturing methods that can be used to prepare the lung model 120 are the same as those of the heart model 110.
  • the material of the lung model 120 and the material of the heart model 110 may be the same or different.
  • the lung model 120 is connected to a tracheal model 121, which is a tubular model that imitates a part of the trachea.
  • the tracheal model 121 can be made of the same material as the tubular body 115 of the heart model 110.
  • the material of the tracheal model 121 and the material of the tubular body 115 may be the same or different.
  • the tracheal model 121 is connected so that the tip 121D communicates with the lumen 120L of the lung model 120, and the proximal end 121P communicates with the tubular body 71 that connects to the respiratory movement unit 70.
  • the diaphragm model 170 has a shape that imitates the diaphragm, and a lumen 170L is formed inside.
  • the diaphragm model 170 is arranged below the heart model 110 (in other words, in the direction opposite to the brain model 130 with the heart model 110 in between).
  • the materials and manufacturing methods that can be used to prepare the diaphragm model 170 are the same as those of the heart model 110.
  • the material of the diaphragm model 170 and the material of the heart model 110 may be the same or different.
  • the diaphragm model 170 is connected to the tubular body 72 that connects to the respiratory movement unit 70 in a state where the lumen 170L of the diaphragm model 170 and the lumen of the tubular body 72 are communicated with each other.
  • the brain model 130 has a shape that imitates the brain and has a solid shape that does not have a lumen.
  • the brain model 130 is located above the heart model 110 (in other words, in the direction opposite to the diaphragm model 170 with the heart model 110 in between).
  • the materials and manufacturing methods that can be used to prepare the brain model 130 are the same as those of the heart model 110.
  • the material of the brain model 130 and the material of the heart model 110 may be the same or different.
  • the brain model 130 is connected to a cerebrovascular model 131, which is a tubular vascular model that imitates at least a part of major arteries including a pair of common carotid arteries on the left and right and a pair of vertebral arteries on the left and right.
  • the cerebrovascular model 131 can be made of the same material as the cardiovascular model 111 of the heart model 110.
  • the material of the cerebrovascular model 131 and the material of the cardiovascular model 111 may be the same or different. Further, although not shown, the cerebrovascular model 131 may simulate not only arteries but also major veins including superior cerebral vein and straight sinus.
  • the brain model 130 may be a complex further including a bone model that imitates the human skull and cervical spine.
  • the skull has a hard resin case that mimics the parietal bone, temporal bone, occipital bone, and sphenoid bone, and a lid that mimics the frontal bone
  • the cervical spine has a through hole through which a vascular model can pass through. It may have a plurality of rectangular resin bodies having.
  • the bone model is made of a resin having a hardness different from that of an organ model such as a blood vessel model or a brain model.
  • the skull can be made of acrylic resin and the vertebrae can be made of PVA.
  • the tip 131D is connected to the brain model 130, and the proximal 131P is connected to the first connection 162J of the aorta model 160 (for example, the brachiocephalic artery, the subclavian artery, or its vicinity in humans).
  • the tip 131D of the cerebral vascular model 131 mimics the vertebral artery passing through the vertebral bone and other blood vessels located on and / or inside the vertebral model 130 (eg, posterior cerebral artery, middle cerebral artery). It may also be connected to the peripheral part of the common carotid artery, imitating the posterior communicating artery.
  • proximal end 131P of the cerebrovascular model 131 is connected to the first connecting portion 162J in a state where the lumen of the cerebrovascular model 131 and the lumen 160L of the aorta model 160 are communicated with each other.
  • the liver model 140 has a shape that imitates the liver and has a solid shape that does not have a lumen.
  • the liver model 140 is located below the diaphragm model 170.
  • the materials and manufacturing methods that can be used to prepare the liver model 140 are the same as those of the heart model 110.
  • the material of the liver model 140 and the material of the heart model 110 may be the same or different.
  • the liver model 140 is connected to a liver blood vessel model 141, which is a tubular blood vessel model that imitates a part of a hepatic artery.
  • the hepatic blood vessel model 141 can be made of the same material as the cardiovascular model 111 of the heart model 110.
  • the material of the hepatic blood vessel model 141 and the material of the cardiovascular model 111 may be the same or different.
  • the tip 141D is connected to the liver model 140, and the proximal end 141P is connected to the third connection portion 163Ja of the aorta model 160.
  • the tip 141D of the liver vascular model 141 may mimic other blood vessels (eg, hepatic arteries) disposed on the surface and / or inside of the liver model 140.
  • the proximal end 141P of the liver blood vessel model 141 is connected to the third connection portion 163Ja in a state where the lumen of the liver blood vessel model 141 and the lumen 160L of the aorta model 160 are communicated with each other.
  • the lower limb model 150 includes a lower limb model 150R corresponding to the right foot and a lower limb model 150L corresponding to the left foot. Since the lower limb models 150R and L have the same configuration except that they are symmetrical, the following description will be made as "lower limb model 150" without distinction.
  • the lower limb model 150 has a shape that imitates at least a part of major tissues such as the quadriceps femoris in the thigh, the tibialis anterior muscle in the lower leg, the peroneus longus muscle, and the extensor digitorum longus muscle, and has no lumen. It has a solid shape.
  • the materials and manufacturing methods that can be used to prepare the lower limb model 150 are the same as those of the heart model 110.
  • the material of the lower limb model 150 and the material of the heart model 110 may be the same or different.
  • the lower limb model 150 is connected to a lower limb vascular model 151 (lower limb vascular model 151R, L), which is a tubular vascular model that imitates at least a part of the main arteries including the femoral artery to the dorsalis pedis artery.
  • the lower limb blood vessel model 151 can be made of the same material as the cardiovascular model 111 of the heart model 110.
  • the material of the lower limb blood vessel model 151 and the material of the cardiovascular model 111 may be the same or different.
  • the lower limb blood vessel model 151 may simulate not only arteries but also major veins including the great saphenous vein from the common osteoenteric vein.
  • the lower limb blood vessel model 151 is arranged so that the inside of the lower limb model 150 extends from the thigh toward the lower leg side in the extension direction.
  • the tip 151D is exposed at the lower end of the lower limb model 150 (position corresponding to the foot root to the back of the foot), and the proximal end 151P is connected to the fourth connection portion 164J of the aorta model 160.
  • the proximal end 151P is connected to the fourth connecting portion 164J in a state where the lumen of the lower limb blood vessel model 151 and the lumen 160L of the aorta model 160 are communicated with each other.
  • cardiovascular model 111 cerebrovascular model 131, hepatic blood vessel model 141, and lower limb blood vessel model 151 are also collectively referred to as "vascular model”.
  • these blood vessel models and the aorta model 160 are also collectively referred to as a “systemic blood vessel model”.
  • the posterior cerebral artery of the brain, the left coronary artery of the heart, the right coronary artery, and the like can be simulated by the blood vessel model arranged on the surface of each biological model.
  • the blood vessel model arranged inside each biological model can simulate, for example, the middle cerebral artery of the brain, the hepatic artery of the liver, the femoral artery of the lower limbs, and the like.
  • At least one or more biological models are used for the aorta model 160.
  • the model 10 of various aspects can be configured.
  • the combination of biological models (heart model 110, lung model 120, diaphragm model 170, brain model 130, liver model 140, lower limb model 150) attached to the aorta model 160 can be freely changed according to the organs required for the procedure. ..
  • the procedure of the PCI total femoral artery approach can be simulated by using the human body simulation device 1.
  • all biological models except the lower limb model 150 may be attached, the heart model 110 and the lung model 120 may be attached, or the lung model 120 and the diaphragm model 170 may be attached. Only the liver model 140 may be worn, or only the lower limb model 150 may be worn.
  • the biological model connection portion (first connection portion 162J, second connection portion 161J, third connection portion 163Ja, fourth connection portion 164J) is connected to one part of the human body.
  • biological models that imitate parts herein, brain model 130, liver model 140, lower limb model 150
  • living organisms of each organ such as the circulatory system and digestive system
  • medical devices such as catheters and guide wires for the lumen.
  • the biological model connecting units 161J to 164J can be detachably connected to the biological model, it is possible to remove the biological model unnecessary for the procedure and store it separately, which can improve convenience.
  • FIGS. 6 and 7 are explanatory views illustrating the configuration of the organ model in which the blood vessel model is arranged. 6 and 7 illustrate the case where the cardiovascular model 111 is configured as a blood vessel circulating on the surface of the heart model 110.
  • FIGS. 6 and 7 show XYZ axes that are orthogonal to each other.
  • the X-axis corresponds to the left-right direction (width direction) of the heart model 110
  • the Y-axis corresponds to the height direction of the heart model 110
  • the Z-axis corresponds to the depth direction of the heart model 110.
  • the upper side (+ Y-axis direction) of FIGS. 6 and 7 corresponds to the "proximal side”
  • the lower side (-Y-axis direction) corresponds to the "distal side”.
  • the proximal side (+ Y-axis direction) is also referred to as the "base end side”
  • the distal side (-Y-axis direction) is also referred to as the "tip end side”.
  • the end portion located on the tip end side is referred to as a "tip end”
  • the end portion located on the proximal end side is referred to as a "base end”.
  • the portion located at the tip and the vicinity of the tip is referred to as a "tip portion”
  • the portion located at the proximal end and the vicinity of the proximal end is referred to as a "base end portion”.
  • the above-mentioned lumen 110L of the heart model 110, the tubular body 115, and the first connection portion 162J are not shown.
  • the configuration of the cardiovascular model 111 will be described with reference to FIG.
  • the heart model 110 has an outer shape simulating a human heart, and a cardiovascular model 111 is arranged on the surface 110S of the heart model 110.
  • the proximal end 111P has a shape simulating a part of the ascending aorta
  • the distal end 111D has a shape simulating the left and right coronary arteries.
  • the portion simulating the left coronary artery is also referred to as the left coronary artery model 180L
  • the portion simulating the right coronary artery is also referred to as the right coronary artery model 180R.
