WO2020246101A1 - Mold management device, mold management method, and mold management program - Google Patents

Mold management device, mold management method, and mold management program Download PDF

Info

Publication number
WO2020246101A1
WO2020246101A1 PCT/JP2020/010756 JP2020010756W WO2020246101A1 WO 2020246101 A1 WO2020246101 A1 WO 2020246101A1 JP 2020010756 W JP2020010756 W JP 2020010756W WO 2020246101 A1 WO2020246101 A1 WO 2020246101A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
presses
die
calculation unit
correction
Prior art date
Application number
PCT/JP2020/010756
Other languages
French (fr)
Japanese (ja)
Inventor
茂伸 山本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021524676A priority Critical patent/JP7069418B2/en
Priority to CN202080038875.4A priority patent/CN113993695B/en
Publication of WO2020246101A1 publication Critical patent/WO2020246101A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/28Arrangements for preventing distortion of, or damage to, presses or parts thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • This disclosure relates to a mold management device, a mold management method, and a mold management program.
  • the mold installed in the press machine and the die parts such as punches and dies are worn by repeating the pressing. Therefore, in the press machine, it is necessary to replace the mold and the mold parts according to the wear, or to polish and regenerate them. Therefore, a mold management device has been developed in order to grasp the wear of the mold and the mold parts.
  • Patent Document 1 a counter that detects the number of presses and the number of operations of parts and consumables, and an alarm when the total value of the number of times detected by the counter reaches a set time, a mold and a mold part are issued.
  • a mold management device including a buzzer and a display for notifying the time of replacement or maintenance of the above is disclosed.
  • the press machine may press various kinds of materials and materials of various thicknesses.
  • the degree of wear of the mold and the mold parts differs depending on the type and thickness of the material.
  • the mold management device described in Patent Document 1 only issues an alarm based on the total number of times detected by the counter. Therefore, this mold management device cannot detect the difference in wear between the mold and the mold parts due to the difference in the material. As a result, this die management device cannot accurately notify the replacement time of the die and the die parts of the press machine.
  • This disclosure is made in order to solve the above problems, and provides a mold management device, a mold management method, and a mold management program capable of accurately notifying the replacement time of a mold and a mold part.
  • the purpose is to do.
  • the mold management device includes a storage unit, a counting unit, a calculation unit, and a notification unit.
  • the storage unit stores the first durable press count of the die or the die part provided in the press machine and the material data to be processed by the press machine.
  • the counting unit counts the number of presses of the press machine.
  • the calculation unit corrects the number of presses counted by the counting unit based on the material data stored in the storage unit, calculates the number of correction presses, and the calculated number of correction presses is stored in the storage unit. Determine if the number of times has been exceeded.
  • the notification unit notifies that it is time to replace the die or the die component.
  • the calculation unit corrects the number of presses counted by the counting unit based on the material data to obtain the number of correction presses, and determines whether or not the number of correction presses exceeds the first durable press number. judge. Therefore, it is possible to more accurately estimate the wear of the die and the die parts according to the material to be pressed. As a result, the mold management device can accurately notify the replacement time of the mold and the mold parts.
  • Block diagram of the die management device of the press machine according to the first embodiment of the present disclosure Schematic diagram of a material characteristic master stored in a storage unit included in the die management device of the press machine according to the first embodiment of the present disclosure.
  • Schematic diagram of the die information master stored in the storage unit included in the die management device of the press machine according to the first embodiment of the present disclosure.
  • Schematic diagram of the environmental information master stored in the storage unit included in the die management device of the press machine according to the first embodiment of the present disclosure.
  • Schematic diagram of the machining information master stored in the storage unit included in the die management device of the press machine according to the first embodiment of the present disclosure.
  • Schematic diagram of the die part information master stored in the storage unit included in the die management device of the press machine according to the first embodiment of the present disclosure.
  • the die management device for the press machine is a device for controlling the timing of replacement or polishing of the die of the press machine and the die parts such as punches and dies.
  • This die management device requests the replacement or polishing time of the mold and the mold parts based on the number of presses and notifies the user. However, since this mold management device obtains the accurate time, the number of presses is obtained. Is corrected based on the correction coefficient.
  • FIG. 1 is a block diagram of the mold management device 1A according to the first embodiment.
  • FIG. 2 is a schematic view of the material characteristic master 21 stored in the storage unit 20 included in the mold management device 1A.
  • FIG. 3 is a schematic view of the mold information master 22 stored in the storage unit 20.
  • FIG. 4 is a schematic view of the environment information master 23 stored in the storage unit 20.
  • FIG. 5 is a schematic view of the processing information master 24 stored in the storage unit 20.
  • FIG. 6 is a schematic view of the mold component information master 25 stored in the storage unit 20.
  • FIG. 7 is a hardware configuration diagram of the arithmetic unit 30 included in the mold management device 1A.
  • the die management device 1A stores a counter 10 that counts the number of times the material 200 is pressed by the press machine 100, and each data for correcting the number of presses counted by the counter 10.
  • the storage unit 20 and each data stored in the storage unit 20 correct the number of presses counted by the counter 10, and a calculation unit that determines whether or not it is time to replace the die and the die parts and polish.
  • a display unit 40 for displaying replacement and polishing information based on the output of the calculation unit 30 is provided.
  • the counter 10 is connected to a pressure cylinder (not shown) of the press machine 100, and counts the number of shots of the press machine 100, that is, the number of presses from the expansion / contraction operation of the pressure cylinder. Each time the counter 10 counts the number of presses, the counter 10 transmits the counted number of presses to the calculation unit 30.
  • the counter 10 is an example of a counting unit and a counting unit.
  • the storage unit 20 stores basic information of the material and basic information of the die for correcting the number of presses. Specifically, the storage unit 20 stores a material characteristic master 21, a mold information master 22, an environment information master 23, a machining information master 24, and a mold part information master 25.
  • the master is data that serves as basic information, and is master data.
  • the material characteristic master 21 is data of basic information of the material for correcting the number of presses.
  • the material characteristic master 21 stores the basic information of the material 200 to be pressed by the press machine 100 in a table format. Specifically, in the material property master 21, as shown in FIG. 2, each data of the material name, the plate thickness, the plate thickness coefficient, and the hardness coefficient of the material 200 is associated with the material code for specifying the material 200. ing.
  • the material code is a number set for each material of the material 200.
  • the plate thickness is the thickness of the plate where the material 200 to be processed by the press machine 100 is plate-shaped.
  • the plate thickness coefficient is the relative thickness of the other material 200 when the plate thickness of the specific material 200 is 1, in other words, when the plate thickness of the reference material is 1.
  • the hardness coefficient is the relative hardness of the other material 200 when the Vickers hardness of the reference material, that is, the HV (Vickers hardness) hardness is 1. is there.
  • the hardness coefficient shown in Table 1 indicates the hardness coefficient of each material 200 when the HV hardness of bronze is 1.
  • the data of the plate thickness coefficient and the hardness coefficient of the material property master 21 is an example of the material data.
  • the plate thickness coefficient is an example of a size coefficient
  • the hardness coefficient is an example of a characteristic coefficient
  • the Vickers hardness value is an example of a characteristic value.
  • the mold information master 22 is data of basic information of the mold for managing the mold.
  • the die information master 22 stores the die information of the press machine 100 in a table format. Specifically, as shown in FIG. 3, in the mold information master 22, each data of the mold name, the number of durable presses, the unit price, the delivery period, and the molding difficulty coefficient is added to the mold number for specifying the mold. It is associated.
  • the durable press count is the number of presses that is an index for determining that the die should be replaced due to the wear of the die.
  • the unit price and the delivery period are the amount of money for each mold purchased and the period required for the mold to be delivered.
  • the molding difficulty coefficient is a coefficient that indicates the difficulty level when molding with a mold. For example, when manufacturing a part of a product of the press machine 100, the shape of the part becomes complicated when the number of parts of the product is large. Therefore, the larger the number of parts of the product, the higher the difficulty of molding the part. Further, the more frequently the mold parts are chipped, or the faster the mold parts wear, the higher the difficulty of molding.
  • the molding difficulty coefficient is a coefficient provided to reflect such a situation in the correction of the number of presses. The molding difficulty coefficient is determined by conducting an experiment in advance using the mold number and the mold name shown in FIG.
  • the number of durable presses is an example of the number of durable presses.
  • the environment information master 23 is data of basic environment information used when correcting the number of presses.
  • the environment information master 23 stores the environment information of the place where the press machine 100 is installed in a table format. Specifically, in the environmental information master 23, as shown in FIG. 4, the humidity and the environmental coefficient are associated with each other.
  • the environmental coefficient is a coefficient that indicates the degree of the environment when molding with a mold. For example, if the press machine 100 is installed in an environment where the temperature is 50 ° C during the day and 10 ° C or less at night, even if the humidity is 10% during the day, the humidity becomes 100% at night, and as a result. , Mold parts are easily corroded. In this case, the life of the mold parts is shortened.
  • the environmental coefficient is a coefficient indicating such an environment. The environmental coefficient is obtained by conducting an experiment in advance under various humidity environments using the molds having the mold numbers and mold names shown in FIG.
  • the processing information master 24 is data of basic information of the mold for managing the mold.
  • the processing information master 24 stores information in a table format for confirming whether the die of the press machine 100 conforms to the material 200 to be pressed. Specifically, in the processing information master 24, as shown in FIG. 5, the mold name and the mold number are associated with the material code of the material 200 corresponding to the mold name and the mold number.
  • the mold parts information master 25 is also data of basic mold information for managing the mold.
  • the die part information master 25 stores the die part information of the press machine 100 in a table format. Specifically, as shown in FIG. 6, the mold part information master 25 includes the mold part name, the mold number, the service life, the number of polishing presses, the current number of presses, the polishing life, and the current polishing in the mold part number. Each data of quantity, number of polishings, and unit price is associated.
  • the service life is the number of presses that is an index for determining that the mold parts should be replaced due to wear.
  • the number of polishing presses is the number of presses that is an index for determining that the mold parts should be regenerated by polishing the mold parts.
  • the current number of presses is the latest number of presses of the press machine 100.
  • the polishing life is a life indicating how much the mold part can be polished, and in the mold part information master 25, the thickness of the polishable part of the mold part is substituted.
  • the current polishing amount, the number of times of polishing, and the unit price are the amount of polishing of the mold parts, the number of times of polishing, and the purchase price of the mold parts.
  • the useful number of times is an example of the number of times of the second durable press.
  • Such a master is stored in the storage unit 20. These masters are read by the calculation unit 30 shown in FIG. 1 and used for various calculations.
  • the calculation unit 30 is realized by the CPU (Central Processing Unit) 32 executing the mold management program stored in the memory 31 shown in FIG. 7.
  • the CPU is an example of a computer as referred to in the present specification.
  • the calculation unit 30 receives the data of the number of presses from the counter 10. Then, the calculation unit 30 corrects the number of times of pressing received in order to reflect the degree of influence on the wear of the material 200 to be pressed.
  • the press machine 100 includes an input unit composed of a numeric keypad, a keyboard, and the like.
  • the material code of the material 200 to be pressed by the press machine 100 is input to the input unit.
  • the calculation unit 30 receives the material code from the input unit. Further, as described above, the calculation unit 30 receives the data of the number of presses from the counter 10.
  • the calculation unit 30 reads the plate thickness coefficient and hardness coefficient of the material 200 corresponding to the material code received from the input unit from the material characteristic master 21 of the storage unit 20, and calculates the number of presses received from the counter 10 as the plate thickness. Correct based on the coefficient and hardness coefficient. As a result, the calculation unit 30 obtains the number of correction presses.
  • calculation unit 30 further corrects the number of correction presses in order to reflect the degree of influence on the wear of the installation environment of the press machine 100.
  • the press machine 100 includes the temperature / humidity sensor 11 shown in FIG.
  • the calculation unit 30 receives the temperature and humidity data of the temperature / humidity sensor 11. Further, the calculation unit 30 reads out the environment information master 23 of the storage unit 20 and obtains an environment coefficient corresponding to the humidity data received from the temperature / humidity sensor 11. Then, the calculation unit 30 further corrects the number of correction presses described above based on the obtained environmental coefficient. As a result, the calculation unit 30 again obtains the number of correction presses.
  • calculation unit 30 corrects the number of correction presses in order to reflect the degree of influence on the wear of the molding target.
  • the die number of the mold installed in the press machine 100 is input to the input unit (not shown) described above, and the calculation unit 30 receives the mold number input to the input unit. .. Further, the calculation unit 30 reads out the molding difficulty coefficient corresponding to the received mold number from the mold information master 22 of the storage unit 20, and further corrects the number of correction presses based on the read molding difficulty coefficient. .. As a result, the calculation unit 30 again obtains the number of correction presses.
  • the calculation unit 30 determines from the obtained number of correction presses whether or not the die has reached the number of presses to be replaced.
  • the calculation unit 30 reads the number of durable presses corresponding to the received mold number from the mold information master 22 of the storage unit 20.
  • the calculation unit 30 reads the number of durable presses corresponding to the read die number from the die information master 22 of the storage unit 20.
  • the calculation unit 30 compares the number of correction presses and the number of durable presses read to determine whether or not the die has reached the number of presses to be replaced. Then, when the calculation unit 30 determines that the die has reached the number of presses to be replaced, the calculation unit 30 transmits the die exchange signal to the display unit 40 together with the determined die number and the number of presses.
  • the calculation unit 30 determines from the obtained number of correction presses whether or not the die component has reached the number of presses to be replaced, or whether or not the number of presses to be polished has been reached.
  • the mold part number used for the mold installed in the press machine 100 is input to the input unit.
  • the calculation unit 30 receives the mold part number input to the input unit. Further, the calculation unit 30 reads from the storage unit 20 the useful times and the number of polishing presses of the mold part information master 25 corresponding to the received mold part numbers. When the calculation unit 30 calculates the number of correction presses, it compares the calculated number of correction presses with the number of useful times to determine whether or not the die component has reached the number of presses to be replaced. In addition, the calculation unit 30 compares the calculated number of correction presses with the number of polishing presses to determine whether or not the die component has reached the number of presses to be polished.
  • the calculation unit 30 determines that the die component has reached the number of presses to be replaced, or determines that the die component has reached the number of presses to be polished, the component replacement signal or the component polishing signal. Is transmitted to the display unit 40 together with the determined mold part number and the number of presses.
  • the display unit 40 is composed of a liquid crystal display with a touch panel.
  • the display unit 40 displays a warning that the time for replacing or polishing the mold and the mold parts has arrived, based on the mold replacement signal, the component replacement signal, or the component polishing signal of the calculation unit 30.
  • the display unit 40 when the display unit 40 receives the exchange signal from the calculation unit 30 together with the die number and the number of presses, the display unit 40 displays the die number and the number of presses. It also indicates that the mold with that mold number is in a state to be replaced.
  • the display unit 40 is provided with a buzzer, and the buzzer issues an alarm. As a result, the display unit 40 notifies the user of the press machine 100 that the die should be replaced.
  • the display unit 40 may display the unit price and the delivery period of the mold information master 22 when displaying that the mold is in a state to be replaced.
  • the display unit 40 When the display unit 40 receives a replacement signal or a polishing signal from the calculation unit 30 together with the mold part number and the number of presses, the display unit 40 displays the mold part number and the number of presses, and also displays the mold part number and the mold of the mold part number. Indicates that the part should be replaced or polished. It also raises an alarm. As a result, the display unit 40 notifies the user that the mold component is in a state to be replaced or polished.
  • the display unit 40 may display the polishing life of the mold component information master 25, the current polishing amount, and the like when indicating that the mold component is in a state to be replaced or polished.
  • the display unit 40 is an example of the notification unit. Further, the display unit 40 and the calculation unit 30 may be referred to as a graphic operation terminal (Graphic Operation Thermal: GOT [registered trademark]).
  • the press machine 100 includes a start button and an input unit (not shown).
  • FIG. 8 is a flow chart of the mold management process of the mold management device 1A according to the first embodiment.
  • the user of the press machine 100 presses the start button of the press machine 100. As a result, the press machine 100 is started. Further, the mold management program is executed by the CPU 32 of the mold management device 1A, and as a result, the flow of the mold management process is started.
  • the user can supply the die number, the die part number, and the material 200 of the mold installed in the press machine 100 to the press machine 100. Enter the material code of.
  • the press machine 100 transmits the input die number, die part number, and material code to the calculation unit 30 of the die management device 1A.
  • the calculation unit 30 receives the mold number, the mold part number, and the material code (step S1).
  • the calculation unit 30 determines whether or not the material code conforms to the received mold number (step S2). Specifically, the calculation unit 30 reads all the mold numbers from the processing information master 24 of the storage unit 20, and whether or not the received mold numbers are the mold numbers included in the processing information master 24. To judge. Further, when the mold number is included in the machining information master 24, the calculation unit 30 determines whether or not the material code associated with the mold number matches the received material code. When the received mold number is included in the machining information master 24 and the received material code matches the material code of the machining information master 24, the calculation unit 30 matches the material code with the received mold number. Judge that there is.
  • the calculation unit 30 determines that the received material code does not match the die number (No in step S2), the calculation unit 30 transmits an alarm signal to the display unit 40 and the press machine 100 (step S3). As a result, the calculation unit 30 stops the press machine 100. In addition, the display unit 40 displays a warning of mold incompatibility. As a result, the calculation unit 30 prompts the user to replace the mold or the material 200.
  • the calculation unit 30 After transmitting the alarm signal, the calculation unit 30 returns to step S1, the user replaces the mold or the material 200, and a new mold number, mold part number, and material code are input to the input unit. Wait until.
  • step S4 determines whether or not the mold component has reached the polishing life. Specifically, the calculation unit 30 reads the polishing life and the current polishing amount of the mold part associated with the above-mentioned mold part number from the mold part information master 25 of the storage unit 20, and reads the polishing life. The current polishing amount is compared to determine whether or not the current polishing amount exceeds the polishing life.
  • step S4 the calculation unit 30 determines that the current polishing amount has exceeded the polishing life and the mold component has reached the polishing life (No in step S4), the calculation unit 30 returns to step S3 and gives an alarm signal to the display unit 40 and the press machine 100. To send. At this time, the calculation unit 30 transmits the mold part number to the display unit 40. As a result, the display unit 40 displays the mold part number and the warning of the polishing life. As a result, the calculation unit 30 prompts the user to confirm the mold.
  • step S4 when the calculation unit 30 determines that the die component has not reached the polishing life (Yes in step S4), the calculation unit 30 does not stop the press machine 100 and displays a warning on the display unit 40. do not do. Then, the calculation unit 30 waits until the material 200 is supplied to the press machine 100.
  • the user supplies the material 200 to be pressed to the press machine 100 in order to perform the pressing work.
  • the counter 10 counts the number of presses for each press and transmits the data of the counted number of presses to the calculation unit 30.
  • the calculation unit 30 receives the press count data (step S5).
  • the calculation unit 30 When the calculation unit 30 receives the press count data, it reads out from the storage unit 20 the plate thickness coefficient and the hardness coefficient of the material 200 corresponding to the material code of the material characteristic master 21. Further, the calculation unit 30 receives the humidity data of the temperature / humidity sensor 11 and reads out the environmental coefficient corresponding to the received humidity data from the environment information master 23 of the storage unit 20. Further, the calculation unit 30 reads out the molding difficulty coefficient corresponding to the mold number received in step S1 from the mold information master 22 of the storage unit 20.
  • the calculation unit 30 corrects the number of presses based on the read-out plate thickness coefficient, hardness coefficient, environment coefficient, and molding difficulty coefficient (step S6). Specifically, the calculation unit 30 corrects the number of presses and obtains the number of correction presses based on the following equation 1.
  • Number of correction presses Number of previous correction presses + Plate thickness coefficient x Hardness coefficient x Environmental coefficient x Molding difficulty coefficient ... Equation 1
  • this step is an example of a press count correction step or a press count correction step.
  • the calculation unit 30 When the calculation unit 30 obtains the number of correction presses, it reads the number of durable presses corresponding to the die number from the die information master 22 of the storage unit 20. Subsequently, the calculation unit 30 determines whether or not the obtained number of correction presses is less than the read number of durable presses (step S7).
  • this step is an example of a mold determination step or determination step.
