WO2021189966A1 - 一种薄膜体声波谐振器 - Google Patents

一种薄膜体声波谐振器 Download PDF

Info

Publication number
WO2021189966A1
WO2021189966A1 PCT/CN2020/135673 CN2020135673W WO2021189966A1 WO 2021189966 A1 WO2021189966 A1 WO 2021189966A1 CN 2020135673 W CN2020135673 W CN 2020135673W WO 2021189966 A1 WO2021189966 A1 WO 2021189966A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
bulk acoustic
film bulk
cavity
Prior art date
Application number
PCT/CN2020/135673
Other languages
English (en)
French (fr)
Inventor
黄河
罗海龙
李伟
Original Assignee
中芯集成电路(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中芯集成电路(宁波)有限公司 filed Critical 中芯集成电路(宁波)有限公司
Publication of WO2021189966A1 publication Critical patent/WO2021189966A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type

Definitions

  • the invention relates to the field of semiconductor device manufacturing, in particular to a thin film bulk acoustic wave resonator.
  • radio frequency front-end modules have gradually become the core components of communication equipment.
  • the filter has become the component with the strongest growth momentum and the greatest development prospects.
  • the performance of the filter is determined by the resonator unit that composes the filter.
  • the film bulk acoustic resonator (FBAR) has the characteristics of small size, low insertion loss, large out-of-band suppression, high quality factor, high operating frequency, large power capacity, and good resistance to electrostatic shock. Become one of the most suitable filters for 5G applications.
  • the thin film bulk acoustic wave resonator includes two thin film electrodes, and a piezoelectric thin film layer is arranged between the two thin film electrodes. Its working principle is to use the piezoelectric thin film layer to generate vibration under an alternating electric field.
  • the bulk acoustic wave propagating in the thickness direction of the electric film layer is transmitted to the interface between the upper and lower electrodes and the air to be reflected back, and then reflected back and forth inside the film to form an oscillation.
  • a standing wave oscillation is formed.
  • the quality factor (Q) of the currently manufactured cavity-type thin-film bulk acoustic resonators needs to be improved to better meet the needs of high-performance radio frequency systems.
  • the purpose of the present invention is to provide a thin film bulk acoustic wave resonator, which can reduce the transverse wave loss of the resonator and improve the quality factor of the thin film bulk acoustic wave resonator.
  • the present invention provides a thin film bulk acoustic resonator, including:
  • the piezoelectric laminate structure covers the first cavity.
  • the piezoelectric laminate structure includes a first electrode, a piezoelectric layer, and a second electrode stacked in sequence from top to bottom.
  • the first electrode is in the effective resonance region ,
  • the piezoelectric layer and the second electrode overlap in a direction perpendicular to the surface of the piezoelectric layer, and the effective resonance area is located above the area enclosed by the first cavity;
  • the piezoelectric laminated structure is provided with a first trench penetrating the piezoelectric layer and the second electrode, the sidewall of the first trench close to the effective resonance region is a first side surface, and The included angle between the first side surface and the first electrode surface is 85-95 degrees, and a part of the boundary of the effective resonance region is formed by the first side surface.
  • the beneficial effect of the present invention is that part of the boundary of the film bulk acoustic resonator provided by the present invention is formed by the common first side surface of the piezoelectric layer and the second electrode, and the angle between the first side surface and the surface of the first electrode is 85-95
  • the simulation shows that the angle between the first side surface and the first electrode surface is 85-95 degrees compared with the small angle between the first side surface and the first electrode surface, which improves the quality factor of the resonator. Especially when the angle between the first side surface and the first electrode surface is 89-91 degrees, the quality factor is higher.
  • the first cavity is formed by bonding
  • the second electrode and the piezoelectric layer have strong flatness
  • the bonding method can be realized by etching the first groove from the bonding surface to the second electrode surface before bonding.
  • the sidewall of a trench is vertical or nearly vertical, thereby forming a first side with an angle of 85-95 degrees, providing a vertical or nearly vertical air interface for the sidewall of the piezoelectric layer, and the second trench is connected with the first cavity
  • the acoustic impedance of the gas medium is the same, which is beneficial to form an acoustic impedance mismatch on the second electrode surface and the first side surface at the same time, which can well realize the reflection of the sound wave, prevent the sound wave from leaking, and improve the quality factor of the acoustic wave resonator.
  • the piezoelectric layer has a lattice structure
  • the lattice vibration is based on the unit cell. If a part of the unit cell is outside the working area, it will inevitably cause part of the mechanical vibration energy to be lost during work. Outside the zone.
  • the working area can include the most complete crystal lattices. In this case, only the fewest unit cells straddle the boundary of the working area, reducing Energy loss from mechanical vibration.
  • FIG. 1 is a schematic structural diagram of a thin film bulk acoustic resonator according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the boundary of the effective resonance region in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a thin film bulk acoustic resonator according to another embodiment of the present invention.
  • Figure 4 is a graph showing the relationship between the resonant impedance Zp and the quality factor Qp of the resonator.
  • Fig. 5 is a simulation diagram of related parameters when the first side inclination angle is 90 degrees.
  • Fig. 6 is a simulation diagram of related parameters when the first side inclination angle is 60 degrees.
  • Fig. 7 is a simulation diagram of related parameters when the first side inclination angle is 87 degrees.
  • Embodiment 1 of the present invention provides a thin film bulk acoustic resonator.
  • FIG. 1 is a schematic structural diagram of the thin film bulk acoustic resonator according to Embodiment 1 of the present invention. Please refer to FIG. 1.
  • the thin film bulk acoustic resonator includes:
  • the piezoelectric laminate structure covers the first cavity 230.
  • the piezoelectric laminate structure includes a first electrode 202, a piezoelectric layer 203, and a second electrode 204 that are sequentially stacked from top to bottom, in the effective resonance region ( (Shown in the dashed box) the first electrode 202, the piezoelectric layer 203, and the second electrode 204 overlap in a direction perpendicular to the piezoelectric layer 203, and the effective resonance region is located in the first cavity 230. Above the area;
  • the piezoelectric laminate structure is provided with a first trench 240 penetrating through the piezoelectric layer 203 and the second electrode 204, and the sidewall of the first trench 240 close to the effective resonance region is a first On the side surface 2031B, the included angle 301 between the first side surface 2031B and the surface of the first electrode 202 is 85-95 degrees, and a part of the boundary of the effective resonance region is formed by the first side surface 2031B.