  • the left coronary artery model 180L and the right coronary artery model 180R are collectively referred to as a coronary artery model 180.
  • the coronary artery model 180 has a main branch portion 181, a side branch portion 182, a connecting portion 183, and a bifurcation portion 184.
  • the main branch 181 simulates the major blood vessels in the coronary arteries
  • the side branch 182 mimics the fine blood vessels extending from the main branch 181.
  • the main branch portion 181 is a tubular body having a lumen 181L (see FIG. 8), and an opening 181O communicating with the lumen 181L is formed at the tip portion.
  • the side branch portion 182 is a tubular body having a lumen 182L, and an opening 182O communicating with the lumen 182L is formed at the tip portion.
  • the main branch portion 181 and the side branch portion 182 are formed of a synthetic resin (for example, PVA, silicon, etc.) made of a soft material having X-ray transparency, and each corresponds to a “blood vessel portion”.
  • one main branch portion 181 and the other main branch portion 181 are connected in a state where the lumen 181L is communicated with each other.
  • the branch portion 184 (FIG. 6: broken line)
  • one main branch portion 181 is branched into a plurality of main branch portions 181.
  • the fluid such as simulated blood flowing from the lumen 111L of the cardiovascular model 111 branches into the left coronary artery model 180L and the right coronary artery model 180R, respectively, and in each coronary artery model 180, the main branch Proceed through the lumen 181L of the portion 181 toward the tip side.
  • the fluid flows to the tips of each main branch 181 and each side branch 182 through branching by the branch 184 on the way, and goes out from the opening 181O of each main branch 181 and the opening 182O of each side branch 182, respectively. Is discharged.
  • the main branch portion 181 and the side branch portion 182 function as a "flow path forming portion" that forms a fluid flow path extending in the extending direction of the cardiovascular model 111.
  • the lesions 191 to 193 will be described with reference to FIG.
  • different types of lesion portions 191 to 193 (FIG. 7: broken line) are provided in a part of the inner lumen 181L.
  • the lesion portion 191 is provided so as to close the lumen 181L of the main branch portion 181. That is, the lesion portion 191 is an obstructive lesion that blocks the fluid flow path at the site.
  • the lesion 192 protrudes inward in the cross section of the main branch 181 so that the area through which fluid can flow (that is, the lumen 181L) is smaller than the lumen 181L of the other portion without the lesion 192. It is provided.
  • the lesion portion 192 is a stenotic lesion that narrows the fluid flow path at the site.
  • the lesion portion 193 is provided so as to protrude outward so that the outer diameter of the main branch portion 181 is larger than the outer diameter of the other portion without the lesion portion 193. That is, the lesion portion 193 is a nodular lesion.
  • FIG. 8 is an explanatory view illustrating the cross-sectional configuration of the A1-A1 line of FIG. 7.
  • FIG. 9 is an explanatory view illustrating the cross-sectional configuration of the line A2-A2 of FIG. 8 and 9 show an enlarged cross section of a portion of the substantially spherical heart model 110 for convenience of illustration.
  • the main branch portion 181 of the cardiovascular model 111 is placed on the surface 110S of the heart model 110.
  • Lesions 191 to 193 are not provided in the A1-A1 cross section of FIG. Therefore, as shown in FIG. 8, the lumen 181L of the main branch portion 181 in the A1-A1 cross section is in a state where the fluid can flow.
  • the lesion portion 191 is provided in the A2-A2 cross section of FIG. Therefore, as shown in FIG. 9, the lumen 181L of the main branch portion 181 in the A2-A2 cross section is in a closed state in which fluid cannot flow.
  • the main branch portion 181 of the cardiovascular model 111 may or may not be fixed to the heart model 110. When it is fixed, it may be fixed by using a separate fixing member, it may be bonded by using an arbitrary adhesive such as an epoxy adhesive, or it may be welded.
  • FIG. 10 is an explanatory view illustrating the manufacturing method of the lesions 191 to 193.
  • a polymer material containing a calcium compound capable of precipitating insoluble (hydrophobic) crystals in water is prepared.
  • a polymer material containing a calcium compound is prepared, for example, by adding a calcium compound to a polymer material dissolved in a solvent.
  • the calcium compound to be added for example, calcium chloride, calcium carbonate, calcium phosphate or the like can be adopted.
  • the polymer material for example, agarose, sodium alginate, cellulose, starch, glycogen, PVA, silicon, latex, polyurethane and the like can be adopted.
  • the lesion portion 191 to 193 can be easily formed by using the hydrophilic polysaccharide.
  • the polysaccharides if agarose, which is a neutral polysaccharide that easily gels, is used, the lesions 191 to 193 can be more easily constructed.
  • an agarose gel having a gel hardness of 10000 containing 10% by weight of calcium chloride was prepared. The concentration of the calcium compound can be arbitrarily determined according to the degree of the calcified lesion simulated in the lesion portion 191 to 193.
  • the concentration of the calcium compound can increase the number of calcified lesions in the lesions 191 to 193.
  • the gel hardness can be arbitrarily determined according to the desired hardness of the lesions 191 to 193. The gel hardness can be measured using a gel hardness tester.
  • step S12 the polymer material containing the calcium compound prepared in step S10 is formed into an arbitrary shape and cured.
  • a liquid polymer material containing a calcium compound is poured into a hollow mold having an arbitrary shape and size, and the liquid polymer material is solidified (molded).
  • the method of solidifying may be solidification by heating or solidification by cooling.
  • a liquid polymer material containing a calcium compound is poured into a hollow mold having an arbitrary shape and size, and a core material is placed in the filled polymer material. And solidify the liquid polymer material.
  • the shape of the core material can be selected from any shape such as an elliptical shape.
  • the method of solidifying may be solidification by heating or solidification by cooling.
  • a polymer material containing a calcium compound is heated for a predetermined time using a heating furnace.
  • the heating (cooling) temperature and the solidification time can be arbitrarily determined according to the type of polymer material used and the desired hardness of the lesions 191 to 193.
  • FIG. 11 is an explanatory diagram illustrating the configuration of the manufactured lesion portion 191.
  • the polymer material containing the calcium compound cured in step S12 is immersed in a solution containing carbonate ions for a predetermined time.
  • calcium salts in the polymer material can be precipitated to crystallize, and calcified lesions can be simulated by the crystallized calcium salts.
  • a lesion portion 191 containing crystallized calcium salts (calcified lesions) 201 and 202 can be produced inside the polymer material 200.
  • the crystal 201 precipitated on the left side is larger than the crystal 202 precipitated on the right side.
  • the carbonate ion concentration in the solution and the immersion time can be arbitrarily determined according to the mode of the calcified lesion to be simulated in the lesion portion 191 to 193. For example, if the carbonate ion concentration is increased, large crystals (calcified lesions) can be precipitated in the lesions 191 to 193. Similarly, if the immersion time is lengthened, large crystals (calcified lesions) can be precipitated in the lesions 191 to 193.
  • the cardiovascular model 111 (blood vessel model) of the first embodiment is provided inside the tubular main branch portion 181 and the side branch portion 182 (blood vessel portion), and is a polymer material containing calcium salts 201 and 202. It includes lesions 191 to 193 formed by 200 (FIG. 11). Since the calcium salts 201 and 202 are harder than the polymer material 200, the calcium salts 201 and 202 can simulate calcified lesions, and the polymer material 200 can simulate atherosclerotic lesions and plaque lesions, respectively. In addition, by changing the distribution of 200 calcium salts 201 and 202 in the polymer material, calcified lesions uniformly generated in plaque lesions, calcified lesions generated at arbitrary locations in plaque lesions, etc.
  • the lesion portion 191 of the first embodiment closes the inside of the main branch portion 181 (blood vessel portion), it is possible to simulate the lesion portion 191 in which the inside of the coronary artery model 180 (blood vessel) is closed. Further, in the cross section of a part of the main branch portion 181 of the lesion portion 192, the lumen 181L, which is a region through which fluid can flow, is provided with the main branch portion 181 (other of the blood vessel portion) in which the lesion portions 191 to 193 are not provided. It is provided so as to be smaller than the part). Therefore, the lesion portion 192 in a mode in which the inside of the coronary artery model 180 is narrowed can be simulated.
  • the lesions 191 to 193 can be easily formed by using the hydrophilic polysaccharide. Further, in the method for producing lesions 191 to 193 described with reference to FIG. 10, if a polysaccharide is used as the polymer material, the lesions 191 to 193 can be easily formed by using the hydrophilic polysaccharide. Further, in the method for producing lesions 191 to 193 described with reference to FIG. 10, if agarose is used as the polysaccharide, the lesions 191 to 193 can be more easily formed by using agarose, which is a neutral polysaccharide that easily gels. ..
  • FIG. 12 is an explanatory view illustrating the cross-sectional configuration of the lesion portion 191a of the second embodiment.
  • the cardiovascular model 111a of the second embodiment includes a main branch portion 181a provided with a lesion portion 191a having a configuration different from that of the first embodiment.
  • the lesion portion 191a of the second embodiment is composed of two layers, an outer layer 210 including an outer surface 211 and an inner layer 220.
  • the outer layer 210 has a higher content of calcium salts contained in the polymer material 200 than the inner layer 220. Further, the calcium salt crystals 201 formed in the outer layer 210 are larger than the calcium salt crystals 202 formed in the inner layer 220.
  • the content of calcium salts on the outer surface 211 adjacent to the inner peripheral surface of the main branch portion 181a (blood vessel portion) is in the inside of the lesion portion 191a (that is, the inner layer 220). Higher than the content of calcium salts.
  • FIG. 13 is an explanatory view illustrating the method for producing the lesion portion 191a of the second embodiment.
  • FIG. 14 is an explanatory diagram illustrating the state of steps S20 and S22. In the manufacturing method of the second embodiment, step S20 is performed instead of step S10 described in FIG. 10, and step S22 is performed instead of step S12.
  • step S20 only a plurality of types of polymer materials containing a calcium compound capable of precipitating insoluble (hydrophobic) crystals in water are prepared.
  • the polymer material 200a1 having a relatively high content of the calcium compound and the polymer material 200a2 having a relatively low content of the calcium compound are prepared.
  • the polymer material 200a1 and the polymer material 200a2 may use the same polymer material or different polymer materials from the specific examples described with reference to FIG. 10.
  • the same calcium compound may be used as the calcium compound added to the polymer material 200a1 and the calcium compound contained in the polymer material 200a2 among the specific examples described with reference to FIG. Calcium compounds may be used.
