WO2020244332A1 - 掺杂浓度变化的体声波谐振器、滤波器及电子设备 - Google Patents

掺杂浓度变化的体声波谐振器、滤波器及电子设备 Download PDF

Info

Publication number
WO2020244332A1
WO2020244332A1 PCT/CN2020/086552 CN2020086552W WO2020244332A1 WO 2020244332 A1 WO2020244332 A1 WO 2020244332A1 CN 2020086552 W CN2020086552 W CN 2020086552W WO 2020244332 A1 WO2020244332 A1 WO 2020244332A1
Authority
WO
WIPO (PCT)
Prior art keywords
layers
piezo
doping
concentration
resonator according
Prior art date
Application number
PCT/CN2020/086552
Other languages
English (en)
French (fr)
Inventor
杨清瑞
庞慰
张孟伦
Original Assignee
天津大学
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学, 诺思(天津)微系统有限责任公司 filed Critical 天津大学
Priority to EP20819072.8A priority Critical patent/EP3982537A4/en
Publication of WO2020244332A1 publication Critical patent/WO2020244332A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02094Means for compensation or elimination of undesirable effects of adherence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02118Means for compensation or elimination of undesirable effects of lateral leakage between adjacent resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material

Definitions

  • the embodiments of the present invention relate to the field of semiconductors, and in particular to a bulk acoustic wave resonator, a filter having the resonator, an electronic device having the filter, and a manufacturing method of the bulk acoustic wave resonator.
  • multi-passband transceivers that can simultaneously process large amounts of data.
  • multi-passband transceivers have been widely used in positioning systems and multi-standard systems. These systems need to process signals of different frequency bands at the same time to improve the overall performance of the system.
  • the number of frequency bands in a single chip continues to increase, consumers are increasingly demanding miniaturized and multifunctional portable devices. Miniaturization has become the trend of chip development, which puts a higher filter size. Requirements.
  • a film bulk acoustic resonator (Film Bulk Acoustic Resonator, FBAR for short) has been used to replace the traditional waveguide technology to implement a multi-band filter.
  • FBAR mainly uses the piezoelectric effect and inverse piezoelectric effect of piezoelectric materials to generate bulk acoustic waves, thereby forming resonance in the device, because FBAR has high quality factor, large power capacity, high frequency (up to 2-10GHz or even higher) and A series of inherent advantages, such as good compatibility with standard integrated circuits (IC), can be widely used in higher frequency radio frequency application systems.
  • the main structure of FBAR is a "sandwich" structure composed of electrode-piezoelectric film-electrode, that is, a layer of piezoelectric material is sandwiched between two metal electrode layers.
  • FBAR uses the inverse piezoelectric effect to convert the input electrical signal into mechanical resonance, and then uses the piezoelectric effect to convert the mechanical resonance into electrical signal output.
  • FBAR mainly uses the longitudinal piezoelectric coefficient (d33) of the piezoelectric film to generate the piezoelectric effect, so its main operating mode is the thickness extensional mode (Thickness Extensional Mode, TE mode for short).
  • the film bulk acoustic resonator only excites the thickness direction (TE) mode.
  • TE thickness direction
  • transverse parasitic mode waves such as the Rayleigh-Lamb mode is perpendicular to the direction of the TE mode. Mechanical waves.
  • These transverse mode waves will be reflected at the edge of the resonator to form a reflected wave and interfere with the incident wave, thereby forming a standing wave in the effective excitation region of the resonator.
  • these transverse mode waves will be lost at the boundary of the resonator, resulting in a loss of longitudinal mode energy required by the resonator.
  • the waves in the transverse parasitic mode eventually cause the Q value of the resonator to drop.
  • Fig. 1 is a schematic cross-sectional view of a thin film bulk acoustic resonator in the prior art.
  • the bulk acoustic wave resonator includes a substrate 101, an acoustic mirror 103, a bottom electrode 105, a piezoelectric layer 107, and a top electrode 109.
  • the top electrode 109 is also provided with a suspended wing structure 113 and a protruding structure 115. There is a gap 111 between the structure 113 and the piezoelectric layer 107.
  • the piezoelectric layer 107 is divided into a low concentration doped sublayer 107a of ALN and a high concentration doped sublayer 107b of ALN.
  • the sublayers of the upper and lower piezoelectric layers are subject to greater force on the adjacent interfaces due to different stresses. It is easy to happen that the two sub-layers are not closely combined with each other, which further affects the performance of the resonator.
  • a bulk acoustic wave resonator including:
  • the bottom electrode is set above the substrate
  • the top electrode is opposed to the bottom electrode and has an electrode connection part
  • the piezoelectric layer is arranged above the bottom electrode and between the bottom electrode and the top electrode,
  • the piezoelectric layer includes at least three piezo-electron layers, and the type and/or concentration of the dopant substance of the at least three piezo-electron layers alternate in the thickness direction of the piezoelectric layer and/ Or periodic changes.
  • the at least three piezo layers are three adjacent piezo layers.
  • the at least three piezo layers are at least three adjacent odd piezo layers or at least three adjacent even piezo layers.
  • the at least three piezo layers include n piezo layers, and n is an odd number not less than 3.
  • the types of doping substances and/or the concentration of dopants of the n piezo layers alternately change in the thickness direction of the piezoelectric layer; and the types of doping concentrations of the n piezo layers And/or the level of the dopant is symmetrically distributed about the (n+1)/2th piezo-electron layer.
  • the at least three piezoelectric layers have at most (n+1)/2 dopant species and/or doping concentrations, and at least two dopant species and/or doping concentrations.