  • the first trench can be obtained by etching the second electrode to the piezoelectric layer, and the angle at which the first side surface of the first trench is close to vertical can be accurately obtained.
  • the first cavity is surrounded by the first substrate, the support layer on the first substrate, and the piezoelectric laminated structure, which avoids the existing solution of using the piezoelectric laminated structure as the cover plate of the closed cavity.
  • the piezoelectric laminate structure is not limited by the cavity production, and is formed before the cavity is closed, so that a relatively flat piezoelectric laminate structure can be obtained, and the first electrode can be etched from the second electrode surface before the cavity is closed.
  • the trench defines part of the boundary of the effective resonance region.
  • the sidewall of the first trench is easier to achieve vertical or close to vertical, thus forming a first side with an angle of 85-95 degrees, which provides a vertical or close to vertical for the sidewall of the piezoelectric layer.
  • the air interface can well realize the reflection of sound waves, prevent sound waves from leaking, and improve the quality factor of the sound wave resonator.
  • the included angle between the first side surface and the first electrode surface is vertical or almost vertical (for example, the included angle is 90 degrees, 89 degrees, 91 degrees), the quality factor of the resonator is higher.
  • the boundary of the effective resonance region is formed by the first side surface 2031B and the second side surface 2031A, wherein the second side surface 2031A is the common side surface of the first electrode 202 and the piezoelectric layer 203.
  • the second electrode 204 and the piezoelectric layer 203 on the first cavity 230 are provided with a second trench 220 that simultaneously penetrates the second electrode 204 and the piezoelectric layer 203, and the second The inner side wall of the trench 220 constitutes the first side surface 2031B.
  • the first electrode 202 and the piezoelectric layer 203 are provided with a first groove 240 that penetrates the first electrode 202 and the piezoelectric layer 203 at the same time, and the inner sidewall of the first groove 240 forms the second side surface 2031A.
  • the first trench 240 communicates with the first cavity 230, and the bottom of the first trench 240 exposes the first electrode 202.
  • FIG. 2 is a schematic diagram of the projection of the first trench and the second trench in the direction of the first substrate, and the inner side of the projection is the first side surface 2031A and the second side surface 2031B of the effective resonance region).
  • the effective resonance area is a pentagon, and the pentagon does not have two parallel opposite sides.
  • the effective resonance region may also be another polygon without two parallel opposite sides, such as a quadrilateral, a hexagon, a heptagon, and the like.
  • the boundary of the effective resonance region is formed by the first side surface 2031B and the second side surface 2031A.
  • the second side surface 2031A is the side surface of the first electrode 202.
  • the first groove 240 only penetrates First electrode 202.
  • the quality factor of the resonator is higher.
  • the individual projections of the first side surface or the second side surface may be continuous or segmented, as long as the projections of the two or the second side complement each other to form a closed figure.
  • the effective resonant region is located above the area enclosed by the first cavity 230 and is suspended.
  • the effective resonant region is connected to the support layer 206 through a connecting portion spanning the first cavity 230, and the connecting portion includes the first cavity.
  • the connecting portion includes a three-layer structure of the first electrode 202, the piezoelectric layer 203, and the second electrode 204, which is beneficial to the support strength of the effective resonance region.
  • the material of the first substrate 100 may be at least one of the following materials: silicon (Si), germanium (Ge), silicon germanium (SiGe), silicon carbon (SiC), silicon germanium (SiGeC), Indium arsenide (InAs), gallium arsenide (GaAs), indium phosphide (InP) or other III/V compound semiconductors, including multilayer structures composed of these semiconductors, or silicon-on-insulator (SOI), on-insulator Stacked silicon (SSOI), stacked silicon germanium on insulator (S-SiGeOI), silicon germanium on insulator (SiGeOI), and germanium on insulator (GeOI), or double-sided polished silicon wafers (DoubleSidePolishedWafers, DSP), also It can be a ceramic substrate such as alumina, a quartz or glass substrate, and the like.
  • a support layer 206 is provided above the first substrate 100, and a first cavity 230 penetrating the support layer 206 is formed in the support layer 206.
  • the material of the support layer can be one or a combination of silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3) and aluminum nitride (AlN).
  • the depth of the first cavity 230 in the film bulk acoustic wave resonator is related to the resonant frequency. Therefore, the depth of the first cavity 230 can be set according to the resonant frequency required by the film bulk acoustic wave resonator, that is, the depth of the support layer 206 thickness.
  • the depth of the first cavity 230 may be 0.5 ⁇ m-4 ⁇ m, for example, 1 ⁇ m or 2 ⁇ m or 3 ⁇ m.
  • the shape of the bottom surface of the first cavity 230 may be a rectangle or a polygon other than a rectangle, such as a pentagon, a hexagon, an octagon, etc., and may also be a circle or an ellipse.
  • the sidewall of the first cavity 230 may be inclined or vertical.
  • the bottom surface of the first cavity 230 is rectangular, and the sidewall and the bottom surface form an obtuse angle (the shape of the longitudinal section of the first cavity 230 (the section along the thickness direction of the first substrate 100) is an inverted trapezoid).
  • the longitudinal cross-sectional shape of the first cavity 230 may also be a spherical cap with a wide top and a narrow bottom, that is, the longitudinal cross-section of the first cavity 230 is U-shaped.
  • the first substrate 100 is bonded to the support layer 106 by bonding.
  • the bonding method includes thermal compression bonding or dry film bonding.
  • thermal compression bonding is adopted, the first substrate 100 is bonded to the support layer 106.
  • a bonding layer (not shown in the figure) is provided between the bottom 100 and the supporting layer 106, and the bonding layer may be a silicon dioxide layer.
  • dry film bonding is used, a dry film layer (not shown in the figure) is provided between the first substrate 100 and the support layer 106.
  • the dry film is an organic cured film, which is commonly used in semiconductor processes. ⁇
  • the first cavity may be formed in the first substrate through an etching process, and the first substrate on the periphery of the first cavity constitutes the supporting layer. At this time, the materials of the first substrate and the support are the same.
  • the first cavity is formed by bonding, the second electrode and the piezoelectric layer have strong flatness, and the bonding method can be realized before bonding.
  • the first groove is etched from the bonding surface to the second electrode surface, and the first groove
  • the side wall of the groove is vertical or close to vertical, thus forming a first side with an angle of 85-95 degrees, which provides a vertical or close to vertical air interface for the side wall of the piezoelectric layer, which can achieve sound wave reflection and prevent sound wave leakage , Improve the quality factor of the acoustic wave resonator.
  • an etch stop layer 205 is provided between the second electrode 204 and the support layer 206.