  • the concentration of the calcium compound and the gel hardness can be arbitrarily determined, and the polymer material 200a1 and the polymer material 200a2 may be the same or different.
  • FIG. 15 is an explanatory view illustrating the configuration of the manufactured lesion portion 191a.
  • a liquid polymer material 200a1 containing a calcium compound is poured into a hollow mold having an arbitrary shape and size and solidified (molded) in an arbitrary shape.
  • a liquid polymer material having a calcium compound content different from that of the polymer material 200a1 is poured into the inside or outside of the previously solidified polymer material 200a1 to be solidified.
  • the method of solidification may be solidification by heating or solidification by cooling (FIG. 14). In the case of molding by heating, for example, it is cured in the shape after molding by heating for a predetermined time using a heating furnace.
  • step S14 of FIG. 10 by immersing in a solution containing carbonate ions for a predetermined time, crystals of the calcium compound in the polymer materials 200a1 and 200a2 can be precipitated, and the lesion portion 191a can be produced ( FIG. 15).
  • the lesion portion 191a may include a plurality of layers (outer layer 210, inner layer 220) having different contents of calcium salts.
  • the lesion portion 191a may include a plurality of layers (outer layer 210, inner layer 220) having different sizes of calcium salt crystals 201 and 202.
  • the cardiovascular model 111a including the lesion portion 191a and the lesion portion 191a of the second embodiment can also achieve the same effect as that of the first embodiment described above.
  • the content of calcium salts in the portion adjacent to the inner peripheral surface of the main branch portion 181a (blood vessel portion) that is, the outer surface 211 of the outer layer 210) is the lesion.
  • part 191a It is higher than the content of calcium salts in the inside of part 191a (that is, the inner layer 220). Therefore, it is possible to simulate the lesion portion 191a in the mode in which intimal calcification or medial calcification of the coronary artery model 180 (blood vessel) has occurred.
  • the two-layer structure of the outer layer 210 and the inner layer 220 is illustrated, but the number of layers may be any number of three or more layers.
  • the content of calcium salts or the size of crystals can be gradually changed from the outside to the inside.
  • the calcium salt content of the lesion portion 191a is gradually increased from the outside of the lesion portion 191a toward the center of the lesion portion 191a, the content of the calcium salt is gradually increased inside (a position farther from the main branch portion 181a).
  • a lesion 191a in an aspect in which calcification has occurred can be simulated.
  • FIG. 16 is an explanatory view illustrating the cross-sectional structure of the lesion portion 192b of the third embodiment.
  • the cardiovascular model 111b of the third embodiment includes a main branch portion 181b provided with a lesion portion 192b.
  • the lesion portion 192b is provided at two locations, the upper left portion of the lumen 181L of the main branch portion 181b and the lower right portion, and each is a stenotic lesion that narrows the lumen 181L as a fluid flow path. is there.
  • the lesion portion 192b is composed of two layers, an outer layer 210b and an inner layer 220b, as in the second embodiment.
  • the inner layer 220b is a part located on the central side of the lumen 181L
  • the outer layer 210b is a part located on the inner wall side of the main branch portion 181b.
  • the outer layer 210b has a higher content of calcium salts contained in the polymer material 200 than the inner layer 220b. Further, the crystals of calcium salts formed in the outer layer 210b are larger than those in the inner layer 220b.
  • the lesion portion 191a (second embodiment, FIG. 12) which is an obstructive lesion
  • the lesion portion 192b (FIG. 16) which is a stenotic lesion
  • the lesion portion 193 (first embodiment) which is a nodular lesion.
  • a configuration including a plurality of layers having different calcium salt contents or crystal sizes in the polymer material 200 can be adopted.
  • the cardiovascular model 111b including the lesion portion 192b and the lesion portion 192b of the third embodiment can also achieve the same effects as those of the first embodiment and the second embodiment described above.
  • FIG. 17 is an explanatory view illustrating the cross-sectional configuration of the lesion portion 192c of the fourth embodiment.
  • the cardiovascular model 111c of the fourth embodiment includes a main branch portion 181c provided with a lesion portion 192c having a configuration different from that of the third embodiment.
  • the lesion portion 192c is composed of two layers, an outer layer 210c and an inner layer 220c, as in the third embodiment.
  • the outer layer 210c of the third embodiment has a lower content of calcium salts contained in the polymer material 200 than the inner layer 220c. Further, the crystals of calcium salts formed in the outer layer 210c are smaller than those in the inner layer 220c.
  • the content of calcium salts in the central portion (inner layer 220c) of the lesion portion 192c is increased as compared with the outer portion (outer layer 210c) of the lesion portion 192c.
  • the two-layer structure of the outer layer 210c and the inner layer 220c is illustrated, but the number of layers may be any number of three or more layers. By increasing the number of layers, the content of calcium salts or the size of crystals can be gradually changed from the inside to the outside of the lesion 192c.
  • the content of calcium salts in the lesion portion 192c is gradually increased from the center of the lesion portion 192c toward the outside of the lesion portion 192c, the content of the calcium salt is gradually increased on the outside (position closer to the main branch portion 181c). It is possible to simulate a lesion in a mode in which calcification has occurred.
  • FIG. 18 is an explanatory diagram illustrating the configuration of the blood vessel model of the fifth embodiment.
  • the blood vessel model of the fifth embodiment is the right coronary artery model 180Rd.
  • the right coronary artery model 180Rd is not located in the cardiac model 110 described in the first embodiment.
  • the lesions 192 and 193 described in the first embodiment are formed on the main branch 181 of the right coronary artery model 180Rd.
  • the right coronary artery model 180Rd (blood vessel model) is not arranged on the surface or inside of the heart model 110 (organ model), and may be realized only by the blood vessel model. Further, in the example of FIG.
  • the right coronary artery model 180Rd is configured to include a plurality of main branch portions 181 and a plurality of side branch portions 182, but the blood vessel model may be composed of only one main branch portion 181. Good.
  • the right coronary artery model 180Rd of the fifth embodiment also has the same effect as that of the first embodiment described above.
  • the configuration of the human body simulation device can be changed in various ways, for example, a part of the component can be omitted or changed, or another component can be added.
  • the human body simulation device may not include components of at least a part of a housing unit, a control unit, an input unit, a pulsating unit, a pulsating unit, and a respiratory motion unit.
  • the human body simulation device may include an input unit by means other than the touch panel (for example, voice, operation dial, button, etc.).
  • the configuration of the model can be changed in various ways, for example, a part of the component can be omitted or changed, and another component can be added.
  • the aorta model may not include at least a portion of the first to fourth connections described above.
  • the arrangement of the first to fourth connections described above in the aortic model may be arbitrarily changed, and the first connection may not be arranged at or near the aortic arch.
  • the second connection may not be located at or near the ascending aorta
  • the third connection may not be located at or near the abdominal aorta
  • the fourth connection may be total.
  • the number of biological model connections of the aorta model can be changed arbitrarily, and a new biological model connection for connecting a biological model (for example, stomach model, pancreas model, kidney model, etc.) not described above can be changed. It may be provided with a part.
  • a biological model for example, stomach model, pancreas model, kidney model, etc.
  • the model does not have to include at least a part of a heart model, a lung model, a brain model, a liver model, a lower limb model, and a diaphragm model.
  • the respiratory movement part can also be omitted.
  • the model may be configured as a complex further comprising a bone model that mimics at least a portion of the human skeleton, such as the ribs, sternum, thoracic spine, lumbar spine, femur, and tibia.
  • the configurations of the heart model, lung model, brain model, liver model, lower limb model, and diaphragm model described above may be arbitrarily changed.
  • the lumen of the heart model and the beating portion that delivers fluid into the lumen of the heart model may be omitted (FIG. 4).
  • the lung model may have separate lumens in each of the left and right lungs (Fig. 4).
  • the lower limb model may further include a skin model that covers the thigh muscles (FIG. 5).
  • the composition of the lesion can be changed in various ways, for example, a part of the component can be omitted or changed, or another component can be added.
  • the lesion may be provided in a vascular model other than the cardiovascular model (eg, cerebrovascular model, hepatic vascular model, lower limb vascular model).
  • the blood vessel model may be provided with a plurality of different types of lesions as described in the first to fifth embodiments, and may be any of an occluded lesion, a stenotic lesion, and a lump-shaped lesion. Only one type of lesion may be provided.
  • the number of lesions provided in the blood vessel model can be arbitrarily changed, and may be one or a plurality of lesions.
  • various lesions simulating various lesions such as an occluded lump-shaped lesion and a stenotic lump-shaped lesion A lesion may be provided.
  • the case where the content of calcium salts or the crystal size in the polymer material decreases or increases in the lesion portion from the center of the lesion to the outside has been described.
  • the content of calcium salts in the polymer material or the size of crystals may decrease or increase from the upstream side to the downstream side of the fluid flow path described in FIG.
  • the content of calcium salts or the size of crystals on the surface that occludes the fluid flow path may be larger or larger than that of other portions. Then, the crystallized calcium salts can simulate the fibrous film formed on the surface of the obstructed lesion.
  • the configuration of the human body simulation apparatus of the first to fifth embodiments and the configuration of the lesion portion may be appropriately combined.
  • the blood vessel model cardiac model, cerebrovascular model, liver blood vessel model, lower limb blood vessel model
  • one or more lesions of the embodiments described in the first to fifth embodiments are alone. Alternatively, they may be provided in combination.
  • Aortic arch 163 ... Abdominal aorta 164 ... Common iliac aorta 170 ... Medial model 180, 180Rd ... Coronary model 181,181a-c ... Main branch 182 ... Side branch 183 ... Connection 184 ... Branch 191, 191a ... Scratch 192, 192b, c ... Scratch 193 ... Scratch 200, 200a 1, a2 ... Polymer material 201, 202 ... Crystal 210, 210b, c ... Outside Layers 220, 220b, c ... Inner layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Instructional Devices (AREA)

