WO2020246504A1 - レーザ溶接装置及びそれを用いたレーザ溶接方法 - Google Patents

レーザ溶接装置及びそれを用いたレーザ溶接方法 Download PDF

Info

Publication number
WO2020246504A1
WO2020246504A1 PCT/JP2020/021951 JP2020021951W WO2020246504A1 WO 2020246504 A1 WO2020246504 A1 WO 2020246504A1 JP 2020021951 W JP2020021951 W JP 2020021951W WO 2020246504 A1 WO2020246504 A1 WO 2020246504A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
laser
laser beam
emitting head
plate material
Prior art date
Application number
PCT/JP2020/021951
Other languages
English (en)
French (fr)
Inventor
静波 王
西尾 正敏
憲三 柴田
学 西原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP20819107.2A priority Critical patent/EP3981540A4/en
Priority to JP2021524879A priority patent/JP7369915B2/ja
Publication of WO2020246504A1 publication Critical patent/WO2020246504A1/ja
Priority to US17/541,166 priority patent/US20220088709A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/242Fillet welding, i.e. involving a weld of substantially triangular cross section joining two parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams

Definitions

  • This disclosure relates to a laser welding apparatus and a laser welding method using the laser welding apparatus.
  • the laser beam can be scanned three-dimensionally on the surface of the work, so that the work having a complicated shape can be welded (see, for example, Patent Documents 2 and 3). Further, a configuration has been proposed in which not only the laser beam is scanned three-dimensionally but also the focal position of the laser beam is periodically controlled (see, for example, Patent Document 3).
  • the conventional method of correcting the focal position of the laser light only on the surface of the work is to secure the joint strength of the welded portion. May be insufficient. In particular, this tendency is remarkable when the shape of the welded portion of the work is complicated. When such a situation occurs, a portion where a desired penetration shape cannot be obtained is generated at the welded portion, and there is a possibility that the joint strength cannot be secured. In addition, the appearance of the welded portion may be impaired by the generation of spatter or the like, and the welding quality may deteriorate.
  • Patent Documents 1 to 3 do not specifically show the control of the focal position of the laser beam according to the shape of the welded portion.
  • an object of the present invention is to provide a laser welding apparatus capable of controlling a penetration shape according to the shape of a welded portion of a work, and a laser welding method using the same. ..
  • the laser welding apparatus is attached to a laser oscillator that generates a laser beam, an optical fiber that transmits the laser beam generated by the laser oscillator, and an emission end of the optical fiber.
  • a laser beam emitting head that irradiates the laser beam incident from the optical fiber toward the work, a manipulator to which the laser beam emitting head is attached and the laser beam emitting head is moved in a predetermined trajectory, and the above. It includes at least a controller that controls the laser beam emitting head so that the laser beam is scanned two-dimensionally or three-dimensionally on the surface of the work, and the controller has a shape of a welded portion in the work.
  • the laser beam emitting head or the manipulator is controlled so as to change the focal position of the laser beam applied to the work.
  • the penetration shape of the work can be controlled according to the shape of the welded portion in the work.
  • the joint strength of the work can be increased.
  • the laser welding method is a laser welding method using the laser welding apparatus, in which the laser beam is irradiated toward the work while scanning two-dimensionally or three-dimensionally, and the above-mentioned At least a laser welding step for welding a work is provided, and in the laser welding step, the focal position of the laser beam is changed according to the shape of a welded portion in the work, and a molten pool and a keyhole are formed in the work. It is characterized by.
  • the penetration depth of the work can be controlled according to the shape of the welded portion in the work.
  • the joint strength of the work can be increased.
  • the penetration shape and the penetration depth of the work can be controlled according to the shape of the welded portion in the work.
  • the joint strength of the work can be increased.
  • FIG. 1 shows a schematic diagram of the configuration of the laser welding apparatus according to the present embodiment, and the laser welding apparatus 1000 includes a laser oscillator 100, a controller 200, an optical fiber 300, a laser beam emitting head 400, and a manipulator 500. ..
  • the laser oscillator 100 is a laser light source that generates laser light LB by supplying electric power from a power source (not shown).
  • the laser oscillator 100 may be composed of a single laser light source or a plurality of laser modules. In the latter case, the laser light emitted from each of the plurality of laser modules is combined and emitted as the laser light LB. Further, the laser light source or the laser module used in the laser oscillator 100 is appropriately selected according to the material of the work 600 to be welded, the shape of the welded portion, and the like.
  • a fiber laser, a disc laser, or a YAG (Yttrium Aluminum Garnet) laser can be used as the laser light source.
  • the wavelength of the laser beam LB is set in the range of 1000 nm to 1100 nm.
  • the semiconductor laser may be used as a laser light source or a laser module.
  • the wavelength of the laser beam LB is set in the range of 800 nm to 1000 nm.
  • the visible light laser may be used as a laser light source or a laser module.
  • the wavelength of the laser beam LB is set in the range of 400 nm to 800 nm.
  • the optical fiber 300 is optically coupled to the laser oscillator 100, has a core (not shown) at the axis, and is provided with a first clad (not shown) coaxially with the core in contact with the outer peripheral surface of the core.
  • the core and the first clad each contain quartz as a main component, and the refractive index of the core is higher than that of the first clad. Therefore, the laser light LB generated by the laser oscillator 100 is incident on the incident end of the optical fiber 300 and transmitted from the inside of the core toward the exit end. Further, a film or a resin-based protective layer (neither shown) is provided on the outer peripheral surface of the first clad to mechanically protect the optical fiber 300.
  • the laser light emitting head 400 is attached to the emitting end of the optical fiber 300, irradiates the laser beam LB transmitted by the optical fiber 300 toward the work 600, and the work 600 is laser welded.
  • the laser light emitting head 400 is configured to scan the laser light LB two-dimensionally or three-dimensionally and irradiate the work 600 toward the work 600, and the light scanning mechanism 424 that scans the laser light LB. (See FIG. 2). Further, the laser light emitting head 400 has a focal position adjusting mechanism 407 (see FIG. 2) for changing the focal position of the laser beam LB irradiated toward the work 600. Details and functions of the structure of the laser light emitting head 400, the optical scanning mechanism 424, and the focal position adjusting mechanism 407 will be described later.
  • the controller 200 controls the laser oscillation of the laser oscillator 100. Specifically, laser oscillation control is performed by supplying control signals such as an output current and an on / off time to a power source (not shown) connected to the laser oscillator 100.
  • controller 200 controls the drive of the optical scanning mechanism 424 and the focal position adjusting mechanism 407 provided in the laser beam emitting head 400 according to the content of the selected laser welding program. Further, the controller 200 controls the operation of the manipulator 500.
  • the laser welding program is stored in the storage unit 210.
  • the storage unit 210 may be provided inside the controller 200, or may be provided outside the controller 200 so that data can be exchanged with the controller 200. Further, the storage unit 210 stores data in which the focal position of the laser beam LB and the penetration depth of the work 600 are associated with the material of the work 600 (see FIG. 4).
  • the manipulator 500 is connected to the controller 200, and the laser beam emitting head 400 is moved so as to draw a predetermined trajectory according to the laser welding program described above.
  • a controller 200 that controls the operation of the manipulator 500 may be provided separately.
  • the direction parallel to the optical axis of the laser beam LB emitted from the laser beam emitting head 400 is the Z direction
  • the direction orthogonal to the Z direction is the X direction
  • the X direction and the Z direction are orthogonal to each other.
  • the directions may be referred to as the Y direction.
  • the XY plane including the X direction and the Y direction in the plane may be substantially parallel to the surface or may have a constant angle.
  • substantially parallel means that the two surfaces or members are in strictly parallel positions, including the processing tolerance of each member and the assembly tolerance of each part. Does not require up to.
  • substantially orthogonal means that they are orthogonal including the processing tolerance of each member and the assembly tolerance of each part, and does not require that they are strictly orthogonal.
  • substantially the same or substantially the same means the same or the same including the manufacturing tolerance and the assembly tolerance of each part, and it is required that both of them to be strictly compared are the same or the same. It's not something to do.
  • substantially the same or substantially the same is also used to mean that the control result of the controlled object is the same or the same including the error of the control system.
  • FIG. 2 shows the configuration of the laser light emitting head according to the present embodiment
  • the laser light emitting head 400 includes a connector 401, a lens body 402, a body case 408 (first case), a shield holder 410, and the like. It has a nozzle unit 425 (second case), a first servomotor 411, and a second servomotor 418.
  • the shield holder 410 is removable from the nozzle unit 425, but for other configurations, a plurality of shield holders 410 may be integrated.
  • the laser light emitting head 400 is connected to the optical fiber 300 via the connector 401.
  • the laser light LB is emitted into the laser light emitting head 400 while spreading at a constant angle from the emitting end (corresponding to the point A shown in FIG. 2) of the optical fiber 300.
  • the lens body 402 holds a lens holder 403 in which a collimating lens 404 and a condenser lens 405 are housed.
  • the collimating lens 404 parallelizes the laser beam LB emitted from the exit end of the optical fiber 300.
  • the laser beam LB parallelized by the collimating lens 404 is focused by the condenser lens 405 so as to be focused on the surface or inside of the work 600.
  • the lens body 402 and the lens holder 403 determine the optical positional relationship between the exit end of the optical fiber 300 and the collimating lens 404.
  • the collimating lens 404 is held by a slider 406 connected to an actuator (not shown) and housed in the lens holder 403. Although detailed mounting and connection of the actuator are omitted in the drawing, the optical axis of the laser beam LB emitted from the laser beam emitting head 400 with the collimating lens 404 held by the slider 406 in response to the control signal from the controller 200. In other words, move in the Z direction. As a result, the focal position of the laser beam LB irradiated on the work 600 changes.
  • the collimating lens 404, the slider 406, and the actuator (not shown) may be referred to as a focal position adjusting mechanism 407.
  • the actuator may be a servomotor or another type of actuator. It is preferably highly responsive, lightweight and compact.
  • the body case 408 is provided with a first rotation mechanism 420, a first parallel plate 414, and a first holder 415, which form a first optical unit 422.
  • the first rotation mechanism 420 includes a first servomotor 411 (first drive unit), a first timing belt 412 (first transmission member), and a first timing belt pulley 413 (first rotation). Member) and.
  • the first parallel plate 414 is fixed in a cylindrical first holder 415 whose both ends are held by bearings.
  • a first timing belt pulley 413 is provided on the outer peripheral surface of the first holder 415, and the first holder 415 is rotated by the first servomotor 411 via the first timing belt 412.
  • the first holder 415 is rotated about the first rotation axis, and the direction of the first rotation axis is the direction of the optical axis of the laser light LB emitted from the laser light emission head 400. That is, it is the same as the Z direction.
  • the body case 408 is provided with a second rotation mechanism 421, a second parallel plate 416, and a second holder 409, which form a second optical unit 423.
  • the second rotation mechanism 421 includes a second servomotor 418 (second drive unit), a second timing belt 419 (second transmission member), and a second timing belt pulley 417 (second rotation). Member) and.
  • the second parallel plate 416 is fixed in a cylindrical second holder 409 whose both ends are held by bearings.
  • a second timing belt pulley 417 is provided on the outer peripheral surface of the second holder 409, and the second holder 409 is rotated by the second servomotor 418 via the second timing belt 419.
  • the second holder 409 is rotated about the second rotation axis, and the direction of the second rotation axis is the same as the Z direction.
  • the first optical unit 422 and the second optical unit 423 may be collectively referred to as an optical scanning mechanism 424.
  • the first optical unit 422 and the second optical unit 423 have the same direction of the first rotation axis and the direction of the second rotation axis, and are arranged symmetrically in the body case 408. Has been done. That is, they are arranged symmetrically with respect to the plane perpendicular to the first rotation axis and the second rotation axis. In FIG. 2, the first optical unit 422 and the second optical unit 423 are arranged symmetrically in the vertical direction. When arranged in this way, when the first servomotor 411 and the second servomotor 418 rotate in the same direction, the rotation direction of the first parallel plate 414 and the rotation direction of the second parallel plate 416 are opposite to each other. become.