  • the material of the etch stop layer 205 includes but is not limited to silicon nitride (Si3N4) and silicon oxynitride (SiON).
  • the etch stop layer 205 has a lower etch rate than the support layer 206.
  • the support layer 206 can be etched to form the first cavity 230 to prevent over-etching and protect the The surface of the second electrode 204 underneath is not damaged.
  • the boundary of the effective resonance region is located in the area enclosed by the first cavity 230.
  • longitudinal sound waves vibrating up and down are formed in the piezoelectric layer. Part of the longitudinal sound waves propagate to the first electrode 202 and the second electrode 204 and leak from the surfaces of the first electrode 202 and the second electrode 204, causing the sound wave The energy loss.
  • the entire boundary of the effective resonance region is located above the area enclosed by the first cavity 230.
  • the acoustic impedance mismatch with the second electrode 204 causes the acoustic waves propagating to the interface to be reflected back into the piezoelectric layer 203, reducing the leakage of longitudinal acoustic waves and improving the quality factor of the resonator.
  • the size of the first cavity 230 can be smaller, so that the area enclosed by the first cavity 230 is located within the boundary of the effective resonance region, and the boundary of the effective resonance region is located above the support layer. This arrangement sacrifices a part of the quality factor, but improves the structural strength of the resonator and facilitates heat dissipation.
  • the simulation shows that when the angle between the first side surface constituting the effective resonance region and the surface of the first electrode 202 is 85-95 degrees, compared with the first side surface and the surface of the first electrode 202 having a smaller inclination angle, the resonator’s performance is improved. Quality factor.
  • the quality factor of the resonator is the main parameter used to judge the performance of the resonator.
  • the quality factor of the resonator and the parallel impedance Zp have a highly linear relationship.
  • the above-mentioned relational expression can be obtained through the ‘MBVD model’ and the ‘particle swarm algorithm fitting’.
  • the ‘MBVD model’ and the ‘particle swarm algorithm fitting’ are common knowledge of those skilled in the art, and the derivation process for obtaining the result will not be described here. From the above results, it can be seen that when the resonant impedance Zp of the resonator is higher, it means that the resonator has a higher quality factor Qp.
  • Fig. 5 is a simulation diagram of related parameters when the first side inclination angle is 90 degrees.
  • Fig. 6 is a simulation diagram of related parameters when the first side inclination angle is 60 degrees.
  • FIG. 7 is a simulation diagram of related parameters when the first side inclination angle is 87 degrees. It can be seen from FIG. 5 that when the first side inclination angle is 90 degrees, the resonance impedance Zp is 4601 ohm, and the value of the quality factor Qp is 1649. It can be seen from FIG. 6 that when the first side inclination angle is 60 degrees, the resonance impedance Zp is 1158 ohm, and the value of the quality factor Qp is 381. It can be seen from FIG. 7 that when the first side inclination angle is 87 degrees, the resonance impedance Zp is 3700 ohm, and the value of the quality factor Qp is 1318.
  • the inventor also simulated other angles and found that when the first side inclination angle is between 85-95 degrees, the quality factor of the resonator is significantly improved compared to when the inclination angle of the piezoelectric layer is small, especially when the edge of the effective resonance region is formed.
  • the inclination angle of the first side is 90 degrees, and the resonance impedance Zp and the quality factor Qp have the highest values.
  • the materials of the second electrode 204 and the first electrode 202 may be metallic materials with conductive properties, for example, made of molybdenum (Mo), aluminum (Al), copper (Cu), tungsten (W), tantalum (Ta), platinum ( Pt), ruthenium (Ru), rhodium (Rh), iridium (Ir), chromium (Cr), titanium (Ti), gold (Au), osmium (Os), rhenium (Re), palladium (Pd) and other metals
  • Mo molybdenum
  • Al aluminum
  • Cu copper
  • platinum ( Pt) ruthenium
  • Ru rhodium
  • Ir iridium
  • Cr chromium
  • Ti titanium
  • gold Au
  • Au osmium
  • Os rhenium
  • Re palladium
  • Pd palladium
  • the semiconductor material is, for example, Si, Ge, SiGe, Si
  • the material of the piezoelectric layer 203 can be aluminum nitride (AlN), zinc oxide (ZnO), lead zirconate titanate (PZT), lithium niobate (LiNbO3), quartz (Quartz), potassium niobate (KNbO3) or tantalic acid Piezoelectric materials with wurtzite crystal structure such as lithium (LiTaO3) and their combinations.
  • AlN aluminum nitride
  • the piezoelectric layer 203 may further include a rare earth metal, such as at least one of scandium (Sc), erbium (Er), yttrium (Y), and lanthanum (La).
  • the piezoelectric layer 203 may further include a transition metal, such as at least one of zirconium (Zr), titanium (Ti), manganese (Mn), and hafnium (Hf). kind.
  • Zr zirconium
  • Ti titanium
  • Mn manganese
  • Hf hafnium
  • the piezoelectric layer has a lattice structure, due to the integrity of the unit cell, the lattice vibration is based on the unit cell. If a part of the unit cell is outside the working area, part of the mechanical vibration energy will inevitably be lost outside the working area. And when one crystal plane of the lattice structure is parallel to the first side surface (it is best to coincide), the working area can include the most complete crystal lattices. In this case, only the fewest unit cells straddle the boundary of the working area, reducing The energy loss of mechanical vibration.
  • the material of the piezoelectric layer is aluminum nitride, which has a hexagonal lattice structure.
  • the first cavity 230 includes at least one through hole 250 penetrating the structure above the first cavity 230, and the through hole 250 is located outside the effective resonance region.
  • the through hole 250 communicates the first cavity 230 with the outside, prevents the piezoelectric laminated structure from being deformed due to the difference in pressure between the upper and lower pressures, and improves the yield of the resonator.
  • the number of through holes 250 can also be 3, 5, etc., which is not limited.
  • a passivation layer 207 is further included, and the passivation layer 207 covers the first electrode 206, the piezoelectric layer 203 and the second electrode 204.
  • the passivation layer can further cover the support layer.
  • the material of the passivation layer 207 may be silicon dioxide (SiO2), silicon nitride (Si3N4), silicon oxynitride (SiON), aluminum nitride (A1N), aluminum oxide (A12O3), and the like.
  • the passivation layer 207 is also provided with a first pad 110 and a second pad 120, the first pad 110 and the first electrode 202 are electrically connected, and the second pad 120 and the second electrode 204 are electrically connected.
  • Both the first pad 110 and the second pad are located outside the first cavity 230.
  • the material of the first pad 110 and the second pad 120 may be aluminum (A1), copper (Cu), gold (Au), titanium (Ti), nickel (Ni), silver (Ag) or tungsten (W) A composite structure formed by a combination of one or more of them.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明公开了一种薄膜体声波谐振器,包括:第一衬底;设置于所述第一衬底上的支撑层,所述支撑层中设有贯穿所述支撑层的第一空腔;压电叠层结构,覆盖所述第一空腔,所述压电叠层结构从上至下包括依次层叠的第一电极、压电层和第二电极,在有效谐振区所述第一电极、压电层和第二电极在垂直于所述压电层表面方向上重叠,所述有效谐振区位于所述第一空腔围成的区域上方;所述压电叠层结构中设有贯穿所述压电层及所述第二电极的第一沟槽,所述第一沟槽靠近所述有效谐振区的侧壁为第一侧面,所述第一侧面与所述第一电极表面的夹角为85-95度,所述有效谐振区的部分边界由所述第一侧面构成。