Abstract

血管モデルは、血管の少なくとも一部分を模した管状の血管部と、血管部の内側に設けられ、カルシウム塩類を含有する高分子材料により形成された病変部と、を備える。これにより、進行の程度に応じた種々の態様の病変部を再現することができる。

Description

血管モデル
 本発明は、血管モデルに関する。
 循環器系や消化器系等の生体管腔内への低侵襲な治療または検査のために、カテーテル等の医療用デバイスが使用されている。また、医師等の術者が、これらの医療用デバイスを用いた手技を模擬することが可能な生体モデルが知られている。例えば、特許文献1には、内腔部を狭窄または閉塞する形状の病変部を備える訓練用生体モデルが開示されている。例えば、特許文献2には、粥状動脈硬化症の病変部である血管狭窄の形状と柔らかさが近い狭窄部をもつ模擬血管が開示されている。
特開2011-27794号公報 特開2004-275682号公報
 ところで、例えば、冠動脈内に生じる病変には、進行の程度に応じて、リピッドプールが壊死性コアへと変化した粥状硬化性病変、壊死性コアが拡大したプラーク病変、プラーク病変内の出血により生じる石灰化病変等に分類される。これらの病変は、病変部の範囲、硬さ、構造(例えば、層構成、石灰化の有無、石灰化の種類)等がそれぞれ相違する。この点、特許文献1に記載の訓練用生体モデルでは、病変部が単一層の化合物により形成されているため、病変部の硬さが一様になるという課題があった。また、特許文献2に記載の模擬血管では、病変部が脂質を模擬しているに過ぎず、石灰化病変を模擬できないという課題があった。なお、このような課題は、冠動脈内に生じる病変部を模擬しようとする場合に限らず、血管内に生じる病変部を模擬する場合の全般に共通する。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、進行の程度に応じた種々の態様の病変部を再現することが可能な血管モデルを提供することを目的とする。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、血管モデルが提供される。この血管モデルは、血管の少なくとも一部分を模した管状の血管部と、前記血管部の内側に設けられ、カルシウム塩類を含有する高分子材料により形成された病変部と、を備える。
 この構成によれば、血管モデルは、管状の血管部の内側に設けられ、カルシウム塩類を含有する高分子材料により形成された病変部を備える。カルシウム塩類は、高分子材料よりも固いため、カルシウム塩類によって石灰化病変を、高分子材料によって粥状硬化性病変やプラーク病変を、それぞれ模擬できる。また、高分子材料中のカルシウム塩類の分布を変更することによって、プラーク病変中に一様に生じた石灰化病変や、プラーク病変中の任意の箇所に生じた石灰化病変等を模擬できる。さらに、カルシウム塩類の形状を変更することによって、砂粒状石灰化、板状石灰化、結節状石灰化等の、種々の態様の石灰化病変を模擬できる。このように、本構成によれば、進行の程度に応じた種々の態様の病変部を再現することが可能な血管モデルを提供できる。
(2)上記形態の血管モデルにおいて、前記病変部は、前記血管部の内側を塞いでいてもよい。
 この構成によれば、病変部は血管部の内側を塞いでいるため、血管の内側を閉塞した態様の病変部を模擬できる。
(3)上記形態の血管モデルにおいて、前記病変部は、前記血管部の一部分の横断面において、流体が流通可能な領域が、前記血管部の他の部分よりも小さくなるように設けられていてもよい。
 この構成によれば、病変部は血管部の一部分の横断面において、流体が流通可能な領域が血管部の他の部分よりも小さくなるように設けられている。このため、血管の内側を狭窄した態様の病変部を模擬できる。
(4)上記形態の血管モデルにおいて、前記病変部のうち、前記血管部の内周面に隣接した部分における前記カルシウム塩類の含有量は、前記病変部の内部における前記カルシウム塩類の含有量よりも多くてもよい。
 この構成によれば、病変部のうち、血管部の内周面に隣接した部分におけるカルシウム塩類の含有量は、病変部の内部におけるカルシウム塩類の含有量よりも多い。このため、血管の内膜石灰化又は中膜石灰化が生じた態様の病変部を模擬できる。
(5)上記形態の血管モデルでは、前記病変部において、前記カルシウム塩類の含有量は、前記病変部の外側から、前記病変部の中心に向かうにつれて徐々に増加してもよい。
 この構成によれば、病変部のカルシウム塩類の含有量は、病変部の外側から、病変部の中心に向かうにつれて徐々に増加する。このため、内側(血管により遠い位置)において石灰化が生じた態様の病変部を模擬できる。
(6)上記形態の血管モデルでは、前記病変部において、前記カルシウム塩類の含有量は、前記病変部の中心から、前記病変部の外側に向かうにつれて徐々に増加してもよい。
 この構成によれば、病変部のカルシウム塩類の含有量は、病変部の中心から、病変部の外側に向かうにつれて徐々に増加する。このため、外側(血管により近い位置)において石灰化が生じた態様の病変部を模擬できる。
(7)上記形態の血管モデルにおいて、前記病変部を形成する前記高分子材料は、多糖類であってもよい。
 この構成によれば、親水性の多糖類を用いて、簡単に、病変部を構成できる。
(8)上記形態の血管モデルにおいて、前記病変部を形成する前記多糖類は、アガロースであってもよい。
 この構成によれば、ゲル化しやすい中性多糖であるアガロースを用いて、より簡単に、病変部を構成できる。
 なお、本発明は、種々の態様で実現することが可能であり、例えば、血管モデル、血管モデルを備える臓器モデル、血管モデルを備える人体シミュレーション装置、人体シミュレーション装置の制御方法などの形態で実現することができる。
人体シミュレーション装置の概略構成を示す図である。 人体シミュレーション装置の概略構成を示す図である。 大動脈モデルの概略構成を示す図である。 モデルの概略構成を示す図である。 モデルの概略構成を示す図である。 血管モデルを配置した臓器モデルの構成を例示した説明図である。 血管モデルを配置した臓器モデルの構成を例示した説明図である。 図7のA1-A1線における断面構成を例示した説明図である。 図7のA2-A2線における断面構成を例示した説明図である。 病変部の製造方法を例示した説明図である。 製造された病変部の構成を例示した説明図である。 第2実施形態の病変部の断面構成を例示した説明図である。 第2実施形態の病変部の製造方法を例示した説明図である。 ステップS20及びS22の様子を例示した説明図である。 製造された病変部の構成を例示した説明図である。 第3実施形態の病変部の断面構成を例示した説明図である。 第4実施形態の病変部の断面構成を例示した説明図である。 第5実施形態の血管モデルの構成を例示した説明図である。
<第1実施形態>
 図1及び図2は、人体シミュレーション装置1の概略構成を示す図である。本実施形態の人体シミュレーション装置1は、人体の循環器系、消化器系、呼吸器系等の生体管腔内に対する、医療用デバイスを用いた治療または検査の手技を模擬するために使用される装置である。医療用デバイスとは、カテーテルやガイドワイヤ等の、低侵襲な治療または検査のためのデバイスを意味する。人体シミュレーション装置1は、モデル10と、収容部20と、制御部40と、入力部45と、脈動部50と、拍動部60と、呼吸動作部70とを備えている。
 図2に示すように、モデル10は、人体の心臓を模した心臓モデル110と、肺を模した肺モデル120と、横隔膜を模した横隔膜モデル170と、脳を模した脳モデル130と、肝臓を模した肝臓モデル140と、下肢を模した下肢モデル150と、大動脈を模した大動脈モデル160とを備えている。以降、心臓モデル110、肺モデル120、横隔膜モデル170、脳モデル130、肝臓モデル140、及び下肢モデル150を総称して「生体モデル」とも呼ぶ。また、心臓モデル110、脳モデル130、肝臓モデル140、及び下肢モデル150を総称して「臓器モデル」とも呼ぶ。肺モデル120と横隔膜モデル170とを総称して「呼吸器モデル」とも呼ぶ。肺モデル120と横隔膜モデル170とを除く各生体モデル(すなわち、各臓器モデル)は、大動脈モデル160に接続されている。モデル10の詳細は後述する。
 収容部20は、水槽21と、被覆部22とを備える。水槽21は、上部が開口した略直方体状の水槽である。図1に示すように、水槽21の内部に流体を満たした状態で、水槽21の底面にモデル10が裁置されることで、モデル10が流体内に没する。本実施形態では流体として水(液体)を使用するため、モデル10を実際の人体と同様に湿潤状態に保つことできる。なお、流体としては他の液体(例えば、生理食塩水、任意の化合物の水溶液等)を採用してもよい。水槽21に充填された流体は、モデル10の大動脈モデル160等の内部に取り込まれ、血液を模擬した「模擬血液」として機能する。
 被覆部22は、水槽21の開口を覆う板状の部材である。被覆部22の一方の面を流体に接触させ、他方の面を外気に接触させた状態で被覆部22を裁置することにより、被覆部22は波消し板として機能する。これにより、水槽21の内部の流体が波打つことによる視認性の低下を抑制できる。本実施形態の水槽21及び被覆部22は、X線透過性を有すると共に透明性の高い合成樹脂(例えばアクリル樹脂)で形成されているため、外部からのモデル10の視認性を向上できる。なお、水槽21及び被覆部22は他の合成樹脂を用いて形成されていてもよく、水槽21と被覆部22とが異なる材料で形成されていてもよい。
 制御部40は、図示しないCPU、ROM、RAM、及び記憶部を備え、ROMに格納されているコンピュータプログラムをRAMに展開して実行することにより、脈動部50、拍動部60、及び呼吸動作部70の動作を制御する。入力部45は、利用者が人体シミュレーション装置1に対して情報を入力するために使用される種々のインターフェースである。入力部45としては、例えば、タッチパネル、キーボード、操作ボタン、操作ダイヤル、マイク等を採用できる。以降、入力部45としてタッチパネルを例示する。
 脈動部50は、大動脈モデル160に対して脈動させた流体を送出する「流体供給部」である。具体的には、脈動部50は、図1において白抜き矢印で示すように、水槽21内の流体を循環させて、モデル10の大動脈モデル160へと供給する。本実施形態の脈動部50は、フィルタ55と、循環ポンプ56と、脈動ポンプ57とを備えている。フィルタ55は、管状体31を介して水槽21の開口21Oと接続されている。フィルタ55は、フィルタ55を通過する流体を濾過することで、流体中の不純物(例えば、手技で使用された造影剤等)を除去する。循環ポンプ56は、例えば、非容積式の遠心ポンプであり、水槽21から管状体31を介して供給される流体を、一定の流量で循環させる。
 脈動ポンプ57は、例えば、容積式の往復ポンプであり、循環ポンプ56から送出された流体に脈動を加える。脈動ポンプ57は、管状体51を介してモデル10の大動脈モデル160と接続されている(図2)。このため、脈動ポンプ57から送出された流体は、大動脈モデル160の内腔へと供給される。なお、脈動ポンプ57としては、往復ポンプに代えて、低速運転させた回転ポンプを利用してもよい。また、フィルタ55及び循環ポンプ56は省略してもよい。管状体31及び管状体51は、X線透過性を有する軟性素材の合成樹脂(例えばシリコン等)で形成された可撓性を有するチューブである。
 拍動部60は、心臓モデル110を拍動させる。具体的には、拍動部60は、図1において斜線ハッチングを付した矢印で示すように、心臓モデル110の内腔に流体の送出を行うことで心臓モデル110を拡張させ、心臓モデル110の内腔の流体の吸出を行うことで心臓モデル110を収縮させる。拍動部60は、これら送出及び吸出動作を繰り返すことで、心臓モデル110の拍動動作(拡張及び収縮動作)を実現する。拍動部60において使用される流体(以降、「拡張媒体」とも呼ぶ)としては、模擬血液と同様に、液体が使用されてもよく、例えば空気等の気体が使用されてもよい。拡張媒体は、ベンゼン、エタノール等の有機溶媒や、水等の放射線透過性の液体であることが好ましい。拍動部60は、例えば、容積式の往復ポンプを用いて実現できる。拍動部60は、管状体61を介してモデル10の心臓モデル110と接続されている(図2)。管状体61は、X線透過性を有する軟性素材の合成樹脂(例えばシリコン等)で形成された可撓性を有するチューブである。
 呼吸動作部70は、肺モデル120及び横隔膜モデル170に呼吸動作を模擬した動作をさせる。具体的には、呼吸動作部70は、図1においてドットハッチングを付した矢印で示すように、肺モデル120の内腔と横隔膜モデル170とに対する流体の送出を行うことで、肺モデル120を拡張させると共に横隔膜モデル170を収縮させる。また、呼吸動作部70は、肺モデル120の内腔と横隔膜モデル170とから流体の吸出を行うことで、肺モデル120を収縮させると共に横隔膜モデル170を弛緩させる。呼吸動作部70は、これら送出及び吸出動作を繰り返すことで、肺モデル120及び横隔膜モデル170の呼吸動作を実現する。呼吸動作部70において使用される流体としては、模擬血液と同様に、液体が使用されてもよく、例えば空気等の気体が使用されてもよい。呼吸動作部70は、例えば、容積式の往復ポンプを用いて実現できる。呼吸動作部70は、管状体71を介してモデル10の肺モデル120と接続され、管状体72を介して横隔膜モデル170と接続されている(図2)。管状体71,72は、X線透過性を有する軟性素材の合成樹脂(例えばシリコン等)で形成された可撓性を有するチューブである。
