WO2020248718A1 - 一种发声装置的振膜以及发声装置 - Google Patents

一种发声装置的振膜以及发声装置 Download PDF

Info

Publication number
WO2020248718A1
WO2020248718A1 PCT/CN2020/085753 CN2020085753W WO2020248718A1 WO 2020248718 A1 WO2020248718 A1 WO 2020248718A1 CN 2020085753 W CN2020085753 W CN 2020085753W WO 2020248718 A1 WO2020248718 A1 WO 2020248718A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
hydrogenated nitrile
nitrile polymer
agent
content
Prior art date
Application number
PCT/CN2020/085753
Other languages
English (en)
French (fr)
Inventor
惠冰
王述强
凌风光
李春
刘春发
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US17/618,976 priority Critical patent/US20220369037A1/en
Priority to KR1020217040911A priority patent/KR102666673B1/ko
Priority to EP20823630.7A priority patent/EP3985996A4/en
Publication of WO2020248718A1 publication Critical patent/WO2020248718A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/14Non-planar diaphragms or cones corrugated, pleated or ribbed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/005Hydrogenated nitrile rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2315/00Characterised by the use of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/02Rubber derivatives containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2207/00Details of diaphragms or cones for electromechanical transducers or their suspension covered by H04R7/00 but not provided for in H04R7/00 or in H04R2307/00
    • H04R2207/021Diaphragm extensions, not necessarily integrally formed, e.g. skirts, rims, flanges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/122Non-planar diaphragms or cones comprising a plurality of sections or layers

