WO2020244277A1 - 一种高压内啮合齿轮泵齿轮副的可靠性评估方法 - Google Patents
一种高压内啮合齿轮泵齿轮副的可靠性评估方法 Download PDFInfo
- Publication number
- WO2020244277A1 WO2020244277A1 PCT/CN2020/080090 CN2020080090W WO2020244277A1 WO 2020244277 A1 WO2020244277 A1 WO 2020244277A1 CN 2020080090 W CN2020080090 W CN 2020080090W WO 2020244277 A1 WO2020244277 A1 WO 2020244277A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- failure
- internal gear
- reliability
- gear pump
- function
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
Definitions
- the invention relates to the technical field of internal gear pumps, in particular to a method for reliability evaluation of gear pairs of high-pressure internal gear pumps.
- internal gear pumps Due to its simple and compact structure, small flow and pressure pulsation, high power-to-weight ratio, and low noise, internal gear pumps have been widely used in industrial fields such as mobile machinery and modular machine tools.
- the internal gear pump has a high volumetric efficiency and total efficiency due to its small high-pressure cavity and perfect sealing structure, and there is no oil trapping phenomenon existing in the external gear pump.
- internal gear pumps also have the characteristics of small flow pulsation, stable operation and low noise. They can replace vane pumps and plunger pumps for hydraulic systems with high control accuracy.
- the advancement of industrial technology and the improvement of the performance indicators of the main engine and the system have put forward higher requirements for the carrying capacity, noise level and volumetric efficiency of the internal gear pump.
- Pressure is the most important performance parameter of internal gear pump. Foreign products have achieved higher working pressure, but the structure is complex, the manufacturing cost is high, and the price is expensive. In contrast, the highest pressure of domestic high-pressure internal gear pumps is mostly lower than 30MPa. At present, domestic companies still lack basic research on parameter design and performance evaluation of high-pressure internal gear pumps. Most of the structural parameters and specifications directly imitate similar foreign products, resulting in backward product design and manufacturing technology.
- the working principle of the gear pump determines that the internal gear pump also has the problem of hydraulic pressure imbalance.
- the working pressure increases, the radial hydraulic pressure and wear of the gear pair of the internal gear pump also increase.
- the performance of the high-pressure internal gear pump gear pair will be rapidly degraded, resulting in unstable quality of the internal gear pump gear pair, high early failure rate and poor reliability.
- domestic enterprises have the production capacity of high-pressure internal gear pumps, domestic high-pressure internal gear pumps still have a big gap with foreign products in terms of volumetric efficiency, noise, reliability and service life.
- the present invention expects to construct a multi-objective and multi-constraint reliability design model of a high-pressure internal gear pump from the perspective of reliability design, combining the importance measurement model and the multi-objective optimization design method, so as to realize the high-pressure internal gear pump gear pair Reliability design.
- the present invention makes full use of the approach accuracy of the saddle point approximation method based on higher-order moments and the reliability optimization design method based on the importance measure to provide a reliability evaluation method for the gear pair of the high-pressure internal gear pump , So as to realize the structural optimization design of the gear pair of the internal gear pump under high pressure, and improve the reliability of the internal gear pump under high pressure and large flow conditions.
- a method for evaluating the reliability of gear pairs of a high-pressure internal gear pump includes the following steps:
- Step 1 Define multiple failure modes of high-pressure internal gear pump gear pairs, and establish reliability function functions for different failure modes
- Step 2 Use the saddle point approximation method based on higher-order moments to approximate the probability distribution function of each reliability function, and calculate the corresponding failure probability;
- Step 3 Establish the importance measurement model of different failure modes of high-pressure internal gear pump gear pairs, and analyze the degree of influence of different failure modes on the reliability of the gear pump;
- Step 4 Establish a multi-objective and multi-constrained reliability optimization model for the high-pressure internal gear pump, and use the optimization method to optimize the random parameters of the high-pressure internal gear pump gear pair.