 図3は、大動脈モデル160の概略構成を示す図である。大動脈モデル160は、人体の大動脈を模した各部、すなわち、上行大動脈を模した上行大動脈部161と、大動脈弓を模した大動脈弓部162と、腹部大動脈を模した腹部大動脈部163と、総腸骨大動脈を模した総腸骨大動脈部164とで構成されている。
 大動脈モデル160は、上行大動脈部161の端部において、心臓モデル110を接続するための第2接続部161Jを備えている。同様に、大動脈弓部162の近傍において、脳モデル130を接続するための第1接続部162Jを備え、腹部大動脈部163の近傍において、肝臓モデル140を接続するための第3接続部163Jaを備え、総腸骨大動脈部164の端部において、左右の下肢モデル150を接続するための2つの第4接続部164Jを備えている。なお、第2接続部161Jは上行大動脈部161またはその近傍に配置されていれば足り、第4接続部164Jは総腸骨大動脈部164またはその近傍に配置されていれば足りる。以降、これらの第1~第4接続部161J~164Jを総称して「生体モデル接続部」とも呼ぶ。また、大動脈モデル160は、腹部大動脈部163の近傍において、脈動部50を接続するための流体供給部接続部163Jbを備えている。なお、流体供給部接続部163Jbは、腹部大動脈部163の近傍に限らず、上行大動脈部161の近傍や、脳血管モデル131(例えば、総頸動脈)の近傍等の任意の位置に配置されてよい。また、大動脈モデル160は、異なる位置に配置された複数の流体供給部接続部163Jbを備えてもよい。
 また、大動脈モデル160の内部には、上述した生体モデル接続部及び流体供給部接続部(第1接続部162J、第2接続部161J、第3接続部163Ja、2つの第4接続部164J、流体供給部接続部163Jb)においてそれぞれ開口した内腔160Lが形成されている。内腔160Lは、脈動部50から供給された模擬血液(流体)を、心臓モデル110、脳モデル130、肝臓モデル140、及び下肢モデル150へと輸送するための流路として機能する。
 本実施形態の大動脈モデル160は、X線透過性を有する軟性素材の合成樹脂(例えば、ポリビニルアルコール(PVA)、シリコン等)により形成されている。特に、PVAを使用する場合、PVAの親水性によって、液体内に没した大動脈モデル160の触感を、実際の人体の大動脈の触感に似せることができる点で好ましい。
 大動脈モデル160は、例えば、次のようにして作製できる。まず、人体の大動脈の形状を模した型を準備する。型は、実際の人体のコンピュータ断層撮影(CT:Computed Tomography)画像や、核磁気共鳴画像法(MRI:Magnetic Resonance Imaging)画像等を解析して生成された人体モデルデータのうち、大動脈に相当する部分のデータを、例えば3Dプリンタに入力して印刷することによって作製できる。型は、石膏であってもよく、金属であってもよく、樹脂であってもよい。次に、準備した型の内側に、液状にした合成樹脂材料を塗布し、合成樹脂材料が冷え固まったのち脱型する。このようにすれば、内腔160Lを有する大動脈モデル160を、簡単に作製できる。
 図4及び図5は、モデル10の概略構成を示す図である。図4に示すように、心臓モデル110は、心臓を模した形状であり、内部には内腔110Lが形成されている。本実施形態の心臓モデル110は、X線透過性を有する軟性素材の合成樹脂(例えば、シリコン等)により形成され、大動脈モデル160と同様に、人体モデルデータから作製された型の内側に合成樹脂材料を塗布し脱型することで作製し得る。また、心臓モデル110は、管状体115を備えると共に、心臓血管モデル111に接続されている。心臓血管モデル111は、上行大動脈の一部と冠動脈とを模した管状の血管モデルであり、X線透過性を有する軟性素材の合成樹脂(例えば、PVA、シリコン等)により形成されている。管状体115は、X線透過性を有する軟性素材の合成樹脂(例えばシリコン等)で形成された可撓性を有するチューブである。管状体115は、先端115Dが心臓モデル110の内腔110Lに連通するよう接続され、基端115Pが拍動部60へと繋がる管状体61に連通するよう接続されている。
 肺モデル120は、右肺及び左肺をそれぞれ模した形状であり、内部には、右肺と左肺とが連通した状態の1つの内腔120Lが形成されている。肺モデル120は、心臓モデル110の左右を覆う配置とされている。肺モデル120の作製に採用し得る材料及び製法は、心臓モデル110と同様である。肺モデル120の材料と心臓モデル110の材料は同じであってもよく、相違していてもよい。また、肺モデル120は、気管の一部を模した管状のモデルである気管モデル121に接続されている。気管モデル121は、心臓モデル110の管状体115と同様の材料で作製できる。気管モデル121の材料と管状体115の材料は同じであってもよく、相違していてもよい。気管モデル121は、先端121Dが肺モデル120の内腔120Lに連通するよう接続され、基端121Pが呼吸動作部70へと繋がる管状体71に連通するよう接続されている。
 横隔膜モデル170は、横隔膜を模した形状であり、内部には内腔170Lが形成されている。横隔膜モデル170は、心臓モデル110の下方(換言すれば、心臓モデル110を挟んで脳モデル130とは逆方向)に配置されている。横隔膜モデル170の作製に採用し得る材料及び製法は、心臓モデル110と同様である。横隔膜モデル170の材料と心臓モデル110の材料は同じであってもよく、相違していてもよい。また、横隔膜モデル170には、横隔膜モデル170の内腔170Lと管状体72の内腔とを連通させた状態で、呼吸動作部70へと繋がる管状体72が接続されている。
 脳モデル130は、脳を模した形状であり、内腔を有さない中実形状である。脳モデル130は、心臓モデル110の上方(換言すれば、心臓モデル110を挟んで横隔膜モデル170とは逆方向)に配置されている。脳モデル130の作製に採用し得る材料及び製法は、心臓モデル110と同様である。脳モデル130の材料と心臓モデル110の材料は同じであってもよく、相違していてもよい。また、脳モデル130は、左右で一対の総頸動脈から左右で一対の椎骨動脈を含む主要動脈のうち少なくとも一部を模した管状の血管モデルである脳血管モデル131に接続されている。脳血管モデル131は、心臓モデル110の心臓血管モデル111と同様の材料で作製できる。脳血管モデル131の材料と心臓血管モデル111の材料は同じであってもよく、相違していてもよい。また、図示していないが、脳血管モデル131は動脈だけでなく、上大脳静脈や直静脈洞を含む主要静脈を模擬していてもよい。
 なお、脳モデル130は、ヒトの頭蓋及び頸椎を模した骨モデルをさらに備えた複合体であってもよい。例えば、頭蓋は、頭頂骨、側頭骨、後頭骨、蝶形骨を模擬した硬質樹脂ケースと、前頭骨を模擬した蓋と、を有し、頸椎は、内部に血管モデルが通過可能な貫通孔を有する矩形の樹脂体を複数有していてもよい。骨モデルを備える場合、骨モデルは血管モデル、脳モデル等の臓器モデルとは硬度の異なる樹脂で作製され、例えば、頭蓋をアクリル樹脂、椎骨をPVAで作製することができる。
 脳血管モデル131は、先端131Dが脳モデル130に接続され、基端131Pが大動脈モデル160の第1接続部162J(例えば、ヒトにおける腕頭動脈、鎖骨下動脈、またはその近傍)に接続されている。脳血管モデル131の先端131Dは、椎骨を通過する椎骨動脈および脳モデル130の表面及び/または内部へと配設された他の血管(例えば、後大脳動脈、中大脳動脈)を模していてもよく、さらに後交通動脈を模して総頸動脈末梢部と接続してもよい。また、脳血管モデル131の基端131Pは、脳血管モデル131の内腔と、大動脈モデル160の内腔160Lとを連通させた状態で、第1接続部162Jに接続されている。
 肝臓モデル140は、肝臓を模した形状であり、内腔を有さない中実形状である。肝臓モデル140は、横隔膜モデル170の下方に配置されている。肝臓モデル140の作製に採用し得る材料及び製法は、心臓モデル110と同様である。肝臓モデル140の材料と心臓モデル110の材料は同じであってもよく、相違していてもよい。また、肝臓モデル140は、肝動脈の一部を模した管状の血管モデルである肝臓血管モデル141に接続されている。肝臓血管モデル141は、心臓モデル110の心臓血管モデル111と同様の材料で作製できる。肝臓血管モデル141の材料と心臓血管モデル111の材料は同じであってもよく、相違していてもよい。
 肝臓血管モデル141は、先端141Dが肝臓モデル140に接続され、基端141Pが大動脈モデル160の第3接続部163Jaに接続されている。肝臓血管モデル141の先端141Dは、肝臓モデル140の表面及び/または内部へと配設された他の血管(例えば、肝動脈)を模していてもよい。また、肝臓血管モデル141の基端141Pは、肝臓血管モデル141の内腔と、大動脈モデル160の内腔160Lとを連通させた状態で、第3接続部163Jaに接続されている。
 図5に示すように、下肢モデル150は、右足に相当する下肢モデル150Rと、左足に相当する下肢モデル150Lと、を備えている。下肢モデル150R,Lは、左右対称である点を除いて同じ構成を有するため、以降は区別せず「下肢モデル150」として説明する。下肢モデル150は、太腿にある大腿四頭筋や下腿の前脛骨筋、長腓骨筋や長趾伸筋等の主要組織のうち少なくとも一部を模した形状であり、内腔を有さない中実形状である。下肢モデル150の作製に採用し得る材料及び製法は、心臓モデル110と同様である。下肢モデル150の材料と心臓モデル110の材料は同じであってもよく、相違していてもよい。また、下肢モデル150は、大腿動脈から足背動脈を含む主要動脈のうち少なくとも一部を模した管状の血管モデルである下肢血管モデル151(下肢血管モデル151R,L)に接続されている。下肢血管モデル151は、心臓モデル110の心臓血管モデル111と同様の材料で作製できる。下肢血管モデル151の材料と心臓血管モデル111の材料は同じであってもよく、相違していてもよい。また、図示していないが、下肢血管モデル151は動脈だけでなく、総骨腸静脈から大伏在静脈を含む主要静脈を模擬していてもよい。
 下肢血管モデル151は、下肢モデル150の内部を、太腿から下腿側に向かって延伸方向に沿って延びる配置とされている。下肢血管モデル151は、先端151Dが下肢モデル150の下端(足根部から足背部に相当する位置)に露出し、基端151Pが大動脈モデル160の第4接続部164Jに接続されている。ここで、基端151Pは、下肢血管モデル151の内腔と、大動脈モデル160の内腔160Lとを連通させた状態で、第4接続部164Jに接続されている。
 なお、上述した心臓血管モデル111、脳血管モデル131、肝臓血管モデル141及び下肢血管モデル151を総称して「血管モデル」とも呼ぶ。また、これら血管モデルと、大動脈モデル160とを総称して「全身血管モデル」とも呼ぶ。このような構成とすれば、各生体モデルの表面に配設された血管モデルによって、例えば、脳の後大脳動脈、心臓の左冠動脈及び右冠動脈等を模擬できる。また、各生体モデルの内部に配設された血管モデルによって、例えば、脳の中大脳動脈、肝臓の肝動脈、下肢の大腿動脈等を模擬できる。
 本実施形態の人体シミュレーション装置1では、大動脈モデル160に対して、少なくとも1つ以上の生体モデル(心臓モデル110、肺モデル120、横隔膜モデル170、脳モデル130、肝臓モデル140、下肢モデル150)を着脱することで、種々の態様のモデル10を構成することができる。大動脈モデル160に装着される生体モデル(心臓モデル110、肺モデル120、横隔膜モデル170、脳モデル130、肝臓モデル140、下肢モデル150)の組み合わせは、手技に必要な器官に応じて自由に変更できる。例えば、心臓モデル110と下肢モデル150とを装着したモデル10を構成すれば、人体シミュレーション装置1を利用して、PCIの総大腿動脈アプローチ(TFI:Trans-Femoral Intervention)の手技を模擬できる。その他、例えば、下肢モデル150を除く全ての生体モデルを装着してもよく、心臓モデル110と肺モデル120とを装着してもよく、肺モデル120と横隔膜モデル170とを装着してもよく、肝臓モデル140のみを装着してもよく、下肢モデル150のみを装着してもよい。