  • the rotation direction of the first servomotor 411 that drives the first parallel plate 414 the rotation direction of the first parallel plate 414 and the rotation direction of the second parallel plate 416 are made in the same direction. It is also possible to rotate it.
  • the first optical unit 422 and the second optical unit 423 have a first rotation axis and a first rotation axis. It is desirable to arrange them so that they coincide with the two rotation axes. Further, it is preferable that the directions of the first rotation axis and the second rotation axis are the same as the directions of the optical axes of the laser beam LB when incident from the optical fiber 300. Further, it is more preferable that the first rotation axis and the second rotation axis coincide with the optical axis of the laser beam LB when incident from the optical fiber 300.
  • the laser beam LB that has passed through the collimating lens 404 and the condensing lens 405 passes through the first parallel plate 414 twice (when it is incident on the first parallel plate 414 and the first parallel plate 414). Refracts (when emitted from).
  • the thickness of the first parallel plate 414, the inclination angle of the first parallel plate 414, which is the mounting angle of the first parallel plate 414 with respect to the first rotation axis, and the refractive index of the first parallel plate 414 shifts in parallel by an amount determined by the rate.
  • the optical axis of the laser beam LB (first optical axis) incident on the first parallel plate 414 and the optical axis of the laser beam LB (second optical axis) emitted from the first parallel plate 414 are ,
  • the direction is the same and the position is out of alignment.
  • the second parallel plate 416 having the same configuration. That is, the optical axis of the laser beam LB (second optical axis) incident on the second parallel plate 416 and the optical axis of the laser beam LB (third optical axis) emitted from the second parallel plate 416 are ,
  • the direction is the same and the position is out of alignment.
  • the first parallel plate 414 and the second parallel plate 416 of the present embodiment are made of synthetic quartz, have an inclination angle of 45 ° with respect to the first rotation axis (second rotation axis), and have a refractive index of 1.44963. Is.
  • the optical axis (third optical axis) of the laser light LB is similarly shifted by 4.1 mm. Therefore, the operating range of the laser beam LB in this embodiment is within a circle having a radius of 8.2 mm.
  • the thickness and refractive index of the first parallel plate 414 and the second parallel plate 416 can be appropriately changed depending on the wavelength of the laser light LB, the required processing conditions, and the like. In that case, the laser The scanning range of the optical LB can also be changed.
  • the optical axis of the laser beam LB can be rotated around the original optical axis with a predetermined radius, and various shapes such as an arc shape and a spiral shape can be obtained with respect to the work 600.
  • the laser beam LB can be irradiated linearly. That is, the laser light emitting head 400 is configured to scan the laser light LB on the surface of the work 600 two-dimensionally or three-dimensionally by the control signal from the controller 200.
  • FIGS. 3A and 3B show the relationship between the molten pool and keyhole formed in the workpiece and the focal position of the laser beam
  • FIG. 4 shows the relationship between the focal position of the laser beam and the penetration depth of the workpiece. Shows the table.
  • FIGS. 3A and 3B FIG. 3A shows the case where the focal point of the laser beam LB is located near the surface of the work 600
  • FIG. 3B shows the case where the focal point of the laser beam LB is located inside the work 600. Each case is shown.
  • a portion irradiated with the laser beam LB is heated to cause melting, and a molten pool 800 is formed. Further, in the portion irradiated with the laser beam LB, the material constituting the molten pool 800 is violently evaporated, and the reaction force forms a keyhole 810 inside the molten pool 800.
  • the keyhole 810 When the keyhole 810 is formed, most of the laser beam LB enters the inside of the keyhole 810 while being reflected multiple times by the inner wall surface of the keyhole 810 and is absorbed by the molten pool 800.
  • the absorption rate at which the laser beam LB is absorbed by the molten pool 800 is improved, the amount of heat input to the work 600 is increased, and the penetration depth is deepened.
  • the amount is small, but a part of it is reflected by the keyhole wall near the entrance of the keyhole 810, and the reflected laser beam LB enters the keyhole 810. Instead, it is reflected to the outside and becomes a loss.
  • the keyhole 810 is an open space extending from the opening 811 of the keyhole 810 formed on the surface of the molten pool 800 toward the inside of the molten pool 800, as shown in FIG. 3B, the laser beam LB
  • the focal position reaches the inside from the surface of the work 600, specifically, the inside of the keyhole 810, the power density of the laser beam LB irradiated on the inner wall surface of the keyhole 810 becomes high and the molten pool 800
  • the amount of light absorbed by the laser increases, and the penetration depth can be made deeper than in the case shown in FIG. 3A.
  • the opening 811 of the keyhole 810 can be expanded as compared with the case shown in FIG. 3B, so that the laser beam LB is more inside the keyhole 810. It will be easier to reach.
  • the focal position of the laser beam LB is inside from the surface of the work 600, the laser beam LB enters the back of the keyhole 810 in the form of convergence near the opening 811 of the keyhole 810, so that the entrance of the keyhole 810 It becomes difficult to be reflected by the nearby keyhole wall, and the amount of light absorbed by the molten pool 800 also increases, which also leads to an increase in the penetration depth.
  • FIG. 4 shows such a relationship in more detail, and the work 600 melts in as the focal position of the laser beam LB moves above the surface of the work 600, that is, outside the work 600. The depth becomes shallow.
  • the focal position of the laser beam LB moves below the surface of the work 600, that is, to a predetermined position inside the work 600, the penetration depth of the work 600 becomes deeper. This is due to the mechanism described above.
  • the focal position of the laser beam LB moves deeper inside the work 600 than the predetermined position, the power density of the laser beam LB on the surface of the work 600 decreases, and the amount of heat input to the work 600 at the initial stage of forming the molten pool 800. Decreases. For this reason, the penetration depth becomes rather shallow.
  • the penetration depth of the work 600 can be deepened.
  • the shape of the curve shown in FIG. 4 changes depending on the material of the work 600 and the output of the laser beam LB. Therefore, in the storage unit 210, the depth of penetration of the work 600 with respect to the focal position of the laser light LB, which is associated with the material of the work 600, the output of the laser light LB, and the wavelength of the laser light LB, is data in a table format. It is saved as.
  • the change in the penetration depth of the work 600 with respect to the focal position of the laser beam LB is shown in a graph format, but in reality, each plot of the curve shown in FIG. 4 is shown. It is associated with the material of the work 600 in the data format.
  • the laser welding can be performed appropriately according to the shape of the welded part by changing the focal position of the laser beam LB based on the shape of the welded part in the work 600 and the data shown in FIG. At the same time, the joint strength of the work 600 can be increased.
  • FIG. 5 is a schematic view showing the relationship between the locus of the laser beam applied to the work and the depth of the molten region of the work and the focal position of the laser light
  • the upper side of FIG. 5 is a view of the work 600 viewed from the surface.
  • the lower side of FIG. 5 shows the cross section of the work 600, respectively.
  • the work 600 is a laminated body in which the first plate material 710 and the second plate material 720 are superposed on each other, and both the first plate material 710 and the second plate material 720 are steel plates. Is. It may be a steel plate or a steel plate having a different material or composition.
  • the laser beam LB irradiates the surface of the work 600, in this case, the surface of the first plate member 710 so as to draw a spiral locus TR1. By doing so, the laser beam LB can be evenly irradiated to the predetermined welded portion.
  • the example shown in FIG. 5 corresponds to so-called spot welding.
  • the controller 200 drives the focal position adjusting mechanism 407 so that the focal position becomes deeper inside the work 600 as the spiral locus TR1 approaches the peripheral edge rather than the center.
  • the laser beam LB is applied to the work 600.
  • the molten region 820 becomes deeper as it approaches the peripheral edge than the center thereof, and specifically, it becomes deeper by several% to 20% at the peripheral edge with respect to the center of the molten region 820. ..
  • the melting region 820 corresponds to a portion where the molten pool 800 is cooled and solidified.
  • the focal position of the laser beam LB After setting the focal position of the laser beam LB near the surface of the work 600, when laser welding a predetermined area of the work 600 while scanning the laser beam LB so as to draw a predetermined trajectory, the focal position is the work 600 during scanning. Even if it does not deviate from the surface of the locus, the amount of heat of the molten pool 800 is conducted to the work 600 in the periphery of the locus, so that the penetration tends to be shallow. In such a case, the work 600 does not sufficiently melt at the peripheral edge of the locus, the molten region 820 becomes shallow at the peripheral edge, and the joint strength between the first plate material 710 and the second plate material 720 satisfies the desired standard. There is a risk that it will not work.
  • the focal position of the laser beam LB shifts to the upper side of the surface of the work 600 due to the accuracy of the work 600 or the like, sputtering is performed because the power density of the laser beam LB is high at the periphery of the locus after the molten pool 800 is formed. May occur. If such spatter adheres to the surface of the work 600, the appearance of the welded portion may be impaired and the welding quality may be deteriorated.
  • the focal position of the laser beam LB as described above, it is possible to control the melting shape of the work 600 and the cross-sectional shape of the melting region 820.
  • the peripheral edge of the molten region 820 can be made sufficiently deep, and the joint strength between the first plate material 710 and the second plate material 720 can be increased.
  • the focal position of the laser beam LB is changed in the range from the vicinity of the surface of the work 600 to the predetermined position inside the keyhole 810, the above-mentioned sparks are not generated and the generation of spatter is suppressed. As a result, the appearance of the welded portion is improved and the welding quality can be improved.
  • this method can be applied not only to spot welding but also to the case of continuous laser welding of the work 600 along a predetermined direction.
  • FIG. 6 is another schematic view showing the relationship between the locus of the laser beam applied to the work and the depth of the molten region of the work and the focal position of the laser light
  • the upper side of FIG. 6 is a view of the work 600 from the surface.
  • the lower side of FIG. 6 shows a cross section of the work 600.
  • the relationship between the structure of the work 600 and the depth of the molten region 820 of the work 600 and the focal position of the laser beam LB is the same as the example shown in FIG.
  • FIG. 5 shows a case where so-called spot welding is performed, whereas in the example shown in FIG. 6, the work is performed along a predetermined welding direction while scanning the laser beam LB so as to draw a spiral locus TR1.
  • 600 is continuously laser welded.
  • a continuous weld bead (not shown) is formed on the work 600.
  • a continuous welding bead is formed on the work 600 by moving the tip of the manipulator 500 along a predetermined welding direction by a control signal from the controller 200 while irradiating the laser light LB from the laser light emitting head 400.
  • the peripheral edge of the molten region 820 of the work 600 can be sufficiently deepened to increase the joint strength between the first plate material 710 and the second plate material 720. Can be done.
  • the occurrence of spatter as described above can be suppressed, and the welding quality can be improved.
  • the laser beam LB was scanned so as to draw a spiral locus TR1 on the surface of the work 600, but the laser beam LB is not particularly limited to this, and as described above, it may be arcuate or arcuate.
  • the laser beam LB may be scanned so as to draw other shapes.
  • the loci of various shapes of the laser beam LB scanned on the surface of the work 600 may be referred to as a first locus.
  • the laser processing apparatus includes a laser oscillator 100 that generates a laser beam LB, an optical fiber 300 that transmits the laser beam LB generated by the laser oscillator 100, and an emission end of the optical fiber 300.
  • a laser light emitting head 400 that irradiates the work 600 with the laser light LB incident from the optical fiber 300 and a laser light emitting head 400 are attached to move the laser light emitting head 400 in a predetermined trajectory. It includes at least a manipulator 500 and a controller 200 that controls the laser beam emitting head 400 so that the laser beam LB is scanned two-dimensionally or three-dimensionally on the surface of the work 600.
  • the controller 200 controls the laser light emitting head 400 so as to change the focal position of the laser light LB irradiated on the work 600 according to the shape of the welded portion on the work 600.
  • the laser light emitting head 400 has an optical scanning mechanism 424 for scanning the laser light LB and a focal position adjusting mechanism 407 for changing the focal position of the laser light LB, and the controller 200 uses light.