  • the calculation unit 30 determines that the number of correction presses is not less than the number of durable presses, that is, exceeds the number of durable presses (No in step S7), the calculation unit 30 transmits a die exchange signal to the display unit 40 (step S8). .. At this time, the calculation unit 30 transmits the die number and the number of presses to the display unit 40.
  • the display unit 40 receives the die exchange signal, the display unit 40 displays a warning that the die should be exchanged together with the die number and the number of presses. As a result, the calculation unit 30 notifies the user that it is time to replace the mold, and prompts the user to replace the mold. The calculation unit 30 then proceeds to step S9.
  • the step of transmitting the mold exchange signal is an example of the judgment result output step of the mold or the judgment result output step. Further, the step of replacing the mold after the replacement of the mold is prompted is an example of the mold replacement step.
  • step S7 when the calculation unit 30 determines that the number of correction presses is less than the number of durable presses (Yes in step S7), the arithmetic unit 30 reads the number of useful times corresponding to the die part number from the die part information master 25 of the storage unit 20. , It is determined whether or not the number of correction presses obtained in step S6 is less than the read useful number of times (step S9).
  • this step is an example of a determination step or determination step of a mold part.
  • the calculation unit 30 determines that the number of correction presses is not less than the useful number of times, that is, exceeds the useful number of times (No in step S9), the calculation unit 30 transmits a parts replacement signal to the display unit 40 (step S10). At this time, the calculation unit 30 transmits the mold part number and the number of presses together with the part replacement signal. Upon receiving the component replacement signal, the display unit 40 displays the die component number, the number of presses, and an alarm indicating that the die component should be replaced. As a result, the calculation unit 30 notifies the user that it is time to replace the mold component, and prompts the user to replace the mold component. The calculation unit 30 then proceeds to step S11.
  • the step of transmitting the parts replacement signal is an example of the judgment result output step of the mold parts or the judgment result output step.
  • the step of replacing the mold component after the replacement of the mold component is prompted is an example of the process of replacing the mold component.
  • step S9 when the calculation unit 30 determines that the number of correction presses is less than the useful number (Yes in step S9), the calculation unit 30 reads the number of polishing presses corresponding to the mold part number from the mold part information master 25 of the storage unit 20. .. Subsequently, the calculation unit 30 determines whether or not the number of correction presses obtained in step S6 is less than the number of polishing presses (step S11).
  • the display unit 40 displays the part number and the number of presses together with the part polishing.
  • a signal is transmitted (step S12).
  • the display unit 40 displays a die part number, the number of presses, and an alarm indicating that the die component is in a state to be polished.
  • the calculation unit 30 notifies the user that the time for polishing the mold component has arrived, and prompts the user to polish the mold component. The calculation unit 30 then proceeds to step S13.
  • step S11 when the calculation unit 30 determines that the number of correction presses is less than the number of polishing presses (Yes in step S11), the calculation unit 30 stores the current number of presses (step S13). Specifically, the calculation unit 30 rewrites the current number of presses of the mold part information master 25 of the storage unit 20 to the number of presses received in step S5.
  • the calculation unit 30 returns to step S5 after storing the current number of presses, and receives new data on the number of presses of the counter 10.
  • the arithmetic unit 30 receives the number of presses for each press and continues to monitor whether the die and the die parts have reached the time to be replaced or the die parts have reached the time to be polished. ..
  • the flow of the above mold management process is continued until the user presses the start button of the press machine 100 again and the operation of the press machine 100 is stopped.
  • the start button is pressed again and the operation of the press machine 100 is stopped, the flow of the mold management process is forcibly terminated.
  • warnings are displayed on the display unit 40 in steps S8, S10, and S12, but as a result of the determination in steps S7, S9, and S11, a plurality of warnings are displayed on the display unit 40.
  • one of the warnings may be displayed on the display unit 40 with priority.
  • the warning in step S10 may be displayed in preference to the warning in step S10.
  • step S12 the calculation unit 30 prompts the user to polish the mold parts by displaying an alarm on the display unit 40.
  • the user may polish the die parts and reset the current number of presses of the mold part information master 25 shown in FIG. 6 to 0 by using a touch panel (not shown) provided in the display unit 40.
  • the user may change the current polishing amount associated with the mold part name of the polished mold part to the value after polishing, and increase the number of times of polishing by one.
  • step S6 the calculation unit 30 corrects the number of presses based on the equation 1 to obtain the correction press number, but the calculation unit 30 corrects the number of presses based on the following equation 2.
  • the humidity and the environmental coefficient are associated with each other, but the temperature and the environmental coefficient may be associated with each other.
  • the calculation unit 30 may read out the environmental coefficient corresponding to the temperature data received from the temperature / humidity sensor 11 and correct the number of presses. Alternatively, the number of correction presses may be obtained.
  • the calculation unit 30 corrects the number of presses of the counter 10 based on the plate thickness coefficient and the hardness coefficient, which are the data of the material 200, and corrects the press. The number of times is obtained, and it is determined whether or not the die is used in excess of the number of durable presses by using the obtained number of correction presses. Therefore, when there are a plurality of types of materials 200 to be pressed by the press machine 100, the mold management device 1A can more accurately estimate the replacement time according to the degree of wear of the mold due to the difference in the types. As a result, the mold management device 1A can more accurately notify the mold replacement time.
  • the calculation unit 30 uses the number of correction presses to determine whether or not the die component has been used more than the useful number of times. Therefore, the mold management device 1A can more accurately estimate the replacement time according to the degree of wear of the mold parts. As a result, the mold management device 1A can more accurately notify the replacement time of the mold parts.
  • the calculation unit 30 determines whether or not the die component exceeds the number of polishing presses by using the number of correction presses, the polishing time of the die component can be notified more accurately.
  • the calculation unit 30 uses the number of presses counted by the counter 10 to determine whether or not the die and the die parts are in the replacement time and the polishing time.
  • the calculation unit 30 is not limited to this.
  • the calculation unit 30 may use the production plan of the press machine 100 to predict whether or not the mold and the mold parts are to be replaced or polished.
  • the production plan data is stored in the storage unit 20. Then, the calculation unit 30 estimates the replacement time and the polishing time of the mold and the mold parts by using the production planning data.
  • the mold management device 1B according to the second embodiment will be described with reference to FIGS. 9 to 13.
  • the mold management device 1B according to the second embodiment a configuration different from that of the first embodiment will be described.
  • FIG. 9 is a block diagram of the mold management device 1B according to the second embodiment.
  • FIG. 10 is a schematic view of the production planning transaction 26 stored in the storage unit 20 included in the mold management device 1B.
  • FIG. 11 is a schematic view of the item information master 27 stored in the storage unit 20.
  • FIG. 12 is a diagram of the relationship between products and parts of the item information master 27.
  • FIG. 13 is a schematic view of the configuration information master 28 stored in the storage unit 20.
  • the mold management device 1B includes a storage unit 20, and the storage unit 20 includes a material characteristic master 21, a mold information master 22, and an environment information master 23 described in the first embodiment.
  • the machining information master 24 and the mold part information master 25 the production planning transaction 26, the item information master 27, and the configuration information master 28 are stored.
  • the production planning transaction 26 stores data indicating the scheduled production date of the product produced by using the parts processed by the press machine 100 in a table format.
  • the transaction is transaction data in which the type and number of products are recorded in time series.
  • production planning data of which product is manufactured and how much is stored for each scheduled manufacturing date is stored.
  • the item information master 27 stores data in a table format indicating whether the production target is a product or a part, and what kind of part the product or part is composed of. Specifically, in the item information master 27, as shown in FIG. 11, a product part number or a part number is associated with a product part flag indicating whether the product or part is a name, a product, or a part. .. Further, the product number or part number is associated with the material name, plate thickness, and material code of the material 200 used at that time when the product or part is manufactured by press working with the press machine 100. There is.
  • configuration information master 28 shown in FIG. 9 stores data indicating what kind of "parent-child relationship" the product or part has in a table format.
  • the "parent-child relationship" of a product or part means a relationship in which, when a specific product or part is a “parent”, the parts constituting the "parent” product or part are “children”. ..
  • the product shown in the item information master 27 shown in FIG. 11 is manufactured by the parts shown in the item information master 27.
  • the product with the product name 001 is manufactured by combining the "child” parts of the parts with the part names A and G. Therefore, the product with the product name 001 is the "parent", and the parts with the part names A and G are the "child”.
  • the part with the part name A is manufactured by combining the parts with the part names C and D. Therefore, when the part with the part name A is the "parent” part, the parts with the part names C and D are the "child” parts.
  • the part with the part name D is manufactured with the part with the part name F manufactured by press working with the press machine 100.
  • the part with the part name G is manufactured with the part with the part name I manufactured by pressing with the press machine 100. Therefore, when the parts with the part names D and G are the "parent" parts, the parts with the part names F and I are the "child” parts.
  • the product with the product name 002 is manufactured by combining the parts with the part names B and X. Therefore, the product with the product name 002 is the "parent", and the parts with the part names B and X are the "child”.
  • the part with the part name B is manufactured by combining the parts with the part names C and H
  • the part with the part name H is manufactured with the part with the part name E manufactured by press working. Therefore, when the part name B is the "parent", the parts of the part names C and H are "children", and when the part of the part name H is the "parent", the part of the part name E is the "child". ..
  • the configuration information master 28 stores data indicating the parent-child relationship between such products and parts.
  • the name of the parent component is associated with the name of the child component and the number of child components required for the parent component.
  • the calculation unit 30 reads the production planning transaction 26, the item information master 27, and the configuration information master 28 from the storage unit 20, and for each scheduled manufacturing date, for each part type. Calculate the number of products manufactured. Specifically, the calculation unit 30 obtains how many products are scheduled to be manufactured from the production planning transaction 26 for each scheduled manufacturing date, and from the configuration information master 28 for each product, the type and type of necessary parts. Find the number for each. As a result, the calculation unit 30 obtains the number of manufactured parts for each type of parts. Further, the calculation unit 30 obtains from the item information master 27 which part among those parts is to be pressed by the press machine 100, and obtains the number of times of pressing for each part.
  • the calculation unit 30 uses the number of manufactured parts for each type of calculated parts instead of the number of presses of the counter 10 described in the first embodiment to obtain the number of correction presses. As a result, the calculation unit 30 obtains the number of correction presses for each scheduled manufacturing date, and determines when the die described in the first embodiment exceeds the number of durable presses. Further, the calculation unit 30 determines when the die component exceeds the useful number of times, and determines when the die component exceeds the number of polishing presses.
  • the calculation unit 30 transmits to the display unit 40 a date that exceeds the obtained number of durable presses, a date that exceeds the number of useful presses, and a date that exceeds the number of polishing presses. As a result, the calculation unit 30 displays these dates on the display unit 40. As a result, the calculation unit 30 notifies the user of the date that serves as a guideline for the replacement schedule of the mold and the mold parts. In addition, the calculation unit 30 notifies the user of a date that serves as a guideline for the polishing schedule of the mold parts.
  • a date that exceeds the number of durable presses is an example of the first date.
  • a date that exceeds the useful life is an example of a second date.
  • the calculation unit 30 When the calculation unit 30 transmits the mold replacement date to the display unit 40, the calculation unit 30 reads the mold unit price and the delivery period of the mold information master 22 of the storage unit 20 and displays the read unit price and the delivery period. It is good to send to 40. As a result, it is preferable to display the unit price and the delivery period on the display unit 40. Further, when the calculation unit 30 transmits the polishing date of the mold to the display unit 40, the calculation unit 30 reads the mold part unit price and the delivery period of the mold part information master 25 of the storage unit 20 and displays the unit price and the delivery period. It is preferable to send the information to the unit 40 so that the display unit 40 displays the unit price and the delivery period.
  • the operation of the mold management device 1B is performed except that the mold and the mold parts determine the replacement time and the polishing time by using the mold management device 1A described in the first embodiment and the above-mentioned production planning data. The same is true. Therefore, in the second embodiment, the description of the operation of the mold management device 1B will be omitted.
  • the die management device 1B includes a calculation unit 30 that calculates the number of parts to be manufactured by the press machine 100 based on the production planning data stored in the storage unit 20. There is.
  • the calculation unit 30 obtains the number of correction presses for the number of calculated parts instead of the number of presses of the counter 10, and further obtains the replacement date and the polishing date of the die and the mold parts from the number of correction presses. Therefore, the mold management device 1B can accurately predict the replacement date and the polishing date.
  • the storage unit 20 stores the material characteristic master 21, the mold information master 22, the environment information master 23, the machining information master 24, and the mold part information master 25, and the calculation unit 30 stores these masters. Is read out to obtain the number of correction presses.
  • the master stored in the storage unit 20 is not limited to this. If there is a mold part that has been polished in the past, the storage unit 20 may store a master that indicates the polishing information.
  • the storage unit 20 included in the mold management device 1C according to the third embodiment stores a master indicating the polishing information.
  • FIG. 14 is a block diagram of the mold management device 1C according to the third embodiment.
  • FIG. 15 is a schematic view of a polishing work proficiency master 29 stored in a storage unit 20 included in the mold management device 1C.
  • the polishing work proficiency master 29 is stored in the storage unit 20.
  • data indicating the work proficiency information of the worker who polished the mold part when the mold part is polished is stored in a table format.
  • the mold part number described in the first embodiment and the polishing work coefficient are associated with each other.
  • the polishing work coefficient is a coefficient indicating the accuracy of the mold part due to the skill level of the worker who polished the mold part when it was polished in the past.
  • the polishing work coefficient is a coefficient indicating the accuracy of the mold part according to such skill level.
  • the polishing work coefficient is a coefficient indicating polishing accuracy.
  • the polishing work coefficient is determined by experimentally determining the relationship between the number of presses and the wear of the polished mold parts for each worker who polishes the mold parts.
  • the calculation unit 30 reads the polishing work proficiency master 29 from the storage unit 20, corrects the number of presses of the counter 10 based on the reading coefficient of the polishing work proficiency master 29, and calculates the number of correction presses. obtain.
  • the calculation unit 30 further corrects the number of correction presses described in the first embodiment based on the read-out polishing work coefficient. As a result, the number of correction presses considering the degree of wear caused by the polishing operator is obtained.
  • the calculation unit 30 obtains the number of correction presses by using Equation 3.
  • Number of correction presses Number of previous correction presses + Plate thickness coefficient x Hardness coefficient x Environment coefficient x Molding difficulty coefficient x Polishing work coefficient ... Equation 3
  • the die management device 1C corrects the number of presses based on the polishing work coefficient stored in the storage unit 20, so that the replacement time can be estimated more accurately. .. As a result, the mold management device 1C can more accurately notify the mold replacement time.
  • the mold management device 1C obtains the number of correction presses based on the polishing work coefficient of the polishing work proficiency master 29, but the polishing work coefficient of the polishing work proficiency master 29 is polishing management. It may be set by the device 60.
  • FIG. 16 is a block diagram of the mold management device 1D according to the fourth embodiment.
  • FIG. 17 is a schematic view of the proficiency level master 50 stored in the storage unit 20 included in the mold management device 1D.
  • FIG. 18 is a schematic view of the work count master 51 stored in the storage unit 20.
  • the arithmetic unit 30 included in the mold management device 1D is connected to the polishing management device 60.
  • the polishing management device 60 is a so-called server that manages the ordering and delivery of polishing of mold parts.
  • the calculation unit 30 receives from the polishing management device 60 data of the part number of the mold part delivered after the polishing is completed and the worker ID (identification) of the polishing.
  • the storage unit 20 stores the proficiency level master 50 and the work count master 51.
  • the proficiency level master 50 is table-type data in which the number of polishings experienced by the worker up to that point and the polishing work coefficient at that time are associated with each other.
  • the work count master 51 is tabular data in which the worker ID and the number of polishings performed by the worker registered with the worker ID up to that time are associated with each other.
  • the calculation unit 30 When the calculation unit 30 receives the data of the part number of the mold part and the worker ID of the polishing, the calculation unit 30 obtains the number of times of polishing of the worker who has polished the mold part. Is read. The calculation unit 30 obtains the number of polishings of the worker by adding 1 to the number of polishings associated with the received worker ID in the read number of work masters 51. Subsequently, the calculation unit 30 changes the number of polishings associated with the worker ID to the obtained number of polishings. As a result, the calculation unit 30 updates the work count master 51.
  • the calculation unit 30 further reads the proficiency level master 50 of the storage unit 20 and specifies the polishing work coefficient corresponding to the updated number of polishing times.
  • the calculation unit 30 reads out the polishing work proficiency master 29 described in the third embodiment, and converts the polishing work coefficient associated with the part number of the mold part received from the polishing management device 60 into the specified polishing work coefficient. change. Then, the changed polishing work coefficient is written in the polishing work proficiency master 29. As a result, the calculation unit 30 updates the polishing work coefficient of the mold parts delivered after the polishing is completed.
  • mold parts are described in the fourth embodiment, the mold parts may be replaced with the mold.
  • the mold management device 1D has a polishing work proficiency level based on the data of the part number and the worker ID of the mold part for which polishing has been completed, which is transmitted by the polishing management device 60. Update master 29. As a result, the replacement time can be estimated more accurately.
  • the calculation unit 30 corrects the number of presses counted by the counter 10 based on the plate thickness coefficient and the hardness coefficient of the material characteristic master 21 to obtain the correction press number.
  • the calculation unit 30 is not limited to this.
  • the calculation unit 30 may obtain the number of correction presses based on the material data stored in the storage unit 20.
  • the calculation unit 30 may obtain the number of correction presses based only on the plate thickness coefficient of the material 200 or only on the hardness coefficient.
  • the relative plate thickness of the other material 200 to the plate thickness of the specific material 200 in the material characteristic master 21 is calculated, and the correction is made from the relative plate thickness.
  • the number of presses may be calculated.
  • the Vickers hardness described in the first embodiment is one of the indexes for estimating the strength of the material 200. Therefore, the calculation unit 30 may obtain the number of correction presses based on the characteristic value for estimating the strength of the material 200 other than the Vickers hardness. For example, the calculation unit 30 may obtain the number of correction presses based on characteristic values such as yield strength, tensile strength, and fatigue strength. In this case, the calculation unit 30 may obtain the number of correction presses by using the characteristic coefficient which is a characteristic value relative to the specific material 200.
  • the plate thickness coefficient described in the first embodiment is one of the indexes indicating the size of the material 200. Therefore, the calculation unit 30 may obtain the number of correction presses based on another index indicating the size of the material 200. For example, the calculation unit 30 may obtain the number of correction presses based on the values of the volume, area, and the like of the material 200. In this case, the calculation unit 30 may obtain the number of correction presses by using the size coefficient which is a size value relative to the specific material 200.
  • the display unit 40 displays an alarm that the die should be replaced together with the die number and the number of presses.
  • the display unit 40 displays a die part number, the number of presses, and an alarm indicating that the die part should be replaced.
  • the display unit 40 displays an alarm indicating that the mold component is in a state to be polished.
  • the display unit 40 is not limited to this.
  • the display unit 40 may be any notification unit that notifies that it is time to replace the mold or the mold parts. Therefore, instead of the display unit 40, a buzzer that emits sound, a lamp that emits light, or the like may be used.
  • the calculation unit 30 determines whether or not the mold parts or the mold should be replaced.
  • the calculation unit 30 may determine whether or not to maintain the mold parts or the mold. In this case, it is preferable to store the number of maintenance presses in the storage unit 20 and determine whether or not the number of correction presses exceeds the number of maintenance presses.
  • the mold management program is stored in the memory 31, but the mold management program includes a flexible disk, a CD-ROM (Compact Disk Ready-Only Memory), a DVD (Digital entirely Disc), and an MO. It may be stored and distributed in a computer-readable recording medium such as (Magnet-Optical Disc).
  • the calculation unit 30 that executes the mold management process may be configured by installing the mold management program stored in the recording medium on the computer.
  • the mold management program may be stored in a disk device of a server device on an Internet communication network, and the mold management program may be superimposed on a carrier wave and downloaded.
  • 1A-1D mold management device 10 counter, 11 temperature and humidity sensor, 20 storage unit, 21 material characteristic master, 22 mold information master, 23 environmental information master, 24 machining information master, 25 mold parts information master, 26 production Planning transaction, 27 item information master, 28 configuration information master, 29 polishing work proficiency master, 30 calculation unit, 31 memory, 32 CPU, 40 display unit, 50 proficiency master, 51 work count master, 60 polishing management device, 100 Press machine, 200 materials.

