WO2020245990A1 - 複合材成形方法および複合材成形装置 - Google Patents
複合材成形方法および複合材成形装置 Download PDFInfo
- Publication number
- WO2020245990A1 WO2020245990A1 PCT/JP2019/022589 JP2019022589W WO2020245990A1 WO 2020245990 A1 WO2020245990 A1 WO 2020245990A1 JP 2019022589 W JP2019022589 W JP 2019022589W WO 2020245990 A1 WO2020245990 A1 WO 2020245990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin bag
- composite material
- resin
- space
- bag
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
- B29C70/44—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/10—Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
- B29C43/12—Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/54—Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
- B29C70/544—Details of vacuum bags, e.g. materials or shape
Definitions
- the present invention relates to a composite material molding method and a composite material molding apparatus.
- a method of molding a composite material using an autoclave has been widely used as a method of molding a composite material in which a fiber base material is laminated.
- the prepreg containing the uncured matrix resin is covered with a bag film, the inside of the bag film is depressurized, and the prepreg is put into a pressurized state by the pressure difference with the external gas. Further, the prepreg is brought into a heated state by filling the space outside the bag film with heated air.
- Patent Document 1 discloses that the prepreg is bent and molded by covering the prepreg with a silicone rubber bag and heating the prepreg with steam while reducing the pressure in the space where the prepreg is arranged.
- Patent Document 1 after the silicone rubber bag is laid on the prepreg, the prepreg is sealed by placing an outer frame and clamping the silicone rubber bag with a vise so as not to create a gap between the box-shaped jig. doing. Therefore, a special jig such as a box-shaped jig and an outer frame is required, and a complicated work of clamping with a vise is required.
- the bag by adhering the bag to the jig molding surface on which the prepreg is placed with a sealing material, it is conceivable that special jigs and complicated work are not required.
- the resin film when a resin film having high adhesive strength to the sealing material is used, the resin film may be broken by hydrolysis (chemical destruction) by steam.
- the water vapor absorbed by the resin film in a high-pressure environment may expand in a low-pressure environment and be destroyed (mechanically destroyed) from inside the resin film.
- the pressure difference between the inside and outside of the resin film disappears due to the destruction of the resin film, and the prepreg cannot be appropriately pressurized.
- the water vapor flowing from the destroyed resin film may reach the prepreg and be absorbed by the prepreg, making it impossible to form a composite material having desired performance.
- the present invention has been made in view of such circumstances, and is a composite material molding method capable of efficiently heating a composite material using water vapor and preventing water vapor from reaching the composite material. It is an object of the present invention to provide a composite material molding apparatus.
- the composite material molding method according to one aspect of the present invention is for molding a composite material, and the composite material is arranged on the jig molding surface of a molding jig installed in the internal space of a sealable pressure vessel.
- a second sealing step of adhering with a sealing material to airtightly seal the ventilation member a first decompression step of depressurizing the first space sealed by the first resin bag, and the second resin bag.
- the composite material molding method in order to thermally cure the composite material, steam at a predetermined temperature and a predetermined pressure is supplied to the internal space of the pressure vessel in the thermal curing step. Therefore, as compared with the case where air is used as the heating source, the composite material can be heated efficiently and quickly by water vapor having a heat capacity larger than that of air.
- the first resin bag and the jig molding surface are bonded with a sealing material to hermetically seal the composite material
- the second resin bag and the jig molding surface are bonded with a sealing material to hermetically seal the ventilation member.
- the space sealed by the second resin bag is depressurized. Therefore, even if water vapor invades the space where the ventilation member is arranged, the invaded water vapor is dispersed in the decompressed space and finally discharged to the outside of the space. Since the composite material is hermetically sealed by the first resin bag, water vapor is prevented from reaching the composite material. Further, since the water vapor is discharged to the outside without reaching the first resin bag, it is prevented that the first resin bag is damaged by hydrolysis with the water vapor and the water vapor reaches the composite material.
- the second resin bag is a bag containing a fluororesin material as a main component, and the first resin bag has a sealing material rather than the fluororesin material.
- the bag may be composed mainly of a resin material having high adhesive strength.
- the second resin bag is a bag whose main component is a fluororesin material. Since the resistance of the bag containing the fluororesin material as the main component to water vapor is sufficiently higher than that of the resin film or the like containing nylon as the main component, it is possible to more reliably prevent the water vapor from reaching the laminate. Further, since the first resin bag is a resin film whose main component is a resin material having a higher adhesive strength to the sealing material than the fluororesin material, water vapor invades from the adhesive portion between the jig molding surface and the resin film. Can be prevented more reliably.
- the first resin bag can be, for example, a resin film containing nylon or polyurethane as a main component.
- the third arrangement step of arranging the ventilation member so as to cover the second resin bag and the ventilation member covering the second resin bag are covered with the third resin bag.
- a third sealing step in which the third resin bag and the jig molding surface are adhered with the sealing material to airtightly seal the ventilation member, and a third space sealed by the third resin bag is depressurized.
- the third resin bag may be made of a material containing fluororubber or silicone rubber as a main component.
- the third resin bag and the jig molding surface are adhered with a sealing material to airtightly seal the ventilation member, and the space sealed by the third resin bag in the third decompression step. Is depressurized. Therefore, even if water vapor invades the space where the ventilation member is arranged, the invaded water vapor is dispersed in the decompressed space and finally discharged to the outside of the space. Since the composite material is hermetically sealed by the first resin bag and the second resin bag, water vapor is prevented from reaching the composite material.
- the third resin bag is formed of a material mainly composed of fluororubber or silicone rubber having high resistance to steam, the third resin bag should be reused for molding the composite material a plurality of times. Can be done.
- the sealing step of covering the second resin bag with the third resin bag and adhering the third resin bag and the jig molding surface with the sealing material to form a sealed space and the above.
- the closed space is provided with a filling step of filling the second resin bag with a liquid for preventing the water vapor from coming into contact with the second resin bag
- the third resin bag is made of a material containing fluororubber or silicone rubber as a main component. It may be formed.
- the third resin bag and the jig molding surface are adhered with a sealing material to form a closed space between the second resin bag, and water vapor is transferred to the second resin bag in the closed space. It is filled with a liquid to prevent contact. Therefore, even if the third resin bag is damaged due to hydrolysis by water vapor or the like, the water vapor that has entered the closed space is prevented from reaching the second resin bag.
- the composite material may be a laminate in which a fiber base material is laminated together with a resin material. Since the composite material is a laminate in which a fiber base material is laminated together with a resin material, a composite material having sufficient hardness can be molded.
- the composite material forming apparatus forms a composite material, and arranges a sealable pressure container and a composite material which is installed in the internal space of the pressure container and contains a resin material.
- a molding jig having a molding surface for molding, a first resin bag that covers the composite material and is adhered to the jig molding surface by a sealing material to airtightly seal the composite material, and the first resin bag.
- a ventilation member arranged so as to cover and secure a ventilation space, and a second resin that covers the ventilation member and is adhered to the jig molding surface by a sealing material to airtightly seal the ventilation member.
- the bag the decompression unit that decompresses the first space sealed by the first resin bag and the second space sealed by the second resin bag, and the pressure container in a sealed state. It is provided with a steam supply unit for thermally curing the composite material by supplying steam of a predetermined temperature and a predetermined pressure to the internal space.
- the steam supply unit supplies steam at a predetermined temperature and a predetermined pressure to the internal space of the pressure vessel. Therefore, as compared with the case where air is used as the heating source, the composite material can be heated efficiently and quickly by water vapor having a heat capacity larger than that of air.
- the first resin bag and the jig molding surface are bonded with a sealing material to hermetically seal the composite material
- the second resin bag and the jig molding surface are bonded with a sealing material to hermetically seal the ventilation member.
- the space sealed by the second resin bag is depressurized. Therefore, even if water vapor invades the space where the ventilation member is arranged, the invaded water vapor is dispersed in the decompressed space and finally discharged to the outside of the space. Since the composite material is hermetically sealed by the first resin bag, water vapor is prevented from reaching the composite material. Further, since the water vapor is discharged to the outside without reaching the first resin bag, it is prevented that the first resin bag is damaged by hydrolysis with the water vapor and the water vapor reaches the composite material.
- FIG. 2 is a partially enlarged view of the composite material molding apparatus shown in FIG. 2, showing a state in which a part of the second resin bag is broken and water vapor invades.
- FIG. 7 It is a schematic block diagram which shows the composite material molding apparatus which concerns on 2nd Embodiment of this invention. It is a vertical sectional view of the composite material molding apparatus shown in FIG. 7. It is a flowchart which shows the composite material molding method which concerns on 2nd Embodiment.
- FIG. 1 is a schematic configuration diagram showing a composite material molding apparatus 100 according to the first embodiment of the present invention.
- FIG. 2 is a vertical cross-sectional view of the composite material molding apparatus 100 shown in FIG.
- FIG. 3 is a plan view of the internal space shown in FIG. 2 as viewed from above.
- FIG. 3 is a plan view of the internal space of the pressure vessel 10 shown in FIG. 2 as viewed from above.
- the composite material molding apparatus 100 of the present embodiment is an apparatus for molding a fiber-reinforced composite material having a desired shape by thermosetting a prepreg (composite material) P in which a fiber base material is laminated together with a resin material.
- the prepreg is a material containing a fiber base material and an uncured matrix resin, which becomes a fiber-reinforced composite material by being thermoset.
- the fiber base material is, for example, carbon fiber, glass fiber, aramid fiber, or the like.
- the matrix resin is a thermosetting resin, such as epoxy, unsaturated polyester, vinyl ester, bismaleimide, phenol, cyanate, and polyimide.