  • the operation of the scanning mechanism 424 and the operation of the focus position adjusting mechanism 407 are controlled respectively.
  • the penetration shape of the work 600 and the cross-sectional shape of the molten region 820 are controlled according to the shape of the welded portion in the work 600, and the joint strength of the work 600 is increased. be able to.
  • the optical scanning mechanism 424 shifts the optical axis of the laser beam LB from the first optical axis to the second optical axis with the first parallel plate 414 and the first parallel plate 414 centered on the first rotation axis.
  • a first servomotor 411 (first drive unit) to rotate, a second parallel plate 416 that shifts the optical axis of the laser beam LB shifted to the second optical axis to the third optical axis, and a second It has a second servomotor 418 (second drive unit) that rotates the two parallel plates 416 around the second rotation axis, and has a direction of the first rotation axis and a direction of the second rotation axis.
  • the controller 200 controls the first servomotor 411 (first drive unit) and the second servomotor 418 (second drive unit) with the first parallel plate 414.
  • the laser beam LB is scanned by rotating the second parallel plate 416 independently or in conjunction with each other.
  • the optical scanning mechanism 424 By configuring the optical scanning mechanism 424 in this way, the surface of the work 600 can be irradiated with the laser beam LB so as to draw various trajectories.
  • a compact and lightweight optical scanning mechanism 424 can be realized as compared with the case of using a galvanometer as disclosed in Patent Document 3.
  • the controller 200 changes the focal position of the laser beam LB in a range from the surface of the work 600 to a predetermined position inside the work 600, specifically, a predetermined position inside the keyhole 810 formed in the work 600.
  • the focal position adjusting mechanism 407 provided in the laser beam emitting head 400 is controlled so as to cause the laser beam to be emitted.
  • the laser welding apparatus 1000 further includes a storage unit 210 that stores data in which the focal position of the laser beam LB and the penetration depth of the work 600 are associated with the material of the work 600, and the controller 200 further includes the data and the work 600.
  • the laser beam emitting head 400 is controlled so as to change the focal position of the laser beam LB irradiated on the work 600 according to the shape of the welded portion in the above.
  • the laser welding apparatus 1000 By configuring the laser welding apparatus 1000 in this way, laser welding can be appropriately performed according to the material of the work 600 and the shape of the welded portion, the joining strength of the work 600 can be increased, and the welding quality can be improved.
  • the work 600 is a first plate material 710 and a second plate material 720 that are superposed on each other, and the controller 200 controls the laser light emitting head 400 so that the laser light LB draws the above-mentioned first trajectory on the surface of the work 600.
  • the laser light emitting head 400 is controlled so that the focal position of the laser light LB becomes deeper inside the work 600 at the peripheral edge than the center of the first locus.
  • the laser beam LB can be irradiated according to the size of the welded portion, and the bonding strength between the first plate material 710 and the second plate material 720 can be increased.
  • controller 200 moves the manipulator 500 to which the laser light emitting head 400 is attached along a predetermined direction while scanning the laser light LB so as to draw a first locus.
  • a continuous weld bead can be formed on the work 600. Further, the penetration shape of the work 600 can be controlled to increase the joint strength of the work 600.
  • the laser welding method according to the present embodiment is a laser welding method using the laser welding apparatus 1000, and irradiates the work 600 while scanning the laser beam LB two-dimensionally or three-dimensionally. It is provided with at least a laser welding step for welding the work 600.
  • the focal position of the laser beam LB is changed according to the shape of the welded portion on the work 600, and the molten pool 800 and the keyhole 810 are formed on the work 600. Further, the focal position of the laser beam LB is changed in a range from the surface of the work 600 to a predetermined position inside the keyhole 810.
  • FIG. 7A shows a perspective view of the work according to the present embodiment. That is, it is a T-shaped joint.
  • FIG. 7B is a schematic view showing the relationship between the locus of the laser beam applied to the work and the depth of the molten region of the work and the focal position of the laser light
  • the upper side of FIG. 7B is a view of the work 600 viewed from the surface.
  • the lower side of FIG. 7B shows the cross section of the work 600, respectively.
  • FIGS. 7A and 7B the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the work 600 has a joint shape in which the first plate material 710 and the second plate material 720 are joined in a T shape.
  • the first plate material 710 and the second plate material 720 are both steel plates. It may be a steel plate or a steel plate having a different material or composition. Further, the first plate material 710 and the second plate material 720 may have the same thickness or different thicknesses from each other.
  • the controller 200 controls the laser beam emitting head 400 and scans the laser beam LB so as to draw a spiral locus TR1. The surface of the joint portion of the work 600 is irradiated with the laser beam LB.
  • the work 600 is irradiated with the laser beam LB so that the focal position is deeper inside the work 600 at the center than the peripheral edge of the spiral locus TR1.
  • the focal position of the laser beam LB is changed according to the shape of the joint portion, and the laser beam LB is applied so that the focal position becomes deeper inside the work 600 at the center than the end portion of the joint portion. It is irradiating toward the work 600.
  • the bonding strength of the work 600 is ensured by making the focal position of the laser beam LB deep inside the work 600 at the center rather than the peripheral edge of the spiral locus TR1. It is possible to prevent the surface shape of the lower plate material from being affected.
  • the manipulator 500 to which the laser beam emitting head 400 is attached is placed along the longitudinal direction of the joint portion. By moving it, a continuous weld bead may be formed over the entire joint portion. In this case as well, as shown in the first embodiment, the joint strength is increased and the weld bead having a good appearance can be formed. In addition, it does not affect the surface shape of the material below.
  • FIG. 8 is a schematic view showing the relationship between the locus of the laser beam applied to the work according to the present embodiment, the depth of the molten region of the work, and the focal position of the laser light.
  • the upper side of FIG. 8 shows a view of the work 600 as viewed from the surface, and the lower side of FIG. 8 shows a cross section of the work 600.
  • the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the work 600 has a butt portion in which the end face of the third plate member 730 and the end face of the fourth plate member 740 are butted against each other.
  • the surface irradiated with the laser beam LB may be referred to as a surface.
  • the third plate material 730 and the fourth plate material 740 are both steel plates. It may be a steel plate or a steel plate having a different material or composition.
  • the thickness of the fourth plate material 740 is thicker than the thickness of the third plate material 730. Further, in the abutting portion, the surface of the third plate material 730 and the surface of the fourth plate material 740 are substantially flush with each other.
  • the controller 200 controls the laser beam emitting head 400 and scans the laser beam LB so as to draw a spiral locus TR1.
  • the surface of the abutting portion of the work 600 is irradiated with the laser beam LB.
  • the controller 200 sets the laser beam emitting head 400 so that the focal position becomes deeper inside the work 600. To control.
  • the cross section of the molten region 820 of the work 600 does not cause melt-down or insufficient penetration depth.
  • the shape can be controlled and the joint strength of the work 600 can be increased.
  • FIG. 9 is a schematic view showing the relationship between the locus of the laser beam applied to the work according to the present embodiment, the depth of the molten region of the work, and the focal position of the laser light.
  • the upper side of FIG. 9 shows a view of the work 600 as viewed from the surface, and the lower side of FIG. 9 shows a cross section of the work 600.
  • the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the work 600 has a butt portion in which the end face of the fifth plate member 750 and the end face of the sixth plate member 760 are butted against each other.
  • the surface irradiated with the laser beam LB may be referred to as a surface.
  • the fifth plate material 750 and the sixth plate material 760 are both steel plates. It may be a steel plate or a steel plate having a different material or composition.
  • the thickness of the sixth plate material 760 is thicker than the thickness of the fifth plate material 750. Further, the surface of the sixth plate material 760 is located closer to the laser light emitting head 400 than the surface of the fifth plate material 750.
  • the controller 200 controls the laser beam emitting head 400 and scans the laser beam LB so as to draw a spiral locus TR1.
  • the surface of the abutting portion of the work 600 is irradiated with the laser beam LB.
  • the controller 200 uses the laser beam so that the focal position of the laser beam LB is near the surface of the fifth plate member 750 until the spiral locus TR1 advances from the peripheral edge on the fifth plate member 750 side to the seam of the abutting portion. Controls the exit head 400.
  • the controller 200 controls the laser beam emitting head 400 so that the focal position becomes shallow inside the work 600 as the spiral locus TR1 advances from the seam of the abutting portion to the peripheral edge on the sixth plate material 760 side.
  • the cross section of the molten region 820 of the work 600 is not caused to melt down or lack of the penetration depth.
  • the shape can be controlled and the joint strength of the work 600 can be increased.
  • FIG. 10 is a schematic view showing the relationship between the locus of the laser beam applied to the work according to the present embodiment, the depth of the molten region of the work, and the focal position of the laser light.
  • the upper side of FIG. 10 shows a view of the work 600 as viewed from the surface, and the lower side of FIG. 10 shows a cross section of the work 600.
  • the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the work 600 has a superposed portion in which the seventh plate material 770 is superposed on a part of the eighth plate material 780.
  • the seventh plate material 770 and the eighth plate material 780 are both steel plates. It may be a steel plate or a steel plate having a different material or composition.
  • the thickness of the eighth plate material 780 is drawn so as to be thicker than the thickness of the seventh plate material 770, but the reverse is also possible.
  • the controller 200 controls the laser beam emitting head 400 and scans the laser beam LB so as to draw a spiral locus TR1.
  • the laser beam LB is irradiated to a predetermined region of the overlapped portion of the work 600 and the eighth plate member 780 adjacent to the overlapped portion.
  • the controller 200 is set so that the focal position of the laser beam LB is near the surface of the eighth plate material 780 until the spiral locus TR1 advances from the peripheral edge on the eighth plate material 780 side to the end of the overlapped portion.
  • the laser light emitting head 400 is controlled.
  • the controller 200 controls the laser beam emitting head 400 so that the focal position becomes shallow inside the work 600. ..
  • the work 600 is melted without causing melt-through or an extreme shortage of the penetration depth at the overlapped portion.
  • the cross-sectional shape of the region 820 can be controlled, and the joint strength of the work 600 can be increased.
  • the controller 200 controls the operation of the laser light emitting head 400, specifically, the focus position adjusting mechanism 407 in order to change the focal position of the laser light LB.
  • the method of changing the focal position of the laser beam LB is not particularly limited to this.
  • the controller 200 may drive the manipulator 500 to displace the entire laser light emitting head 400 along the Z direction to change the focal position of the laser light LB irradiated on the work 600. .. In this case, it is also possible to omit the actuator provided in the laser light emitting head 400.
  • the laser beam LB can be scanned so as to draw the various loci (first locus) described above, not limited to the spiral locus TR1.
  • the material of the work 600 may be a material other than a steel plate, for example, a structural material such as an aluminum alloy or a titanium alloy, or an electric material such as copper or an alloy thereof. Further, the work 600 may have a structure in which plates made of different materials are overlapped with each other.
  • the wavelength and output of the laser beam LB are appropriately selected according to the material of the work 600, and from the data shown in FIG. 4, the control range of the focal position of the laser beam LB is determined according to the shape of the welded portion of the work 600. Is determined as appropriate.
  • the laser welding program may describe a procedure and a control range for changing the focal position of the laser beam LB in association with the material of the work 600 and the shape of the welded portion of the work 600. In that case, it is not necessary to separately store the data shown in FIG. 5 in the storage unit 210.
  • the mechanism for scanning the laser beam LB is not particularly limited to the configuration shown in FIG. 2, and other configurations may be used.
  • a conventional 3-axis galvanized scanner may be used to scan the laser beam LB.
  • the laser welding apparatus of the present disclosure can control the penetration shape according to the shape of the welded portion of the work, it is useful for processing a work having various materials or shapes.