  • the concentration of the dopant material in the first to (n+1)/2th piezo layers gradually increases, and the (n+1)/2th to nth The doping concentration of the piezo layer gradually decreases; or in the n piezo layers, the concentration of the dopant material of the first to (n+1)/2th piezo layers gradually decreases, and the (n+1)th The doping concentration of the /2 to nth piezo-electron layer gradually increases.
  • the at least three piezo layers include m piezo layers, and m is an even number not less than 4.
  • the type and/or the concentration of the dopant substance of the m piezo layers are periodically changed in the thickness direction of the piezoelectric layer.
  • the plurality of piezo layers that constitute a periodic change of the type and/or doping concentration of the doping substance is p piezo layers, and p is a natural number not less than 2; and the at least three piezo layers The layer has only p types and/or doping concentrations of doping substances.
  • the lowest doping concentration among the doping concentrations is zero.
  • the doping substance includes rare earth elements, group II elements, group XII elements, group IV elements, or group V elements.
  • the doping concentration is in the range of 0-40%, and further in the range of 0-20%.
  • the resonator further includes a protrusion structure disposed on the top electrode, the protrusion structure has a basic protrusion covering the top electrode, and the width of the basic protrusion is in the range of 0.2 ⁇ m to 10 ⁇ m Within, furthermore, in the range of 0.75 ⁇ m-6 ⁇ m.
  • a filter including the above-mentioned bulk acoustic wave resonator.
  • an electronic device including the above-mentioned filter.
  • the embodiment of the present invention also relates to a method of manufacturing a bulk acoustic wave resonator, the resonator includes a piezoelectric layer, the piezoelectric layer includes at least three piezo electron layers arranged in a stack, and the at least three piezo electron layers
  • the layer includes at least three doped piezo-electron layers, wherein the method includes the step of making the type of dopant material and/or the concentration of the dopant material of the at least three piezo-electric layers be in the thickness direction of the piezoelectric layer There are alternating and/or periodic changes in the above.
  • Fig. 1 is a schematic cross-sectional view of a thin film bulk acoustic resonator in the prior art
  • FIG. 2 is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional view of a bulk acoustic wave resonator according to another exemplary embodiment of the present invention.
  • FIGS. 1-3 is a simulation diagram showing the relationship between the width W of the base protrusion of the protrusion structure provided on the top electrode and the parallel resonance impedance Rp of the resonator in the case of the different structures of FIGS. 1-3;
  • FIG. 5 is a schematic cross-sectional view of a bulk acoustic wave resonator according to still another exemplary embodiment of the present invention.
  • Figure 2 is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • the bulk acoustic wave resonator includes a substrate 201, an acoustic mirror 203, a bottom electrode 205, a piezoelectric layer 207, and a top electrode 209.
  • the top electrode 209 is also provided with a suspended wing structure 213 and a protruding structure 215. There is a gap 211 between the wing structure 213 and the piezoelectric layer 207.
  • the piezoelectric layer 207 includes three piezo-electron layers, 207a, 207b, and 207a.
  • the doping concentration in these three sublayers can be low-high-low, as can be understood Yes, it can also be high-low-high. It can be seen that in FIG. 2, the piezo layers on the upper and lower sides of the middle piezo layer 207b have the same doping concentration.
  • the doping concentration of the three piezo layers can be 5%, 10% and 5%.
  • Fig. 3 is a schematic cross-sectional view of a bulk acoustic wave resonator according to another exemplary embodiment of the present invention.
  • the bulk acoustic wave resonator includes a substrate 301, an acoustic mirror 303, a bottom electrode 305, a piezoelectric layer 307, and a top electrode 309.
  • the top electrode 309 is also provided with a suspended wing structure 313 and a protruding structure 315. There is a gap 311 between the wing structure 313 and the piezoelectric layer 307.
  • the piezoelectric layer 307 includes five piezo-electron layers, which are 307a, 307b, 307a, 307b, and 307a from top to bottom.
  • the doping concentration in the five sublayers can be low-high-low-high-low, and as can be understood, it can also be high-low-high-low-high. It can be considered that the piezo layer with the same reference number has the same doping concentration.
  • the width W of the base protrusion of the protrusion structure (the width of the protrusion structure only on the top electrode) is shown in FIG. 3.
  • the width W of the base protrusion is in the range of 0.2 ⁇ m to 10 ⁇ m, and further, in the range of 0.75 ⁇ m to 6 ⁇ m.
  • the doping concentration of the five piezo layers may be 5%, 10%, 5%, 10%, and 5%, respectively.
  • FIG. 4 is a simulation diagram showing the relationship between the width W of the base protrusion portion of the protrusion structure provided on the top electrode and the parallel resonance impedance Rp of the resonator in the case of the different structures of FIGS. 1-3.
  • the total thickness of the piezoelectric layer is the same, and the piezo layer has only two doping concentrations, high and low.
  • the doping concentration of the piezo layer is high-low or low-high alternating is given, but the present invention is not limited to this for the low-high alternating arrangement.
  • the doping concentration can be an alternating arrangement of low and high levels of even-numbered layers, or alternatively arrangement of low and high levels of odd-numbered layers.
  • the doping concentration may also be gradually reduced and then gradually increased, or the doping concentration may be gradually increased and then gradually decreased. In addition, it may also be a periodic change in the level of doping concentration.
  • FIG. 5 is a schematic cross-sectional view of a bulk acoustic wave resonator according to still another exemplary embodiment of the present invention.