- Step 1 specifically is:
- the failure modes of the gear pair of the high-pressure internal gear pump refer to three failure modes: the failure of the contact strength of the tooth surface of the internal gear, the failure of the bending strength of the tooth root of the internal gear, and the failure of the bending strength of the tooth root of the internal gear;
- the reliability function function is established for the above three failure forms respectively, among which,
- the reliability function g 1 (X 1 ) of the contact strength failure of the inner gear tooth surface is:
- the reliability function g 2 (X 2 ) of the internal gear tooth root bending strength failure is:
- the reliability function g 3 (X 3 ) for the failure of the tooth root bending strength of the inner ring gear is:
- ⁇ H represents the contact stress of the gear pair of the high-pressure internal gear pump
- ⁇ ′ Hlim is the contact fatigue strength of the gear pair of the high-pressure internal gear pump
- ⁇ F is the bending stress of the gear pair of the high-pressure internal gear pump
- ⁇ ′ Flim is the bending fatigue strength of the gear pair of the high-pressure internal gear pump
- X 1 , X 2 and X 3 are the random parameter vectors of the reliability function function under different failure modes.
- Step 2 specifically is:
- P f represents the probability of failure
- ⁇ represents the cumulative probability distribution function of the standard normal distribution variable
- Is the parameter of the saddle point approximation function
- y is the standardized variable of the state variable of the reliability function function
- K Ys represents the cumulant generating function of the standardized variable y, in the form
- K Ys (2) represents the second derivative of the cumulant generating function of the standardized variable y, in the form
- ⁇ Ys and ⁇ Ys respectively represent the skewness and kurtosis of the state variable of the reliability function function.
- t represents the saddle point value, which can be calculated by establishing a saddle point equation in the following form
- ⁇ is the second-order reliability index of the function function
- a 1 , a 2 , a 3 and b of the saddle point equation are calculated as follows
- Step 3 specifically is:
- P fs represents the system failure probability of the high-pressure internal gear pump gear pair
- P fj is the system failure probability calculated after discarding the i-th failure form.
- Step 4 is specifically:
- S represents the pressure of the high-pressure internal gear pump
- ⁇ represents volumetric efficiency
- ⁇ represents the total efficiency
- ⁇ represents the value of pressure pulsation
- ⁇ represents noise, the above performance index functions are all constructed by response surface method;
- ⁇ represents the second norm of the importance of the failure form of the high-pressure internal gear pump gear pair
- N the number of reliability function functions
- d L and d U are the upper and lower bounds of the design variable vector d.
- the present invention has at least the following beneficial effects:
- the method of the present invention can establish a reasonable reliability function function, and accurately approximate the probability distribution function under each failure mode, and improve the accuracy of failure probability estimation;
- the present invention fully considers the influence of different failure modes of high-pressure internal gear pump gear pairs on system reliability, establishes the importance measurement model of failure modes, and realizes the importance ranking of failure modes;
- the present invention establishes a multi-objective and multi-constrained reliability optimization model for high-pressure internal gear pumps, which can not only meet the reliability design requirements of gear pairs, but also meet the requirements of high-pressure internal gear pumps.
- Multiple performance index requirements increase the pressure, volumetric efficiency and total efficiency of the optimized high-pressure internal gear pump, and reduce the pressure pulsation value and noise.
- FIG. 1 is a flowchart of the present invention.
- Figure 2 is a structural diagram of a high-pressure internal gear pump gear pair in an embodiment of the present invention.
- the reliability design method of the high-pressure internal gear pump gear pair proposed by the present invention includes the following steps:
- Step 1 Define the failure types of the high-pressure internal gear pump gear pair as three types of failure types: internal gear tooth surface contact strength failure, internal gear tooth root bending strength failure and internal gear tooth root bending strength failure, and establish different failure types Reliability function function under;
- Step 2 For the reliability function functions of the three failure types, calculate the fourth-order moment of each reliability function function, use the saddle point approximation method based on higher-order moments to approximate the probability distribution function of each reliability function function, and calculate the corresponding failure probability ;
- Step 3 Establish the importance measurement model of each failure mode of the high-pressure internal gear pump gear pair, and realize the importance ranking of the impact of different failure modes on the system reliability;
- Step 4 Establish the multi-objective and multi-constraint reliability optimization model of the high-pressure internal gear pump, optimize the random parameters of the high-pressure internal gear pump gear pair, and obtain the high-pressure internal gear pump gear pair that meets the reliability constraints and performance optimization goals The best parameters.
- the invention carries out a reliable design for the gear pair structure of the high-pressure internal gear pump as shown in FIG. 2.
- the three failure types of gear pairs are defined as: contact strength failure of the tooth surface of the internal gear, failure of the bending strength of the tooth root of the internal gear, and failure of the bending strength of the tooth root of the internal gear.