Abstract

レーザ溶接装置(1000)は、レーザ発振器(100)と、レーザ発振器(100)で発生したレーザ光(LB)を伝送する光ファイバ(300)と、光ファイバ(300)の出射端に取付けられ、レーザ光(LB)をワーク(600)に向けて照射するレーザ光出射ヘッド(400)と、レーザ光出射ヘッド(400)が取り付けられたマニピュレータ(500)と、レーザ光(LB)がワーク(600)の表面で三次元的に走査されるようにレーザ光出射ヘッド(400)を制御するコントローラ(200)と、を備えている。コントローラ(200)は、ワーク(600)の溶接部位の形状に応じて、レーザ光(LB)の焦点位置を変化させるようにレーザ光出射ヘッド(400)を制御する。

Description

レーザ溶接装置及びそれを用いたレーザ溶接方法
 本開示はレーザ溶接装置及びそれを用いたレーザ溶接方法に関する。
 近年、ロボットに取り付けられたスキャナを介してレーザ光をワークに向けて照射することで高速に溶接を行うリモート溶接が広く行われている(例えば、特許文献1参照)。このスキャナには長焦点の集光レンズが搭載されている。
 このようなスキャナを利用したリモート溶接では、レーザ光をワークの表面において三次元的に走査できるため、複雑な形状を有するワークの溶接を行うことができる(例えば、特許文献2,3参照)。また、レーザ光を三次元的に走査するだけでなく、レーザ光の焦点位置を周期的に制御する構成も提案されている(例えば、特許文献3参照)。
特開2006-187803号公報 特開2011-173146号公報 米国特許出願公開第2018/009060号明細書
 ところで、レーザ光を三次元的に走査しながらワークの所定の領域をレーザ溶接する場合、レーザ光の焦点位置をワークの表面のみで補正する従来の方法では、溶接部の接合強度を確保する上で不足する場合がある。特に、ワークの溶接部位の形状が複雑であるとその傾向が顕著である。このようなことが起こると、溶接部位において所望の溶け込み形状が得られない部分を生じてしまい、接合強度を確保できないおそれがあった。また、溶接部位の外観がスパッタなどの発生によって損なわれ、溶接品質が低下するおそれがあった。
 しかし、特許文献1~3に開示された従来の構成は、溶接部位の形状に応じたレーザ光の焦点位置制御について、何ら具体的に示していない。
 本開示はかかる点に鑑みてなされたもので、その目的は、ワークの溶接部位の形状に応じて、溶け込み形状を制御可能なレーザ溶接装置及びそれを用いたレーザ溶接方法を提供することにある。
 上記の目的を達成するため、本開示に係るレーザ溶接装置は、レーザ光を発生させるレーザ発振器と、前記レーザ発振器で発生した前記レーザ光を伝送する光ファイバと、前記光ファイバの出射端に取付けられ、前記光ファイバから入射された前記レーザ光をワークに向けて照射するレーザ光出射ヘッドと、前記レーザ光出射ヘッドが取り付けられ、前記レーザ光出射ヘッドを所定の軌跡で移動させるマニピュレータと、前記レーザ光が前記ワークの表面で二次元的に、または三次元的に走査されるように前記レーザ光出射ヘッドを制御するコントローラと、を少なくとも備え、前記コントローラは、前記ワークにおける溶接部位の形状に応じて、前記ワークに照射される前記レーザ光の焦点位置を変化させるように前記レーザ光出射ヘッドまたは前記マニピュレータを制御することを特徴とする。
 この構成によれば、ワークにおける溶接部位の形状に応じて、ワークの溶け込み形状を制御できる。また、ワークの接合強度を高めることができる。
 本開示に係るレーザ溶接方法は、前記レーザ溶接装置を用いたレーザ溶接方法であって、前記レーザ光を二次元的に、または三次元的に走査しながら前記ワークに向けて照射して、前記ワークを溶接するレーザ溶接ステップを少なくとも備え、前記レーザ溶接ステップでは、前記ワークにおける溶接部位の形状に応じて前記レーザ光の焦点位置を変化させるとともに、前記ワークに溶融池及びキーホールを形成することを特徴とする。
 この方法によれば、ワークにおける溶接部位の形状に応じて、ワークの溶け込み深さを制御できる。また、ワークの接合強度を高めることができる。
 本開示のレーザ溶接装置及びレーザ溶接方法によれば、ワークにおける溶接部位の形状に応じて、ワークの溶け込み形状や溶け込み深さを制御できる。また、ワークの接合強度を高めることができる。
本開示の実施形態1に係るレーザ溶接装置の構成を示す模式図である。 レーザ光出射ヘッドの構成を示す断面模式図である。 ワークに形成された溶融池及びキーホールとレーザ光の焦点位置との関係を示す模式図である。 ワークに形成された溶融池及びキーホールとレーザ光の焦点位置との関係を示す模式図である。 レーザ光の焦点位置に対するワークの溶け込み深さとの関係とが関連付けられたテーブルである。 ワークに照射されるレーザ光の軌跡及びワークの溶融領域の深さとレーザ光の焦点位置との関係を示す模式図である。 ワークに照射されるレーザ光の軌跡及びワークの溶融領域の深さとレーザ光の焦点位置との関係を示す別の模式図である。 本開示の実施形態2に係るワークの斜視図である。 本開示の実施形態2に係るワークに照射されるレーザ光の軌跡及びワークの溶融領域の深さとレーザ光の焦点位置との関係を示す模式図である。 本開示の実施形態3に係るワークに照射されるレーザ光の軌跡及びワークの溶融領域の深さとレーザ光の焦点位置との関係を示す模式図である。 本開示の実施形態4に係るワークに照射されるレーザ光の軌跡及びワークの溶融領域の深さとレーザ光の焦点位置との関係を示す模式図である。 本開示の実施形態5に係るワークに照射されるレーザ光の軌跡及びワークの溶融領域の深さとレーザ光の焦点位置との関係を示す模式図である。
 以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものでは全くない。
 (実施形態1)
 [レーザ溶接装置の構成]
 図1は、本実施形態に係るレーザ溶接装置の構成の模式図を示し、レーザ溶接装置1000は、レーザ発振器100とコントローラ200と光ファイバ300とレーザ光出射ヘッド400とマニピュレータ500とを備えている。
 レーザ発振器100は、図示しない電源から電力が供給されてレーザ光LBを発生させるレーザ光源である。なお、レーザ発振器100は、単一のレーザ光源で構成されていてもよいし、複数のレーザモジュールで構成されていてもよい。後者の場合は、複数のレーザモジュールからそれぞれ出射されたレーザ光を結合してレーザ光LBとして出射する。また、レーザ発振器100で使用されるレーザ光源あるいはレーザモジュールは、被溶接物であるワーク600の材質や溶接部位の形状等に応じて、適宜選択される。
 例えば、ファイバレーザかディスクレーザ、あるいやYAG(Yttrium Aluminum Garnet)レーザをレーザ光源とすることもできる。この場合、レーザ光LBの波長は、1000nm~1100nmの範囲に設定される。また、半導体レーザをレーザ光源あるいはレーザモジュールとしてもよい。この場合、レーザ光LBの波長は、800nm~1000nmの範囲に設定される。また、可視光レーザをレーザ光源あるいはレーザモジュールとしてもよい。この場合、レーザ光LBの波長は、400nm~800nmの範囲に設定される。
 光ファイバ300は、レーザ発振器100に光学的に結合されており、軸心に図示しないコアを有し、コアの外周面に接してコアと同軸に図示しない第1クラッドが設けられている。コアと第1クラッドはそれぞれ石英を主成分とし、コアの屈折率が第1クラッドの屈折率よりも高くなっている。このため、レーザ発振器100で発生したレーザ光LBは、光ファイバ300の入射端に入射されて、コアの内部を出射端に向けて伝送される。また、第1クラッドの外周面には光ファイバ300を機械的に保護する皮膜または樹脂系の保護層(いずれも図示せず)が設けられている。
 レーザ光出射ヘッド400は、光ファイバ300の出射端に取付けられており、光ファイバ300で伝送されたレーザ光LBをワーク600に向けて照射し、ワーク600がレーザ溶接される。
 また、レーザ光出射ヘッド400は、レーザ光LBを二次元的に、または三次元的に走査してワーク600に向けて照射するように構成されており、レーザ光LBを走査する光走査機構424(図2参照)を有している。また、レーザ光出射ヘッド400は、ワーク600に向けて照射されるレーザ光LBの焦点位置を変化させるための焦点位置調整機構407(図2参照)を有している。レーザ光出射ヘッド400や光走査機構424や焦点位置調整機構407の構造の詳細や機能については後で述べる。
 コントローラ200は、レーザ発振器100のレーザ発振を制御する。具体的には、レーザ発振器100に接続された図示しない電源に対して出力電流やオンオフ時間等の制御信号を供給することにより、レーザ発振制御を行う。
 また、コントローラ200は、選択されたレーザ溶接プログラムの内容に応じて、レーザ光出射ヘッド400に設けられた光走査機構424及び焦点位置調整機構407の駆動制御を行う。さらに、コントローラ200は、マニピュレータ500の動作を制御する。
 なお、レーザ溶接プログラムは、記憶部210に保存されている。記憶部210は、図1に示すように、コントローラ200の内部に設けられていてもよいし、コントローラ200の外部に設けられ、コントローラ200とデータのやり取りを可能に構成されていてもよい。また、記憶部210は、レーザ光LBの焦点位置とワーク600の溶け込み深さとがワーク600の材質に関連付けられたデータを保存している(図4参照)。
 マニピュレータ500はコントローラ200に接続され、前述のレーザ溶接プログラムに応じて所定の軌跡を描くようにレーザ光出射ヘッド400を移動させる。なお、マニピュレータ500の動作を制御するコントローラ200を別に設けるようにしてもよい。
 なお、以降の説明において、レーザ光出射ヘッド400から出射されるレーザ光LBの光軸と平行な方向をZ方向と、これと直交する方向をX方向と、X方向及びZ方向とそれぞれ直交する方向をY方向とそれぞれ呼ぶことがある。X方向とY方向とを面内に含むXY平面は、ワーク600の表面が平坦面である場合、当該表面と略平行でもよく、一定の角度を有してもよい。
 なお、本願明細書において、「略平行」とは、各部材の加工公差や各部品の組立公差を含んで平行であるという意味であり、2つの面あるいは部材が厳密に平行な位置にあることまでを要求するものではない。同様に、「略直交」とは、各部材の加工公差や各部品の組立公差を含んで直交しているという意味であり、厳密に直交していることまでを要求するものではない。また、「略同じ」または「略同一」とは、各部品の製造公差や組立公差を含んで同じまたは同一という意味であり、厳密に比較対象となる両者が同じまたは同一であることまでを要求するものではない。また、「略同じ」または「略同一」とは、制御系の誤差を含んで制御対象の制御結果が同じまたは同一という意味にも用いられる。
 [レーザ光出射ヘッドの構成]
 図2は、本実施形態に係るレーザ光出射ヘッドの構成を示し、レーザ光出射ヘッド400は、コネクタ401と、レンズボディ402と、ボディケース408(第1のケース)と、シールドホルダ410と、ノズルユニット425(第2のケース)と、第1のサーボモータ411及び第2のサーボモータ418とを有している。なお、シールドホルダ410は、ノズルユニット425に対して着脱可能であるが、その他の構成については、複数が一体化されていても構わない。
 レーザ光出射ヘッド400は、コネクタ401を介して光ファイバ300と接続されている。レーザ光LBは、光ファイバ300の出射端(図2に示す点Aに相当)から一定の角度で広がりながら、レーザ光出射ヘッド400内に出射される。レンズボディ402は、コリメートレンズ404と集光レンズ405とが収容されたレンズホルダ403を保持している。コリメートレンズ404は、光ファイバ300の出射端から出射されたレーザ光LBを平行化する。そして、コリメートレンズ404によって平行化されたレーザ光LBは、集光レンズ405によってワーク600の表面または内部で焦点を結ぶように集光される。レンズボディ402やレンズホルダ403は、光ファイバ300の出射端とコリメートレンズ404との光学的な位置関係を決定している。
 コリメートレンズ404は、図示しないアクチュエータに連結されたスライダ406に保持されてレンズホルダ403に収容されている。アクチュエータは、図示では詳細の取付けと接続を省略するが、コントローラ200からの制御信号に応じて、スライダ406に保持されたコリメートレンズ404をレーザ光出射ヘッド400から出射されるレーザ光LBの光軸の方向、つまり、Z方向に移動させる。このことにより、ワーク600に照射されるレーザ光LBの焦点位置が変化する。なお、本願明細書において、コリメートレンズ404とスライダ406とアクチュエータ(図示せず)とを焦点位置調整機構407と呼ぶことがある。アクチュエータは、サーボモータでもよいし、他の種類のアクチュエータでもよい。応答性が高く、軽量かつ小型であるのが好ましい。
 ボディケース408には、第1の回転機構420と、第1の平行板414と、第1のホルダ415とが設けられ、これらにより第1の光学ユニット422が構成される。第1の回転機構420は、第1のサーボモータ411(第1の駆動部)と、第1のタイミングベルト412(第1の伝達部材)と、第1のタイミングベルトプーリー413(第1の回転部材)と、で構成される。第1の平行板414は、両端がベアリングで保持された円筒状の第1のホルダ415内に固定されている。第1のホルダ415の外周面には第1のタイミングベルトプーリー413が設けられ、第1のホルダ415は第1のタイミングベルト412を介して第1のサーボモータ411によって回転される。具体的には、第1のホルダ415は、第1の回転軸を中心に回転され、第1の回転軸の方向は、レーザ光出射ヘッド400から出射されるレーザ光LBの光軸の方向、つまり、Z方向と同じである。
 さらに、ボディケース408には、第2の回転機構421と、第2の平行板416と、第2のホルダ409とが設けられ、これらにより第2の光学ユニット423が構成される。第2の回転機構421は、第2のサーボモータ418(第2の駆動部)と、第2のタイミングベルト419(第2の伝達部材)と、第2のタイミングベルトプーリー417(第2の回転部材)と、で構成される。第2の平行板416は、両端がベアリングで保持された円筒状の第2のホルダ409内に固定されている。第2のホルダ409の外周面には第2のタイミングベルトプーリー417が設けられ、第2のホルダ409は第2のタイミングベルト419を介して第2のサーボモータ418によって回転される。具体的には、第2のホルダ409は、第2の回転軸を中心に回転され、第2の回転軸の方向は、Z方向と同じ方向である。なお、本願明細書において、第1の光学ユニット422と第2の光学ユニット423とを総称して光走査機構424と呼ぶことがある。