- a fiber-reinforced composite is formed by thermosetting one or more prepregs.
- the composite material molding apparatus 100 of the present embodiment includes a sealable pressure vessel 10, a molding jig 20, a first resin bag 30, and a breather (ventilation member) 40.
- a second resin bag 50, a vacuum pump (pressure reducing unit) 70, a steam supply unit 80, and a control device 90 are provided.
- the pressure vessel 10 is a sealable container to which an openable / closable door (not shown) is attached and a sealed internal space IS is formed by closing the door.
- the internal space IS of the pressure vessel 10 accommodates the molding jig 20 and the prepreg P arranged in the molding jig 20.
- the molding jig 20 is a plate-shaped member that is installed in the internal space IS of the pressure vessel 10 and has a jig molding surface 21 for arranging the prepreg P.
- the molding jig 20 is arranged on an installation table 11 provided in the internal space IS of the pressure vessel 10.
- the jig molding surface 21 of the jig 20 for molding is a surface extending in the horizontal direction shown in FIG. 2, and the prepreg P is arranged on the jig molding surface 21.
- the molding jig 20 is formed of, for example, a heat-resistant metal material such as an aluminum alloy or iron.
- the first resin bag 30 is a sheet-like member that covers the entire surface of the prepreg P and is adhered to the jig molding surface 21 of the molding jig 20 by the sealing material Se to airtightly seal the prepreg P.
- the first resin bag 30 is formed of a resin film containing nylon or polyurethane as a main component. It is desirable that the first resin bag 30 has a thickness of, for example, 25 ⁇ m or more and 75 ⁇ m or less.
- the breather 40 is arranged so as to cover the entire surface of the first resin bag 30, and is capable of allowing gas to pass between the first resin bag 30 and the second resin bag 50. It is a member for securing a space.
- the breather 40 is, for example, a polyester mat formed of fibrous polyester.
- the breather 40 has a thickness of, for example, 0.2 mm or more and 5 mm or less.
- the second resin bag 50 is a sheet-like member that covers the entire surface of the breather 40 and is adhered to the jig molding surface 21 by the sealing material Se to seal the breather 40.
- the second resin bag 50 is formed of a resin film containing a fluororesin material as a main component.
- the fluororesin material is, for example, FEP (copolymer of tetrafluoroethylene and hexafluoropropylene). It is desirable that the second resin bag 50 has a thickness of, for example, 25 ⁇ m or more and 75 ⁇ m or less.
- the first resin bag 30 is formed of a resin film containing nylon or polyurethane as a main component.
- a resin film containing nylon or polyurethane as a main component has a higher adhesive strength with a sealing material Se than a resin film containing a fluororesin material as a main component. Therefore, the adhesive strength between the first resin bag 30 and the sealing material Se is higher than the adhesive strength between the second resin bag 50 and the sealing material Se. Therefore, the first resin bag 30 is more advantageous than the second resin bag 50 in terms of adhesiveness to the jig molding surface 21.
- the sealing material Se forms a first sealing region SA1 that surrounds the entire circumference of the prepreg P by adhering the first resin bag 30 and the jig molding surface 21. Further, the sealing material Se forms a second sealing region SA2 that surrounds the entire circumference of the prepreg P by adhering the second resin bag 50 and the jig molding surface 21.
- the second seal region SA2 is formed so as to surround the outside of the first seal region SA1. In this way, the sealing material Se isolates the first space S1 in which the prepreg P is arranged from the internal space IS of the pressure vessel 10 by the double sealing regions of the first sealing region SA1 and the second sealing region SA2.
- the sealing material Se is formed of, for example, a material whose main component is butyl rubber.
- the vacuum pump 70 is a device that depressurizes the first space S1 sealed by the first resin bag 30 and the second space S2 sealed by the second resin bag 50. As shown in FIG. 1, the vacuum pump 70 is connected to the pipe 71a via the on-off valve 71, and is connected to the pipe 72a via the on-off valve 72. As shown in FIG. 3, the pipe 71a is connected to the vacuum port 71b attached to the first resin bag 30, and the pipe 72a is connected to the vacuum port 72b attached to the second resin bag 50.
- the vacuum pump 70, the on-off valve 71, and the on-off valve 72 are each controlled by a control signal transmitted from the control device 90 via a control signal line (line shown by a broken line in FIG. 1).
- a control signal line line shown by a broken line in FIG. 1.
- the control device 90 sucks the air in the first space S1 through the vacuum port 71b and depressurizes the first space S1 to the vacuum state. To do.
- the control device 90 sucks the air in the second space S2 through the vacuum port 72b by keeping the vacuum pump 70 in the operating state and the on-off valve 72 in the open state, and puts the second space S2 in a vacuum state. Depressurize to.
- the steam supply unit 80 is a device for thermosetting the prepreg P by supplying steam of a predetermined temperature and a predetermined pressure to the internal space IS of the pressure vessel 10 in a state where the pressure vessel 10 is sealed. As shown in FIG. 1, the steam supply unit 80 is connected to the pipe 81a via an on-off valve 81. As shown in FIG. 3, the pipe 81a communicates with the internal space IS of the pressure vessel 10.
- the steam supply unit 80 and the on-off valve 81 are controlled by a control signal transmitted from the control device 90 via the control signal line.
- the control device 90 supplies steam to the internal space IS via the pipe 81a by operating the steam supply unit 80 and opening the on-off valve 81.
- the steam supply unit 80 generates, for example, saturated steam as steam to be supplied to the internal space IS of the pressure vessel 10.
- the control device 90 controls the steam supply unit 80 so that the temperature of the saturated steam is in the range of 160 ° C. or higher and 190 ° C. or lower, for example.
- the saturated water vapor pressure is uniquely determined with respect to temperature. Therefore, the saturated water steaming pressure is in the range of about 6 atm (absolute pressure) to about 13 atm (absolute pressure).
- the control device 90 is a device that controls the composite material molding device 100.
- the control device 90 controls the vacuum pump 70, the on-off valve 71, the on-off valve 72, the steam supply unit 80, and the on-off valve 81 via the control signal line shown by the broken line in FIG.
- FIG. 4 is a flowchart showing a composite material molding method according to the present embodiment.
- step S401 first arrangement step
- the prepreg P is arranged on the jig molding surface 21 of the molding jig 20.
- the operator operates a transport device (not shown) to arrange the prepreg P on the jig molding surface 21.
- step S402 first sealing step
- the entire surface of the prepreg P is covered with the first resin bag 30, and the first resin bag 30 and the jig molding surface 21 are adhered to each other with the sealing material Se to tightly seal the prepreg P. ..
- the operator of the composite material molding apparatus 100 arranges the sealing material Se on the jig molding surface 21 or the edge of the first resin bag 30, and covers the prepreg P with the first resin bag 30 to cover the first resin bag 30. It is joined to the jig molding surface 21.
- step S403 (second arrangement step), the breather 40 is arranged on the first resin bag 30 so as to cover the first resin bag 30.
- step S404 second sealing step
- the breather 40 is covered with the second resin bag 50, and the second resin bag 50 and the jig molding surface 21 are adhered with the sealing material Se to airtightly seal the breather 40.
- the operator of the composite material molding apparatus 100 arranges the sealing material Se on the jig molding surface 21 or the edge of the second resin bag 50, and covers the breather 40 with the second resin bag 50 to cover the second resin bag 50. It is joined to the jig molding surface 21.
- step S404 the door is opened without sealing the pressure vessel 10.
- step S404 the operator of the composite material forming apparatus 100 closes the door and seals the pressure vessel 10.
- step S405 first decompression step
- the vacuum pump 70 is put into an operating state
- the on-off valve 71 is put into an open state
- the first space S1 sealed by the first resin bag 30 is depressurized.
- the control device 90 continues the process of depressurizing the first space S1 so as to maintain the vacuum state until the step S407 described later is completed.
- step S406 second decompression step
- the vacuum pump 70 is put into an operating state
- the on-off valve 72 is put into an open state
- the second space S2 sealed by the second resin bag 50 is depressurized.
- the control device 90 continues the process of depressurizing the second space S2 so as to maintain the vacuum state until the step S407 described later is completed.
- step S407 heat curing step
- the pressure vessel 10 in response to the vacuum state of the first space S1 and the second space S2, the pressure vessel 10 is sealed and the internal space IS of the pressure vessel 10 has a predetermined temperature and
- the steam supply unit 80 and the on-off valve 81 are controlled so as to supply steam at a predetermined pressure.
- the prepreg P arranged in the internal space IS of the pressure vessel 10 is in a state of being pressurized by the differential pressure between the pressure of the first space S1 decompressed in a vacuum state and the internal space IS pressurized by steam. Further, the prepreg P is in a state of being heated by the heat transferred from the steam.
- the thermosetting resin which is a matrix resin, is cured by continuing the pressurized state and the heated state for a predetermined time, and the prepreg P is cured in a state of maintaining a desired shape. As a result, a composite material obtained by curing the matrix resin is formed from the prepreg P.
- step S408 the operation of the vacuum pump 70 and the steam supply unit 80 is stopped.
- the operator of the composite material forming apparatus 100 confirms that the internal space IS of the pressure vessel 10 has reached a temperature and pressure at which the composite material can be taken out, and opens the door of the pressure vessel 10. After that, the operator of the composite material forming apparatus 100 takes out the cured composite material from the internal space IS of the pressure vessel 10 to the outside. Further, the operator of the composite material molding apparatus 100 removes the second resin bag 50, the breather 40, and the first resin bag 30 from the jig molding surface 21 of the molding jig 20 in this order to expose the composite material. As described above, the composite material is formed.