 このように、本実施形態の人体シミュレーション装置1によれば、生体モデル接続部(第1接続部162J、第2接続部161J、第3接続部163Ja、第4接続部164J)に人体内の一部を模した生体モデル(心臓モデル110、脳モデル130、肝臓モデル140、下肢モデル150)を接続することによって、循環器系や消化器系など、接続された生体モデルに応じた各器官の生体管腔に対する、カテーテルやガイドワイヤ等の医療用デバイスを用いた様々な手技を模擬することができる。また、生体モデル接続部161J~164Jは、生体モデルを着脱可能に接続することができるため、手技に不要な生体モデルを取り外して別途保存することも可能であり、利便性を向上できる。
 図6及び図7は、血管モデルを配置した臓器モデルの構成を例示した説明図である。図6及び図7では、心臓血管モデル111を心臓モデル110の表面を巡る血管として構成した場合を例示している。なお、図6及び図7には、相互に直交するXYZ軸が図示されている。X軸は心臓モデル110の左右方向(幅方向)に対応し、Y軸は心臓モデル110の高さ方向に対応し、Z軸は心臓モデル110の奥行き方向に対応する。図6及び図7の上側(+Y軸方向)は「近位側」に相当し、下側(-Y軸方向)は「遠位側」に相当する。以降の説明では、近位側(+Y軸方向)を「基端側」とも呼び、遠位側(-Y軸方向)を「先端側」とも呼ぶ。また、先端側に位置する端部を「先端」と呼び、基端側に位置する端部を「基端」と呼ぶ。また、先端及び先端近傍に位置する部分を「先端部」、基端及び基端近傍に位置する部分を「基端部」と呼ぶ。なお、図6及び図7では、上述した心臓モデル110の内腔110L、管状体115、及び第1接続部162Jの図示を省略している。
 図6を用いて、心臓血管モデル111の構成について説明する。心臓モデル110は、ヒトの心臓を模擬した外側形状を有しており、心臓モデル110の表面110Sには、心臓血管モデル111が配置されている。心臓血管モデル111は、基端111Pが上行大動脈の一部を模擬した形状とされ、先端111Dが左右の冠動脈を模擬した形状とされている。以降、心臓血管モデル111のうち、左冠動脈を模擬した部分を左冠動脈モデル180Lとも呼び、右冠動脈を模擬した部分を右冠動脈モデル180Rとも呼ぶ。また、左冠動脈モデル180Lと右冠動脈モデル180Rとを総称して、冠動脈モデル180とも呼ぶ。
 図6に示すように、冠動脈モデル180は、主枝部181と、側枝部182と、接続部183と、分岐部184とを有している。主枝部181は、冠動脈における主要な血管を模擬しており、側枝部182は、主枝部181から伸びる微細な血管を模擬している。主枝部181は、内腔181Lを有する管状体であり(図8参照)、先端部には内腔181Lに連通した開口181Oが形成されている。同様に、側枝部182は、内腔182Lを有する管状体であり、先端部には内腔182Lに連通した開口182Oが形成されている。主枝部181及び側枝部182は、上述の通り、X線透過性を有する軟性素材の合成樹脂(例えば、PVA、シリコン等)により形成されており、それぞれが「血管部」に相当する。
 接続部183(図6:一点鎖線)では、一の主枝部181と、他の主枝部181とが、内腔181Lを連通させた状態で接続されている。また、分岐部184(図6:破線)では、一の主枝部181が、複数の主枝部181へと分岐している。図6において矢印で示すように、心臓血管モデル111の内腔111Lから流入した模擬血液等の流体は、左冠動脈モデル180Lと右冠動脈モデル180Rとにそれぞれ分岐し、各冠動脈モデル180において、主枝部181の内腔181Lを先端側に向かって進む。流体は、途中、分岐部184による分岐を経て、各主枝部181及び各側枝部182の先端まで流れ、各主枝部181の開口181Oと、各側枝部182の開口182Oとからそれぞれ外部へと排出される。このように、本実施形態では、主枝部181及び側枝部182が、心臓血管モデル111の延伸方向に伸びる流体流路を形成する「流路形成部」として機能する。
 図7を用いて、病変部191~193について説明する。本実施形態の主枝部181(血管部)には、内側の内腔181Lの一部分に、それぞれ種類の異なる病変部191~193(図7:破線)が設けられている。病変部191は、主枝部181の内腔181Lを塞ぐようにして設けられている。すなわち病変部191は、当該箇所における流体流路を遮断する閉塞病変である。病変部192は、主枝部181の横断面において、流体が流通可能な領域(すなわち内腔181L)が、病変部192の無い他の部分の内腔181Lよりも小さくなるように、内側にせり出して設けられている。すなわち病変部192は、当該箇所における流体流路を狭める狭窄病変である。病変部193は、主枝部181の外径が、病変部193の無い他の部分の外径よりも大きくなるように、外側にせり出して設けられている。すなわち病変部193は、瘤状の病変である。
 図8は、図7のA1-A1線における断面構成を例示した説明図である。図9は、図7のA2-A2線における断面構成を例示した説明図である。図8及び図9では、図示の便宜上、略球状の心臓モデル110の一部分の拡大断面を表す。図8及び図9に示すように、心臓血管モデル111の主枝部181は、心臓モデル110の表面110Sに裁置されている。図7のA1-A1断面には病変部191~193が設けられていない。このため、図8に示すように、A1-A1断面における主枝部181の内腔181Lは、流体が流通可能な状態である。一方、図7のA2-A2断面には病変部191が設けられている。このため、図9に示すように、A2-A2断面における主枝部181の内腔181Lは、流体が流通できない閉塞状態である。なお、なお、心臓血管モデル111の主枝部181は、心臓モデル110に対して、固定されていてもよく、固定されていなくてもよい。固定されている場合、別途の固定部材を用いて固定されてもよく、エポキシ系接着剤などの任意の接合剤を用いて接合されていてもよく、溶着されていてもよい。
 図10は、病変部191~193の製造方法を例示した説明図である。まず、ステップS10において、水に不溶(疎水性)の結晶を析出可能なカルシウム化合物を含む高分子材料を準備する。カルシウム化合物を含む高分子材料は、例えば、高分子材料を溶媒に溶解させたものにカルシウム化合物を添加することにより準備される。添加されるカルシウム化合物としては、例えば、塩化カルシウム、炭酸カルシウム、リン酸カルシウム等を採用できる。高分子材料としては、例えば、アガロース、アルギン酸ナトリウム、セルロース、デンプン、グリコーゲン、PVA、シリコン、ラテックス、ポリウレタン等を採用できる。ここで、高分子材料として、アガロース、アルギン酸ナトリウム、セルロース、デンプン、グリコーゲン等の多糖類を用いれば、親水性の多糖類を用いて、簡単に、病変部191~193を構成できる。また、多糖類の中でも、ゲル化しやすい中性多糖であるアガロースを用いれば、より簡単に、病変部191~193を構成できる。本実施形態では、10重量%の塩化カルシウムを含む、ゲル硬度10000のアガロースゲルを準備した。なお、カルシウム化合物の濃度は、病変部191~193内において模擬する石灰化病変の程度に応じて任意に決定できる。例えば、カルシウム化合物の濃度を高くすれば、病変部191~193内の石灰化病変を増やすことができる。また、ゲル硬度は、求める病変部191~193の硬さに応じて、任意に決定できる。なお、ゲル硬度は、ゲル硬さ試験機を用いて測定できる。
 ステップS12では、ステップS10で準備したカルシウム化合物を含む高分子材料を、任意の形に成形し、硬化させる。例えば、閉塞病変である病変部191を製造する場合、カルシウム化合物を含む液状の高分子材料を、任意の形状、寸法を有する中空の型に流し込み、液状の高分子材料を固化(成形)させる。固化させる方法は加熱による固化であってもよいし、冷却による固化であってもよい。例えば、狭窄病変である病変部192を製造する場合、カルシウム化合物を含む液状の高分子材料を、任意の形状、寸法を有する中空の型に流し込み、充填した高分子材料の中に芯材を配置し、液状の高分子材料を固化させる。芯材の形状は楕円形状など任意の形状の芯材を選択できる。固化させる方法は加熱による固化であってもよいし、冷却による固化であってもよい。加熱による固化の場合は、例えば、カルシウム化合物を含む高分子材料を、加熱炉を用いて所定時間加熱する。これにより、カルシウム化合物を含む高分子材料を、成形後の形状で硬化させることができる。なお、加熱(冷却)温度、及び、固化時間は、採用される高分子材料の種類や、求める病変部191~193の硬さに応じて、任意に決定できる。
 図11は、製造された病変部191の構成を例示した説明図である。図10のステップS14では、ステップS12で硬化させたカルシウム化合物を含む高分子材料を、炭酸イオンを含む溶液に、所定時間浸漬する。これにより、高分子材料中のカルシウム塩類が析出することにより結晶化させることができ、結晶化したカルシウム塩類によって石灰化病変を模擬できる。この結果、図11に示すように、高分子材料200の内部に、結晶化したカルシウム塩類(石灰化病変)201,202を含んだ病変部191を製造することができる。図11に例示する病変部191では、左側に析出した結晶201は、右側に析出した結晶202よりも大きい。なお、溶液中の炭酸イオン濃度、及び、浸漬時間は、病変部191~193内において模擬する石灰化病変の態様に応じて任意に決定できる。例えば、炭酸イオン濃度を高くすれば、病変部191~193内に大きな結晶(石灰化病変)を析出させることができる。同様に、浸漬時間を長くすれば、病変部191~193内に大きな結晶(石灰化病変)を析出させることができる。
 このように、第1実施形態の心臓血管モデル111(血管モデル)は、管状の主枝部181及び側枝部182(血管部)の内側に設けられ、カルシウム塩類201,202を含有する高分子材料200により形成された病変部191~193を備える(図11)。カルシウム塩類201,202は、高分子材料200よりも固いため、カルシウム塩類201,202によって石灰化病変を、高分子材料200によって粥状硬化性病変やプラーク病変を、それぞれ模擬できる。また、高分子材料中200のカルシウム塩類201,202の分布を変更することによって、プラーク病変中に一様に生じた石灰化病変や、プラーク病変中の任意の箇所に生じた石灰化病変等を模擬できる。さらに、カルシウム塩類201,202の結晶形状を変更することによって、砂粒状石灰化、板状石灰化、結節状石灰化等の、種々の態様の石灰化病変を模擬できる。このように、第1実施形態の心臓血管モデル111によれば、進行の程度に応じた種々の態様の病変部191~193を再現することが可能な血管モデルを提供できる。
 また、第1実施形態の病変部191は、主枝部181(血管部)の内側を塞いでいるため、冠動脈モデル180(血管)の内側を閉塞した態様の病変部191を模擬できる。さらに、病変部192は主枝部181の一部分の横断面において、流体が流通可能な領域である内腔181Lが、病変部191~193が設けられていない主枝部181(血管部の他の部分)よりも小さくなるように設けられている。このため、冠動脈モデル180の内側を狭窄した態様の病変部192を模擬できる。さらに、図10で説明した病変部191~193の製造方法において、高分子材料として多糖類を用いれば、親水性の多糖類を用いて、簡単に、病変部191~193を構成できる。さらに、図10で説明した病変部191~193の製造方法において、多糖類としてアガロースを用いれば、ゲル化しやすい中性多糖であるアガロースを用いて、より簡単に、病変部191~193を構成できる。
<第2実施形態>
 図12は、第2実施形態の病変部191aの断面構成を例示した説明図である。第2実施形態の心臓血管モデル111aは、第1実施形態とは異なる構成の病変部191aが設けられた主枝部181aを備えている。第2実施形態の病変部191aは、外表面211を含む外側層210と、内側層220の2層により構成されている。外側層210は、高分子材料200に含有されているカルシウム塩類の含有量が、内側層220と比較して多い。また、外側層210に形成されたカルシウム塩類の結晶201は、内側層220に形成されたカルシウム塩類の結晶202よりも大きい。このため、図12に示す病変部191aでは、主枝部181a(血管部)の内周面に隣接した外表面211におけるカルシウム塩類の含有量は、病変部191aの内部(すなわち内側層220)におけるカルシウム塩類の含有量よりも多い。
 図13は、第2実施形態の病変部191aの製造方法を例示した説明図である。図14は、ステップS20及びS22の様子を例示した説明図である。第2実施形態の製造方法では、図10で説明したステップS10に代えてステップS20が、ステップS12に代えてステップS22が、それぞれ実施される。
 まず、ステップS20では、水に不溶(疎水性)の結晶を析出可能なカルシウム化合物を含む高分子材料を、複数種類だけ準備する。例えば、図12の病変部191aを製造する場合について説明する。この場合、カルシウム化合物の含有量が相対的に多い高分子材料200a1と、カルシウム化合物の含有量が相対的に少ない高分子材料200a2とを準備する。なお、高分子材料200a1と、高分子材料200a2とには、図10で説明した具体例のうち、同一の高分子材料が用いられてもよく、異なる高分子材料が用いられてもよい。また、高分子材料200a1に添加されるカルシウム化合物と、高分子材料200a2に含有されるカルシウム化合物とには、図10で説明した具体例のうち、同一のカルシウム化合物が用いられてもよく、異なるカルシウム化合物が用いられてもよい。また、カルシウム化合物の濃度、及び、ゲル硬度についても任意に決定でき、高分子材料200a1と高分子材料200a2との間で同一であってもよく、異なっていてもよい。