 そして、第1の光学ユニット422と第2の光学ユニット423とは、第1の回転軸の方向と第2の回転軸の方向とが同じであり、かつ、ボディケース408内において、対称に配置されている。すなわち、第1の回転軸および第2の回転軸に鉛直な面に対して対称に配置されている。図2では、第1の光学ユニット422と第2の光学ユニット423とは、上下に対称に配置されている。このように配置すると、第1のサーボモータ411と第2のサーボモータ418とが同じ方向に回転した場合、第1の平行板414の回転方向と第2の平行板416の回転方向とは逆になる。また、第1の平行板414を駆動する第1のサーボモータ411の回転方向を逆転させることにより、第1の平行板414の回転方向と第2の平行板416の回転方向とを同じ方向に回転させることも可能である。
 なお、レーザ光出射ヘッド400の小型化と、レーザ光出射ヘッド400のレーザ照射範囲を広くする点から、第1の光学ユニット422と第2の光学ユニット423とは、第1の回転軸と第2の回転軸とが一致するように配置することが望ましい。また、第1の回転軸および第2の回転軸の方向は、光ファイバ300から入射された時のレーザ光LBの光軸の方向と同じであることが好ましい。さらには、第1の回転軸および第2の回転軸は、光ファイバ300から入射された時のレーザ光LBの光軸と一致することがさらに好ましい。
 また、コリメートレンズ404と集光レンズ405とを通過したレーザ光LBは、第1の平行板414を透過する際に2度(第1の平行板414への入射時と第1の平行板414からの出射時)屈折する。これにより、第1の平行板414の板厚と、第1の回転軸に対する第1の平行板414の取り付け角度である第1の平行板414の傾斜角度と、第1の平行板414の屈折率によって定まる量だけ、レーザ光LBは平行にシフトする。すなわち、第1の平行板414に入射するレーザ光LBの光軸(第1の光軸)と、第1の平行板414を出射したレーザ光LBの光軸(第2の光軸)とは、方向が同じであり、位置がずれている。これは、同様の構成である第2の平行板416においても同様である。すなわち、第2の平行板416に入射するレーザ光LBの光軸(第2の光軸)と、第2の平行板416を出射したレーザ光LBの光軸(第3の光軸)とは、方向が同じであり、位置がずれている。本実施形態の第1の平行板414と第2の平行板416は、合成石英製であって、第1の回転軸(第2の回転軸)に対する傾斜角45°、屈折率は1.44963である。第1の平行平板414と第2の平行平板416の板厚tが決まると、レーザ光LBのシフト量が計算できる。例えば、t=13mmの場合、第1の平行板414を透過したレーザ光LBの光軸(第2の光軸)は、4.1mmだけシフトする。その後、レーザ光LBが第2の平行板416を透過する際にも同様に、レーザ光LBの光軸(第3の光軸)は4.1mmだけシフトする。従って、本実施形態におけるレーザ光LBの動作範囲は、半径が8.2mmの円内である。
 なお、第1の平行板414及び第2の平行板416の板厚及び屈折率は、レーザ光LBの波長や、必要とされる加工条件等によって適宜変更することができ、その場合は、レーザ光LBの走査範囲も変更されうる。
 本実施形態によれば、レーザ光LBの光軸を、もとの光軸の周りに所定の半径で回転させることができ、ワーク600に対して色々な形状、例えば、円弧状やらせん状や直線状にレーザ光LBを照射することができる。つまり、レーザ光出射ヘッド400は、コントローラ200からの制御信号によって、レーザ光LBをワーク600の表面で二次元的に、または三次元的に走査するように構成されている。
 [レーザ溶接時のレーザ光の焦点位置制御について]
 図3Aおよび図3Bは、ワークに形成された溶融池及びキーホールとレーザ光の焦点位置との関係を示し、図4は、レーザ光の焦点位置に対するワークの溶け込み深さとの関係とが関連付けられたテーブルを示す。なお、図3Aおよび図3Bにおいて、(a)図は、レーザ光LBの焦点がワーク600の表面近傍に位置する場合を、(b)図は、レーザ光LBの焦点がワーク600の内部に位置する場合をそれぞれ示す。
 一般に、金属からなるワーク600をレーザ溶接する際、図3A図に示すように、レーザ光LBが照射された部分が加熱されて溶け込みを生じ、溶融池800が形成される。また、レーザ光LBが照射された部分では溶融池800を構成する材料の激しい蒸発が起こり、その反力で溶融池800の内部にキーホール810が形成される。
 キーホール810が形成されると、レーザ光LBの大部分が、キーホール810の内壁面で複数回反射されながらキーホール810の内部に進入し、溶融池800に吸収される。キーホール810の内壁面で反射を繰り返すことにより、レーザ光LBが溶融池800に吸収される吸収率が向上してワーク600への入熱量が大きくなり、溶け込み深さが深くなる。また、ワーク600の材質または溶接条件によって異なり、量も少ないが、一部は、キーホール810の入口付近のキーホール壁によって反射され、反射されたレーザ光LBがキーホール810の中に入ることなく、その外へ反射されて損失となる。
 また、キーホール810は、溶融池800の表面に形成されたキーホール810の開口811から溶融池800の内部に向けて延びる開放空間であるため、図3B図に示すように、レーザ光LBの焦点位置をワーク600の表面から内部に、具体的には、キーホール810の内部に達するようにすると、キーホール810の内壁面に照射されるレーザ光LBのパワー密度が高くなって溶融池800に吸収される光量が増加し、図3A図に示す場合よりも溶け込み深さを深くすることができる。また、レーザ光LBの焦点位置をキーホール810の内部に達するようにすると、図3B図に示す場合よりもキーホール810の開口811を拡げられるため、キーホール810の内部にレーザ光LBがより到達しやすくなる。なお、レーザ光LBの焦点位置がワーク600の表面から内部にあった場合、キーホール810の開口811付近においてレーザ光LBが収束した形でキーホール810の奥に入るので、キーホール810の入り口付近のキーホール壁によって反射されにくくなり、溶融池800によって吸収される光量が増加することも溶け込み深さの増加につながる。
 図4は、このような関係をさらに詳しく示したものであり、ワーク600の表面を基準として、その上方、つまり、ワーク600の外側にレーザ光LBの焦点位置が移動するにつれて、ワーク600の溶け込み深さは浅くなる。一方、ワーク600の表面を基準として、その下方、つまり、ワーク600の内部の所定位置までレーザ光LBの焦点位置が移動するにつれて、ワーク600の溶け込み深さは深くなる。これは、前述したメカニズムによる。なお、所定位置よりもワーク600の内部深くにレーザ光LBの焦点位置が移動すると、ワーク600の表面でのレーザ光LBのパワー密度が低下し、溶融池800の形成初期におけるワーク600に対する入熱量が減少する。このため、溶け込み深さはかえって浅くなる。
 このように、キーホール810の内部に達するように、レーザ光LBの焦点位置をワーク600の表面から内部の所定位置まで移動させることで、ワーク600の溶け込み深さを深くすることができる。
 また、ワーク600の材質やレーザ光LBの出力によって、図4に示す曲線の形状は変化する。このため、記憶部210には、ワーク600の材質やレーザ光LBの出力、また、レーザ光LBの波長に関連付けられて、レーザ光LBの焦点位置に対するワーク600の溶け込み深さがテーブル形式のデータとして保存されている。なお、図4において、説明をわかりやすくするために、グラフ形式でレーザ光LBの焦点位置に対するワーク600の溶け込み深さの変化を示したが、実際には、図4に示す曲線の各プロットがデータ形式でワーク600の材質等に関連付けられている。
 ワーク600をレーザ溶接するにあたって、ワーク600における溶接部位の形状と図4に示すデータとに基づいて、レーザ光LBの焦点位置を変化させることで、溶接部位の形状に応じて適切にレーザ溶接が行えるとともに、ワーク600の接合強度を高めることができる。
 次に、実際にワーク600をレーザ溶接する場合のレーザ光LBの焦点位置制御に関し、図面を用いて一例を説明する。
 図5は、ワークに照射されるレーザ光の軌跡及びワークの溶融領域の深さとレーザ光の焦点位置との関係を示す模式図であり、図5の上側はワーク600を表面から見た図を、図5の下側はワーク600の断面をそれぞれ示す。図5の下側に示すように、ワーク600は第1の板材710と第2の板材720とが互いに重ね合わされた積層体であり、第1の板材710と第2の板材720は、ともに鋼板である。なお、鋼板でも、異なった材質または組成の鋼板でもよい。
 また、図5の上側に示すように、レーザ光LBは、らせん状の軌跡TR1を描くようにして、ワーク600の表面、この場合は第1の板材710の表面に照射される。このようにすることで、所定の溶接部位に対して満遍なくレーザ光LBを照射できる。図5に示す例は、いわゆるスポット溶接に相当する。
 また、図5の下側に示すように、らせん状の軌跡TR1の中央よりも周縁に近づくにつれて、焦点位置がワーク600の内部で深くなるようにコントローラ200が焦点位置調整機構407を駆動し、レーザ光LBがワーク600に照射される。また、これに応じて、溶融領域820は、その中央よりも周縁に近づくにつれて深くなっており、具体的には、溶融領域820の中央に対して周縁で数%~20%程度深くなっている。なお、溶融領域820は、溶融池800が冷却、固化された部分に対応している。
 ワーク600の表面近傍にレーザ光LBの焦点位置を設定した後、所定の軌跡を描くようにレーザ光LBを走査しながらワーク600の所定の領域をレーザ溶接する場合、走査時に焦点位置がワーク600の表面からずれなくても、軌跡の周縁において溶融池800の熱量がその周辺におけるワーク600へ伝導されるので、溶け込みが浅くなりがちである。このような場合、軌跡の周縁でワーク600が十分に溶融せず、溶融領域820が周縁で浅くなり、第1の板材710と第2の板材720との間の接合強度が所望の基準を満足しなくなるおそれがある。
 また、ワーク600の精度などによってレーザ光LBの焦点位置がワーク600の表面の上側にずれた場合、溶融池800が形成されてからの軌跡の周縁においてレーザ光LBのパワー密度が高いためにスパッタが発生する場合がある。このようなスパッタがワーク600の表面に付着すると、溶接部位の外観を損ね、溶接品質を低下させるおそれがあった。
 一方、本実施形態によれば、前述したようにレーザ光LBの焦点位置を制御することで、ワーク600の溶け込み形状、ひいては、溶融領域820の断面形状を制御できる。図5に示す例では、溶融領域820の周縁を十分に深くでき、第1の板材710と第2の板材720との間の接合強度を高めることができる。また、レーザ光LBの焦点位置をワーク600の表面近傍からキーホール810の内部の所定位置までの範囲で変化させるため、上記したような火花が発生せず、スパッタの発生が抑制される。このことにより、溶接部位の外観を良好なものとし、溶接品質を高められる。
 また、この方法は、スポット溶接に限らず、所定の方向に沿ってワーク600を連続的にレーザ溶接する場合にも適用できる。
 図6は、ワークに照射されるレーザ光の軌跡及びワークの溶融領域の深さとレーザ光の焦点位置との関係を示す別の模式図であり、図6の上側はワーク600を表面から見た図を、図6の下側はワーク600の断面をそれぞれ示す。ワーク600の構造やワーク600の溶融領域820の深さとレーザ光LBの焦点位置との関係は、図5に示す例と同じである。
 図5では、いわゆるスポット溶接を行う場合を示しているのに対し、図6に示す例では、らせん状の軌跡TR1を描くようにレーザ光LBを走査しながら、所定の溶接方向に沿ってワーク600を連続的にレーザ溶接している。このことにより、ワーク600に連続した溶接ビード(図示せず)が形成される。なお、レーザ光出射ヘッド400からレーザ光LBを照射しながら、コントローラ200からの制御信号によってマニピュレータ500の先端を所定の溶接方向に沿って移動させることで、ワーク600に連続した溶接ビードが形成される。
 図6に示す場合も、図5に示すのと同様に、ワーク600の溶融領域820の周縁を十分に深くでき、第1の板材710と第2の板材720との間の接合強度を高めることができる。また、上記したようなスパッタの発生を抑制でき、溶接品質を高められる。
 なお、図5及び図6に示した例では、ワーク600の表面でらせん状の軌跡TR1を描くようにレーザ光LBを走査したが、特にこれに限定されず、前述したように、円弧状あるいはその他の形状を描くようにレーザ光LBを走査してもよい。走査された軌跡の中央よりも周縁において、焦点位置がワーク600の内部で深くなるようにレーザ光LBをワーク600に照射することで、第1の板材710と第2の板材720との間の接合強度を高めることができる。なお、以降の説明において、ワーク600の表面に走査されるレーザ光LBの種々の形状の軌跡を第1軌跡と呼ぶことがある。
 [効果等]
 以上説明したように、本実施形態に係るレーザ加工装置は、レーザ光LBを発生させるレーザ発振器100と、レーザ発振器100で発生したレーザ光LBを伝送する光ファイバ300と、光ファイバ300の出射端に取付けられ、光ファイバ300から入射されたレーザ光LBをワーク600に向けて照射するレーザ光出射ヘッド400と、レーザ光出射ヘッド400が取り付けられ、レーザ光出射ヘッド400を所定の軌跡で移動させるマニピュレータ500と、レーザ光LBがワーク600の表面で二次元的に、または三次元的に走査されるようにレーザ光出射ヘッド400を制御するコントローラ200と、を少なくとも備えている。
 コントローラ200は、ワーク600における溶接部位の形状に応じて、ワーク600に照射されるレーザ光LBの焦点位置を変化させるようにレーザ光出射ヘッド400を制御する。
 また、レーザ光出射ヘッド400は、レーザ光LBを走査するための光走査機構424とレーザ光LBの焦点位置を変化させるための焦点位置調整機構407とを有しており、コントローラ200は、光走査機構424の動作と焦点位置調整機構407の動作とをそれぞれ制御している。
 レーザ溶接装置1000をこのように構成することで、ワーク600における溶接部位の形状に応じて、ワーク600の溶け込み形状、ひいては、溶融領域820の断面形状を制御して、ワーク600の接合強度を高めることができる。
 光走査機構424は、レーザ光LBの光軸を第1の光軸から第2の光軸にシフトする第1の平行板414と、第1の平行板414を第1の回転軸を中心に回転させる第1のサーボモータ411(第1の駆動部)と、第2の光軸にシフトされたレーザ光LBの光軸を第3の光軸にシフトする第2の平行板416と、第2の平行板416を第2の回転軸を中心に回転させる第2のサーボモータ418(第2の駆動部)と、を有し、第1の回転軸の方向と第2の回転軸の方向とは同一であり、コントローラ200は、第1のサーボモータ411(第1の駆動部)と第2のサーボモータ418(第2の駆動部)とを制御して、第1の平行板414と第2の平行板416とをそれぞれ独立に、または連動して回転させることでレーザ光LBを走査している。