Abstract

A mold management device (1A) is provided with: a storage unit (20) for storing a first durability pressing count of a mold or a mold component with which a press machine (100) is provided, and starting material data relating to an object to be processed by the press machine (100); a counter (10) for counting a pressing count of the press machine (100); a computing unit (30) for computing a corrected pressing count by correcting the pressing count counted by the counter (10) on the basis of the starting material data stored in the storage unit (20), and determining whether the corrected pressing count that has been computed exceeds the first durability pressing count stored in the storage unit (20); and a display unit (40) for reporting that the time has been reached at which the mold or mold component should be replaced, if the computing unit (30) has determined that the first durability pressing count has been exceeded.

Description

金型管理装置、金型管理方法及び金型管理プログラムMold management device, mold management method and mold management program
 本開示は金型管理装置、金型管理方法及び金型管理プログラムに関する。 This disclosure relates to a mold management device, a mold management method, and a mold management program.
 プレス機では、プレスを繰り返すことにより、プレス機に設置された金型と、パンチ、ダイ等の金型部品が摩耗してしまう。このため、プレス機では、摩耗に応じて金型及び金型部品を交換したり、それらを研磨して再生したりする必要がある。そこで、金型及び金型部品の摩耗を把握するため、金型管理装置が開発されている。 In the press machine, the mold installed in the press machine and the die parts such as punches and dies are worn by repeating the pressing. Therefore, in the press machine, it is necessary to replace the mold and the mold parts according to the wear, or to polish and regenerate them. Therefore, a mold management device has been developed in order to grasp the wear of the mold and the mold parts.
 例えば、特許文献1には、プレス回数及び、部品、消耗品の作動回数を検出するカウンタと、カウンタが検出した回数の合計値が設定時間に達すると警報を発して、金型、金型部品等の交換又は、メンテナンスの時期を知らせるブザー及びディスプレイと、を備える金型管理装置が開示されている。 For example, in Patent Document 1, a counter that detects the number of presses and the number of operations of parts and consumables, and an alarm when the total value of the number of times detected by the counter reaches a set time, a mold and a mold part are issued. A mold management device including a buzzer and a display for notifying the time of replacement or maintenance of the above is disclosed.
特開平4-178300号公報Japanese Unexamined Patent Publication No. 4-178300
 プレス機は、様々な種類の素材、様々な厚みの素材をプレスすることがある。この場合、素材の種類、厚みによって、金型及び金型部品の摩耗の程度が異なってしまう。 The press machine may press various kinds of materials and materials of various thicknesses. In this case, the degree of wear of the mold and the mold parts differs depending on the type and thickness of the material.
 しかし、特許文献1に記載の金型管理装置は、カウンタが検出した回数の合計値で警報を発するだけである。このため、この金型管理装置は、素材の違いによる金型及び金型部品の摩耗の違いを検出できない。その結果、この金型管理装置は、プレス機の金型及び金型部品の交換時期を正確に報知することができない。 However, the mold management device described in Patent Document 1 only issues an alarm based on the total number of times detected by the counter. Therefore, this mold management device cannot detect the difference in wear between the mold and the mold parts due to the difference in the material. As a result, this die management device cannot accurately notify the replacement time of the die and the die parts of the press machine.
 本開示は上記の課題を解決するためになされたもので、金型及び金型部品の交換時期を正確に報知することが可能な金型管理装置、金型管理方法及び金型管理プログラムを提供することを目的とする。 This disclosure is made in order to solve the above problems, and provides a mold management device, a mold management method, and a mold management program capable of accurately notifying the replacement time of a mold and a mold part. The purpose is to do.
 上記の目的を達成するため、本開示に係る金型管理装置は、記憶部、計数部、演算部及び、報知部を備える。記憶部は、プレス機が備える金型又は金型部品の第一耐用プレス回数と、プレス機の加工対象の素材データと、を格納する。計数部は、プレス機のプレス回数をカウントする。演算部は、記憶部に格納された素材データに基づいて計数部がカウントしたプレス回数を補正して補正プレス回数を演算し、演算された補正プレス回数が記憶部に格納された第一耐用プレス回数を超えたか否かを判定する。報知部は、演算部が第一耐用プレス回数を超えたと判定した場合に、金型又は金型部品を交換すべき時期に達したことを報知する。 In order to achieve the above object, the mold management device according to the present disclosure includes a storage unit, a counting unit, a calculation unit, and a notification unit. The storage unit stores the first durable press count of the die or the die part provided in the press machine and the material data to be processed by the press machine. The counting unit counts the number of presses of the press machine. The calculation unit corrects the number of presses counted by the counting unit based on the material data stored in the storage unit, calculates the number of correction presses, and the calculated number of correction presses is stored in the storage unit. Determine if the number of times has been exceeded. When the calculation unit determines that the number of first durable presses has been exceeded, the notification unit notifies that it is time to replace the die or the die component.
 本開示の構成によれば、演算部は、素材データに基づいて計数部がカウントしたプレス回数を補正して補正プレス回数を求め、その補正プレス回数が第一耐用プレス回数を超えたか否かを判定する。このため、プレスする素材に応じた金型及び金型部品の摩耗をより正確に推定することができる。その結果、金型管理装置は、金型及び金型部品の交換時期を正確に報知することができる。 According to the configuration of the present disclosure, the calculation unit corrects the number of presses counted by the counting unit based on the material data to obtain the number of correction presses, and determines whether or not the number of correction presses exceeds the first durable press number. judge. Therefore, it is possible to more accurately estimate the wear of the die and the die parts according to the material to be pressed. As a result, the mold management device can accurately notify the replacement time of the mold and the mold parts.
本開示の実施の形態1に係るプレス機の金型管理装置のブロック図Block diagram of the die management device of the press machine according to the first embodiment of the present disclosure. 本開示の実施の形態1に係るプレス機の金型管理装置が備える記憶部に格納された素材特性マスタの概略図Schematic diagram of a material characteristic master stored in a storage unit included in the die management device of the press machine according to the first embodiment of the present disclosure. 本開示の実施の形態1に係るプレス機の金型管理装置が備える記憶部に格納された金型情報マスタの概略図Schematic diagram of the die information master stored in the storage unit included in the die management device of the press machine according to the first embodiment of the present disclosure. 本開示の実施の形態1に係るプレス機の金型管理装置が備える記憶部に格納された環境情報マスタの概略図Schematic diagram of the environmental information master stored in the storage unit included in the die management device of the press machine according to the first embodiment of the present disclosure. 本開示の実施の形態1に係るプレス機の金型管理装置が備える記憶部に格納された加工情報マスタの概略図Schematic diagram of the machining information master stored in the storage unit included in the die management device of the press machine according to the first embodiment of the present disclosure. 本開示の実施の形態1に係るプレス機の金型管理装置が備える記憶部に格納された金型部品情報マスタの概略図Schematic diagram of the die part information master stored in the storage unit included in the die management device of the press machine according to the first embodiment of the present disclosure. 本開示の実施の形態1に係るプレス機の金型管理装置が備える演算部のハードウエア構成図The hardware configuration diagram of the arithmetic unit included in the die management device of the press machine according to the first embodiment of the present disclosure. 本開示の実施の形態1に係る金型管理装置の金型管理処理のフロー図The flow chart of the mold management process of the mold management apparatus which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態2に係る金型管理装置のブロック図Block diagram of the mold management device according to the second embodiment of the present disclosure. 本開示の実施の形態2に係る金型管理装置が備える記憶部に格納された生産計画トランザクションの概略図Schematic diagram of the production planning transaction stored in the storage unit included in the mold management device according to the second embodiment of the present disclosure. 本開示の実施の形態2に係る金型管理装置が備える記憶部に格納された品目情報マスタの概略図Schematic diagram of the item information master stored in the storage unit included in the mold management device according to the second embodiment of the present disclosure. 本開示の実施の形態2に係る金型管理装置が備える記憶部に格納された品目情報マスタの製品、部品の関係の図Diagram of the relationship between products and parts of the item information master stored in the storage unit included in the mold management device according to the second embodiment of the present disclosure. 本開示の実施の形態2に係る金型管理装置が備える記憶部に格納された構成情報マスタの概略図Schematic diagram of the configuration information master stored in the storage unit included in the mold management device according to the second embodiment of the present disclosure. 本開示の実施の形態3に係る金型管理装置のブロック図Block diagram of the mold management device according to the third embodiment of the present disclosure. 本開示の実施の形態3に係る金型管理装置が備える記憶部に格納された研磨作業習熟度マスタの概略図Schematic diagram of a polishing work proficiency master stored in a storage unit included in the mold management device according to the third embodiment of the present disclosure. 本開示の実施の形態4に係る金型管理装置のブロック図Block diagram of the mold management device according to the fourth embodiment of the present disclosure. 本開示の実施の形態4に係る金型管理装置が備える記憶部に格納された習熟度マスタの概略図Schematic diagram of the proficiency level master stored in the storage unit included in the mold management device according to the fourth embodiment of the present disclosure. 本開示の実施の形態4に係る金型管理装置が備える記憶部に格納された作業回数マスタの概略図Schematic diagram of the work count master stored in the storage unit included in the mold management device according to the fourth embodiment of the present disclosure.
 以下、本開示の実施の形態に係るプレス機の金型管理装置、プレス機の金型管理方法及びプレス機の金型管理プログラムについて図面を参照して詳細に説明する。なお、図中、同一又は同等の部分には同一の符号を付す。 Hereinafter, the die management device for the press machine, the die management method for the press machine, and the die management program for the press machine according to the embodiment of the present disclosure will be described in detail with reference to the drawings. In the figure, the same or equivalent parts are designated by the same reference numerals.
(実施の形態1)
 実施の形態1に係るプレス機の金型管理装置は、プレス機の金型及び、パンチ、ダイ等の金型部品の交換又は、研磨の時期を管理するための装置である。この金型管理装置は、プレス回数に基づいて金型及び金型部品の交換又は、研磨の時期を求め、ユーザーに報知するところ、この金型管理装置は、正確な時期を求めるため、プレス回数を補正係数に基づいて補正する。
(Embodiment 1)
The die management device for the press machine according to the first embodiment is a device for controlling the timing of replacement or polishing of the die of the press machine and the die parts such as punches and dies. This die management device requests the replacement or polishing time of the mold and the mold parts based on the number of presses and notifies the user. However, since this mold management device obtains the accurate time, the number of presses is obtained. Is corrected based on the correction coefficient.
 まず、図1-図7を参照して、金型管理装置の構成について説明する。次に、図8を参照して、金型管理装置の動作について説明する。 First, the configuration of the mold management device will be described with reference to FIGS. 1 to 7. Next, the operation of the mold management device will be described with reference to FIG.
 図1は、実施の形態1に係る金型管理装置1Aのブロック図である。図2は、金型管理装置1Aが備える記憶部20に格納された素材特性マスタ21の概略図である。図3は、記憶部20に格納された金型情報マスタ22の概略図である。図4は、記憶部20に格納された環境情報マスタ23の概略図である。図5は、記憶部20に格納された加工情報マスタ24の概略図である。図6は、記憶部20に格納された金型部品情報マスタ25の概略図である。図7は、金型管理装置1Aが備える演算部30のハードウエア構成図である。 FIG. 1 is a block diagram of the mold management device 1A according to the first embodiment. FIG. 2 is a schematic view of the material characteristic master 21 stored in the storage unit 20 included in the mold management device 1A. FIG. 3 is a schematic view of the mold information master 22 stored in the storage unit 20. FIG. 4 is a schematic view of the environment information master 23 stored in the storage unit 20. FIG. 5 is a schematic view of the processing information master 24 stored in the storage unit 20. FIG. 6 is a schematic view of the mold component information master 25 stored in the storage unit 20. FIG. 7 is a hardware configuration diagram of the arithmetic unit 30 included in the mold management device 1A.
 図1に示すように、金型管理装置1Aは、プレス機100が素材200をプレスしたプレス回数をカウントするカウンタ10と、カウンタ10がカウントしたプレス回数を補正するための各データが格納された記憶部20と、記憶部20に格納された各データで、カウンタ10がカウントしたプレス回数を補正すると共に、金型及び金型部品の交換、研磨の時期であるか否かを判定する演算部30と、演算部30の出力に基づいて交換、研磨情報を表示する表示部40と、を備えている。 As shown in FIG. 1, the die management device 1A stores a counter 10 that counts the number of times the material 200 is pressed by the press machine 100, and each data for correcting the number of presses counted by the counter 10. The storage unit 20 and each data stored in the storage unit 20 correct the number of presses counted by the counter 10, and a calculation unit that determines whether or not it is time to replace the die and the die parts and polish. A display unit 40 for displaying replacement and polishing information based on the output of the calculation unit 30 is provided.
 カウンタ10は、プレス機100の図示しない加圧シリンダに接続され、その加圧シリンダの伸縮動作からプレス機100のショット回数、すなわち、プレス回数をカウントする。カウンタ10は、プレス回数をカウントする毎に、カウントしたプレス回数を演算部30に送信する。 The counter 10 is connected to a pressure cylinder (not shown) of the press machine 100, and counts the number of shots of the press machine 100, that is, the number of presses from the expansion / contraction operation of the pressure cylinder. Each time the counter 10 counts the number of presses, the counter 10 transmits the counted number of presses to the calculation unit 30.
 なお、本明細書では、カウンタ10は、計数部、計数器の一例である。 In this specification, the counter 10 is an example of a counting unit and a counting unit.
 一方、記憶部20には、プレス回数を補正するための素材の基本情報と金型の基本情報が格納されている。詳細には、記憶部20には、素材特性マスタ21、金型情報マスタ22、環境情報マスタ23、加工情報マスタ24及び、金型部品情報マスタ25が格納されている。ここで、マスタとは、基礎的な情報となるデータのことであり、マスターデータのことである。 On the other hand, the storage unit 20 stores basic information of the material and basic information of the die for correcting the number of presses. Specifically, the storage unit 20 stores a material characteristic master 21, a mold information master 22, an environment information master 23, a machining information master 24, and a mold part information master 25. Here, the master is data that serves as basic information, and is master data.
 素材特性マスタ21は、上記プレス回数を補正するための素材の基本情報のデータである。素材特性マスタ21は、プレス機100でプレスする素材200の基礎情報をテーブル形式で格納している。詳細には、素材特性マスタ21では、図2に示すように、素材200を特定する材料コードに、その素材200の素材名、板厚、板厚係数、硬さ係数の各データが対応付けられている。 The material characteristic master 21 is data of basic information of the material for correcting the number of presses. The material characteristic master 21 stores the basic information of the material 200 to be pressed by the press machine 100 in a table format. Specifically, in the material property master 21, as shown in FIG. 2, each data of the material name, the plate thickness, the plate thickness coefficient, and the hardness coefficient of the material 200 is associated with the material code for specifying the material 200. ing.
 ここで、材料コードとは、素材200の材質毎に設定された番号のことである。板厚とは、プレス機100の加工対象である素材200が板状であるところ、その板の厚みのことである。板厚係数とは、特定の素材200の板厚を1としたときの、換言すると、基準材の板厚を1としたときの、その他の素材200の相対的な厚みのことである。また、硬さ係数とは、表1に示すように、基準材のビッカース硬さ、すなわちHV(Vickers hardness)硬さを1としたときの、その他の素材200の相対的な硬さのことである。なお、表1に示す硬さ係数は、青銅のHV硬さを1としたときの、各素材200の硬さ係数を示している。 Here, the material code is a number set for each material of the material 200. The plate thickness is the thickness of the plate where the material 200 to be processed by the press machine 100 is plate-shaped. The plate thickness coefficient is the relative thickness of the other material 200 when the plate thickness of the specific material 200 is 1, in other words, when the plate thickness of the reference material is 1. Further, as shown in Table 1, the hardness coefficient is the relative hardness of the other material 200 when the Vickers hardness of the reference material, that is, the HV (Vickers hardness) hardness is 1. is there. The hardness coefficient shown in Table 1 indicates the hardness coefficient of each material 200 when the HV hardness of bronze is 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、本明細書では、素材特性マスタ21の板厚係数、硬さ係数のデータは、素材データの一例である。また、板厚係数は、サイズ係数、硬さ係数は、特性係数の一例である。さらに、ビッカース硬さ値は、特性値の一例である。 Further, in this specification, the data of the plate thickness coefficient and the hardness coefficient of the material property master 21 is an example of the material data. The plate thickness coefficient is an example of a size coefficient, and the hardness coefficient is an example of a characteristic coefficient. Further, the Vickers hardness value is an example of a characteristic value.
 これに対して、金型情報マスタ22は、金型を管理するための金型の基本情報のデータである。金型情報マスタ22は、プレス機100の金型情報をテーブル形式で格納している。詳細には、金型情報マスタ22は、図3に示すように、金型を特定する金型番号に、金型名、耐用プレス回数、単価、納品期間及び、成形難易度係数の各データが対応付けられている。 On the other hand, the mold information master 22 is data of basic information of the mold for managing the mold. The die information master 22 stores the die information of the press machine 100 in a table format. Specifically, as shown in FIG. 3, in the mold information master 22, each data of the mold name, the number of durable presses, the unit price, the delivery period, and the molding difficulty coefficient is added to the mold number for specifying the mold. It is associated.
 ここで、耐用プレス回数とは、金型の摩耗から金型を交換すべきと判断する指標となるプレス回数のことである。単価、納品期間とは、金型を購入するときの1つあたりの金額、金型が納品されるまでにかかる期間のことである。 Here, the durable press count is the number of presses that is an index for determining that the die should be replaced due to the wear of the die. The unit price and the delivery period are the amount of money for each mold purchased and the period required for the mold to be delivered.
 成形難易度係数とは、金型で成形するときの難易度を示す係数のことである。例えば、プレス機100である製品の部品を作製する場合、製品の部品点数が多いときに部品の形状が複雑となることから、製品の部品点数が多いほど、部品の成形の難易度が高い。また、金型部品の欠けの発生頻度が高い部品ほど、又は金型部品の摩耗が早い部品ほど、成形の難易度が高い。成形難易度係数は、このような事情をプレス回数の補正に反映するために設けられた係数である。成形難易度係数は、図3に示す金型番号、金型名の金型を用いて予め実験することにより決められている。 The molding difficulty coefficient is a coefficient that indicates the difficulty level when molding with a mold. For example, when manufacturing a part of a product of the press machine 100, the shape of the part becomes complicated when the number of parts of the product is large. Therefore, the larger the number of parts of the product, the higher the difficulty of molding the part. Further, the more frequently the mold parts are chipped, or the faster the mold parts wear, the higher the difficulty of molding. The molding difficulty coefficient is a coefficient provided to reflect such a situation in the correction of the number of presses. The molding difficulty coefficient is determined by conducting an experiment in advance using the mold number and the mold name shown in FIG.
 なお、本明細書では、耐用プレス回数は、第一耐用プレス回数の一例である。 In this specification, the number of durable presses is an example of the number of durable presses.
 また、環境情報マスタ23は、上記プレス回数を補正するときに用いる、環境の基本情報のデータである。環境情報マスタ23は、プレス機100が設置されている場所の環境情報をテーブル形式で格納している。詳細には、環境情報マスタ23は、図4に示すように、湿度と環境係数が対応付けられている。 Further, the environment information master 23 is data of basic environment information used when correcting the number of presses. The environment information master 23 stores the environment information of the place where the press machine 100 is installed in a table format. Specifically, in the environmental information master 23, as shown in FIG. 4, the humidity and the environmental coefficient are associated with each other.
 ここで、環境係数とは、金型で成形するときの環境の程度を示す係数のことである。例えば、日中、気温が50℃、夜間に気温が10℃以下となる環境にプレス機100を設置すると、日中に10%の湿度であっても、夜間に100%の湿度となり、その結果、金型部品が腐食しやすくなってしまう。この場合、金型部品の寿命が短くなってしまう。環境係数は、このような環境を示す係数である。環境係数は、図3に示す金型番号、金型名の金型を用いて様々な湿度環境下で予め実験することにより、求められている。 Here, the environmental coefficient is a coefficient that indicates the degree of the environment when molding with a mold. For example, if the press machine 100 is installed in an environment where the temperature is 50 ° C during the day and 10 ° C or less at night, even if the humidity is 10% during the day, the humidity becomes 100% at night, and as a result. , Mold parts are easily corroded. In this case, the life of the mold parts is shortened. The environmental coefficient is a coefficient indicating such an environment. The environmental coefficient is obtained by conducting an experiment in advance under various humidity environments using the molds having the mold numbers and mold names shown in FIG.
 また、加工情報マスタ24は、金型を管理するための金型の基本情報のデータである。加工情報マスタ24は、プレス機100の金型がプレス対象の素材200に適合しているかを確認するための情報をテーブル形式で格納している。詳細には、加工情報マスタ24では、図5に示すように、金型名及び金型番号に、それら金型名及び金型番号に適合する素材200の材料コードが対応付けられている。 Further, the processing information master 24 is data of basic information of the mold for managing the mold. The processing information master 24 stores information in a table format for confirming whether the die of the press machine 100 conforms to the material 200 to be pressed. Specifically, in the processing information master 24, as shown in FIG. 5, the mold name and the mold number are associated with the material code of the material 200 corresponding to the mold name and the mold number.
 さらに、金型部品情報マスタ25も、金型を管理するための金型の基本情報のデータである。金型部品情報マスタ25は、プレス機100の金型部品情報をテーブル形式で格納している。詳細には、金型部品情報マスタ25は、図6に示すように、金型部品番号に、金型部品名、金型番号、耐用回数、研磨プレス回数、現プレス回数、研磨寿命、現研磨量、研磨回数、単価の各データが対応付けられている。 Furthermore, the mold parts information master 25 is also data of basic mold information for managing the mold. The die part information master 25 stores the die part information of the press machine 100 in a table format. Specifically, as shown in FIG. 6, the mold part information master 25 includes the mold part name, the mold number, the service life, the number of polishing presses, the current number of presses, the polishing life, and the current polishing in the mold part number. Each data of quantity, number of polishings, and unit price is associated.
