WO2020249097A1 - 一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法 - Google Patents

一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法 Download PDF

Info

Publication number
WO2020249097A1
WO2020249097A1 PCT/CN2020/095868 CN2020095868W WO2020249097A1 WO 2020249097 A1 WO2020249097 A1 WO 2020249097A1 CN 2020095868 W CN2020095868 W CN 2020095868W WO 2020249097 A1 WO2020249097 A1 WO 2020249097A1
Authority
WO
WIPO (PCT)
Prior art keywords
wedge block
shape memory
memory alloy
alloy rod
wedge
Prior art date
Application number
PCT/CN2020/095868
Other languages
English (en)
French (fr)
Inventor
侯和涛
孙冰
韩翔
朱勇静
陈骁
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to JP2021545298A priority Critical patent/JP7133722B2/ja
Publication of WO2020249097A1 publication Critical patent/WO2020249097A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground

Definitions

  • the invention relates to the technical field of building steel structures, in particular to a self-resetting damper that utilizes wedge-shaped sliding block friction and energy consumption and a manufacturing method.
  • a damper is a device that uses damping characteristics to slow down mechanical vibration and consume kinetic energy.
  • the common friction dampers mainly include: ordinary friction dampers, pall friction dampers, sumitomo friction dampers, piezoelectric smart friction dampers, etc.
  • the friction damper is a damper with strong energy consumption, stable structure, simple and convenient installation.
  • the traditional friction damper can only realize energy consumption and has no self-reset capability.
  • the object of the present invention is to provide a self-resetting damper that uses the frictional energy of a wedge-shaped slider and a manufacturing method, so that the damper has a self-resetting ability.
  • the present invention provides the following solutions:
  • a self-resetting damper that uses the frictional energy of a wedge-shaped sliding block, comprising a wedge block group, a bottom plate screw, a first shape memory alloy rod and a second shape memory alloy rod;
  • the wedge block group includes a first wedge block with a small bottom and a big top, a second wedge block with a small top and a big bottom, a third wedge block with a large left and a small right and a fourth wedge block with a small left and a large right;
  • the first wedge block and the second wedge block are symmetrical up and down, and the small end of the first wedge block and the small end of the second wedge block are arranged opposite to each other;
  • the third wedge block and the fourth wedge block are bilaterally symmetric, and the small end of the third wedge block and the small end of the fourth wedge block are arranged opposite to each other;
  • the first wedge block, the second wedge block, the third wedge block, and the fourth wedge block form a closed structure with a through hole in the center;
  • the two slopes of the first wedge block are in sliding friction contact with the upper slope of the third wedge block and the upper slope of the fourth wedge block; the two slopes of the second wedge block are in contact with the The lower slope of the third wedge block and the lower slope of the fourth wedge block slidingly and frictionally contact;
  • the first wedge block and the second wedge block are respectively provided with first mounting holes
  • the third wedge block and the fourth wedge block are respectively provided with a second mounting hole position and a third mounting hole position;
  • the first shape memory alloy rod sequentially passes through the second mounting holes of the third wedge block and the fourth wedge block;
  • the second shape memory alloy rod passes through the third mounting holes of the third wedge block and the fourth wedge block in sequence;
  • the first shape memory alloy rod and the second shape memory alloy rod are parallel to each other;
  • the bottom plate screw passes through the first mounting holes of the first wedge block and the second wedge block in sequence;
  • the bottom plate screw is perpendicular to the plane formed by the first shape memory alloy rod and the second shape memory alloy rod, and is located between the first shape memory alloy rod and the second shape memory alloy rod;
  • Both ends of the bottom plate screw are provided with threads for screwing in a bottom plate nut to fix the first wedge block and the second wedge block;
  • Both ends of the first shape memory alloy rod and the second shape memory alloy rod are respectively provided with threads for screwing in a tension nut to restrict the third wedge block and the fourth wedge block along the first
  • the shape memory alloy rod and the second shape memory alloy rod slide in the axial direction.
  • the first mounting hole penetrates the center of the upper and lower surfaces of the first wedge block and the second wedge block.
  • the axis of the second mounting hole and the axis of the third mounting hole are parallel to each other, are located on the same horizontal plane, are symmetrically distributed on both sides of the axis of the first mounting hole, and pass through the first mounting hole.
  • the distance between the second mounting hole and the third mounting hole is greater than the diameter of the bottom plate screw.
  • a first protruding portion is provided on the first slope of the first wedge block, and the first protruding portion matches a recess provided on the upper slope of the third wedge block;
  • a second protruding part is provided on the second slope of the first wedge block, and the second protruding part matches the recess provided on the upper slope of the fourth wedge block;
  • a third protruding part is provided on the first slope of the second wedge block, and the third protruding part matches the recess provided on the lower slope of the third wedge block;
  • a fourth protruding part is provided on the second slope of the second wedge block, and the fourth protruding part matches the recess provided on the lower slope of the fourth wedge block.
  • the angle value of the acute angle formed by the slopes of the first wedge block, the second wedge block, the third wedge block, and the fourth wedge block and the first shape memory alloy rod is Between 30 and 60°.
  • the material of the first wedge block, the second wedge block, the third wedge block and the fourth wedge block is cast iron.
  • a manufacturing method of a self-resetting damper that utilizes frictional energy consumption of a wedge-shaped slider comprising:
  • the first wedge block, the second wedge block, the third wedge block, and the fourth wedge block are processed according to the angle value, and the first wedge block is a wedge block with a small bottom and a large top.
  • the second wedge block is a wedge block with a large bottom and a small top
  • the third wedge block is a wedge block with a large left and a small right
  • the fourth wedge block is a wedge with a small left and a large right;
  • the bottom plate screw material, the first shape memory alloy rod material, and the second shape memory alloy rod material are processed into the bottom plate screw, the first shape memory alloy rod, and the bottom plate screw material by turning or rolling technology according to the length and diameter.
  • the first wedge block and the second wedge block are placed symmetrically up and down, so that the small end of the first wedge block is opposite to the small end of the second wedge block;
  • the fourth wedge block, the small end of the third wedge block and the small end of the fourth wedge block are opposite;
  • the first wedge block, the second wedge block, the third wedge block and The fourth wedge block forms a closed structure with a through hole in the center;
  • a bottom plate nut is installed at both ends of the bottom plate screw for fixing.
  • the opening of the first mounting holes on the first wedge block and the second wedge block respectively specifically includes:
  • the first mounting holes matching the diameter of the bottom plate screw are respectively opened on the first wedge block and the second wedge block, so that the first mounting holes penetrate the first wedge block And the upper and lower centers of the second wedge block;
  • Said opening a second mounting hole position and a third mounting hole position on the third wedge block and the fourth wedge block respectively includes:
  • the third wedge block and the fourth wedge block are respectively provided with the second mounting hole and the first mounting hole that match the diameter of the first shape memory alloy rod and the second shape memory alloy rod Three mounting holes, so that the second mounting hole and the third mounting hole penetrate the left and right faces of the third wedge block and the fourth wedge block, the axis of the second mounting hole and the The axes of the third mounting holes are parallel to each other and are located on the same horizontal plane.
  • the bottom plate screw material, the first shape memory alloy rod material, and the second shape memory alloy rod material are processed into the bottom plate screw and the first shape memory alloy rod material by turning or rolling technology according to the length and diameter.
  • the shape memory alloy rod and the second shape memory alloy rod it further includes:
  • Heat treatment is performed on the bottom plate screw material, the first shape memory alloy rod material, and the second shape memory alloy rod material, respectively.
  • the separately determining the length and diameter of the bottom plate screw, the first shape memory alloy rod, and the second shape memory alloy rod specifically includes:
  • the length and diameter of the bottom plate screw, the first shape memory alloy rod, and the second shape memory alloy rod are calculated according to the stiffness, output power, energy consumption and self-reset capability of the damper.
  • the present invention discloses the following technical effects:
  • the damper of the present invention uses the first wedge block and the second wedge block to squeeze the third wedge block and the fourth wedge block, so that the first shape memory alloy rod and the second shape memory alloy rod are stretched in the axial direction, and then reused
  • the higher restoring force of the first shape memory alloy rod and the second shape memory alloy rod drives the third wedge block and the fourth wedge block to squeeze the first wedge block and the second wedge block, and finally realize the self-control of the damper through the bottom plate bolts. Reset.
  • Fig. 1 is a structural diagram of a self-resetting damper using wedge-shaped sliding block friction and energy consumption provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of the inclined plane of the wedge block provided by the embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional structure diagram of a self-resetting damper using wedge-shaped slider friction and energy dissipation provided by an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the application of a self-resetting damper using wedge-shaped sliding block friction energy consumption in a column foot structure provided by an embodiment of the present invention
  • the purpose of the present invention is to provide a self-resetting damper that uses the frictional energy of a wedge-shaped slider and a manufacturing method, so that the damper has a self-resetting ability.
  • Fig. 1 is a structural diagram of a self-resetting damper using wedge-shaped slider friction energy consumption provided by an embodiment of the present invention.
  • a self-resetting damper using wedge-shaped slider friction energy consumption includes wedge blocks, The bottom plate screw 5, the first shape memory alloy rod 6 and the second shape memory alloy rod 7.
  • the wedge block group includes a first wedge block with a small bottom and a large block 1, a second wedge block with a small top and a large bottom 2, a third wedge block 3 with a large left and small right, and a fourth wedge 4 with a small left and large right;
  • the material of the first wedge block 1, the second wedge block 2, the third wedge block 3, and the fourth wedge block 4 is cast iron or steel.
  • the first wedge block 1 and the second wedge block 2 are symmetrical up and down, and the small end of the first wedge block 1 and the small end of the second wedge block 2 are arranged oppositely; the third wedge block 3 and The fourth wedge block 4 is symmetrical, the small end of the third wedge block 3 and the small end of the fourth wedge block 4 are arranged oppositely; the first wedge block 1, the second wedge block 2, The third wedge block 3 and the fourth wedge block 4 form a closed structure with a through hole in the center.
  • the two inclined surfaces of the first wedge block 1 are in sliding frictional contact with the upper inclined surface of the third wedge block 3 and the upper inclined surface of the fourth wedge block 4, respectively; two of the second wedge block 2 The inclined surfaces are in sliding friction contact with the lower inclined surface of the third wedge block 3 and the lower inclined surface of the fourth wedge block 4 respectively.
  • FIG. 2 is a schematic diagram of the structure of the inclined surface of the wedge block provided by the embodiment of the present invention.
  • the first inclined surface of the first wedge block 1 is provided with a first protrusion, the first protrusion and the third wedge block
  • the concave portion provided on the upper slope 12 of the first wedge block matches; or the first concave portion is provided on the first slope of the first wedge block 1, and the first concave portion matches the protrusions provided on the upper slope 12 of the third wedge block.
  • a second protruding portion is provided on the second slope of the first wedge block 1, and the second protruding portion matches the recess provided on the upper slope of the fourth wedge block 4; or the second protruding portion of the first wedge block 1
  • a second recessed portion is provided on the inclined surface, and the second recessed portion matches the protrusion provided on the upper inclined surface of the fourth wedge block 4.
  • a third protruding part is provided on the first slope of the second wedge block 2, and the third protruding part matches the recess provided on the lower slope 13 of the third wedge block; or the first protruding part of the second wedge block 2
  • a third recessed portion is provided on the inclined surface, and the third recessed portion matches the protrusion provided on the lower inclined surface 13 of the third wedge block.
  • a fourth protrusion is provided on the second slope of the second wedge block 2, and the fourth protrusion matches the recess provided on the lower slope of the fourth wedge block 4; or the second wedge block 2
  • a fourth recessed portion is provided on the second inclined surface, and the fourth recessed portion matches the protrusion provided on the lower slope of the fourth wedge block 4.
  • the two inclined surfaces of the first wedge block 1 are provided with matching protrusions corresponding to the upper inclined surface 12 of the third wedge block and the upper inclined surface of the fourth wedge block.
  • the two slopes of the second wedge block 2 and the lower slope 13 of the third wedge block and the lower slope of the fourth wedge block are correspondingly provided with matching protrusions
  • the ridges or valleys of depressions; the ridges or valleys extend in the direction of the slope of the wedge block.
  • the inclined surface 11 of the first wedge block (including the first inclined surface and the second inclined surface of the first wedge block) is set as a convex ridge extending along the direction of the inclined surface of the wedge block.
  • the upper inclined surface 12 of the third wedge block and the upper inclined surface of the fourth wedge block that the inclined surface 11 frictionally contacts are provided with matching concave valleys (concave V-shaped structure);
  • the inclined surface 14 of the second wedge block including the first The first slope and the second slope of the two wedge blocks are provided with convex ridges extending along the slope direction of the wedge block, and the lower slope 13 and the third wedge block that are in frictional contact with the slope 14 of the second wedge block
  • matching concave valleys are provided on the lower slope of the fourth wedge block.
  • Fig. 3 is a schematic cross-sectional structure diagram of a self-resetting damper using wedge-shaped slider friction and energy dissipation provided by an embodiment of the present invention.
  • the first wedge block 1, the second wedge block 2, the first wedge block The angle value of the acute angle formed by the inclined surfaces of the three-wedge block 3 and the fourth wedge block 4 and the horizontal plane is between 30° and 60°.
  • the first wedge block 1 and the second wedge block 2 are respectively provided with first mounting holes 8.
  • the first mounting hole 8 penetrates the center of the upper and lower surfaces of the first wedge block 1 and the second wedge block 2.
  • the third wedge block 3 and the fourth wedge block 4 are respectively provided with a second installation hole 9 and a third installation hole 10; the axis of the second installation hole 9 and the third installation
  • the axes of the holes 10 are parallel to each other, are located on the same horizontal plane, are symmetrically distributed on both sides of the axis of the first mounting hole 8, and penetrate the left and right surfaces of the third wedge block 3 and the fourth wedge block 4;
  • the distance between the second mounting hole 9 and the third mounting hole 10 is greater than the diameter of the bottom plate screw 5.
  • the first shape memory alloy rod 6 passes through the second mounting holes 9 of the third wedge block 3 and the fourth wedge block 4 in sequence.
  • the second shape memory alloy rod 7 passes through the third installation hole 10 of the third wedge block 3 and the fourth wedge block 4 in sequence.
  • the first shape memory alloy rod 6 and the second shape memory alloy rod 7 are parallel to each other.
  • the bottom plate screw 5 passes through the first installation holes 8 of the first wedge block 1 and the second wedge block 2 in sequence.
  • the bottom plate screw 5 is perpendicular to the plane formed by the first shape memory alloy rod 6 and the second shape memory alloy rod 7, and is located on the first shape memory alloy rod 6 and the second shape memory alloy rod 7 between.
  • Both ends of the bottom plate screw 5 are provided with threads for screwing in bottom plate nuts to fix the first wedge block 1 and the second wedge block 2.
  • Both ends of the first shape memory alloy rod 6 and the second shape memory alloy rod 7 are respectively provided with threads for screwing in a tension nut to restrict the third wedge block 3 and the fourth wedge block 4
  • the first shape memory alloy rod 6 and the second shape memory alloy rod 7 slide in the axial direction.