  • the bulk acoustic wave resonator includes a substrate 501, an acoustic mirror 503, a bottom electrode 505, a piezoelectric layer 507, and a top electrode 509.
  • the top electrode 509 is also provided with a suspended wing structure 513 and a protruding structure 515. There is a gap 511 between the wing structure 513 and the piezoelectric layer 507.
  • the piezoelectric layer 507 is divided into n piezo layers.
  • the doping concentration of the piezo-electron layer increases sequentially and then decreases sequentially.
  • it can also decrease sequentially and then increase sequentially.
  • the dopant material can also be a rare earth element.
  • it can be one or more of the following elements: scandium, yttrium, magnesium, titanium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, Ytterbium, lutetium.
  • the doping substance can also be II/XII group elements (Ca, Mg, Sr, Zn, etc.), IV/V group elements (Ti, Zr, Hf, etc.).
  • the material of the piezoelectric layer may be aluminum nitride or doped aluminum nitride.
  • different piezo layers can use the same doping material or different doping materials.
  • the low doping concentration also includes zero doping concentration.
  • the thickness direction of the piezoelectric layer is based on the embodiment of the present invention
  • the piezoelectric layer may include the following exemplary structures:
  • 01210 (10201, 12021, 21012, 02120, 20102), which can correspond to alternating changes and symmetrically distributed along the central layer;
  • 012012 (021021, 120120, 102102, 210210, 201201), which can correspond to periodic changes, and each cycle contains three piezo layers.
  • the alternating and periodic changes of the piezo layer may also be different doping materials. If the dopants include A, B, C, etc., a method similar to the concentration change mentioned above can be used.
  • a bulk acoustic wave resonator including:
  • the bottom electrode is set above the substrate
  • the top electrode is opposed to the bottom electrode and has an electrode connection part
  • the piezoelectric layer is arranged above the bottom electrode and between the bottom electrode and the top electrode,
  • the piezoelectric layer includes at least three piezo-electron layers, and the types of the at least three piezo-electron layers and/or the concentration of dopant substances alternate in the thickness direction of the piezoelectric layer and/or Periodic changes.
  • the at least three piezo layers are three adjacent piezo layers.
  • the at least three piezo layers are at least three adjacent even-numbered piezo layers or at least three adjacent odd-numbered piezo layers.
  • the at least three piezo layers include n piezo layers, and n is an odd number not less than 3.
  • the types of dopant substances and/or the concentration of the dopant substances of the n piezo layers alternately change in the thickness direction of the piezoelectric layer;
  • the type and/or the level of the doping concentration of the n piezotron layers are symmetrically distributed about the (n+1)/2th piezotron layer.
  • the at least three piezo-electron layers have at most (n+1)/2 doping material types and/or doping concentrations, and at least two doping material types and/or doping concentrations.
  • the lowest doping concentration among the doping concentrations is zero.
  • the concentration of dopants in the first to (n+1)/2 piezo layers gradually increases, and the concentration of the (n+1)/2 to n piezo layers The doping concentration gradually decreases;
  • the concentration of the dopant material of the first to (n+1)/2th piezo-electric layers gradually decreases, and the doping material of the (n+1)/2th to the nth piezo-electric layer gradually decreases.
  • the impurity concentration gradually increased.
  • the at least three piezo-electron layers include m piezo-electron layers, and m is an even number not less than 4.
  • the type of dopant and/or the concentration of the dopant of the m piezoelectric layers periodically change in the thickness direction of the piezoelectric layer.
  • a plurality of piezo-electric layers that constitute a periodic change of the type and/or doping concentration of the doping substance is p piezo-electric layers, and p is a natural number not less than 2;
  • the at least three piezo-electron layers have only p types and/or doping concentrations of doping substances.
  • the lowest doping concentration among the doping concentrations is zero.
  • the stress on a single adjacent interface is dispersed to multiple adjacent interfaces, thereby improving the adhesion between the films.
  • the stress of the piezo-electric layer with different doping concentration is different.
  • the stress value of the piezo-electric layer with one doping concentration can be negative, and the stress value of the piezo-electric layer with another doping concentration can be positive.
  • the overall stress distribution of the piezoelectric layer can be improved.
  • the parallel resonance impedance Rp of the resonator can also be increased, for example, see FIG. 4.
  • the embodiment of the present invention also proposes a method for manufacturing a bulk acoustic wave resonator, the resonator includes a piezoelectric layer, the piezoelectric layer includes at least three piezo-electric layers arranged in a stack, and the at least The three piezo-electric layers include at least three doped piezo-electric layers, wherein the method includes the steps of: making the piezoelectric layer include at least three piezo-electric layers, and the at least three piezo-electric layers are doped with The type and/or the concentration of the dopant substance changes alternately and/or periodically in the thickness direction of the piezoelectric layer. Based on this method step, it can help to improve the stress distribution in the piezoelectric layer in the resonator.
  • the present invention also provides a filter including a plurality of the above-mentioned bulk acoustic wave resonators.
  • the present invention also provides an electronic device including the above-mentioned filter or the above-mentioned bulk acoustic wave resonator.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明涉及一种体声波谐振器,包括:基底;声学镜;底电极,设置在基底上方;顶电极,与所述底电极对置,且具有电极连接部;和压电层,设置在底电极上方以及底电极与顶电极之间,其中:所述压电层包括至少三个压电子层,且所述至少三个压电子层的掺杂物质的种类和/或掺杂物质的浓度高低在压电层的厚度方向上存在交替变化和/或周期性变化。本发明还涉及一种具有该体声波谐振器的滤波器,一种具有该滤波器的电子设备,以及一种体声波谐振器的制造方法。