 ここで、耐用回数とは、摩耗のため、金型部品を交換すべきと判断する指標となるプレス回数のことである。研磨プレス回数とは、金型部品を研磨することにより金型部品を再生すべきと判断する指標となるプレス回数のことである。現プレス回数は、プレス機100の最新プレス回数のことである。研磨寿命は、金型部品がどの程度まで研磨可能かを示す寿命のことであり、金型部品情報マスタ25では、金型部品の研磨可能な部分の厚みで代用している。現研磨量、研磨回数、単価は、それまでに金型部品が研磨された量、研磨された回数、金型部品の購入額のことである。 Here, the service life is the number of presses that is an index for determining that the mold parts should be replaced due to wear. The number of polishing presses is the number of presses that is an index for determining that the mold parts should be regenerated by polishing the mold parts. The current number of presses is the latest number of presses of the press machine 100. The polishing life is a life indicating how much the mold part can be polished, and in the mold part information master 25, the thickness of the polishable part of the mold part is substituted. The current polishing amount, the number of times of polishing, and the unit price are the amount of polishing of the mold parts, the number of times of polishing, and the purchase price of the mold parts.
 なお、本明細書では、耐用回数は、第二耐用プレス回数の一例である。 In this specification, the useful number of times is an example of the number of times of the second durable press.
 このようなマスタが記憶部20に格納されている。これらマスタは、図1に示す演算部30によって読み取られ、各種演算に用いられる。 Such a master is stored in the storage unit 20. These masters are read by the calculation unit 30 shown in FIG. 1 and used for various calculations.
 演算部30は、図7に示すメモリ31に格納された金型管理プログラムをCPU(Central Processing Unit)32が実行することで実現されている。ここで、CPUは、本明細書でいうところのコンピュータの一例である。 The calculation unit 30 is realized by the CPU (Central Processing Unit) 32 executing the mold management program stored in the memory 31 shown in FIG. 7. Here, the CPU is an example of a computer as referred to in the present specification.
 演算部30は、カウンタ10からカウンタ10がプレス機100のプレス回数をカウントした場合に、そのプレス回数のデータをカウンタ10から受信する。そして、演算部30は、プレスする素材200の摩耗への影響度を反映させるため、受信したプレス回数を補正する。 When the counter 10 counts the number of presses of the press machine 100 from the counter 10, the calculation unit 30 receives the data of the number of presses from the counter 10. Then, the calculation unit 30 corrects the number of times of pressing received in order to reflect the degree of influence on the wear of the material 200 to be pressed.
 詳細には、プレス機100は、図示しないが、テンキー、キーボード等で構成された入力部を備えている。その入力部には、プレス機100でプレス加工する素材200の材料コードが入力される。演算部30は、入力部に材料コードが入力された場合に、その材料コードを入力部から受信する。また、演算部30は、上述したように、プレス回数のデータをカウンタ10から受信する。演算部30は、入力部から受信した材料コードに対応する素材200の板厚係数と硬さ係数を、記憶部20の素材特性マスタ21から読み出して、カウンタ10から受信したプレス回数を、板厚係数と硬さ係数に基づいて補正する。これにより、演算部30は、補正プレス回数を求める。 In detail, although not shown, the press machine 100 includes an input unit composed of a numeric keypad, a keyboard, and the like. The material code of the material 200 to be pressed by the press machine 100 is input to the input unit. When the material code is input to the input unit, the calculation unit 30 receives the material code from the input unit. Further, as described above, the calculation unit 30 receives the data of the number of presses from the counter 10. The calculation unit 30 reads the plate thickness coefficient and hardness coefficient of the material 200 corresponding to the material code received from the input unit from the material characteristic master 21 of the storage unit 20, and calculates the number of presses received from the counter 10 as the plate thickness. Correct based on the coefficient and hardness coefficient. As a result, the calculation unit 30 obtains the number of correction presses.
 また、演算部30は、プレス機100の設置環境の摩耗への影響度を反映させるため、補正プレス回数をさらに補正する。 Further, the calculation unit 30 further corrects the number of correction presses in order to reflect the degree of influence on the wear of the installation environment of the press machine 100.
 詳細には、プレス機100は、図1に示す温湿度センサ11を備える。演算部30は、温湿度センサ11の温度及び湿度のデータを受信する。また、演算部30は、記憶部20の環境情報マスタ23を読み出して、温湿度センサ11から受信した湿度データに対応する環境係数を求める。そして、演算部30は、求めた環境係数に基づいて、上述した補正プレス回数をさらに補正する。これにより、演算部30は、補正プレス回数を再度求める。 Specifically, the press machine 100 includes the temperature / humidity sensor 11 shown in FIG. The calculation unit 30 receives the temperature and humidity data of the temperature / humidity sensor 11. Further, the calculation unit 30 reads out the environment information master 23 of the storage unit 20 and obtains an environment coefficient corresponding to the humidity data received from the temperature / humidity sensor 11. Then, the calculation unit 30 further corrects the number of correction presses described above based on the obtained environmental coefficient. As a result, the calculation unit 30 again obtains the number of correction presses.
 さらに、演算部30は、成形対象の摩耗への影響度を反映させるため、補正プレス回数を補正する。 Further, the calculation unit 30 corrects the number of correction presses in order to reflect the degree of influence on the wear of the molding target.
 詳細には、上述した、図示しない入力部には、プレス機100に設置された金型の金型番号が入力されるところ、演算部30は、入力部に入力された金型番号を受信する。また、演算部30は、記憶部20の金型情報マスタ22から、受信した金型番号に対応する成形難易度係数を読み出し、読み出した成形難易度係数に基づいて、さらに補正プレス回数を補正する。これにより、演算部30は、補正プレス回数を再度求める。 In detail, the die number of the mold installed in the press machine 100 is input to the input unit (not shown) described above, and the calculation unit 30 receives the mold number input to the input unit. .. Further, the calculation unit 30 reads out the molding difficulty coefficient corresponding to the received mold number from the mold information master 22 of the storage unit 20, and further corrects the number of correction presses based on the read molding difficulty coefficient. .. As a result, the calculation unit 30 again obtains the number of correction presses.
 演算部30は、求めた補正プレス回数から金型が交換すべきプレス回数に達しているか否かを判定する。 The calculation unit 30 determines from the obtained number of correction presses whether or not the die has reached the number of presses to be replaced.
 詳細には、演算部30は、受信した金型番号に対応する耐用プレス回数を、記憶部20の金型情報マスタ22から読み取る。演算部30は、記憶部20の金型情報マスタ22から、読み取った金型番号に対応する耐用プレス回数を読み取る。演算部30は、上述した補正プレス回数を求めると、その補正プレス回数と、読み取った耐用プレス回数を比較して、金型が交換すべきプレス回数に達しているか否かを判定する。そして、演算部30は、金型が交換すべきプレス回数に達していると判定した場合、金型交換信号を、判定された金型番号とプレス回数と共に、表示部40に送信する。 Specifically, the calculation unit 30 reads the number of durable presses corresponding to the received mold number from the mold information master 22 of the storage unit 20. The calculation unit 30 reads the number of durable presses corresponding to the read die number from the die information master 22 of the storage unit 20. When the number of correction presses described above is obtained, the calculation unit 30 compares the number of correction presses and the number of durable presses read to determine whether or not the die has reached the number of presses to be replaced. Then, when the calculation unit 30 determines that the die has reached the number of presses to be replaced, the calculation unit 30 transmits the die exchange signal to the display unit 40 together with the determined die number and the number of presses.
 演算部30は、同様にして、求めた補正プレス回数から金型部品が交換すべきプレス回数に達しているか否か、或いは、研磨すべきプレス回数に達しているか否かを判定する。 Similarly, the calculation unit 30 determines from the obtained number of correction presses whether or not the die component has reached the number of presses to be replaced, or whether or not the number of presses to be polished has been reached.
 詳細には、入力部には、プレス機100に設置された金型に使用されている金型部品番号が入力される。演算部30は、入力部に入力された金型部品番号を受信する。さらに、演算部30は、記憶部20から、受信した金型部品番号に対応する金型部品情報マスタ25の耐用回数と研磨プレス回数を読み取る。演算部30は、補正プレス回数を演算すると、演算した補正プレス回数と耐用回数を比較して、金型部品が交換すべきプレス回数に達しているか否かを判定する。また、演算部30は、演算した補正プレス回数と研磨プレス回数を比較して、金型部品が研磨すべきプレス回数に達しているか否かを判定する。演算部30は、金型部品が交換すべきプレス回数に達していると判定した場合、或いは、金型部品が研磨すべきプレス回数に達していると判定した場合、部品交換信号或いは部品研磨信号を、判定された金型部品番号とプレス回数と共に、表示部40に送信する。 Specifically, the mold part number used for the mold installed in the press machine 100 is input to the input unit. The calculation unit 30 receives the mold part number input to the input unit. Further, the calculation unit 30 reads from the storage unit 20 the useful times and the number of polishing presses of the mold part information master 25 corresponding to the received mold part numbers. When the calculation unit 30 calculates the number of correction presses, it compares the calculated number of correction presses with the number of useful times to determine whether or not the die component has reached the number of presses to be replaced. In addition, the calculation unit 30 compares the calculated number of correction presses with the number of polishing presses to determine whether or not the die component has reached the number of presses to be polished. When the calculation unit 30 determines that the die component has reached the number of presses to be replaced, or determines that the die component has reached the number of presses to be polished, the component replacement signal or the component polishing signal. Is transmitted to the display unit 40 together with the determined mold part number and the number of presses.
 表示部40は、タッチパネル付きの液晶ディスプレイによって構成されている。表示部40は、演算部30の金型交換信号、部品交換信号又は部品研磨信号に基づいて、金型、金型部品が交換又は研磨すべき時期に達した旨の警告を表示する。 The display unit 40 is composed of a liquid crystal display with a touch panel. The display unit 40 displays a warning that the time for replacing or polishing the mold and the mold parts has arrived, based on the mold replacement signal, the component replacement signal, or the component polishing signal of the calculation unit 30.
 詳細には、表示部40は、演算部30から金型番号とプレス回数と共に交換信号を受信すると、その金型番号とプレス回数を表示する。また、その金型番号の金型が交換すべき状態であることを表示する。表示部40には、ブザーが設けられており、そのブザーは、アラームを発する。これにより、表示部40は、プレス機100のユーザーに金型が交換すべき状態であることを報知する。なお、表示部40は、金型が交換すべき状態であることを表示するときに、金型情報マスタ22の単価、納品期間を表示すると良い。 Specifically, when the display unit 40 receives the exchange signal from the calculation unit 30 together with the die number and the number of presses, the display unit 40 displays the die number and the number of presses. It also indicates that the mold with that mold number is in a state to be replaced. The display unit 40 is provided with a buzzer, and the buzzer issues an alarm. As a result, the display unit 40 notifies the user of the press machine 100 that the die should be replaced. The display unit 40 may display the unit price and the delivery period of the mold information master 22 when displaying that the mold is in a state to be replaced.
 また、表示部40は、演算部30から、金型部品番号とプレス回数と共に交換信号又は研磨信号を受信すると、その金型部品番号とプレス回数を表示すると共に、その金型部品番号の金型部品が交換すべき又は研磨すべき状態であることを表示する。また、アラームを発生させる。これにより、表示部40は、ユーザーに金型部品が交換又は研磨すべき状態であることを報知する。なお、表示部40は、金型部品が交換すべき又は研磨すべき状態であることを表示するときに、金型部品情報マスタ25の研磨寿命、現研磨量等を表示すると良い。 When the display unit 40 receives a replacement signal or a polishing signal from the calculation unit 30 together with the mold part number and the number of presses, the display unit 40 displays the mold part number and the number of presses, and also displays the mold part number and the mold of the mold part number. Indicates that the part should be replaced or polished. It also raises an alarm. As a result, the display unit 40 notifies the user that the mold component is in a state to be replaced or polished. The display unit 40 may display the polishing life of the mold component information master 25, the current polishing amount, and the like when indicating that the mold component is in a state to be replaced or polished.
 なお、本明細書では、表示部40は、報知部の一例である。また、表示部40と演算部30は、グラフィックオペレーションターミナル(Graphic Operation Terminal:GOT[登録商標])と呼んでも良い。 In this specification, the display unit 40 is an example of the notification unit. Further, the display unit 40 and the calculation unit 30 may be referred to as a graphic operation terminal (Graphic Operation Thermal: GOT [registered trademark]).
 次に、図8を参照して、金型管理装置1Aの動作について説明する。以下の説明では、プレス機100は、図示しない起動ボタンと入力部を備えるものとする。 Next, the operation of the mold management device 1A will be described with reference to FIG. In the following description, it is assumed that the press machine 100 includes a start button and an input unit (not shown).
 図8は、実施の形態1に係る金型管理装置1Aの金型管理処理のフロー図である。 FIG. 8 is a flow chart of the mold management process of the mold management device 1A according to the first embodiment.
 まず、図示しないが、プレス機100のユーザーは、プレス機100の起動ボタンを押す。これにより、プレス機100が起動する。さらに、金型管理装置1AのCPU32によって金型管理プログラムが実行され、その結果、金型管理処理のフローが開始される。 First, although not shown, the user of the press machine 100 presses the start button of the press machine 100. As a result, the press machine 100 is started. Further, the mold management program is executed by the CPU 32 of the mold management device 1A, and as a result, the flow of the mold management process is started.
 プレス機100が起動された後、かつプレス作業を開始する前に、ユーザーは、プレス機100に設置された金型の金型番号、金型部品番号、プレス機100に供給する予定の素材200の材料コードを入力部に入力する。これに対して、プレス機100は、入力された金型番号、金型部品番号、材料コードを金型管理装置1Aの演算部30に送信する。これにより、図8に示すように、演算部30は、金型番号、金型部品番号及び、材料コードを受信する(ステップS1)。 After the press machine 100 is started and before the press work is started, the user can supply the die number, the die part number, and the material 200 of the mold installed in the press machine 100 to the press machine 100. Enter the material code of. On the other hand, the press machine 100 transmits the input die number, die part number, and material code to the calculation unit 30 of the die management device 1A. As a result, as shown in FIG. 8, the calculation unit 30 receives the mold number, the mold part number, and the material code (step S1).
 続いて、演算部30は、受信した金型番号に材料コードが適合しているのか否かを判定する(ステップS2)。詳細には、演算部30は、記憶部20の加工情報マスタ24から、すべての金型番号を読み取り、受信した金型番号が加工情報マスタ24に含まれている金型番号であるか否かを判定する。さらに、演算部30は、加工情報マスタ24に含まれている金型番号である場合、その金型番号に対応付けられた材料コードが、受信した材料コードに一致するか否かを判定する。演算部30は、受信した金型番号が加工情報マスタ24に含まれ、かつ、受信した材料コードが加工情報マスタ24の材料コードに一致する場合、受信した金型番号に材料コードが適合していると判定する。 Subsequently, the calculation unit 30 determines whether or not the material code conforms to the received mold number (step S2). Specifically, the calculation unit 30 reads all the mold numbers from the processing information master 24 of the storage unit 20, and whether or not the received mold numbers are the mold numbers included in the processing information master 24. To judge. Further, when the mold number is included in the machining information master 24, the calculation unit 30 determines whether or not the material code associated with the mold number matches the received material code. When the received mold number is included in the machining information master 24 and the received material code matches the material code of the machining information master 24, the calculation unit 30 matches the material code with the received mold number. Judge that there is.
 演算部30は、受信した材料コードが金型番号に適合していないと判定した場合(ステップS2のNo)、表示部40とプレス機100に警報信号を送信する(ステップS3)。これにより、演算部30は、プレス機100を停止させる。また、表示部40に金型不適合の警告を表示させる。これにより、演算部30は、ユーザーに金型又は素材200の交換を促す。 When the calculation unit 30 determines that the received material code does not match the die number (No in step S2), the calculation unit 30 transmits an alarm signal to the display unit 40 and the press machine 100 (step S3). As a result, the calculation unit 30 stops the press machine 100. In addition, the display unit 40 displays a warning of mold incompatibility. As a result, the calculation unit 30 prompts the user to replace the mold or the material 200.
 演算部30は、警報信号を送信後、ステップS1に戻り、ユーザーが金型又は素材200の交換をして、入力部に新たな金型番号、金型部品番号及び、材料コードが入力されるまで待機する。 After transmitting the alarm signal, the calculation unit 30 returns to step S1, the user replaces the mold or the material 200, and a new mold number, mold part number, and material code are input to the input unit. Wait until.
 一方、演算部30は、受信した材料コードが金型番号に適合していると判定した場合(ステップS2のYes)、金型部品が研磨寿命に達していないか否かを判定する(ステップS4)。詳細には、演算部30は、記憶部20の金型部品情報マスタ25から、上記の金型部品番号に対応付けられた金型部品の研磨寿命と現研磨量を読み取り、読み取った研磨寿命と現研磨量を比較して、現研磨量が研磨寿命を超えていないか否かを判定する。 On the other hand, when the calculation unit 30 determines that the received material code conforms to the mold number (Yes in step S2), the calculation unit 30 determines whether or not the mold component has reached the polishing life (step S4). ). Specifically, the calculation unit 30 reads the polishing life and the current polishing amount of the mold part associated with the above-mentioned mold part number from the mold part information master 25 of the storage unit 20, and reads the polishing life. The current polishing amount is compared to determine whether or not the current polishing amount exceeds the polishing life.
 演算部30は、現研磨量が研磨寿命を超え、金型部品が研磨寿命に達していると判定した場合(ステップS4のNo)、ステップS3に戻り、表示部40とプレス機100に警報信号を送信する。このとき、演算部30は、表示部40に金型部品番号を送信する。これにより、表示部40は、金型部品番号と研磨寿命の警告を表示する。その結果、演算部30は、ユーザーに金型の確認を促す。 When the calculation unit 30 determines that the current polishing amount has exceeded the polishing life and the mold component has reached the polishing life (No in step S4), the calculation unit 30 returns to step S3 and gives an alarm signal to the display unit 40 and the press machine 100. To send. At this time, the calculation unit 30 transmits the mold part number to the display unit 40. As a result, the display unit 40 displays the mold part number and the warning of the polishing life. As a result, the calculation unit 30 prompts the user to confirm the mold.
 一方、演算部30は、金型部品が研磨寿命に達していないと判定した場合(ステップS4のYes)、演算部30は、プレス機100を停止させず、また、表示部40に警告を表示しない。そして、演算部30は、プレス機100に素材200が供給されるまで待機する。 On the other hand, when the calculation unit 30 determines that the die component has not reached the polishing life (Yes in step S4), the calculation unit 30 does not stop the press machine 100 and displays a warning on the display unit 40. do not do. Then, the calculation unit 30 waits until the material 200 is supplied to the press machine 100.
 これに対して、ユーザーは、プレス作業をするため、プレス機100にプレス対象の素材200を供給する。カウンタ10は、プレス機100が供給された素材200をプレスすると、プレス毎にプレス回数をカウントして、カウントしたプレス回数のデータを演算部30に送信する。演算部30は、そのプレス回数データを受信する(ステップS5)。 On the other hand, the user supplies the material 200 to be pressed to the press machine 100 in order to perform the pressing work. When the material 200 supplied by the press machine 100 is pressed, the counter 10 counts the number of presses for each press and transmits the data of the counted number of presses to the calculation unit 30. The calculation unit 30 receives the press count data (step S5).
 演算部30は、プレス回数データを受信すると、記憶部20から、素材特性マスタ21の、材料コードに対応する素材200の板厚係数と硬さ係数を読み出す。さらに、演算部30は、温湿度センサ11の湿度のデータを受信し、記憶部20の環境情報マスタ23から、受信した湿度データに対応する環境係数を読み出す。また、演算部30は、記憶部20の金型情報マスタ22からステップS1で受信した金型番号に対応する成形難易度係数を読み出す。 When the calculation unit 30 receives the press count data, it reads out from the storage unit 20 the plate thickness coefficient and the hardness coefficient of the material 200 corresponding to the material code of the material characteristic master 21. Further, the calculation unit 30 receives the humidity data of the temperature / humidity sensor 11 and reads out the environmental coefficient corresponding to the received humidity data from the environment information master 23 of the storage unit 20. Further, the calculation unit 30 reads out the molding difficulty coefficient corresponding to the mold number received in step S1 from the mold information master 22 of the storage unit 20.
 続いて、演算部30は、読み出した板厚係数、硬さ係数、環境係数及び成形難易度係数に基づいて、プレス回数を補正する(ステップS6)。詳細には、演算部30は、以下に示す式1に基づいて、プレス回数を補正して補正プレス回数を求める。 Subsequently, the calculation unit 30 corrects the number of presses based on the read-out plate thickness coefficient, hardness coefficient, environment coefficient, and molding difficulty coefficient (step S6). Specifically, the calculation unit 30 corrects the number of presses and obtains the number of correction presses based on the following equation 1.
 補正プレス回数=前回の補正プレス回数+板厚係数×硬さ係数×環境係数×成形難易度係数・・・式1 Number of correction presses = Number of previous correction presses + Plate thickness coefficient x Hardness coefficient x Environmental coefficient x Molding difficulty coefficient ... Equation 1
 なお、本明細書では、この工程は、プレス回数補正工程又はプレス回数補正ステップの一例である。 In this specification, this step is an example of a press count correction step or a press count correction step.
 演算部30は、補正プレス回数を求めると、記憶部20の金型情報マスタ22から金型番号に対応する耐用プレス回数を読み取る。続いて、演算部30は、求めた補正プレス回数が、読み取った耐用プレス回数未満であるか否かを判定する(ステップS7)。 When the calculation unit 30 obtains the number of correction presses, it reads the number of durable presses corresponding to the die number from the die information master 22 of the storage unit 20. Subsequently, the calculation unit 30 determines whether or not the obtained number of correction presses is less than the read number of durable presses (step S7).
 なお、本明細書では、この工程は、金型の判定工程又は判定ステップの一例である。 In this specification, this step is an example of a mold determination step or determination step.
