WO2020242000A1 - 미세순환 정량화 방법 및 장치 - Google Patents

미세순환 정량화 방법 및 장치 Download PDF

Info

Publication number
WO2020242000A1
WO2020242000A1 PCT/KR2020/000549 KR2020000549W WO2020242000A1 WO 2020242000 A1 WO2020242000 A1 WO 2020242000A1 KR 2020000549 W KR2020000549 W KR 2020000549W WO 2020242000 A1 WO2020242000 A1 WO 2020242000A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillaries
microcirculation
neutrophils
mouse model
lung
Prior art date
Application number
PCT/KR2020/000549
Other languages
English (en)
French (fr)
Inventor
박인원
김필한
Original Assignee
서울대학교병원
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190061417A external-priority patent/KR20200135043A/ko
Priority claimed from KR1020190061415A external-priority patent/KR102364786B1/ko
Priority claimed from KR1020190061416A external-priority patent/KR102354222B1/ko
Application filed by 서울대학교병원, 한국과학기술원 filed Critical 서울대학교병원
Priority to US17/613,278 priority Critical patent/US20220296108A1/en
Publication of WO2020242000A1 publication Critical patent/WO2020242000A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0275Measuring blood flow using tracers, e.g. dye dilution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14556Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases by fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • a method for providing information for microcirculation disorder of an individual by analyzing a dynamic element of the target element from a plurality of moving images of the target element in the second blood flow passing through the capillaries of the individual over time and the individual Disclosed is an apparatus for diagnosing microcirculation disorders.
  • the present specification includes an inhibitor of the expression or activity of macrophage-1 antigen (Mac-1) in neutrophils in the pulmonary capillaries, and prevents lung damage disease or improves microcirculation disorders in the lung.
  • Mac-1 antigen Mac-1
  • a therapeutic composition, a screening method, a method of providing information for diagnosing a lung injury disorder, a composition and a kit for diagnosing a pulmonary microcirculation disorder are disclosed.
  • Microcirculation is blood circulation found in small blood vessels such as capillary arteries, capillary veins, capillaries, and capillary lymphatic vessels. It is also called microcirculation or capillary circulation. It is the center of metabolism in tissues and supplies necessary substances. And discharge is done.
  • the conventional quantification of microcirculation was accomplished by measuring the functional capillary (Density, FCD), which is 1 if red blood cells pass through, and 0 if not, depending on the presence or absence of red blood cells in the blood vessel within 30 seconds. It was to count the number of blood vessels.
  • FCD Functional capillary
  • the conventional functional capillary density measurement method calculates the same functional capillary density when one red blood cell passes within 30 seconds and hundreds of red blood cells passes through one capillary, despite the fact that there is a difference in functionality. There is a limit that cannot be distinguished. In addition, since the capillaries in the lungs have a mesh structure, it is difficult to accurately know the beginning and end of each capillary, making it difficult to determine the compartment, and there is inevitably a limit to the density calculation. Furthermore, the method of measuring the density of functional capillaries actually has a problem in that it is difficult to check the functional capillaries at a glance.Therefore, a method of checking the density of functional capillaries in the microcirculatory system has been widely used, but it is expressed only in numbers. Most of the methods were used, and there was no way to show functional capillary changes in images.
  • acute respiratory distress syndrome is a syndrome that has not been clearly identified for the association between lung injury and microcirculation (Ryan D, Frohlich S, McLoughlin P. Pulmonary vascular dysfunction in ARDS. Ann Intensive Care 2014: 4: 28).
  • neutrophil sequestration This process, called neutrophil sequestration, was originally described as involving cells rather than groups of neutrophils circulating freely in the lungs, and to some extent was observed using a visible radiation modeling imaging device (MacNee W, Selby C. New perspectives on basic mechanisms in lung disease; Neutrophil traffic in the lungs: role of haemodynamics, cell adhesion, and deformability. Thorax 1993: 48(1): 79-88). Indeed, previous studies have demonstrated neutrophil sequestration in pulmonary capillaries, but the mechanism by which neutrophil sequestration leads to acute lung injury or acute respiratory distress syndrome is unknown (Kuebler WM, Borges J, Sckell A, Kuhnle GE.