Definitions

  • the present invention relates to the field of electro-acoustic conversion, in particular to a diaphragm of a sounding device and a sounding device.
  • Existing sound device diaphragms mostly adopt a composite structure of high modulus plastic film layers (PEEK, PAR, PEI, PI, etc.), soft thermoplastic polyurethane elastomer (TPU) and damping film (acrylic glue, silica gel, etc.).
  • PEEK high modulus plastic film layers
  • PAR PAR, PEI, PI, etc.
  • TPU soft thermoplastic polyurethane elastomer
  • damping film acrylic glue, silica gel, etc.
  • the overall performance of the existing diaphragm is poor, such as low elastic recovery rate and poor heat resistance, which may easily cause poor listening and make the acoustic performance of the sound device poor.
  • the diaphragm made of silicone rubber has also been applied in the field of sound generating devices.
  • the modulus or hardness of silicone rubber is relatively low, and under the premise of meeting the same F0 requirements, its damping performance is poor and the distortion is high.
  • An object of the present invention is to provide a diaphragm of a sound emitting device and a sound emitting device.
  • a diaphragm of a sound generating device the diaphragm includes at least one elastomer layer, the elastomer layer is made of hydrogenated nitrile polymer, the hydrogenated nitrile polymer
  • the content of the acrylonitrile block in the hydrogenated nitrile polymer ranges from 10 to 70% by weight, and the hydrogenated nitrile polymer is added with a vulcanizing agent. The content is 1%-15% of the total hydrogenated nitrile polymer.
  • the vulcanizing agent adopts at least one of a sulfur type vulcanizing agent and a peroxide type vulcanizing agent.
  • an inorganic filler reinforcing agent is added to the hydrogenated nitrile polymer, and the inorganic filler reinforcing agent is carbon black, silica, calcium carbonate, barium sulfate, organic montmorillonite, and unsaturated carboxylic acid. At least one of metal salt and aramid pulp.
  • the content of the inorganic filler reinforcing agent is 1%-90% of the total amount of the hydrogenated nitrile polymer.
  • an antioxidant is added to the hydrogenated nitrile polymer, and the antioxidant uses antioxidant N-445, antioxidant 246, antioxidant 4010, antioxidant SP, antioxidant RD, antioxidant ODA, antioxidant At least one of OD and antioxidant WH-02.
  • the content of the antioxidant is 0.5%-10% of the total amount of the hydrogenated nitrile polymer.
  • the strength of the hydrogenated nitrile polymer is in the range of 15-95A, and the modulus of the hydrogenated nitrile polymer is in the range of 0.5-50 MPa.
  • the glass transition temperature of the hydrogenated nitrile polymer ranges from -60 to 0°C.
  • the loss factor of the hydrogenated nitrile polymer at room temperature is greater than 0.06.
  • the diaphragm is a single-layer diaphragm, and the single-layer diaphragm is composed of a layer of hydrogenated nitrile polymer film;
  • the diaphragm is a composite diaphragm, the composite diaphragm includes two, three, four or five diaphragms; the composite diaphragm includes at least one hydrogenated nitrile polymer diaphragm.
  • the thickness of the hydrogenated nitrile polymer film layer is 10-200 ⁇ m.
  • the thickness of the hydrogenated nitrile polymer film layer is 30-120 ⁇ m.
  • a sound generating device includes a vibration system and a magnetic circuit system that cooperates with the vibration system, and the vibration system includes the diaphragm of the sound generating device described above.
  • the inventor of the present invention found that in the prior art, the overall performance of the diaphragm is poor, such as low elastic recovery rate and poor heat resistance, which easily causes poor hearing. Therefore, the technical task to be achieved or the technical problem to be solved by the present invention is never thought of or unexpected by those skilled in the art, so the present invention is a new technical solution.
  • the beneficial effects of the present invention discloses a diaphragm made of hydrogenated nitrile polymer, which has good resilience, can maintain high elasticity in a low temperature environment, and can work for a long time in a high temperature environment. Therefore, the sound generating device can be used in extremely harsh environments while maintaining good acoustic performance.
  • Fig. 1 is a test curve of the vibration displacement of different parts of the diaphragm of a sound device according to an embodiment of the present invention at different frequencies.
  • Figure 2 is the test curve of the vibration displacement of different parts of the conventional diaphragm at different frequencies.
  • Fig. 3 is a test curve of harmonic distortion between the diaphragm of the sound generating device and the conventional diaphragm according to an embodiment of the present invention.
  • Fig. 4 is a high-order harmonic distortion test curve of a diaphragm of a sound device and a conventional diaphragm according to an embodiment of the present invention.
  • Fig. 5 is a stress-strain curve of a diaphragm of a sounding device and a PEEK diaphragm according to an embodiment of the present invention.
  • Fig. 6 is a test curve of loudness at different frequencies between the diaphragm of the sound generating device and the conventional diaphragm according to an embodiment of the present invention.
  • a diaphragm of a sound emitting device includes at least one elastomer layer, and the elastomer layer is made of hydrogenated nitrile polymer.
  • the molecular structural formula of the hydrogenated nitrile polymer may be as follows:
  • the range of the acrylonitrile block in the hydrogenated nitrile polymer content is 10-70 wt%.
  • the nitrile group in the acrylonitrile block is a strong polar group with high electronegativity and can form hydrogen bonds with vulcanizates to limit the activity of molecular chains; the glass transition temperature of hydrogenated butyronitrile polymer increases However, the glass transition temperature should not be too high, and the glass transition temperature is too high.
  • the hydrogenated nitrile polymer is easily transformed from the highly elastic state (rubber state) to the glass state, which is not conducive to the normal use of the sound device. Therefore, the hydrogenated butadiene polymer of the present invention
  • the nitrile polymer has a relatively high molecular weight, and its molecular chain is relatively flexible, and has good low temperature resistance.
  • the glass transition temperature is -60-0°C.
  • the glass transition temperature enables the diaphragm of the sound device to be maintained at room temperature. High elasticity, good resilience.
  • the glass transition temperature of the hydrogenated butyronitrile polymer is -50 to -20°C. The temperature enables the sound device diaphragm to maintain good rubber elasticity when it is working at a temperature lower than 0°C, so that the sound device exhibits higher sound quality. At the same time, the risk of damage to the diaphragm of the sound device in a low temperature environment is reduced, and the reliability is higher.
  • Table 1 shows the relationship between the acrylonitrile block content, glass transition temperature and tensile strength.
  • Glass transition temperature Polymer materials can usually be in the following four physical states (or mechanical states): glass state, viscoelastic state, high elastic state (rubber state) and viscous fluid state, usually the glass state and high elastic state The transition between is called the glass transition, and its corresponding transition temperature is the glass transition temperature.
  • Tensile strength is the ability of rubber to resist permanent deformation and damage under external force.
  • Table 1 The relationship between acrylonitrile block content and glass transition temperature, tensile strength
  • the inventors found that as the acrylonitrile block content gradually increased, the glass transition temperature and tensile strength gradually increased.
  • the higher the glass transition temperature the hydrogenated nitrile polymer
  • the state of the hydrogenated nitrile polymer is easily changed from the highly elastic state to the glass state, and the resilience of the hydrogenated nitrile polymer decreases.
  • the higher the tensile strength the stronger its ability to resist permanent deformation and damage.
  • the content of the acrylonitrile block in the hydrogenated nitrile polymer is in the range of 10-70wt%
  • the glass transition temperature is in the range of -32.1-22.8°C
  • the diaphragm of the sound device can be kept at minus 20°C.
  • the sound device shows a higher sound quality.
  • the risk of damage to the diaphragm of the sound device in a low temperature environment is reduced, and the reliability is higher;
  • the content of the acrylonitrile block is 10-70wt% of the total content of the hydrogenated nitrile polymer, and the tensile strength is in the range of 25.3- 29.0MPa.
  • the hydrogenated nitrile polymer further includes a vulcanizing agent, and the vulcanizing agent is at least one of a sulfur type vulcanizing agent and a peroxide type vulcanizing agent.
  • the content of the vulcanizing agent is 1%-15% of the total hydrogenated nitrile polymer, that is, when the total content of the hydrogenated nitrile polymer is 100 parts, the content of the vulcanizing agent is 1-15 parts.
  • Table 2 shows the relationship between vulcanizing agent content, glass transition temperature and elongation at break. The elongation at break is a measure of the elastic properties of rubber.
  • Table 2 The relationship table between the content of vulcanizing agent, glass transition temperature and elongation at break
  • Curing agent (parts) 0.5 1 3 10 15 18 Glass transition temperature (°C) -32.6 -31.7 -27.2 -23.1 -21.8 -20.1 Elongation at break (%) 371 352 327 271 198 156
  • the content of the vulcanizing agent is 3%-10% of the total hydrogenated nitrile polymer, that is, when the total content of the hydrogenated nitrile polymer is 100 parts, the content of the vulcanizing agent is 3-10%.
  • the hydrogenated nitrile polymer has high elasticity, and the elongation at break meets the production requirements of the diaphragm.
  • the elasticity and rigidity of the diaphragm meet the vibration requirements.
  • the sound device has a good vibration effect and a good anti-damping effect.
  • the hydrogenated nitrile polymer has excellent flexibility, and the elongation at break is greater than 100%, preferably greater than 150%.
  • the high elongation at break makes the diaphragm less prone to reliability problems such as membrane rupture when used in a sounder.
  • an inorganic filler reinforcing agent is added to the hydrogenated nitrile polymer, and the inorganic filler reinforcing agent is carbon black, silica, calcium carbonate, barium sulfate, organic montmorillonite, and unsaturated carboxylic acid.
  • At least one of metal salt and aramid pulp, and the content of the inorganic filler reinforcing agent is 1%-90% of the total amount of the hydrogenated nitrile polymer. That is, when the total amount of the hydrogenated nitrile polymer is 100 parts, the total amount of the inorganic filler reinforcing agent is 1-90 parts.
  • the surface of the reinforcing agent has groups such as hydrogen, carboxyl group, lactone group, free radical, quinone group, etc., which can undergo reactions such as substitution, reduction, and oxidation.
  • groups such as hydrogen, carboxyl group, lactone group, free radical, quinone group, etc., which can undergo reactions such as substitution, reduction, and oxidation.
  • Table 3 The relationship between the amount of carbon black added and the elongation at break and tensile strength of the hydrogenated nitrile polymer.
  • the present invention takes carbon black as an example.
  • Carbon black has an amorphous structure, and particles form aggregates through physical and chemical bonding with each other.
  • the primary structure of carbon black is composed of aggregates, and there are van der Waals forces or hydrogen bonds between the aggregates, which can aggregate into a spatial network structure, that is, the secondary structure of carbon black.
  • the carbon black has the above-mentioned groups on the surface. Carbon black particles can form the above-mentioned relationship with the polymer molecular chain to enhance the mechanical strength of the hydrogenated nitrile polymer. However, if the mechanical strength is too high, it will cause the resonance frequency of the miniature sound device to be too high, and the low frequency response ability will decrease.
  • the tensile strength of the hydrogenated nitrile polymer is 4.5MPa.
  • the hydrogenated nitrile polymer The ability to resist damage is weak, but adding 1 part of carbon black dramatically changes the tensile strength of the hydrogenated nitrile polymer.
  • the mechanical strength and elongation at break of the material are both small. This is due to the small amount of carbon black, which is unevenly dispersed in the matrix and is difficult to achieve a reinforcing effect; with the addition of carbon black
  • the number of parts increases, the mechanical strength of the hydrogenated nitrile polymer increases, while the elongation at break gradually decreases; but when the part of carbon black is 95 parts, the elongation at break decreases sharply.
  • the diaphragm is made, There is a risk of membrane rupture in long-term use.
  • the addition amount of the reinforcing agent is 1-90 parts, preferably 2-80 parts, that is, when the content of the inorganic filler reinforcing agent is 2%-80% of the total hydrogenated butyronitrile polymer, the hydrogenated butadiene
  • the tensile strength of the nitrile polymer increases with the increase of the reinforcing agent content.
  • the greater elongation at break gives the diaphragm a greater margin in the vibration interval.
  • the hydrogenated nitrile polymer can withstand higher driving force. Under the same vibration space, hydrogenated nitrile The stretching of the polymer during vibration is far below the breaking limit, which can prevent the film from breaking due to excessive stretching.