 演算部30は、補正プレス回数が耐用プレス回数未満でない、すなわち、耐用プレス回数を超えていると判定した場合(ステップS7のNo)、表示部40に金型交換信号を送信する(ステップS8)。このとき、演算部30は、金型番号とプレス回数を表示部40に送信する。表示部40は、金型交換信号を受信すると、金型を交換すべき旨の警告を金型番号とプレス回数と共に表示する。これにより、演算部30は、ユーザーに金型が交換すべき時期に達したことを報知して、金型の交換を促す。演算部30は、その後、ステップS9に進む。 When the calculation unit 30 determines that the number of correction presses is not less than the number of durable presses, that is, exceeds the number of durable presses (No in step S7), the calculation unit 30 transmits a die exchange signal to the display unit 40 (step S8). .. At this time, the calculation unit 30 transmits the die number and the number of presses to the display unit 40. When the display unit 40 receives the die exchange signal, the display unit 40 displays a warning that the die should be exchanged together with the die number and the number of presses. As a result, the calculation unit 30 notifies the user that it is time to replace the mold, and prompts the user to replace the mold. The calculation unit 30 then proceeds to step S9.
 なお、本明細書では、金型交換信号を送信する工程は、金型の判定結果出力工程又は、判定結果出力ステップの一例である。さらに、金型の交換が促された後に金型を交換する工程は、金型の交換工程の一例である。 In this specification, the step of transmitting the mold exchange signal is an example of the judgment result output step of the mold or the judgment result output step. Further, the step of replacing the mold after the replacement of the mold is prompted is an example of the mold replacement step.
 一方、演算部30は、補正プレス回数が耐用プレス回数未満であると判定した場合(ステップS7のYes)、記憶部20の金型部品情報マスタ25から金型部品番号に対応する耐用回数を読み取り、ステップS6で求めた補正プレス回数が、読み取った耐用回数未満であるか否かを判定する(ステップS9)。 On the other hand, when the calculation unit 30 determines that the number of correction presses is less than the number of durable presses (Yes in step S7), the arithmetic unit 30 reads the number of useful times corresponding to the die part number from the die part information master 25 of the storage unit 20. , It is determined whether or not the number of correction presses obtained in step S6 is less than the read useful number of times (step S9).
 なお、本明細書では、この工程は、金型部品の判定工程又は判定ステップの一例である。 In this specification, this step is an example of a determination step or determination step of a mold part.
 演算部30は、補正プレス回数が耐用回数未満でない、すなわち、耐用回数を超えていると判定した場合(ステップS9のNo)、表示部40に部品交換信号を送信する(ステップS10)。このとき、演算部30は、部品交換信号と共に、金型部品番号とプレス回数を送信する。表示部40は、部品交換信号を受信すると、金型部品番号、プレス回数と共に、金型部品を交換すべき旨の警報を表示する。これにより、演算部30は、ユーザーに金型部品が交換すべき時期に達したことを報知し、その金型部品の交換を促す。演算部30は、その後、ステップS11に進む。 When the calculation unit 30 determines that the number of correction presses is not less than the useful number of times, that is, exceeds the useful number of times (No in step S9), the calculation unit 30 transmits a parts replacement signal to the display unit 40 (step S10). At this time, the calculation unit 30 transmits the mold part number and the number of presses together with the part replacement signal. Upon receiving the component replacement signal, the display unit 40 displays the die component number, the number of presses, and an alarm indicating that the die component should be replaced. As a result, the calculation unit 30 notifies the user that it is time to replace the mold component, and prompts the user to replace the mold component. The calculation unit 30 then proceeds to step S11.
 なお、本明細書では、部品交換信号を送信する工程は、金型部品の判定結果出力工程又は、判定結果出力ステップの一例である。さらに、金型部品の交換が促された後に金型部品を交換する工程は、金型部品の交換工程の一例である。 In this specification, the step of transmitting the parts replacement signal is an example of the judgment result output step of the mold parts or the judgment result output step. Further, the step of replacing the mold component after the replacement of the mold component is prompted is an example of the process of replacing the mold component.
 一方、演算部30は、補正プレス回数が耐用回数未満であると判定した場合(ステップS9のYes)、記憶部20の金型部品情報マスタ25から金型部品番号に対応する研磨プレス回数を読み取る。続いて、演算部30は、ステップS6で求めた補正プレス回数が、研磨プレス回数未満であるか否かを判定する(ステップS11)。 On the other hand, when the calculation unit 30 determines that the number of correction presses is less than the useful number (Yes in step S9), the calculation unit 30 reads the number of polishing presses corresponding to the mold part number from the mold part information master 25 of the storage unit 20. .. Subsequently, the calculation unit 30 determines whether or not the number of correction presses obtained in step S6 is less than the number of polishing presses (step S11).
 演算部30は、補正プレス回数が研磨プレス回数未満でなく、研磨プレス回数を超えていると判定した場合(ステップS11のNo)、表示部40に、金型部品番号とプレス回数と共に、部品研磨信号を送信する(ステップS12)。表示部40は、部品研磨信号を受信すると、金型部品番号、プレス回数と共に、その金型部品が研磨すべき状態である旨の警報を表示する。これにより、演算部30は、ユーザーに金型部品が研磨すべき時期に達したことを報知して、金型部品の研磨を促す。演算部30は、その後、ステップS13に進む。 When the calculation unit 30 determines that the number of correction presses is not less than the number of polishing presses and exceeds the number of polishing presses (No in step S11), the display unit 40 displays the part number and the number of presses together with the part polishing. A signal is transmitted (step S12). Upon receiving the component polishing signal, the display unit 40 displays a die part number, the number of presses, and an alarm indicating that the die component is in a state to be polished. As a result, the calculation unit 30 notifies the user that the time for polishing the mold component has arrived, and prompts the user to polish the mold component. The calculation unit 30 then proceeds to step S13.
 一方、演算部30は、補正プレス回数が研磨プレス回数未満であると判定した場合(ステップS11のYes)、現在のプレス回数を記憶させる(ステップS13)。詳細には、演算部30は、記憶部20の金型部品情報マスタ25の現プレス回数を、ステップS5で受信したプレス回数に書きかえる。 On the other hand, when the calculation unit 30 determines that the number of correction presses is less than the number of polishing presses (Yes in step S11), the calculation unit 30 stores the current number of presses (step S13). Specifically, the calculation unit 30 rewrites the current number of presses of the mold part information master 25 of the storage unit 20 to the number of presses received in step S5.
 続いて、演算部30は、現在のプレス回数の記憶後、ステップS5に戻って、カウンタ10の新たなプレス回数データを受信する。これにより、演算部30は、プレス毎にプレス回数を受信して、金型、金型部品が交換すべき時期に達しているか、金型部品が研磨すべき時期に達しているかの監視を続ける。 Subsequently, the calculation unit 30 returns to step S5 after storing the current number of presses, and receives new data on the number of presses of the counter 10. As a result, the arithmetic unit 30 receives the number of presses for each press and continues to monitor whether the die and the die parts have reached the time to be replaced or the die parts have reached the time to be polished. ..
 上記の金型管理処理のフローは、ユーザーがプレス機100の起動ボタンを再度押して、プレス機100の動作が停止されるまで、続けられる。起動ボタンが再度押されてプレス機100の動作が停止すると、金型管理処理のフローは強制的に終了する。 The flow of the above mold management process is continued until the user presses the start button of the press machine 100 again and the operation of the press machine 100 is stopped. When the start button is pressed again and the operation of the press machine 100 is stopped, the flow of the mold management process is forcibly terminated.
 なお、上記の金型管理処理のフローでは、ステップS8、S10、S12で、表示部40に警告が表示されるが、ステップS7、S9、S11の判定の結果、複数の警告が表示部40に表示される結果になる場合、いずれかの警告を優先して表示部40に表示しても良い。例えば、ステップS10、S12の警告の両方が表示部40に表示される結果となる場合、ステップS10の警告を、ステップS10の警告に優先して表示しても良い。 In the above flow of mold management processing, warnings are displayed on the display unit 40 in steps S8, S10, and S12, but as a result of the determination in steps S7, S9, and S11, a plurality of warnings are displayed on the display unit 40. When the result is displayed, one of the warnings may be displayed on the display unit 40 with priority. For example, when both the warnings in steps S10 and S12 are displayed on the display unit 40, the warning in step S10 may be displayed in preference to the warning in step S10.
 また、ステップS12で、演算部30は、表示部40に警報を表示することにより、ユーザーに金型部品の研磨を促している。この場合、ユーザーは、金型部品を研磨すると共に、表示部40が備える、図示しないタッチパネルを用いて、図6に示す金型部品情報マスタ25の現プレス回数を0回にリセットすると良い。さらに、ユーザーは、研磨した金型部品の金型部品名に対応付けられた現研磨量を研磨後の値に変更すると共に、研磨回数を1だけ多くすると良い。 Further, in step S12, the calculation unit 30 prompts the user to polish the mold parts by displaying an alarm on the display unit 40. In this case, the user may polish the die parts and reset the current number of presses of the mold part information master 25 shown in FIG. 6 to 0 by using a touch panel (not shown) provided in the display unit 40. Further, the user may change the current polishing amount associated with the mold part name of the polished mold part to the value after polishing, and increase the number of times of polishing by one.
 なお、ステップS6で、演算部30は、式1に基づいてプレス回数を補正して補正プレス回数を求めているが、演算部30は、以下の式2に基づいて、プレス回数を補正して補正プレス回数を求めても良い。
 補正プレス回数=前回の補正プレス回数+板厚係数×硬さ係数・・・式2
 このような式に基づいて演算すれば、環境係数及び成形難易度係数が記憶部20に予め格納される必要がなく、また、演算部30が温湿度センサ11から湿度データを受信する必要がない。その結果、演算部30は、より容易に補正プレス回数を得ることができる。
In step S6, the calculation unit 30 corrects the number of presses based on the equation 1 to obtain the correction press number, but the calculation unit 30 corrects the number of presses based on the following equation 2. The number of correction presses may be calculated.
Number of correction presses = Number of previous correction presses + Plate thickness coefficient x Hardness coefficient ... Equation 2
If the calculation is performed based on such an equation, the environmental coefficient and the molding difficulty coefficient do not need to be stored in the storage unit 20 in advance, and the calculation unit 30 does not need to receive the humidity data from the temperature / humidity sensor 11. .. As a result, the calculation unit 30 can more easily obtain the number of correction presses.
 また、環境情報マスタ23では、湿度と環境係数が対応付けられているが、温度と環境係数が対応付けられていても良い。この場合、演算部30は、温湿度センサ11から受信した温度データに対応する環境係数を読み出して、プレス回数を補正すると良い。或いは、補正プレス回数を求めると良い。 Further, in the environmental information master 23, the humidity and the environmental coefficient are associated with each other, but the temperature and the environmental coefficient may be associated with each other. In this case, the calculation unit 30 may read out the environmental coefficient corresponding to the temperature data received from the temperature / humidity sensor 11 and correct the number of presses. Alternatively, the number of correction presses may be obtained.
 以上のように、実施の形態1に係る金型管理装置1Aでは、演算部30が、素材200のデータである板厚係数と硬さ係数に基づいてカウンタ10のプレス回数を補正して補正プレス回数を求め、求めた補正プレス回数を用いて金型が耐用プレス回数を超えて使用されているか否かを判定する。このため、金型管理装置1Aは、プレス機100にプレスする素材200が複数種ある場合、その種類の違いによる金型の摩耗の程度に応じた交換時期をより正確に推定することができる。これにより、金型管理装置1Aは、金型の交換時期をより正確に報知することができる。 As described above, in the die management device 1A according to the first embodiment, the calculation unit 30 corrects the number of presses of the counter 10 based on the plate thickness coefficient and the hardness coefficient, which are the data of the material 200, and corrects the press. The number of times is obtained, and it is determined whether or not the die is used in excess of the number of durable presses by using the obtained number of correction presses. Therefore, when there are a plurality of types of materials 200 to be pressed by the press machine 100, the mold management device 1A can more accurately estimate the replacement time according to the degree of wear of the mold due to the difference in the types. As a result, the mold management device 1A can more accurately notify the mold replacement time.
 演算部30は、補正プレス回数を用いて、金型部品が耐用回数を超えて使用されているか否かを判定する。このため、金型管理装置1Aは、金型部品の摩耗の程度に応じた交換時期もより正確に推定できる。その結果、金型管理装置1Aは、金型部品の交換時期をより正確に報知することができる。 The calculation unit 30 uses the number of correction presses to determine whether or not the die component has been used more than the useful number of times. Therefore, the mold management device 1A can more accurately estimate the replacement time according to the degree of wear of the mold parts. As a result, the mold management device 1A can more accurately notify the replacement time of the mold parts.
 また、演算部30は、補正プレス回数を用いて、金型部品が研磨プレス回数を超えているか否かを判定するので、金型部品の研磨時期もより正確に報知することができる。 Further, since the calculation unit 30 determines whether or not the die component exceeds the number of polishing presses by using the number of correction presses, the polishing time of the die component can be notified more accurately.
(実施の形態2)
 実施の形態1では、演算部30が、カウンタ10が計数したプレス回数を用いて、金型及び金型部品が交換時期、研磨時期であるか否かを判定している。しかし、演算部30はこれに限定されない。演算部30は、プレス機100の生産計画を用いて、金型及び金型部品が交換時期、研磨時期であるか否かを予測しても良い。
(Embodiment 2)
In the first embodiment, the calculation unit 30 uses the number of presses counted by the counter 10 to determine whether or not the die and the die parts are in the replacement time and the polishing time. However, the calculation unit 30 is not limited to this. The calculation unit 30 may use the production plan of the press machine 100 to predict whether or not the mold and the mold parts are to be replaced or polished.
 実施の形態2に係る金型管理装置1Bでは、記憶部20に生産計画データが格納されている。そして、演算部30は、その生産計画データを用いて、金型及び金型部品が交換時期、研磨時期を推定する。 In the mold management device 1B according to the second embodiment, the production plan data is stored in the storage unit 20. Then, the calculation unit 30 estimates the replacement time and the polishing time of the mold and the mold parts by using the production planning data.
 以下、図9-図13を参照して、実施の形態2に係る金型管理装置1Bについて説明する。実施の形態2では、実施の形態1と異なる構成について説明する。 Hereinafter, the mold management device 1B according to the second embodiment will be described with reference to FIGS. 9 to 13. In the second embodiment, a configuration different from that of the first embodiment will be described.
 図9は、実施の形態2に係る金型管理装置1Bのブロック図である。図10は、金型管理装置1Bが備える記憶部20に格納された生産計画トランザクション26の概略図である。図11は、記憶部20に格納された品目情報マスタ27の概略図である。図12は、品目情報マスタ27の製品、部品の関係の図である。図13は、記憶部20に格納された構成情報マスタ28の概略図である。 FIG. 9 is a block diagram of the mold management device 1B according to the second embodiment. FIG. 10 is a schematic view of the production planning transaction 26 stored in the storage unit 20 included in the mold management device 1B. FIG. 11 is a schematic view of the item information master 27 stored in the storage unit 20. FIG. 12 is a diagram of the relationship between products and parts of the item information master 27. FIG. 13 is a schematic view of the configuration information master 28 stored in the storage unit 20.
 図9に示すように、金型管理装置1Bは、記憶部20を備え、その記憶部20には、実施の形態1で説明した素材特性マスタ21、金型情報マスタ22、環境情報マスタ23、加工情報マスタ24及び、金型部品情報マスタ25のほかに、生産計画トランザクション26、品目情報マスタ27及び、構成情報マスタ28が格納されている。 As shown in FIG. 9, the mold management device 1B includes a storage unit 20, and the storage unit 20 includes a material characteristic master 21, a mold information master 22, and an environment information master 23 described in the first embodiment. In addition to the machining information master 24 and the mold part information master 25, the production planning transaction 26, the item information master 27, and the configuration information master 28 are stored.
 生産計画トランザクション26は、プレス機100で加工した部品を用いて生産する製品の製造予定日を示すデータをテーブル形式で格納している。ここで、トランザクションとは、製品の種類、個数を時系列で記録したトランザクションデータのことである。詳細には、生産計画トランザクション26には、図10に示すように、製造予定日毎に、どの製品がどれだけ製造されるかという生産計画データが格納されている。 The production planning transaction 26 stores data indicating the scheduled production date of the product produced by using the parts processed by the press machine 100 in a table format. Here, the transaction is transaction data in which the type and number of products are recorded in time series. Specifically, in the production planning transaction 26, as shown in FIG. 10, production planning data of which product is manufactured and how much is stored for each scheduled manufacturing date is stored.
 一方、品目情報マスタ27は、生産の対象が製品であるのか部品であるのか、その製品又は部品がどのような部品で構成されているのか、を示すデータをテーブル形式で格納している。詳細には、品目情報マスタ27では、図11に示すように、製品番号又は部品番号に、その製品又は部品の名称、製品、部品のいずれであるかを示す製品部品フラグが対応付けられている。さらに、製品番号又は部品番号に、製品又は部品がプレス機100でプレス加工することにより製造される場合の、そのときに使用される素材200の素材名、板厚、材料コードが対応付けられている。 On the other hand, the item information master 27 stores data in a table format indicating whether the production target is a product or a part, and what kind of part the product or part is composed of. Specifically, in the item information master 27, as shown in FIG. 11, a product part number or a part number is associated with a product part flag indicating whether the product or part is a name, a product, or a part. .. Further, the product number or part number is associated with the material name, plate thickness, and material code of the material 200 used at that time when the product or part is manufactured by press working with the press machine 100. There is.
 また、図9に示す構成情報マスタ28は、製品又は部品がどのような「親子関係」であるのかを示すデータをテーブル形式で格納している。 Further, the configuration information master 28 shown in FIG. 9 stores data indicating what kind of "parent-child relationship" the product or part has in a table format.
 ここで、製品又は部品の「親子関係」とは、特定の製品又は部品を「親」とした場合に、その「親」の製品又は部品を構成する部品を「子」とする関係を意味する。 Here, the "parent-child relationship" of a product or part means a relationship in which, when a specific product or part is a "parent", the parts constituting the "parent" product or part are "children". ..
 例えば、図11に示す品目情報マスタ27に示された製品は、品目情報マスタ27に示された部品によって製造される。図12に示すように、製品名001の製品は、部品名A、Gの部品の「子」部品が組み合わせられることにより製造される。このため、製品名001の製品は「親」、部品名A、Gの部品は「子」である。また、部品名Aの部品は、部品名C、Dの部品が組み合わせられることにより製造される。このため、部品名Aの部品を「親」部品としたときに、部品名C、Dの部品は、「子」部品である。部品名Dの部品は、プレス機100でプレス加工により製造された部品名Fの部品で製造される。同様に、部品名Gの部品は、プレス機100でプレス加工により製造された部品名Iの部品で製造される。このため、部品名D、Gの部品を「親」部品としたときに、部品名F、Iの部品は、「子」部品である。 For example, the product shown in the item information master 27 shown in FIG. 11 is manufactured by the parts shown in the item information master 27. As shown in FIG. 12, the product with the product name 001 is manufactured by combining the "child" parts of the parts with the part names A and G. Therefore, the product with the product name 001 is the "parent", and the parts with the part names A and G are the "child". Further, the part with the part name A is manufactured by combining the parts with the part names C and D. Therefore, when the part with the part name A is the "parent" part, the parts with the part names C and D are the "child" parts. The part with the part name D is manufactured with the part with the part name F manufactured by press working with the press machine 100. Similarly, the part with the part name G is manufactured with the part with the part name I manufactured by pressing with the press machine 100. Therefore, when the parts with the part names D and G are the "parent" parts, the parts with the part names F and I are the "child" parts.
 また、製品名002の製品は、部品名B、Xの部品が組み合わせられることにより製造される。このため、製品名002の製品が「親」で、部品名B、Xの部品が「子」である。さらに、部品名Bの部品は、部品名C、Hの部品が組み合わせられることにより製造され、部品名Hの部品は、プレス加工により製造された部品名Eの部品で製造される。このため、部品名Bが「親」の場合、部品名C、Hの部品が「子」であり、部品名Hの部品が「親」の場合、部品名Eの部品が「子」である。 Further, the product with the product name 002 is manufactured by combining the parts with the part names B and X. Therefore, the product with the product name 002 is the "parent", and the parts with the part names B and X are the "child". Further, the part with the part name B is manufactured by combining the parts with the part names C and H, and the part with the part name H is manufactured with the part with the part name E manufactured by press working. Therefore, when the part name B is the "parent", the parts of the part names C and H are "children", and when the part of the part name H is the "parent", the part of the part name E is the "child". ..
 構成情報マスタ28は、このような製品と部品の親子関係を示すデータを格納している。構成情報マスタ28は、図13に示すように、親部品の名称に、子部品の名称と親部品に必要な子部品の個数が対応付けられている。 The configuration information master 28 stores data indicating the parent-child relationship between such products and parts. In the configuration information master 28, as shown in FIG. 13, the name of the parent component is associated with the name of the child component and the number of child components required for the parent component.
 図9に戻って、金型管理装置1Bでは、演算部30が、記憶部20から、生産計画トランザクション26、品目情報マスタ27及び、構成情報マスタ28を読み出し、製造予定日毎に、部品の種類毎の製造数を演算する。詳細には、演算部30は、製造予定日毎に、生産計画トランザクション26からどの製品が何個製造される予定なのかを求め、製品毎に、構成情報マスタ28から、必要な部品の種類、種類毎の数を求める。これにより、演算部30は、部品の種類毎の製造数を求める。また、演算部30は、品目情報マスタ27から、それらの部品のうち、どの部品がプレス機100でプレス加工をするのかを求め、部品毎にプレス回数を求める。 Returning to FIG. 9, in the mold management device 1B, the calculation unit 30 reads the production planning transaction 26, the item information master 27, and the configuration information master 28 from the storage unit 20, and for each scheduled manufacturing date, for each part type. Calculate the number of products manufactured. Specifically, the calculation unit 30 obtains how many products are scheduled to be manufactured from the production planning transaction 26 for each scheduled manufacturing date, and from the configuration information master 28 for each product, the type and type of necessary parts. Find the number for each. As a result, the calculation unit 30 obtains the number of manufactured parts for each type of parts. Further, the calculation unit 30 obtains from the item information master 27 which part among those parts is to be pressed by the press machine 100, and obtains the number of times of pressing for each part.
 演算部30は、演算した部品の種類毎の製造数を実施の形態1で説明したカウンタ10のプレス回数の替わりに用いて、補正プレス回数を求める。これにより、演算部30は、製造予定日毎の補正プレス回数を求め、実施の形態1で説明した金型がいつ耐用プレス回数を超えるのかを求める。また、演算部30は、金型部品がいつ耐用回数を超えるのかを求め、金型部品がいつ研磨プレス回数を超えるのかを求める。 The calculation unit 30 uses the number of manufactured parts for each type of calculated parts instead of the number of presses of the counter 10 described in the first embodiment to obtain the number of correction presses. As a result, the calculation unit 30 obtains the number of correction presses for each scheduled manufacturing date, and determines when the die described in the first embodiment exceeds the number of durable presses. Further, the calculation unit 30 determines when the die component exceeds the useful number of times, and determines when the die component exceeds the number of polishing presses.