  • the present inventors completed the present invention by conducting a study on a method for quantifying microcirculation of an individual based on area rather than density. Furthermore, the present inventors used a custom designed video-speed laser scanning confocal microscope in combination with a lung imaging window based on micro-suction to study lung microcirculation due to lung damage (Kim P , Puoris'haag M, Cote D, Lin CP, Yun SH.In vivo confocal and multiphoton microendoscopy.J Biomed Opt 2008: 13(1): 010501; Han S, Lee SJ, Kim KE, Lee HS, Oh N, Park I, Ko E, Oh SJ, Lee YS, Kim D, Lee S, Lee DH, Lee KH, Chae SY, Lee JH, Kim SJ, Kim HC, Kim S, Kim SH, Kim C, Nakaoka Y, He Y, Augustin HG, Hu J, Song PH, Kim YI, Kim P, Kim I, Koh GY
  • the present invention was completed by directly confirming changes in microcirculatory perfusion in a sepsis-induced acute lung injury (ALI) model using an in vivo lung imaging system.
  • the present inventors observe the neutrophil of a model with pulmonary microcirculation disorder using a custom-designed video-speed laser scanning confocal microscope to study a composition for preventing or treating lung injury disease, and in the neutrophil By searching for a target for improving pulmonary microcirculation disorder, the present invention was completed.
  • an object of the present invention is to measure the area of a functional capillary in which the target element moves from a plurality of moving images of a target element in a first blood flow passing through the capillaries of an individual over time, and To provide a method and apparatus for quantifying microcirculation of an individual based on the functional capillary fraction (FCR), which is the ratio of the area of functional capillaries to the area of, and a computer program for performing the method.
  • FCR functional capillary fraction
  • an object of the present invention is of an individual that can quickly and accurately determine whether an individual has a microcirculation disorder by using a functional capillary ratio (FCR) calculated according to the method for quantifying microcirculation of the individual.
  • FCR functional capillary ratio
  • an object of the present invention is to provide isolation time, displacement, moving distance, moving speed or track curvature of the target element from a plurality of moving images of the target element in the second blood flow passing through the capillaries of the subject according to time. It is to provide a method for providing information for diagnosing microcirculation disorders of an individual and an apparatus for diagnosing microcirculation disorders by analyzing the dynamic component of the index.
  • an object of the present invention is to suppress the expression or activity of macrophage-1 antigen (Mac-1) in neutrophils in pulmonary capillaries, so that red blood cells facilitate pulmonary capillaries.
  • Mac-1 antigen Mac-1 antigen
  • Providing a composition for preventing or treating lung damage disease and a method for screening a material for preventing or treating lung damage disease, which can improve gas exchange in a pulmonary microcirculation disorder individual by allowing passage to improve gas exchange in the lung will be.
  • an object of the present invention is to provide a method for providing diagnostic information on whether or not a pulmonary microcirculation disorder useful for diagnosing whether or not a pulmonary microcirculation disorder, a composition and a kit for diagnosing pulmonary microcirculation disorder.
  • the present invention provides a method for quantifying microcirculation of an individual, comprising: obtaining a plurality of moving images of a target element in a first blood flow passing through a capillary of the individual over time; Measuring an area of a functional capillary through which the target element in the first blood flow moves from the plurality of moving images; And calculating a functional capillary fraction (FCR) by the following Equation 1; containing, a microcirculation quantification method is provided.
  • FCR functional capillary fraction
  • Functional capillary fraction area of functional capillaries / area of total capillaries.
  • the present invention provides an apparatus for measuring microcirculation of an individual, based on a plurality of moving images of a target element in a first blood flow passing through a capillary of the individual over time, according to Equation 1 above. It provides an individual microcirculation measurement device that derives quantitative data on microcirculation. Specifically, the device includes: a photographing unit for photographing a target element in the first blood flow passing through the capillaries of the individual; And a measuring unit that derives quantitative data on the microcirculation of the object by Equation 1 based on the image captured by the photographing unit.