Description

一种薄膜体声波谐振器 技术领域
本发明涉及半导体器件制造领域,尤其涉及一种薄膜体声波谐振器。
背景技术
自从射频通讯技术在上世纪90代初被开发以来,射频前端模块已经逐渐成为通讯设备的核心组件。在所有射频前端模块中,滤波器已成为增长势头最猛、发展前景最大的部件。随着无线通讯技术的高速发展,5G通讯协议日渐成熟,市场对射频滤波器的各方面性能也提出了更为严格的标准。滤波器的性能由组成滤波器的谐振器单元决定。在现有的滤波器中,薄膜体声波谐振器(FBAR)因其体积小、插入损耗低、带外抑制大、品质因数高、工作频率高、功率容量大以及抗静电冲击能力良好等特点,成为最适合5G应用的滤波器之一。
通常,薄膜体声波谐振器包括两个薄膜电极,并且两个薄膜电极之间设有压电薄膜层,其工作原理为利用压电薄膜层在交变电场下产生振动,该振动激励出沿压电薄膜层厚度方向传播的体声波,此声波传至上下电极与空气交界面被反射回来,进而在薄膜内部来回反射,形成震荡。当声波在压电薄膜层中传播正好是半波长的奇数倍时,形成驻波震荡。
技术问题
但是,目前制作出的空腔型薄膜体声波谐振器,品质因子(Q)还有待提高,以更好的满足高性能的射频系统的需求。
技术解决方案
本发明的目的在于提供一种薄膜体声波谐振器,能够减少谐振器的横波损失,使薄膜体声波谐振器的品质因子得到提高。
为了实现上述目的,本发明提供了一种薄膜体声波谐振器,包括:
第一衬底;
设置于所述第一衬底上的支撑层,所述支撑层中形成设有贯穿所述支撑层的第一空腔;
压电叠层结构,覆盖所述第一空腔,所述压电叠层结构从上至下包括依次层叠的第一电极、压电层和第二电极,在有效谐振区所述第一电极、压电层和第二电极在垂直于所述压电层表面方向上重叠,所述有效谐振区位于所述第一空腔围成的区域上方;
所述压电叠层结构中设有贯穿所述压电层及所述第二电极的第一沟槽,所述第一沟槽靠近所述有效谐振区的侧壁为第一侧面,所述第一侧面与所述第一电极表面的夹角为85-95度,所述有效谐振区的部分边界由所述第一侧面构成。
有益效果
本发明的有益效果在于,本发明提供的薄膜体声波谐振器的部分边界由压电层和第二电极的共同的第一侧面构成,第一侧面与第一电极表面的夹角为85-95度,经过仿真表明,第一侧面与第一电极表面的夹角为85-95度相较于第一侧面与第一电极表面夹角较小时,提高了谐振器的品质因数。尤其当第一侧面与第一电极表面的夹角为89-91度时,品质因数更高。
进一步,第一空腔为键合形成,第二电极和压电层平整性强,且键合方式可以实现在键合前,从键合面向第二电极面刻蚀出第一沟槽,第一沟槽侧壁垂直或接近垂直,从而形成夹角为85-95度的第一侧面,为压电层侧壁提供垂直或接近垂直的空气交界面,第二沟槽与第一空腔连通,气体媒介声阻抗相同,有益于同时在第二电极表面和第一侧面形成声阻抗失配,能很好的实现声波的反射,防止声波泄露,提高声波谐振器的品质因子。
进一步地,当谐振区的另一部分边界由第一电极或第一电极与压电层的共有第二侧面构成时,第二侧面与第二电极表面的夹角为85-95度时,相较于侧面倾角较小时提高了谐振器的品质因数。
进一步地,当压电层具有晶格结构,由于晶胞的整体性,晶格振动是以晶胞为单位,如果晶胞的一部分在工作区之外,必然会造成部分机械振动能量流失在工作区以外。且晶格结构的一晶面与第一侧面平行时(最好为重合时),工作区内可以囊括最多的完整晶格,这种情况下只有最少的晶胞跨在工作区边界上,减少机械振动的能量损失。
附图说明
通过结合附图对本发明示例性实施例进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显,在本发明示例性实施例中,相同的参考标号通常代表相同部件。
图1为本发明实施例1的一种薄膜体声波谐振器的结构示意图。
图2为本发明实施例1的有效谐振区边界的构成方式示意图。
图3为本发明另一实施例的一种薄膜体声波谐振器的结构示意图。
图4为谐振器的谐振阻抗Zp和品质因数Qp的关系图。
图5为第一侧面倾角为90度时相关参数的仿真图。
图6为第一侧面倾角为60度时相关参数的仿真图。
图7为第一侧面倾角为87度时相关参数的仿真图。
附图标记说明:
100-第一衬底; 202-第一电极;203-压电层;204第二电极;205-刻蚀停止层;206-支撑层;207-钝化层;220-第二沟槽;240-第一沟槽;通孔-250;230-第一空腔;301-第一侧面与第一电极表面的夹角;110-第一焊盘;120-第二焊盘;2031A-第一侧面;2031B-第二侧面。
本发明的实施方式
下面将参照附图更详细地描述本发明。虽然附图中显示了本发明的可选实施例,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
以下结合附图和具体实施例对本发明的薄膜体声波谐振器、薄膜体声波谐振器的制作方法作进一步详细说明。根据下面的说明和附图,本发明的优点和特征将更清楚,然而,需说明的是,本发明技术方案的构思可按照多种不同的形式实施,并不局限于在此阐述的特定实施例。附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
在说明书和权利要求书中的术语“第一”“第二”等用于在类似要素之间进行区分,且未必是用于描述特定次序或时间顺序。要理解,在适当情况下,如此使用的这些术语可替换,例如可使得本文的本发明实施例能够以不同于本文的或所示的其他顺序来操作。类似的,如果本文的方法包括一系列步骤,且本文所呈现的这些步骤的顺序并非必须是可执行这些步骤的唯一顺序,且一些的步骤可被省略和/或一些本文未描述的其他步骤可被添加到该方法。若某附图中的构件与其他附图中的构件相同,虽然在所有附图中都可轻易辨认出这些构件,但为了使附图的说明更为清楚,本说明书不会将所有相同构件的标号标于每一图中。
实施例1
本发明实施例1提供了一种薄膜体声波谐振器,图1为本发明实施例1的薄膜体声波谐振器的结构示意图,请参考图1,所述薄膜体声波谐振器包括:
第一衬底100;
设置于所述第一衬底100上的支撑层206,所述支撑层206中设有贯穿所述支撑层206的第一空腔230;
压电叠层结构,覆盖所述第一空腔230,所述压电叠层结构从上至下包括依次层叠的第一电极202、压电层203和第二电极204,在有效谐振区(虚线框中所示)所述第一电极202、压电层203和第二电极204在垂直于所述压电层203方向上重叠,所述有效谐振区位于所述第一空腔230围成的区域上方;
所述压电叠层结构中设有贯穿所述压电层203及所述第二电极204的第一沟槽240,所述第一沟槽240靠近所述有效谐振区的侧壁为第一侧面2031B,所述第一侧面2031B与所述第一电极202表面的夹角301为85-95度,所述有效谐振区的部分边界由所述第一侧面2031B构成。所述第一沟槽可由第二电极向压电层刻蚀得到,可以精确获得第一沟槽第一侧面接近垂直的角度。
第一空腔由第一衬底和第一衬底上的支撑层,及压电叠层结构三部分围成,规避了由压电叠层结构作为封闭空腔的盖板的现有方案,压电叠层结构可不受空腔制作的限制,先于空腔封闭前形成,可获得较平整的压电叠层结构,且在空腔封闭前能够实现从第二电极面刻蚀出第一沟槽定义有效谐振区的部分边界,第一沟槽侧壁更容易实现垂直或接近垂直,从而形成夹角为85-95度的第一侧面,为压电层侧壁提供垂直或接近垂直的空气交界面,能很好的实现声波的反射,防止声波泄露,提高声波谐振器的品质因子。尤其当第一侧面与第一电极表面的夹角为垂直或几乎垂直时(如夹角为90度、89度、91度),谐振器的品质因数更高。
本实施例中,有效谐振区的边界由第一侧面2031B和第二侧面2031A共同构成,其中第二侧面2031A为第一电极202与压电层203的共有侧面。具体地,参考图1,本实施例中,第一空腔230上的第二电极204和压电层203中设有同时贯穿第二电极204和压电层203第二沟槽220,第二沟槽220的内侧壁构成了第一侧面2031B。第一电极202和压电层203中设有同时贯穿第一电极202和压电层203的第一沟槽240,第一沟槽240的内侧壁构成了第二侧面2031A。第一沟槽240与第一空腔230相连通,第一沟槽240的底部暴露出第一电极202。
参考图2,图2为第一沟槽和第二沟槽在第一衬底方向的投影的示意图,投影的内边为有效谐振区的第一侧面2031A和第二侧面2031B)。本实施例中,有效谐振区为五边形,五边形不存在两个平行的对边。在其他实施例中有效谐振区还可以是其他不存在两个平行对边的多边形,如四边形、六边形、七边形等。
参考图3,在另一个实施例中,有效谐振区的边界由第一侧面2031B和第二侧面2031A共同构成,第二侧面2031A为第一电极202的侧面,此时第一沟槽240只贯穿第一电极202。
以上两种构成第二侧面的形式,当第二侧面2031A与第二电极204表面的夹角为85-95度时,谐振器的品质因数更高。需要说明的是,第一侧面或第二侧面单独的投影可以是连续的也可以是分段的,只要两者或的投影互相补充,构成封闭的图形就可以。
有效谐振区位于第一空腔230围成的区域上方,悬空设置,有效谐振区通过跨越所述第一空腔230的连接部连接于所述支撑层206,所述连接部包括所述第一电极202、压电层203或第二电极204中的至少一种。本实施例中,连接部包括第一电极202、压电层203和第二电极204三层结构,有利于对有效谐振区的支撑强度。
第一衬底100的材料可以是以下所提到的材料中的至少一种:硅(Si)、锗(Ge)、锗硅(SiGe)、碳硅(SiC)、碳锗硅(SiGeC)、砷化铟(InAs)、砷化镓(GaAs)、磷化铟(InP)或者其它III/V化合物半导体,还包括这些半导体构成的多层结构等,或者为绝缘体上硅(SOI)、绝缘体上层叠硅(SSOI)、绝缘体上层叠锗化硅(S-SiGeOI)、绝缘体上锗化硅(SiGeOI)以及绝缘体上锗(GeOI),或者还可以为双面抛光硅片(DoubleSidePolishedWafers,DSP),也可为氧化铝等的陶瓷基底、石英或玻璃基底等。
第一衬底100的上方设有支撑层206,支撑层206中形成有贯穿所述支撑层206的第一空腔230。支撑层的材质可以为二氧化硅(SiO2)、氮化硅(Si3N4)、氧化铝(Al2O3)和氮化铝(AlN)的一种或几种组合。薄膜体声波谐振器中第一空腔230的深度与谐振频率有关,因此,可以根据薄膜体声波谐振器所需要的谐振频率来设定第一空腔230的深度,即所述支撑层206的厚度。示例性的,所述第一空腔230深度可以为0.5μm~4μm,例如1μm或2μm或3μm。所述第一空腔230底面的形状可以为矩形或是矩形以外的多边形,例如五边形、六边形、八边形等,也可以为圆形或椭圆形。第一空腔230的侧壁可以是倾斜或者竖直的。本实施例中,第一空腔230的底面为矩形,且侧壁与底面构成一钝角(第一空腔230的纵向截面(沿第一衬底100厚度方向的截面)形状为倒梯形)。本发明的其他实施例中,第一空腔230的纵截面形状还可以是上宽下窄的球冠,即其纵向截面为U形。
本实施例中,第一衬底100是通过键合的方式键合在支撑层106上,键合的方法包括热压键合或干膜粘合,当采用热压键合时,第一衬底100与支撑层106之间设置有键合层(图中未示出),所述键合层可以为二氧化硅层。当采用干膜粘合时,第一衬底100与所述支撑层106之间设置有干膜层(图中未示出),干膜是一种有机固化膜,是半导体工艺中常用的粘合材料。在另一个实施例中,可以在第一衬底中通过刻蚀工艺形成第一空腔,第一空腔外周的第一衬底构成支撑层。此时第一衬底和支撑的材料相同。
第一空腔为键合形成,第二电极和压电层平整性强,且键合方式可以实现在键合前,从键合面向第二电极面刻蚀出第一沟槽,第一沟槽侧壁垂直或接近垂直,从而形成夹角为85-95度的第一侧面,为压电层侧壁提供垂直或接近垂直的空气交界面,能很好的实现声波的反射,防止声波泄露,提高声波谐振器的品质因子。
