WO2020246539A1 - バッテリレス電子デバイス及び伝送システム - Google Patents

バッテリレス電子デバイス及び伝送システム Download PDF

Info

Publication number
WO2020246539A1
WO2020246539A1 PCT/JP2020/022086 JP2020022086W WO2020246539A1 WO 2020246539 A1 WO2020246539 A1 WO 2020246539A1 JP 2020022086 W JP2020022086 W JP 2020022086W WO 2020246539 A1 WO2020246539 A1 WO 2020246539A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
electrodes
batteryless
polymer nanosheet
polymer
Prior art date
Application number
PCT/JP2020/022086
Other languages
English (en)
French (fr)
Inventor
浩康 岩田
海里 和▲崎▼
Original Assignee
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学 filed Critical 学校法人早稲田大学
Publication of WO2020246539A1 publication Critical patent/WO2020246539A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present invention relates to batteryless electronic devices and transmission systems.
  • NFC Near Field Communication
  • an antenna coil is known as one of the wireless power transmission systems.
  • a high-frequency signal is converted from a magnetic field into an electric field to transmit the electric field to the human body, and based on the electric field, the coupling electrode of the transmission / reception unit attached to the human body and the human body are electrostatically coupled.
  • An electric field type NFC that is electrically connected and transmits a high frequency signal and power to a transmission / reception unit through a human body has been considered (see, for example, Non-Patent Document 1).
  • the present inventors have attempted wireless power transmission using NFC technology having an antenna coil in order to supply power to an electronic device using a polymer nanosheet without a battery.
  • NFC technology having an antenna coil
  • the desired power is not supplied and the operability is reduced. It is considered that this is because the thickness of the nanosheet is thin, and when it is attached to the skin, the capacitance increases and the electromotive force decreases. Therefore, in order to wirelessly supply electric power to the electronic element and operate it stably, the film thickness of the substrate must be increased, and there is a problem that the wearability to the human body or the like cannot be improved.
  • a transmitter / receiver in which electrodes made of a hard metal plate or the like are provided in a housing made of a hard resin material is simply attached to the human body using a band or the like. Therefore, it is difficult for the transmitting / receiving portion to follow the curved surface of the arm or the unevenness of the skin, and a gap may be formed between the electrode and the skin to form an air layer, and the electrostatic coupling becomes small.
  • the present invention has been made in consideration of the above points, and is a batteryless electronic device capable of stably operating an electronic element and being miniaturized while improving wearability as compared with the conventional case.
  • the purpose is to propose a transmission system using it.
  • the batteryless electronic device of the present invention is a polymer nanosheet in which an electronic element, at least two or more electrodes electrically connected to the electronic element, and a transmission medium are brought into close contact with each other, and the electrodes are attached to the transmission medium. And, based on the electric field induced in the transmission medium from the outside, power is supplied to the electronic element by electrostatic coupling between the transmission medium and the electrode.
  • the transmission system of the present invention is a transmission system including a transmission device installed at a predetermined position to generate an electric field and a batteryless electronic device provided in a transmission medium, and the batteryless electronic device is an electronic element.
  • the transmission medium comprises at least two or more electrodes electrically connected to the electronic element, and a polymer nanosheet which is in close contact with the transmission medium and adheres the electrodes to the transmission medium. Electricity is supplied to the electronic element by electrostatic coupling between the transmission medium and the electrodes based on the electric field induced in the transmission medium by contacting the transmission device.
  • the mountability to the transmission medium can be improved accordingly.
  • a polymer nanosheet having a thin film thickness it becomes easy to adhere to the transmission medium due to the intermolecular force, the formation of an air layer between the electrode and the transmission medium can be prevented, and the decrease in capacitance can be suppressed. .. Therefore, the capacitance can be increased without particularly designing the inductor in impedance matching, and the electronic element can be operated stably. Further, since the electronic element can be operated even when the surface area of the electrodes and the distance between the electrodes for supplying electric power to the electronic element are reduced, the batteryless electronic device can be miniaturized.
  • FIG. 4A is a schematic view showing a manufacturing process (1) of a batteryless electronic device
  • FIG. 4B is a schematic view showing a manufacturing process (2) of a batteryless electronic device
  • FIG. 4C is a batteryless diagram.
  • FIG. 4D is a schematic diagram which showed the manufacturing process (4) of a batteryless electronic device.
  • FIG. 5A is a schematic view showing a configuration in which the batteryless electronic device used in the verification test is arranged on the flat plate material of the skin model
  • FIG. 5B is an electric field of the batteryless electronic device arranged on the flat plate material of the skin model.
  • It is sectional drawing which showed the cross-sectional structure when it was placed on an antenna.
  • It is a graph which showed the operation rate of the IC tag when the surface area of an electrode and the distance between electrodes are changed.
  • FIG. 1 is a schematic view showing the overall configuration of the transmission system 1 of the present invention, and the transmission system 1 includes a transmission device 2 and a batteryless electronic device 3.
  • the transmission system 1 when the user touches the transmission device 2, the electric field generated by the transmission device 2 is transmitted to the user's human body 100, and the electric power is transmitted to the batteryless electronic device 3 by electrostatic coupling with the human body 100. Supply can be made.
  • the batteryless electronic device 3 can be operated only while the user is touching the transmission device 2.
  • the transmission device 2 is, for example, a reader / writer, which is installed in advance at a predetermined location such as a desk or a housing, and is virtually short-circuited to the ground VG1 at the installation location.
  • the transmission device 2 passively converts a predetermined high-frequency signal from a magnetic field into an electric field, and transmits the electric field to the user's human body 100 by, for example, touching the electric field antenna 4 of the transmission device 2 with a fingertip.
  • the batteryless electronic device 3 is directly attached to the skin such as an arm and attached to the human body 100, for example.
  • the batteryless electronic device 3 has two electrodes 6 and 7, and the electronic element 8 is electrically connected to these electrodes 6 and 7.
  • FIG. 1 shows an example in which an arm is selected as a position where the batteryless electronic device 3 is attached to the human body 100.
  • the two electrodes 6 and 2 along the hand side to the shoulder side of the human body 100. 7s are installed so as to line up in a row.
  • the two electrodes 6 and 7 of the batteryless electronic device 3 are attached to the arm, but the present invention is not limited to this, and for example, the back of the hand, the palm, the wrist, the shoulder, the body, etc. It may be attached to various parts of the human body 100. Further, the two electrodes 6 and 7 may be attached side by side in a row in various directions such as the circumferential direction of the arm.
  • the human body region ER2 on the electrode 7 side on the shoulder side (position away from the transmission device 2) of the batteryless electronic device 3 Virtually short-circuits to the ground VG2, while the human body region ER1 on the electrode 6 side on the hand side (position close to the transmission device 2) of the batteryless electronic device 3 functions as a transmission medium.
  • the electric field antenna 4 of the transmission device 2 and the electrode 6 on the hand side (transmission device 2 side) of the batteryless electronic device 3 are connected via the human body 100.
  • the transmission system 1 operates as if it were a closed circuit via the virtual ground VG1 and VG2 as a whole, thereby stably supplying electric power from the transmission device 2 to the batteryless electronic device 3. Can be supplied.
  • the frequency of the high frequency signal generated by the transmission device 2 is a frequency having high transmission efficiency in the human body 100.
  • it is preferably 7 to 21 MHz, 33 to 45 MHz, and more preferably 13.56 MHz.
  • FIG. 2 is an exploded perspective view of the batteryless electronic device 3 of the present invention attached to the skin 100a.
  • the batteryless electronic device 3 electrically attaches the polymer nanosheet 10, the pair of electrodes 6 and 7, the electronic element 8, and these electrodes 6 and 7 and the electronic element 8 to be attached so as to be in close contact with the skin 100a. It is composed of a wiring 9 connected to the polymer nanosheet 10 and a second polymer nanosheet 11 attached on the polymer nanosheet 10.
  • the polymer nanosheet 10 is provided with a pair of electrodes 6 and 7, an electronic element 8 and a wiring 9 on the surface thereof, and a second electrode 6, 7 and the electronic element 8 and the wiring 9 are covered as a whole.
  • the polymer nanosheet 11 of the above is attached to the surface. As a result, the electrodes 6 and 7, the electronic element 8 and the wiring 9 are sandwiched between the polymer nanosheet 10 and the second polymer nanosheet 11.
  • the polymer nanosheet 10 is formed to have a thin film thickness, and can be adhered to the skin 100a by intermolecular force without using glue or the like. Further, since the polymer nanosheet 10 is adhered to the skin 100a due to the intermolecular force generated by reducing the film thickness, the skin follows the curved surface of the skin 100a and the uneven surface shape of the skin 100a. It can be adhered along 100a.
  • the second polymer nanosheet 11 follows the uneven shape of the electrodes 6 and 7, the electronic element 8 and the wiring 9 by the intermolecular force.
  • the electrodes 6 and 7, the electronic element 8, the wiring 9, and the polymer nanosheet 10 are in close contact with each other.
  • the second polymer nanosheet 11 is attached to the polymer nanosheet 10 in a state of being in close contact with the electrodes 6 and 7, the electronic element 8 and the wiring 9 by intermolecular force without chemical bonding such as soldering. can do.