 演算部30は、求めた耐用プレス回数を超える日付、耐用回数を超える日付及び、研磨プレス回数を超える日付を表示部40に送信する。これにより、演算部30は、これらの日付を表示部40に表示する。その結果、演算部30は、金型、金型部品の交換予定の目安となる日付をユーザーに報知する。また、演算部30は、金型部品の研磨予定の目安となる日付をユーザーに報知する。 The calculation unit 30 transmits to the display unit 40 a date that exceeds the obtained number of durable presses, a date that exceeds the number of useful presses, and a date that exceeds the number of polishing presses. As a result, the calculation unit 30 displays these dates on the display unit 40. As a result, the calculation unit 30 notifies the user of the date that serves as a guideline for the replacement schedule of the mold and the mold parts. In addition, the calculation unit 30 notifies the user of a date that serves as a guideline for the polishing schedule of the mold parts.
 なお、本明細書では、耐用プレス回数を超える日付は、第一日付の一例である。耐用回数を超える日付は、第二日付の一例である。 In this specification, a date that exceeds the number of durable presses is an example of the first date. A date that exceeds the useful life is an example of a second date.
 なお、演算部30は、金型の交換日付を表示部40に送信するときに、記憶部20の金型情報マスタ22の金型単価、納品期間を読み取り、読み取った単価、納品期間を表示部40に送信すると良い。これにより、表示部40に単価、納品期間を表示させると良い。また、演算部30は、金型の研磨日付を表示部40に送信するときに、記憶部20の金型部品情報マスタ25の金型部品単価、納品期間を読み取り、その単価、納品期間を表示部40に送信して、表示部40に単価、納品期間を表示させると良い。 When the calculation unit 30 transmits the mold replacement date to the display unit 40, the calculation unit 30 reads the mold unit price and the delivery period of the mold information master 22 of the storage unit 20 and displays the read unit price and the delivery period. It is good to send to 40. As a result, it is preferable to display the unit price and the delivery period on the display unit 40. Further, when the calculation unit 30 transmits the polishing date of the mold to the display unit 40, the calculation unit 30 reads the mold part unit price and the delivery period of the mold part information master 25 of the storage unit 20 and displays the unit price and the delivery period. It is preferable to send the information to the unit 40 so that the display unit 40 displays the unit price and the delivery period.
 金型管理装置1Bの動作は、実施の形態1で説明した金型管理装置1Aと、上述した生産計画データを用いて金型及び金型部品が交換時期、研磨時期を求めることを除いて、同様である。このため、実施の形態2では、金型管理装置1Bの動作の説明を省略する。 The operation of the mold management device 1B is performed except that the mold and the mold parts determine the replacement time and the polishing time by using the mold management device 1A described in the first embodiment and the above-mentioned production planning data. The same is true. Therefore, in the second embodiment, the description of the operation of the mold management device 1B will be omitted.
 以上のように、実施の形態2に係る金型管理装置1Bは、記憶部20に格納された生産計画データに基づいて、プレス機100で製造する部品の個数を演算する演算部30を備えている。演算部30は、演算した部品の個数を、カウンタ10のプレス回数の替わりにして補正プレス回数を求め、さらに、その補正プレス回数から金型及び金型部品の交換日、研磨日を求める。このため、金型管理装置1Bは、交換日、研磨日を正確に予測することができる。 As described above, the die management device 1B according to the second embodiment includes a calculation unit 30 that calculates the number of parts to be manufactured by the press machine 100 based on the production planning data stored in the storage unit 20. There is. The calculation unit 30 obtains the number of correction presses for the number of calculated parts instead of the number of presses of the counter 10, and further obtains the replacement date and the polishing date of the die and the mold parts from the number of correction presses. Therefore, the mold management device 1B can accurately predict the replacement date and the polishing date.
(実施の形態3)
 実施の形態1及び2では、記憶部20が素材特性マスタ21、金型情報マスタ22、環境情報マスタ23、加工情報マスタ24及び、金型部品情報マスタ25を格納し、演算部30がこれらマスタを読み出して、補正プレス回数を求めている。しかし、記憶部20に格納されるマスタは、これに限定されない。記憶部20は、過去に研磨された金型部品がある場合に、その研磨の情報を示すマスタを格納しても良い。実施の形態3に係る金型管理装置1Cが備える記憶部20は、その研磨の情報を示すマスタを格納する。
(Embodiment 3)
In the first and second embodiments, the storage unit 20 stores the material characteristic master 21, the mold information master 22, the environment information master 23, the machining information master 24, and the mold part information master 25, and the calculation unit 30 stores these masters. Is read out to obtain the number of correction presses. However, the master stored in the storage unit 20 is not limited to this. If there is a mold part that has been polished in the past, the storage unit 20 may store a master that indicates the polishing information. The storage unit 20 included in the mold management device 1C according to the third embodiment stores a master indicating the polishing information.
 図14は、実施の形態3に係る金型管理装置1Cのブロック図である。図15は、金型管理装置1Cが備える記憶部20に格納された研磨作業習熟度マスタ29の概略図である。 FIG. 14 is a block diagram of the mold management device 1C according to the third embodiment. FIG. 15 is a schematic view of a polishing work proficiency master 29 stored in a storage unit 20 included in the mold management device 1C.
 図14に示すように、記憶部20には、研磨作業習熟度マスタ29が格納されている。その研磨作業習熟度マスタ29には、金型部品が研磨された場合の、その金型部品を研磨した作業者の作業習熟度情報を示すデータがテーブル形式に格納されている。詳細には、研磨作業習熟度マスタ29では、図15に示すように、実施の形態1で説明した金型部品番号と研磨作業係数が対応付けられている。 As shown in FIG. 14, the polishing work proficiency master 29 is stored in the storage unit 20. In the polishing work proficiency master 29, data indicating the work proficiency information of the worker who polished the mold part when the mold part is polished is stored in a table format. Specifically, in the polishing work proficiency master 29, as shown in FIG. 15, the mold part number described in the first embodiment and the polishing work coefficient are associated with each other.
 ここで、研磨作業係数とは、金型部品が過去に研磨された場合に、その研磨をした作業者の熟練度に起因する金型部品の精度を示す係数のことである。一般に金型部品の研磨の精度は、作業者の熟練度によって変化する。その結果、作業者の熟練度によって金型部品の寿命が変化する。研磨作業係数は、このような熟練度による金型部品の精度を示す係数である。換言すると、研磨作業係数は、研磨精度を示す係数のことである。研磨作業係数は、金型部品の研磨を行う作業者毎の、プレス回数と研磨をした金型部品の摩耗との関係を、実験によって求めることにより決められている。 Here, the polishing work coefficient is a coefficient indicating the accuracy of the mold part due to the skill level of the worker who polished the mold part when it was polished in the past. In general, the accuracy of polishing mold parts varies depending on the skill level of the operator. As a result, the life of the mold parts changes depending on the skill level of the operator. The polishing work coefficient is a coefficient indicating the accuracy of the mold part according to such skill level. In other words, the polishing work coefficient is a coefficient indicating polishing accuracy. The polishing work coefficient is determined by experimentally determining the relationship between the number of presses and the wear of the polished mold parts for each worker who polishes the mold parts.
 一方、演算部30は、記憶部20から研磨作業習熟度マスタ29を読み出し、読み出した研磨作業習熟度マスタ29の研磨作業係数に基づいて、カウンタ10のプレス回数を補正して、補正プレス回数を得る。或いは、演算部30は、読み出した研磨作業係数に基づいて、実施の形態1で説明した補正プレス回数をさらに補正する。これにより、研磨作業者に起因する摩耗の程度を考慮した補正プレス回数を求める。 On the other hand, the calculation unit 30 reads the polishing work proficiency master 29 from the storage unit 20, corrects the number of presses of the counter 10 based on the reading coefficient of the polishing work proficiency master 29, and calculates the number of correction presses. obtain. Alternatively, the calculation unit 30 further corrects the number of correction presses described in the first embodiment based on the read-out polishing work coefficient. As a result, the number of correction presses considering the degree of wear caused by the polishing operator is obtained.
 詳細には、演算部30は、式3を用いることにより、補正プレス回数を求める。
 補正プレス回数=前回の補正プレス回数+板厚係数×硬さ係数×環境係数×成形難易度係数×研磨作業係数・・・式3
Specifically, the calculation unit 30 obtains the number of correction presses by using Equation 3.
Number of correction presses = Number of previous correction presses + Plate thickness coefficient x Hardness coefficient x Environment coefficient x Molding difficulty coefficient x Polishing work coefficient ... Equation 3
 以上のように、実施の形態3に係る金型管理装置1Cは、記憶部20に格納された研磨作業係数に基づいて、プレス回数を補正するので、より正確に交換時期を推定することができる。その結果、金型管理装置1Cは、金型の交換時期をより正確に報知することができる。 As described above, the die management device 1C according to the third embodiment corrects the number of presses based on the polishing work coefficient stored in the storage unit 20, so that the replacement time can be estimated more accurately. .. As a result, the mold management device 1C can more accurately notify the mold replacement time.
(実施の形態4)
 実施の形態3に係る金型管理装置1Cは、研磨作業習熟度マスタ29の研磨作業係数に基づいて、補正プレス回数を求めているが、研磨作業習熟度マスタ29の研磨作業係数は、研磨管理装置60によって設定されても良い。
(Embodiment 4)
The mold management device 1C according to the third embodiment obtains the number of correction presses based on the polishing work coefficient of the polishing work proficiency master 29, but the polishing work coefficient of the polishing work proficiency master 29 is polishing management. It may be set by the device 60.
 図16は、実施の形態4に係る金型管理装置1Dのブロック図である。図17は、金型管理装置1Dが備える記憶部20に格納された習熟度マスタ50の概略図である。図18は、記憶部20に格納された作業回数マスタ51の概略図である。 FIG. 16 is a block diagram of the mold management device 1D according to the fourth embodiment. FIG. 17 is a schematic view of the proficiency level master 50 stored in the storage unit 20 included in the mold management device 1D. FIG. 18 is a schematic view of the work count master 51 stored in the storage unit 20.
 図16に示すように、金型管理装置1Dが備える演算部30は、研磨管理装置60に接続されている。ここで、研磨管理装置60は、金型部品の研磨の発注、納品の管理を行う、いわゆるサーバーである。演算部30は、研磨管理装置60から、研磨が完了して納品された金型部品の部品番号とその研磨の作業者ID(identification)のデータを受信する。 As shown in FIG. 16, the arithmetic unit 30 included in the mold management device 1D is connected to the polishing management device 60. Here, the polishing management device 60 is a so-called server that manages the ordering and delivery of polishing of mold parts. The calculation unit 30 receives from the polishing management device 60 data of the part number of the mold part delivered after the polishing is completed and the worker ID (identification) of the polishing.
 一方、記憶部20には、習熟度マスタ50と作業回数マスタ51が格納されている。ここで、習熟度マスタ50は、図17に示すように、作業者のそれまでに経験した研磨回数とそのときの研磨作業係数が対応付けられたテーブル形式のデータである。また、作業回数マスタ51は、作業者IDとその作業者IDで登録された作業者がそのときまでに実施した研磨回数が対応付けられたテーブル形式のデータである。 On the other hand, the storage unit 20 stores the proficiency level master 50 and the work count master 51. Here, as shown in FIG. 17, the proficiency level master 50 is table-type data in which the number of polishings experienced by the worker up to that point and the polishing work coefficient at that time are associated with each other. Further, the work count master 51 is tabular data in which the worker ID and the number of polishings performed by the worker registered with the worker ID up to that time are associated with each other.
 演算部30は、金型部品の部品番号とその研磨の作業者IDのデータを受信した場合、その金型部品を研磨した作業者の研磨回数を求めるために、記憶部20の作業回数マスタ51を読み出す。演算部30は、読み出した作業回数マスタ51のうちの、受信した作業者IDに対応付けられた研磨回数に1を足すことにより、作業者の研磨回数を求める。続いて、演算部30は、作業者IDに対応付けられた研磨回数を、求めた研磨回数に変更する。これにより、演算部30は、作業回数マスタ51を更新する。 When the calculation unit 30 receives the data of the part number of the mold part and the worker ID of the polishing, the calculation unit 30 obtains the number of times of polishing of the worker who has polished the mold part. Is read. The calculation unit 30 obtains the number of polishings of the worker by adding 1 to the number of polishings associated with the received worker ID in the read number of work masters 51. Subsequently, the calculation unit 30 changes the number of polishings associated with the worker ID to the obtained number of polishings. As a result, the calculation unit 30 updates the work count master 51.
 演算部30は、さらに、記憶部20の習熟度マスタ50を読み出し、更新した研磨回数に対応する研磨作業係数を特定する。演算部30は、実施の形態3で説明した研磨作業習熟度マスタ29を読み出し、研磨管理装置60から受信した金型部品の部品番号に対応付けられた研磨作業係数を、特定した研磨作業係数に変更する。そして、変更した研磨作業係数を研磨作業習熟度マスタ29に書き込む。これにより、演算部30は、研磨が完了して納品された金型部品の研磨作業係数を更新する。 The calculation unit 30 further reads the proficiency level master 50 of the storage unit 20 and specifies the polishing work coefficient corresponding to the updated number of polishing times. The calculation unit 30 reads out the polishing work proficiency master 29 described in the third embodiment, and converts the polishing work coefficient associated with the part number of the mold part received from the polishing management device 60 into the specified polishing work coefficient. change. Then, the changed polishing work coefficient is written in the polishing work proficiency master 29. As a result, the calculation unit 30 updates the polishing work coefficient of the mold parts delivered after the polishing is completed.
 なお、実施の形態4では、金型部品について説明しているが、金型部品は、金型に置き換えられても良い。 Although the mold parts are described in the fourth embodiment, the mold parts may be replaced with the mold.
 以上のように、実施の形態4に係る金型管理装置1Dは、研磨管理装置60が送信する、研磨が完了した金型部品の部品番号と作業者IDのデータに基づいて、研磨作業習熟度マスタ29を更新する。これにより、より正確に交換時期を推定することができる。 As described above, the mold management device 1D according to the fourth embodiment has a polishing work proficiency level based on the data of the part number and the worker ID of the mold part for which polishing has been completed, which is transmitted by the polishing management device 60. Update master 29. As a result, the replacement time can be estimated more accurately.
 以上、本開示の実施の形態に係るプレス機100の金型管理装置1A-1D、プレス機100の金型管理方法及びプレス機100の金型管理プログラムについて説明したが、本開示はこれに限定されない。例えば、実施の形態1では、演算部30が、素材特性マスタ21の板厚係数、硬さ係数に基づいてカウンタ10がカウントしたプレス回数を補正して補正プレス回数を求めている。しかし、演算部30はこれに限定されない。演算部30は、記憶部20に格納された素材データに基づいて補正プレス回数を求めていれば良い。例えば、演算部30は、素材200の板厚係数だけ、又は硬さ係数だけに基づいて補正プレス回数を求めても良い。素材200の板厚係数だけで補正プレス回数を求める場合、素材特性マスタ21内の特定の素材200の板厚に対するその他の素材200の相対的な板厚を求め、その相対的な板厚から補正プレス回数を求めても良い。 The mold management device 1A-1D of the press machine 100, the mold management method of the press machine 100, and the mold management program of the press machine 100 according to the embodiment of the present disclosure have been described above, but the present disclosure is limited to this. Not done. For example, in the first embodiment, the calculation unit 30 corrects the number of presses counted by the counter 10 based on the plate thickness coefficient and the hardness coefficient of the material characteristic master 21 to obtain the correction press number. However, the calculation unit 30 is not limited to this. The calculation unit 30 may obtain the number of correction presses based on the material data stored in the storage unit 20. For example, the calculation unit 30 may obtain the number of correction presses based only on the plate thickness coefficient of the material 200 or only on the hardness coefficient. When the number of correction presses is calculated only from the plate thickness coefficient of the material 200, the relative plate thickness of the other material 200 to the plate thickness of the specific material 200 in the material characteristic master 21 is calculated, and the correction is made from the relative plate thickness. The number of presses may be calculated.
 また、実施の形態1で説明したビッカース硬さは、素材200の強度を推定するための指標の一つである。このため、演算部30は、ビッカース硬さ以外の、素材200の強度を推定する特性値に基づいて、補正プレス回数を求めても良い。例えば、演算部30は、降伏強さ、引張強さ、疲労強度等の特性値に基づいて、補正プレス回数を求めても良い。この場合、演算部30は、特定の素材200に対する相対的な特性値である特性係数を用いて、補正プレス回数を求めても良い。 Further, the Vickers hardness described in the first embodiment is one of the indexes for estimating the strength of the material 200. Therefore, the calculation unit 30 may obtain the number of correction presses based on the characteristic value for estimating the strength of the material 200 other than the Vickers hardness. For example, the calculation unit 30 may obtain the number of correction presses based on characteristic values such as yield strength, tensile strength, and fatigue strength. In this case, the calculation unit 30 may obtain the number of correction presses by using the characteristic coefficient which is a characteristic value relative to the specific material 200.
 さらに、実施の形態1で説明した板厚係数は、素材200の大きさを示す指標の一つである。このため、演算部30は、素材200のサイズを示す他の指標に基づいて、補正プレス回数を求めても良い。例えば、演算部30は、素材200の体積、面積等の値に基づいて、補正プレス回数を求めても良い。この場合、演算部30は、特定の素材200に対する相対的なサイズ値であるサイズ係数を用いて、補正プレス回数を求めても良い。 Further, the plate thickness coefficient described in the first embodiment is one of the indexes indicating the size of the material 200. Therefore, the calculation unit 30 may obtain the number of correction presses based on another index indicating the size of the material 200. For example, the calculation unit 30 may obtain the number of correction presses based on the values of the volume, area, and the like of the material 200. In this case, the calculation unit 30 may obtain the number of correction presses by using the size coefficient which is a size value relative to the specific material 200.
 実施の形態1では、表示部40は、金型番号とプレス回数と共に金型を交換すべき旨の警報を表示する。また、表示部40は、金型部品番号、プレス回数と共に、金型部品を交換すべき旨の警報を表示する。表示部40が、金型部品が研磨すべき状態である旨の警報を表示する。しかし、表示部40はこれに限定されない。表示部40は、金型又は金型部品を交換すべき時期に達したことを報知する報知部であれば良い。このため、表示部40に替えて、音を発するブザー、光を発するランプ等であっても良い。 In the first embodiment, the display unit 40 displays an alarm that the die should be replaced together with the die number and the number of presses. In addition, the display unit 40 displays a die part number, the number of presses, and an alarm indicating that the die part should be replaced. The display unit 40 displays an alarm indicating that the mold component is in a state to be polished. However, the display unit 40 is not limited to this. The display unit 40 may be any notification unit that notifies that it is time to replace the mold or the mold parts. Therefore, instead of the display unit 40, a buzzer that emits sound, a lamp that emits light, or the like may be used.
 実施の形態1では、演算部30が、金型部品又は金型を交換すべきか否かを判定している。しかし、演算部30はこれに限定されない。演算部30は、金型部品又は金型をメンテナンスすべきか否かを判定しても良い。この場合、記憶部20には、メンテナンスプレス回数を格納しておき、補正プレス回数がメンテナンスプレス回数を超えているか否かを判定すると良い。 In the first embodiment, the calculation unit 30 determines whether or not the mold parts or the mold should be replaced. However, the calculation unit 30 is not limited to this. The calculation unit 30 may determine whether or not to maintain the mold parts or the mold. In this case, it is preferable to store the number of maintenance presses in the storage unit 20 and determine whether or not the number of correction presses exceeds the number of maintenance presses.
 なお、上記実施形態では、金型管理プログラムがメモリ31に格納されているが、金型管理プログラムは、フレキシブルディスク、CD-ROM(Compact Disc Read-Only Memory)、DVD(Digital Versatile Disc)、MO(Magneto-Optical Disc)等のコンピュータが読み取り可能な記録媒体に格納されて配布されても良い。この場合、その記録媒体に格納された金型管理プログラムがコンピュータにインストールされることにより、金型管理処理を実行する演算部30が構成されても良い。 In the above embodiment, the mold management program is stored in the memory 31, but the mold management program includes a flexible disk, a CD-ROM (Compact Disk Ready-Only Memory), a DVD (Digital Versailles Disc), and an MO. It may be stored and distributed in a computer-readable recording medium such as (Magnet-Optical Disc). In this case, the calculation unit 30 that executes the mold management process may be configured by installing the mold management program stored in the recording medium on the computer.
 また、金型管理プログラムは、インターネットの通信ネットワーク上のサーバー装置が有するディスク装置に格納され、その金型管理プログラムが、例えば、搬送波に重畳されて、ダウンロードされても良い。 Further, the mold management program may be stored in a disk device of a server device on an Internet communication network, and the mold management program may be superimposed on a carrier wave and downloaded.
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。つまり、本開示の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。 The present disclosure allows for various embodiments and modifications without departing from the broad spirit and scope of the present disclosure. Moreover, the above-described embodiment is for explaining the present disclosure, and does not limit the scope of the present disclosure. That is, the scope of the present disclosure is indicated by the claims, not the embodiments. And various modifications made within the scope of the claims and within the equivalent meaning of disclosure are considered to be within the scope of the present disclosure.
 本出願は、2019年6月7日に出願された日本国特許出願特願2019-106730号に基づく。本明細書中に日本国特許出願特願2019-106730号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2019-106730 filed on June 7, 2019. The specification, claims, and the entire drawing of Japanese Patent Application No. 2019-106730 shall be incorporated into this specification as a reference.
 1A-1D 金型管理装置、10 カウンタ、11 温湿度センサ、20 記憶部、21 素材特性マスタ、22 金型情報マスタ、23 環境情報マスタ、24 加工情報マスタ、25 金型部品情報マスタ、26 生産計画トランザクション、27 品目情報マスタ、28 構成情報マスタ、29 研磨作業習熟度マスタ、30 演算部、31 メモリ、32 CPU、40 表示部、50 習熟度マスタ、51 作業回数マスタ、60 研磨管理装置、100 プレス機、200 素材。 1A-1D mold management device, 10 counter, 11 temperature and humidity sensor, 20 storage unit, 21 material characteristic master, 22 mold information master, 23 environmental information master, 24 machining information master, 25 mold parts information master, 26 production Planning transaction, 27 item information master, 28 configuration information master, 29 polishing work proficiency master, 30 calculation unit, 31 memory, 32 CPU, 40 display unit, 50 proficiency master, 51 work count master, 60 polishing management device, 100 Press machine, 200 materials.