  • the hydrogenated nitrile polymer has excellent flexibility, and the elongation at break is greater than 100%, preferably greater than 150%. Therefore, in particular, when the content of the reinforcing agent is 80 parts, that is, the content of the inorganic filler reinforcing agent is 80% of the total amount of the hydrogenated nitrile polymer, and the elongation at break of the hydrogenated nitrile polymer satisfies
  • the production of the diaphragm requires strong resistance to permanent deformation and damage.
  • the elasticity and rigidity of the diaphragm meet the vibration requirements.
  • the sound device has a good vibration effect and a good anti-damping effect.
  • the hydrogenated nitrile polymer also includes an antioxidant, and the antioxidant uses antioxidant N-445, antioxidant 246, antioxidant 4010, antioxidant SP, antioxidant RD, antioxidant ODA, antioxidant At least one of OD and antioxidant WH-02, and the content of the antioxidant is 0.5-10% of the total content of the four units. That is, when the total content of the 4 types of units is 100 parts, the content of the antioxidant is 0.5-10 parts.
  • the content of the antioxidant is 0.5%-10% of the total content of the hydrogenated nitrile polymer, that is, when the total content of the hydrogenated nitrile polymer is 100 parts, the addition amount of the antioxidant is 0.5-10 parts, preferably the antioxidant
  • the addition amount of the agent is 1-5 parts, that is, the content of the antioxidant is 1% 5% of the total content of the hydrogenated nitrile polymer.
  • the content of the antioxidant is the hydrogenated When the total content of nitrile polymer is 5%, it can effectively stop the autocatalytically active free radicals generated in rubber products, and can better integrate with hydrogenated nitrile polymer.
  • the hydrogenated nitrile polymer is made into a diaphragm When, can extend the service life of the diaphragm.
  • the strength of the hydrogenated nitrile polymer is in the range of 15-95A, and the modulus of the hydrogenated nitrile polymer is in the range of 0.5-50 MPa.
  • Table 3 the tensile strength of hydrogenated butyronitrile is mainly adjusted by the inorganic filler reinforcing agent.
  • Table 1 the increase in the acrylonitrile block content and the increase in the hydrogen bonds between the hydrogenated nitrile polymers increase the tensile strength of the hydrogenated nitrile polymer; the higher the tensile strength and hardness of the hydrogenated nitrile polymer, the higher the The higher the f0, the better the resilience of the hydrogenated nitrile polymer.
  • Table 4 shows the relationship between the F0 of the hydrogenated nitrile polymer and the diaphragm of the same thickness but different hardness.
  • Table 4 shows the relationship between the same thickness and different hardness of the diaphragm and the F0 of hydrogenated nitrile polymer
  • the hydrogenated nitrile polymer contains a large amount of nitrile groups, the nitrile groups can form hydrogen bonds with the subbing layer, so it has good adhesion.
  • the adhesive force between the hydrogenated nitrile polymer and the adhesive layer is greater than 100g/25mm (180° peeling), preferably, the adhesive force is greater than 200g/25mm (180° peeling).
  • the high cohesive force makes the diaphragm and the Dome (reinforcement) in the vibration process have good coordination and consistency, and the sound quality is pure, and the diaphragm of the sound device still maintains its original state after long-term vibration, and the performance stability is high.
  • the diaphragm may be a composite diaphragm, that is, the diaphragm includes multiple film layers, at least one of which is made of the above-mentioned hydrogenated nitrile polymer.
  • the layers of the multilayer film can be combined by means of gluing, hot pressing, etc., to form the above-mentioned composite diaphragm.
  • the good bonding performance of hydrogenated nitrile polymer can ensure the structural stability and reliability of the composite diaphragm.
  • the diaphragm needs to be bonded and assembled with the voice coil, the centering piece, and the reinforcement (DOME) through an adhesive layer.
  • the good adhesion performance of the diaphragm can play a role in the assembly and improve the acoustic performance and structural reliability of the miniature sounder product.
  • the type of the adhesive layer includes one or more of epoxy, acrylic, silicone resin, polyester, polyurethane, vinyl acetate resin, phenol resin, and urea resin.
  • the diaphragm is prepared by molding-injection molding or air pressure molding.
  • the loss factor can characterize the damping of the material, and the loss factor of hydrogenated nitrile polymer is greater than 0.06. Preferably greater than 0.1, excellent damping performance, so that the diaphragm has a lower impedance.
  • the damping of the diaphragm of the sound generating device is improved, the sound generating device has a strong ability to suppress the polarization phenomenon during the vibration process, and the vibration consistency is good.
  • the commonly used engineering plastic film has low damping, and its loss factor is generally less than 0.01, and the damping is small.
  • hydrogenated nitrile polymer Compared with engineering plastics, hydrogenated nitrile polymer has a wider elastic area and excellent resilience. During the vibration process of the diaphragm, the rocking vibration is less, and the sound quality and listening stability are better.
  • Fig. 5 is a stress-strain curve of a diaphragm of a sounding device and a PEEK diaphragm according to an embodiment of the present invention.
  • the dotted line is the stress-strain curve of the diaphragm of the sound device provided by the embodiment of the present invention; the solid line is the stress-strain curve of the PEEK diaphragm.
  • the PEEK diaphragm has an obvious yield point, which is about 0.4-0.5% strain.
  • the diaphragm of the sounding device provided by the present invention does not have a yield point, which indicates that the diaphragm of the sounding device provided by the present invention has a wider elastic area and has excellent resilience performance.
  • the hydrogenated nitrile polymer diaphragm has good flexibility, for example, the elongation at break is ⁇ 100%.
  • the polyethylene block has an important influence on the elongation at break, and those skilled in the art can choose according to actual needs. This makes the vibration displacement of the diaphragm of the sound device larger and louder. And the reliability and durability are good.
  • the diaphragm of the sound device vibrates in a state of large amplitude, the material produces a relatively large strain, and there is a risk of film folding, film cracking or film rupture when vibrating for a long time.
  • the diaphragm of the sound device made of hydrogenated nitrile polymer has good flexibility and reduces the risk of damage to the diaphragm.
  • Fig. 6 is a test curve (SPL curve) of loudness at different frequencies between the diaphragm of the sounding device and the conventional diaphragm according to an embodiment of the present invention.
  • the diaphragm is a folded ring diaphragm.
  • the abscissa is frequency (Hz), and the ordinate is loudness.
  • the dotted line is the test curve of the diaphragm of the sound device provided by the embodiment of the present invention.
  • the solid line is the test curve of the conventional diaphragm.
  • the SPL curve shows that the intermediate frequency performance of the two sounding devices' diaphragms is similar.
  • the F0 of the sound device using the diaphragm of the embodiment of the present invention is 792 Hz, at a in the figure; the F0 of the sound device using the conventional diaphragm is 886 Hz, at b in the figure.
  • the low-frequency sensitivity of the diaphragm of the sound device of the embodiment of the present invention is higher than that of the PEEK diaphragm.
  • the sound emitting device using the diaphragm of the sound emitting device of the embodiment of the present invention has higher loudness and comfort.
  • Fig. 1 is a test curve of the vibration displacement of different parts of the diaphragm of a sounding device at different frequencies according to an embodiment of the present invention.
  • Figure 2 is the test curve of the vibration displacement of different parts of the conventional diaphragm at different frequencies.
  • the diaphragm is a rectangular folded ring diaphragm.
  • the abscissa is the frequency (Hz), and the ordinate is the loudness displacement (mm).
  • Fig. 3 is a total harmonic distortion test curve of a diaphragm of a sound device according to an embodiment of the present invention and a conventional diaphragm.
  • the diaphragm is a folded ring diaphragm.
  • the abscissa is frequency (Hz), and the ordinate is total harmonic distortion THD (%).
  • the dotted line is the total harmonic distortion test curve of the diaphragm of the sound generating device provided by the embodiment of the present invention.
  • the solid line is the total harmonic distortion test curve of the conventional PEEK diaphragm.
  • the diaphragm of the sound generating device according to the embodiment of the present invention has a lower THD (total harmonic distortion) compared to the PEEK diaphragm, and there is no spike or the like. This indicates that the diaphragm of the sound generating device of the embodiment of the present invention has better anti-polarization ability and better sound quality.
  • Fig. 4 is a high-order harmonic distortion test curve of a diaphragm of a sound device and a conventional diaphragm according to an embodiment of the present invention.
  • the diaphragm is a folded ring diaphragm.
  • the abscissa is frequency (Hz), and the ordinate is higher harmonic distortion HOHD (%).
  • the dotted line is the high-order harmonic distortion test curve of the diaphragm of the sound device provided by the embodiment of the present invention.
  • the solid line is the high-order harmonic distortion test curve of the conventional PEEK diaphragm.
  • the diaphragm of the sound generating device of the embodiment of the present invention has a lower HOHD (high-order harmonic distortion) compared to the PEEK diaphragm, and has no spikes. Under the same frequency, the PEEK diaphragm is more prone to HOHD (high-order harmonic distortion), which shows that the diaphragm of the sound generating device of the embodiment of the present invention has better anti-polarization ability and better sound quality.
  • HOHD high-order harmonic distortion
  • a sound emitting device includes a vibration system and a magnetic circuit system that cooperates with the vibration system.
  • the vibration system includes the diaphragm of the sound device provided by the present invention.
  • the diaphragm is a folded ring diaphragm or a flat diaphragm.
  • the sounding device has the characteristics of good sounding effect and good durability.
  • the F0 of the sounding device is proportional to the Young's modulus and thickness.
  • the F0 can be changed by changing the thickness and Young's modulus of the sounding device's diaphragm.
  • the specific adjustment principle is as follows:
  • Mms is the equivalent vibration mass of the sounding device
  • Cms is the equivalent compliance of the sounding device:
  • Cms1 is elastic wave compliance
  • Cms2 is diaphragm compliance
  • the equivalent compliance of the sounding device is the diaphragm compliance:
  • W is the total width of the folded ring of the diaphragm
  • t is the thickness of the diaphragm
  • dvc is the outer diameter of the diaphragm and voice coil
  • E is the Young's modulus of the diaphragm material
  • u is the Poisson's ratio of the diaphragm material .
  • the F0 of the sound emitting device is proportional to the modulus and thickness
  • the modulus of the diaphragm is proportional to its hardness, so the hardness is used to reflect the modulus of the diaphragm.
  • the diaphragm should have sufficient stiffness and damping.
  • the diaphragm hardness is preferably 20-80A. This enables the F0 of the sound generating device to reach 150-1500 Hz, and the low frequency performance of the sound generating device is excellent.
  • the diaphragm may be a single-layer structure or a multilayer composite diaphragm.
  • the single-layer diaphragm is a diaphragm composed of a layer of hydrogenated nitrile polymer film.
  • the composite diaphragm is a diaphragm formed by successively stacking multiple layers of hydrogenated nitrile polymer film.
  • the composite diaphragm may include at least one layer of hydrogenated nitrile polymer film layer, which is laminated and composited with a film layer made of other materials to form a composite diaphragm made of multiple materials.
  • the composite diaphragm may be a two-layer, three-layer, four-layer or five-layer composite diaphragm, which is not limited in the present invention.
  • At least one film layer in the composite diaphragm is a hydrogenated nitrile polymer film layer made of the hydrogenated nitrile polymer provided by the present invention.
  • the thickness may be 10-200 ⁇ m, preferably 30-120 ⁇ m.
  • the thickness of the hydrogenated nitrile polymer film layer is within this range, it can better meet the performance requirements and assembly space requirements of the miniature sound emitting device.
  • the composite diaphragm is compounded with hydrogenated nitrile with different hardness.
  • the film layer of the composite diaphragm gradually increases in hardness from top to bottom, and the film layer of the base layer adopts hydrogenated nitrile polymer with high hardness.
  • the diaphragm has strong rigidity, and the membrane layer of the base layer plays a role of centering and supporting the upper membrane layer.
  • the lower hardness of the upper membrane makes its resilience strong, and the vibration amplitude of the diaphragm is larger.
  • “Amplitude” refers to the maximum unidirectional deviation of the diaphragm from the equilibrium position. When the vibration amplitude of the diaphragm is large, the sound generating device has a good listening effect.
  • each diaphragm of the composite diaphragm is the same, which makes the diaphragm of the sound generating device have good uniformity and is not easy to curl or wrinkle.
  • the composite diaphragm can also be a composite of hydrogenated nitrile polymer and other rubber. It can also be laminated with other engineering plastics or thermoplastic elastomers to form a composite diaphragm.