 光走査機構424をこのように構成することで、種々の軌跡を描くようにレーザ光LBをワーク600の表面に照射させることができる。また、特許文献3に開示されるようなガルバノメーターを用いる場合に比べて、小型かつ軽量の光走査機構424を実現できる。
 また、コントローラ200は、レーザ光LBの焦点位置をワーク600の表面からワーク600の内部の所定位置、具体的には、ワーク600に形成されたキーホール810の内部の所定位置までの範囲で変化させるようにレーザ光出射ヘッド400に設けられた焦点位置調整機構407を制御する。
 このようにすることで、レーザ溶接中におけるスパッタの発生が抑制される。このことにより、溶接部位の外観を良好なものとし、溶接品質を高められる。
 レーザ溶接装置1000は、レーザ光LBの焦点位置とワーク600の溶け込み深さとがワーク600の材質に関連付けられたデータを保存する記憶部210をさらに備えており、コントローラ200は、当該データとワーク600における溶接部位の形状とに応じて、ワーク600に照射されるレーザ光LBの焦点位置を変化させるようにレーザ光出射ヘッド400を制御する。
 レーザ溶接装置1000をこのように構成することで、ワーク600の材質や溶接部位の形状に応じて適切にレーザ溶接が行えるとともに、ワーク600の接合強度を高めることができ、溶接品質を向上できる。
 ワーク600は互いに重ね合わされた第1の板材710及び第2の板材720であり、コントローラ200は、レーザ光LBがワーク600の表面で前述の第1軌跡を描くようにレーザ光出射ヘッド400を制御するとともに、第1軌跡の中央よりも周縁において、レーザ光LBの焦点位置がワーク600の内部で深くなるようにレーザ光出射ヘッド400を制御する。
 このようにすることで、溶接部位のサイズに合わせてレーザ光LBを照射できるとともに、第1の板材710と第2の板材720との間の接合強度を高めることができる。
 また、コントローラ200は、第1軌跡を描くようにレーザ光LBを走査しながら、レーザ光出射ヘッド400が取り付けられたマニピュレータ500を所定の方向に沿って移動させる。
 このようにすることで、ワーク600に連続した溶接ビードを形成できる。また、ワーク600の溶け込み形状を制御して、ワーク600の接合強度を高めることができる。
 また、本実施形態に係るレーザ溶接方法は、レーザ溶接装置1000を用いたレーザ溶接方法であって、レーザ光LBを二次元的に、または三次元的に走査しながらワーク600に向けて照射して、ワーク600を溶接するレーザ溶接ステップを少なくとも備えている。
 レーザ溶接ステップでは、ワーク600における溶接部位の形状に応じてレーザ光LBの焦点位置を変化させるとともに、ワーク600に溶融池800及びキーホール810を形成する。また、レーザ光LBの焦点位置をワーク600の表面からキーホール810の内部の所定位置までの範囲で変化させる。
 このようにすることで、ワーク600における溶接部位の形状に応じて、ワーク600の溶け込み深さを制御して、ワーク600の接合強度を高めることができる。
 なお、本実施形態において、2枚の板材710,720が互いに重ね合わせられた積層体のワーク600をレーザ溶接する例を示したが、重ね合わされる板材の枚数は特にこれに限定されず、3枚以上であってもよい。
 (実施形態2)
 実施形態1に示したレーザ溶接装置1000を用いて、種々の構造を有するワーク600に対してレーザ溶接を行うことで、溶接部位におけるワーク600の接合強度を高めることができる。
 図7Aは、本実施形態に係るワークの斜視図を示す。すなわち、T型継手である。図7Bは、ワークに照射されるレーザ光の軌跡及びワークの溶融領域の深さとレーザ光の焦点位置との関係を示す模式図であり、図7Bの上側はワーク600を表面から見た図を、図7Bの下側はワーク600の断面をそれぞれ示す。なお、図7A,7Bにおいて、実施形態1と同様の箇所については同一の符号を付して詳細な説明を省略する。
 本実施形態において、図7Aに示すように、ワーク600は、第1の板材710と第2の板材720とがT字形状に継ぎ合わされた継手形状をしている。なお、実施形態1と同様に、第1の板材710及び第2の板材720は、ともに鋼板である。なお、鋼板でも、異なった材質または組成の鋼板でもよい。また、第1の板材710と第2の板材720とは互いに厚さが同じであってもよいし、異なっていてもよい。このような構造のワーク600をレーザ溶接するにあたって、図7Bに示すように、コントローラ200がレーザ光出射ヘッド400を制御して、らせん状の軌跡TR1を描くようにレーザ光LBを走査しながら、ワーク600の継手部分の表面にレーザ光LBを照射する。
 この場合、実施形態1とは異なり、らせん状の軌跡TR1の周縁よりも中央において、焦点位置がワーク600の内部で深くなるようにレーザ光LBをワーク600に照射する。具体的には、継手部分の形状に応じてレーザ光LBの焦点位置を変化させており、継手部分の端部よりも中央において、焦点位置がワーク600の内部で深くなるようにレーザ光LBをワーク600に向けて照射している。
 T型継手では、下の板材、この場合は第2の板材720の接合部付近において、できるだけその表面形状に影響を与えないよう溶接することが求められる場合がある。そのため、図7Bにおいては、らせん状の軌跡TR1の周縁よりもむしろ中央で、レーザ光LBの焦点位置がワーク600の内部で深くなるようにすることで、ワーク600の接合強度を確保すると共に、下の板材の表面形状に影響を与えないようにすることができる。
 なお、図示しないが、図6に示すように、らせん状の軌跡TR1を描くようにレーザ光LBを走査しながら、レーザ光出射ヘッド400が取り付けられたマニピュレータ500を継手部分の長手方向に沿って移動させることで、継手部分全体に連続した溶接ビードを形成するようにしてもよい。この場合も、実施形態1に示すのと同様に、接合強度が高められ、外観が良好な溶接ビードを形成できる。また、下の材料の表面形状に影響を与えることがない。
 (実施形態3)
 図8は、本実施形態に係るワークに照射されるレーザ光の軌跡及びワークの溶融領域の深さとレーザ光の焦点位置との関係を示す模式図である。図8の上側はワーク600を表面から見た図を、図8の下側はワーク600の断面をそれぞれ示す。なお、図8において、実施形態1と同様の箇所については同一の符号を付して詳細な説明を省略する。
 図8に示すように、ワーク600は、第3の板材730の端面と第4の板材740の端面とが互いに突き合わされた突き合わせ部分を有している。なお、突き合わせ部分において、レーザ光LBが照射される面を表面と呼ぶことがある。第3の板材730及び第4の板材740は、ともに鋼板である。なお、鋼板でも、異なった材質または組成の鋼板でもよい。第4の板材740の厚さは第3の板材730の厚さよりも厚くなっている。また、突き合わせ部分において、第3の板材730の表面と第4の板材740の表面とは略面一の位置にある。
 このような構造のワーク600をレーザ溶接するにあたって、図8に示すように、コントローラ200がレーザ光出射ヘッド400を制御して、らせん状の軌跡TR1を描くようにレーザ光LBを走査しながら、ワーク600の突き合わせ部分の表面にレーザ光LBを照射する。
 この場合、らせん状の軌跡TR1が第3の板材730側の周縁から第4の板材740側の周縁に進むにつれて、焦点位置がワーク600の内部で深くなるようにコントローラ200がレーザ光出射ヘッド400を制御する。
 このようにすることで、板厚の異なる第3の板材730と第4の板材740との突き合わせ部分において、溶け落ちや溶け込み深さの不足等を生じることなく、ワーク600の溶融領域820の断面形状を制御でき、ワーク600の接合強度を高めることができる。
 (実施形態4)
 図9は、本実施形態に係るワークに照射されるレーザ光の軌跡及びワークの溶融領域の深さとレーザ光の焦点位置との関係を示す模式図である。図9の上側はワーク600を表面から見た図を、図9の下側はワーク600の断面をそれぞれ示す。なお、図9において、実施形態1と同様の箇所については同一の符号を付して詳細な説明を省略する。
 図9に示すように、ワーク600は、第5の板材750の端面と第6の板材760の端面とが互いに突き合わされた突き合わせ部分を有している。なお、突き合わせ部分において、レーザ光LBが照射される面を表面と呼ぶことがある。第5の板材750及び第6の板材760は、ともに鋼板である。なお、鋼板でも、異なった材質または組成の鋼板でもよい。第6の板材760の厚さは第5の板材750の厚さよりも厚くなっている。また、第6の板材760の表面は、第5の板材750の表面よりもレーザ光出射ヘッド400に近い位置にある。
 このような構造のワーク600をレーザ溶接するにあたって、図9に示すように、コントローラ200がレーザ光出射ヘッド400を制御して、らせん状の軌跡TR1を描くようにレーザ光LBを走査しながら、ワーク600の突き合わせ部分の表面にレーザ光LBを照射する。
 この場合、らせん状の軌跡TR1が第5の板材750側の周縁から突き合わせ部分の継目に進むまではレーザ光LBの焦点位置が第5の板材750の表面近傍に来るようにコントローラ200がレーザ光出射ヘッド400を制御する。
 一方、らせん状の軌跡TR1が突き合わせ部分の継目から第6の板材760側の周縁に進むにつれて、焦点位置がワーク600の内部で浅くなるようにコントローラ200がレーザ光出射ヘッド400を制御する。
 このようにすることで、板厚の異なる第5の板材750と第6の板材760との突き合わせ部分において、溶け落ちや溶け込み深さの不足等を生じることなく、ワーク600の溶融領域820の断面形状を制御でき、ワーク600の接合強度を高めることができる。
 (実施形態5)
 図10は、本実施形態に係るワークに照射されるレーザ光の軌跡及びワークの溶融領域の深さとレーザ光の焦点位置との関係を示す模式図である。図10の上側はワーク600を表面から見た図を、図10の下側はワーク600の断面をそれぞれ示す。なお、図10において、実施形態1と同様の箇所については同一の符号を付して詳細な説明を省略する。
 図10に示すように、ワーク600は、第8の板材780の一部に第7の板材770が重ね合わされた重ね合わせ部分を有している。第7の板材770及び第8の板材780は、ともに鋼板である。なお、鋼板でも、異なった材質または組成の鋼板でもよい。第8の板材780の厚さは第7の板材770の厚さよりも厚くなっているように描いているが、その逆でもよい。
 このような構造のワーク600をレーザ溶接するにあたって、図10に示すように、コントローラ200がレーザ光出射ヘッド400を制御して、らせん状の軌跡TR1を描くようにレーザ光LBを走査しながら、ワーク600の重ね合わせ部分及び当該重ね合わせ部分に隣接する第8の板材780の所定の領域にレーザ光LBを照射する。
 この場合、らせん状の軌跡TR1が第8の板材780側の周縁から重ね合わせ部分の端部に進むまではレーザ光LBの焦点位置が第8の板材780の表面近傍に来るようにコントローラ200がレーザ光出射ヘッド400を制御する。
 一方、らせん状の軌跡TR1が重ね合わせ部分の端部から第7の板材770側の周縁に進むにつれて、焦点位置がワーク600の内部で浅くなるようにコントローラ200がレーザ光出射ヘッド400を制御する。
 このようにすることで、第7の板材770と第8の板材780との重ね合わせ部分において、溶け落ちや重ね合わせ部分での溶け込み深さの極端な不足等を生じることなく、ワーク600の溶融領域820の断面形状を制御でき、ワーク600の接合強度を高めることができる。
 (その他の実施形態)
 なお、実施形態1~5において、レーザ光LBの焦点位置を変化させるために、コントローラ200がレーザ光出射ヘッド400、具体的には焦点位置調整機構407の動作を制御する例を示したが、レーザ光LBの焦点位置を変化させる手法は特にこれに限られない。
 例えば、コントローラ200がマニピュレータ500を駆動して、Z方向に沿ってレーザ光出射ヘッド400の全体を変位させることで、ワーク600に照射されるレーザ光LBの焦点位置を変化させるようにしてもよい。なお、この場合、レーザ光出射ヘッド400に設けられたアクチュエータを省略することも可能である。
 また、実施形態2~5において、らせん状の軌跡TR1に限られず、レーザ光LBを前述した種々の軌跡(第1軌跡)を描くように走査できることは言うまでもない。
 また、ワーク600の材質は鋼板以外の材料、例えば、アルミニウム合金またはチタン合金などの構造材料や、銅またはその合金などのような電気材料でもよい。また、互いに異なる材質の板材を重ね合わせ等した構造のワーク600であってもよい。ワーク600の材質に応じて、レーザ光LBの波長や出力が適宜選択され、また、図4に示したデータから、ワーク600の溶接部位の形状に応じて、レーザ光LBの焦点位置の制御範囲が適宜決定される。
 なお、レーザ溶接プログラムに、ワーク600の材質やワーク600の溶接部位の形状に関連付けられて、レーザ光LBの焦点位置を変化させる手順や制御範囲が記述されていてもよい。その場合、図5に示すデータを記憶部210に別個に保存しなくてもよい。
 また、レーザ光LBを走査させる機構は図2に示した構成に特に限定されず、他の構成であってもよい。例えば、従来の3軸ガルバスキャナを用いてレーザ光LBを走査するようにしてもよい。
 本開示のレーザ溶接装置は、ワークの溶接部位の形状に応じて、溶け込み形状を制御できるため、種々の材質あるいは形状を有するワークを加工する上で有用である。
100  レーザ発振器
200  コントローラ
210  記憶部
300  光ファイバ
400  レーザ光出射ヘッド
404  コリメートレンズ
405  集光レンズ
406  スライダ
407  焦点位置調整機構
411  第1のサーボモータ(第1の駆動部)
412  第1のタイミングベルト(第1の回転部材)
413  第1のタイミングベルトプーリー(第1の伝達部材)
414  第1の平行板
416  第2の平行板
417  第2のタイミングベルトプーリー(第2の伝達部材)
418  第2のサーボモータ(第2の駆動部)
419  第2のタイミングベルト(第2の回転部材)
420  第1の回転機構
421  第2の回転機構
422  第1の光学ユニット
423  第2の光学ユニット
424  光走査機構
500  マニピュレータ
600  ワーク
710~780 第1~第8の板材
800  溶融池
810  キーホール
820  溶融領域
1000 レーザ溶接装置
LB   レーザ光
TR1  らせん状の軌跡