Claims (8)

  1.  プレス機が備える金型又は金型部品の第一耐用プレス回数と、前記プレス機の加工対象の素材データと、を格納する記憶部と、
     前記プレス機のプレス回数をカウントする計数部と、
     前記記憶部に格納された前記素材データに基づいて前記計数部がカウントした前記プレス回数を補正して補正プレス回数を演算し、演算された前記補正プレス回数が前記記憶部に格納された前記第一耐用プレス回数を超えたか否かを判定する演算部と、
     前記演算部が前記第一耐用プレス回数を超えたと判定した場合に、前記金型又は前記金型部品を交換すべき時期に達したことを報知する報知部と、
     を備える金型管理装置。
    A storage unit that stores the first durable press count of the die or die parts provided in the press machine and the material data to be processed by the press machine.
    A counting unit that counts the number of presses of the press machine,
    The number of presses counted by the counting unit is corrected based on the material data stored in the storage unit to calculate the number of correction presses, and the calculated number of correction presses is stored in the storage unit. A calculation unit that determines whether or not the number of durable presses has been exceeded, and
    When the calculation unit determines that the number of times of the first durable press has been exceeded, a notification unit for notifying that it is time to replace the die or the die component, and a notification unit.
    Mold management device equipped with.
  2.  前記記憶部には、前記金型又は前記金型部品の第二耐用プレス回数が格納され、
     前記演算部は、演算した前記補正プレス回数が前記記憶部に格納された前記第二耐用プレス回数を超えたか否かを判定し、
     前記報知部は、前記演算部が前記第二耐用プレス回数を超えたと判定した場合に、前記金型又は前記金型部品をメンテナンスすべき時期に達したことを報知する、
     請求項1に記載の金型管理装置。
    The storage unit stores the number of second durable presses of the die or the die component.
    The calculation unit determines whether or not the calculated number of correction presses exceeds the number of second durable presses stored in the storage unit.
    When the calculation unit determines that the number of times of the second durable press has been exceeded, the notification unit notifies that the time for maintaining the die or the die component has been reached.
    The mold management device according to claim 1.
  3.  前記素材データは、素材の、基準材に対する相対的な特性値を係数で示した特性係数又は、素材の、基準材に対する相対的な大きさを係数で示したサイズ係数である、
     請求項1又は2に記載の金型管理装置。
    The material data is a characteristic coefficient in which the characteristic value of the material relative to the reference material is indicated by a coefficient, or a size coefficient in which the size of the material is indicated by a coefficient relative to the reference material.
    The mold management device according to claim 1 or 2.
  4.  前記記憶部には、前記金型で成形するときの難易度を示す成形難易度係数、前記プレス機が設置された環境の状況を示す環境係数及び、前記金型又は前記金型部品の研磨精度を示す研磨作業係数の少なくとも1つが格納され、
     前記演算部は、前記記憶部に格納された前記成形難易度係数、前記環境係数及び、前記研磨作業係数の少なくとも1つに基づいて前記計数部がカウントした前記プレス回数を補正して前記補正プレス回数を演算する、
     請求項1から3のいずれか1項に記載の金型管理装置。
    In the storage unit, a molding difficulty coefficient indicating the difficulty level when molding with the die, an environment coefficient indicating the state of the environment in which the press machine is installed, and polishing accuracy of the die or the die part At least one of the polishing work coefficients indicating
    The calculation unit corrects the number of presses counted by the counting unit based on at least one of the molding difficulty coefficient, the environmental coefficient, and the polishing work coefficient stored in the storage unit, and the correction press. Calculate the number of times,
    The mold management device according to any one of claims 1 to 3.
  5.  前記記憶部には、前記プレス機が素材をプレスすることにより、製造される部品の種類、前記部品を組み立てることにより製造される製品の製造予定日と該製造予定日毎の製造数及び、前記製品に必要な前記部品の種類毎の数が格納され、
     前記演算部は、前記製品の製造予定日毎の製造数及び、前記製品に必要な前記部品の種類毎の数から、前記製造予定日毎かつ前記部品の種類毎の製造数を演算し、演算した前記製造予定日毎かつ前記部品の種類毎の製造数と前記記憶部に格納された前記素材データに基づいて前記補正プレス回数が前記第一耐用プレス回数を超える第一日付を求め、
     前記報知部は、前記演算部が求めた前記第一日付を前記金型又は前記金型部品を交換すべき日として報知する、
     請求項1から4のいずれか1項に記載の金型管理装置。
    In the storage unit, the types of parts manufactured by the press machine pressing the material, the scheduled manufacturing dates of the products manufactured by assembling the parts, the number of manufactured products for each scheduled manufacturing date, and the products. The number of parts required for each type of parts is stored in
    The calculation unit calculates and calculates the number of products manufactured for each scheduled production date and for each type of parts from the number of products manufactured for each scheduled production date of the product and the number of each type of the parts required for the product. Based on the number of manufactured parts for each scheduled manufacturing date and each type of the part and the material data stored in the storage unit, the first date in which the number of correction presses exceeds the number of first durable presses is obtained.
    The notification unit notifies the first date obtained by the calculation unit as a date on which the mold or the mold component should be replaced.
    The mold management device according to any one of claims 1 to 4.
  6.  前記記憶部には、前記金型又は前記金型部品の第二耐用プレス回数が格納され、
     前記演算部は、前記補正プレス回数が前記金型又は前記金型部品の前記第二耐用プレス回数を超える第二日付を求め、
     前記報知部は、前記演算部が求めた前記第二日付を前記金型又は前記金型部品をメンテナンスすべき日として報知する、
     請求項5に記載の金型管理装置。
    The storage unit stores the number of second durable presses of the die or the die component.
    The calculation unit obtains a second date in which the number of correction presses exceeds the number of second durable presses of the die or the die component.
    The notification unit notifies the second date obtained by the calculation unit as a date on which the mold or the mold component should be maintained.
    The mold management device according to claim 5.
  7.  プレス機のプレス回数をカウントする計数工程と、
     前記プレス機の加工対象の素材データに基づいて前記計数工程でカウントした前記プレス回数を補正して補正プレス回数を求めるプレス回数補正工程と、
     前記プレス回数補正工程で求めた前記補正プレス回数が、前記プレス機に備えられる金型又は金型部品の耐用プレス回数を超えたか否かを判定する判定工程と、
     前記判定工程で前記耐用プレス回数を超えたと判定した場合に、前記金型又は前記金型部品を交換する交換工程と、
     を備える金型管理方法。
    A counting process that counts the number of presses on the press machine,
    A press number correction step of correcting the number of presses counted in the counting process based on the material data of the processing target of the press machine to obtain a correction press number, and a press number correction step.
    A determination step of determining whether or not the number of correction presses obtained in the press number correction step exceeds the durable press number of the die or die parts provided in the press machine.
    A replacement step of replacing the die or the die parts when it is determined in the determination step that the number of durable presses has been exceeded.
    Mold management method equipped with.
  8.  プレス回数をカウントする計数器を備えるプレス機の金型管理プログラムであって、
     コンピュータに、
     前記プレス機の加工対象の素材データに基づいて、前記計数器がカウントした前記プレス回数を補正して補正プレス回数を求めるプレス回数補正ステップと、
     前記プレス回数補正ステップで求めた前記補正プレス回数が、前記プレス機に備えられる金型又は金型部品の耐用プレス回数を超えたか否かを判定する判定ステップと、
     前記判定ステップで前記耐用プレス回数を超えたと判定した場合に、前記金型又は前記金型部品を交換すべき時期に達したことを示す交換信号を出力する判定結果出力ステップと、
     を実行させるための金型管理プログラム。
    A die management program for a press machine equipped with a counter that counts the number of presses.
    On the computer
    A press number correction step of correcting the number of presses counted by the counter and obtaining a correction press number based on the material data of the processing target of the press machine.
    A determination step for determining whether or not the number of correction presses obtained in the press number correction step exceeds the durable press number of the die or die parts provided in the press machine.
    When it is determined in the determination step that the number of durable presses has been exceeded, a determination result output step for outputting a replacement signal indicating that the time for replacing the die or the die component has been reached, and a determination result output step.
    Mold management program to execute.
PCT/JP2020/010756 2019-06-07 2020-03-12 Mold management device, mold management method, and mold management program WO2020246101A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021524676A JP7069418B2 (en) 2019-06-07 2020-03-12 Mold management device, mold management method and mold management program
CN202080038875.4A CN113993695B (en) 2019-06-07 2020-03-12 Mold management device, mold management method, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-106730 2019-06-07
JP2019106730 2019-06-07