  • the present invention comprises the step of extracting information for diagnosing the microcirculation disorder of the individual from the functional capillary fraction (Functional Capillary Ratio, FCR) calculated according to the microcirculation quantification method of the individual. , It provides a method and apparatus for providing information for diagnosing microcirculation disorders of an individual.
  • FCR Functional Capillary Ratio
  • the present invention provides a computer program stored in a computer-readable medium, which is embodied to execute the method for quantifying microcirculation or the method for providing information for diagnosing microcirculation disorders of the individual, combined with hardware.
  • the present invention provides a method of providing information for diagnosing a microcirculation disorder, comprising: obtaining a plurality of moving images of a target element in a second blood flow passing through a capillary of an individual over time; From the plurality of moving images, the sequestration time, the track displacement length, the track length, the track velocity, and the meandering index of the target element in the second bloodstream. Analyzing one or more dynamic elements selected from the group consisting of; And extracting information for diagnosing microcirculation disorders of the individual from the dynamic element analysis result.
  • the present invention provides an apparatus for diagnosing microcirculation disorder, comprising: a photographing unit for photographing a target element in a second blood flow passing through capillaries of an individual; And a sequestration time, a track displacement length, a track length, a track velocity, and a target element in the second bloodstream based on a plurality of moving images captured by the photographing unit. It provides an apparatus for diagnosing microcirculation disorders, including; an analysis unit that analyzes one or more dynamic elements selected from the group consisting of a meandering index.
  • the present invention comprises an inhibitor of the expression or activity of macrophage-1 antigen (Mac-1) in neutrophils in pulmonary capillaries, and by improving microcirculation disorders in the lung. It provides a composition for preventing, improving or treating lung injury disease, preventing or treating lung injury disease.
  • Mac-1 antigen Mac-1
  • the present invention in another aspect, (a) preparing a lung injury model; (b) treating the test substance to the lung injury model; (c) confirming whether the test substance inhibits the expression or activity of macrophage-1 antigen (Mac-1) in neutrophils in the lung capillaries of the lung injury model; And (d) determining whether the test substance increases the ratio of functional capillaries through which red blood cells pass among the total capillaries of the lung injury model.
  • a method for screening a substance for preventing or treating lung damage comprising: Provides.
  • the present invention provides a method comprising: measuring the expression or activity of macrophage-1 antigen (Mac-1) in neutrophils isolated from pulmonary capillaries of a test subject; And it provides a method for providing information for diagnosing whether or not a pulmonary microcirculation disorder, including; checking the ratio of functional capillaries through which red blood cells pass among the total capillaries of the lung of the test subject.
  • Mac-1 antigen Mac-1 antigen
  • the present invention provides a composition for diagnosing pulmonary microcirculation disorders comprising a reagent for detecting mRNA or protein of macrophage-1 antigen (Mac-1) in neutrophils in pulmonary capillaries.
  • a reagent for detecting mRNA or protein of macrophage-1 antigen (Mac-1) in neutrophils in pulmonary capillaries comprising a reagent for detecting mRNA or protein of macrophage-1 antigen (Mac-1) in neutrophils in pulmonary capillaries.
  • the present invention provides a kit for diagnosing pulmonary microcirculation disorders comprising a reagent for detecting mRNA or protein of macrophage-1 antigen (Mac-1) in neutrophils in pulmonary capillaries.
  • a kit for diagnosing pulmonary microcirculation disorders comprising a reagent for detecting mRNA or protein of macrophage-1 antigen (Mac-1) in neutrophils in pulmonary capillaries.
  • the present invention measures an area of a functional capillary in which the target element moves from a plurality of moving images of a target element in a first blood flow passing through the capillaries of an individual according to time, and the functional capillary with respect to the total capillary area It relates to quantifying the microcirculation of an individual based on the functional capillary fraction (FCR), which is the ratio of the area of the blood vessel, and if this is used, the microcirculation can be quantified in terms of area rather than density, so that the area through which one red blood cell passes And the area through which a number of red blood cells pass can be differentiated.
  • FCR functional capillary fraction
  • the ratio of the functional capillary area of the entire capillary area can be checked with a single image, for example, so that the location of the functional capillaries and the location of the capillaries through which more red blood cells pass can be conveniently checked. It can be, and there is an excellent effect of accurately and quickly determining whether or not microcirculation disorder based on the quantified result.