- the reliability function functions of three failure types are established respectively, namely
- ⁇ 1 indicates the importance of the failure of the tooth surface contact strength of the internal gear
- ⁇ 2 indicates the importance of the failure of the tooth root bending strength of the internal gear
- ⁇ 3 indicates the importance of the failure of the tooth root bending strength of the internal gear.
- d 0 [m mn ,z 1 ,b] T
- m mn represents the midpoint normal modulus of the gear pair
- z 1 represents the number of teeth of the internal gear
- b represents the working tooth width.
- Table 1 shows the performance index comparison of high pressure internal gear pump before and after optimization.
- the present invention proposes a reliability evaluation method for the gear pair of a high-pressure internal gear pump. Firstly, three types of failures of high-pressure internal gear pump gear pairs are defined, and the reliability function functions of different failure types are established; secondly, the saddle point approximation method based on higher-order moments is used to approximate the probability distribution function of each reliability function function , And calculate the corresponding failure probability; then, establish the importance measurement model of the failure form of the high-pressure internal gear pump, and calculate the importance of different failure modes to the failure probability of the high-pressure internal gear pump; finally, fully consider the high-pressure internal gear
- the pump requires a variety of performance indicators, and a multi-objective and multi-constrained reliability optimization design model of the high-pressure internal gear pump gear pair is established. By optimizing the random parameters of the gear pair, the overall performance of the high-pressure internal gear pump can be improved while meeting the reliability requirements.
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
本发明公开了一种高压内啮合齿轮泵齿轮副的可靠性评估方法。首先,定义高压内啮合齿轮泵齿轮副的多种失效形式,建立各失效形式的可靠性功能函数;其次,采用基于高阶矩的鞍点逼近方法计算各失效形式的失效概率;然后,构建高压内啮合齿轮泵齿轮副各失效形式的重要性测度模型;最后,建立高压内啮合齿轮泵齿轮副多性能指标的多目标多约束可靠性优化模型。本发明不仅考虑了高压内啮合齿轮泵齿轮副多种失效形式对系统可靠性的影响,还考虑了高压内啮合齿轮泵所需同时满足的多个性能指标,使得通过所述方法得到的齿轮副在满足可靠性要求的同时,提升高压内啮合齿轮泵的工作性能。