本实施例中,所述第二电极204与所述支撑层206之间设置有刻蚀停止层205。所述刻蚀停止层205的材质包括但不限于氮化硅(Si3N4)和氮氧化硅(SiON)。所述刻蚀停止层205与支撑层206相比,具有较低的刻蚀速率,在制造工艺时,可以在刻蚀所述支撑层206形成第一空腔230时防止过刻蚀,保护位于其下的第二电极204的表面不受到损伤。
本实施例中,所述有效谐振区的边界位于所述第一空腔230围成的区域内。谐振器在工作时,压电层中形成上下震动的纵向声波,部分纵向声波传播至第一电极202和第二电极204中,从第一电极202和第二电极204的表面泄露,造成了声波的能量损耗。本实施例中,有效谐振区的全部边界位于第一空腔230围成的区域上方,当纵向声波传输至第二电极204下表面与第一空腔230的交界面时,由于空气的声波阻抗与第二电极204的声波阻抗失配,使传播至交界面处的声波被反射回压电层203内,减少了纵向声波的泄露,提高了谐振器的品质因数。当然,在其他实施例中,第一空腔230的尺寸可以小些,使第一空腔230围成的区域位于所述有效谐振区的边界内,有效谐振区的边界位于支撑层上方,这种设置方式牺牲了一部分品质因数,但提高了谐振器的结构强度,并有利于散热。
经过仿真表明,构成有效谐振区的第一侧面与第一电极202表面的夹角为85-95度时相较于第一侧面与第一电极202表面具有较小倾角时,提高了谐振器的品质因数。
谐振器的品质因数是用来判断谐振器性能的主要参数。谐振器的品质因数和并联阻抗Zp具有高度线性关系,参考图4,图4示出了谐振阻抗Zp和品质因数Qp的关系,Qp=0.3683*Zp-45.125,线性关联系数R2=0.9995。R2=1为线性关系。上述关系式可通过‘MBVD模型’和‘粒子群算法拟合’得出。‘MBVD模型’和‘粒子群算法拟合’为本领域技术人员的公知常识,此处不在表述得出结果的推导过程。由以上结果可知,当谐振器的谐振阻抗Zp较高时意味着谐振器具有较高的品质因数Qp。
参考图5、图6和图7,其中图5、图6、图7的横坐标为频率,纵坐标为谐振阻抗。仿真图基于以下模型参数:上电极和下电极的材料为钼,厚度均为0.2-0.3微米,压电层的材料为氮化铝,压电层的厚度为0.5-1.5微米。图5为第一侧面倾角为90度时相关参数的仿真图。图6为第一侧面倾角为60度时相关参数的仿真图。图7为第一侧面倾角为87度时相关参数的仿真图。由图5可知,第一侧面倾角为90度时,谐振阻抗Zp为4601ohm,品质因数Qp的值为1649。由图6可知,第一侧面倾角为60度时,谐振阻抗Zp为1158ohm,品质因数Qp的值为381。由图7可知,第一侧面倾角为87度时,谐振阻抗Zp为3700ohm,品质因数Qp的值为1318。发明人还对其他角度做了模拟仿真,发现当第一侧面倾角为85-95度之间时,相较于压电层倾角较小时谐振器的品质因数明显提高,尤其当构成有效谐振区边缘的第一侧面的倾角为90度,谐振阻抗Zp和品质因数Qp的值最高。
另外,经研究发现,当构成有效谐振区的第一电极的第二侧面与压电层的夹角为85-95度时,如88度、89度、90度、91度、92度等,谐振器的品质因数更高;当构成有效谐振区的第一电极与压电层的共有第二侧面与第二电极表面的夹角为85-95度时,谐振器的品质因数进一步提高。仿真图略。
第二电极204和第一电极202的材料可以为具有导电性能的金属材料,例如,由钼(Mo)、铝(Al)、铜(Cu)、钨(W)、钽(Ta)、铂(Pt)、钌(Ru)、铑(Rh)、铱(Ir)、铬(Cr)、钛(Ti)、金(Au)、锇(Os)、铼(Re)、钯(Pd)等金属中一种制成或由上述金属形成的叠层制成,半导体材料例如是Si、Ge、SiGe、SiC、SiGeC等。
压电层203的材料可以使用氮化铝(AlN)、氧化锌(ZnO)、锆钛酸铅(PZT)、铌酸锂(LiNbO3)、石英(Quartz)、铌酸钾(KNbO3)或钽酸锂(LiTaO3)等具有纤锌矿型结晶结构的压电材料及它们的组合。当压电层203包括氮化铝(AlN)时,压电层203还可包括稀土金属,例如钪(Sc)、铒(Er)、钇(Y)和镧(La)中的至少一种。此外,当压电层203包括氮化铝(AlN)时,压电层203还可包括过渡金属,例如锆(Zr)、钛(Ti)、锰(Mn)和铪(Hf)中的至少一种。当压电层具有晶格结构,由于晶胞的整体性,晶格振动是以晶胞为单位,如果晶胞的一部分在工作区之外,必然会造成部分机械振动能量流失在工作区以外。且晶格结构的一晶面与第一侧面平行时(最好为重合时),工作区内可以囊括最多的完整晶格,这种情况下只有最少的晶胞跨在工作区边界上,减少机械振动的能量损失,本实施例中,压电层的材料为氮化铝,具有六方晶格结构。
本实施例中,第一空腔230上方至少包括一个贯穿所述第一空腔230上方结构的通孔250,所述通孔250位于所述有效谐振区的外部。所述通孔250将第一空腔230与外部相通,防止压电叠层结构由于上下气压差不同导致的变形,提高谐振器的成品率。本实施例中通孔250为四个,分布于第一空腔230的边角处。通孔250的数量还可以是3个、5个等,不做限定。
本实施例中,还包括钝化层207,所述钝化层207覆盖所述第一电极206、所述压电层203和所述第二电极204。钝化层还可进一步覆盖支撑层。钝化层207的材质可以为二氧化硅(SiO2)、氮化硅(Si3N4)、氮氧化硅(SiON)、氮化铝(A1N)、氧化铝(A12O3)等。钝化层207中还设置有第一焊盘110和第二焊盘120,第一焊盘110和第一电极202电连接,第二焊盘120和第二电极204电连接。进而实现薄膜体声波谐振器的电极与外部供电设备的连接。第一焊盘110和第二焊盘均位于第一空腔230的外侧。所述第一焊盘110和所述第二焊盘120的材质可以为铝(A1)、铜(Cu)、金(Au)、钛(Ti)、镍(Ni)、银(Ag)或钨(W)等中的一种或多种组合形成的复合结构。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (15)