  • the electrodes 6 and 7, the electronic element 8 and the wiring 9 are connected to the polymer nanosheet 10 and the second polymer in a state where the electronic element 8 and the wiring 9 are electrically connected. It is sandwiched between nanosheets 11 and is in close contact with each other due to the intermolecular force of the polymer nanosheet 10 and the second polymer nanosheet 11.
  • the electronic element 8 is crimped to the wiring 9 by the intermolecular force, and the wiring 9 can be connected to the electronic element 8 with a strong adhesive force. Therefore, the wiring 9 can be electronically connected without any soldering or the like. It can be electrically connected to the element 8.
  • the electronic element 8 examples include light emitting elements such as light emitting diodes (LEDs), active components such as transistors, diodes and ICs, and passive components such as resistors, inductors and capacitors. Further, as the electronic element 8, various sensors such as a strain sensor and an RFID tag can be provided. Further, in the batteryless electronic device 3 of the present invention, for example, two or more electronic elements having different functions and uses may be integrally or separately provided as one electronic element 8.
  • LEDs light emitting diodes
  • active components such as transistors, diodes and ICs
  • passive components such as resistors, inductors and capacitors.
  • various sensors such as a strain sensor and an RFID tag can be provided.
  • two or more electronic elements having different functions and uses may be integrally or separately provided as one electronic element 8.
  • the electrodes 6 and 7 and the wiring 9 can be formed of, for example, a conductive ink containing at least one of metal nanoparticles, semiconductor nanoparticles, a conductive polymer, and a nanocarbon material.
  • metal nanoparticles such as silver, gold, copper and nickel are relatively easily available and have a low resistivity, and are therefore preferable as materials for forming the electrodes 6 and 7 and the wiring 9.
  • the electrodes 6 and 7 and the wiring 9 are formed on the polymer nanosheet 10 by using a simple method such as offset printing or screen printing in addition to inkjet printing. It can be printed and formed.
  • the flexibility is higher than that of a hard material such as a metal plate, and the deformation of the polymer nanosheet 10 is followed. Can be transformed. Therefore, in the batteryless electronic device 3 of the present invention, the polymer nanosheet 10, the electrodes 6, 7 and the wiring 9 all follow the curved surface of the skin 100a and the uneven surface shape of the skin 100a, and the whole follows the skin 100a. Can be brought into close contact. As a result, in the batteryless electronic device 3, it is difficult for a gap to be formed between the skin 100a and the skin 100a, and it is possible to prevent an air layer from being formed between the skin 100a and the electrodes 6 and 7.
  • the electrodes 6 and 7 have the same shape and are formed in a four-sided shape, but the present invention is not limited to this, and the electrodes 6 and 7 are different.
  • the shape may be used, and electrodes formed in a polygonal shape such as a pentagonal shape or a circular shape may be applied.
  • the electronic element 8 can be operated, and the batteryless electronic device 3 can be miniaturized accordingly. According to the verification test described later, if the surface area S of the electrodes 6 and 7 is more than 100 mm 2 , electric power can be supplied to the electronic element 8.
  • the distance L from the end of the first electrode 6 to the end of the second electrode 7 paired with the first electrode 6 (hereinafter, also simply referred to as the distance between the electrodes). It has been confirmed by the verification tests of the present inventors that the larger the value, the more stable the power supply from the human body 100 to the electronic element 8 and the higher the operating rate of the electronic element 8, but the electric power to the electronic element 8
  • the distance L between the electrodes to which the above can be supplied is preferably, for example, 30 mm or less.
  • the distance L between the electrodes for supplying electric power to the electronic element 8 is reduced.
  • the electronic element 8 can be operated, and the batteryless electronic device 3 can be miniaturized accordingly. According to a verification test described later, electric power can be supplied to the electronic element 8 even if the distance L between the electrodes is 10 mm or more.
  • the polymer nanosheet 10 to which the electrodes 6 and 7 are attached to the skin 100a and the second polymer nanosheet 11 to be attached to the polymer nanosheet 10 are made of the same material. It has the same configuration.
  • the polymer nanosheet 10 and the second polymer nanosheet 11 for example, a polymer such as a synthetic polymer, a natural polymer, rubber, or an elastomer can be used as a material. More specifically, the polymer nanosheet 10 and the second polymer nanosheet 11 are polystyrene isoprene styrene, polydimethylsiloxane, silicone, polystyrene, polymethacrylic acid, polylactic acid, polylactic acid glycolic acid copolymer, polyvinyl acetate. , Chitosan, alginic acid, cellulose acetate, hyaluronic acid, gelatin, and collagen, preferably one of them.
  • the polymer nanosheet 10 and the second polymer nanosheet 11 By producing the polymer nanosheet 10 and the second polymer nanosheet 11 from such a material, the polymer nanosheet 10 and the second polymer have high adhesion and elasticity to an object to be attached such as skin 100a.
  • Nanosheets 11 can be provided.
  • the following documents can be referred to. T. Fujie and S. Takeoka, in Nanobiotechnology, eds. D. A. Phoenix and A. Waqar, One Central Press, United Kingdom, 2014, pp. 68-94.
  • the polymer nanosheet 10 and the second polymer nanosheet 11 need only be formed to have a thin film thickness d from the viewpoint of followability to the object to be attached.
  • the thickness d of the polymer nanosheet 10 and the second polymer nanosheet 11 is 2 ⁇ m or more, the followability to the object to be attached such as the electronic element 8 and the skin 100a is inferior, while it is less than 2 ⁇ m.
  • the thickness is preferably less than 2 ⁇ m because the followability to the object to be attached such as the electronic element 8 and the skin 100a is improved and the adhesion can be improved.
  • the thickness d of the polymer nanosheet 10 and the second polymer nanosheet 11 is less than 1 ⁇ m, the followability to the object to be attached such as the electronic element 8 and the skin 100a becomes higher, and the intermolecular force is also large. It is more preferable that the thickness is less than 1 ⁇ m because the adhesion is further enhanced. Further, when the film thickness of the polymer nanosheet 10 and the second polymer nanosheet 11 is 250 nm or less, the followability is further enhanced and the adhesion is further enhanced, so that it is more preferably 250 nm or less.
  • a substrate 16 for producing a polymer nanosheet 10 is prepared, and a sacrificial layer 15 and a polymer nanosheet 10 are sequentially formed on the surface of the substrate 16.
  • the substrate 16 includes PET (polyethylene terephthalate), PP (polypropylene), PPE (polyphenylene ether), COP (cycloolefin), PI (polyimide), aluminum foil, conductive polymer film, paper, and polysaccharide film.
  • Silicone resin, oblate (polypropylene), silicon wafer, glass and the like can be used.
  • the sacrificial layer 15 is used to separate the polymer nanosheet 10 from the substrate 16.
  • the material of the sacrificial layer 15 for example, PVA (polyvinyl alcohol), PNIPAM (polynypam), sodium alginate and the like can be used, but in addition, it has a property of being soluble in liquid (water-soluble, oil-soluble, etc.). However, various materials can be used as long as they are highly biocompatible (not harmful to the human body).
  • the sacrificial layer 15 may be formed by a roll-to-roll technique using a gravure coater (not shown), or may be formed by using a spin coater (not shown). In the roll-to-roll technique, a film can be formed in a larger area than when a spin coater is used.
  • the polymer nanosheet 10 is formed on the sacrificial layer 15 by using a roll-to-roll technique using a gravure coater (not shown) or a film forming method such as a spin coater, similarly to the sacrificial layer 15 described above.
  • the conductive material is ejected onto the polymer nanosheet 10 by inkjet, and the electrodes 6 and 7 and the wiring 9 are drawn on the surface of the polymer nanosheet 10 to draw the electrodes 6 and 7 on the polymer nanosheet 10 as shown in FIG. 4B.
  • the electrodes 6 and 7 and the wiring 9 having a predetermined shape are formed.
  • the electronic element 8 is arranged on the polymer nanosheet 10 so as to be electrically connected to the wiring 9, and the electronic element 8 is brought into close contact with the polymer nanosheet 10.
  • a second polymer nanosheet 11 to be bonded to the polymer nanosheet 10 is prepared.
  • the second polymer nanosheet 11 is provided with, for example, a frame 17 made of paper tape along the peripheral edge.
  • the second polymer nanosheet 11 is bonded to the polymer nanosheet 10 by holding the frame 17, and a polymer nanosheet bonded body (not shown) is produced.
  • the polymer nanosheet bonded body is immersed in a stripping solution such as water to dissolve the sacrificial layer 15 and separate the substrate 16 from the polymer nanosheet 10.
  • a stripping solution such as water
  • the batteryless electronic device 3 having the frame 17 along the peripheral edge of the second polymer nanosheet 11 can be manufactured.
  • the frame 17 may be removed from the second polymer nanosheet 11 as needed when the batteryless electronic device 3 is attached to the human body 100 or the like.
  • a step of forming an ink receiving layer may be provided on the polymer nanosheet 10.
  • the fine electrodes 6 and 7 and the wiring 9 can be formed more accurately without the conductive ink being repelled.
  • the ink receiving layer is preferably chitosan, polyvinyl acetate, cellulose acetate, gelatin, silica, and a cationic acrylic copolymer.
  • the ink receiving layer can be formed on the polymer nanosheet 10 by using a roll-to-roll technique using a gravure coater or the like, similarly to the sacrificial layer 15 and the polymer nanosheet 10 described above.
  • the electrodes 6 and 7 can be attached to the human body 100 by the polymer nanosheet 10 having a thin film thickness, so that the wearability to the human body 100 can be improved. Further, by using the polymer nanosheet 10 having a thin film thickness, the batteryless electronic device 3 easily adheres to the human body 100 due to the intermolecular force, and prevents the formation of an air layer between the electrodes 6 and 7 and the human body 100. However, the decrease in capacitance C can be suppressed. Therefore, in the batteryless electronic device 3, the capacitance C can be increased without particularly designing the inductor in impedance matching, and the electronic element 8 can be operated stably. Further, since the electronic element 8 can be operated even when the surface area S of the electrodes 6 and 7 and the distance L between the electrodes for supplying electric power to the electronic element 8 are reduced, the batteryless electronic device 3 can be used. It can be miniaturized.