Description

掺杂浓度变化的体声波谐振器、滤波器及电子设备 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种体声波谐振器,一种具有该谐振器的滤波器,以及一种具有该滤波器的电子设备,一种体声波谐振器的制造方法。
背景技术
随着无线通信技术的快速发展,人们对于能同步处理大量数据的多通带收发器的需求与日俱增。近年来,多通带收发器已被广泛地应用在定位系统和多标准的系统中,这些系统需要同时处理不同频段的信号以提高系统的整体性能。虽然单个芯片中频率带的个数不断增加,但消费者对小型化、多功能的便携式设备的需求越来越高,小型化成为芯片的发展趋势,这就对滤波器的尺寸提出了更高的要求。
为此,现有技术中已经采用薄膜体声波谐振器(Film Bulk Acoustic Resonator,简称FBAR)取代传统的波导技术实现多频带滤波器。
FBAR主要利用压电材料的压电效应与逆压电效应产生体声波,从而在器件内形成谐振,因为FBAR具有品质因数高、功率容量大、频率高(可达2-10GHz甚至更高)以及与标准集成电路(IC)的兼容性好等一系列的固有优势,可广泛应用于频率较高的射频应用系统中。
FBAR的结构主体为由电极-压电薄膜-电极组成的“三明治”结构,即两层金属电极层之间夹一层压电材料。通过在两电极间输入正弦信号,FBAR利用逆压电效应将输入电信号转换为机械谐振,并且再利用压电效应将机械谐振转换为电信号输出。FBAR主要利用压电薄膜的纵向压电系数(d33)产生压电效应,所以其主要工作模式为厚度方向上的纵波模式(Thickness Extensional Mode,简称TE模式)。
理想地,薄膜体声波谐振器仅激发厚度方向(TE)模。但是体声波谐振器在工作状态下,除了会激发在厚度方向的(TE)模式或者活塞模式 外,还会产生横向寄生模式的波,如瑞利-拉姆模是与TE模的方向相垂直的机械波。这些横向模式的波会在谐振器的边缘经反射形成反射波并与入射波干涉,从而会在谐振器的有效激励区域内形成驻波。此外,这些横向模式的波会在谐振器的边界处损失掉,从而使得谐振器所需的纵模的能量损失。横向寄生模式的波最终导致谐振器Q值下降。
通过在谐振器的电极的一边或多边边缘处加工一种桥翼或桥部结构,桥翼或桥部结构能够将边缘处的声波反射回谐振器内,同时一部份能量会转化成垂直方向振动的模式,以提升谐振器的并联谐振阻抗Rp,使得谐振器的Q值得以提升。图1为现有技术中的薄膜体声波谐振器的一个示意性剖视图。在图1中,体声波谐振器包括基底101,声学镜103,底电极105,压电层107,顶电极109,此外,顶电极109还设置有悬翼结构113和突起结构115,在悬翼结构113和压电层107之间存在间隙111。
现有技术中,如图1所示,还提出了在压电层中掺杂,例如形成低掺杂层和高掺杂层的方式来提高谐振器的并联谐振阻抗Rp的方案。在图1中,压电层107被分为ALN的低浓度掺杂子层107a和ALN的高浓度掺杂子层107b。
但是,现实应用中仍存在进一步增加谐振器的并联谐振阻抗Rp从而提升谐振器的Q值的需求。
此外,在图1所示的压电层分层掺杂的技术方案中,因为不同掺杂浓度,上下两个压电层的子层因为应力不同而导致相邻界面上受力较大,从而容易出现两个子层彼此结合不紧密的情况,进一步影响谐振器的性能。
发明内容
为缓解或解决现有技术中的上述问题中的至少一个方面,提出本发明。
根据本发明的实施例的一个方面,提出了体声波谐振器,包括:
基底;
声学镜;
底电极,设置在基底上方;
顶电极,与所述底电极对置,且具有电极连接部;和
压电层,设置在底电极上方以及底电极与顶电极之间,
其中:
所述压电层包括至少三个压电子层,且所述至少三个压电子层的掺杂物质的种类和/或掺杂物质的浓度高低在压电层的厚度方向上存在交替变化和/或周期性变化。
可选的,所述至少三个压电子层为相邻的三个压电子层。
可选的,所述至少三个压电子层为至少三个相邻的奇数个压电子层或者至少三个相邻的偶数个压电子层。
可选的,所述至少三个压电子层包括n个压电子层,n为不小于3的奇数。
可选的,所述n个压电子层的掺杂物质的种类和/或掺杂物质浓度高低在压电层的厚度方向上交替变化;且所述n个压电子层的掺杂浓度的种类和/或掺杂物质高低关于第(n+1)/2个压电子层对称分布。
可选的,所述至少三个压电子层最多具有(n+1)/2个掺杂物质的种类和/或掺杂浓度,最少具有2个掺杂物质的种类和/或掺杂浓度。
可选的,所述n个压电子层中,第1至第(n+1)/2个压电子层的掺杂物质的浓度逐渐升高,第(n+1)/2至第n个压电子层的掺杂浓度逐渐降低;或者所述n个压电子层中,第1至第(n+1)/2个压电子层的掺杂物质的浓度逐渐降低,第(n+1)/2至第n个压电子层的掺杂浓度逐渐升高。
或者可选的,所述至少三个压电子层包括m个压电子层,m为不小于4的偶数。
可选的,所述m个压电子层的掺杂物质的种类和/或掺杂物质的浓度高低在压电层的厚度方向上周期性变化。
可选的,构成掺杂物质的种类和/或掺杂浓度的一个周期性变化的多个压电子层为p个压电子层,p为不小于2的自然数;且所述至少三个压电子层仅具有p个掺杂物质的种类和/或掺杂浓度。