  1. 一种薄膜体声波谐振器,其特征在于,包括:
    第一衬底;
    设置于所述第一衬底上的支撑层,所述支撑层中设有贯穿所述支撑层的第一空腔;
    压电叠层结构,覆盖所述第一空腔,所述压电叠层结构从上至下包括依次层叠的第一电极、压电层和第二电极,在有效谐振区所述第一电极、压电层和第二电极在垂直于所述压电层表面方向上重叠,所述有效谐振区位于所述第一空腔围成的区域上方;
    所述压电叠层结构中设有贯穿所述压电层及所述第二电极的第一沟槽,所述第一沟槽靠近所述有效谐振区的侧壁为第一侧面,所述第一侧面与所述第一电极表面的夹角为85-95度,所述有效谐振区的部分边界由所述第一侧面构成。
  2. 根据权利要求1所述的薄膜体声波谐振器,其特征在于,所述第一电极或所述第一电极与所述压电层设有第二侧面,所述有效谐振区的边界包括:第一侧面和第二侧面。
  3. 根据权利要求2所述的薄膜体声波谐振器,其特征在于,所述第二侧面与所述第二电极表面的夹角为85-95度。
  4. 根据权利要求1所述的薄膜体声波谐振器,其特征在于,所述第一沟槽连通于所述第一空腔。
  5. 根据权利要求2所述的薄膜体声波谐振器,其特征在于,所述压电叠层结构中设有贯穿所述第一电极或同时贯穿所述第一电极及所述压电层的第二沟槽,所述第二沟槽靠近所述有效谐振区的侧壁构成所述第二侧面。
  6. 根据权利要求1所述的薄膜体声波谐振器,其特征在于,所述压电层的材料具有晶格结构,所述晶格具有第一晶面,所述第一晶面与所述第一侧面平行。
  7. 根据权利要求1所述的薄膜体声波谐振器,其特征在于,所述有效谐振区通过跨越所述第一空腔的连接部连接于所述支撑层,所述连接部包括所述第一电极、压电层或第二电极中的至少一种。
  8. 根据权利要求1所述的薄膜体声波谐振器,其特征在于,所述支撑层通过键合工艺键合在所述第一衬底上,所述支撑层与所述第一衬底之间设置有键合层或干膜层。
  9. 根据权利要求1所述的薄膜体声波谐振器,其特征在于,所述第二电极与所述支撑层之间设置有刻蚀停止层。
  10. 根据权利要求9所述的薄膜体声波谐振器,其特征在于,所述刻蚀停止层的材质包括:二氧化硅、氮化硅、氮氧化硅中的一种或多种组合。
  11. 根据权利要求1所述的薄膜体声波谐振器,其特征在于,所述有效谐振区的形状为多边形,且所述多边形的任意两条边不平行。
  12. 根据权利要求1所述的薄膜体声波谐振器,其特征在于,所述第一空腔上方至少包括一个贯穿所述第一空腔上方结构的通孔,所述通孔位于所述有效谐振区的外部。
  13. 根据权利要求1所述的薄膜体声波谐振器,其特征在于,所述压电层的材料包括氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾或钽酸锂。
  14. 根据权利要求1所述的薄膜体声波谐振器,其特征在于,所述第一衬底与所述支撑层的材料不同,所述支撑层的材质包括:二氧化硅、氮化硅、氧化铝和氮化铝中的一种或多种组合。
  15. 根据权利要求1所述的薄膜体声波谐振器,其特征在于,所述第一侧面与所述第一电极表面的夹角为89-91度。
PCT/CN2020/135673 2020-03-23 2020-12-11 一种薄膜体声波谐振器 WO2021189966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010208269.4A CN112039483A (zh) 2020-03-23 2020-03-23 一种薄膜体声波谐振器
CN202010208269.4 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021189966A1 true WO2021189966A1 (zh) 2021-09-30