  • the electronic element 8 is crimped to the wiring 9 by the intermolecular force of the polymer nanosheet 10 and the second polymer nanosheet 11 without any soldering or the like, and the wiring 9 is connected. It can be connected to the electronic element 8 with a strong adhesive force.
  • the batteryless electronic device 3 is flexible because it does not use a hard adhesive such as solder, and follows the curved surface of the skin 100a and the surface shape of the uneven skin 100a. Therefore, it is possible to prevent the formation of an air layer between the electrodes 6 and 7 and the human body 100, and to suppress a decrease in the capacitance C between the human body 100 and the electrodes 6 and 7.
  • a PET film (Lumiror25T60, manufactured by Panac) was used as the substrate 16 used when forming the polymer nanosheet 10.
  • the sacrificial layer 15 was formed on the substrate 16 using a water-soluble polyvinyl alcohol (PVA, manufactured by Kanto Chemical Co., Inc., 10 wt% in water) and a gravure coater (ML-120, manufactured by Yasui Seiki Co., Ltd.).
  • PVA water-soluble polyvinyl alcohol
  • ML-120 manufactured by Yasui Seiki Co., Ltd.
  • the polymer nanosheet 10 was formed on the sacrificial layer 15 using styrene-butadiene styrene (SBS, manufactured by Sigma Aldrich Japan, 3 wt% in tetrahydrofuran) using a roll-to-roll technique using a gravure coater.
  • SBS styrene-butadiene styrene
  • the film thickness of the polymer nanosheet 10 on the substrate 16 was measured using an atomic force microscope (AFM), the film thickness was 800 nm.
  • electrodes 6 and 7 and wiring 9 are formed with conductive silver ink (TB3303G (NEO), manufactured by Threebond) by screen printing. Electrodes 6 and 7 and wiring 9 were formed by drawing on the surface of the polymer nanosheet 10. The electrodes 6 and 7 were formed in a square shape of 20 mm ⁇ 20 mm to have a surface area of 400 mm 2, and the distance L between the electrodes 6 and 7 was 30 mm.
  • an IC tag manufactured by NXP Semiconductors, operating voltage 1.5 V, power consumption 40 ⁇ W
  • the IC tags were installed so as to be electrically connected to each other.
  • a second polymer nanosheet 11 made of the same SBS as the polymer nanosheet 10 is prepared, and the second polymer nanosheet 11 is provided on the polymer nanosheet 10 provided with the electrodes 6, 7, the wiring 9, and the electronic element 8. After sticking, it was immersed in water which is a release liquid.
  • the sacrificial layer 15 was dissolved with water, and the substrate 16 was separated from the polymer nanosheet 10 to prepare a batteryless electronic device 3.
  • eNFC starter kit manufactured by eNFC Co., Ltd.
  • the reader / writer of the eNFC starter kit is a product name TR3X-MU01 manufactured by Takaya Co., Ltd., and has a frequency of 13.56 MHz and a transmission output of 300 mW ⁇ 20%.
  • the reader / writer was operated, and the back surface of the flat plate material held by hand was simply brought into contact with the electric field antenna connected to the reader / writer.
  • the IC tag of the batteryless electronic device 3 attached to the surface of the flat plate material operates by the electric field generated by the electric field antenna.
  • Whether or not the IC tag is operating was confirmed by checking whether or not the UID (Unique ID unique ID number) of the IC tag read by the reader / writer is displayed on the screen of the personal computer.
  • UID Unique ID unique ID number
  • a batteryless electronic device 20 as shown in FIGS. 5A and 5B was manufactured.
  • the film thickness of the polymer nanosheet 10 alone is too thin, and it is difficult to reproduce accurate dimensions for the electrodes 6 and 7 having the same size and shape and the distance L between the electrodes. Therefore, in this verification test, the electrodes 6 and 7 having a predetermined size and shape and the distance L between the electrodes having a predetermined length are accurately reproduced on the surface of the polymer nanosheet 10 on the support substrate 23 whose hardness is adjusted.
  • the support substrate 23 was used as it was without being separated from the polymer nanosheet 10.
  • the substrate 16 and the sacrificial layer 15 used for forming the polymer nanosheet 10 were used as they were, and these substrates 16 and the sacrificial layer 15 were used as the support substrate 23.
  • a substrate 16 formed of PET (polyethylene terephthalate) was used, and the sacrificial layer 15 was formed on the substrate 16 with PVA (polyvinyl alcohol).
  • the polymer nanosheet 10 was formed on the support substrate 23, and a plurality of adhesive sheets 24 on which the polymer nanosheet 10 was formed on the surface of the support substrate 23 were produced.
  • the film thickness d1 of the adhesive sheet 24, which is the combination of the support substrate 23 and the polymer nanosheet 10 was set to 30 ⁇ m.
  • the square electrodes 6 and 7 are formed by screen printing with conductive silver ink (TB3303G (NEO), manufactured by Threebond).
  • T3303G conductive silver ink
  • the strip-shaped wiring 9 was formed on the polymer nanosheet 10, and at this time, by changing the screen mask, the surface surfaces S of the electrodes 6 and 7 on the polymer nanosheet 10 and the distance L between the electrodes were attached. It was changed for each sheet 24.
  • An IC tag (manufactured by NXP Semiconductors, operating voltage 1.5 V, power consumption 40 ⁇ W) was used as the electronic element 8. Then, the IC tag was installed on the polymer nanosheet 10 so that the IC tag was electrically connected to the wiring 9 connected to the first electrode 6 and the wiring 9 connected to the second electrode 7.
  • the surface areas S of the square electrodes 6 and 7 were changed to 10 mm ⁇ 10 mm, 20 mm ⁇ 20 mm, and 30 mm ⁇ 30 mm, respectively, and the distances L between the electrodes were changed to 10 mm, 20 mm, and 30 mm for each of these surface areas S, respectively.
  • Nine types of batteryless electronic devices 20 were produced, five each.
  • a rubber flat plate material 101 (plate-shaped phantom manufactured by Asahi Rubber Inc.) is used as a skin model in the same manner as in the above-mentioned verification test. A plurality of sheets were prepared, and each batteryless electronic device 20 was attached to the surface of the flat plate material 101 for each flat plate material (skin model) 101.
  • a commercially available eNFC starter kit (manufactured by eNFC Co., Ltd.) is used to operate the reader / writer of the eNFC starter kit, and each flat plate material is attached to the electric field antenna 102 connected to the reader / writer.
  • the back surface of 101 was simply brought into contact.
  • the IC tag of the batteryless electronic device 20 attached to the surface of each flat plate member 101 operates by the electric field generated by the electric field antenna 102.
  • the IC tags operated in all five prepared devices, and the operating rate was 100%.
  • the IC tags are attached to all five prepared. It worked and the operating rate was 100%.
  • the electrodes 6 and 7 can be provided so that the air layer is not formed between the electrodes 6 and 7 and the flat plate material 101, the electronic element 8 can be provided even if the surface area S of the electrodes 6 and 7 is small, 400 mm 2 or less. It was confirmed that it could be operated.
  • the distance L between the electrodes can also be set to the electrodes 6 and 6. Although it depends on the surface area S of 7, it was confirmed that the electronic element 8 can be operated even with 10 mm of 30 mm or less.
  • the thickness d of the polymer nanosheet 10 is 3 ⁇ m, which is 1/10 of the film thickness d1 of the adhesive sheet 24, the electrodes 6 and 7 also the surface area S as 10 mm 2 or more 100 mm 2 or less, the thickness d1 of the sticking sheet 24 is found to be secured to the same electrostatic capacitance as that in the 30 [mu] m.
  • the electrodes 6 and 7 it was found that by adjusting the surface area S, even if the distance L between the electrodes is 2 mm or more and 10 mm or less, the same capacitive impedance as when the film thickness d1 of the adhesive sheet 24 is 30 ⁇ m can be secured.
  • the operating rate of the batteryless electronic device 20 changes when the film thickness d1 of the adhesive sheet 24 is changed. I confirmed whether or not to do it.
  • five batteryless electronic devices 20 are prepared in which the surface area S of the square electrodes 6 and 7 is 20 mm ⁇ 20 mm, the distance between the electrodes L is 30 mm, and the film thickness d1 of the sticking sheet 24 is 30 ⁇ m. Separately from this, five batteryless electronic devices 20 each having the surface area S of the electrodes 6 and 7 and the distance L between the electrodes the same as above and the film thickness d1 of the adhesive sheet 24 being 100 ⁇ m and 170 ⁇ m, respectively. I prepared it.
  • the film thickness d of the single polymer nanosheet 10 is set to 800 nm, and the film thickness d1 of the adhesive sheet 24 is adjusted by changing the film thickness of the support substrate 23.
  • a plurality of rubber flat plates 101 are prepared as a skin model in the same manner as in the above-mentioned verification test, and each flat plate 101 is prepared.
  • the batteryless electronic device 20 was attached to the surface of the flat plate material 101.
  • a commercially available eNFC starter kit (manufactured by eNFC Co., Ltd.) is used to operate the reader / writer of the eNFC starter kit, and each flat plate material is attached to the electric field antenna 102 connected to the reader / writer. The back surface of 101 was brought into contact.
  • the transmission device 2 and the batteryless electronic device 3 are provided with a transformer-coupled parallel resonance circuit, respectively, and the power to the batteryless electronic device 3 is supplied even if the electrostatic coupling between the transmission medium and the electrodes 6 and 7 is small.
  • a parallel resonance method capable of supplying may be applied, or a method in which these series resonance method and the parallel resonance method are combined may be applied.
  • the materials of the polymer nanosheet 10 and the second polymer nanosheet 11 are not limited to those exemplified in the above-described embodiment, and the polymer nanosheet 10 that can be attached to a transmission medium such as the human body 100 by intermolecular force, or Any second polymer nanosheet 11 that can be attached to the polymer nanosheet 10 by intermolecular force may be used, and various materials can be applied.
  • the materials of the electrodes 6 and 7 and the material of the wiring 9 are also conductive materials and can be brought into close contact with the transmission medium via the flexible polymer nanosheet 10, various materials and shapes can be obtained. Applicable. Further, the method of forming the electrodes 6 and 7 and the wiring 9 is not limited to the one formed by printing.
  • the second polymer nanosheet 11 is attached onto the polymer nanosheet 10, and the electrodes 6 and 7, the electronic element 8 and the wiring 9 are attached to the polymer nanosheet 10 and the second polymer.
  • the batteryless electronic device 3 sandwiched between the nanosheet 11 and the nanosheet 11 has been described, but the present invention is not limited to this.
  • a batteryless electronic device in which the electrodes 6 and 7, the electronic element 8 and the wiring 9 are simply provided on the polymer nanosheet 10 without providing the second polymer nanosheet 11 may be used.