可选的,所述掺杂浓度中的最低掺杂浓度为零。
可选的,所述掺杂物质包括稀土元素、II族元素、XII族元素、IV族元素或者V族元素。
可选的,所述掺杂浓度在0-40%的范围内,更进一步的在0-20%的范围内。
可选的,所述谐振器还包括设置在所述顶电极上的突起结构,所述突起结构具有覆盖所述顶电极的基础突起部,所述基础突起部的宽度在0.2μm至10μm的范围内,更进一步的,在0.75μm-6μm的范围内。
根据本发明的实施例的另一方面,提出了一种滤波器,包括上述的体声波谐振器。
根据本发明的实施例的还一方面,提出了一种电子设备,包括上述的滤波器。
本发明的实施例还涉及一种体声波谐振器的制造方法,所述谐振器包括压电层,所述压电层包括层叠布置的至少三个压电子层,且所述至少三个压电子层包括至少三个掺杂压电子层,其中,所述方法包括步骤:使得所述至少三个压电子层的掺杂物质的种类和/或掺杂物质的浓度高低在压电层的厚度方向上存在交替变化和/或周期性变化。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1为现有技术的薄膜体声波谐振器的剖视示意图;
图2为根据本发明的一个示例性实施例的体声波谐振器的剖视示意图;
图3为根据本发明的另一个示例性实施例的体声波谐振器的剖视示意图;
图4为仿真图,示出了设置在顶电极上的突起结构的基础突起部的宽度W在图1-3的不同结构的情况下与谐振器的并联谐振阻抗Rp之间的关系;
图5为根据本发明的再一个示例性实施例的体声波谐振器的剖视示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
下面参照图2-5描述根据本发明的实施例的体声波谐振器。
图2为根据本发明的一个示例性实施例的体声波谐振器的剖视示意图。
如图2所示,体声波谐振器包括基底201,声学镜203,底电极205,压电层207,顶电极209,此外,顶电极209还设置有悬翼结构213和突起结构215,在悬翼结构213和压电层207之间存在间隙211。
与图1中不同,在图2中,压电层207包括三个压电子层,分别为207a,207b和207a,这三个子层中的掺杂浓度可以为低-高-低,如能够理解的,也可以是高-低-高。可以看到,在图2中,中间的压电子层207b上下两侧的压电子层具有相同的掺杂浓度。
在图2中,三个压电子层的掺杂浓度可以为5%,10%和5%。
图3为根据本发明的另一个示例性实施例的体声波谐振器的剖视示意图。
如图3所示,体声波谐振器包括基底301,声学镜303,底电极305,压电层307,顶电极309,此外,顶电极309还设置有悬翼结构313和突起结构315,在悬翼结构313和压电层307之间存在间隙311。
与图1中不同,在图3中,压电层307包括五个压电子层,从上到下依次为307a,307b,307a,307b,307a。这五个子层中的掺杂浓度可以为低-高-低-高-低,如能够理解的,还可以是高-低-高-低-高。可以认为,相同附图标记的压电子层具有相同的掺杂浓度。
在图3中示出了突起结构的基础突起部的宽度W(突起结构仅在顶电极上的宽度)。所述基础突起部的宽度W在0.2μm至10μm的范围内,更进一步的,在0.75μm-6μm的范围内。
在图3中,五个压电子层的掺杂浓度可以分别为:5%,10%,5%,10%和5%。
图4为仿真图,示出了设置在顶电极上的突起结构的基础突起部的宽度W在图1-3的不同结构的情况下与谐振器的并联谐振阻抗Rp之间的关系,在图4的仿真中,压电层的总厚度相同,而且压电子层仅有高低两种掺杂浓度。
从图4可以看出,在W介于1.2-2.5um时,“低+高+低”、“低+高+低+高+低”两种情况下谐振器的性能优于“低+高”的情况。当W=1.25um时,“低+高+低+高+低”的情况下Rp=4039.2,与“低+高”情况相比,增大约245.5(约6.5%)。当W=1.5um时,“低+高+低+高+低”情况下Rp=3845.3,与“低+高”情况相比,增大约448.7(约13.2%)。
在本发明的上述实施例中,给出了压电子层的掺杂浓度高-低或者低-高交替的情形,但是,对于低高交替布置而言,本发明不限于此。本发明中,掺杂浓度可以是偶数层的低高交替排列,也可以是奇数层的低高交替排列。
除了高低交替排列的方式之外,本发明中,还可以采用掺杂浓度逐渐降低后逐渐升高,或者掺杂浓度逐渐升高后逐渐降低的方式。此外,还可以是掺杂浓度的高低的周期性变化。
图5为根据本发明的再一个示例性实施例的体声波谐振器的剖视示意图。
如图5所示,体声波谐振器包括基底501,声学镜503,底电极505,压电层507,顶电极509,此外,顶电极509还设置有悬翼结构513和突起结构515,在悬翼结构513和压电层507之间存在间隙511。
如图5所示,压电层507被分为n个压电子层。在图5的实施例中,自上而下的方向上,压电子层的掺杂浓度依次升高而后依次降低,当然,如能够理解的,也可以依次降低后依次升高。