  • the present invention is the isolation time, displacement, movement distance, movement speed or track flexion index of the target element in the second blood flow from a plurality of movement images of the target element in the second blood flow passing through the capillaries of the individual over time. It relates to a method for providing information for diagnosing microcirculation disorders of an individual by analyzing the dynamic elements of and an apparatus for diagnosing microcirculation disorders. Using the method and apparatus, information on the movement of neutrophils in capillaries can be easily obtained. It has an excellent effect that can be easily acquired and diagnosed more accurately and quickly whether an individual has a microcirculation disorder.
  • composition according to an embodiment of the present invention inhibits the expression or activity of macrophage-1 antigen (Mac-1) in neutrophils in pulmonary capillaries.
  • Mac-1 antigen Mac-1 antigen
  • gas exchange in the individual with pulmonary microcirculation disorder can be improved to improve pulmonary microcirculation disorder, and there is an excellent effect as a composition for preventing or treating lung damage diseases.
  • by measuring the expression or activity of macrophage-1 antigen in neutrophils isolated from pulmonary capillaries it is possible to diagnose pulmonary microcirculation disorder more quickly, simply and accurately.
  • FIG. 1 is a diagram schematically illustrating an in vivo lung imaging process for visualization of pulmonary microcirculation using adoptive transfer of DiD-labeled red blood cells according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a result of photographing a lung microcirculation in a lung injury mouse model by an imaging system according to an embodiment of the present invention, and processing an image obtained therefrom according to the image processing process.
  • the sequence represents an image in each time zone (0.000 sec, 0.033 sec, and 0.066 sec) through which the fluorescently stained red blood cells pass, and the merge of FIG. 2 is an image of the sum of the time zones.
  • green line or surface
  • red represents the present invention. It shows the DiD-labeled red blood cells (functional capillaries) in the lung capillaries of the mouse model according to an embodiment of.
  • FIG. 3 shows the fraction of functional capillaries calculated by summing the spaces through which red blood cells pass by time domain (90 frames, 180 frames, 360 frames, 600 frames) of the lung injury mouse model according to an embodiment of the present invention. It is a diagram drawn against the area of In FIG. 3, green (Capillary, Tie2) represents a vascular structure (total capillaries) fluorescently stained with dextran dye in the lung capillaries of the lung damaged mouse model according to an embodiment of the present invention, and red (Functional, DiD) -RBC) represents DiD-labeled red blood cells (functional capillaries) in the lung capillaries of the lung damaged mouse model according to an embodiment of the present invention, and Merge is the sum of the functional capillaries and the total capillary area.
  • FIG. 4 is a graph showing the fraction of functional capillaries calculated by summing the space through which red blood cells pass by time domain of a lung injury mouse model according to an embodiment of the present invention.
  • the x-axis represents the number of frames projected over time
  • the y-axis represents the fraction (%) of functional capillaries.
  • FIG. 5 is an image photographing microcirculation of a control model (PBS) and a lung injury mouse model (LPS) according to an embodiment of the present invention, and is a diagram showing the total capillaries and functional capillaries.
  • PBS control model
  • LPS lung injury mouse model
  • FIG. 5 green (Capillary) represents a vascular structure (total capillaries) fluorescently stained with dextran dye in lung capillaries, and red (Functional) represents DiD-labeled red blood cells (functional capillaries, functional, red).
  • Merge represents the sum of the total capillary and functional capillary regions.
  • FIG. 6A to 6D are the total capillary area (FIG. 6A), functional capillary fraction (FCR, FIG. 6B), in the artery of the control model (PBS) and the lung injury mouse model (LPS) according to an embodiment of the present invention. It is a graph showing the partial pressure of oxygen (Fig. 6c) and the partial pressure of carbon dioxide (Fig. 6d).
  • FIG. 7 is a result of photographing the lung microcirculation of the LysM GFP/+ mouse model by the imaging system according to an embodiment of the present invention, and processing the image obtained therefrom according to the image processing process according to an embodiment of the present invention
  • green white side, LysM GFP/+
  • red red
  • TMR Dextran indicates capillaries in the lung
  • the scale bar in FIG. 7 is 10 ⁇ m.