Abstract

従来よりも装着性の向上を図りつつ、電子素子を安定して動作させることができ、かつ小型化可能なバッテリレス電子デバイスと、それを用いた伝送システムを提案する。バッテリレス電子デバイス3では、膜厚が薄い高分子ナノシート10により電極6,7を人体100に貼着させることから、その分、装着性の向上を図ることができる。また、膜厚が薄い高分子ナノシート10を用いることで、バッテリレス電子デバイス3が分子間力によって人体100に密着し易くなり、電極6,7と人体100との間の空気層の形成を防止し、静電容量の低下を抑制できる。従って、バッテリレス電子デバイス3では、インピーダンス整合におけるインダクタの設計を特に行わずに静電容量を大きくでき、電子素子8を安定して動作させることができる。また、電極6,7の表面積や電極間距離を小さくした状態でも電子素子8を動作させることが可能となる。

Description

バッテリレス電子デバイス及び伝送システム
 本発明は、バッテリレス電子デバイス及び伝送システムに関する。
 近年、生体情報の連続的計測や個人認証等を目的としたウェアラブルエレクトロニクスの開発が進みつつある。腕や脚等に電子デバイスを直接固定する方法として、柔軟性を有する基板を用いる技術が開発されつつあり、皮膚のような伸縮性の高い生体組織に貼り付けることが可能なデバイスの研究も行なわれている。中でも、膜厚が薄い高分子ナノシートを用いた電子デバイスは、簡易な工程により電子素子を構成要素とする電子デバイスを製造可能であり、皮膚等の貼付対象物に追随して接着剤なしで貼り付けることが可能である(特許文献1参照)。
 上記した、近年のウェアラブルエレクトロニクスに関して、電池等を接続することなく、バッテリレスで電子デバイスに電力の供給や信号の伝送を行なう方法として様々な手法が考えられている。例えば、ワイヤレス電力伝送システムの一つとして、アンテナコイルを用いたNFC(Near Field Communication)が知られている。また、その他のワイヤレス電力伝送システムとしては、高周波信号を磁界から電界に変換して人体に電界を伝え、当該電界に基づいて、人体に取り付けた送受信部の結合電極と人体とを静電結合によって電気的に接続し、高周波信号と電力を、人体を通じて送受信部に伝える電界式NFCが考えられている(例えば、非特許文献1参照)。
国際公開第2016/181958号
Takanori Washiro,"HF RFID Transponder with Capacitive Coupling"2017 IEEE International Conference on RFID Technology & Application (RFID-TA)
 本発明者らは、高分子ナノシートを用いた電子デバイスにバッテリレスで電力供給を行うために、アンテナコイルを有するNFC技術を用いたワイヤレス電力伝送を試みた。しかし、高分子ナノシートを用いた電子デバイスを皮膚に貼付すると所望の電力が供給されず、動作性が低下することを発見した。これはナノシートの膜厚が薄いため、皮膚に貼付すると静電容量が大きくなり起電力が減少するためと考えられる。そのため、ワイヤレスで電力を電子素子に供給し、安定して動作させるためには、基板の膜厚を厚くせざるを得ず、人体等への装着性の向上が図れないという問題があった。
 一方、従来の電界式NFCのワイヤレス電力伝送システムでは、硬質な金属板等でなる電極を硬質な樹脂材でなる筐体に設けた送受信部を、単にバンド等を使用して人体に取り付けているため、腕の曲面や皮膚の凹凸に送受信部が追従し難く、電極と皮膚との間に隙間が生じて空気層が形成される恐れがあり、静電結合が小さくなってしまう。
 そのため、電極と皮膚との間の静電容量の低下を解消する手段として、共振周波数を満たすインダクタンスをもつインダクタ(コイル)を使用してインピーダンス整合を行う必要があるが、実際に静電容量の測定は困難であるため、適切なインダクタンスの設定も難しく、インピーダンス整合の設計が困難である。また、静電容量は個人差が大きいために個人毎にインダクタンスを調整することは難しく、実際にはRFIDタグを安定して動作させることが難しいという問題があった。
 そこで、本発明は以上の点を考慮してなされたもので、従来よりも装着性の向上を図りつつ、電子素子を安定して動作させることができ、かつ小型化可能なバッテリレス電子デバイスと、それを用いた伝送システムを提案することを目的とする。
 本発明のバッテリレス電子デバイスは、電子素子と、前記電子素子と電気的に接続した、少なくとも2つ以上の電極と、伝送媒体と密着し、前記電極を前記伝送媒体に貼着させる高分子ナノシートと、を備え、外部から前記伝送媒体に誘起された電界に基づいて、前記伝送媒体と前記電極との間の静電結合により前記電子素子に電力が供給される。
 また、本発明の伝送システムは、所定箇所に設置され電界を発生させる伝送装置と、伝送媒体に設けられるバッテリレス電子デバイスと、を備える伝送システムであって、前記バッテリレス電子デバイスは、電子素子と、前記電子素子と電気的に接続した、少なくとも2つ以上の電極と、前記伝送媒体と密着し、前記電極を前記伝送媒体に貼着させる高分子ナノシートと、を備え、前記伝送媒体が前記伝送装置に接触することで前記伝送媒体に誘起された電界に基づいて、前記伝送媒体と前記電極との間の静電結合により前記電子素子に電力が供給される。
 本発明によれば、膜厚が薄い高分子ナノシートにより電極を伝送媒体に貼着させることから、その分、伝送媒体への装着性の向上を図ることができる。また、膜厚が薄い高分子ナノシートを用いることで、分子間力によって伝送媒体に密着し易くなり、電極と伝送媒体との間の空気層の形成を防止し、静電容量の低下を抑制できる。従って、インピーダンス整合におけるインダクタの設計を特に行わずに静電容量を大きくでき、電子素子を安定して動作させることができる。さらに、電子素子に電力を供給するための、電極の表面積や電極間距離を小さくした状態でも電子素子を動作させることが可能となるため、バッテリレス電子デバイスを小型化することができる。
本発明による伝送システムの全体構成を示した概略図である。 本発明のバッテリレス電子デバイスの構成を示した分解斜視図である。 バッテリレス電子デバイスの断面構成を示した断面図である。 図4Aは、バッテリレス電子デバイスの製造工程(1)を示した概略図であり、図4Bは、バッテリレス電子デバイスの製造工程(2)を示した概略図であり、図4Cは、バッテリレス電子デバイスの製造工程(3)を示した概略図であり、図4Dは、バッテリレス電子デバイスの製造工程(4)を示した概略図である。 図5Aは、検証試験に用いたバッテリレス電子デバイスを皮膚モデルの平板材に配置させた構成を示した概略図であり、図5Bは、皮膚モデルの平板材に配置したバッテリレス電子デバイスを電界アンテナに載置したときの断面構成を示した断面図である。 電極の表面積と電極間距離を変えたときのICタグの動作率を示したグラフである。 貼着シートの膜厚を変えたときのICタグの動作率を示したグラフである。
 以下図面に基づいて本発明の実施の形態を詳述する。
 (1)本発明の伝送システムの概要
 図1は、本発明の伝送システム1の全体構成を示した概略図であり、この伝送システム1は、伝送装置2とバッテリレス電子デバイス3とを有する。この伝送システム1は、ユーザが伝送装置2に触れたときに、伝送装置2で発生させた電界が、ユーザの人体100に伝わり、人体100との静電結合によりバッテリレス電子デバイス3へ電力の供給が行われ得る。
 一方、ユーザが伝送装置2に触れていないときには、伝送装置2で発生させた電界が人体100に伝わらないため、バッテリレス電子デバイス3への電力の供給を停止させることができる。このように、伝送システム1では、ユーザが伝送装置2に触れている間だけバッテリレス電子デバイス3を動作させることができる。
 この場合、伝送装置2は、例えばリーダライタであり、机や筐体等の所定箇所に予め設置されており、設置部位において仮想的にグランドVG1に短絡している。伝送装置2は、所定の高周波信号を磁界から電界に受動的に変換し、例えばユーザが指先で伝送装置2の電界アンテナ4に触れることでユーザの人体100に電界を伝える。
 バッテリレス電子デバイス3は、例えば、腕等の皮膚に直接貼着され、人体100に取り付けられる。この実施形態の場合、バッテリレス電子デバイス3は、2つの電極6,7を有しており、これら電極6,7に電子素子8が電気的に接続された構成を有する。
 図1では、バッテリレス電子デバイス3が人体100に貼着される位置として腕が選定された例を示しており、例えば、腕において人体100の手側から肩側に沿って2つの電極6,7が一列に並ぶように取り付けられている。なお、この実施形態においては、バッテリレス電子デバイス3の2つの電極6,7を腕に取り付けるようにしたが、本発明はこれに限らず、例えば、手の甲や、手の平、手首、肩、胴体等の人体100の種々の箇所に取り付けてもよい。また、2つの電極6,7は、腕の周方向等の種々の方向に一列に並べて取り付けてもよい。
 ここで、伝送システム1は、地面と接しているユーザが手により伝送装置2を触ったとき、バッテリレス電子デバイス3の肩側(伝送装置2から遠ざかる位置)にある電極7側の人体領域ER2が仮想的にグランドVG2に短絡し、一方、バッテリレス電子デバイス3の手側(伝送装置2に近い位置)にある電極6側の人体領域ER1が伝送媒体として機能する。これにより、伝送システム1は、伝送装置2の電界アンテナ4と、バッテリレス電子デバイス3の手側(伝送装置2側)にある電極6とが、人体100を介して接続される。