  • the damper of the present invention uses the first wedge block 1 and the second wedge block 2 to squeeze the third wedge block 3 and the fourth wedge block 4 so that the first shape memory alloy rod 6 and the second shape memory alloy rod 7 are axially Stretch in the direction, and then use the higher restoring force of the first shape memory alloy rod 6 and the second shape memory alloy rod 7 to drive the third wedge block 3 and the fourth wedge block 4 to squeeze the first wedge block 1 and the second wedge block Block 2, finally realize the self-reset of the damper through the bottom plate bolt.
  • first wedge block 1 and the second wedge block 2 are in frictional contact with the third wedge block 3 and the fourth wedge block 4 respectively, resulting in frictional energy dissipation, and the first shape memory alloy rod 6 and the second shape memory alloy rod are used at the same time
  • the energy consumption capability of 7 makes the damper of the present invention have a better energy consumption effect.
  • the self-resetting damper using the frictional energy of the wedge-shaped sliding block of the present invention is an external energy-consuming component, which is convenient to install, and uses a shape memory alloy, which is not easy to be damaged; and through the form of matching the wedge block and the shape memory alloy rod, the object The component realizes self-reset.
  • This embodiment also provides a method for manufacturing a self-resetting damper that uses the frictional energy of the wedge-shaped slider, and the manufacturing method includes:
  • the first wedge block 1, the second wedge block 2, the third wedge block 3, and the fourth wedge block 4 are processed according to the angle value, and the first wedge block 1 is small in size and large in size.
  • the second wedge block 2 is a large wedge block on the lower side
  • the third wedge block 3 is a large wedge block on the left and a small wedge block on the right
  • the fourth wedge block 4 is a wedge shape with a small left and a large right Piece.
  • a wire brush or shot blasting method is used to remove rust floating on the slopes of the first wedge block 1, the second wedge block 2, the third wedge block 3, and the fourth wedge block 4.
  • the length and diameter of the bottom plate screw 5, the first shape memory alloy rod 6 and the second shape memory alloy rod 7 are respectively determined.
  • the bottom plate screw material, the first shape memory alloy rod material, and the second shape memory alloy rod material are processed into the bottom plate screw 5 and the first shape memory alloy rod 6 by turning or rolling technology. And the second shape memory alloy rod 7.
  • the two ends of the anchoring section of the bottom plate screw 5, the first shape memory alloy rod 6 and the second shape memory alloy rod 7 are threaded.
  • First mounting holes 8 are opened on the first wedge block 1 and the second wedge block 2 respectively.
  • a second mounting hole 9 and a third mounting hole 10 are respectively opened on the third wedge block 3 and the fourth wedge block 4.
  • first wedge block 1 and the second wedge block 2 up and down symmetrically, so that the small end of the first wedge block 1 and the small end of the second wedge block 2 are opposite;
  • the wedge block 3 and the fourth wedge block 4 make the small end of the third wedge block 3 and the small end of the fourth wedge block 4 face each other; make the first wedge block 1, the second wedge shape
  • the block 2, the third wedge block 3 and the fourth wedge block 4 form a closed structure with a through hole in the center.
  • the second shape memory alloy rod 7 is passed through the third installation hole 10 of the third wedge block 3 and the fourth wedge block 4 in sequence.
  • Tension nuts are installed at both ends of the first shape memory alloy rod 6 and the second shape memory alloy rod 7 to be fixed.
  • a bottom plate nut is installed at both ends of the bottom plate screw 5 for fixing.
  • the opening of the first mounting holes 8 on the first wedge block 1 and the second wedge block 2 respectively specifically includes:
  • the first wedge block 1 and the second wedge block 2 are respectively provided with the first mounting hole 8 matching the diameter of the bottom plate screw 5, so that the first mounting hole 8 penetrates the The upper and lower centers of the first wedge block 1 and the second wedge block 2.
  • Said opening a second mounting hole 9 and a third mounting hole 10 on the third wedge block 3 and the fourth wedge block 4 respectively includes:
  • the third wedge block 3 and the fourth wedge block 4 are respectively provided with the second mounting hole positions that match the diameter of the first shape memory alloy rod 6 and the second shape memory alloy rod 7 9 and the third mounting hole 10, so that the second mounting hole 9 and the third mounting hole 10 penetrate the left and right faces of the third wedge block 3 and the fourth wedge block 4, so
  • the axis of the second mounting hole 9 and the axis of the third mounting hole 10 are parallel to each other and are located on the same horizontal plane.
  • the bottom plate screw material, the first shape memory alloy rod material, and the second shape memory alloy rod material are processed into the bottom plate screw 5 and the first shape memory alloy according to the length and diameter by turning or rolling technology Before the rod 6 and the second shape memory alloy rod 7, further includes:
  • Heat treatment is performed on the material of the bottom plate screw 5, the material of the first shape memory alloy rod 6 and the material of the second shape memory alloy rod 7 respectively.
  • the respective determination of the length and diameter of the bottom plate screw 5, the first shape memory alloy rod 6 and the second shape memory alloy rod 7 specifically includes:
  • the length and diameter of the bottom plate screw 5, the first shape memory alloy rod 6 and the second shape memory alloy rod 7 are calculated according to the stiffness, output power, energy consumption and self-reset ability of the damper.
  • the stiffness, output, energy consumption, and self-reset ability of the damper are sequentially increased, and the recoverable elastic deformation is sequentially decreased.
  • the angle value of the angle between the inclined surface of the wedge block and the horizontal plane is predetermined.
  • the stiffness, damping and deformation of the components are preset to obtain the performance parameters of the shape memory alloy rod, that is, the length and the diameter, so that the manufactured damper can meet the energy consumption, shock absorption and self-reset ability demand.
  • the damper of the present invention can be used in a variety of environments. Taking the column base node of a building structure as an example, the damper of the present invention is applied to a building structure, which can effectively control the response of the building structure under earthquake action and protect the main structure from Damaged or greatly reduced damage.
  • the bolts of the node When an earthquake occurs, the bolts of the node are displaced under force, causing the first wedge block 1 and the second wedge block 2 to squeeze the third wedge block 3 and the fourth wedge block 4, so that the first shape memory alloy rod 6 and the second wedge block
  • the second shape memory alloy rod 7 is stretched to produce elongated deformation, and the restoring force of the first shape memory alloy rod 6 and the second shape memory alloy rod 7 drives the third wedge block 3 and the fourth wedge block 4 to squeeze the first wedge shape
  • the block 1 and the second wedge block 2 transmit the restoring force to the bottom plate bolts to realize the self-reset of the nodes.
  • the squeezing between the first wedge block 1 and the second wedge block 2 arranged up and down and the third wedge block 3 and the fourth wedge block 4 arranged on the left and right produces frictional sliding, so that the frictional contact of the wedge blocks Friction energy is generated between the wedges.
  • the shape memory alloy rod material itself has a certain energy dissipation capacity, the energy dissipation and shock absorption of the node are determined by the friction between the first wedge block 1 and the second wedge block 2 and the third wedge block 3 and the fourth wedge block 4 and the first
  • the shape memory alloy rod 6 and the second shape memory alloy rod 7 are provided together to effectively avoid damage to the main structure.
  • the stiffness, damping and deformation of the components are pre-set by designing the angle between each wedge block slope in the damper and the horizontal plane and the length and diameter of the shape memory alloy rod.
  • the rigidity, output, energy consumption and self-reset ability of the friction damper are adjusted, and the structure has stable friction performance and simple structure.
  • FIG. 4 is a schematic diagram of the application of the self-resetting damper using the frictional energy dissipation of the wedge-shaped slider in the column foot structure provided by the embodiment of the present invention.
  • the section steel foundation 18 bears the internal force transmitted by the steel column 16.
  • the internal forces transmitted by the steel column 16 include bending moment, shear force and axial force.
  • the section steel foundation 18 includes upper and lower steel flange plates, steel webs and steel stiffening plates.
  • the cross-sectional form of the steel column 16 may be H-shaped steel, square steel tube, rectangular steel tube, round steel tube, and cross-shaped steel, which can be specifically determined according to design requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Dampers (AREA)