Description
本发明涉及内啮合齿轮泵技术领域,尤其涉及一种高压内啮合齿轮泵齿轮副的可靠性评估方法。
内啮合齿轮泵由于具有结构简单紧凑,流量、压力脉动小,功率重量比高,噪声低的特点,在行走机械、组合机床等工业领域得到了广泛应用。内啮合齿轮泵由于高压腔小,密封结构完善,具有很高的容积效率和总效率,且无外啮合齿轮泵存在的困油现象。相对于叶片泵和柱塞泵,内啮合齿轮泵同样具有流量脉动小、运行平稳、噪声低的特点,可替代叶片泵、柱塞泵用于控制精度要求高的液压系统。然而,工业技术的进步以及主机、系统性能指标的提升,对内啮合齿轮泵的承载能力、噪声等级以及容积效率提出了更高的要求。
压力是内啮合齿轮泵最主要的性能参数。国外产品实现了较高的工作压力,但结构复杂、制造成本高、价格昂贵。相比之下,国内高压内啮合齿轮泵的最高压力大多低于30MPa。目前,国内企业尚缺乏对高压内啮合齿轮泵参数设计、性能评估等方面的基础研究,结构参数和规格大多直接仿制国外同类产品,导致产品设计制造技术落后。
同时,齿轮泵的工作原理决定了内啮合齿轮泵同样存在着液压力不平衡的问题。随着工作压力的增高,内啮合齿轮泵齿轮副所受的径向液压力和磨损亦随之增大。在长期运行过程中,将使高压内啮合齿轮泵齿轮副的性能快速退化,导致内齿轮泵齿轮副质量不稳定、早期故障率高、可靠性差。目前,尽管国内企业具备了高压内啮合齿轮泵的生产能力,国产高压内啮合齿轮泵在容积效率、噪声、可靠性与使用寿命等方面与国外产品仍有较大差距。
如何在保证高压下内啮合齿轮泵齿轮副可靠性的同时,提高内啮合齿轮泵的工作性能,是高压内啮合齿轮泵在设计上的一个难点。本发明期望从可靠性设计的角度出发,结合重要性测度模型和多目标优化设计方法,构建一种高压内啮合齿轮泵的多目标多约束可靠性设计模型,实现高压内啮合齿轮泵齿轮副的可靠性设计。
发明内容
针对现有技术存在的不足,本发明充分利用基于高阶矩的鞍点逼近方法的逼近精度以及基于重要性测度的可靠性优化设计方法,提供一种高压内啮合齿轮泵齿轮副的可靠性评估方法,从而实现内啮合齿轮泵齿轮副在高压下的结构优化设计,提高内啮合齿轮泵在高压大流量工况下的可靠性。
为了实现上述目的,本发明采用的技术方案为:
一种高压内啮合齿轮泵齿轮副的可靠性评估方法,所述方法包括以下步骤:
步骤1:定义高压内啮合齿轮泵齿轮副的多种失效形式,并建立不同失效形式的可靠性功能函数;
步骤2:采用基于高阶矩的鞍点逼近方法逼近各可靠性功能函数的概率分布函数,并计算相应的失效概率;
步骤3:建立高压内啮合齿轮泵齿轮副不同失效形式的重要性测度模型,分析不同失效形式对齿轮泵可靠性的影响程度;
步骤4:建立高压内啮合齿轮泵多目标多约束的可靠性优化模型,采用优化方法对高压内啮合齿轮泵齿轮副的随机参数进行优化。
步骤1具体为:
高压内啮合齿轮泵齿轮副的失效形式是指内齿圈齿面接触强度失效、内齿轮齿根弯曲强度失效和内齿圈齿根弯曲强度失效三种失效形式;
分别针对上述三种失效形式建立可靠性功能函数,其中,
所述内齿圈齿面接触强度失效的可靠性功能函数g
1(X
1)为:
g
1(X
1)=σ′
Hlim-σ
H,
所述内齿轮齿根弯曲强度失效的可靠性功能函数g
2(X
2)为:
g
2(X
2)=σ′
Flim-σ
F
所述内齿圈齿根弯曲强度失效的可靠性功能函数g
3(X
3)为:
g
3(X
3)=σ′
Flim-σ
F
式中,σ
H表示高压内啮合齿轮泵齿轮副的接触应力;
σ′
Hlim是高压内啮合齿轮泵齿轮副的接触疲劳强度;
σ
F是高压内啮合齿轮泵齿轮副的弯曲应力;
σ′
Flim是高压内啮合齿轮泵齿轮副的弯曲疲劳强度;
X
1,X
2和X
3分别为不同失效形式下可靠性功能函数的随机参数向量。
步骤2具体为:
采用基于高阶矩的鞍点逼近方法进行失效概率的计算,其形式为,
K
Ys
(2)表示标准化变量y的累积量母函数的二阶导数,形式为
其中,θ
Ys和η
Ys分别表示可靠性功能函数状态变量的偏度和峰度。
t表示鞍点值,可通过建立鞍点方程计算得到,形式如下
其中,β为功能函数的二阶可靠性指标,鞍点方程的参数a
1,a
2,a
3和b计算如下
步骤3具体为:
建立的高压内啮合齿轮泵齿轮副失效形式的重要性测度模型为
其中,P
fs表示高压内啮合齿轮泵齿轮副的系统失效概率,P
fj为舍去第i个失效形式后计算得到的系统失效概率。
步骤4具体为:
所建立的高压内啮合齿轮泵多目标多约束可靠性优化模型为
max f(d)=ω
1S+ω
2κ+ω
3η+ω
4/α+ω
5/ζ+ω
6/ν
d
L≤d≤d
U
其中,S表示高压内啮合齿轮泵的压力;
κ表示容积效率;
η表示总效率;
α表示压力脉动值;
ζ表示噪声,上述性能指标函数均通过响应面方法构建;
ν表示高压内啮合齿轮泵齿轮副失效形式重要性测度的二范数;
ω
i(i=1,...,6)表示各优化目标的加权系数;