Abstract

本发明公开了一种发声装置的振膜以及发声装置,所述振膜包括至少一层弹性体层,所述弹性体层采用氢化丁腈聚合物制成,所述氢化丁腈聚合物中包含丙烯腈嵌段,所述丙烯腈嵌段在所述氢化丁腈聚合物中的含量范围为10-70wt%,所述氢化丁腈聚合物中添加有硫化剂,所述硫化剂的含量为所述氢化丁腈聚合物总量的1%-15%。本发明振膜回弹性良好,并且能够在低温环境中保持高弹性,而且能够在高温环境中长期工作,因此发声装置能够应用于极其恶劣环境中,同时其声学性能保持良好状态。

Description

一种发声装置的振膜以及发声装置 技术领域
本发明涉及电声转换领域,具体地,涉及一种发声装置的振膜以及发声装置。
背景技术
现有发声装置振膜多采用高模量的塑料膜层(PEEK、PAR、PEI、PI等)、柔软的热塑性聚氨酯弹性体(TPU)以及阻尼胶膜(丙烯酸胶、硅胶等)复合的结构。
但是,现有振膜的综合性能较差,例如弹性回复率低、耐热性能差,容易造成听音不良,使得发声装置的声学性能不好。
随着高功率化、防水以及高音质要求的提高,硅橡胶材质的振膜在发声装置领域也得到了应用。然而,硅橡胶的模量或硬度相对较低,在满足相同F0要求的前提下,其阻尼性能较差,失真较高。
发明内容
本发明的一个目的是提供一种发声装置的振膜以及发声装置。
根据本发明的第一方面,提供了一种发声装置的振膜,所述振膜包括至少一层弹性体层,所述弹性体层采用氢化丁腈聚合物制成,所述氢化丁腈聚合物中包含丙烯腈嵌段,所述丙烯腈嵌段在所述氢化丁腈聚合物中的含量范围为10-70wt%,所述氢化丁腈聚合物中添加有硫化剂,所述硫化剂的含量为所述氢化丁腈聚合物总量的1%-15%。
可选地,所述硫化剂采用硫磺型硫化剂、过氧化物类硫化剂中的至少一种。
可选地,所述氢化丁腈聚合物中添加有无机填料补强剂,所述无机填料补强剂采用炭黑、二氧化硅、碳酸钙、硫酸钡、有机蒙脱土、不饱和羧酸金属盐和芳纶浆粕的至少一种。
可选地,所述无机填料补强剂的含量为所述氢化丁腈聚合物总量的1%-90%。
可选地,所述氢化丁腈聚合物中添加有防老剂,所述防老剂采用防老剂N-445、防老剂246、防老剂4010、防老剂SP、防老剂RD、防老剂ODA、防老剂OD、防老剂WH-02中的至少一种。
可选地,所述防老剂的含量为所述氢化丁腈聚合物总量的0.5%-10%。
可选地,所述氢化丁腈聚合物强度范围为15-95A,所述氢化丁腈聚合物的模量范围为0.5-50MPa。
可选地,所述氢化丁腈聚合物的玻璃化转变温度范围为-60-0℃。
可选地,所述氢化丁腈聚合物在室温下损耗因子大于0.06。
可选地,所述振膜为单层振膜,所述单层振膜采用一层氢化丁腈聚合物膜层构成;
或者所述振膜为复合振膜,所述复合振膜包括两层、三层、四层或五层膜层;所述复合振膜至少包括一层氢化丁腈聚合物膜层。
可选地,所述氢化丁腈聚合物膜层的厚度为10-200μm。
可选地,所述氢化丁腈聚合物膜层的厚度为30-120μm。
根据本发明的另一方面,提供了一种发声装置,所述发声装置包括振动系统和与所述振动系统相互配合的磁路系统,所述振动系统包括上述所述的发声装置的振膜。
本发明的发明人发现,在现有技术中,振膜的综合性能较差,例如弹性回复率低、耐热性能差,容易造成听音不良。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
本发明的有益效果:本发明公开了一种氢化丁腈聚合物制成的振膜,所述振膜回弹性良好,并且能够在低温环境中保持高弹性,而且能够在高温环境中长期工作,因此发声装置能够应用于极其恶劣环境中,同时其声学性能保持良好状态。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是根据本发明的一个实施例的发声装置振膜的不同部位在不同频率下振动位移的测试曲线。
图2是常规振膜的不同部位在不同频率下振动位移的测试曲线。
图3是根据本发明的一个实施例的发声装置振膜与常规振膜的谐波失真测试曲线。
图4是根据本发明的一个实施例的发声装置振膜与常规振膜的高次谐波失真测试曲线。
图5是根据本发明的一个实施例的发声装置振膜与PEEK振膜的应力应变曲线。
图6是根据本发明的一个实施例的发声装置振膜与常规振膜的不同频率下响度的测试曲线。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步 讨论。
根据本发明的一个实施例,提供了一种发声装置的振膜,所述振膜包括至少一层弹性体层,所述弹性体层采用氢化丁腈聚合物制成。所述氢化丁腈聚合物的分子结构式可以呈如下所示:
Figure PCTCN2020085753-appb-000001
式中:l 1、l 2、m、n为自然数。
所述丙烯腈嵌段在氢化丁腈聚合物含量中范围为10-70wt%。
所述丙烯腈嵌段中的腈基为强极性基团,具有较高的电负性,能够与硫化胶形成氢键,限制分子链的活动;氢化丁腈聚合物玻璃化转变温度升高,但是玻璃化转变温度不能太高,玻璃化转变温度太高,氢化丁腈聚合物容易从高弹态(橡胶态)转变为玻璃态,不利于发声装置的正常使用,因此,本发明氢化丁腈聚合物具有较高的分子量,并且其分子链较柔顺,具有较好的耐低温性能,玻璃化转变温度在-60-0℃,该玻璃化转变温度使得发声装置振膜在常温下能够保持高弹态,回弹性良好。优选地,氢化丁腈聚合物的玻璃化转变温度为-50~-20℃。该温度使得在低于0℃时,发声装置振膜工作时可以一直保持较好的橡胶弹性,从而发声装置表现出较高的音质。同时,降低了在低温环境中发声装置振膜破坏的风险,可靠性更高。
所述丙烯腈嵌段含量越高,丙烯腈嵌段与硫化胶能够形成更多的氢键结构,其中交替结构单元越多,使得氢化丁腈聚合物的拉伸强度更高。表1所示为丙烯腈嵌段含量与玻璃化转变温度,拉伸强度的关系表。玻璃化转变温度:聚合物材料通常可处于以下四种物理状态(或称力学状态):玻璃态、粘弹态、高弹态(橡胶态)和粘流态,通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度。拉伸强度是在外力作用下,橡胶抵抗永久变形和破坏的能力。
表1:丙烯腈嵌段含量与玻璃化转变温度,拉伸强度的关系表
Figure PCTCN2020085753-appb-000002
如表1所示,本发明人发现随着丙烯腈嵌段含量的逐渐增加,玻璃化转变温度逐渐升高,拉伸强度也逐渐升高,但是玻璃化转变温度越高,氢化丁腈聚合物的状态容易从高弹态转变为玻璃态,氢化丁腈聚合物的回弹性降低。拉伸强度越高,其抵抗永久变形和破坏的能力越强。所述丙烯腈嵌段在所述氢化丁腈聚合物的含量范围在10-70wt%,玻璃化转变温度的范围在-32.1—-22.8℃,发声装置振膜在零下20℃工作时可以一直保持较好的橡胶弹性,从而发声装置表现出较高的音质。同时,降低了在低温环境中发声装置振膜破坏的风险,可靠性更高;所述丙烯腈嵌段含量为氢化丁腈聚合物总含量的10-70wt%,拉伸强度的范围在25.3-29.0MPa,当氢化丁腈聚合物制作成振膜时,为了适应多种形状的发声装置,振膜被制作成各种形状,振膜安装在发声装置的过程中,在外力作用下,抵抗永久变形和破坏的能力强。