- FIG. 5 is a partially enlarged view of the composite material molding apparatus 100 shown in FIG. 2, showing a state in which water vapor invades through the gap G between the second resin bag 50 and the sealing material Se.
- the second resin bag 50 of the present embodiment is formed of a resin film containing a fluororesin material as a main component.
- a resin film containing a fluororesin material as a main component is advantageous in that it has higher resistance to water vapor than a resin film containing nylon or polyurethane as a main component.
- a resin film containing a fluororesin material as a main component is disadvantageous in that the adhesive strength with the sealing material Se is lower than that of a resin film containing nylon or polyurethane as a main component.
- FIG. 5 shows a state in which the second resin bag 50 is peeled off from the sealing material Se to form a gap G in a part of the second sealing region SA2 between the second resin bag 50 and the sealing material Se.
- the arrow shown in FIG. 5 indicates the water vapor St, and the water vapor St in the internal space IS invades the second space S2 through the gap G.
- the water vapor St invades the second space S2, but since the pressure in the second space S2 is sufficiently lower than the pressure in the internal space IS, the water vapor St is second along the ventilation space formed by the breather 40. It diffuses in space S2. Therefore, the water vapor St that has entered through the gap G is prevented from coming into direct contact with the first resin bag 30.
- the breather 40 serves to protect the first resin bag 30 against the water vapor St that has entered the second space S2 from the gap G.
- FIG. 6 is a partially enlarged view showing the composite material molding apparatus 100, showing a state in which a part of the second resin bag 50 is destroyed and water vapor invades.
- FIG. 6 shows a state in which a part of the second resin bag 50 is destroyed. Since the second resin bag 50 is formed of a resin film containing a fluororesin material as a main component, it has high resistance to water vapor, but a part of the second resin bag 50 may be destroyed by some factor.
- the arrow shown in FIG. 6 indicates the water vapor St, and the water vapor St in the internal space IS invades the second space S2 through the destroyed portion of the second resin bag 50.
- the water vapor St invades the second space S2, but since the pressure in the second space S2 is sufficiently lower than the pressure in the internal space IS, the water vapor St is second along the ventilation space formed by the breather 40. It diffuses in space S2. Therefore, it is prevented that the water vapor St that has entered the second space S2 comes into direct contact with the first resin bag 30.
- the breather 40 serves to protect the first resin bag 30 against the water vapor St that has entered the second space S2 from the internal space IS.
- the composite material molding method of the present embodiment in order to thermoset the prepreg P, steam at a predetermined temperature and a predetermined pressure is supplied to the internal space IS of the pressure vessel 10 in the thermosetting step. Therefore, as compared with the case where air is used as the heating source, the prepreg P can be heated efficiently and quickly by water vapor having a heat capacity larger than that of air.
- first resin bag 30 and the jig molding surface 21 are bonded to each other with the sealing material Se to tightly seal the prepreg P, and the second resin bag 50 and the jig molding surface 21 are bonded to each other with the sealing material Se to bond the breather 40.
- the second space S2 sealed by the second resin bag 50 is depressurized in the second depressurizing step. Therefore, even if water vapor invades the second space S2 in which the breather 40 is arranged, the invaded water vapor is dispersed in the decompressed second space S2 and finally discharged to the outside of the second space S2. ..
- the prepreg P is hermetically sealed by the first resin bag 30, water vapor is prevented from reaching the prepreg P. Further, since the water vapor is discharged to the outside without reaching the first resin bag 30, it is prevented that the first resin bag 30 is damaged by hydrolysis with the water vapor and the water vapor reaches the prepreg P.
- the second resin bag 50 is a bag containing a fluororesin material as a main component. Since the resistance of the bag containing the fluororesin material as the main component to water vapor is sufficiently higher than that of the resin film containing nylon as the main component, it is possible to more reliably prevent the water vapor from reaching the prepreg P. Further, since the first resin bag 30 is a resin film whose main component is a resin material having a higher adhesive strength to the sealing material Se than the fluororesin material, water vapor is generated from the adhesive portion between the jig molding surface 21 and the resin film. It is possible to prevent intrusion more reliably.
- the entire surface of the prepreg P is covered with the first resin bag 30 and the second resin bag 50, and the breather 40 is arranged between them.
- the entire outer surface of the second resin bag 50 is further covered with the third resin bag 60, and a breather is placed between the second resin bag 50 and the third resin bag 60. 40 is arranged.
- FIG. 7 is a schematic configuration diagram showing a composite material molding apparatus 100A according to a second embodiment of the present invention.
- the composite material forming apparatus 100A shown in FIG. 7 is different from the composite material forming apparatus 100 shown in FIG. 1 in that it includes an on-off valve 73 and a pipe 73a connected to the on-off valve 73.
- FIG. 8 is a vertical cross-sectional view of the composite material molding apparatus 100A shown in FIG.
- the composite material molding apparatus 100A shown in FIG. 8 includes a pipe 73a, a vacuum port 73b, a third resin bag 60, and a breather 40 arranged between the second resin bag 50 and the third resin bag 60. Therefore, it is different from the composite material molding apparatus 100 shown in FIG.
- the vacuum pump 70 and the on-off valve 73 are controlled by a control signal transmitted from the control device 90 via a control signal line (line shown by a broken line in FIG. 7).
- a control signal line line shown by a broken line in FIG. 7
- the control device 90 sucks the air in the third space S3 shown in FIG. 8 through the vacuum port 73b to open the third space S3. Depressurize to vacuum.
- the third space S3 is a space formed between the second resin bag 50 and the third resin bag 60.
- the breather 40 is arranged on the second resin bag 50, and the third resin bag 60 is further arranged so as to cover the breather 40.
- the third resin bag 60 is a sheet-like member that covers the breather 40 and is adhered to the jig molding surface 21 by the sealing material Se to seal the breather 40.
- the third resin bag 60 is formed of a resin material containing silicone rubber or fluororubber as a main component.
- the third resin bag 60 is made of silicone rubber or fluororubber, it has rubber elasticity and high resistance to water vapor. Therefore, the third resin bag 60 can be reused for molding the composite material a plurality of times.
- FIG. 9 is a flowchart showing a composite material molding method according to the present embodiment. Since steps S901 to S904 shown in FIG. 9 are the same as steps S401 to S404 shown in FIG. 4, the description below will be omitted.
- steps S907 and S908 shown in FIG. 9 are the same as steps S405 and S406 shown in FIG. 4, the description below will be omitted. Further, since steps S910 and S911 shown in FIG. 9 are the same as steps S407 and S408 shown in FIG. 4, the description below will be omitted.
- step S905 third arrangement step
- the breather 40 is arranged on the second resin bag 50 so as to cover the entire surface of the second resin bag 50.
- step S906 third sealing step
- the entire surface of the breather 40 is covered with the third resin bag 60, and the third resin bag 60 and the jig molding surface 21 are adhered with the sealing material Se to hermetically seal the breather 40. ..
- the operator of the composite material molding apparatus 100A arranges the sealing material Se on the jig molding surface 21 or the edge of the third resin bag 60, and covers the entire surface of the breather 40 with the third resin bag 60 so that the third resin bag is covered. 60 is joined to the jig molding surface 21.
- step S909 third decompression step
- the vacuum pump 70 is put into an operating state
- the on-off valve 73 is put into an open state
- the third space S3 sealed by the third resin bag 60 is depressurized.
- the control device 90 continues the process of reducing the pressure so as to maintain the third space S3 in a vacuum state until the thermosetting step of step S910 is completed.
- the third resin bag 60 and the jig molding surface 21 are adhered to each other with the sealing material Se to hermetically seal the breather 40, and in step S909 (third decompression step), the third resin bag 60 is sealed.
- the space sealed by the resin bag 60 is depressurized. Therefore, even if water vapor invades the third space S3 in which the breather 40 is arranged, the invaded water vapor is dispersed in the decompressed third space S3 and finally discharged to the outside of the third space S3. ..
- the prepreg P is hermetically sealed by the first resin bag 30 and the second resin bag 50, water vapor is prevented from reaching the prepreg P. Further, since the water vapor is discharged to the outside without reaching the second resin bag 50, it is prevented that the second resin bag 50 is damaged by hydrolysis with the water vapor and the water vapor reaches the prepreg P. Further, since the third resin bag 60 is formed of a resin material containing fluororubber or silicone rubber having high resistance to steam as a main component, the third resin bag 60 is re-molded for a plurality of times of molding the composite material. It can be used.
- the breather 40 is arranged between the second resin bag 50 and the third resin bag 60, but other embodiments may be used.
- a modified example may be used in which a silicone-based oil or a water-absorbent polymer is used as a main component and a liquid that protects the second resin bag 50 from contact with water vapor is filled.
- step S905 and step S909 are deleted.
- step S906 is a sealing step of covering the second resin bag 50 with the third resin bag 60 and adhering the third resin bag 60 and the jig molding surface 21 with the sealing material Se to form a sealed space. Further, after step S906, a filling step of filling the closed space with a liquid for preventing water vapor from coming into contact with the second resin bag 50 is added.