N表示可靠性功能函数的个数;
d
L和d
U分别为设计变量向量d的上下界。
由于采用了上述技术方案,本发明至少具有以下有益效果:
(1)针对高压内啮合齿轮泵齿轮副存在的多种失效形式,本发明方法能够建立合理的可靠性功能函数,并准确逼近各失效形式下的概率分布函数,提高失效概率估计的精度;
(2)本发明充分考虑高压内啮合齿轮泵齿轮副不同失效形式对系统可靠性的影响,建立了失效形式的重要性测度模型,实现了失效形式的重要性排序;
(3)本发明从可靠性设计的角度出发,通过建立高压内啮合齿轮泵多目标多约束的可靠性优化模型,不仅能够满足齿轮副的可靠性设计要求,同时还能满足高压内啮合齿轮泵多个性能指标要求,使得优化后高压内啮合齿轮泵的压力、容积效率、总效率提高,压力脉动值和噪声降低。
图1是本发明的流程图。
图2是本发明实施例中高压内啮合齿轮泵齿轮副的结构图。
下面结合附图和实施例对本发明做进一步的说明。
如图1所示,本发明所提出的高压内啮合齿轮泵齿轮副可靠性设计方法,包含如下步骤:
步骤1:定义高压内啮合齿轮泵齿轮副的失效类型为内齿圈齿面接触强度失效、内齿轮齿根弯曲强度失效和内齿圈齿根弯曲强度失效三种失效类型,并建立不同失效类型下的可靠性功能函数;
步骤2:针对三种失效类型可靠性功能函数,计算各可靠性功能函数的四阶矩,采用基于高阶矩的鞍点逼近方法逼近各可靠性功能函数的概率分布函数,并计算相应的失效概率;
步骤3:建立高压内啮合齿轮泵齿轮副各失效形式的重要性测度模型,实现不同失效形式对系统可靠性影响程度的重要性排序;
步骤4:建立高压内啮合齿轮泵多目标多约束可靠性优化模型,对高压内啮合齿轮泵齿轮副的随机参数进行优化,得到满足可靠性约束和工作性能优化目标的高压内啮合齿轮泵齿轮副的最佳参数。
实施例
为了更充分地了解该发明的特点及工程适用性,本发明针对如图2所示的高压内啮合齿轮泵齿轮副结构进行可靠性设计。
定义齿轮副三种失效类型分别为:内齿圈齿面接触强度失效、内齿轮齿根弯曲强度失效和内齿圈齿根弯曲强度失效。根据应力—强度干涉理论,分别建立三种失效类型的可靠性功能函数,即
g
1(X
1)=σ′
Hlim-σ
H
g
2(X
2)=σ′
Flim-σ
F
g
3(X
3)=σ′
Flim-σ
F
根据X
1,X
2和X
3中各随机参数的概率信息,分别计算各可靠性功能函数的四阶矩,具体为
μ
g1=15.83,σ
g1=6.07,θ
g1=-0.1876,η
g1=3.207
μ
g2=8.35,σ
g2=3.63,θ
g2=-0.0125,η
g2=3.0077
μ
g3=7.53,σ
g2=3.21,θ
g3=-0.0131,η
g3=3.0104
采用基于高阶矩的鞍点逼近方法分别计算各失效形式下的失效概率分别为
P
fg1=7.74×10
-3,P
fg2=1.093×10
-2,P
fg3=1.127×10
-2
采用所述的失效形式重要性测度模型,分别计算各失效形式对系统失效概率的重要度,分别为:
δ
1=0.743,δ
2=0.575,δ
3=0.548
其中,δ
1表示内齿圈齿面接触强度失效的重要度,δ
2表示内齿轮齿根弯曲强度失效的重要度,δ
3表示内齿圈齿根弯曲强度失效的重要度。
然后,以高压内啮合齿轮泵的压力、容积效率、总效率最大、压力脉动值和噪声最小以及各失效形式重要性测度的二范数最小为优化目标,建立包含高压内啮合齿轮泵的齿轮副多个性能指标的可靠性优化设计模型,具体为:
max f(d)=ω
1S+ω
2κ+ω
3η+ω
4/α+ω
5/ζ+ω
6/ν
d
L≤d≤d
U
取设计变量为d
0=[m
mn,z
1,b]
T,其中m
mn表示齿轮副的中点法向模数,z
1表示内齿轮的齿数,b表示工作齿宽。取设计初始值为d
0=[2.74,21,30]
T,通过粒子群算法可以得到优化后的参数组合为:d
*=[2.56,19.3,33.45]
T。
优化前后高压内啮合齿轮泵的性能指标对比如表1所示。
表1优化前后高压内啮合齿轮泵的性能指标对比
综上所述,本发明提出了一种高压内啮合齿轮泵齿轮副的可靠性评估方法。首先,定义了高压内啮合齿轮泵齿轮副的三种失效类型,并建立了不同失效类型的可靠性功能函数;其次,采用基于高阶矩的鞍点逼近方法逼近各可靠性功能函数的概率分布函数,并计算相应的失效概率;然后,建立了高压内啮合齿轮泵失效形式的重要性测度模型,计算了不同失效形式对高压内啮合齿轮泵失效概率的重要度;最后,充分考虑高压内啮合齿轮泵对多种性能指标的要求,建立了高压内啮合齿轮泵齿轮副多目标多约束的可靠性优化设计模型。通过优化所得的齿轮副随机参数能够在满足可靠度要求的同时,提升高压内啮合齿轮泵的整体性能。
本发明未详细阐述的部分属于本领域研究人员的公知技术。
Claims (4)