 このようにして、伝送システム1は、全体として、仮想的なグランドVG1,VG2を介して、あたかも閉回路のように動作することによって、伝送装置2からバッテリレス電子デバイス3に電力を安定的に供給することができる。
 ここで、上述したように、誘電体である伝送媒体として人体100を使用する場合には、伝送装置2により生成される高周波信号の周波数は、人体100で伝送効率が高い周波数であることが望ましく、例えば、7~21MHzや、33~45MHz、さらに好ましくは13.56MHzであることが望ましい。
 (2)バッテリレス電子デバイスの詳細構成
 次に、上述したバッテリレス電子デバイス3について詳細に説明する。図2は、皮膚100aに貼着させた本発明のバッテリレス電子デバイス3の分解斜視図である。バッテリレス電子デバイス3は、皮膚100aに密着するようにして貼着される高分子ナノシート10と、一対の電極6,7と、電子素子8と、これら電極6,7及び電子素子8を電気的に接続する配線9と、高分子ナノシート10上に貼着される第2の高分子ナノシート11とで構成されている。
 高分子ナノシート10には、一対の電極6,7、電子素子8及び配線9が表面に設けられており、これら電極6,7、電子素子8及び配線9の全体を覆うようにして、第2の高分子ナノシート11が表面に貼着されている。これにより、電極6,7、電子素子8及び配線9は、高分子ナノシート10と第2の高分子ナノシート11との間に挟み込まれている。
 高分子ナノシート10は、膜厚が薄く形成されており、糊等を用いずに分子間力によって皮膚100aに接着させることができる。また、高分子ナノシート10は、膜厚を薄くすることにより生じる分子間力によって皮膚100aに密着して貼着されるため、皮膚100aの曲面や、凹凸した皮膚100aの表面形状に追従して皮膚100aに沿って密着することができる。
 図2のA-A´部分の断面構成を示す図3のように、第2の高分子ナノシート11は、分子間力によって、電極6,7、電子素子8及び配線9の凹凸形状に追従して、電極6,7、電子素子8、配線9及び高分子ナノシート10に密着している。第2の高分子ナノシート11は、ハンダ付け等の化学的接合がなくても、分子間力により、電極6,7、電子素子8及び配線9に密着した状態で、高分子ナノシート10に貼着することができる。
 この場合、バッテリレス電子デバイス3は、電子素子8と配線9とを電気的に接続させた状態で、電極6,7、電子素子8及び配線9を、高分子ナノシート10及び第2の高分子ナノシート11で挟み込み、高分子ナノシート10及び第2の高分子ナノシート11の分子間力により互いに密着している。これにより、分子間力により、電子素子8が配線9に圧着されて、配線9を電子素子8に強い接着力で接続することができるので、ハンダ付け等を一切行わずに、配線9を電子素子8に電気的に接続することができる。
 電子素子8としては、例えば、発光ダイオード(LED)等の発光素子の他、トランジスタ、ダイオード、IC等の能動部品、及び、抵抗やインダクタ、コンデンサ等の受動部品を挙げることができる。また、電子素子8として、歪センサ等の各種センサや、RFIDタグを設けることもできる。さらに、本発明のバッテリレス電子デバイス3では、例えば、機能・用途が異なる2つ以上の電子素子を、一体的又は別体にして1つの電子素子8として設けるようにしてもよい。
 電極6,7及び配線9は、例えば、金属ナノ粒子、半導体ナノ粒子、導電性高分子、及び、ナノ炭素材料のうちの少なくとも一つを含有した導電性インクにより形成することができる。特に、銀、金、銅又はニッケル等の金属ナノ粒子は比較的入手が容易で抵抗率の低い材料であるため、電極6,7及び配線9の形成材料として好ましい。また、電極6,7及び配線9のパターンの形成方法として、インクジェット印刷の他、オフセット印刷、スクリーン印刷等の簡便な方法を用いて、高分子ナノシート10上に、電極6,7及び配線9を印刷して形成することができる。
 電極6,7及び配線9は、このような導電性インクにより高分子ナノシート10上に形成することで、金属板のような硬質材料に比べて柔軟性が高く、高分子ナノシート10の変形に追従して変形し得る。従って、本発明のバッテリレス電子デバイス3では、高分子ナノシート10、電極6,7及び配線9全てが皮膚100aの曲面や、皮膚100aの凹凸した表面形状に追従し、全体を皮膚100aに沿って密着させることができる。これにより、バッテリレス電子デバイス3では、皮膚100aとの間に隙間が形成され難く、皮膚100aと電極6,7との間に空気層が形成されることを防止することができる。
 なお、この実施形態の場合、図2に示すように、電極6,7は同一形状からなり、四辺状に形成されているが、本発明はこれに限らず、電極6と電極7とで異なる形状としてもよく、また、五角形状等の多角形状や円形状に形成した電極を適用してもよい。
 電極6,7は、高分子ナノシート10により皮膚100aに貼着される表面積Sが大きくなるほど、皮膚100aとの結合が強くなり、人体100から電子素子8への電力の供給が安定し、電子素子8の動作率が向上することが、本発明者らの検証試験により確認されているが、電子素子8に電力を供給可能な電極6,7の表面積Sとしては、例えば、400mm以下であることが好ましい。本実施形態では、膜厚dが薄く、かつ、人体100に沿って密着可能な高分子ナノシート10を用いるようにしたことから、電子素子8に電力を供給するための電極の表面積Sを小さくしても、電子素子8を動作させることが可能となり、その分、バッテリレス電子デバイス3を小型化することができる。なお、後述する検証試験により、電極6,7の表面積Sは100mm超であれば電子素子8に電力を供給可能である。
 また、図3に示すように、第1の電極6の端部から、第1の電極6と対をなす第2の電極7の端部までの距離L(以下、単に電極間距離とも称する)が大きくなるほど、人体100から電子素子8への電力の供給が安定し、電子素子8の動作率が向上することが、本発明者らの検証試験により確認されているが、電子素子8に電力を供給可能な電極間距離Lとしては、例えば、30mm以下であることが好ましい。本実施形態では、膜厚dが薄く、かつ、人体100に沿って密着可能な高分子ナノシート10を用いるようにしたことから、電子素子8に電力を供給するための電極間距離Lを小さくしても、電子素子8を動作させることが可能となり、その分、バッテリレス電子デバイス3を小型化することができる。なお、後述する検証試験により、電極間距離Lは10mm以上でも電子素子8に電力を供給可能である。
 この実施形態の場合、電極6,7を皮膚100aに貼着付させる高分子ナノシート10と、高分子ナノシート10上に貼着される第2の高分子ナノシート11は、同じ材料により形成されており、同一構成を有している。
 高分子ナノシート10及び第2の高分子ナノシート11としては、例えば、合成高分子や天然高分子、ゴム、エラストマー等の高分子を材料とすることができる。より具体的には、高分子ナノシート10及び第2の高分子ナノシート11は、ポリスチレンイソプレンスチレン、ポリジメチルシロキサン、シリコーン、ポリスチレン、ポリメタクリル酸、ポリ乳酸、ポリ乳酸グリコール酸共重合体、ポリ酢酸ビニル、キトサン、アルギン酸、酢酸セルロース、ヒアルロン酸、ゼラチン、及び、コラーゲンのうちのいずれか一つからなることが好ましい。
 このような材料で高分子ナノシート10及び第2の高分子ナノシート11を作製することで、皮膚100a等の貼着対象物への密着性や伸縮性の高い高分子ナノシート10及び第2の高分子ナノシート11を提供することができる。なお、高分子ナノシートについては、一例として以下の文献を参考に挙げることができる。T. Fujie and S. Takeoka, in Nanobiotechnology, eds. D. A. Phoenix and A. Waqar,One Central Press, United Kingdom, 2014, pp. 68-94.
 高分子ナノシート10及び第2の高分子ナノシート11は、貼着対象物への追従性の観点から膜厚dが薄く形成されていればよい。特に、高分子ナノシート10及び第2の高分子ナノシート11の膜厚dは、2μm以上であると、電子素子8や皮膚100a等の貼着対象物に対する追従性が劣り、一方、2μm未満であると、電子素子8や皮膚100a等の貼着対象物への追従性が高くなり、密着性を高めることができるため、2μm未満であることが好ましい。また、高分子ナノシート10及び第2の高分子ナノシート11の膜厚dは、1μm未満とすると、電子素子8や皮膚100a等の貼着対象物に対する追従性がより高くなり、さらに分子間力も大きくなって密着性もより高まるため、1μm未満であることがより好ましい。さらに、高分子ナノシート10及び第2の高分子ナノシート11の膜厚が250nm以下であると、追従性がさらに一段と高くなり、密着性もさらに高まることから、250nm以下であることがより好ましい。
 このように、高分子ナノシート10は、膜厚dを極めて薄く形成できるとともに、さらには分子間力により皮膚100aと密着して空気層の形成を抑止し誘電率を高くすることができるので、その分、電極6,7と人体100との間の静電容量C(C=εo・ε・S/d、εo:真空の誘電率、ε:比誘電率、S:電極の表面積、d:高分子ナノシートの膜厚)を十分に高くすることができる。
 (3)バッテリレス電子デバイスの製造方法