  • FIG. 8 is an image processing of the neutrophil movement in the ALI mouse model (LPS) and the control model (PBS) according to an embodiment of the present invention by an imaging system according to an embodiment of the present invention, and an image obtained therefrom It is a diagram showing the results processed according to the process.
  • red (Ly6G) represents neutrophils
  • green (FITC Dextran) represents capillaries in the lungs
  • Averaged imaging in the magnified spot represents the average imaging of up to 30 frames
  • the dotted arrows indicate The direction of flow
  • white arrowheads light shade, white
  • yellow arrowheads dark shade, gray
  • the scale bar of the wide field of FIG. 8 is 100 ⁇ m
  • the scale bar of the magnified spot is 20 ⁇ m.
  • FIG. 9 is a graph comparing the number of neutrophils per unit area (512 X 512 ⁇ m) (field) between an ALI mouse model (LPS) and a control model (PBS) according to an embodiment of the present invention.
  • Figure 10a is a low-speed imaging taken for 30 minutes at a slow speed of each lung microcirculation of a lung injury mouse model (LPS 3h mouse model, LPS 6h mouse model) and a control model (PBS) according to an embodiment of the present invention
  • LPS 3h mouse model LPS 6h mouse model
  • PBS control model
  • FIG. 10A red (Ly6G, white square) represents neutrophils
  • green (FITC Dextran, a gray-shaded line or surface of a Neutrophil spot) represents capillaries of the lung.
  • FIG. 10B is a diagram in which the tracks of the neutrophil (Ly6G+ cells) are overlapped in FIG. 10A, and each track of the neutrophil shows XY displacement plotted from the center, and the scale bar is 10 ⁇ m.
  • FIGS. 10A and 10B It is a graph showing.
  • FIGS 12A to 12E are dynamic elements of neutrophils in the lung injury mouse model (LPS 3h mouse model, LPS 6h mouse model) and the control model (PBS) according to an embodiment of the present invention, sequestration time ( Figure 12a), displacement (track displacement length) ( Figure 12b), track length (Figure 12c), track velocity (Figure 12d) and track meandering index (Figure 12e). It is a graph.
  • FIG. 13 is a diagram photographing in real time lung microcirculation of neutrophils (Ly6G+ cells) of an ALI mouse model, which is an embodiment of the present invention.
  • the dotted arrows indicate blood flow
  • yellow arrowheads dark shades, gray
  • white arrowheads light shades, white
  • the newly appeared neutrophils interfere with the circulation of capillaries and It indicates the formation of dead cavities in blood vessels.
  • the dotted line in FIG. 13 represents the dead space formed in the capillaries
  • the scale bar in FIG. 13 is 20 ⁇ m.
  • FIG. 14 is a diagram photographed in real time of lung microcirculation of neutrophils (Ly6G+ cells) of an ALI mouse model according to an embodiment of the present invention.
  • red Ly6G+, dark shaded indicates neutrophils
  • green FITC Dextran, light shade
  • the left-hand diagram of FIG. 14 shows in vivo imaging of thrombus formation inside the capillaries (scale The bar is 20 ⁇ m)
  • the center of FIG. 14 is an in vivo imaging of the blood clot formation in the artery (scale bar is 100 ⁇ m)
  • the right of FIG. 14 is an enlarged view of the blue dotted rectangle in the center of FIG. 14 (scale bar is 20 ⁇ m).
  • 15 is a method according to an embodiment of the present invention by implementing a customized video-speed laser-scanning confocal microscope system in the branching region of an artery connected to a capillary in an ALI mouse model of the present invention.
  • This is a time-lapse imaging obtained by performing in vivo imaging by photographing the process of cluster formation by neutrophils (Ly6G+ cells) at a slow speed for 10 minutes.
  • red color indicates neutrophils
  • green color FITC Dextran, dark shade
  • elapsed time is expressed as MM:SS (minute:second)
  • the scale bar is 20 ⁇ m.