 図15は、製造された病変部191aの構成を例示した説明図である。図13のステップS22では、カルシウム化合物を含有する液状の高分子材料200a1を任意の形状、寸法を有する中空の型に流し込み任意の形状で固化(成形)させる。その後、高分子材料200a1とはカルシウム化合物含有量の異なる液状の高分子材料を、先に固化させた高分子材料200a1の内側または外側に流し込み、固化させる。固化させる方法は加熱による固化であってもよいし、冷却による固化であってもよい(図14)。加熱による成形の場合は、例えば、加熱炉を用いて所定時間加熱することで、成形後の形状で硬化させる。次に、図10のステップS14で説明した通り、炭酸イオンを含む溶液に、所定時間浸漬させることで、高分子材料200a1,200a2中のカルシウム化合物の結晶を析出させ、病変部191aを製造できる(図15)。
 このように、病変部191aは、カルシウム塩類の含有量が異なる複数の層(外側層210、内側層220)を備えていてもよい。同様に、病変部191aは、カルシウム塩類の結晶201,202の大きさが異なる複数の層(外側層210、内側層220)を備えていてもよい。このような第2実施形態の病変部191a、及び病変部191aを備える心臓血管モデル111aによっても、上述した第1実施形態と同様の効果を奏することができる。さらに、第2実施形態の病変部191aによれば、主枝部181a(血管部)の内周面に隣接した部分(すなわち、外側層210の外表面211)におけるカルシウム塩類の含有量は、病変部191aの内部(すなわち、内側層220)におけるカルシウム塩類の含有量よりも多い。このため、冠動脈モデル180(血管)の内膜石灰化又は中膜石灰化が生じた態様の病変部191aを模擬できる。
 また、図12の例では、外側層210と内側層220との2層構成を例示したが、層の数は3層以上の任意の数であってもよい。層の数を多くすれば、外側から内側に向かって、カルシウム塩類の含有量又は結晶の大きさを徐々に変化させることができる。このように、病変部191aのカルシウム塩類の含有量を、病変部191aの外側から、病変部191aの中心に向かうにつれて徐々に増加する構成とすれば、内側(主枝部181aにより遠い位置)において石灰化が生じた態様の病変部191aを模擬できる。
<第3実施形態>
 図16は、第3実施形態の病変部192bの断面構成を例示した説明図である。第3実施形態の心臓血管モデル111bは、病変部192bが設けられた主枝部181bを備えている。図16の例では、病変部192bは、主枝部181bの内腔181Lの左上部と、右下部との2か所に設けられ、それぞれ、流体流路としての内腔181Lを狭める狭窄病変である。病変部192bは、第2実施形態と同様に、外側層210bと、内側層220bの2層により構成されている。ここで、内側層220bは、内腔181Lの中心側に位置する一部分であり、外側層210bは、主枝部181bの内壁側に位置する一部分である。外側層210bは、高分子材料200に含有されているカルシウム塩類の含有量が、内側層220bと比較して多い。また、外側層210bに形成されたカルシウム塩類の結晶は、内側層220bと比較して大きい。
 このように、閉塞病変である病変部191a(第2実施形態、図12)に限らず、狭窄病変である病変部192b(図16)や、瘤状の病変である病変部193(第1実施形態、図7)においても、高分子材料200におけるカルシウム塩類の含有量又は結晶の大きさが異なる複数の層を備える構成を採用できる。このような第3実施形態の病変部192b、及び病変部192bを備える心臓血管モデル111bによっても、上述した第1実施形態及び第2実施形態と同様の効果を奏することができる。
<第4実施形態>
 図17は、第4実施形態の病変部192cの断面構成を例示した説明図である。第4実施形態の心臓血管モデル111cは、第3実施形態とは異なる構成を有する病変部192cが設けられた主枝部181cを備えている。病変部192cは、第3実施形態と同様に、外側層210cと、内側層220cとの2層により構成されている。第3実施形態の外側層210cは、高分子材料200に含有されているカルシウム塩類の含有量が、内側層220cと比較して少ない。また、外側層210cに形成されたカルシウム塩類の結晶は、内側層220cと比較して小さい。
 このように、外側層210c及び内側層220cを構成することで、病変部192cの中心部分(内側層220c)におけるカルシウム塩類の含有量を、病変部192cの外側部分(外側層210c)よりも多くしてもよい。また、図17の例では、外側層210cと内側層220cとの2層構成を例示したが、層の数は3層以上の任意の数であってもよい。層の数を多くすれば、病変部192cの内側から外側に向かって、カルシウム塩類の含有量又は結晶の大きさを徐々に変化させることができる。このように、病変部192cのカルシウム塩類の含有量を、病変部192cの中心から、病変部192cの外側に向かうにつれて徐々に増加する構成とすれば、外側(主枝部181cにより近い位置)において石灰化が生じた態様の病変部を模擬できる。
<第5実施形態>
 図18は、第5実施形態の血管モデルの構成を例示した説明図である。第5実施形態の血管モデルは、右冠動脈モデル180Rdである。右冠動脈モデル180Rdは、第1実施形態で説明した心臓モデル110に配置されていない。右冠動脈モデル180Rdの主枝部181には、第1実施形態で説明した病変部192,193が形成されている。このように、右冠動脈モデル180Rd(血管モデル)は、心臓モデル110(臓器モデル)の表面や内部に配置されておらず、血管モデルのみで実現されてもよい。また、図18の例では、右冠動脈モデル180Rdは、複数の主枝部181及び複数の側枝部182を備える構成としているが、血管モデルは、1つの主枝部181のみにより構成されていてもよい。このような第5実施形態の右冠動脈モデル180Rdによっても、上述した第1実施形態と同様の効果を奏することができる。
<本実施形態の変形例>
 本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
 [変形例1]
 上記第1~5実施形態では、人体シミュレーション装置の構成の一例を示した。しかし、人体シミュレーション装置の構成は種々の変更が可能であり、例えば、その構成要素の一部を省略または変更すること、他の構成要素を付加することができる。例えば、人体シミュレーション装置は、収容部、制御部、入力部、拍動部、脈動部、呼吸動作部のうちの少なくとも一部分の構成要素を備えていなくてもよい。例えば、人体シミュレーション装置は、タッチパネル以外の手段(例えば、音声、操作ダイヤル、ボタン等)による入力部を備えていてもよい。
 [変形例2]
 上記第1~5実施形態では、モデルの構成の一例を示した。しかし、モデルの構成は種々の変更が可能であり、例えば、その構成要素の一部を省略または変更すること、他の構成要素を付加することができる。例えば、大動脈モデルは、上述の第1~第4接続部のうちの少なくとも一部を備えていなくてもよい。例えば、大動脈モデルにおける上述の第1~第4接続部の配置は、任意に変更してよく、第1接続部は、大動脈弓またはその近傍に配置されていなくてもよい。同様に、第2接続部は、上行大動脈またはその近傍に配置されていなくてもよく、第3接続部は、腹部大動脈またはその近傍に配置されていなくてもよく、第4接続部は、総腸骨大動脈またはその近傍に配置されていなくてもよい。例えば、大動脈モデルが有する生体モデル接続部の数は任意に変更することが可能であり、上述しない生体モデル(例えば、胃モデル、膵臓モデル、腎臓モデル等)を接続するための新たな生体モデル接続部を備えてもよい。
 例えば、モデルは、心臓モデル、肺モデル、脳モデル、肝臓モデル、下肢モデル、横隔膜モデルのうちの少なくとも一部を備えていなくてもよい。肺モデルと横隔膜モデルとを省略する場合、呼吸動作部についても併せて省略できる。例えば、モデルは、肋骨、胸骨、胸椎、腰椎、大腿骨、頚骨等、ヒトの骨格の少なくとも一部分を模した骨モデルをさらに備えた複合体として構成されてもよい。例えば、上述した心臓モデル、肺モデル、脳モデル、肝臓モデル、下肢モデル、横隔膜モデルの構成は、任意に変更してよい。例えば、心臓モデルの内腔と、心臓モデルの内腔へ流体を送出する拍動部とは省略されてもよい(図4)。肺モデルには、左右の肺にそれぞれ個別の内腔が設けられていてもよい(図4)。下肢モデルにはさらに、大腿筋を覆う皮膚モデルが備えられていてもよい(図5)。
 [変形例3]
 上記第1~5実施形態では、病変部の構成の一例を示した。しかし、病変部の構成は種々の変更が可能であり、例えば、その構成要素の一部を省略または変更すること、他の構成要素を付加することができる。例えば、病変部は、心臓血管モデル以外の他の血管モデル(例えば、脳血管モデル、肝臓血管モデル、下肢血管モデル)に設けられてもよい。例えば、血管モデルには、上記第1~5実施形態で説明したように、種類の異なる複数の病変部が設けられてもよいし、閉塞病変、狭窄病変、瘤状の病変のうちのいずれか1種類の病変部のみが設けられてもよい。例えば、血管モデルに設けられる病変部の数は任意に変更することができ、1箇所でもよく、複数個所でもよい。例えば、第1~5実施形態で説明した閉塞病変、狭窄病変、瘤状の病変の他に、閉塞した瘤状の病変部や、狭窄した瘤状の病変部など、種々の病変を模擬した種々の病変部を設けてもよい。
 上記第2~4実施形態では、病変部において、病変部の中心から外側に向かうにつれて、高分子材料におけるカルシウム塩類の含有量又は結晶の大きさが減少又は増加する場合を説明した。しかし、例えば、病変部において、図6で説明した流体流路の上流側から下流側に向かうにつれて、高分子材料におけるカルシウム塩類の含有量又は結晶の大きさが減少又は増加する構成としてもよい。例えば、閉塞病変を模擬した病変部において、流体流路を閉塞する面におけるカルシウム塩類の含有量又は結晶の大きさが、他の部分と比較して多い又は大きい構成としてもよい。そうすれば、結晶化したカルシウム塩類によって、閉塞病変の表面に形成された線維性皮膜を模擬できる。
 [変形例4]
 上記第1~5実施形態では、病変部の製造方法の一例を示した。しかし、病変部の製造方法は種々の変更が可能であり、例えば、その手順の一部を省略または変更すること、他の手順を付加することができる。例えば、ステップS10,S20におけるカルシウム化合物を含む高分子材料の成形及び硬化は、血管モデルの成形と同時に実施してもよい。例えば、ステップS20,S22で説明した複数層の成形に代えて、他の手段(例えば、電気、磁気等)を用いて、高分子材料の内部にカルシウムイオン勾配を形成することで、病変部内にカルシウム塩類の含有量又は結晶の大きさが異なる複数の領域を形成してもよい。
 [変形例5]
 第1~5実施形態の人体シミュレーション装置の構成、及び、病変部の構成は、適宜組み合わせてもよい。例えば、人体シミュレーション装置の血管モデル(心臓血管モデル、脳血管モデル、肝臓血管モデル、下肢血管モデル)には、第1~5実施形態で説明した態様の1つ以上の病変部が、単独で、又は組み合わせて設けられてよい。
 以上、実施形態、変形例に基づき本態様について説明してきたが、上記した態様の実施の形態は、本態様の理解を容易にするためのものであり、本態様を限定するものではない。本態様は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本態様にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
  1…人体シミュレーション装置
  10…モデル
  20…収容部
  21…水槽
  22…被覆部
  40…制御部
  45…入力部
  50…脈動部
  55…フィルタ
  56…循環ポンプ
  57…脈動ポンプ
  60…拍動部
  61…管状体
  70…呼吸動作部
  110…心臓モデル
  111,111a~c…心臓血管モデル
  120…肺モデル
  121…気管モデル
  130…脳モデル
  131…脳血管モデル
  140…肝臓モデル
  141…肝臓血管モデル
  150…下肢モデル
  151…下肢血管モデル
  160…大動脈モデル
  161…上行大動脈部
  162…大動脈弓部
  163…腹部大動脈部
  164…総腸骨大動脈部
  170…横隔膜モデル
  180,180Rd…冠動脈モデル
  181,181a~c…主枝部
  182…側枝部
  183…接続部
  184…分岐部
  191,191a…病変部
  192,192b,c…病変部
  193…病変部
  200,200a1,a2…高分子材料
  201,202…結晶
  210,210b,c…外側層
  220,220b,c…内側層