 次にバッテリレス電子デバイス3の製造方法について説明する。図4Aに示すように、始めに、高分子ナノシート10を作製するための基板16を準備し、基板16の表面に犠牲層15及び高分子ナノシート10を順に成膜してゆく。ここで、基板16としては、PET(ポリエチレンテレフタラート)、PP(ポリプロピレン)やPPE(ポリフェニレンエーテル)、COP(シクロオレフィン)、PI(ポリイミド)、アルミ箔、導電性高分子膜、紙、多糖膜、シリコーン樹脂、オブラート(ゼラチン)、シリコンウェハ、ガラス等を用いることができる。
 犠牲層15は、高分子ナノシート10を基板16から分離するために用いられる。この場合、犠牲層15の材料としては、例えば、PVA(ポリビニルアルコール)、PNIPAM(ポリナイパム)、アルギン酸ナトリウム等を用いることができるが、その他、液体に溶ける性質(水溶性や油溶性等)を有し、かつ、生体適合性が高い(人体に害がない)材料であれば種々の材料を用いることができる。犠牲層15は、グラビアコータ(図示せず)を用いたロールツーロール技術により成膜してもよく、スピンコータ(図示せず)を用いて成膜してもよい。ロールツーロール技術では、スピンコータを用いた場合より、大きな面積で成膜することができる。
 高分子ナノシート10は、上述した犠牲層15と同様に、グラビアコータ(図示せず)を用いたロールツーロール技術やスピンコータ等の成膜方法を用いて、犠牲層15上に成膜する。
 次いで、高分子ナノシート10上にインクジェットにより導電材料を吐出して、高分子ナノシート10の表面に電極6,7及び配線9を描画することにより、図4Bに示すように、高分子ナノシート10上に所定形状の電極6,7及び配線9を形成する。
 次いで、図4Cに示すように、高分子ナノシート10上で配線9と電気的に接続するように電子素子8を配置し、電子素子8を高分子ナノシート10に密着させる。次いで、高分子ナノシート10と貼り合わせる第2の高分子ナノシート11を準備する。このとき、第2の高分子ナノシート11には、例えば、紙テープからなるフレーム17が周縁に沿って設けられている。次いで、フレーム17を持って高分子ナノシート10に第2の高分子ナノシート11を貼り合わせ、高分子ナノシート貼合体(図示せず)を作製する。
 次いで、この高分子ナノシート貼合体を、例えば水等の剥離液に浸漬し、犠牲層15を溶解させ、高分子ナノシート10から基板16を分離させる。これにより、図4Dに示すように、第2の高分子ナノシート11の周縁に沿ってフレーム17を有したバッテリレス電子デバイス3を作製することができる。なお、フレーム17は、バッテリレス電子デバイス3を人体100に貼着する際等に、必要に応じて第2の高分子ナノシート11から除去すればよい。
 なお、上述した実施形態においては、犠牲層15を形成する工程を含むが、本発明はこれに限らず、犠牲層15を形成する工程を省略して、基板16上に直接、高分子ナノシート10を成膜するようにしてもよい。この場合、基板16は高分子ナノシート10との密着性が低い材料で形成し、後の工程で設けた第2の高分子ナノシート11のフレーム17を使用する等して、最終的に高分子ナノシート10から基板16を分離することができる。
 また、電極6,7及び配線9を形成する工程の前に、高分子ナノシート10上にインク受容層(図示せず)を形成する工程を設けるようにしてもよい。導電性インクによってインク受容層上に電極6,7や配線9を印刷することで、導電性インクが弾かれることなく、微細な電極6,7及び配線9をより精確に形成することができる。
 この場合、インク受容層は、キトサン、ポリ酢酸ビニル、酢酸セルロース、ゼラチン、シリカ、および、カチオン性アクリル共重合体が望ましい。インク受容層は、上述した犠牲層15や高分子ナノシート10と同様に、グラビアコータを用いたロールツーロール技術等を使用して、高分子ナノシート10上に成膜することができる。
 (4)作用および効果
 以上の構成において、バッテリレス電子デバイス3では、電子素子8と2つの電極6,7を電気的に接続し、伝送媒体となる人体100に高分子ナノシート10を密着させることで、電極6,7を人体100に貼着させる。また、バッテリレス電子デバイス3では、外部から人体100に誘起された電界に基づいて、人体100と電極6,7との間の静電結合により電子素子8に電力を供給する。
 バッテリレス電子デバイス3では、膜厚が薄い高分子ナノシート10により電極6,7を人体100に貼着させることで、人体100への装着性の向上を図ることができる。また、膜厚が薄い高分子ナノシート10を用いることで、バッテリレス電子デバイス3が分子間力によって人体100に密着し易くなり、電極6,7と人体100との間の空気層の形成を防止し、静電容量Cの低下を抑制できる。従って、バッテリレス電子デバイス3では、インピーダンス整合におけるインダクタの設計を特に行わずに静電容量Cを大きくでき、電子素子8を安定して動作させることができる。さらに、電子素子8に電力を供給するための、電極6,7の表面積Sや電極間距離Lを小さくした状態でも、電子素子8を動作させることが可能となるため、バッテリレス電子デバイス3を小型化することができる。
 また、バッテリレス電子デバイス3は、ハンダ付け等を一切行わずに、高分子ナノシート10及び第2の高分子ナノシート11による分子間力により、電子素子8を配線9に圧着して、配線9を電子素子8に強い接着力で接続させることができる。これにより、バッテリレス電子デバイス3は、ハンダ等のような硬質な接着剤が用いられていない分、柔軟性があり、皮膚100aの曲面や、凹凸した皮膚100aの表面形状に追従して皮膚100aに沿って密着することができるので、電極6,7と人体100との間の空気層の形成を防止し、人体100と電極6,7との間において静電容量Cの低下を抑制できる。
 (5)検証試験
 (5-1)高分子ナノシートを使用したバッテリレス電子デバイスの動作確認試験
 ここで、図2に示したバッテリレス電子デバイス3を実際に作製し、市販のリーダライタ及び電界アンテナ(株式会社eNFC社製 製品名eNFCスターターキット)を利用して、本発明のバッテリレス電子デバイス3について動作確認を行った。
 ここで、検証試験に用いるバッテリレス電子デバイス3は、高分子ナノシート10を成膜する際に使用する基板16として、PETフィルム(Lumirror25T60,パナック社製)を使用した。犠牲層15は、水溶性のポリビニルアルコール(PVA、関東化学社製、10wt% in water)を用い、グラビアコータ(ML-120,廉井精機社製)を用いて基板16上に成膜した。
 高分子ナノシート10は、スチレンブタジエンスチレン(SBS,Sigma Aldrich Japan社製,3 wt% in tetrahydrofuran)を用い、グラビアコータを用いたロールツーロール技術を利用して犠牲層15上に成膜した。
 そして、原子間力顕微鏡(AFM)を用いて、基板16上の高分子ナノシート10の膜厚を測定したところ、膜厚は800nmであった。
 そして、所望する形状・大きさの電極6,7及び配線9を形成したスクリーンマスクを用い、スクリーン印刷によって、導電性銀インク(TB3303G(NEO)、Threebond製)で電極6,7及び配線9を高分子ナノシート10の表面に描画して、電極6,7及び配線9を形成した。電極6,7は20mm×20mmの正方形状に形成して表面積を400mmとし、電極6,7の電極間距離Lは30mmとした。
 電子素子8として、ICタグ(NXP Semiconductors社製、動作電圧1.5V、消費電力40μW)を用意し、第1の電極6から延びる配線9と、第2の電極7から延びる配線9とに、それぞれ電気的に接続するように当該ICタグを設置した。そして、高分子ナノシート10と同じSBSで作製した第2の高分子ナノシート11を用意し、電極6,7、配線9及び電子素子8を設けた高分子ナノシート10上に第2の高分子ナノシート11を貼着した後、剥離液である水に浸漬した。
 これにより、水により犠牲層15を溶解させ、高分子ナノシート10から基板16を分離してバッテリレス電子デバイス3を作製した。
 次に、バッテリレス電子デバイス3を人体100に貼着した状態を再現するために、皮膚100aと同じ電気的特性(比誘電率:150、導電率:0.6 S/m(参考:https://www.asahi-rubber.co.jp/products/denjiha/01.html 「人体通信用ラバーファントム/誘電率、導電率周波数特性」))を有するラバー製の平板材(株式会社朝日ラバー社製 板状ファントム。以下、皮膚モデルとも称する)を用意し、この平板材の表面にバッテリレス電子デバイス3の高分子ナノシート10を貼着させた。
 伝送装置2としては、市販のeNFCスターターキット(株式会社eNFC社製)を用いた。eNFCスターターキットのリーダライタはタカヤ株式会社製の製品名TR3X-MU01であり、周波数が13.56MHz、送信出力が300mW±20%である。
 そして、リーダライタを動作させ、当該リーダライタに接続させた電界アンテナに、手で保持した平板材の裏面を単に接触させた。この際、平板材の表面に貼着したバッテリレス電子デバイス3のICタグが、電界アンテナで発生している電界により動作するか否かを確認した。ICタグが動作しているかは、リーダライタで読み取られたICタグのUID(Unique ID 固有ID番号)がパーソナルコンピュータの画面上に表示されるか否かにより確認した。その結果、平板材の裏面を電界アンテナに接触させることで、バッテリレス電子デバイス3のICタグが動作することが確認できた。
 (5-2)電極の表面積及び電極間距離を変えたときのバッテリレス電子デバイスの動作率について
 次に、バッテリレス電子デバイスの電極の表面積S及び電極間距離Lを変えてバッテリレス電子デバイスの動作率がどのように変化するかについて確認する検証試験を行った。