Publications (1)

Publication Number Publication Date
WO2020246101A1 true WO2020246101A1 (en) 2020-12-10

Family

ID=73653134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010756 WO2020246101A1 (en) 2019-06-07 2020-03-12 Mold management device, mold management method, and mold management program

Country Status (3)

Country Link
JP (1) JP7069418B2 (en)
CN (1) CN113993695B (en)
WO (1) WO2020246101A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138830A1 (en) * 2020-12-25 2022-06-30 芝浦機械株式会社 Molding machine, and method for operating molding machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129984A (en) * 1973-04-18 1974-12-12
JPS51163185U (en) * 1975-06-20 1976-12-25
JPH04220122A (en) * 1990-12-21 1992-08-11 Amada Co Ltd Guide key simulation device of punch press
JP2002001454A (en) * 2000-06-26 2002-01-08 Toshiba Corp Manufacturing method for pressed product and memory medium
JP2003186508A (en) * 2001-12-13 2003-07-04 Eguro:Kk Software for maintenance management
JP2015160215A (en) * 2014-02-26 2015-09-07 株式会社アマダホールディングス Press die management method and press die management device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174739A (en) * 1984-09-19 1986-04-17 Amada Metoretsukusu:Kk Detecting method for metal die grinding time of turret punch press
JPH10301999A (en) * 1997-04-22 1998-11-13 Nec Corp Design management device for press sheet metal parts
JP2006075884A (en) * 2004-09-10 2006-03-23 Nippon Steel Corp Press formation system, press formation method and computer program
JP2007265361A (en) * 2006-03-30 2007-10-11 Nisshinbo Ind Inc Method for managing and operating information on tool used in manufacturing process
JP2009106983A (en) * 2007-10-31 2009-05-21 Murata Mach Ltd Device for displaying arrival expectation of tool life of punch press
JP6724544B2 (en) * 2016-05-17 2020-07-15 株式会社リコー Information processing apparatus, information processing method, and information processing system
CN107363170A (en) * 2017-08-31 2017-11-21 芜湖凝鑫机械有限公司 Diel with tally function
CN109719992B (en) * 2019-01-08 2021-04-09 腾燊嘉诚(上海)信息科技股份有限公司 Die life management system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129984A (en) * 1973-04-18 1974-12-12
JPS51163185U (en) * 1975-06-20 1976-12-25
JPH04220122A (en) * 1990-12-21 1992-08-11 Amada Co Ltd Guide key simulation device of punch press
JP2002001454A (en) * 2000-06-26 2002-01-08 Toshiba Corp Manufacturing method for pressed product and memory medium
JP2003186508A (en) * 2001-12-13 2003-07-04 Eguro:Kk Software for maintenance management
JP2015160215A (en) * 2014-02-26 2015-09-07 株式会社アマダホールディングス Press die management method and press die management device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138830A1 (en) * 2020-12-25 2022-06-30 芝浦機械株式会社 Molding machine, and method for operating molding machine

Also Published As

Publication number Publication date
JPWO2020246101A1 (en) 2021-11-04
CN113993695A (en) 2022-01-28
CN113993695B (en) 2023-08-22
JP7069418B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP6004831B2 (en) Traceability management system and method
US6876895B2 (en) Order assembly production system and method
RU2607992C2 (en) Tools operation monitoring system and method
KR20110025828A (en) System and process for monitoring, control and withdrawal of consumable items in a production environment
JP6689041B2 (en) Mold management system
WO2020246101A1 (en) Mold management device, mold management method, and mold management program
US20060080157A1 (en) Method of improving administrative functions of a business using value streams with display of status
Sellenheim JI Case Company: performance measurement
JP4332164B2 (en) Workability management system, workability management method, and workability management program
JPWO2004027533A1 (en) Parts inventory management device
JP6881897B2 (en) How to collect storage data of stored items
KR102018239B1 (en) Food production management system and method for reducing cost and stabilizing quality
JP4964067B2 (en) Standard inventory management device
JP6115522B2 (en) Product delivery system and product delivery method
CN109719992A (en) A kind of die life management system
JP2007265361A (en) Method for managing and operating information on tool used in manufacturing process
US20230162213A1 (en) Cutting machine supplying and marketing system and method thereof
JPWO2007060985A1 (en) Production resource management system, evaluation value calculation method and program
JP2019102065A (en) Commissioned manufacturing support device, commissioned manufacturing support method and program for supporting commissioned manufacturing
JP2005242839A (en) Store management system, method, and program
JP2020015148A (en) Cutting management system and cutting management method
JP2007026335A (en) Evaluation index forecast visualization method
EP1768834B1 (en) Predictive method of assigning power to an ophthalmic lens or lens lot
JP2010132051A (en) Alarm notification method for part replacement time management system
WO2020137841A1 (en) Punch-and-die management device and punch-and-die management method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818817

Country of ref document: EP

Kind code of ref document: A1