Abstract

本发明公开一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法。所述阻尼器包括楔块组、底板螺杆、第一形状记忆合金杆和第二形状记忆合金杆;第一楔形块与所述第二楔形块上对应设置有第一安装孔位;第三楔形块与所述第四楔形块上分别对应设置有第二安装孔位和第三安装孔位;第一形状记忆合金杆穿过第二安装孔位;第二形状记忆合金杆穿过第三安装孔位;第一形状记忆合金杆和第二形状记忆合金杆相互平行;底板螺杆穿过第一安装孔位,垂直于第一形状记忆合金杆和第二形状记忆合金杆形成的平面,位于所述第一形状记忆合金杆和所述第二形状记忆合金杆之间。利用第一形状记忆合金杆和第二形状记忆合金杆较高的回复力,使阻尼器实现自复位功能。

Description

一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法
本申请要求于2019年6月13日提交中国专利局、申请号为201910509543.9、发明名称为“一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及建筑钢结构技术领域,特别是涉及一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法。
背景技术
阻尼器是一种利用阻尼特性来减缓机械振动及消耗动能的装置。目前常见的摩擦阻尼器主要有:普通摩擦阻尼器、pall摩擦阻尼器、sumitomo摩擦阻尼器、压电智能摩擦阻尼器等。摩擦阻尼器是一种耗能能力较强、结构稳定、简单以及安装方便的阻尼器。但传统的摩擦阻尼器,仅能实现耗能,无自复位能力。
发明内容
基于此,本发明的目的是提供一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法,使阻尼器具有自复位能力。
为实现上述目的,本发明提供了如下方案:
一种利用楔形滑块摩擦耗能的自复位阻尼器,包括楔块组、底板螺杆、第一形状记忆合金杆和第二形状记忆合金杆;
所述楔块组包括下小上大的第一楔形块、上小下大的第二楔形块、左大右小的第三楔形块和左小右大的第四楔形块;
所述第一楔形块和所述第二楔形块上下对称,所述第一楔形块的小端和所述第二楔形块的小端相对设置;
所述第三楔形块和所述第四楔形块左右对称,所述第三楔形块的小端和所述第四楔形块的小端相对设置;
所述第一楔形块、所述第二楔形块、所述第三楔形块和所述第四楔形块形成中心有通孔的封闭结构;
所述第一楔形块的两个斜面分别与所述第三楔形块的上侧斜面和所 述第四楔形块的上侧斜面滑动摩擦接触;所述第二楔形块的两个斜面分别与所述第三楔形块的下侧斜面和所述第四楔形块的下侧斜面滑动摩擦接触;
所述第一楔形块与所述第二楔形块上分别对应设置有第一安装孔位;
所述第三楔形块与所述第四楔形块上分别对应设置有第二安装孔位和第三安装孔位;
所述第一形状记忆合金杆依次穿过所述第三楔形块和所述第四楔形块的第二安装孔位;
所述第二形状记忆合金杆依次穿过所述第三楔形块和所述第四楔形块的第三安装孔位;
所述第一形状记忆合金杆和所述第二形状记忆合金杆相互平行;
所述底板螺杆依次穿过所述第一楔形块和所述第二楔形块的第一安装孔位;
所述底板螺杆垂直于所述第一形状记忆合金杆和所述第二形状记忆合金杆形成的平面,位于所述第一形状记忆合金杆和所述第二形状记忆合金杆之间;
所述底板螺杆两端均设置有螺纹,用于拧入底板螺母固定所述第一楔形块和所述第二楔形块;
所述第一形状记忆合金杆和所述第二形状记忆合金杆两端分别设置有螺纹,用于拧入张拉螺母限制所述第三楔形块和所述第四楔形块沿所述第一形状记忆合金杆和所述第二形状记忆合金杆的轴向方向滑动。
可选的,所述第一安装孔位贯穿所述第一楔形块和所述第二楔形块上下面的中心。
可选的,所述第二安装孔位的轴线和所述第三安装孔位的轴线相互平行,位于同一水平面上,对称分布在所述第一安装孔位轴线的两侧,贯穿所述第三楔形块和所述第四楔形块的左右面;
所述第二安装孔位与所述第三安装孔位之间的距离大于所述底板螺杆的直径。
可选的,所述第一楔形块的第一斜面上设置有第一凸出部,所述第一凸出部与所述第三楔形块的上侧斜面上设置的凹陷部相匹配;
所述第一楔形块的第二斜面上设置有第二凸出部,所述第二凸出部与所述第四楔形块的上侧斜面上设置的凹陷部相匹配;
所述第二楔形块的第一斜面上设置有第三凸出部,所述第三凸出部与所述第三楔形块的下侧斜面上设置的凹陷部相匹配;
所述第二楔形块的第二斜面上设置有第四凸出部,所述第四凸出部与所述第四楔形块的下侧斜面上设置的凹陷部相匹配。
可选的,所述第一楔形块、所述第二楔形块、所述第三楔形块和所述第四楔形块的斜面与所述第一形状记忆合金杆所成锐角的角度值大小为30~60°之间。
可选的,所述第一楔形块、所述第二楔形块、所述第三楔形块和所述第四楔形块的材料为铸铁。
一种利用楔形滑块摩擦耗能的自复位阻尼器的制造方法,所述制造方法包括:
确定第一楔形块、第二楔形块、第三楔形块和第四楔形块的斜面与水平面所成锐角的角度值;
按照所述角度值加工所述第一楔形块、所述第二楔形块、所述第三楔形块和所述第四楔形块,所述第一楔形块为下小上大的楔形块,所述第二楔形块为下大上小的楔形块,所述第三楔形块为左大右小的楔形块,所述第四楔形块为左小右大的楔形块;
采用钢丝刷或抛丸除锈的方法清除所述第一楔形块、所述第二楔形块、所述第三楔形块和所述第四楔形块的斜面的浮锈;
分别确定底板螺杆、第一形状记忆合金杆和第二形状记忆合金杆的长度与直径;
按照所述长度与直径采用车削技术或轧制技术将底板螺杆材料、第一形状记忆合金杆材料和第二形状记忆合金杆材料加工成所述底板螺杆、所述第一形状记忆合金杆和所述第二形状记忆合金杆;
分别在所述底板螺杆、所述第一形状记忆合金杆和所述第二形状记忆合金杆两端锚固段车螺纹;
分别在所述第一楔形块和所述第二楔形块上开设第一安装孔位;
分别在所述第三楔形块和所述第四楔形块上开设第二安装孔位与第 三安装孔位;
上下对称放置所述第一楔形块和所述第二楔形块,使所述第一楔形块的小端和所述第二楔形块的小端相对;左右对称放置所述第三楔形块和所述第四楔形块,使所述第三楔形块的小端和所述第四楔形块的小端相对;使所述第一楔形块、所述第二楔形块、所述第三楔形块和所述第四楔形块形成中心有通孔的封闭结构;
将所述第一形状记忆合金杆依次穿过所述第三楔形块和所述第四楔形块的第二安装孔位;
将所述第二形状记忆合金杆依次穿过所述第三楔形块和所述第四楔形块的第三安装孔位;
分别在所述第一形状记忆合金杆和所述第二形状记忆合金杆两端安装张拉螺母固定;
将所述底板螺杆依次穿过所述第一楔形块和所述第二楔形块的第一安装孔位;
在所述底板螺杆两端安装底板螺母固定。
可选的,所述分别在所述第一楔形块和所述第二楔形块上开设第一安装孔位,具体包括:
分别在所述第一楔形块和所述第二楔形块上开设与所述底板螺杆的直径相匹配的所述第一安装孔位,使所述第一安装孔位贯穿所述第一楔形块和所述第二楔形块的上下面的中心;
所述分别在所述第三楔形块和所述第四楔形块上开设第二安装孔位与第三安装孔位,具体包括:
分别在所述第三楔形块和所述第四楔形块上开设与所述第一形状记忆合金杆和所述第二形状记忆合金杆直径相匹配的所述第二安装孔位和所述第三安装孔位,使所述第二安装孔位和所述第三安装孔位贯穿所述第三楔形块和所述第四楔形块的左右面,所述第二安装孔位的轴线和所述第三安装孔位的轴线相互平行,且位于同一水平面上。