Family

ID=73578750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135673 WO2021189966A1 (zh) 2020-03-23 2020-12-11 一种薄膜体声波谐振器

Country Status (2)

Country Link
CN (1) CN112039483A (zh)
WO (1) WO2021189966A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039483A (zh) * 2020-03-23 2020-12-04 中芯集成电路(宁波)有限公司 一种薄膜体声波谐振器
CN114894229B (zh) * 2022-04-26 2024-05-03 武汉敏声新技术有限公司 一种薄膜体声波传感器及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123423A (zh) * 2006-08-09 2008-02-13 爱普生拓优科梦株式会社 At切割水晶振动片及其制造方法
US20170179924A1 (en) * 2014-01-21 2017-06-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic wave resonator (fbar) having stress-relief
CN108123695A (zh) * 2016-11-30 2018-06-05 三星电机株式会社 体声波谐振器
CN110474616A (zh) * 2019-08-29 2019-11-19 华南理工大学 一种空气隙型薄膜体声波谐振器及其制备方法
CN110581695A (zh) * 2018-06-08 2019-12-17 上海珏芯光电科技有限公司 薄膜体声波谐振器及其制造方法
CN110829997A (zh) * 2018-08-07 2020-02-21 上海珏芯光电科技有限公司 薄膜体声波谐振器及其制造方法
CN112039482A (zh) * 2020-03-10 2020-12-04 中芯集成电路(宁波)有限公司 一种薄膜压电声波谐振器、滤波器及电子设备
CN112039483A (zh) * 2020-03-23 2020-12-04 中芯集成电路(宁波)有限公司 一种薄膜体声波谐振器
CN112039463A (zh) * 2019-08-09 2020-12-04 中芯集成电路(宁波)有限公司 一种薄膜体声波谐振器的制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032370B2 (ja) * 2008-02-29 2012-09-26 京セラ株式会社 薄膜共振子の製造方法
CN103296992B (zh) * 2013-06-28 2016-02-10 中国电子科技集团公司第二十六研究所 薄膜体声波谐振器结构及其制造方法
CN103607178B (zh) * 2013-09-17 2016-10-05 诺思(天津)微系统有限公司 薄膜体波谐振器及提高其品质因数的方法
CN107809221B (zh) * 2017-09-27 2021-05-11 佛山市艾佛光通科技有限公司 一种空腔型薄膜体声波谐振器及其制备方法
CN110401428B (zh) * 2018-04-25 2023-04-28 芯知微(上海)电子科技有限公司 薄膜体声波谐振器及其制造方法
CN109981070B (zh) * 2019-03-13 2020-06-16 电子科技大学 一种无需制备牺牲层的空腔型体声波谐振器及其制备方法
CN209642637U (zh) * 2019-03-26 2019-11-15 深圳华远微电科技有限公司 薄膜体声波谐振器和滤波器
CN109756201A (zh) * 2019-03-26 2019-05-14 深圳华远微电科技有限公司 薄膜体声波谐振器和滤波器
CN110417373A (zh) * 2019-07-25 2019-11-05 华南理工大学 一种频率可调的横向场激励薄膜体声波谐振器及制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123423A (zh) * 2006-08-09 2008-02-13 爱普生拓优科梦株式会社 At切割水晶振动片及其制造方法
US20170179924A1 (en) * 2014-01-21 2017-06-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic wave resonator (fbar) having stress-relief
CN108123695A (zh) * 2016-11-30 2018-06-05 三星电机株式会社 体声波谐振器
CN110581695A (zh) * 2018-06-08 2019-12-17 上海珏芯光电科技有限公司 薄膜体声波谐振器及其制造方法
CN110829997A (zh) * 2018-08-07 2020-02-21 上海珏芯光电科技有限公司 薄膜体声波谐振器及其制造方法
CN112039463A (zh) * 2019-08-09 2020-12-04 中芯集成电路(宁波)有限公司 一种薄膜体声波谐振器的制造方法
CN110474616A (zh) * 2019-08-29 2019-11-19 华南理工大学 一种空气隙型薄膜体声波谐振器及其制备方法
CN112039482A (zh) * 2020-03-10 2020-12-04 中芯集成电路(宁波)有限公司 一种薄膜压电声波谐振器、滤波器及电子设备
CN112039483A (zh) * 2020-03-23 2020-12-04 中芯集成电路(宁波)有限公司 一种薄膜体声波谐振器

Also Published As

Publication number Publication date
CN112039483A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
EP4089918A1 (en) Bulk acoustic wave resonator and manufacturing method, bulk acoustic wave resonator unit, filter and electronic device
WO2021077717A1 (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
JP7130841B2 (ja) 薄膜バルク音響波共振器及びその製造方法
US10284173B2 (en) Acoustic resonator device with at least one air-ring and frame
US9590165B2 (en) Acoustic resonator comprising aluminum scandium nitride and temperature compensation feature
WO2021135019A1 (zh) 底电极为空隙电极的体声波谐振器、滤波器及电子设备
WO2021109444A1 (zh) 体声波谐振器及其制造方法、滤波器及电子设备
WO2021012923A1 (zh) 薄膜体声波谐振器及其制作方法
WO2021120499A1 (zh) 电极具有空隙层与温补层的体声波谐振器、滤波器及电子设备
US20210313946A1 (en) Bulk Acoustic Wave Resonator and Fabrication Method for the Bulk Acoustic Wave Resonator
JP3712423B2 (ja) 薄膜圧電素子
WO2021189964A1 (zh) 一种薄膜体声波谐振器及其制造方法
WO2021114555A1 (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
JP7081041B2 (ja) 薄膜バルク音響波共振器とその製造方法、フィルタ、および無線周波数通信システム
WO2021179728A1 (zh) 一种薄膜压电声波谐振器、滤波器及电子设备
WO2021077716A1 (zh) 体声波谐振器、滤波器及电子设备
CN111555733A (zh) 一种兰姆波谐振器结构及其制备方法
WO2022105580A1 (zh) 一种薄膜压电声波谐振器
WO2021189966A1 (zh) 一种薄膜体声波谐振器
WO2020199510A1 (zh) 体声波谐振器及其制造方法和滤波器、射频通信系统
WO2022022264A1 (zh) 表声波谐振器及其制造方法
JP2015165659A (ja) アルミニウムスカンジウム窒化物および温度補償要素を含む音響共振器
JP2020014088A (ja) 弾性波共振器、フィルタ並びにマルチプレクサ
CN114070223A (zh) 薄膜体声波谐振器及其制造方法
CN112311353A (zh) 一种牢固安置型体声波谐振器及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926486

Country of ref document: EP

Kind code of ref document: A1