- the third resin bag 60 and the jig molding surface 21 are adhered to each other by the sealing material Se to form a closed space between the third resin bag 60 and the second resin bag 50, and water vapor is introduced into the closed space in the second resin bag. It is filled with a liquid to prevent it from coming into contact with the 50. Therefore, even if the third resin bag 60 is hydrolyzed and damaged by water vapor, the water vapor that has entered the closed space is prevented from reaching the second resin bag 50.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
成形用冶具の冶具成形面にプリプレグを配置する第1配置工程(S401)と、プリプレグを第1樹脂バッグで覆ってプリプレグを気密に封止する第1封止工程(S402)と、第1樹脂バッグを覆うようにブリーザーを配置する第2配置工程(S403)と、ブリーザーを第2樹脂バッグで覆ってブリーザーを気密に封止する第2封止工程(S404)と、第1樹脂バッグ封止された第1空間を減圧する第1減圧工程(S405)と、第2樹脂バッグにより封止された第2空間を減圧する第2減圧工程(S406)と、圧力容器の内部空間へ所定の温度及び所定の圧力の水蒸気を供給してプリプレグを熱硬化させる熱硬化工程(S407)と、を備える複合材成形方法を提供する。
Description
本発明は、複合材成形方法および複合材成形装置に関するものである。
従来、繊維基材が積層された複合材を成形する方法として、オートクレーブを用いた複合材の成形方法が広く用いられている。従来の成形方法では、硬化されていないマトリックス樹脂を含むプリプレグをバッグフィルムで覆い、バッグフィルムの内部を減圧し、外部気体との圧力差によりプリプレグを加圧状態にする。また、バッグフィルムの外部の空間を加熱した空気で満たすことにより、プリプレグを加熱状態にする。
また、近年では、空気よりも熱容量が大きい水蒸気を加熱源として用いる手法が提案されている(例えば、特許文献1参照)。特許文献1には、プリプレグをシリコーンゴムバッグで覆い、プリプレグが配置される空間を減圧しながらプリプレグを水蒸気で加熱することにより、プリプレグの曲げ成形を行うことが開示されている。
しかしながら、特許文献1では、シリコーンゴムバッグをプリプレグ上に敷いた後、外枠を載せてシリコーンゴムバッグと箱型冶具との間に隙間が生じないように万力でクランプすることによってプリプレグを密閉している。そのため、箱型冶具と外枠という特殊な冶具が必要であり、かつ万力によるクランプを行うという煩雑な作業が必要となってしまう。
そこで、例えば、プリプレグを載置する冶具成形面に対してバッグをシール材により接着することで、特殊な冶具や煩雑な作業を不要とすることが考えられる。しかしながら、シール材との接着強度が高い樹脂フィルムを用いる場合、樹脂フィルムが水蒸気による加水分解(化学的破壊)によって破壊する可能性がある。
また、高圧環境下で樹脂フィルムに吸収された水蒸気が低圧環境下で膨張し、樹脂フィルム内部から破壊(機械的破壊)する可能性がある。この場合、樹脂フィルムの破壊によって樹脂フィルムの内外の圧力差がなくなってプリプレグを適切に加圧することができない可能性がある。また、加熱源として水蒸気を用いているため、破壊された樹脂フィルムから流入する水蒸気がプリプレグに到達してプリプレグに吸収され、所望の性能の複合材を成形できない可能性がある。
本発明は、このような事情に鑑みてなされたものであって、水蒸気を用いて複合材料を効率よく加熱するとともに水蒸気が複合材料に到達することを防止することが可能な複合材成形方法および複合材成形装置を提供することを目的とする。
上記課題を解決するために、本発明の複合材成形方法および複合材成形装置は、以下の手段を採用する。
本発明の一態様に係る複合材成形方法は、複合材を成形するものであって、密閉可能な圧力容器の内部空間に設置された成形用冶具の冶具成形面に複合材料を配置する第1配置工程と、前記複合材料を第1樹脂バッグで覆うとともに前記第1樹脂バッグと前記冶具成形面をシール材により接着して前記複合材料を気密に封止する第1封止工程と、通気空間を確保するための通気用部材を前記第1樹脂バッグを覆うように配置する第2配置工程と、前記通気用部材を第2樹脂バッグで覆うとともに前記第2樹脂バッグと前記冶具成形面を前記シール材により接着して前記通気用部材を気密に封止する第2封止工程と、前記第1樹脂バッグにより封止された第1空間を減圧する第1減圧工程と、前記第2樹脂バッグにより封止された第2空間を減圧する第2減圧工程と、前記圧力容器を密閉した状態で前記圧力容器の前記内部空間へ所定の温度及び所定の圧力の水蒸気を供給して前記複合材料を熱硬化させる熱硬化工程と、を備える。
本発明の一態様に係る複合材成形方法は、複合材を成形するものであって、密閉可能な圧力容器の内部空間に設置された成形用冶具の冶具成形面に複合材料を配置する第1配置工程と、前記複合材料を第1樹脂バッグで覆うとともに前記第1樹脂バッグと前記冶具成形面をシール材により接着して前記複合材料を気密に封止する第1封止工程と、通気空間を確保するための通気用部材を前記第1樹脂バッグを覆うように配置する第2配置工程と、前記通気用部材を第2樹脂バッグで覆うとともに前記第2樹脂バッグと前記冶具成形面を前記シール材により接着して前記通気用部材を気密に封止する第2封止工程と、前記第1樹脂バッグにより封止された第1空間を減圧する第1減圧工程と、前記第2樹脂バッグにより封止された第2空間を減圧する第2減圧工程と、前記圧力容器を密閉した状態で前記圧力容器の前記内部空間へ所定の温度及び所定の圧力の水蒸気を供給して前記複合材料を熱硬化させる熱硬化工程と、を備える。
本発明の一態様に係る複合材成形方法によれば、複合材料を熱硬化させるため、熱硬化工程において、所定の温度及び所定の圧力の水蒸気を圧力容器の内部空間へ供給している。そのため、加熱源として空気を用いる場合に比べ、空気よりも熱容量の大きい水蒸気により複合材料を効率よく迅速に加熱することができる。
また、第1樹脂バッグと冶具成形面をシール材により接着して複合材料を気密に封止し、さらに第2樹脂バッグと冶具成形面をシール材により接着して通気用部材を気密に封止し、第2減圧工程において第2樹脂バッグにより封止された空間を減圧している。そのため、通気用部材が配置される空間に水蒸気が侵入したとしても、侵入した水蒸気は減圧された空間内に分散し、最終的には空間の外部に排出される。複合材料は第1樹脂バッグにより気密に封止されているため、水蒸気が複合材料に到達することが防止される。さらに、水蒸気が第1樹脂バッグに到達せずに外部に排出されるため、第1樹脂バッグが水蒸気との加水分解等により破損して水蒸気が複合材料に到達することが防止される。
本発明の一態様に係る複合材成形方法において、前記第2樹脂バッグは、フッ素樹脂材料を主成分とするバッグであり、前記第1樹脂バッグは、前記フッ素樹脂材料よりも前記シール材との接着強度が高い樹脂材料を主成分とするバッグである構成でもよい。
本構成の複合材成形方法によれば、第2樹脂バッグがフッ素樹脂材料を主成分とするバッグである。フッ素樹脂材料を主成分とするバッグの水蒸気に対する耐性は、ナイロンを主成分とする樹脂フィルム等と比べて十分に高いため、水蒸気が積層体に到達することをより確実に防止することができる。また、第1樹脂バッグが、フッ素樹脂材料よりもシール材との接着強度が高い樹脂材料を主成分とする樹脂フィルムであるため、冶具成形面と樹脂フィルムとの接着部分から水蒸気が侵入することをより確実に防止することができる。ここで、第1樹脂バッグは、例えば、ナイロンまたはポリウレタンを主成分とする樹脂フィルムとすることができる。
上記構成の複合材成形方法において、前記第2樹脂バッグを覆うように前記通気用部材を配置する第3配置工程と、前記第2樹脂バッグを覆う前記通気用部材を第3樹脂バッグで覆うとともに前記第3樹脂バッグと前記冶具成形面を前記シール材により接着して前記通気用部材を気密に封止する第3封止工程と、前記第3樹脂バッグにより封止された第3空間を減圧する第3減圧工程と、を備え、前記第3樹脂バッグは、フッ素ゴムまたはシリコーンゴムを主成分とする材料により形成されていてもよい。
上記の複合材成形方法によれば、第3樹脂バッグと冶具成形面をシール材により接着して通気用部材を気密に封止し、第3減圧工程において第3樹脂バッグにより封止された空間を減圧している。そのため、通気用部材が配置される空間に水蒸気が侵入したとしても、侵入した水蒸気は減圧された空間内に分散し、最終的には空間の外部に排出される。複合材料は第1樹脂バッグおよび第2樹脂バッグにより気密に封止されているため、水蒸気が複合材料に到達することが防止される。
さらに、水蒸気が第2樹脂バッグに到達せずに外部に排出されるため、第2樹脂バッグが水蒸気との加水分解等により破損して水蒸気が複合材料に到達することが防止される。また、第3樹脂バッグが、蒸気に対する耐性の高いフッ素ゴムまたはシリコーンゴムを主成分とする材料により形成されているため、第3樹脂バッグを複数回の複合材の成形のために再利用することができる。
上記構成の複合材成形方法において、前記第2樹脂バッグを第3樹脂バッグで覆うとともに前記第3樹脂バッグと前記冶具成形面を前記シール材により接着して密閉空間を形成する密閉工程と、前記密閉空間に前記第2樹脂バッグへ前記水蒸気が接触することを防止するための液体を充填する充填工程と、を備え、前記第3樹脂バッグは、フッ素ゴムまたはシリコーンゴムを主成分とする材料により形成されていてもよい。
上記の複合材成形方法によれば、第3樹脂バッグと冶具成形面をシール材により接着して第2樹脂バッグとの間に密閉空間を形成し、その密閉空間に水蒸気が第2樹脂バッグに接触することを防止するための液体が充填される。そのため、第3樹脂バッグが水蒸気による加水分解等により破損した場合であっても、密閉空間に侵入した水蒸気が第2樹脂バッグに到達することが防止される。
上記構成の複合材成形方法において、前記複合材料は、繊維基材が樹脂材料とともに積層された積層体であってよい。
複合材料が、繊維基材が樹脂材料とともに積層された積層体であるため、十分な硬度の複合材を成形することができる。