可选的,所述按照所述长度与直径采用车削技术或轧制技术将底板螺杆材料、第一形状记忆合金杆材料和第二形状记忆合金杆材料加工成所述底板螺杆、所述第一形状记忆合金杆和所述第二形状记忆合金杆之前,还 包括:
分别对所述底板螺杆材料、所述第一形状记忆合金杆材料和所述第二形状记忆合金杆材料进行热处理。
可选的,所述分别确定底板螺杆、所述第一形状记忆合金杆和第二形状记忆合金杆的长度与直径,具体包括:
根据所述阻尼器的刚度、出力大小、耗能和自复位能力,计算得到所述底板螺杆、所述第一形状记忆合金杆和所述第二形状记忆合金杆的长度与直径。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明的阻尼器利用第一楔形块和第二楔形块挤压第三楔形块和第四楔形块,使第一形状记忆合金杆和第二形状记忆合金杆沿轴向方向拉伸,再利用第一形状记忆合金杆和第二形状记忆合金杆较高的回复力,带动第三楔形块和第四楔形块挤压第一楔形块和第二楔形块,最后通过底板螺栓实现阻尼器的自复位。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的利用楔形滑块摩擦耗能的自复位阻尼器结构图;
图2为本发明实施例提供的楔块组斜面结构示意图;
图3为本发明实施例提供的利用楔形滑块摩擦耗能的自复位阻尼器剖面结构示意图;
图4为本发明实施例提供的利用楔形滑块摩擦耗能的自复位阻尼器在柱脚结构中的应用示意图;
附图标记说明:
1-第一楔形块;2-第二楔形块;3-第三楔形块;4-第四楔形块;5-底板螺杆;6-第一形状记忆合金杆;7-第二形状记忆合金杆;8-第一安装孔位;9-第二安装孔位;10-第三安装孔位;11-第一楔形块的斜面;12-第三 楔形块的上侧斜面;13-第三楔形块的下侧斜面;14-第二楔形块的斜面;15-阻尼器;16-钢柱;17-底板;18-型钢基础。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法,使阻尼器具有自复位能力。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明实施例提供的利用楔形滑块摩擦耗能的自复位阻尼器结构图,如图1所示,一种利用楔形滑块摩擦耗能的自复位阻尼器,包括楔块组、底板螺杆5、第一形状记忆合金杆6和第二形状记忆合金杆7。
所述楔块组包括下小上大的第一楔形块1、上小下大的第二楔形块2、左大右小的第三楔形块3和左小右大的第四楔形块4;本实施例中,所述第一楔形块1、所述第二楔形块2、所述第三楔形块3和所述第四楔形块4的材料为铸铁或钢材。
所述第一楔形块1和所述第二楔形块2上下对称,所述第一楔形块1的小端和所述第二楔形块2的小端相对设置;所述第三楔形块3和所述第四楔形块4左右对称,所述第三楔形块3的小端和所述第四楔形块4的小端相对设置;所述第一楔形块1、所述第二楔形块2、所述第三楔形块3和所述第四楔形块4形成中心有通孔的封闭结构。
所述第一楔形块1的两个斜面分别与所述第三楔形块3的上侧斜面和所述第四楔形块4的上侧斜面滑动摩擦接触;所述第二楔形块2的两个斜面分别与所述第三楔形块3的下侧斜面和所述第四楔形块4的下侧斜面滑动摩擦接触。
图2为本发明实施例提供的楔块组斜面结构示意图,如图2所示,第一楔形块1的第一斜面上设置有第一凸出部,第一凸出部与第三楔形块的 上侧斜面12上设置的凹陷部相匹配;或者第一楔形块1的第一斜面上设置有第一凹陷部,第一凹陷部与第三楔形块的上侧斜面12上设置的凸出部相匹配。
第一楔形块1的第二斜面上设置有第二凸出部,第二凸出部与第四楔形块4的上侧斜面上设置的凹陷部相匹配;或者第一楔形块1的第二斜面上设置有第二凹陷部,第二凹陷部与第四楔形块4的上侧斜面上设置的凸出部相匹配。
第二楔形块2的第一斜面上设置有第三凸出部,第三凸出部与第三楔形块的下侧斜面13上设置的凹陷部相匹配;或者第二楔形块2的第一斜面上设置有第三凹陷部,第三凹陷部与第三楔形块的下侧斜面13上设置的凸出部相匹配。
第二楔形块2的第二斜面上设置有第四凸出部,第四凸出部和所述第四楔形块4的下侧斜面上设置的凹陷部相匹配;或者第二楔形块2的第二斜面上设置有第四凹陷部,第四凹陷部和所述第四楔形块4的下侧斜面上设置的凸出部相匹配。
如图2所示,所述第一楔形块1的两个斜面分别与所述第三楔形块的上侧斜面12和所述第四楔形块的上侧斜面上对应设置有相互匹配的凸出的脊或凹陷的谷;所述第二楔形块2的两个斜面与所述第三楔形块的下侧斜面13和所述第四楔形块的下侧斜面上对应设置有相互匹配的凸出的脊或凹陷的谷;所述脊或谷沿所述楔形块的斜面方向延伸。本实施例中将第一楔形块的斜面11(包括第一楔形块的第一斜面和第二斜面)上设置为沿楔形块的斜面方向延伸的凸出的脊,在与第一楔形块的斜面11摩擦接触的第三楔形块的上侧斜面12和第四楔形块的上侧斜面上对应设置相匹配的凹陷的谷(凹陷的V型结构);第二楔形块的斜面14(包括第二楔形块的第一斜面和第二斜面)上设置为沿楔形块的斜面方向延伸的凸出的脊,在与第二楔形块的斜面14摩擦接触的第三楔形块的下侧斜面13和第四楔形块的下侧斜面上对应设置相匹配的凹陷的谷(凹陷的V型结构)。
通过在各楔形块斜面上设置相互匹配的凸出的脊或凹陷的谷,有利于楔块组结构的稳定,防止各楔形块产生平面外位移和楔块组结构的散架。
图3为本发明实施例提供的利用楔形滑块摩擦耗能的自复位阻尼器剖面结构示意图,如图3所示,所述第一楔形块1、所述第二楔形块2、所述第三楔形块3和所述第四楔形块4的斜面与水平面所成锐角的角度值大小为30~60°之间。
所述第一楔形块1与所述第二楔形块2上分别对应设置有第一安装孔位8。
所述第一安装孔位8贯穿所述第一楔形块1和所述第二楔形块2上下面的中心。
所述第三楔形块3与所述第四楔形块4上分别对应设置有第二安装孔位9和第三安装孔位10;所述第二安装孔位9的轴线和所述第三安装孔位10的轴线相互平行,位于同一水平面上,对称分布在所述第一安装孔位8轴线的两侧,贯穿所述第三楔形块3和所述第四楔形块4的左右面;所述第二安装孔位9与所述第三安装孔位10之间的距离大于所述底板螺杆5的直径。
所述第一形状记忆合金杆6依次穿过所述第三楔形块3和所述第四楔形块4的第二安装孔位9。
所述第二形状记忆合金杆7依次穿过所述第三楔形块3和所述第四楔形块4的第三安装孔位10。
所述第一形状记忆合金杆6和所述第二形状记忆合金杆7相互平行。
所述底板螺杆5依次穿过所述第一楔形块1和所述第二楔形块2的第一安装孔位8。
所述底板螺杆5垂直于所述第一形状记忆合金杆6和所述第二形状记忆合金杆7形成的平面,位于所述第一形状记忆合金杆6和所述第二形状记忆合金杆7之间。
所述底板螺杆5两端均设置有螺纹,用于拧入底板螺母固定所述第一楔形块1和所述第二楔形块2。
所述第一形状记忆合金杆6和所述第二形状记忆合金杆7两端分别设置有螺纹,用于拧入张拉螺母限制所述第三楔形块3和所述第四楔形块4沿所述第一形状记忆合金杆6和所述第二形状记忆合金杆7的轴向方向滑动。
本发明的阻尼器利用第一楔形块1和第二楔形块2挤压第三楔形块3和第四楔形块4,使第一形状记忆合金杆6和第二形状记忆合金杆7沿轴向方向拉伸,再利用第一形状记忆合金杆6和第二形状记忆合金杆7较高的回复力,带动第三楔形块3和第四楔形块4挤压第一楔形块1和第二楔形块2,最后通过底板螺栓实现阻尼器的自复位。