掺杂物质还可以稀土元素。可选的,可以是如下元素中的一种或多种:钪、钇、镁、钛、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥。
掺杂物质还可以是II/XII族元素(Ca、Mg、Sr、Zn等)、IV/V族元素(Ti、Zr、Hf等)。
可选的,所述压电子层的材料可以为氮化铝、掺杂氮化铝。
在本发明中,不同的压电子层可以采用相同的掺杂物质,也可以采用不同的掺杂物质。
需要指出的是,在本发明的实施例中,虽然以薄膜体声波谐振器为例进行说明,这些说明均可以适用于其他类型的体声波谐振器。
还需要指出的是,掺杂浓度低的情况也包括掺杂浓度为零。在0代表不掺杂的压电子层、1代表中等浓度掺杂的压电子层、2代表高浓度掺杂的压电子层的情况下,压电层的厚度方向上,基于本发明的实施例的压电层可以包括如下示例性结构:
010(020,121,101,202,212),这可以对应于交替变化,且沿中心层对称分布;
0101(0202、1212、1010、2020、2121),这可以对应于周期性变化,每个周期中包含两个压电子层;
01210(10201,12021,21012,02120,20102),这可以对应于交替变化,且沿中心层对称分布;
012012(021021、120120、102102、210210、201201),这可以对应于周期性变化,每个周期中包含三个压电子层。
还需要指出的是,压电子层的交替变化和周期性变化除了上面实施例提到的掺杂物质的浓度之外,还可以为不同的掺杂物质。如掺杂物质包括A、B、C等,可以采用类似于上面提到的浓度变化的方式。
基于以上,本发明提出了如下技术方案:
1、一种体声波谐振器,包括:
基底;
声学镜;
底电极,设置在基底上方;
顶电极,与所述底电极对置,且具有电极连接部;和
压电层,设置在底电极上方以及底电极与顶电极之间,
其中:
所述压电层包括至少三个压电子层,且所述至少三个压电子层的种类和/或掺杂物质掺杂物质的浓度高低在压电层的厚度方向上存在交替变化和/或周期性变化。
2、根据1所述的谐振器,其中:
所述至少三个压电子层为相邻的三个压电子层。
3、根据1所述的谐振器,其中:
所述至少三个压电子层为至少三个相邻的偶数个压电子层或者至少三个相邻的奇数个压电子层。
4、根据1所述的谐振器,其中:
所述至少三个压电子层包括n个压电子层,n为不小于3的奇数。
5、根据4所述的谐振器,其中:
所述n个压电子层的掺杂物质的种类和/或掺杂物质的浓度高低在压电层的厚度方向上交替变化;且
所述n个压电子层的掺杂物质的种类和/或掺杂浓度的高低关于第(n+1)/2个压电子层对称分布。
6、根据5所述的谐振器,其中:
所述至少三个压电子层最多具有(n+1)/2个掺杂物质的种类和/或掺杂浓度,最少具有2个掺杂物质的种类和/或掺杂浓度。
7、根据6所述的谐振器,其中:
所述掺杂浓度中最低的掺杂浓度为零。
8、根据7所述的谐振器,其中:
所述n个压电子层中,第1至第(n+1)/2个压电子层的掺杂物质的浓度逐渐升高,第(n+1)/2至第n个压电子层的掺杂浓度逐渐降低;或者
所述n个压电子层中,第1至第(n+1)/2个压电子层的掺杂物质的浓度逐渐降低,第(n+1)/2至第n个压电子层的掺杂浓度逐渐升高。
9、根据1所述的谐振器,其中:
所述至少三个压电子层包括m个压电子层,m为不小于4的偶数。
10、根据9所述的谐振器,其中:
所述m个压电子层的掺杂物质的种类和/或掺杂物质的浓度高低在压 电层的厚度方向上周期性变化。
11、根据10所述的谐振器,其中:
构成掺杂物质的种类和/或掺杂浓度的一个周期性变化的多个压电子层为p个压电子层,p为不小于2的自然数;且
所述至少三个压电子层仅具有p个掺杂物质的种类和/或掺杂浓度。
12、根据11所述的谐振器,其中:
所述掺杂浓度中的最低掺杂浓度为零。
基于本发明的技术方案,因为交替掺杂,从而将单个相邻界面上的应力分散到多个相邻界面上,从而提高薄膜间粘附性。同时不同的掺杂浓度的压电子层的应力不同,例如可以使得一个掺杂浓度的压电子层的应力值为负值,而另一个掺杂浓度的压电子层的应力值为正值,这样,基于两个压电子层之间的应力上的相互作用,可以改善压电层的整体应力分布情况。
另外,基于本发明的技术方案,因为交替掺杂,还可以提高谐振器的并联谐振阻抗Rp,例如参见图4。
相应的,本发明的实施例也提出了一种体声波谐振器的制造方法,所述谐振器包括压电层,所述压电层包括层叠布置的至少三个压电子层,且所述至少三个压电子层包括至少三个掺杂压电子层,其中,所述方法包括步骤:使得所述压电层包括至少三个压电子层,且所述至少三个压电子层掺杂物质的种类和/或掺杂物质的浓度高低在压电层的厚度方向上存在交替变化和/或周期性变化。基于该方法步骤,可以有助于改善谐振器中的压电层中的应力分布。
基于以上,本发明还提出了一种滤波器,包括多个上述的体声波谐振器。本发明还提出了一种电子设备,包括上述的滤波器或者上述的体声波谐振器。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (19)