- 一种高压内啮合齿轮泵齿轮副的可靠性评估方法,其特征在于,所述方法包括以下步骤:步骤1:定义高压内啮合齿轮泵齿轮副的多种失效形式,并建立不同失效形式的可靠性功能函数;步骤2:采用基于高阶矩的鞍点逼近方法逼近各可靠性功能函数的概率分布函数,并计算相应的失效概率;步骤3:建立高压内啮合齿轮泵齿轮副不同失效形式的重要性测度模型,分析不同失效形式对齿轮泵可靠性的影响程度;步骤4:建立高压内啮合齿轮泵多目标多约束的可靠性优化模型,采用优化方法对高压内啮合齿轮泵齿轮副的随机参数进行优化;其中,所述步骤1具体为:高压内啮合齿轮泵齿轮副的失效形式是指内齿圈齿面接触强度失效、内齿轮齿根弯曲强度失效和内齿圈齿根弯曲强度失效三种失效形式;分别针对上述三种失效形式建立可靠性功能函数,其中,所述内齿圈齿面接触强度失效的可靠性功能函数g 1(X 1)为:g 1(X 1)=σ′ Hlim-σ H,所述内齿轮齿根弯曲强度失效的可靠性功能函数g 2(X 2)为:g 2(X 2)=σ′ Flim-σ F所述内齿圈齿根弯曲强度失效的可靠性功能函数g 3(X 3)为:g 3(X 3)=σ′ Flim-σ F式中,σ H表示高压内啮合齿轮泵齿轮副的接触应力;σ′ Hlim是高压内啮合齿轮泵齿轮副的接触疲劳强度;σ F是高压内啮合齿轮泵齿轮副的弯曲应力;σ′ Flim是高压内啮合齿轮泵齿轮副的弯曲疲劳强度;X 1,X 2和X 3分别为不同失效形式下可靠性功能函数的随机参数向量。
- 根据权利要求1所述的一种高压内啮合齿轮泵齿轮副的可靠性评估方法,其特征在于,步骤2具体为:采用基于高阶矩的鞍点逼近方法进行失效概率的计算,其形式为,K Ys (2)表示标准化变量y的累积量母函数的二阶导数,形式为:其中,θ Ys和η Ys分别表示可靠性功能函数状态变量的偏度和峰度;t表示鞍点值,可通过建立鞍点方程计算得到,形式如下:其中,β为功能函数的二阶可靠性指标,鞍点方程的参数a 1,a 2,a 3和b计算如下:
- 根据权利要求1所述的一种高压内啮合齿轮泵齿轮副的可靠性评估方法,其特征在于,步骤4具体为:所建立的高压内啮合齿轮泵多目标多约束可靠性优化模型为max f(d)=ω 1S+ω 2κ+ω 3η+ω 4/α+ω 5/ζ+ω 6/νd L≤d≤d U其中,S表示高压内啮合齿轮泵的压力;κ表示容积效率;η表示总效率;α表示压力脉动值;ζ表示噪声,上述性能指标函数均通过响应面方法构建;ν表示高压内啮合齿轮泵齿轮副失效形式重要性测度的二范数;ω i(i=1,...,6)表示各优化目标的加权系数;N表示可靠性功能函数的个数;d L和d U分别为设计变量向量d的上下界。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910485859.9A CN110362858B (zh) | 2019-06-05 | 2019-06-05 | 一种高压内啮合齿轮泵齿轮副的可靠性评估方法 |
CN201910485859.9 | 2019-06-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020244277A1 true WO2020244277A1 (zh) | 2020-12-10 |
Family
ID=68215633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/080090 WO2020244277A1 (zh) | 2019-06-05 | 2020-03-19 | 一种高压内啮合齿轮泵齿轮副的可靠性评估方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110362858B (zh) |
WO (1) | WO2020244277A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113010975A (zh) * | 2021-01-21 | 2021-06-22 | 北京航空航天大学 | 一种综合考虑加工成本与运动平稳性的齿轮间隙优化设计方法 |
CN113408082A (zh) * | 2021-08-20 | 2021-09-17 | 宁波东力传动设备有限公司 | 一种外啮合直齿圆柱齿轮副动态啮合力的计算方法 |
CN114491832A (zh) * | 2021-12-27 | 2022-05-13 | 徐州圣邦机械有限公司 | 一种高压内啮合齿轮泵的可靠性提升方法 |
CN115906571A (zh) * | 2022-11-24 | 2023-04-04 | 武汉科技大学 | 一种轴向柱塞泵柱塞副串联组合密封可靠性评估方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110362858B (zh) * | 2019-06-05 | 2021-10-22 | 徐州圣邦机械有限公司 | 一种高压内啮合齿轮泵齿轮副的可靠性评估方法 |
CN111581835B (zh) * | 2020-05-14 | 2023-07-18 | 内蒙古工业大学 | 一种机械结构体的安全信息获取方法 |