複合材料が、繊維基材が樹脂材料とともに積層された積層体であるため、十分な硬度の複合材を成形することができる。
本発明の一態様に係る複合材成形装置は、複合材を成形するものであって、密閉可能な圧力容器と、前記圧力容器の内部空間に設置されるとともに樹脂材料を含む複合材料を配置するための冶具成形面を有する成形用冶具と、前記複合材料を覆うとともにシール材により前記冶具成形面に接着されて前記複合材料を気密に封止する第1樹脂バッグと、前記第1樹脂バッグを覆うように配置されるとともに通気空間を確保するための通気用部材と、前記通気用部材を覆うとともにシール材により前記冶具成形面に接着されて前記通気用部材を気密に封止する第2樹脂バッグと、前記第1樹脂バッグにより封止された第1空間および前記第2樹脂バッグにより封止された第2空間を減圧する減圧部と、前記圧力容器を密閉した状態で前記圧力容器の前記内部空間へ所定の温度及び所定の圧力の水蒸気を供給して前記複合材料を熱硬化させる水蒸気供給部と、を備える。
本発明の一態様に係る複合材成形装置によれば、複合材料を熱硬化させるため、水蒸気供給部が、所定の温度及び所定の圧力の水蒸気を圧力容器の内部空間へ供給している。そのため、加熱源として空気を用いる場合に比べ、空気よりも熱容量の大きい水蒸気により複合材料を効率よく迅速に加熱することができる。
また、第1樹脂バッグと冶具成形面をシール材により接着して複合材料を気密に封止し、さらに第2樹脂バッグと冶具成形面をシール材により接着して通気用部材を気密に封止し、第2減圧工程において第2樹脂バッグにより封止された空間を減圧している。そのため、通気用部材が配置される空間に水蒸気が侵入したとしても、侵入した水蒸気は減圧された空間内に分散し、最終的には空間の外部に排出される。複合材料は第1樹脂バッグにより気密に封止されているため、水蒸気が複合材料に到達することが防止される。さらに、水蒸気が第1樹脂バッグに到達せずに外部に排出されるため、第1樹脂バッグが水蒸気との加水分解等により破損して水蒸気が複合材料に到達することが防止される。
本発明によれば、水蒸気を用いて複合材料を効率よく加熱するとともに水蒸気が複合材料に到達することを防止することが可能な複合材成形方法および複合材成形装置を提供することができる。
〔第1実施形態〕
以下、本発明の第1実施形態に係る複合材成形装置100およびそれを用いた複合材成形方法について、図面を参照して説明する。図1は、本発明の第1実施形態に係る複合材成形装置100を示す概略構成図である。図2は、図1に示す複合材成形装置100の縦断面図である。図3は、図2に示す内部空間を上方からみた平面図である。図3は、図2に示す圧力容器10の内部空間を上方からみた平面図である。
以下、本発明の第1実施形態に係る複合材成形装置100およびそれを用いた複合材成形方法について、図面を参照して説明する。図1は、本発明の第1実施形態に係る複合材成形装置100を示す概略構成図である。図2は、図1に示す複合材成形装置100の縦断面図である。図3は、図2に示す内部空間を上方からみた平面図である。図3は、図2に示す圧力容器10の内部空間を上方からみた平面図である。
本実施形態の複合材成形装置100は、繊維基材が樹脂材料とともに積層されたプリプレグ(複合材料)Pを熱硬化させることにより所望の形状の繊維強化複合材を成形する装置である。ここで、プリプレグとは、繊維基材と未硬化のマトリックス樹脂を含み、熱硬化することにより繊維強化複合材となる材料をいう。また、繊維基材とは、例えば、炭素繊維、ガラス繊維、アラミド繊維等である。また、マトリックス樹脂は、熱硬化性樹脂であり、エポキシ、不飽和ポリエステル、ビニルエステル、ビスマレイミド、フェノール、シアネート、ポリイミド等である。1枚あるいは複数枚のプリプレグを熱硬化させることにより、繊維強化複合材が成形される。
図1および図2に示すように、本実施形態の複合材成形装置100は、密閉可能な圧力容器10と、成形用冶具20と、第1樹脂バッグ30と、ブリーザー(通気用部材)40と、第2樹脂バッグ50と、真空ポンプ(減圧部)70と、水蒸気供給部80と、制御装置90と、を備える。
圧力容器10は、不図示の開閉可能な扉が取り付けられ、扉を閉状態とすることにより密閉された内部空間ISを形成する密閉可能な容器である。圧力容器10の内部空間ISには、成形用冶具20と成形用冶具20に配置されるプリプレグPが収容される。
成形用冶具20は、圧力容器10の内部空間ISに設置されるとともにプリプレグPを配置するための冶具成形面21を有する板状に形成される部材である。成形用冶具20は、圧力容器10の内部空間ISに設けられた設置台11の上に配置される。成形用冶具20の冶具成形面21は、図2に示す水平方向に延びる面であり、冶具成形面21の上にプリプレグPが配置される。成形用冶具20は、例えば、アルミニウム合金、鉄等の耐熱性のある金属材料により形成される。
第1樹脂バッグ30は、プリプレグPの全面を覆うとともにシール材Seにより成形用冶具20の冶具成形面21に接着されてプリプレグPを気密に封止するシート状の部材である。第1樹脂バッグ30は、ナイロンまたはポリウレタンを主成分とする樹脂フィルムにより形成されている。第1樹脂バッグ30は、例えば、25μm以上かつ75μm以下の厚さとするのが望ましい。
ブリーザー40は、図2に示すように、第1樹脂バッグ30の全面を覆うように配置されるとともに第1樹脂バッグ30と第2樹脂バッグ50との間で気体を通過させることが可能な通気空間を確保するための部材である。ブリーザー40は、例えば、繊維状のポリエステルにより形成されたポリエステルマットである。ブリーザー40は、例えば、0.2mm以上かつ5mm以下の厚さである。
第2樹脂バッグ50は、図2に示すように、ブリーザー40の全面を覆うとともにシール材Seにより冶具成形面21に接着されてブリーザー40を封止するシート状の部材である。第2樹脂バッグ50は、フッ素樹脂材料を主成分とする樹脂フィルムにより形成されている。フッ素樹脂材料とは、例えば、FEP(テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体)である。第2樹脂バッグ50は、例えば、25μm以上かつ75μm以下の厚さとするのが望ましい。
前述したように、第1樹脂バッグ30は、ナイロンまたはポリウレタンを主成分とする樹脂フィルムにより形成されている。ナイロンまたはポリウレタンを主成分とする樹脂フィルムは、フッ素樹脂材料を主成分とする樹脂フィルムよりもシール材Seとの接着強度が高い。そのため、第1樹脂バッグ30とシール材Seとの接着強度は、第2樹脂バッグ50とシール材Seとの接着強度よりも高い。よって、第1樹脂バッグ30の方が、第2樹脂バッグ50よりも、冶具成形面21への接着性の点で有利である。
図3に示すように、シール材Seは、第1樹脂バッグ30と冶具成形面21とを接着することにより、プリプレグPの全周を取り囲む第1シール領域SA1を形成する。また、シール材Seは、第2樹脂バッグ50と冶具成形面21とを接着することにより、プリプレグPの全周を取り囲む第2シール領域SA2を形成する。第2シール領域SA2は、第1シール領域SA1の外側を取り囲むように形成される。このように、シール材Seは、第1シール領域SA1および第2シール領域SA2の2重のシール領域により、圧力容器10の内部空間ISからプリプレグPが配置される第1空間S1を隔離する。シール材Seは、例えば、主成分がブチルゴムである材料により形成されている。
真空ポンプ70は、第1樹脂バッグ30により封止された第1空間S1および第2樹脂バッグ50により封止された第2空間S2を減圧する装置である。図1に示すように、真空ポンプ70は、開閉弁71を介して配管71aに接続され、開閉弁72を介して配管72aに接続されている。図3に示すように、配管71aは第1樹脂バッグ30に取り付けられた真空ポート71bに接続され、配管72aは第2樹脂バッグ50に取り付けられた真空ポート72bに接続されている。
真空ポンプ70と開閉弁71と開閉弁72は、それぞれ制御装置90から制御信号線(図1で破線で示す線)を介して伝達される制御信号により制御される。制御装置90は、真空ポンプ70を動作状態とし、かつ開閉弁71を開状態とすることにより、真空ポート71bを介して第1空間S1の空気を吸引して第1空間S1を真空状態まで減圧する。また、制御装置90は、真空ポンプ70を動作状態とし、かつ開閉弁72を開状態とすることにより、真空ポート72bを介して第2空間S2の空気を吸引して第2空間S2を真空状態まで減圧する。
水蒸気供給部80は、圧力容器10を密閉した状態で圧力容器10の内部空間ISへ所定の温度及び所定の圧力の水蒸気を供給してプリプレグPを熱硬化させる装置である。図1に示すように、水蒸気供給部80は、開閉弁81を介して配管81aに接続されている。図3に示すように、配管81aは、圧力容器10の内部空間ISと連通している。
水蒸気供給部80および開閉弁81は、制御装置90から制御信号線を介して伝達される制御信号により制御される。制御装置90は、水蒸気供給部80を動作状態とし、かつ開閉弁81を開状態とすることにより、配管81aを介して水蒸気を内部空間ISへ供給する。水蒸気供給部80は、圧力容器10の内部空間ISへ供給する水蒸気として、例えば、飽和水蒸気を生成する。制御装置90は、例えば、飽和水蒸気の温度が160℃以上かつ190℃以下の範囲となるように水蒸気供給部80を制御する。飽和水蒸気圧は、温度に対して一意に定まる。そのため、飽和水蒸圧は、約6気圧(絶対圧)~約13気圧(絶対圧)の範囲となる。
制御装置90は、複合材成形装置100を制御する装置である。制御装置90は、図1に破線で示す制御信号線を介して、真空ポンプ70、開閉弁71、開閉弁72、水蒸気供給部80、および開閉弁81を制御する。
次に、図4を参照して、本実施形態の複合材成形装置100が実行する複合材成形方法について説明する。図4は、本実施形態に係る複合材成形方法を示すフローチャートである。
ステップS401(第1配置工程)において、プリプレグPが成形用冶具20の冶具成形面21に配置される。操作者は、例えば、運搬装置(図示略)を操作してプリプレグPを冶具成形面21に配置する。
ステップS401(第1配置工程)において、プリプレグPが成形用冶具20の冶具成形面21に配置される。操作者は、例えば、運搬装置(図示略)を操作してプリプレグPを冶具成形面21に配置する。
ステップS402(第1封止工程)において、第1樹脂バッグ30でプリプレグPの全面を覆うとともに第1樹脂バッグ30と冶具成形面21をシール材Seにより接着してプリプレグPを気密に封止する。複合材成形装置100の操作者は、冶具成形面21または第1樹脂バッグ30の縁部にシール材Seを配置し、第1樹脂バッグ30でプリプレグPを覆うようにして第1樹脂バッグ30を冶具成形面21に接合する。