并且,第一楔形块1和第二楔形块2分别与第三楔形块3和第四楔形块4摩擦接触,产生摩擦耗能,同时利用第一形状记忆合金杆6和第二形状记忆合金杆7本身具有的耗能能力,使本发明的阻尼器具有较好的耗能效果。
本发明的利用楔形滑块摩擦耗能的自复位阻尼器为外置耗能组件,安装方便,且使用形状记忆合金,不易损坏;且通过楔块组与形状记忆合金杆配合的形式,使对象构件实现自复位,形状记忆合金杆的直径越大,出力和自复位能力越强。
本实施例还提供一种利用楔形滑块摩擦耗能的自复位阻尼器的制造方法,所述制造方法包括:
确定第一楔形块1、第二楔形块2、第三楔形块3和第四楔形块4的斜面与水平面所成锐角的角度值。
按照所述角度值加工所述第一楔形块1、所述第二楔形块2、所述第三楔形块3和所述第四楔形块4,所述第一楔形块1为下小上大的楔形块,所述第二楔形块2为下大上小的楔形块,所述第三楔形块3为左大右小的楔形块,所述第四楔形块4为左小右大的楔形块。
采用钢丝刷或抛丸除锈的方法清除所述第一楔形块1、所述第二楔形块2、所述第三楔形块3和所述第四楔形块4的斜面的浮锈。
分别确定底板螺杆5、第一形状记忆合金杆6和第二形状记忆合金杆7的长度与直径。
按照所述长度与直径采用车削技术或轧制技术将底板螺杆材料、第一形状记忆合金杆材料和第二形状记忆合金杆材料加工成所述底板螺杆5、所述第一形状记忆合金杆6和所述第二形状记忆合金杆7。
分别在所述底板螺杆5、所述第一形状记忆合金杆6和所述第二形状记忆合金杆7两端锚固段车螺纹。
分别在所述第一楔形块1和所述第二楔形块2上开设第一安装孔位8。
分别在所述第三楔形块3和所述第四楔形块4上开设第二安装孔位9与第三安装孔位10。
上下对称放置所述第一楔形块1和所述第二楔形块2,使所述第一楔形块1的小端和所述第二楔形块2的小端相对;左右对称放置所述第三楔形块3和所述第四楔形块4,使所述第三楔形块3的小端和所述第四楔形块4的小端相对;使所述第一楔形块1、所述第二楔形块2、所述第三楔形块3和所述第四楔形块4形成中心有通孔的封闭结构。
将所述第一形状记忆合金杆6依次穿过所述第三楔形块3和所述第四楔形块4的第二安装孔位9。
将所述第二形状记忆合金杆7依次穿过所述第三楔形块3和所述第四楔形块4的第三安装孔位10。
分别在所述第一形状记忆合金杆6和所述第二形状记忆合金杆7两端安装张拉螺母固定。
将所述底板螺杆5依次穿过所述第一楔形块1和所述第二楔形块2的第一安装孔位8。
在所述底板螺杆5两端安装底板螺母固定。
所述分别在所述第一楔形块1和所述第二楔形块2上开设第一安装孔位8,具体包括:
分别在所述第一楔形块1和所述第二楔形块2上开设与所述底板螺杆5的直径相匹配的所述第一安装孔位8,使所述第一安装孔位8贯穿所述第一楔形块1和所述第二楔形块2的上下面的中心。
所述分别在所述第三楔形块3和所述第四楔形块4上开设第二安装孔位9与第三安装孔位10,具体包括:
分别在所述第三楔形块3和所述第四楔形块4上开设与所述第一形状记忆合金杆6和所述第二形状记忆合金杆7直径相匹配的所述第二安装孔位9和所述第三安装孔位10,使所述第二安装孔位9和所述第三安装孔位10贯穿所述第三楔形块3和所述第四楔形块4的左右面,所述第二安装孔位9的轴线和所述第三安装孔位10的轴线相互平行,且位于同一水 平面上。
所述按照所述长度与直径采用车削技术或轧制技术将底板螺杆材料、第一形状记忆合金杆材料和第二形状记忆合金杆材料加工成所述底板螺杆5、所述第一形状记忆合金杆6和所述第二形状记忆合金杆7之前,还包括:
分别对所述底板螺杆5材料、所述第一形状记忆合金杆6材料和所述第二形状记忆合金杆7材料进行热处理。
所述分别确定底板螺杆5、所述第一形状记忆合金杆6和第二形状记忆合金杆7的长度与直径,具体包括:
根据所述阻尼器的刚度、出力大小、耗能和自复位能力,计算得到所述底板螺杆5、所述第一形状记忆合金杆6和所述第二形状记忆合金杆7的长度与直径。
制造过程中,楔形块斜面与水平面的角度由小到大变化过程中,阻尼器的刚度、出力大小、耗能和自复位能力均依次增强,可恢复弹性变形依次减小。针对应用环境的不同,预先确定楔形块斜面与水平面之间夹角的角度值。以及根据不同构件的使用需求,预先设定构件的刚度、阻尼和变形等参数,得到形状记忆合金杆的性能参数,即长度和直径,使制造得到的阻尼器满足耗能减震和自复位能力需求。
本发明的阻尼器能够应用于多种环境中,以建筑结构的柱脚节点为例,本发明的阻尼器应用于建筑结构中,能够有效控制建筑结构在地震作用下的响应,保护主体结构免受破坏或大幅减少损伤。地震发生时,该节点的螺栓受力发生位移,使第一楔形块1和第二楔形块2挤压第三楔形块3和第四楔形块4,从而使第一形状记忆合金杆6和第二形状记忆合金杆7受到拉伸产生延长变形,再通过第一形状记忆合金杆6和第二形状记忆合金杆7的回复力带动第三楔形块3和第四楔形块4挤压第一楔形块1和第二楔形块2,将回复力传递至底板螺栓实现节点的自复位。
同时,在上下设置的第一楔形块1和第二楔形块2与左右设置的第三楔形块3和第四楔形块4之间的挤压产生摩擦滑动,使楔块组的各摩擦接触的楔形块之间产生摩擦耗能。由于形状记忆合金杆材料本身具有一定耗能能力,所以节点的耗能减震由第一楔形块1和第二楔形块2与第三楔形 块3和第四楔形块4间的摩擦和第一形状记忆合金杆6和第二形状记忆合金杆7共同提供,有效避免主体结构的损伤。
针对不同构件在地震作用下的需求,预先设定好构件的刚度、阻尼和变形等参数,通过设计阻尼器中各楔形块斜面与水平面之间的角度和形状记忆合金杆的长度与直径来进行调节摩擦阻尼器的刚度、出力大小、耗能和自复位能力,并且该结构形式摩擦性能稳定,构造简单。
图4为本发明实施例提供的利用楔形滑块摩擦耗能的自复位阻尼器在柱脚结构中的应用示意图,如图4所示,钢柱16焊接在底板17上,底板17的具体尺寸根据钢柱16的截面和基础形式计算确定;型钢基础18承担钢柱16所传递的内力。钢柱16所传递内力包括弯矩、剪力和轴力。型钢基础18包括上下钢翼缘板、钢腹板和钢加劲板。钢柱16的截面形式可以为H型钢、方钢管、矩形钢管、圆钢管、十字形钢,具体可根据设计需要确定。本发明的利用楔形滑块摩擦耗能的自复位阻尼器各楔形块斜面与水平面的角度值越小,柱脚阻尼摩擦力越大,摩擦耗能越强,柱脚整体刚度提高,自复位能力增强,但这角度不是越小越好,根据使用对象的刚度和变形需求来综合考虑。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种利用楔形滑块摩擦耗能的自复位阻尼器,其特征在于,
    包括楔块组、底板螺杆、第一形状记忆合金杆和第二形状记忆合金杆;
    所述楔块组包括下小上大的第一楔形块、上小下大的第二楔形块、左大右小的第三楔形块和左小右大的第四楔形块;
    所述第一楔形块和所述第二楔形块上下对称,所述第一楔形块的小端和所述第二楔形块的小端相对设置;
    所述第三楔形块和所述第四楔形块左右对称,所述第三楔形块的小端和所述第四楔形块的小端相对设置;
    所述第一楔形块、所述第二楔形块、所述第三楔形块和所述第四楔形块形成中心有通孔的封闭结构;
    所述第一楔形块的两个斜面分别与所述第三楔形块的上侧斜面和所述第四楔形块的上侧斜面滑动摩擦接触;所述第二楔形块的两个斜面分别与所述第三楔形块的下侧斜面和所述第四楔形块的下侧斜面滑动摩擦接触;
    所述第一楔形块与所述第二楔形块上分别对应设置有第一安装孔位;