CN112528511B (zh) * | 2020-12-17 | 2023-12-12 | 中国矿业大学 | 一种刮板输送机链轮磨损可靠性评估方法 |
CN113255084B (zh) * | 2021-07-07 | 2022-05-06 | 盛瑞传动股份有限公司 | 一种基于响应面法的齿轮噪音辐射的快速优化方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106845048A (zh) * | 2017-04-24 | 2017-06-13 | 北京航空航天大学 | 一种计入摩擦和齿侧间隙的内啮合齿轮轴减速器非线性动力学建模方法 |
CN107092750A (zh) * | 2017-04-24 | 2017-08-25 | 北京航空航天大学 | 一种内啮合齿轮轴减速器轮齿损伤故障的非线性动力学建模方法 |
CN107291989A (zh) * | 2017-05-25 | 2017-10-24 | 中国矿业大学 | 千米深井提升机主轴多失效模式可靠性评估方法 |
CN107832511A (zh) * | 2017-10-31 | 2018-03-23 | 中国矿业大学 | 超深井提升容器多失效模式的可靠性稳健设计方法 |
DE102016224898A1 (de) * | 2016-12-14 | 2018-06-14 | Zf Friedrichshafen Ag | Pumpeneinrichtung für ein Automatikgetriebe |
CN108345731A (zh) * | 2018-01-30 | 2018-07-31 | 中国矿业大学 | 一种不完备信息条件下深井提升机关键部件耦合失效相关性建模方法 |
CN109165425A (zh) * | 2018-08-03 | 2019-01-08 | 湖南大学 | 一种齿轮接触疲劳可靠性分析方法 |
CN110362858A (zh) * | 2019-06-05 | 2019-10-22 | 徐州圣邦机械有限公司 | 一种高压内啮合齿轮泵齿轮副的可靠性评估方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6049137B2 (ja) * | 2012-12-17 | 2016-12-21 | 富士重工業株式会社 | 歯車対の設計装置 |
CN108412756B (zh) * | 2018-04-13 | 2019-04-05 | 温州海特克动力股份有限公司 | 一种容积效率可调的内啮合齿轮泵 |
-
2019
- 2019-06-05 CN CN201910485859.9A patent/CN110362858B/zh active Active
-
2020
- 2020-03-19 WO PCT/CN2020/080090 patent/WO2020244277A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016224898A1 (de) * | 2016-12-14 | 2018-06-14 | Zf Friedrichshafen Ag | Pumpeneinrichtung für ein Automatikgetriebe |
CN106845048A (zh) * | 2017-04-24 | 2017-06-13 | 北京航空航天大学 | 一种计入摩擦和齿侧间隙的内啮合齿轮轴减速器非线性动力学建模方法 |
CN107092750A (zh) * | 2017-04-24 | 2017-08-25 | 北京航空航天大学 | 一种内啮合齿轮轴减速器轮齿损伤故障的非线性动力学建模方法 |
CN107291989A (zh) * | 2017-05-25 | 2017-10-24 | 中国矿业大学 | 千米深井提升机主轴多失效模式可靠性评估方法 |
CN107832511A (zh) * | 2017-10-31 | 2018-03-23 | 中国矿业大学 | 超深井提升容器多失效模式的可靠性稳健设计方法 |
CN108345731A (zh) * | 2018-01-30 | 2018-07-31 | 中国矿业大学 | 一种不完备信息条件下深井提升机关键部件耦合失效相关性建模方法 |
CN109165425A (zh) * | 2018-08-03 | 2019-01-08 | 湖南大学 | 一种齿轮接触疲劳可靠性分析方法 |
CN110362858A (zh) * | 2019-06-05 | 2019-10-22 | 徐州圣邦机械有限公司 | 一种高压内啮合齿轮泵齿轮副的可靠性评估方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113010975A (zh) * | 2021-01-21 | 2021-06-22 | 北京航空航天大学 | 一种综合考虑加工成本与运动平稳性的齿轮间隙优化设计方法 |