ステップS403(第2配置工程)において、第1樹脂バッグ30を覆うように第1樹脂バッグ30の上にブリーザー40を配置する。
ステップS404(第2封止工程)において、ブリーザー40を第2樹脂バッグ50で覆うとともに第2樹脂バッグ50と冶具成形面21をシール材Seにより接着してブリーザー40を気密に封止する。複合材成形装置100の操作者は、冶具成形面21または第2樹脂バッグ50の縁部にシール材Seを配置し、第2樹脂バッグ50でブリーザー40を覆うようにして第2樹脂バッグ50を冶具成形面21に接合する。
以上のステップS401からステップS404においては、圧力容器10を密閉せずに扉を開状態にしている。ステップS404が終了すると、複合材成形装置100の操作者は、扉を閉状態とし、圧力容器10を密閉する。
ステップS405(第1減圧工程)において、真空ポンプ70を動作状態とし、かつ開閉弁71を開状態とし、第1樹脂バッグ30により封止された第1空間S1を減圧する。制御装置90は、第1空間S1を真空状態に維持するように減圧する処理を、後述するステップS407を終了するまで継続する。
ステップS406(第2減圧工程)において、真空ポンプ70を動作状態とし、かつ開閉弁72を開状態とし、第2樹脂バッグ50により封止された第2空間S2を減圧する。制御装置90は、第2空間S2を真空状態に維持するように減圧する処理を、後述するステップS407を終了するまで継続する。
ステップS407(熱硬化工程)において、第1空間S1および第2空間S2が真空状態となったことに応じて、圧力容器10を密閉した状態で、圧力容器10の内部空間ISへ所定の温度及び所定の圧力の水蒸気を供給するよう水蒸気供給部80および開閉弁81が制御される。
圧力容器10の内部空間ISに配置されるプリプレグPは、真空状態に減圧された第1空間S1の圧力と水蒸気により加圧された内部空間ISとの差圧によって加圧された状態となる。また、プリプレグPは、水蒸気から伝達される熱によって加熱された状態となる。プリプレグPは、加圧状態および加熱状態が所定時間継続することにより、マトリックス樹脂である熱硬化性樹脂が硬化し、所望の形状を維持した状態で硬化する。これにより、プリプレグPからマトリックス樹脂が硬化した複合材が成形される。
ステップS408において、真空ポンプ70および水蒸気供給部80の動作を停止させる。複合材成形装置100の操作者は、圧力容器10の内部空間ISが複合材を取り出すことが可能な温度および圧力となったことを確認し、圧力容器10の扉を開状態とする。その後、複合材成形装置100の操作者は、硬化した複合材を圧力容器10の内部空間ISから外部へ取り出す。また、複合材成形装置100の操作者は、成形用冶具20の冶具成形面21から第2樹脂バッグ50、ブリーザー40、第1樹脂バッグ30をこの順で取り外し、複合材を露出させる。以上のようにして、複合材が成形される。
ここで、本実施形態の複合材成形装置100がステップS407(熱硬化工程)を実行している際に発生し得る現象について説明する。図5は、図2に示す複合材成形装置100の部分拡大図であり、第2樹脂バッグ50とシール材Seの隙間Gから水蒸気が侵入する状態を示す。
本実施形態の第2樹脂バッグ50は、フッ素樹脂材料を主成分とする樹脂フィルムにより形成されている。フッ素樹脂材料を主成分とする樹脂フィルムは、ナイロンまたはポリウレタンを主成分とする樹脂フィルムに比べ、水蒸気への耐性が高い点で有利である。一方、フッ素樹脂材料を主成分とする樹脂フィルムは、ナイロンまたはポリウレタンを主成分とする樹脂フィルムよりもシール材Seとの接着強度が低い点で不利である。
図5は、第2樹脂バッグ50とシール材Seとの第2シール領域SA2の一部で第2樹脂バッグ50がシール材Seから剥がれて隙間Gが形成された状態を示す。図5に示す矢印が水蒸気Stを示しており、内部空間ISの水蒸気Stが隙間Gを介して第2空間S2へ侵入する。
この場合、水蒸気Stが第2空間S2へ侵入するが、第2空間S2の圧力が内部空間ISの圧力に比べて十分に低いため、水蒸気Stはブリーザー40が形成する通気空間に沿って第2空間S2で拡散する。そのため、隙間Gから侵入した水蒸気Stが第1樹脂バッグ30に直接的に接触することが防止される。
また、ステップS407(熱硬化工程)を実行している際に、真空ポート72bから真空ポンプ70は向けて第2空間S2内の気体が常時吸い出されている。そのため、隙間Gから第2空間S2へ侵入した水蒸気Stは、最終的には真空ポンプ70の吸引力によって真空ポート72bから真空ポンプ70へ導かれ、外部へ排出される。このように、ブリーザー40は、隙間Gから第2空間S2へ侵入した水蒸気Stに対して第1樹脂バッグ30を防御する役目を果たす。
ここで、本実施形態の複合材成形装置100がステップS407(熱硬化工程)を実行している際に発生し得る他の現象について説明する。図6は、複合材成形装置100を示す部分拡大図であり、第2樹脂バッグ50の一部が破壊されて水蒸気が侵入する状態を示す。
図6は、第2樹脂バッグ50の一部が破壊された状態を示す。第2樹脂バッグ50は、フッ素樹脂材料を主成分とする樹脂フィルムにより形成されているため、水蒸気に対する耐性が高いが、何らかの要因により一部が破壊されることがあり得る。図6に示す矢印が水蒸気Stを示しており、内部空間ISの水蒸気Stが第2樹脂バッグ50の破壊された部分を介して第2空間S2へ侵入する。
この場合、水蒸気Stが第2空間S2へ侵入するが、第2空間S2の圧力が内部空間ISの圧力に比べて十分に低いため、水蒸気Stはブリーザー40が形成する通気空間に沿って第2空間S2で拡散する。そのため、第2空間S2へ侵入した水蒸気Stが第1樹脂バッグ30に直接的に接触することが防止される。
また、ステップS407(熱硬化工程)を実行している際に、真空ポート72bから真空ポンプ70は向けて第2空間S2内の気体が常時吸い出されている。そのため、内部空間ISから第2空間S2へ侵入した水蒸気Stは、最終的には真空ポンプ70の吸引力によって真空ポート72bから真空ポンプ70へ導かれ、外部へ排出される。このように、ブリーザー40は、内部空間ISから第2空間S2へ侵入した水蒸気Stに対して第1樹脂バッグ30を防御する役目を果たす。
以上説明した本実施形態の複合材成形方法が奏する作用および効果について説明する。
本実施形態の複合材成形方法によれば、プリプレグPを熱硬化させるため、熱硬化工程において、所定の温度及び所定の圧力の水蒸気を圧力容器10の内部空間ISへ供給している。そのため、加熱源として空気を用いる場合に比べ、空気よりも熱容量の大きい水蒸気によりプリプレグPを効率よく迅速に加熱することができる。
本実施形態の複合材成形方法によれば、プリプレグPを熱硬化させるため、熱硬化工程において、所定の温度及び所定の圧力の水蒸気を圧力容器10の内部空間ISへ供給している。そのため、加熱源として空気を用いる場合に比べ、空気よりも熱容量の大きい水蒸気によりプリプレグPを効率よく迅速に加熱することができる。
また、第1樹脂バッグ30と冶具成形面21をシール材Seにより接着してプリプレグPを気密に封止し、さらに第2樹脂バッグ50と冶具成形面21をシール材Seにより接着してブリーザー40を気密に封止し、第2減圧工程において第2樹脂バッグ50により封止された第2空間S2を減圧している。そのため、ブリーザー40が配置される第2空間S2に水蒸気が侵入したとしても、侵入した水蒸気は減圧された第2空間S2内に分散し、最終的には第2空間S2の外部に排出される。
プリプレグPは第1樹脂バッグ30により気密に封止されているため、水蒸気がプリプレグPに到達することが防止される。さらに、水蒸気が第1樹脂バッグ30に到達せずに外部に排出されるため、第1樹脂バッグ30が水蒸気との加水分解により破損して水蒸気がプリプレグPに到達することが防止される。
本実施形態の複合材成形方法によれば、第2樹脂バッグ50がフッ素樹脂材料を主成分とするバッグである。フッ素樹脂材料を主成分とするバッグの水蒸気に対する耐性は、ナイロンを主成分とする樹脂フィルム等と比べて十分に高いため、水蒸気がプリプレグPに到達することをより確実に防止することができる。また、第1樹脂バッグ30が、フッ素樹脂材料よりもシール材Seとの接着強度が高い樹脂材料を主成分とする樹脂フィルムであるため、冶具成形面21と樹脂フィルムとの接着部分から水蒸気が侵入することをより確実に防止することができる。
〔第2実施形態〕
以下、本発明の第2実施形態に係る複合材成形装置100Aおよびそれを用いた複合材成形方法について、図面を参照して説明する。本実施形態は、第1実施形態の変形例であり、以下で特に説明する場合を除き、第1実施形態と同様であるものとし、以下での説明を省略する。
以下、本発明の第2実施形態に係る複合材成形装置100Aおよびそれを用いた複合材成形方法について、図面を参照して説明する。本実施形態は、第1実施形態の変形例であり、以下で特に説明する場合を除き、第1実施形態と同様であるものとし、以下での説明を省略する。
第1実施形態の複合材成形装置100は、プリプレグPの全面を、第1樹脂バッグ30および第2樹脂バッグ50で覆い、その間にブリーザー40を配置するものであった。それに対して、本実施形態の複合材成形装置100Aは、第2樹脂バッグ50の外側の全面をさらに第3樹脂バッグ60で覆い、第2樹脂バッグ50と第3樹脂バッグ60との間にブリーザー40を配置するものである。
図7は、本発明の第2実施形態に係る複合材成形装置100Aを示す概略構成図である。図7に示す複合材成形装置100Aは、開閉弁73と開閉弁73に接続される配管73aを備える点で図1に示す複合材成形装置100と異なる。図8は、図7に示す複合材成形装置100Aの縦断面図である。図8に示す複合材成形装置100Aは、配管73aと、真空ポート73bと、第3樹脂バッグ60と、第2樹脂バッグ50と第3樹脂バッグ60との間に配置されるブリーザー40を備える点で、図2に示す複合材成形装置100と異なる。
図7に示すように、真空ポンプ70と開閉弁73は、制御装置90から制御信号線(図7で破線で示す線)を介して伝達される制御信号により制御される。制御装置90は、真空ポンプ70を動作状態とし、かつ開閉弁73を開状態とすることにより、真空ポート73bを介して図8に示す第3空間S3の空気を吸引して第3空間S3を真空状態まで減圧する。第3空間S3は、第2樹脂バッグ50と第3樹脂バッグ60との間に形成される空間である。
図8に示すように、本実施形態の複合材成形装置100Aにおいて、第2樹脂バッグ50の上には、ブリーザー40が配置され、さらにブリーザー40を覆うように第3樹脂バッグ60が配置されている。第3樹脂バッグ60は、ブリーザー40を覆うとともにシール材Seにより冶具成形面21に接着されてブリーザー40を封止するシート状の部材である。第3樹脂バッグ60は、シリコーンゴムまたはフッ素ゴムを主成分とする樹脂材料により形成されている。