  • FIG. 16 is a diagram illustrating a lung microcirculation of an ALI mouse model with DiD-labeled red blood cells, which is an embodiment of the present invention, photographed for 10 minutes at a slow speed by a method according to an embodiment of the present invention, and processed by an imaging method. And a DiD-labeled red blood cell track path obtained by the method for deriving a neutrophil track according to an embodiment of the present invention.
  • magenta Ly6G, light shade
  • green FITC Dextran, dark shade
  • white dotted circles indicate dead spaces in the microcirculation
  • white arrows indicate blood flow.
  • the direction is indicated, and the scale bar in Fig. 16 is 100 ⁇ m.
  • FIG. 17 is a diagram confirming whether active oxygen is produced in neutrophils of the ALI mouse model (LPS) and the control model (PBS), which are an embodiment of the present invention, through DHE staining.
  • green (FITC Dextran) represents lung capillaries
  • red (Ly6G) represents neutrophils
  • blue (DHE) represents active oxygen (ROS)
  • the scale bar represents 50 ⁇ m.
  • 18A is a graph comparing the number of neutrophils (ROS+ Ly6G+) generating active oxygen per unit area (512 X 512 ⁇ m) of each of the ALI mouse model (LPS) and the control model (PBS), which is an embodiment of the present invention.
  • 18B is a graph comparing the ratio of neutrophils (ROS+ Ly6G+) generating active oxygen among all neutrophils (Ly6G+) of each of the ALI mouse model (LPS) and the control model (PBS), which is an embodiment of the present invention.
  • FIG. 19 schematically shows a process of manufacturing a lung injury mouse model (N-Dep+LPS mouse model) depleted of neutrophils using an acute lung injury mouse model (ALI mouse model) according to an embodiment of the present invention Is also
  • FIG. 20 is a view of the lung microcirculation of each of the control mouse model (PBS), ALI mouse model (LPS), and neutrophil removal model (N-Dep mouse model and N-Dep+LPS mouse model) according to an embodiment of the present invention.
  • PBS control mouse model
  • LPS ALI mouse model
  • neutrophil removal model N-Dep mouse model and N-Dep+LPS mouse model
  • FIG. 20 A diagram showing a result of processing an image captured by the imaging system according to an embodiment of the present invention and obtained therefrom according to an image processing process.
  • green Capillary, TMR Dextran
  • red Fluctional, DiD-RBC
  • magenta magenta
  • LysM, LysM GFP/+ represents neutrophils.
  • a white asterisk (*) indicates a dead space
  • a white arrowhead indicates a trapped or isolated neutron.
  • Merge is a combination of anatomical capillary, functional capillary, and neutrophil imaging
  • the magnified image is a combination of anatomical capillary and neutrophil imaging
  • the scale in the Magnified image of FIG. The bar is 20 ⁇ m and the scale bar in the remaining images is 100 ⁇ m.
  • 21A is a functional capillary fraction of each of the control mouse model (PBS), ALI mouse model (LPS), and neutrophil removal model (N-Dep mouse model and N-Dep+LPS mouse model) according to an embodiment of the present invention
  • Functional capillary ratio, FCR is a graph showing.
  • Figure 21b is a control mouse model (PBS), ALI mouse model (LPS), neutrophil removal model (N-Dep mouse model and N-Dep + LPS mouse model) of each unit area (512 X) according to an embodiment of the present invention.
  • 512 ⁇ m is a graph showing the number of neutrophils.
  • FIG. 22 is a diagram schematically showing a process of separating neutrophils from each of the left ventricle (LV) and lungs of the mouse model according to an embodiment of the present invention.
  • FIG. 23 is a diagram showing the results of flow cytometric analysis on neutrophils separated from each of the left ventricle (LV, red) and lungs (Lung, blue) of the mouse model according to an embodiment of the present invention.
  • 24A to 24D are CD11a, CD11b, and neutrophils separated from each of the left ventricle (LV) and lungs of the control (PBS) mouse model and the ALI mouse model (LPS) according to an embodiment of the present invention. It is a graph comparing the expression levels of each of CD18 and CD62L. In FIGS. 24A to 24D, MFI denotes mean fluorescence intensity.