Claims (15)

  1.  レーザ光を発生させるレーザ発振器と、
     前記レーザ発振器で発生した前記レーザ光を伝送する光ファイバと、
     前記光ファイバの出射端に取付けられ、前記光ファイバから入射された前記レーザ光をワークに向けて照射するレーザ光出射ヘッドと、
     前記レーザ光出射ヘッドが取り付けられ、前記レーザ光出射ヘッドを所定の軌跡で移動させるマニピュレータと、
     前記レーザ光が前記ワークの表面で二次元的に、または三次元的に走査されるように前記レーザ光出射ヘッドを制御するコントローラと、を少なくとも備え、
     前記コントローラは、前記ワークにおける溶接部位の形状に応じて、前記ワークに照射される前記レーザ光の焦点位置を変化させるように前記レーザ光出射ヘッドまたは前記マニピュレータを制御することを特徴とするレーザ溶接装置。
  2.  請求項1に記載のレーザ溶接装置において、
     前記レーザ光の焦点位置と前記ワークの溶け込み深さとが前記ワークの材質に関連付けられたデータを保存する記憶部をさらに備え、
     前記コントローラは、前記ワークにおける溶接部位の形状と前記データとに応じて、前記ワークに照射される前記レーザ光の焦点位置を変化させるように前記レーザ光出射ヘッドまたは前記マニピュレータを制御することを特徴とするレーザ溶接装置。
  3.  請求項1または2に記載のレーザ溶接装置において、
     前記レーザ光出射ヘッドは、前記レーザ光の焦点位置を変化させるための焦点位置調整機構を少なくとも有しており、
     前記コントローラは、前記焦点位置調整機構の動作を制御することを特徴とするレーザ溶接装置。
  4.  請求項1または2に記載のレーザ溶接装置において、
     前記コントローラは、前記マニピュレータを駆動して、前記レーザ光出射ヘッドから照射された前記レーザ光の光軸と平行な方向に沿って前記レーザ光出射ヘッドを変位させることで、前記ワークに照射される前記レーザ光の焦点位置を変化させることを特徴とするレーザ溶接装置。
  5.  請求項1ないし4のいずれか1項に記載のレーザ溶接装置において、
     前記レーザ光出射ヘッドは、前記レーザ光を走査するための光走査機構をさらに有し、
     前記コントローラは、前記光走査機構の動作を制御することを特徴とするレーザ溶接装置。
  6.  請求項1ないし5のいずれか1項に記載のレーザ溶接装置において、
     前記コントローラは、前記レーザ光の焦点位置を前記ワークの表面から前記ワークの内部の所定位置までの範囲で変化させるように前記レーザ光出射ヘッドまたは前記マニピュレータを制御することを特徴とするレーザ溶接装置。
  7.  請求項1ないし6のいずれか1項に記載のレーザ溶接装置において、
     前記ワークは互いに重ね合わされた複数の板材であり、
     前記コントローラは、前記レーザ光が前記ワークの表面で所定の第1軌跡を描くように前記レーザ光出射ヘッドを制御するとともに、前記第1軌跡の中央よりも周縁において、前記レーザ光の焦点位置が前記ワークの内部で深くなるように前記レーザ光出射ヘッドまたは前記マニピュレータを制御することを特徴とするレーザ溶接装置。
  8.  請求項1ないし6のいずれか1項に記載のレーザ溶接装置において、
     前記ワークは互いに重ね合わされた複数の板材であり、
     前記コントローラは、前記レーザ光が前記ワークの表面で所定の第1軌跡を描くように前記レーザ光出射ヘッドを制御するとともに、前記第1軌跡の中央よりも周縁に近づくにつれて、前記レーザ光の焦点位置が前記ワークの内部で深くなるように前記レーザ光出射ヘッドまたは前記マニピュレータを制御することを特徴とするレーザ溶接装置。
  9.  請求項1ないし6のいずれか1項に記載のレーザ溶接装置において、
     前記ワークは2つの板材がT字形状に継ぎ合わされた継手部分を有しており、
     前記コントローラは、前記レーザ光が前記ワークの継手部分の表面で所定の第1軌跡を描くように前記レーザ光出射ヘッドを制御するとともに、前記継手部分の端部よりも中央において、前記レーザ光の焦点位置が前記ワークの内部で深くなるように前記レーザ光出射ヘッドまたは前記マニピュレータを制御することを特徴とするレーザ溶接装置。
  10.  請求項1ないし6のいずれか1項に記載のレーザ溶接装置において、
     前記ワークは第3の板材と前記第3の板材よりも厚い第4の板材とが互いに突き合わされてなるとともに、突き合わせ部分において前記第3の板材の表面と前記第4の板材の表面とが略面一であり、
     前記コントローラは、前記レーザ光が前記突き合わせ部分の表面で所定の第1軌跡を描くように前記レーザ光出射ヘッドを制御するとともに、前記第1軌跡が前記第3の板材側から前記第4の板材側に進むにつれて前記レーザ光の焦点位置が前記ワークの内部で深くなるように前記レーザ光出射ヘッドまたは前記マニピュレータを制御することを特徴とするレーザ溶接装置。
  11.  請求項1ないし6のいずれか1項に記載のレーザ溶接装置において、
     前記ワークは第5の板材と前記第5の板材よりも厚い第6の板材とが互いに突き合わされてなるとともに、突き合わせ部分において前記第6の板材の表面が前記第5の板材の表面よりも前記レーザ光出射ヘッドに近い位置にあり、
     前記コントローラは、前記レーザ光が前記突き合わせ部分の表面で所定の第1軌跡を描くように前記レーザ光出射ヘッドを制御するとともに、前記第1軌跡が前記第5の板材側の周縁から前記突き合わせ部分の継目に進むまでは前記レーザ光の焦点位置が前記第5の板材の表面近傍である一方、前記第1軌跡が前記突き合わせ部分の継目から前記第6の板材側の周縁に進むにつれて、前記レーザ光の焦点位置が前記ワークの内部で浅くなるように前記レーザ光出射ヘッドまたは前記マニピュレータを制御することを特徴とするレーザ溶接装置。
  12.  請求項1ないし6のいずれか1項に記載のレーザ溶接装置において、
     前記ワークは第8の板材の一部に前記第8の板材よりも薄い第7の板材が重ね合わされた重ね合わせ部分を有しており、
     前記コントローラは、前記レーザ光が前記重ね合わせ部分から前記第8の板材の表面にかけて所定の第1軌跡を描くように前記レーザ光出射ヘッドを制御するとともに、前記第1軌跡が前記第8の板材側の周縁から前記重ね合わせ部分の端部に進むまでは前記レーザ光の焦点位置が前記第8の板材の表面近傍である一方、前記第1軌跡が前記重ね合わせ部分の端部から前記第7の板材側の周縁に進むにつれて、前記レーザ光の焦点位置が前記ワークの内部で浅くなるように前記レーザ光出射ヘッドまたは前記マニピュレータを制御することを特徴とするレーザ溶接装置。
  13.  請求項7ないし12のいずれか1項に記載のレーザ溶接装置において、
     前記コントローラは、前記第1軌跡を描くように前記レーザ光を走査しながら、前記レーザ光出射ヘッドが取り付けられた前記マニピュレータを所定の方向に沿って移動させることを特徴とするレーザ溶接装置。
  14.  請求項1ないし13のいずれか1項に記載のレーザ溶接装置を用いたレーザ溶接方法であって、
     前記レーザ光を二次元的に、または三次元的に走査しながら前記ワークに向けて照射して、前記ワークを溶接するレーザ溶接ステップを少なくとも備え、
     前記レーザ溶接ステップでは、前記ワークにおける溶接部位の形状に応じて前記レーザ光の焦点位置を変化させるとともに、前記ワークに溶融池及びキーホールを形成することを特徴とするレーザ溶接方法。
  15.  請求項14に記載のレーザ溶接方法において、
     前記レーザ溶接ステップでは、前記レーザ光の焦点位置を前記ワークの表面から前記キーホールの内部の所定位置までの範囲で変化させることを特徴とするレーザ溶接方法。
PCT/JP2020/021951 2019-06-05 2020-06-03 レーザ溶接装置及びそれを用いたレーザ溶接方法 WO2020246504A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20819107.2A EP3981540A4 (en) 2019-06-05 2020-06-03 LASER WELDING DEVICE AND LASER WELDING PROCESS WITH IT
JP2021524879A JP7369915B2 (ja) 2019-06-05 2020-06-03 レーザ溶接装置及びそれを用いたレーザ溶接方法
US17/541,166 US20220088709A1 (en) 2019-06-05 2021-12-02 Laser welding device and laser welding method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-105529 2019-06-05
JP2019105529 2019-06-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/541,166 Continuation US20220088709A1 (en) 2019-06-05 2021-12-02 Laser welding device and laser welding method using same