    所述第三楔形块与所述第四楔形块上分别对应设置有第二安装孔位和第三安装孔位;
    所述第一形状记忆合金杆依次穿过所述第三楔形块和所述第四楔形块的第二安装孔位;
    所述第二形状记忆合金杆依次穿过所述第三楔形块和所述第四楔形块的第三安装孔位;
    所述第一形状记忆合金杆和所述第二形状记忆合金杆相互平行;
    所述底板螺杆依次穿过所述第一楔形块和所述第二楔形块的第一安装孔位;
    所述底板螺杆垂直于所述第一形状记忆合金杆和所述第二形状记忆合金杆形成的平面,位于所述第一形状记忆合金杆和所述第二形状记忆合金杆之间;
    所述底板螺杆两端均设置有螺纹,用于拧入底板螺母固定所述第一楔形块和所述第二楔形块;
    所述第一形状记忆合金杆和所述第二形状记忆合金杆两端分别设置 有螺纹,用于拧入张拉螺母限制所述第三楔形块和所述第四楔形块沿所述第一形状记忆合金杆和所述第二形状记忆合金杆的轴向方向滑动。
  2. 根据权利要求1所述的利用楔形滑块摩擦耗能的自复位阻尼器,其特征在于,
    所述第一安装孔位贯穿所述第一楔形块和所述第二楔形块上下面的中心。
  3. 根据权利要求1所述的利用楔形滑块摩擦耗能的自复位阻尼器,其特征在于,
    所述第二安装孔位的轴线和所述第三安装孔位的轴线相互平行,位于同一水平面上,对称分布在所述第一安装孔位轴线的两侧,贯穿所述第三楔形块和所述第四楔形块的左右面;
    所述第二安装孔位与所述第三安装孔位之间的距离大于所述底板螺杆的直径。
  4. 根据权利要求1所述的利用楔形滑块摩擦耗能的自复位阻尼器,其特征在于,
    所述第一楔形块的第一斜面上设置有第一凸出部,所述第一凸出部与所述第三楔形块的上侧斜面上设置的凹陷部相匹配;
    所述第一楔形块的第二斜面上设置有第二凸出部,所述第二凸出部与所述第四楔形块的上侧斜面上设置的凹陷部相匹配;
    所述第二楔形块的第一斜面上设置有第三凸出部,所述第三凸出部与所述第三楔形块的下侧斜面上设置的凹陷部相匹配;
    所述第二楔形块的第二斜面上设置有第四凸出部,所述第四凸出部与所述第四楔形块的下侧斜面上设置的凹陷部相匹配。
  5. 根据权利要求1所述的利用楔形滑块摩擦耗能的自复位阻尼器,其特征在于,
    所述第一楔形块、所述第二楔形块、所述第三楔形块和所述第四楔形块的斜面与所述第一形状记忆合金杆所成锐角的角度值大小为30~60°之间。
  6. 根据权利要求1所述的利用楔形滑块摩擦耗能的自复位阻尼器, 其特征在于,
    所述第一楔形块、所述第二楔形块、所述第三楔形块和所述第四楔形块的材料为铸铁。
  7. 一种利用楔形滑块摩擦耗能的自复位阻尼器的制造方法,其特征在于,所述制造方法包括:
    确定第一楔形块、第二楔形块、第三楔形块和第四楔形块的斜面与水平面所成锐角的角度值;
    按照所述角度值加工所述第一楔形块、所述第二楔形块、所述第三楔形块和所述第四楔形块,所述第一楔形块为下小上大的楔形块,所述第二楔形块为下大上小的楔形块,所述第三楔形块为左大右小的楔形块,所述第四楔形块为左小右大的楔形块;
    采用钢丝刷或抛丸除锈的方法清除所述第一楔形块、所述第二楔形块、所述第三楔形块和所述第四楔形块的斜面的浮锈;
    分别确定底板螺杆、第一形状记忆合金杆和第二形状记忆合金杆的长度与直径;
    按照所述长度与直径采用车削技术或轧制技术将底板螺杆材料、第一形状记忆合金杆材料和第二形状记忆合金杆材料加工成所述底板螺杆、所述第一形状记忆合金杆和所述第二形状记忆合金杆;
    分别在所述底板螺杆、所述第一形状记忆合金杆和所述第二形状记忆合金杆两端锚固段车螺纹;
    分别在所述第一楔形块和所述第二楔形块上开设第一安装孔位;
    分别在所述第三楔形块和所述第四楔形块上开设第二安装孔位与第三安装孔位;
    上下对称放置所述第一楔形块和所述第二楔形块,使所述第一楔形块的小端和所述第二楔形块的小端相对;左右对称放置所述第三楔形块和所述第四楔形块,使所述第三楔形块的小端和所述第四楔形块的小端相对;使所述第一楔形块、所述第二楔形块、所述第三楔形块和所述第四楔形块形成中心有通孔的封闭结构;
    将所述第一形状记忆合金杆依次穿过所述第三楔形块和所述第四楔形块的第二安装孔位;
    将所述第二形状记忆合金杆依次穿过所述第三楔形块和所述第四楔形块的第三安装孔位;
    分别在所述第一形状记忆合金杆和所述第二形状记忆合金杆两端安装张拉螺母固定;
    将所述底板螺杆依次穿过所述第一楔形块和所述第二楔形块的第一安装孔位;
    在所述底板螺杆两端安装底板螺母固定。
  8. 根据权利要求7所述的利用楔形滑块摩擦耗能的自复位阻尼器的制造方法,其特征在于,
    所述分别在所述第一楔形块和所述第二楔形块上开设第一安装孔位,具体包括:
    分别在所述第一楔形块和所述第二楔形块上开设与所述底板螺杆的直径相匹配的所述第一安装孔位,使所述第一安装孔位贯穿所述第一楔形块和所述第二楔形块的上下面的中心;
    所述分别在所述第三楔形块和所述第四楔形块上开设第二安装孔位与第三安装孔位,具体包括:
    分别在所述第三楔形块和所述第四楔形块上开设与所述第一形状记忆合金杆和所述第二形状记忆合金杆直径相匹配的所述第二安装孔位和所述第三安装孔位,使所述第二安装孔位和所述第三安装孔位贯穿所述第三楔形块和所述第四楔形块的左右面,所述第二安装孔位的轴线和所述第三安装孔位的轴线相互平行,且位于同一水平面上。
  9. 根据权利要求7所述的利用楔形滑块摩擦耗能的自复位阻尼器的制造方法,其特征在于,
    所述按照所述长度与直径采用车削技术或轧制技术将底板螺杆材料、第一形状记忆合金杆材料和第二形状记忆合金杆材料加工成所述底板螺杆、所述第一形状记忆合金杆和所述第二形状记忆合金杆之前,还包括:
    分别对所述底板螺杆材料、所述第一形状记忆合金杆材料和所述第二形状记忆合金杆材料进行热处理。
  10. 根据权利要求7所述的利用楔形滑块摩擦耗能的自复位阻尼器的制造方法,其特征在于,
    所述分别确定底板螺杆、所述第一形状记忆合金杆和第二形状记忆合金杆的长度与直径,具体包括:
    根据所述阻尼器的刚度、出力大小、耗能和自复位能力,计算得到所述底板螺杆、所述第一形状记忆合金杆和所述第二形状记忆合金杆的长度与直径。
PCT/CN2020/095868 2019-06-13 2020-06-12 一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法 WO2020249097A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021545298A JP7133722B2 (ja) 2019-06-13 2020-06-12 楔形スライディングブロックを使用した摩擦エネルギーを消費するセルフリセットダンパー及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910509543.9 2019-06-13
CN201910509543.9A CN110230359B (zh) 2019-06-13 2019-06-13 一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法