可选地,所述氢化丁腈聚合物中还包括硫化剂,所述硫化剂采用硫磺型硫化剂、过氧化物类硫化剂中至少一种。所述硫化剂的含量为所述氢化丁腈聚合物总量的1%-15%,即当氢化丁腈聚合物总含量的份数为100份时,硫化剂含量为1-15份。表2所示为硫化剂含量与玻璃化转变温度,断裂伸长率的关系表。断裂伸长率是衡量橡胶的弹性性能的指标。
表2:硫化剂含量与玻璃化转变温度,断裂伸长率的关系表
硫化剂(份) 0.5 1 3 10 15 18
玻璃化转变温度(℃) -32.6 -31.7 -27.2 -23.1 -21.8 -20.1
断裂伸长率(%) 371 352 327 271 198 156
如表2所示:本发明人发现随着硫化剂用量增大,材料的交联度增大, 分子链运动受限制,玻璃化转变温度增大,断裂伸长率降低。其中更大的断裂伸长率给予了振膜更大的振动区间余量,在临近断裂极限的情况下,氢化丁腈聚合物可承受更高的驱动力,在同等振动空间下,氢化丁腈聚合物振动过程中的拉伸远达不到断裂极限,可避免因过度拉伸而破膜的情况。
优选地,所述硫化剂的含量为所述氢化丁腈聚合物总量的3%-10%时,即当氢化丁腈聚合物总含量的份数为100份,硫化剂含量为3-10份时,氢化丁腈聚合物具有高弹性,同时断裂伸长率满足振膜的制作要求,振膜的弹性和刚性满足振动要求,发声装置的振动效果好,抗阻尼效果良好。
氢化丁腈聚合物具有优异的柔韧性,断裂伸长率大于100%,优选大于150%。具有较高的断裂伸长率使得振膜在发声装置中使用时不易出现破膜等可靠性问题。
可选地,所述氢化丁腈聚合物中添加有无机填料补强剂,所述无机填料补强剂采用炭黑、二氧化硅、碳酸钙、硫酸钡、有机蒙脱土、不饱和羧酸金属盐和芳纶浆粕的至少一种,所述无机填料补强剂的含量为所述氢化丁腈聚合物总量的1%-90%。即当所述氢化丁腈聚合物的总量为100份,无机填料补强剂的总量为1-90份。补强剂的表面具有能够发生取代、还原、氧化等反应的氢、羧基、内酯基、自由基、醌基等基团。将补强剂混合入氢化丁腈聚合物中后,由于补强剂与聚合物嵌段的界面之间的强相互作用,材料受力时,分子链比较容易在补强剂微粒表面上滑动,但不易和补强剂微粒脱离,氢化丁腈聚合物与补强剂微粒构成一种能够滑动的强固的键,力学强度增大。表3所示为炭黑添加份数与氢化丁腈聚合物断裂伸长率,拉伸强度的关系表。
表3:炭黑添加份数与氢化丁腈聚合物断裂伸长率,拉伸强度的关系表。
炭黑添加份数 0 1 2 80 90 95
断裂伸长率(%) 239 432 418 345 256 161
拉伸强度(MPa) 4.5 10.2 13.8 27.3 30.1 33.6
本发明以炭黑为例,炭黑是一种无定形结构,粒子通过相互之间的物理 化学结合构成聚集体。炭黑的一次结构由聚集体构成,同时聚集体之间存在范德华力或氢键,能够聚集成空间网络结构,也就是炭黑的二次结构。炭黑表面具有上述基团。炭黑微粒能够与聚合物分子链形成上述关系,增强氢化丁腈聚合物的力学强度。但如果力学强度过高,反而会造成微型发声装置的谐振频率过高,低频响应能力下降。
如表3所示:当氢化丁腈聚合物中不添加炭黑,氢化丁腈聚合物的拉伸强度为4.5MPa,在外力作用下,例如在振膜的制作过程中,氢化丁腈聚合物抵抗破坏的能力弱,但是添加1份炭黑,氢化丁腈聚合物的拉伸强度发生剧变。
当炭黑份数为0.5时,材料力学强度和断裂伸长率均较小,这是由于炭黑量较少,其在基体中分散不均匀,难以起到补强效果;随着炭黑添加份数增加,氢化丁腈聚合物的力学强度增大,而断裂伸长率逐渐减小;但是当炭黑份数为95份时,其断裂伸长率急剧降低,当制成振膜后,在长期使用中存在破膜风险。
本发明中补强剂添加量为1-90份,优选2-80份,即所述无机填料补强剂的含量为所述氢化丁腈聚合物总量的2%-80%时,氢化丁腈聚合物的拉伸强度随着补强剂含量的增加而提高。其中更大的断裂伸长率给予了振膜更大的振动区间余量,在临近断裂极限的情况下,氢化丁腈聚合物可承受更高的驱动力,在同等振动空间下,氢化丁腈聚合物振动过程中的拉伸远达不到断裂极限,可避免因过度拉伸而破膜的情况。氢化丁腈聚合物具有优异的柔韧性,断裂伸长率大于100%,优选大于150%。因此特别地,所述补强剂含量在80份时,即所述无机填料补强剂的含量为所述氢化丁腈聚合物总量的80%,氢化丁腈聚合物的断裂伸长率满足振膜的制作要求,同时抵抗永久变形和破坏能够强,振膜的弹性和刚性满足振动要求,发声装置的振动效果好,抗阻尼效果良好。
可选地,所述氢化丁腈聚合物中还包括防老剂,所述防老剂采用防老剂N-445、防老剂246、防老剂4010、防老剂SP、防老剂RD、防老剂ODA、防老剂OD、防老剂WH-02中的至少一种,所述防老剂的含量为所述4种单元总含量的0.5-10%。即当4种单元的总含量为100份时,防老剂的含量为0.5-10份。
本发明人发现氢化丁腈聚合物在使用过程中,随着时间的延长,氢化丁 腈聚合物的分子链断裂产生游离的自由基,加速自身老化,添加防老剂中止橡胶制品中产生的自催化活性游离基。过少的添加量达不到延长使用寿命的效果,而过多的添加量,由于其不能与弹性体较好的互溶,难以均匀分散,导致材料力学性能下降。其中防老剂的含量为所述氢化丁腈聚合物总含量的0.5%-10%,即当所述氢化丁腈聚合物的总含量为100份,防老剂添加量为0.5-10份,优选防老剂添加量为1-5份,即防老剂的含量为所述氢化丁腈聚合物总含量的1%5%,特别地,当防老剂为5份时,即防老剂的含量为所述氢化丁腈聚合物总含量的5%时,能够有效中止橡胶制品中产生的自催化活性游离基,而且能够与氢化丁腈聚合物更好的融合,当所述氢化丁腈聚合物制作成振膜时,能够延长振膜的使用寿命。
可选地,所述氢化丁腈聚合物强度范围为15-95A,所述氢化丁腈聚合物的模量范围为0.5-50MPa。由表3可知,氢化丁腈拉伸强度主要通过无机填料补强剂调节。由表1可知,丙烯腈嵌段含量增加,氢化丁腈聚合物分子间氢键增多,使得氢化丁腈聚合物的拉伸强度增大;氢化丁腈聚合物拉伸强度和硬度越高,其f0越高,氢化丁腈聚合物的回弹性越好。表4为相同厚度而不同硬度的振膜与氢化丁腈聚合物的F0的关系。
表4为相同厚度而不同硬度的振膜与氢化丁腈聚合物的F0的关系
硬度(A) 20 30 60 80 90
F0(Hz) 678 735 862 941 1109
如表4所示:随着硬度增大,f0急剧增大。当氢化丁腈聚合物强度范围为15-95A,优选地,氢化丁腈聚合物强度范围在20-80A时,氢化丁腈聚合物的回弹性良好,当所述氢化丁腈聚合物制作成振膜时,所述振膜的弹性和振动的一致性良好。
由于氢化丁腈聚合物中含有大量的腈基,腈基能够与胶层形成氢键作用,因此具有良好的粘接性。
可选地,氢化丁腈聚合物与胶层的粘接力大于100g/25mm(180°剥离),优选地,粘接力大于200g/25mm(180°剥离)。粘结力高使振膜在振动过 程中与Dome(补强件)的协调一致性良好,音质纯正,且在长时间振动后发声装置振膜仍然保持初始状态,性能稳定性高。
所述振膜的粘接力主要在两个方面发挥作用。在本发明的特殊实施方式中,所述振膜可以是复合振膜,即振膜中包括了多层膜层,其中至少有一层膜层是采用上述氢化丁腈聚合物制成的。多层膜层之间可以通过胶粘、热压等方式进行复合,进而构成上述复合振膜。氢化丁腈聚合物的良好粘接性能能够保证复合振膜的结构稳定性和可靠性。另一方面,振膜在实际应用中需要与音圈、定心支片、补强件(DOME)等通过胶层粘接装配。振膜的良好粘接性能能够在装配中发挥作用,提高微型发声器产品的声学性能和结构可靠性。