  1. 一种体声波谐振器,包括:
    基底;
    声学镜;
    底电极,设置在基底上方;
    顶电极,与所述底电极对置,且具有电极连接部;和
    压电层,设置在底电极上方以及底电极与顶电极之间,
    其中:
    所述压电层包括至少三个压电子层,且所述至少三个压电子层的掺杂物质的种类和/或掺杂物质的浓度高低在压电层的厚度方向上存在交替变化和/或周期性变化。
  2. 根据权利要求1所述的谐振器,其中:
    所述至少三个压电子层为相邻的三个压电子层。
  3. 根据权利要求1所述的谐振器,其中:
    所述至少三个压电子层为至少三个相邻的奇数个压电子层或者至少三个相邻的偶数个压电子层。
  4. 根据权利要求1所述的谐振器,其中:
    所述至少三个压电子层包括n个压电子层,n为不小于3的奇数。
  5. 根据权利要求4所述的谐振器,其中:
    所述n个压电子层的掺杂物质的种类和/或掺杂物质的浓度高低在压电层的厚度方向上交替变化;且
    所述n个压电子层的掺杂物质的种类和/或掺杂浓度的高低关于第(n+1)/2个压电子层对称分布。
  6. 根据权利要求5所述的谐振器,其中:
    所述至少三个压电子层最多具有(n+1)/2个掺杂物质的种类和/或掺杂浓度,最少具有2个掺杂物质的种类和/或掺杂浓度。
  7. 根据权利要求6所述的谐振器,其中:
    所述掺杂浓度中最低的掺杂浓度为零。
  8. 根据权利要求7所述的谐振器,其中:
    所述n个压电子层中,第1至第(n+1)/2个压电子层的掺杂物质的浓 度逐渐升高,第(n+1)/2至第n个压电子层的掺杂浓度逐渐降低;或者
    所述n个压电子层中,第1至第(n+1)/2个压电子层的掺杂物质的浓度逐渐降低,第(n+1)/2至第n个压电子层的掺杂浓度逐渐升高。
  9. 根据权利要求1所述的谐振器,其中:
    所述至少三个压电子层包括m个压电子层,m为不小于4的偶数。
  10. 根据权利要求9所述的谐振器,其中:
    所述m个压电子层的掺杂物质的种类和/或掺杂物质的浓度高低在压电层的厚度方向上周期性变化。
  11. 根据权利要求10所述的谐振器,其中:
    构成掺杂物质的种类和/或掺杂浓度的一个周期性变化的多个压电子层为p个压电子层,p为不小于2的自然数;且
    所述至少三个压电子层仅具有p个掺杂物质的种类和/或掺杂浓度。
  12. 根据权利要求11所述的谐振器,其中:
    所述掺杂浓度中的最低掺杂浓度为零。
  13. 根据权利要求1-12中任一项所述的谐振器,其中:
    所述压电子层的材料为氮化铝、掺杂氮化铝。
  14. 根据权利要求1-13中任一项所述的谐振器,其中:
    所述掺杂物质的种类包括稀土元素、II族元素、XII族元素、IV族元素或者V族元素。
  15. 根据权利要求1-14中任一项所述的谐振器,其中:
    所述掺杂物质的浓度在0-40%的范围内,更进一步的在0-20%的范围内。
  16. 根据权利要求1-15中任一项所述的谐振器,其中:
    所述谐振器还包括设置在所述顶电极上的突起结构,所述突起结构具有覆盖所述顶电极的基础突起部,所述基础突起部的宽度在0.2μm至10μm的范围内,更进一步的,在0.75μm-6μm的范围内。
  17. 一种滤波器,包括根据权利要求1-16中任一项所述的体声波谐振器。
  18. 一种电子设备,包括根据权利要求179所述的滤波器或者根据权利要求1-18中任一项所述的体声波谐振器。
  19. 一种体声波谐振器的制造方法,所述谐振器包括压电层,所述压电层包括层叠布置的至少三个压电子层,所述至少三个压电子层包括至少三个掺杂压电子层,其中,所述方法包括步骤:
    使得所述至少三个压电子层的掺杂物质的种类和/或掺杂物质的浓度高低在压电层的厚度方向上存在交替变化和/或周期性变化。
PCT/CN2020/086552 2019-06-06 2020-04-24 掺杂浓度变化的体声波谐振器、滤波器及电子设备 WO2020244332A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20819072.8A EP3982537A4 (en) 2019-06-06 2020-04-24 VARIABLE DOPING CONCENTRATION VOLUME WAVE RESONATOR, FILTER AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910493762.2 2019-06-06
CN201910493762.2A CN111010131A (zh) 2019-06-06 2019-06-06 掺杂浓度变化的体声波谐振器、滤波器及电子设备