Publications (1)

Publication Number Publication Date
WO2020246504A1 true WO2020246504A1 (ja) 2020-12-10

Family

ID=73653232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021951 WO2020246504A1 (ja) 2019-06-05 2020-06-03 レーザ溶接装置及びそれを用いたレーザ溶接方法

Country Status (4)

Country Link
US (1) US20220088709A1 (ja)
EP (1) EP3981540A4 (ja)
JP (1) JP7369915B2 (ja)
WO (1) WO2020246504A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016007229T5 (de) * 2016-10-20 2019-06-13 Gm Global Technology Operations, Llc Laserschweissen von sich überlappenden Werkstücken aus Metall, das durch eine oszillierende Brennpunktposition des Laserstrahls unterstützt wird

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210980A (ja) * 1990-01-11 1991-09-13 Amada Co Ltd レーザ溶接方法
JP2003136262A (ja) * 2001-10-25 2003-05-14 Hitachi Constr Mach Co Ltd 差厚材のレーザ溶接方法
JP2006187803A (ja) 2004-12-10 2006-07-20 Yaskawa Electric Corp ロボットシステム
JP2011173146A (ja) 2010-02-24 2011-09-08 Mazda Motor Corp レーザ溶接方法
JP2014213374A (ja) * 2013-04-30 2014-11-17 株式会社Gsユアサ 接合体製造方法、蓄電素子製造方法、溶接制御プログラム
WO2015104762A1 (ja) * 2014-01-08 2015-07-16 パナソニックIpマネジメント株式会社 レーザ溶接方法
CN105414759A (zh) * 2015-12-09 2016-03-23 北京工业大学 一种焦点旋转和垂直振动的激光焊接方法
US20180009060A1 (en) 2016-07-11 2018-01-11 GM Global Technology Operations LLC Laser welding of overlapping metal workpieces assisted by varying laser beam parameters
JP2019000878A (ja) * 2017-06-15 2019-01-10 トヨタ自動車株式会社 レーザ溶接方法およびレーザ溶接装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3332904B1 (en) * 2015-08-05 2022-10-05 Panasonic Intellectual Property Management Co., Ltd. Laser welding method
US20180214983A1 (en) * 2015-08-31 2018-08-02 GM Global Technology Operations LLC Method for laser welding aluminum workpieces

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210980A (ja) * 1990-01-11 1991-09-13 Amada Co Ltd レーザ溶接方法
JP2003136262A (ja) * 2001-10-25 2003-05-14 Hitachi Constr Mach Co Ltd 差厚材のレーザ溶接方法
JP2006187803A (ja) 2004-12-10 2006-07-20 Yaskawa Electric Corp ロボットシステム
JP2011173146A (ja) 2010-02-24 2011-09-08 Mazda Motor Corp レーザ溶接方法
JP2014213374A (ja) * 2013-04-30 2014-11-17 株式会社Gsユアサ 接合体製造方法、蓄電素子製造方法、溶接制御プログラム
WO2015104762A1 (ja) * 2014-01-08 2015-07-16 パナソニックIpマネジメント株式会社 レーザ溶接方法
CN105414759A (zh) * 2015-12-09 2016-03-23 北京工业大学 一种焦点旋转和垂直振动的激光焊接方法
US20180009060A1 (en) 2016-07-11 2018-01-11 GM Global Technology Operations LLC Laser welding of overlapping metal workpieces assisted by varying laser beam parameters
JP2019000878A (ja) * 2017-06-15 2019-01-10 トヨタ自動車株式会社 レーザ溶接方法およびレーザ溶接装置

Also Published As

Publication number Publication date
US20220088709A1 (en) 2022-03-24
EP3981540A4 (en) 2022-08-17
EP3981540A1 (en) 2022-04-13
JP7369915B2 (ja) 2023-10-27
JPWO2020246504A1 (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
JP6799755B2 (ja) レーザ溶接方法
JP6602860B2 (ja) レーザ加工装置及びレーザ加工方法
JP5551792B2 (ja) 2つの金属構成部材の溶接方法、および2つの金属構成部材を有する接合構成体
US20140216648A1 (en) Method and apparatus for laser welding of two joining members of plastic material
EP3395490B1 (en) Laser welding method and laser welding apparatus
JP4378634B2 (ja) 突き合わせレーザ溶接方法及び突き合わせレーザ溶接装置
JP5200528B2 (ja) レーザ溶接方法および溶接接合体
JP5446334B2 (ja) レーザ溶接装置、およびレーザ溶接方法
CN103476535B (zh) 激光焊接方法
WO2020246504A1 (ja) レーザ溶接装置及びそれを用いたレーザ溶接方法
JP4687243B2 (ja) レーザ溶接方法及びレーザ溶接装置
US20220072662A1 (en) Laser processing device and laser processing method using same
WO2022004610A1 (ja) レーザ溶接装置およびレーザ溶接方法
JP2005262311A (ja) レーザ加工装置及びレーザ加工方法
JP2008000764A (ja) レーザ溶接方法、装置および設備
WO2022075212A1 (ja) レーザ溶接方法及びレーザ溶接装置
WO2021230070A1 (ja) レーザ溶接方法及びレーザ溶接装置
WO2020241136A1 (ja) レーザ加工装置及びそれを用いたレーザ加工方法
JP2017209700A (ja) 金属板の接合方法
WO2022075209A1 (ja) レーザ溶接方法及びレーザ溶接装置
JP7382553B2 (ja) レーザ加工装置及びそれを用いたレーザ加工方法
WO2022075210A1 (ja) レーザ溶接方法及びレーザ溶接装置
JP2817555B2 (ja) レーザ加工機
JP7105912B2 (ja) レーザ溶接方法及び積層体
JP4998634B1 (ja) レーザ溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524879

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020819107

Country of ref document: EP

Effective date: 20220105