第3樹脂バッグ60は、シリコーンゴムまたはフッ素ゴムにより形成されているため、ゴム弾性を有するとともに水蒸気への耐性が高い。そのため、第3樹脂バッグ60は、複数回の複合材の成形のために再利用することができる。
次に、図9を参照して、本実施形態の複合材成形装置100Aが実行する複合材成形方法について説明する。図9は、本実施形態に係る複合材成形方法を示すフローチャートである。なお、図9に示すステップS901~S904は、図4に示すステップS401~S404と同様であるため、以下での説明を省略する。
また、図9に示すステップS907、S908は、図4に示すステップS405、S406と同様であるため、以下での説明を省略する。また、図9に示すステップS910、S911は、図4に示すステップS407、S408と同様であるため、以下での説明を省略する。
ステップS905(第3配置工程)において、第2樹脂バッグ50の全面を覆うように第2樹脂バッグ50の上にブリーザー40を配置する。
ステップS906(第3封止工程)において、ブリーザー40の全面を第3樹脂バッグ60で覆うとともに第3樹脂バッグ60と冶具成形面21をシール材Seにより接着してブリーザー40を気密に封止する。複合材成形装置100Aの操作者は、冶具成形面21または第3樹脂バッグ60の縁部にシール材Seを配置し、第3樹脂バッグ60でブリーザー40の全面を覆うようにして第3樹脂バッグ60を冶具成形面21に接合する。
ステップS909(第3減圧工程)において、真空ポンプ70を動作状態とし、かつ開閉弁73を開状態とし、第3樹脂バッグ60により封止された第3空間S3を減圧する。制御装置90は、第3空間S3を真空状態に維持するように減圧する処理を、ステップS910の熱硬化工程が終了するまで継続する。
本実施形態の複合材成形方法によれば、第3樹脂バッグ60と冶具成形面21をシール材Seにより接着してブリーザー40を気密に封止し、ステップS909(第3減圧工程)において第3樹脂バッグ60により封止された空間を減圧している。そのため、ブリーザー40が配置される第3空間S3に水蒸気が侵入したとしても、侵入した水蒸気は減圧された第3空間S3内に分散し、最終的には第3空間S3の外部に排出される。
プリプレグPは第1樹脂バッグ30および第2樹脂バッグ50により気密に封止されているため、水蒸気がプリプレグPに到達することが防止される。さらに、水蒸気が第2樹脂バッグ50に到達せずに外部に排出されるため、第2樹脂バッグ50が水蒸気との加水分解により破損して水蒸気がプリプレグPに到達することが防止される。また、第3樹脂バッグ60が、蒸気に対する耐性の高いフッ素ゴムまたはシリコーンゴムを主成分とする樹脂材料により形成されているため、第3樹脂バッグ60を複数回の複合材の成形のために再利用することができる。
なお、本実施形態の複合材成形方法において、第2樹脂バッグ50と第3樹脂バッグ60の間にブリーザー40を配置するものとしたが、他の態様であってもよい。例えば、ブリーザー40に替えて、シリコン系オイルまたは吸水性ポリマーを主成分とし、第2樹脂バッグ50と水蒸気との接触から防御する液体を充填する変形例としてもよい。
この変形例の複合材成形装置においては、図7に示す開閉弁73および配管73a、並びに図8に示す真空ポート73bは設けられないものとなる。また、図9に示すフローチャートにおいて、ステップS905およびステップS909は削除される。
また、ステップS906は、第2樹脂バッグ50を第3樹脂バッグ60で覆うとともに第3樹脂バッグ60と冶具成形面21をシール材Seにより接着して密閉空間を形成する密閉工程となる。さらに、ステップS906の後に、密閉空間に第2樹脂バッグ50へ水蒸気が接触することを防止するための液体を充填する充填工程が追加される。
この変形例によれば、第3樹脂バッグ60と冶具成形面21をシール材Seにより接着して第2樹脂バッグ50との間に密閉空間を形成し、その密閉空間に水蒸気が第2樹脂バッグ50に接触することを防止するための液体が充填される。そのため、第3樹脂バッグ60が水蒸気により加水分解して破損した場合であっても、密閉空間に侵入した水蒸気が第2樹脂バッグ50に到達することが防止される。
10 圧力容器
20 成形用冶具
21 冶具成形面
30 第1樹脂バッグ
40 ブリーザー(通気用部材)
50 第2樹脂バッグ
60 第3樹脂バッグ
70 真空ポンプ(減圧部)
71,72,73,81 開閉弁
71a,72a,73a,81a 配管
71b,72b,73b 真空ポート
80 水蒸気供給部
90 制御装置
100,100A 複合材成形装置
G 隙間
IS 内部空間
P プリプレグ(複合材料)
S1 第1空間
S2 第2空間
S3 第3空間
SA1 第1シール領域
SA2 第2シール領域
Se シール材
St 水蒸気
20 成形用冶具
21 冶具成形面
30 第1樹脂バッグ
40 ブリーザー(通気用部材)
50 第2樹脂バッグ
60 第3樹脂バッグ
70 真空ポンプ(減圧部)
71,72,73,81 開閉弁
71a,72a,73a,81a 配管
71b,72b,73b 真空ポート
80 水蒸気供給部
90 制御装置
100,100A 複合材成形装置
G 隙間
IS 内部空間
P プリプレグ(複合材料)
S1 第1空間
S2 第2空間
S3 第3空間
SA1 第1シール領域
SA2 第2シール領域
Se シール材
St 水蒸気
Claims (7)
- 複合材を成形する複合材成形方法であって、
密閉可能な圧力容器の内部空間に設置された成形用冶具の冶具成形面に複合材料を配置する第1配置工程と、
前記複合材料を第1樹脂バッグで覆うとともに前記第1樹脂バッグと前記冶具成形面をシール材により接着して前記複合材料を気密に封止する第1封止工程と、
通気空間を確保するための通気用部材を前記第1樹脂バッグを覆うように配置する第2配置工程と、
前記通気用部材を第2樹脂バッグで覆うとともに前記第2樹脂バッグと前記冶具成形面を前記シール材により接着して前記通気用部材を気密に封止する第2封止工程と、
前記第1樹脂バッグにより封止された第1空間を減圧する第1減圧工程と、
前記第2樹脂バッグにより封止された第2空間を減圧する第2減圧工程と、
前記圧力容器を密閉した状態で前記圧力容器の前記内部空間へ所定の温度及び所定の圧力の水蒸気を供給して前記複合材料を熱硬化させる熱硬化工程と、を備える複合材成形方法。 - 前記第2樹脂バッグは、フッ素樹脂材料を主成分とするバッグであり、
前記第1樹脂バッグは、前記フッ素樹脂材料よりも前記シール材との接着強度が高い樹脂材料を主成分とするバッグである請求項1に記載の複合材成形方法。 - 前記第1樹脂バッグは、ナイロンまたはポリウレタンを主成分とする樹脂フィルムにより形成されている請求項2に記載の複合材成形方法。
- 前記第2樹脂バッグを覆うように前記通気用部材を配置する第3配置工程と、
前記第2樹脂バッグを覆う前記通気用部材を第3樹脂バッグで覆うとともに前記第3樹脂バッグと前記冶具成形面を前記シール材により接着して前記通気用部材を気密に封止する第3封止工程と、
前記第3樹脂バッグにより封止された第3空間を減圧する第3減圧工程と、を備え、
前記第3樹脂バッグは、フッ素ゴムまたはシリコーンゴムを主成分とする材料により形成されている請求項1から請求項3のいずれか一項に記載の複合材成形方法。 - 前記第2樹脂バッグを第3樹脂バッグで覆うとともに前記第3樹脂バッグと前記冶具成形面を前記シール材により接着して密閉空間を形成する密閉工程と、
前記密閉空間に前記第2樹脂バッグへ前記水蒸気が接触することを防止するための液体を充填する充填工程と、を備え、
前記第3樹脂バッグは、フッ素ゴムまたはシリコーンゴムを主成分とする材料により形成されている請求項1から請求項3のいずれか一項に記載の複合材成形方法。 - 前記複合材料は、繊維基材が樹脂材料とともに積層された積層体である請求項1から請求項5のいずれか一項に記載の複合材成形方法。
- 複合材を成形する複合材成形装置であって、
密閉可能な圧力容器と、
前記圧力容器の内部空間に設置されるとともに複合材料を配置するための冶具成形面を有する成形用冶具と、
前記複合材料を覆うとともにシール材により前記冶具成形面に接着されて前記複合材料を気密に封止する第1樹脂バッグと、
前記第1樹脂バッグを覆うように配置されるとともに通気空間を確保するための通気用部材と、
前記通気用部材を覆うとともにシール材により前記冶具成形面に接着されて前記通気用部材を気密に封止する第2樹脂バッグと、
前記第1樹脂バッグにより封止された第1空間および前記第2樹脂バッグにより封止された第2空間を減圧する減圧部と、
前記圧力容器を密閉した状態で前記圧力容器の前記内部空間へ所定の温度及び所定の圧力の水蒸気を供給して前記複合材料を熱硬化させる水蒸気供給部と、を備える複合材成形装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021524610A JP7214862B2 (ja) | 2019-06-06 | 2019-06-06 | 複合材成形方法および複合材成形装置 |
PCT/JP2019/022589 WO2020245990A1 (ja) | 2019-06-06 | 2019-06-06 | 複合材成形方法および複合材成形装置 |
US17/598,559 US12059852B2 (en) | 2019-06-06 | 2019-06-06 | Composite material molding method and composite material molding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/022589 WO2020245990A1 (ja) | 2019-06-06 | 2019-06-06 | 複合材成形方法および複合材成形装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020245990A1 true WO2020245990A1 (ja) | 2020-12-10 |
Family
ID=73652185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/022589 WO2020245990A1 (ja) | 2019-06-06 | 2019-06-06 | 複合材成形方法および複合材成形装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12059852B2 (ja) |
JP (1) | JP7214862B2 (ja) |