可选地,所述胶层的类型包括环氧类、丙烯酸类、有机硅树脂类、聚酯类、聚氨酯类、氯醋树脂类、酚醛树脂类、脲醛树脂类中的一种或多种。
可选地,所述振膜采用模压-注塑成型或者气压成型的方式制备而成。
损耗因子能够表征材料的阻尼性大小,氢化丁腈聚合物的损耗因子大于0.06。优选大于0.1,优异的阻尼性能,使振膜具有更低的阻抗。发声装置振膜的阻尼性提高,发声装置在振动过程中可抑制偏振现象的能力强,振动一致性良好。而常用的工程塑料膜层的阻尼低,其损耗因子一般小于0.01,阻尼性较小。
相对于工程塑料,氢化丁腈聚合物具有较宽的弹性区域,具有优异的回复性,振膜在振动过程中,摇摆振动少,音质和听音稳定性更优。
图5是根据本发明的一个实施例的发声装置振膜与PEEK振膜的应力应变曲线。其中,虚线为本发明实施例提供的发声装置振膜的应力应变曲线;实线为PEEK振膜的应力应变曲线。
由图5可以看出在相同的应力下,本发明实施例提供的发声装置振膜的应变明显大于PEEK振膜。这表明,本发明实施例提供的发声装置振膜的杨氏模量明显小于PEEK振膜。
此外,PEEK振膜形成了明显的屈服点,约在应变0.4-0.5%。而本发明提供的发声装置振膜不存在屈服点,这表明,本发明提供的发声装置振膜具有更宽的弹性区域,并且回弹性能优良。
氢化丁腈聚合物振膜具有良好的柔韧性,例如,断裂伸长率≥100%。聚乙烯嵌段对断裂伸长率有重要影响,本领域技术人员可以根据实际需要进行选择。这使得发声装置振膜的振动位移更大,响度更大。并且可靠性、耐用性良好。材料的柔韧性越好,断裂伸长率越大,则发声装置振膜抵抗破坏的能力越强。发声装置振膜处于大振幅状态振动时,材料产生了较大的应变,长时间振动时会出现膜折、膜裂或破膜的风险。将氢化丁腈聚合物制作成的发声装置振膜,具有良好的柔韧性,降低了振膜破坏的风险。
图6是根据本发明的一个实施例的发声装置振膜与常规振膜的不同频率下响度的测试曲线(SPL曲线)。本发明中振膜为折环振膜。横坐标为频率(Hz),纵坐标为响度。其中,虚线为本发明实施例提供的发声装置振膜的测试曲线。实线为常规振膜的测试曲线。
由图6可以看出,具体的由SPL曲线可以看出,两个发声装置振膜中频性能相近。而采用本发明实施例的振膜的发声装置的F0为792Hz,图中a处;采用常规振膜的发声装置的F0为886Hz,图中b处。这表明,本发明实施例的发声装置振膜的低频灵敏度高于PEEK振膜。也就是说,采用本发明实施例的发声装置振膜的发声装置具有更高的响度和舒适度。
图1是根据本发明的一个实施例的发声装置振膜不同部位在不同频率下振动位移的测试曲线。图2是常规振膜不同部位在不同频率下振动位移的测试曲线。其中,振膜为矩形折环振膜。横坐标为频率(Hz),纵坐标为响度位移量(mm)。在振膜的中心部的边缘位置以及中心位置取点进行测试。
可以看出,图1中的各个曲线更集中,而图2中的各个曲线较为分散。这表明,本发明实施例的发声装置振膜的各个部分的振动一致性更好,在振动过程中,振膜的摇摆真的少,音质和听音稳定性更加优良。
图3是根据本发明的一个实施例的发声装置振膜与常规振膜的总谐波失真测试曲线。振膜为折环振膜。横坐标为频率(Hz),纵坐标为总谐波失真THD(%)。其中,虚线为本发明实施例提供的发声装置振膜的总谐波失真测试曲线。实线为常规的PEEK振膜的总谐波失真测试曲线。
由图3可以看出,本发明实施例的发声装置振膜相对于PEEK振膜具有更低的THD(总谐波失真),并且无尖峰等。这表明,本发明实施例的发声装置振 膜具有更优的抗偏振能力,并且音质更佳。
图4是根据本发明的一个实施例的发声装置振膜与常规振膜的高次谐波失真测试曲线。振膜为折环振膜。横坐标为频率(Hz),纵坐标为高次谐波失真HOHD(%)。其中,虚线为本发明实施例提供的发声装置振膜的高次谐波失真测试曲线。实线为常规的PEEK振膜的高次谐波失真测试曲线。
由图4可以看出,本发明实施例的发声装置振膜相对于PEEK振膜具有更低的HOHD(高次谐波失真),并且无尖峰等。在相同频率情况下,PEEK振膜更容易发生HOHD(高次谐波失真),这表明,本发明实施例的发声装置振膜具有更优的抗偏振能力,并且音质更佳。
根据本发明的另一个实施例,提供了一种发声装置。该发声装置包括振动系统和与振动系统相互配合的磁路系统。振动系统包括本发明提供的发声装置振膜。例如,振膜为折环振膜或者平板振膜。该发声装置具有发声效果好,耐用性良好的特点。
该发声装置的F0正比于杨氏模量和厚度,可以通过改变发声装置振膜的厚度以及杨氏模量来实现F0的变化,具体调节原理如下:
Figure PCTCN2020085753-appb-000003
其中Mms为发声装置的等效振动质量,Cms为发声装置的等效顺性:
Figure PCTCN2020085753-appb-000004
其中,Cms1为弹波顺性,Cms2为振膜顺性。无弹波设计时,发声装置的等效顺性即为振膜顺性:
Figure PCTCN2020085753-appb-000005
其中W为振膜的折环部的总宽度,t为膜片厚度;dvc为振膜音圈贴合外径;E为振膜材质的杨氏模量;u为振膜材质的泊松比。
可见,发声装置的F0正比于模量和厚度,而振膜的模量正比于其硬度,因此使用硬度来体现振膜的模量。为得到饱满的低音和舒适的听感,在发声装置具有较低的F0同时,应使振膜具有足够的刚度和阻尼。本领域技术人员可以通过发声装置振膜的硬度以及厚度来调节F0的大小。振膜硬度优选为20-80A。这使得发声装置的F0的能够达到150-1500Hz,发声装置的低频性能优良。
可选地,所述振膜可以为单层结构,也可以为多层的复合振膜。单层振膜是由一层氢化丁腈聚合物膜层构成的振膜。而复合振膜则是由多层氢化丁腈聚合物膜层依次层叠形成的振膜。或者,复合振膜可以包括至少一层氢化丁腈聚合物膜层,该氢化丁腈聚合物膜层与其它材料制成的膜层层叠复合,构成多种材料制成的复合振膜。所述复合振膜可以为两层、三层、四层或五层复合振膜,本发明不对此进行限制。所述复合振膜中至少有一层膜层是由本发明提供的氢化丁腈聚合物制成的氢化丁腈聚合物膜层。
对于所述氢化丁腈聚合物膜层,其厚度可选为10-200μm,优选为30-120μm。氢化丁腈聚合物膜层的厚度在该范围内时,能够更好的满足微型发声装置的性能要求和装配空间的要求。
所述复合振膜采用不同硬度的氢化丁腈复合在一起,例如复合振膜的膜层从上到下,硬度逐渐增大,基底层的膜层采用硬度大的氢化丁腈聚合物,硬度大的同时振膜刚性强,基底层的膜层起到定心支撑上部膜层的作用。上层膜层的硬度小使得其回弹性强,振膜振动的振幅较大。“振幅”是指振膜偏离平衡位置单向的最大值。振膜振动的振幅较大时,发声装置的听音效果好。
可选地,复合振膜的每层振膜的厚度相同,这使得发声装置振膜的均一性良好,并且不容易卷曲、褶皱。
可选地,所述复合振膜还可以是氢化丁腈聚合物与其他橡胶复合到一起。也可通过贴合的方式与其他工程塑料或热塑性弹性体复合到一起,制成复合振膜。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求 来限定。