Claims (8)

  1.  血管モデルであって、
     血管の少なくとも一部分を模した管状の血管部と、
     前記血管部の内側に設けられ、カルシウム塩類を含有する高分子材料により形成された病変部と、
    を備える、血管モデル。
  2.  請求項1に記載の血管モデルであって、
     前記病変部は、前記血管部の内側を塞いでいる、血管モデル。
  3.  請求項1に記載の血管モデルであって、
     前記病変部は、前記血管部の一部分の横断面において、流体が流通可能な領域が、前記血管部の他の部分よりも小さくなるように設けられている、血管モデル。
  4.  請求項2または請求項3に記載の血管モデルであって、
     前記病変部のうち、前記血管部の内周面に隣接した部分における前記カルシウム塩類の含有量は、前記病変部の内部における前記カルシウム塩類の含有量よりも多い、血管モデル。
  5.  請求項2から請求項4のいずれか一項に記載の血管モデルであって、
     前記病変部において、前記カルシウム塩類の含有量は、前記病変部の外側から、前記病変部の中心に向かうにつれて徐々に増加する、血管モデル。
  6.  請求項2または請求項3に記載の血管モデルであって、
     前記病変部において、前記カルシウム塩類の含有量は、前記病変部の中心から、前記病変部の外側に向かうにつれて徐々に増加する、血管モデル。
  7.  請求項1から請求項6のいずれか一項に記載の血管モデルであって、
     前記病変部を形成する前記高分子材料は、多糖類である、血管モデル。
  8.  請求項7に記載の血管モデルであって、
     前記病変部を形成する前記多糖類は、アガロースである、血管モデル。
PCT/JP2019/023268 2019-06-12 2019-06-12 血管モデル WO2020250338A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021525471A JP7270733B2 (ja) 2019-06-12 2019-06-12 血管モデル
PCT/JP2019/023268 WO2020250338A1 (ja) 2019-06-12 2019-06-12 血管モデル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023268 WO2020250338A1 (ja) 2019-06-12 2019-06-12 血管モデル

Publications (1)

Publication Number Publication Date
WO2020250338A1 true WO2020250338A1 (ja) 2020-12-17

Family

ID=73781397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023268 WO2020250338A1 (ja) 2019-06-12 2019-06-12 血管モデル

Country Status (2)

Country Link
JP (1) JP7270733B2 (ja)
WO (1) WO2020250338A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168315A1 (ja) * 2021-02-08 2022-08-11 朝日インテック株式会社 血管病変モデル

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007801A1 (ja) * 2008-07-16 2010-01-21 学校法人早稲田大学 模擬血管製造用のモールド、模擬血管の製造方法、及び模擬血管
JP2010224069A (ja) * 2009-03-20 2010-10-07 Waseda Univ 模擬狭窄血管及びその製造方法
JP2012189909A (ja) * 2011-03-11 2012-10-04 Asahi Intecc Co Ltd 血管病変モデル
JP2013025032A (ja) * 2011-07-20 2013-02-04 Asahi Intecc Co Ltd 血管狭窄モデル
JP2016143034A (ja) * 2015-02-05 2016-08-08 国立研究開発法人国立循環器病研究センター 立体模型及び立体模型の製造方法
JP2016157121A (ja) * 2015-02-24 2016-09-01 地方独立行政法人青森県産業技術センター 脈管モデル成形具及び脈管モデルの製造方法
JP2017146415A (ja) * 2016-02-16 2017-08-24 テルモ株式会社 生体モデルおよびその製造方法
JP2018132622A (ja) * 2017-02-15 2018-08-23 テルモ株式会社 狭窄血管モデル及び手技シミュレータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007801A1 (ja) * 2008-07-16 2010-01-21 学校法人早稲田大学 模擬血管製造用のモールド、模擬血管の製造方法、及び模擬血管
JP2010224069A (ja) * 2009-03-20 2010-10-07 Waseda Univ 模擬狭窄血管及びその製造方法
JP2012189909A (ja) * 2011-03-11 2012-10-04 Asahi Intecc Co Ltd 血管病変モデル
JP2013025032A (ja) * 2011-07-20 2013-02-04 Asahi Intecc Co Ltd 血管狭窄モデル
JP2016143034A (ja) * 2015-02-05 2016-08-08 国立研究開発法人国立循環器病研究センター 立体模型及び立体模型の製造方法
JP2016157121A (ja) * 2015-02-24 2016-09-01 地方独立行政法人青森県産業技術センター 脈管モデル成形具及び脈管モデルの製造方法
JP2017146415A (ja) * 2016-02-16 2017-08-24 テルモ株式会社 生体モデルおよびその製造方法
JP2018132622A (ja) * 2017-02-15 2018-08-23 テルモ株式会社 狭窄血管モデル及び手技シミュレータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168315A1 (ja) * 2021-02-08 2022-08-11 朝日インテック株式会社 血管病変モデル

Also Published As

Publication number Publication date
JP7270733B2 (ja) 2023-05-10
JPWO2020250338A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
JP6452715B2 (ja) カテーテル・シミュレーター、及びカテーテル・シミュレーター用造影方法
WO2020116277A1 (ja) 血管モデル及び臓器シミュレータ
US11908342B2 (en) Human body simulation device, method for controlling human body simulation device, and computer program
JP2022501643A (ja) 患者固有の心血管シミュレーション装置
US20210272481A1 (en) Organ simulator
US20210209968A1 (en) Human body simulation device
WO2020250338A1 (ja) 血管モデル
JP7438414B2 (ja) 心臓モデル
WO2021005938A1 (ja) 心臓シミュレータ
RU213757U1 (ru) Имитация головы пациента
EP4336478A1 (en) Ex vivo biophantom for training of surgical and minimally- invasive surgical procedures
US20240177629A1 (en) Vascular lesion model
WO2024052365A1 (en) Ex vivo biophantom for training of surgical and minimally- invasive surgical procedures
Lioce et al. DEVELOPMENT OF FULL-SCALE 3D PRINTED MODEL OF HUMAN BODY WITH ORGANS AND ASSOCIATED ARTERIES FOR TRAINING NURSING STUDENTS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525471

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932510

Country of ref document: EP

Kind code of ref document: A1