 この検証試験では、図5A及び図5Bに示すようなバッテリレス電子デバイス20を作製した。ここで、高分子ナノシート10のみでは膜厚が薄すぎ、同じ大きさ・形状の電極6,7や、同じ電極間距離Lについて正確な寸法を再現し難い。そこで、この検証試験では、硬さを調整した支持基板23上の高分子ナノシート10の表面に所定の大きさ・形状の電極6,7や、所定の長さの電極間距離Lを正確に再現し、支持基板23を高分子ナノシート10から分離せずにそのまま使用した。
 なお、支持基板23については、高分子ナノシート10を成膜する際に用いた基板16と犠牲層15をそのまま用い、これら基板16及び犠牲層15を支持基板23として使用した。この場合、PET(ポリエチレンテレフタラート)で形成した基板16を用い、犠牲層15は、PVA(ポリビニルアルコール)により基板16上に成膜した。
 そして、上述した検証試験と同様にして高分子ナノシート10を支持基板23上に成膜し、支持基板23の表面に高分子ナノシート10を成膜した複数の貼着シート24を作製した。なお、この検証試験では、支持基板23及び高分子ナノシート10を合わせた貼着シート24の膜厚d1を全て30μmとした。
 次に、所望する大きさの電極6,7及び配線9を形成したスクリーンマスクを用い、スクリーン印刷によって、導電性銀インク(TB3303G(NEO)、Threebond製)により、正方形状の電極6,7と、帯状の配線9とを、高分子ナノシート10上に形成した、この際、スクリーンマスクを変えることで、高分子ナノシート10上の電極6,7の表面積Sと、電極間距離Lを、貼着シート24毎にそれぞれ変えた。
 電子素子8としてICタグ(NXP Semiconductors社製、動作電圧1.5V、消費電力40μW)を使用した。そして、第1の電極6に接続した配線9と、第2の電極7に接続した配線9とにICタグが電気的に接続するように、高分子ナノシート10上にICタグを設置した。
 この検証試験では、正方形状の電極6,7の表面積Sを10mm×10mmと20mm×20mmと30mm×30mmとにそれぞれ変え、これら表面積S毎にそれぞれ電極間距離Lを10mmと20mmと30mmに変えた9種類のバッテリレス電子デバイス20を、それぞれ5つずつ作製した。
 次いで、バッテリレス電子デバイス20を人体100に貼着した状態を再現するために、上述した検証試験と同様に、皮膚モデルとしてラバー製の平板材101(株式会社朝日ラバー社製板状ファントム)を複数枚用意し、平板材(皮膚モデル)101毎に、各バッテリレス電子デバイス20を平板材101の表面に貼着した。
 そして、上述した検証試験と同様に、市販のeNFCスターターキット(株式会社eNFC社製)を用い、eNFCスターターキットのリーダライタを動作させ、当該リーダライタに接続させた電界アンテナ102に、各平板材101の裏面を単に接触させた。
 この際、各平板材101の表面にそれぞれ貼着したバッテリレス電子デバイス20のICタグが、電界アンテナ102で発生している電界により動作するか否かを確認した。その結果、図6に示すような結果が得られた。図6から、貼着シート24の膜厚d1が30μmの場合、電極6,7の表面積Sが30mm×30mm(図6中、√S=30mmと表記)で電極間距離Lが20mm、30mmとしたバッテリレス電子デバイス20では、用意した5つ全てにおいてICタグが動作し、動作率が100%であった。また、電極6,7の表面積Sが20mm×20mm(図6中、√S=20mmと表記)でも電極間距離Lを30mmとしたバッテリレス電子デバイス20では、用意した5つ全てにおいてICタグが動作し、動作率が100%であった。
 図6から、バッテリレス電子デバイス20の動作率を向上させるためには、電極6,7の表面積Sを大きくし、電極間距離Lを長くすることが好ましいが、貼着シート24の膜厚d1を薄くし、かつ平板材101との間に空気層が形成されないようにして電極6,7を設けることができれば、電極6,7の表面積Sが小さい400mm以下であっても電子素子8を動作させることができることが確認できた。また、貼着シート24の膜厚d1を薄くし、かつ平板材101との間に空気層が形成されないようにして電極6,7を設けることができれば、電極間距離Lについても、電極6,7の表面積Sに依存するものの、30mm以下の10mmでも電子素子8を動作させることができることが確認できた。
 また、この検証試験の結果を解析することで、高分子ナノシート10の膜厚dを、貼着シート24の膜厚d1の10分の1となる3μmとした場合には、電極6,7の表面積Sを10mm以上100mm以下としても、貼着シート24の膜厚d1が30μmのときと同じ静電容量を確保できることが分かった。
 さらに、この検証試験の結果を解析することで、高分子ナノシート10の膜厚dを、貼着シート24の膜厚d1の10分の1となる3μmとした場合には、電極6,7の表面積Sを調整することで、電極間距離Lを2mm以上10mm以下としても、貼着シート24の膜厚d1が30μmのときと同じ容量性インピ―ダンスを確保できることが分かった。
 (5-3)貼着シートの膜厚を変えたときのバッテリレス電子デバイスの動作率について
 次に、貼着シート24の膜厚d1を変えたときにバッテリレス電子デバイス20の動作率が変化するか否かについて確認した。ここでは、正方形状の電極6,7の表面積Sを20mm×20mmとし、電極間距離Lを30mmとし、貼着シート24の膜厚d1を30μmとしたバッテリレス電子デバイス20を5つ用意した。また、これとは別に、電極6,7の表面積Sと電極間距離Lを上記と同じにして、貼着シート24の膜厚d1を100μm,170μmとしたバッテリレス電子デバイス20をそれぞれ5つずつ用意した。なお、ここでは、高分子ナノシート10の単体の膜厚dは全て800nmとし、支持基板23の膜厚を変えることで貼着シート24の膜厚d1を調整した。
 次いで、バッテリレス電子デバイス20を人体100に貼着した状態を再現するために、上述した検証試験と同様に皮膚モデルとしてラバー製の平板材101を複数枚用意し、平板材101毎に、各バッテリレス電子デバイス20を平板材101の表面に貼着した。
 そして、上述した検証試験と同様に、市販のeNFCスターターキット(株式会社eNFC社製)を用い、eNFCスターターキットのリーダライタを動作させ、当該リーダライタに接続させた電界アンテナ102に、各平板材101の裏面を接触させた。
 この際、各平板材101の表面にそれぞれ貼着したバッテリレス電子デバイス20のICタグが、電界アンテナ102で発生している電界により動作するか否かを確認した。その結果、図7に示すような結果が得られた。図7から、貼着シート24の膜厚d1が30μmのとき、バッテリレス電子デバイス20の動作率が100%であったが、当該膜厚d1が厚くなるほど動作率が低下することが確認できた。
 よって、バッテリレス電子デバイス20の動作率を向上させるためには、バッテリレス電子デバイス20の貼着シート24の膜厚d1を薄くすることが望ましいことが確認できた。
 (6)他の実施の形態
 なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、上述した実施形態においては、2つの電極6,7を設けたバッテリレス電子デバイス3,20について説明したが、本発明はこれに限らず、3つや4つ等のように2つ以上の電極を設けたバッテリレス電子デバイスであってもよい。また、伝送媒体が伝送装置2と接触することで伝送媒体に貼着したバッテリレス電子デバイスが動作できれば、例えば、装置や動物等のような人体100以外を伝送媒体として適用してもよい。
 また、上述した実施形態においては、伝送装置2に伝送媒体が接触することで、伝送装置2のコイルと、伝送媒体及び電極6,7間で形成されるコンデンサと、が直列に接続して伝送装置2の周波数にバッテリレス電子デバイス3を共振させる直列共振方式を適用した場合について説明したが、本発明はこれに限らない。例えば、伝送装置2及びバッテリレス電子デバイス3に、それぞれ並列共振回路がトランス結合した構成を設け、伝送媒体及び電極6,7間での静電結合が小さくてもバッテリレス電子デバイス3への電力供給が行える並列共振方式を適用してもよく、また、これら直列共振方式及び並列共振方式を複合した方式を適用してもよい。
 また、高分子ナノシート10及び第2の高分子ナノシート11の材料は上述した実施形態で例示したものに限られず、人体100等の伝送媒体に分子間力で貼着可能な高分子ナノシート10や、高分子ナノシート10に分子間力で貼着可能な第2の高分子ナノシート11であればよく、種々の材料が適用可能である。
 さらに、電極6,7の材料や配線9の材料も、導電性の材料であり、かつ、柔軟性のある高分子ナノシート10を介して伝送媒体に密着させることができれば、種々の材料・形状が適用可能である。また、電極6,7や配線9の形成方法も、印刷により形成されるものに限定されない。
 さらに、上述した実施形態においては、高分子ナノシート10上に第2の高分子ナノシート11を貼着し、電極6,7と電子素子8と配線9とを高分子ナノシート10と第2の高分子ナノシート11との間に挟み込んだバッテリレス電子デバイス3を適用した場合について述べたが、本発明はこれに限らない。例えば、第2の高分子ナノシート11を設けずに、電極6,7と電子素子8と配線9とを単に高分子ナノシート10上に設けたバッテリレス電子デバイスとしてもよい。
 1 伝送システム
 2 伝送装置
 3,20 バッテリレス電子デバイス
 6,7 電極
 8 電子素子
 9 配線
 10 高分子ナノシート
 11 第2の高分子ナノシート
 100 人体(伝送媒体)