WO (1) | WO2020245990A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023005096A (ja) * | 2021-06-28 | 2023-01-18 | 三菱重工業株式会社 | 賦形方法および賦形装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008501555A (ja) * | 2004-06-09 | 2008-01-24 | インダストリアル コンポジテス エンジニアリング プロプライエタリー リミテッド | 高分子複合体の形成もしくは硬化方法 |
JP2011507738A (ja) * | 2007-12-28 | 2011-03-10 | エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング | 繊維複合材料からプロファイルを製造する方法 |
JP2012153133A (ja) * | 2010-11-26 | 2012-08-16 | Ashida Mfg Co Ltd | オートクレーブ成形方法及びオートクレーブ成形装置 |
JP2016144867A (ja) * | 2013-05-31 | 2016-08-12 | ザ・ボーイング・カンパニーThe Boeing Company | 分割型工具の封止及び試験 |
JP2016168684A (ja) * | 2015-03-11 | 2016-09-23 | 富士重工業株式会社 | 複合材の成形装置及び複合材の成形方法 |
US20180099462A1 (en) * | 2016-10-07 | 2018-04-12 | Airbus Operations Sl | System and method for curing polymer matrix composite parts in manufacturing and repairing processes |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6506325B1 (en) * | 1999-02-05 | 2003-01-14 | The B. F. Goodrich Company | Method controlling the exotherm of a vacuum resin infusion |
WO2001041993A2 (en) * | 1999-12-07 | 2001-06-14 | The Boeing Company | Double bag vacuum infusion process and system for low cost, advanced composite fabrication |
GB2534171A (en) * | 2015-01-15 | 2016-07-20 | Rolls Royce Plc | Assembly for forming a composite material part |
US20170066202A1 (en) * | 2015-09-03 | 2017-03-09 | Northrop Grumman Systems Corporation | Composite tool moisture/wrinkle barrier |
FR3100736B1 (fr) * | 2019-09-12 | 2021-08-27 | Safran | Outillage et procede pour la fabrication d’une piece de turbomachine en materiau composite |
-
2019
- 2019-06-06 JP JP2021524610A patent/JP7214862B2/ja active Active
- 2019-06-06 WO PCT/JP2019/022589 patent/WO2020245990A1/ja active Application Filing
- 2019-06-06 US US17/598,559 patent/US12059852B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008501555A (ja) * | 2004-06-09 | 2008-01-24 | インダストリアル コンポジテス エンジニアリング プロプライエタリー リミテッド | 高分子複合体の形成もしくは硬化方法 |
JP2011507738A (ja) * | 2007-12-28 | 2011-03-10 | エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング | 繊維複合材料からプロファイルを製造する方法 |
JP2012153133A (ja) * | 2010-11-26 | 2012-08-16 | Ashida Mfg Co Ltd | オートクレーブ成形方法及びオートクレーブ成形装置 |
JP2016144867A (ja) * | 2013-05-31 | 2016-08-12 | ザ・ボーイング・カンパニーThe Boeing Company | 分割型工具の封止及び試験 |
JP2016168684A (ja) * | 2015-03-11 | 2016-09-23 | 富士重工業株式会社 | 複合材の成形装置及び複合材の成形方法 |
US20180099462A1 (en) * | 2016-10-07 | 2018-04-12 | Airbus Operations Sl | System and method for curing polymer matrix composite parts in manufacturing and repairing processes |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023005096A (ja) * | 2021-06-28 | 2023-01-18 | 三菱重工業株式会社 | 賦形方法および賦形装置 |
JP7225320B2 (ja) | 2021-06-28 | 2023-02-20 | 三菱重工業株式会社 | 賦形方法および賦形装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7214862B2 (ja) | 2023-01-30 |
US12059852B2 (en) | 2024-08-13 |
US20220143935A1 (en) | 2022-05-12 |
JPWO2020245990A1 (ja) | 2020-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5374519B2 (ja) | 複合材料製造装置および複合材料製造方法 | |
US8356649B2 (en) | Method and a device for repairing parts of composite material of an aircraft | |
JP5728493B2 (ja) | 複合材部品を硬化させる方法 | |
JP2010528899A (ja) | 繊維複合構造部材の処理装置及び繊維複合構造部材の処理方法 | |
WO2020245990A1 (ja) | 複合材成形方法および複合材成形装置 | |
AU2009207902B2 (en) | Multilayer, flexible planar material | |
JP2011046194A (ja) | 樹脂の収容及び注入のためのシステムと方法 | |
US10507622B2 (en) | System and method for curing polymer matrix composite parts in manufacturing and repairing processes | |
US10052826B2 (en) | Bulk resin infusion | |
GB2316036A (en) | Bagging blanket and method for forming a fibre reinforced resin composite component | |
JP2014188994A (ja) | ハニカムコアサンドイッチパネルの修理方法、および修理装置 | |
US10464743B2 (en) | Tank made of a composite material | |
JP7167382B2 (ja) | 複合材成形方法および複合材成形装置 | |
JPH11207911A (ja) | 複合材の成形方法および成形装置 | |
JP2017035848A (ja) | 複合材部品の修理方法及び複合材部品の製造方法 | |
JP5030575B2 (ja) | Frp製クライオスタットの製造方法及びfrp製クライオスタット | |
JP4316076B2 (ja) | 複合材部品修理装置 | |
WO2021019604A1 (ja) | 複合材成形装置および複合材成形方法 | |
WO2002058918A2 (en) | Method for using static liquid pressure to compact large fiber reinforced composite structures | |
JP6550573B2 (ja) | オートクレーブを用いない繊維強化複合材の製造方法及びこの方法で製造された繊維強化複合材 | |
JP2020515435A (ja) | 複合的な構成要素を製造するためのツール | |
CA3020584C (en) | System, valve, and method for liquid resin infusion | |
US20220266479A1 (en) | Embossed release film, vacuum bagging system, and methods of fabricating composite parts using the same | |
JP6774553B2 (ja) | 複合材料加圧装置、及び複合材料成形方法 | |
JP3375695B2 (ja) | 真空チャンバと流路配管との接続構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19931695 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021524610 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19931695 Country of ref document: EP Kind code of ref document: A1 |