Publications (1)

Publication Number Publication Date
WO2020249097A1 true WO2020249097A1 (zh) 2020-12-17

Family

ID=67859143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095868 WO2020249097A1 (zh) 2019-06-13 2020-06-12 一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法

Country Status (3)

Country Link
JP (1) JP7133722B2 (zh)
CN (1) CN110230359B (zh)
WO (1) WO2020249097A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789881A (zh) * 2021-09-18 2021-12-14 福州大学 适用于阶跃荷载的阻尼器及使用方法
CN114592675A (zh) * 2022-03-21 2022-06-07 青建国际集团有限公司 一种快速切换式悬飘脚手架结构
CN114775788A (zh) * 2022-03-18 2022-07-22 中南大学 一种装配式自复位抗震钢桁架梁体系

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110230359B (zh) * 2019-06-13 2020-05-12 山东大学 一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法
CN111764526B (zh) * 2020-06-17 2021-10-01 北京工业大学 一种组合碟簧滑移摩擦自复位耗能阻尼器
CN111764527A (zh) * 2020-06-17 2020-10-13 北京工业大学 一种记忆合金环滑移摩擦自复位耗能阻尼器
CN111962698B (zh) * 2020-07-01 2021-07-30 北京工业大学 一种基于sma自复位滑动摩擦阻尼器
CN112455922A (zh) * 2020-11-18 2021-03-09 东莞市百达半导体材料有限公司 一种压纹led载带及其封装方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533524A (ja) * 1991-08-01 1993-02-09 Shimizu Corp 制振ダンパー
JP2003307253A (ja) * 2002-04-12 2003-10-31 Ohbayashi Corp 摩擦ダンパー
CN2806599Y (zh) * 2005-07-08 2006-08-16 北京工业大学 形状记忆合金-摩擦复合型阻尼器
CN202370118U (zh) * 2011-12-14 2012-08-08 青岛理工大学 摩擦阻尼器
CN104863284A (zh) * 2015-06-02 2015-08-26 北京科技大学 一种土木建筑用Cu-Al-Mn形状记忆合金减震吸能器及其制造方法
CN108590302A (zh) * 2018-05-08 2018-09-28 同济大学 一种用于摇摆核心的地震免损自复位耗能装置
CN208748878U (zh) * 2018-08-29 2019-04-16 沈阳建筑大学 多缓冲耗能式复位阻尼器
CN110230359A (zh) * 2019-06-13 2019-09-13 山东大学 一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070066427A1 (en) 2005-09-19 2007-03-22 Borgwarner Inc. Friction damped blade tensioner
JP5181269B2 (ja) 2007-09-06 2013-04-10 清水建設株式会社 上下免震機構
WO2011152009A1 (ja) 2010-05-31 2011-12-08 社団法人 日本銅センター 銅系合金及びそれを用いた構造材
JP2013087908A (ja) 2011-10-20 2013-05-13 Kozo Gijutsu Kenkyukai 制振部材
JP5616925B2 (ja) 2012-05-24 2014-10-29 間瀬建設株式会社 鋼製ダブルキャンバーおよびこれを用いた免震荷重受替え方法
KR101389994B1 (ko) * 2013-03-05 2014-04-30 인천대학교 산학협력단 에너지 소산형 마찰 댐퍼
KR101632432B1 (ko) 2015-12-15 2016-06-22 주식회사 에스코알티에스 V홈 마찰 댐퍼
CN207988196U (zh) * 2018-02-02 2018-10-19 北京工业大学 基于形状记忆合金丝具有复阻尼特征的摩擦阻尼器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533524A (ja) * 1991-08-01 1993-02-09 Shimizu Corp 制振ダンパー
JP2003307253A (ja) * 2002-04-12 2003-10-31 Ohbayashi Corp 摩擦ダンパー
CN2806599Y (zh) * 2005-07-08 2006-08-16 北京工业大学 形状记忆合金-摩擦复合型阻尼器
CN202370118U (zh) * 2011-12-14 2012-08-08 青岛理工大学 摩擦阻尼器
CN104863284A (zh) * 2015-06-02 2015-08-26 北京科技大学 一种土木建筑用Cu-Al-Mn形状记忆合金减震吸能器及其制造方法
CN108590302A (zh) * 2018-05-08 2018-09-28 同济大学 一种用于摇摆核心的地震免损自复位耗能装置
CN208748878U (zh) * 2018-08-29 2019-04-16 沈阳建筑大学 多缓冲耗能式复位阻尼器
CN110230359A (zh) * 2019-06-13 2019-09-13 山东大学 一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789881A (zh) * 2021-09-18 2021-12-14 福州大学 适用于阶跃荷载的阻尼器及使用方法
CN114775788A (zh) * 2022-03-18 2022-07-22 中南大学 一种装配式自复位抗震钢桁架梁体系
CN114775788B (zh) * 2022-03-18 2024-04-09 中南大学 一种装配式自复位抗震钢桁架梁体系
CN114592675A (zh) * 2022-03-21 2022-06-07 青建国际集团有限公司 一种快速切换式悬飘脚手架结构
CN114592675B (zh) * 2022-03-21 2023-11-28 青建国际集团有限公司 一种快速切换式悬飘脚手架结构

Also Published As

Publication number Publication date
JP7133722B2 (ja) 2022-09-08
JP2022520745A (ja) 2022-04-01
CN110230359A (zh) 2019-09-13
CN110230359B (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2020249097A1 (zh) 一种利用楔形滑块摩擦耗能的自复位阻尼器及制造方法
CN109505364B (zh) 带形状记忆合金阻尼器的自复位耗能钢支撑
CN111962698B (zh) 一种基于sma自复位滑动摩擦阻尼器
TWI509167B (zh) Energy dissipation joint assembly and the use of its seismic structure
CN109024961B (zh) 一种记忆合金自复位耗能阻尼器
TWI550167B (zh) 柱腳構造
CN106401003A (zh) 多工况工作软钢消能器
CN101135181A (zh) 圆孔型摩擦-屈服钢消能器
CN111764526A (zh) 一种组合碟簧滑移摩擦自复位耗能阻尼器
CN111677141A (zh) 一种新型四套管屈曲约束支撑
CN209854918U (zh) 一种钢构件连接件
Zhu et al. Shake-table tests and numerical analysis of steel frames with self-centering viscous-hysteretic devices under the mainshock–aftershock sequences
CN110173059A (zh) 一种具有自复位功能的sma-木质摩擦阻尼器
CN205444463U (zh) 一种基于钢结构梁柱拼接结构的阻尼墙
CN218933487U (zh) 双阶屈服金属弯曲阻尼器
CN204940577U (zh) 预应力黏弹性阻尼墙
CN109930711B (zh) 一种钢板摩擦复合型阻尼墙
CN210104542U (zh) 一种用于控制主梁位移的耗能防落梁装置
CN210369402U (zh) 一种耗能装置及自复位节点
CN207646928U (zh) 一种自调节圆筒屈服型软钢阻尼器
CN106638950B (zh) 预制结构摩擦耗能型梁柱节点
CN218437495U (zh) 一种可拆式钢结构横梁
CN214738948U (zh) 一种具有自复位功能的摩擦耗能阻尼器
JP2014222095A (ja) 摩擦ダンパー
CN215406685U (zh) 一种新型摩擦自复位阻尼器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20822931

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20822931

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30.09.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20822931

Country of ref document: EP

Kind code of ref document: A1