CN113408082A (zh) * | 2021-08-20 | 2021-09-17 | 宁波东力传动设备有限公司 | 一种外啮合直齿圆柱齿轮副动态啮合力的计算方法 |
CN113408082B (zh) * | 2021-08-20 | 2022-06-28 | 宁波东力传动设备有限公司 | 一种外啮合直齿圆柱齿轮副动态啮合力的计算方法 |
CN114491832A (zh) * | 2021-12-27 | 2022-05-13 | 徐州圣邦机械有限公司 | 一种高压内啮合齿轮泵的可靠性提升方法 |
CN114491832B (zh) * | 2021-12-27 | 2023-12-01 | 徐州圣邦机械有限公司 | 一种高压内啮合齿轮泵的可靠性提升方法 |
CN115906571A (zh) * | 2022-11-24 | 2023-04-04 | 武汉科技大学 | 一种轴向柱塞泵柱塞副串联组合密封可靠性评估方法 |
CN115906571B (zh) * | 2022-11-24 | 2023-10-31 | 武汉科技大学 | 一种轴向柱塞泵柱塞副串联组合密封可靠性评估方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110362858A (zh) | 2019-10-22 |
CN110362858B (zh) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020244277A1 (zh) | 一种高压内啮合齿轮泵齿轮副的可靠性评估方法 | |
CN108662115B (zh) | 摆线轮齿廓修形多目标优化设计方法 | |
CN112832999B (zh) | 一种基于多传感器数据融合的电泵井工况诊断系统及方法 | |
CN105404737B (zh) | 一种基于matlab的摆线轮参数优化方法 | |
Carides et al. | A regression-based method for estimating mean treatment cost in the presence of right-censoring | |
CN110377970A (zh) | 弱阻尼低频振荡模式的水轮机调速器参数优化方法及系统 | |
CN113589179B (zh) | 一种基于凸空间滤波的动力电池化成过程状态估计方法 | |
CN109344444B (zh) | 一种液力变矩器叶片角优化效果的能量损失评价方法 | |
CN108984983B (zh) | 一种提高可调式液力变矩器综合效率的叶片角优化方法 | |
CN114826543B (zh) | 一种基于aiot的蒸汽引射泵参数传输系统及方法 | |
CN116307075B (zh) | 一种基于智能算法的度电燃煤成本优化方法及系统 | |
CN111340284A (zh) | 一种基于长短时记忆网络的水车室水位智能预测方法 | |
CN113343477A (zh) | 双馈风电机组传动系统扭振响应计算方法、装置及存储介质 | |
CN113359435A (zh) | 用于火电机组动态工况数据的修正方法 | |
CN111797537A (zh) | 一种含风电配电系统可靠性评估方法及装置 | |
CN110360098B (zh) | 径向力平衡的三联齿轮泵 | |
CN112067181A (zh) | 单级可逆式混流式水泵水轮机比转速计算方法 | |
CN107179758A (zh) | 一种动态信号参数辨识方法及系统 | |
CN112069677A (zh) | 电厂冷端循泵运行方式确定方法、装置、设备及存储介质 | |
CN108197411A (zh) | 一种基于人工鱼群算法的摆线轮齿廓修形量优化方法 | |
CN115795723A (zh) | 一种高效率低脉动摆线马达配流系统优化设计方法及系统 | |
CN115638154A (zh) | 基于动态规划和遗传算法的液压压裂车功率匹配控制方法 | |
CN109766562B (zh) | 基于遗传算法和粒子群组合算法的摆线轮齿廓修形方法 | |
CN115070774A (zh) | 一种基于中值神经网络的工业机器人故障模式识别方法 | |
CN114880800B (zh) | 一种用于改善齿面偏载的综合齿轮修形方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20819585 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20819585 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20819585 Country of ref document: EP Kind code of ref document: A1 |