Publications (1)

Publication Number Publication Date
WO2020244332A1 true WO2020244332A1 (zh) 2020-12-10

Family

ID=70110739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086552 WO2020244332A1 (zh) 2019-06-06 2020-04-24 掺杂浓度变化的体声波谐振器、滤波器及电子设备

Country Status (3)

Country Link
EP (1) EP3982537A4 (zh)
CN (1) CN111010131A (zh)
WO (1) WO2020244332A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114866058A (zh) * 2022-07-06 2022-08-05 深圳新声半导体有限公司 一种基于Sc掺杂浓度变化的体声波滤波器
CN114884484A (zh) * 2022-07-12 2022-08-09 深圳新声半导体有限公司 一种基于复合浓度的薄膜声波滤波器
GB2613448A (en) * 2021-10-15 2023-06-07 Skyworks Global Pte Ltd Bulk acoustic wave resonator with stacked piezoelectric layers

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010131A (zh) * 2019-06-06 2020-04-14 天津大学 掺杂浓度变化的体声波谐振器、滤波器及电子设备
CN111654259A (zh) * 2020-05-13 2020-09-11 深圳市信维通信股份有限公司 一种体声波谐振装置、一种滤波装置及一种射频前端装置
CN114257208A (zh) * 2020-09-22 2022-03-29 诺思(天津)微系统有限责任公司 体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备
CN114337571A (zh) * 2020-09-30 2022-04-12 诺思(天津)微系统有限责任公司 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备
CN114337573A (zh) * 2020-09-30 2022-04-12 诺思(天津)微系统有限责任公司 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备
CN114337572A (zh) * 2020-09-30 2022-04-12 诺思(天津)微系统有限责任公司 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备
CN112332801B (zh) * 2020-10-30 2021-09-21 诺思(天津)微系统有限责任公司 包含掺杂谐振器的滤波器和多工器、通信设备
WO2022226913A1 (zh) * 2021-04-29 2022-11-03 天津大学 压电mems硅谐振器以及电子设备
CN113328714B (zh) * 2021-06-16 2024-03-22 苏州汉天下电子有限公司 压电结构及其制造方法以及包括该压电结构的压电谐振器
CN115001428B (zh) * 2022-07-11 2023-06-30 深圳新声半导体有限公司 一种用于薄膜滤波器的薄膜浓度掺杂方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946236A (zh) * 2012-10-22 2013-02-27 华中科技大学 一种可调薄膜体声波谐振器及其制备方法
CN103795366A (zh) * 2012-10-27 2014-05-14 安华高科技通用Ip(新加坡)公司 体声波谐振器结构、薄膜体声波谐振器结构以及固体装配型谐振器结构
CN106026964A (zh) * 2015-07-22 2016-10-12 邱星星 可调薄膜体声波谐振器和滤波器
CN107689781A (zh) * 2016-08-03 2018-02-13 三星电机株式会社 体声波谐振器、滤波器和体声波谐振器的制造方法
CN111010131A (zh) * 2019-06-06 2020-04-14 天津大学 掺杂浓度变化的体声波谐振器、滤波器及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9602073B2 (en) * 2013-05-31 2017-03-21 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator having piezoelectric layer with varying amounts of dopant
US9450561B2 (en) * 2009-11-25 2016-09-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave (BAW) resonator structure having an electrode with a cantilevered portion and a piezoelectric layer with varying amounts of dopant
US9991871B2 (en) * 2011-02-28 2018-06-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising a ring
JP5817673B2 (ja) * 2011-11-18 2015-11-18 株式会社村田製作所 圧電薄膜共振子及び圧電薄膜の製造方法
US9520855B2 (en) * 2014-02-26 2016-12-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonators having doped piezoelectric material and frame elements
GB2532106B (en) * 2014-11-04 2017-06-28 Xaar Technology Ltd A piezoelectric thin film element
WO2018004668A2 (en) * 2016-07-01 2018-01-04 Intel Corporation Techniques for forming thin-film bulk acoustic resonator devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946236A (zh) * 2012-10-22 2013-02-27 华中科技大学 一种可调薄膜体声波谐振器及其制备方法
CN103795366A (zh) * 2012-10-27 2014-05-14 安华高科技通用Ip(新加坡)公司 体声波谐振器结构、薄膜体声波谐振器结构以及固体装配型谐振器结构
CN106026964A (zh) * 2015-07-22 2016-10-12 邱星星 可调薄膜体声波谐振器和滤波器
CN107689781A (zh) * 2016-08-03 2018-02-13 三星电机株式会社 体声波谐振器、滤波器和体声波谐振器的制造方法
CN111010131A (zh) * 2019-06-06 2020-04-14 天津大学 掺杂浓度变化的体声波谐振器、滤波器及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3982537A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2613448A (en) * 2021-10-15 2023-06-07 Skyworks Global Pte Ltd Bulk acoustic wave resonator with stacked piezoelectric layers
GB2613448B (en) * 2021-10-15 2024-04-10 Skyworks Global Pte Ltd Bulk acoustic wave resonator with stacked piezoelectric layers
CN114866058A (zh) * 2022-07-06 2022-08-05 深圳新声半导体有限公司 一种基于Sc掺杂浓度变化的体声波滤波器
CN114866058B (zh) * 2022-07-06 2023-02-17 深圳新声半导体有限公司 一种基于Sc掺杂浓度变化的体声波滤波器
CN114884484A (zh) * 2022-07-12 2022-08-09 深圳新声半导体有限公司 一种基于复合浓度的薄膜声波滤波器

Also Published As

Publication number Publication date
EP3982537A4 (en) 2022-07-06
EP3982537A1 (en) 2022-04-13
CN111010131A (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
WO2020244332A1 (zh) 掺杂浓度变化的体声波谐振器、滤波器及电子设备
WO2021077712A1 (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN109802646B (zh) 带有温度补偿层的谐振器、滤波器
CN104883153B (zh) 具有掺杂压电层的体声波谐振器
US6812619B1 (en) Resonator structure and a filter comprising such a resonator structure
US20050269904A1 (en) Thin film bulk acoustic resonator and method of manufacturing the same
EP0973256A1 (en) Thin film piezoelectric element
CN1667947A (zh) 声体波滤波器及消去不要的侧通带方法
WO2020098487A1 (zh) 带粗糙面体声波谐振器、滤波器和电子设备
WO2021114555A1 (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN110391791A (zh) 具有低原子量金属电极的体声波谐振器
CN107925396B (zh) 弹性波装置
WO2022012334A1 (zh) 压电层双侧设置质量负载的体声波谐振器、滤波器及电子设备
WO2020098480A1 (zh) 体声波谐振器、滤波器和电子设备
CN112272015B (zh) 一种声波谐振器
JP2001339107A (ja) 蛍光灯用圧電トランス
JP4055885B2 (ja) 圧電薄膜振動素子、及びこれを用いたフィルタ
CN110149102B (zh) 基于二维压电材料薄膜的声表面波器件
WO2020140654A1 (zh) 基于梁檐尺寸调整声学谐振器性能的装置和方法
WO2021189966A1 (zh) 一种薄膜体声波谐振器
WO2023030359A1 (zh) 包括间隙电极的体声波谐振器、滤波器及电子设备
CN113228506A (zh) 表面声波谐振器和包括其的多路复用器
CN113659953B (zh) 一种体声波谐振器组件、制备方法以及通信器件
JP2008172638A (ja) 薄膜圧電共振器
CN112953447B (zh) 谐振器及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020819072

Country of ref document: EP

Effective date: 20220107