Claims (8)

  1.  電子素子と、
     前記電子素子と電気的に接続した、少なくとも2つ以上の電極と、
     伝送媒体と密着し、前記電極を前記伝送媒体に貼着させる高分子ナノシートと、
     を備え、
     外部から前記伝送媒体に誘起された電界に基づいて、前記伝送媒体と前記電極との間の静電結合により前記電子素子に電力が供給される、バッテリレス電子デバイス。
  2.  前記伝送媒体が人体であり、前記高分子ナノシートが分子間力により、前記人体の皮膚の表面形状に追従し前記皮膚に密着して貼着される、請求項1に記載のバッテリレス電子デバイス。
  3.  前記電極及び前記電子素子を接続する配線と、前記電極とが、導電性インクにより形成されている、請求項1又は2に記載のバッテリレス電子デバイス。
  4.  前記高分子ナノシート上に第2の高分子ナノシートが貼着されており、前記電子素子と前記電極とが、前記高分子ナノシートと前記第2の高分子ナノシートとの間に挟み込まれている、請求項1~3のいずれか1項に記載のバッテリレス電子デバイス。
  5.  前記高分子ナノシートの厚さが2μm未満である、請求項1~4のいずれか1項に記載のバッテリレス電子デバイス。
  6.  前記伝送媒体に貼着される前記電極の表面積Sが400mm以下である、請求項1~5のいずれか1項に記載のバッテリレス電子デバイス。
  7.  第1の前記電極と第2の前記電極との電極間距離Lが30mm以下である、請求項1~6のいずれか1項に記載のバッテリレス電子デバイス。
  8.  所定箇所に設置され電界を発生させる伝送装置と、伝送媒体に設けられるバッテリレス電子デバイスと、を備える伝送システムであって、
     前記バッテリレス電子デバイスは、
     請求項1~7のいずれか1項に記載のバッテリレス電子デバイスであり、
     前記伝送媒体が前記伝送装置に接触することで前記伝送媒体に誘起された電界に基づいて、前記伝送媒体と電極との間の静電結合により電子素子に電力が供給される、伝送システム。
PCT/JP2020/022086 2019-06-04 2020-06-04 バッテリレス電子デバイス及び伝送システム WO2020246539A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-104866 2019-06-04
JP2019104866A JP2020198396A (ja) 2019-06-04 2019-06-04 バッテリレス電子デバイス及び伝送システム

Publications (1)

Publication Number Publication Date
WO2020246539A1 true WO2020246539A1 (ja) 2020-12-10

Family

ID=73648165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022086 WO2020246539A1 (ja) 2019-06-04 2020-06-04 バッテリレス電子デバイス及び伝送システム

Country Status (2)

Country Link
JP (1) JP2020198396A (ja)
WO (1) WO2020246539A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023019076A (ja) 2021-07-28 2023-02-09 新光電気工業株式会社 回路基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278616A (ja) * 2007-04-27 2008-11-13 Kaiser Technology:Kk 電気機器及び給電システム
JP2010115025A (ja) * 2008-11-06 2010-05-20 Hiroshima Univ 非接触電力伝送システムおよび電子装置
WO2016181958A1 (ja) * 2015-05-11 2016-11-17 学校法人早稲田大学 電子デバイスおよびその製造方法
JP2017208650A (ja) * 2016-05-17 2017-11-24 株式会社eNFC 伝送装置および伝送システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278616A (ja) * 2007-04-27 2008-11-13 Kaiser Technology:Kk 電気機器及び給電システム
JP2010115025A (ja) * 2008-11-06 2010-05-20 Hiroshima Univ 非接触電力伝送システムおよび電子装置
WO2016181958A1 (ja) * 2015-05-11 2016-11-17 学校法人早稲田大学 電子デバイスおよびその製造方法
JP2017208650A (ja) * 2016-05-17 2017-11-24 株式会社eNFC 伝送装置および伝送システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Medical Rbotics and mechatronics 1", ROBOMECH, 2 April 2019 (2019-04-02), pages 1 - 112, XP055769846, Retrieved from the Internet <URL:http://robomech.org/2019/wp-content/uploads/2019/05/RM19_program_v05.pdf> [retrieved on 20200813] *
ANONYMOUS: "Micro&Nano Mechanics Laboratory", CONFERENCE PROCEEDINGS, 26 April 2019 (2019-04-26), pages 1 - 14, XP055769873, Retrieved from the Internet <URL:https://www.iwaselab.amech.waseda.ac.jp/publications/conference> [retrieved on 20200813] *

Also Published As

Publication number Publication date
JP2020198396A (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
US10357201B2 (en) Appendage mountable electronic devices conformable to surfaces
US20160006123A1 (en) Conformal electronic devices
JP4653440B2 (ja) Rfidタグおよびその製造方法
US9993203B2 (en) Electronic stickers with modular structures
Kim et al. Materials for stretchable electronics in bioinspired and biointegrated devices
CN105580207A (zh) 包括嵌套蛇形互连件的共形电子器件
CN106886753B (zh) 声波式指纹识别装置应用其的电子装置
US11968777B2 (en) Method for manufacturing wiring board with a meandering shape section
US20220345826A1 (en) Conductive film for a sound generation device and the sound generation device
JP2008307362A5 (ja)
WO2015024369A1 (zh) 一种基于皮肤的电信号输出装置和电信号输出方法
JP6773332B2 (ja) 電子デバイスおよびその製造方法
US11956610B2 (en) Conductive film for a sound generation device and the sound generation device
CN106934444B (zh) 模块化结构电子贴片
WO2020246539A1 (ja) バッテリレス電子デバイス及び伝送システム
TWI639413B (zh) 超音波傳感器以及具有超音波傳感器的超音波貼布
JP2016114541A (ja) 非接触icタグモジュールと生体適合性粘着ラベルの複合体
US20140224882A1 (en) Flexible Smart Card Transponder
JP2023085391A (ja) Icタグ、icタグの製造方法、及びic保持部の製造方法
JP2004242245A (ja) Icタグ用のブースタアンテナ
CN214670697U (zh) 一种薄型柔性无线抗金属标签
CN215814105U (zh) 触控显示模块及其屏下指纹辨识模块
Chakraborty et al. Flexible interfacing circuits for wearable sensors and wireless communication
JP2003162703A (ja) Icカードとその製造方法
Sanchez-Romaguera et al. Enabling low cost UHF RFID transfer tattoo tags by inkjet printing means

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20817632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20817632

Country of ref document: EP

Kind code of ref document: A1