Claims (13)

  1. 一种发声装置的振膜,所述振膜包括至少一层弹性体层,所述弹性体层采用氢化丁腈聚合物制成,所述氢化丁腈聚合物中包含丙烯腈嵌段,所述丙烯腈嵌段在所述氢化丁腈聚合物中的含量范围为10-70wt%,所述氢化丁腈聚合物中添加有硫化剂,所述硫化剂的含量为所述氢化丁腈聚合物总量的1%-15%。
  2. 根据权利要求1所述的振膜,其特征在于,所述硫化剂采用硫磺型硫化剂、过氧化物类硫化剂中的至少一种。
  3. 根据权利要求1所述的振膜,其特征在于,所述氢化丁腈聚合物中添加有无机填料补强剂,所述无机填料补强剂采用炭黑、二氧化硅、碳酸钙、硫酸钡、有机蒙脱土、不饱和羧酸金属盐和芳纶浆粕的至少一种。
  4. 根据权利要求3所述的振膜,其特征在于,所述无机填料补强剂的含量为所述氢化丁腈聚合物总量的1%-90%。
  5. 根据权利要求1所述的振膜,其特征在于,所述氢化丁腈聚合物中添加有防老剂,所述防老剂采用防老剂N-445、防老剂246、防老剂4010、防老剂SP、防老剂RD、防老剂ODA、防老剂OD、防老剂WH-02中的至少一种。
  6. 根据权利要求5所述的振膜,其特征在于,所述防老剂的含量为所述氢化丁腈聚合物总量的0.5%-10%。
  7. 根据权利要求1-6任意之一所述的振膜,其特征在于,所述氢化丁腈聚合物强度范围为15-95A,所述氢化丁腈聚合物的模量范围为0.5-50MPa。
  8. 根据权利要求1-6任意之一所述的振膜,其特征在于,所述氢化丁腈聚合物的玻璃化转变温度范围为-60-0℃。
  9. 根据权利要求1-6任意之一所述的振膜,其特征在于,所述氢化丁腈聚合物在室温下损耗因子大于0.06。
  10. 根据权利要求1所述的振膜,其特征在于,所述振膜为单层振膜,所述单层振膜采用一层氢化丁腈聚合物膜层构成;
    或者所述振膜为复合振膜,所述复合振膜包括两层、三层、四层或五层膜层;所述复合振膜至少包括一层氢化丁腈聚合物膜层。
  11. 根据权利要求10所述的振膜,其特征在于,所述氢化丁腈聚合物膜层的厚度为10-200μm。
  12. 根据权利要求11所述的振膜,其特征在于,所述氢化丁腈聚合物膜层的厚度为30-120μm。
  13. 一种发声装置,其特征在于,包括振动系统和与所述振动系统相互配合的磁路系统,所述振动系统包括如权利要求1-12中的任意一项所述的发声装置的振膜。
PCT/CN2020/085753 2019-06-14 2020-04-21 一种发声装置的振膜以及发声装置 WO2020248718A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/618,976 US20220369037A1 (en) 2019-06-14 2020-04-21 Diaphragm for sound generating device and sound generating device
KR1020217040911A KR102666673B1 (ko) 2019-06-14 2020-04-21 사운드 발생 장치용 다이어프램 및 사운드 발생 장치
EP20823630.7A EP3985996A4 (en) 2019-06-14 2020-04-21 VIBRATING MEMBRANE OF SOUND PRODUCTION DEVICE, AND SOUND PRODUCTION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910516851.4A CN110267167B (zh) 2019-06-14 2019-06-14 一种发声装置的振膜以及发声装置
CN201910516851.4 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020248718A1 true WO2020248718A1 (zh) 2020-12-17

Family

ID=67918515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085753 WO2020248718A1 (zh) 2019-06-14 2020-04-21 一种发声装置的振膜以及发声装置

Country Status (4)

Country Link
US (1) US20220369037A1 (zh)
EP (1) EP3985996A4 (zh)
CN (1) CN110267167B (zh)
WO (1) WO2020248718A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110267167B (zh) * 2019-06-14 2021-08-31 歌尔股份有限公司 一种发声装置的振膜以及发声装置
CN110784806B (zh) * 2019-10-31 2021-11-16 歌尔股份有限公司 一种用于微型发声装置的振膜及微型发声装置
CN110798779B (zh) * 2019-10-31 2021-03-09 歌尔股份有限公司 一种用于微型发声装置的振膜及微型发声装置
CN110784805A (zh) * 2019-10-31 2020-02-11 歌尔股份有限公司 一种用于微型发声装置的振膜及微型发声装置
CN110818991A (zh) * 2019-10-31 2020-02-21 歌尔股份有限公司 一种发声装置的振膜以及发声装置
CN111935625B (zh) * 2020-09-23 2021-01-22 歌尔股份有限公司 一种发声装置的复合振膜及其制备方法、发声装置
CN111935605B (zh) * 2020-09-23 2021-01-22 歌尔股份有限公司 一种发声装置的复合振膜及其制备方法、发声装置
CN111866698B (zh) * 2020-09-23 2021-08-27 歌尔股份有限公司 振膜和发声装置
CN112511956B (zh) * 2020-11-02 2023-04-28 歌尔股份有限公司 用于发声装置的振动板及发声装置
CN112468937B (zh) * 2020-11-23 2022-05-13 歌尔股份有限公司 层叠复合膜及其制备方法、振膜以及发声装置
CN114827870B (zh) * 2021-01-29 2023-07-14 歌尔股份有限公司 振膜及发声装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150208148A1 (en) * 2014-01-22 2015-07-23 Bose Corporation Treatment for loudspeaker suspension element fabric
CN106817658A (zh) * 2017-01-12 2017-06-09 瑞声科技(沭阳)有限公司 振膜及发声器件
CN106957466A (zh) * 2016-12-12 2017-07-18 瑞声科技(新加坡)有限公司 用于电声系统的振膜及其制备方法
US20170251307A1 (en) * 2016-02-26 2017-08-31 Hiroshi Ohara Speaker vibrating member and method of making the same
CN110267167A (zh) * 2019-06-14 2019-09-20 歌尔股份有限公司 一种发声装置的振膜以及发声装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2982483B2 (ja) * 1992-03-27 1999-11-22 日本ゼオン株式会社 ゴム組成物およびその製造方法
WO2000059999A1 (en) * 1999-04-05 2000-10-12 Bayer Corporation Hydrogenated nitrile butadiene rubber thermoplastic fluoropolymer blend
EP2033483B1 (en) * 2006-05-24 2010-12-22 Audiology Innovations Pty Ltd Apparatus and method for connecting a hearing aid to hearing aid test equipment
GB0710378D0 (en) * 2007-05-31 2007-07-11 New Transducers Ltd Audio apparatus
CN103270116A (zh) * 2010-12-30 2013-08-28 美国圣戈班性能塑料公司 用于层压方法的改进的硅酮膜
CN104683923A (zh) * 2015-03-17 2015-06-03 歌尔声学股份有限公司 微型扬声器振膜
CN105721973B (zh) * 2016-01-26 2019-04-05 王泽玲 一种骨传导耳机及其音频处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150208148A1 (en) * 2014-01-22 2015-07-23 Bose Corporation Treatment for loudspeaker suspension element fabric
US20170251307A1 (en) * 2016-02-26 2017-08-31 Hiroshi Ohara Speaker vibrating member and method of making the same
CN106957466A (zh) * 2016-12-12 2017-07-18 瑞声科技(新加坡)有限公司 用于电声系统的振膜及其制备方法
CN106817658A (zh) * 2017-01-12 2017-06-09 瑞声科技(沭阳)有限公司 振膜及发声器件
CN110267167A (zh) * 2019-06-14 2019-09-20 歌尔股份有限公司 一种发声装置的振膜以及发声装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, MIN: "Study on the characteristics of hydrogenated nitrile rubber", WORLD RUBBER INDUSTRY, vol. 29, no. 1, 28 February 2002 (2002-02-28), CN, pages 2 - 13, XP009532387, ISSN: 1000-4408 *
See also references of EP3985996A4 *

Also Published As

Publication number Publication date
US20220369037A1 (en) 2022-11-17
KR20220010517A (ko) 2022-01-25
CN110267167B (zh) 2021-08-31
EP3985996A1 (en) 2022-04-20
CN110267167A (zh) 2019-09-20
EP3985996A4 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
WO2020248718A1 (zh) 一种发声装置的振膜以及发声装置
CN110708638B (zh) 一种用于微型发声装置的振膜及微型发声装置
WO2020216171A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
WO2021082255A1 (zh) 一种发声装置的振膜以及发声装置
CN110708637B (zh) 一种用于微型发声装置的振膜及微型发声装置
WO2021082252A1 (zh) 发声装置的振膜以及发声装置
WO2021082254A1 (zh) 一种发声装置的振膜以及发声装置
WO2021082244A1 (zh) 一种用于微型发声装置的振膜及微型发声装置
EP3962109A1 (en) Vibrating diaphragm for miniature sound-producing device and miniature sound-producing device
WO2020216168A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
WO2020216170A1 (zh) 一种用于微型发声装置的振膜和微型发声装置
WO2021082250A1 (zh) 发声装置的振膜以及发声装置
CN110784806B (zh) 一种用于微型发声装置的振膜及微型发声装置
CN110798779B (zh) 一种用于微型发声装置的振膜及微型发声装置
KR102666673B1 (ko) 사운드 발생 장치용 다이어프램 및 사운드 발생 장치
WO2020216172A1 (zh) 一种微型发声装置
EP3962102A1 (en) Vibration diaphragm for miniature sound production device and miniature sound production device
EP3962106A1 (en) Vibrating diaphragm for miniature sound producing device and miniature sound producing device
KR102666675B1 (ko) 미니어처 발성 장치를 위한 다이어프램 및 미니어처 발성 장치
CN110708639B (zh) 一种用于微型发声装置的振膜以及微型发声装置
KR102666672B1 (ko) 미니어처 발성 장치를 위한 다이어프램 및 미니어처 발성 장치
CN110798780A (zh) 一种用于微型发声装置的振膜以及微型发声装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217040911

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020823630

Country of ref document: EP