  • 25A and 25B are isolated neutrophils of the control (PBS) mouse model and the ALI mouse model (LPS) according to an embodiment of the present invention, and the expression on the cell surface of each of CD11b and CD18 in the neutrophils in vivo .
  • red (Ly6G+) represents neutrophils
  • green (CD11b or CD18) represents the expression on the cell surface of each of CD11b and CD18 in neutrophils
  • Merge represents the expression of neutrophils and CD11b, or between neutrophils and CD18. This is the sum of expressions.
  • the scale bars in FIGS. 25A and 25B are 100 ⁇ m.
  • 26A to 26D are graphs comparing the number of neutrophils expressing CD11b or CD18 between an ALI mouse model (LPS) and a control mouse model (PBS) according to an embodiment of the present invention.
  • Figure 26a shows the number of neutrophils expressing CD11b per unit area (512 X 512 ⁇ m)
  • Figure 26b shows the ratio of the number of neutrophils expressing CD11b to the total number of neutrophils
  • Figure 26c shows the unit area (512 X 512 ⁇ m).
  • FIG. 26D shows the ratio of the number of neutrophils expressing CD18 to the total number of neutrophils.
  • FIG. 27 is a CLP mouse model (Fc), an anti-Mac-1 mouse model (Anti-CD11b), and absiksimab mouse model model (Abc), and a normal group (Sham) mouse model according to an embodiment of the present invention ( Sham)'s lung microcirculation is photographed by the imaging system according to an embodiment of the present invention, and an image obtained therefrom is processed according to an image processing process.
  • green (Capillary, TMR Dextran) represents anatomical capillaries
  • red (Functional, DiD-RBC) represents functional capillary
  • magenta (Ly6G) represents neutrophils
  • white asterisks (*) indicates dead space.
  • Merge is the sum of anatomical capillaries, functional capillaries, and neutrophil imaging, and the scale bar is 100 ⁇ m.
  • FIG. 28A is a CLP mouse model (Fc), an anti-Mac-1 mouse model (Anti-CD11b), and apsicimab mouse model model (Abc), and a normal group (Sham) mouse model according to an embodiment of the present invention ( Sham)'s functional capillary fraction (FCR).
  • Fc CLP mouse model
  • Anti-CD11b an anti-Mac-1 mouse model
  • Abc apsicimab mouse model model
  • Sham normal group
  • FIG. 28B is a CLP mouse model (Fc), an anti-Mac-1 mouse model (Anti-CD11b), and apsiksimab mouse model model (Abc), and a normal group (Sham) mouse model according to an embodiment of the present invention ( Sham) is a graph comparing the number of neutrophils (Ly6G+ cells) according to an embodiment of the present invention.
  • FIG. 29 is a pulmonary microcirculation of a CLP mouse model (pre-Abc) before administration of absiksimab and a CLP mouse model (post-Abc) after administration of absiksimab according to an embodiment of the present invention. It is a diagram showing a result of processing the image taken by the imaging system according to the following and an image obtained therefrom according to the image processing process.
  • green (Capillary, FITC Dextran) represents anatomical capillaries
  • red (Functional, DiD-RBC) represents functional capillary
  • magenta (LysM, LysM GFP/+ ) represents neutrophils.
  • white arrowheads indicate recovery of red blood cell perfusion.
  • Merge is the sum of anatomical capillaries, functional capillaries, and neutrophil imaging, and the scale bar is 100 ⁇ m.
  • FIG. 30 is a graph comparing the functional capillary fraction (FCR) of a CLP mouse model (pre-Abc) before administration of apsiximab and a CLP mouse model (post-Abc) after administration of apsiximab according to an embodiment of the present invention to be.
  • FCR functional capillary fraction
  • 31A and 31B are oxygen in arterial blood of a normal group mouse model (Sham), a CLP mouse model (Fc) before administration of apsiximab, and a CLP mouse model (Abc) after administration of apsiximab according to an embodiment of the present invention.
  • This is a graph comparing the partial pressure and the partial pressure of carbon dioxide.
  • terms such as “unit”, “module”, “device”, and “system” may refer to a combination of software driven by the hardware as well as hardware.
  • the hardware may be a data processing device including a CPU or other processor.
  • the software driven by the hardware may be a program such as an executing process, an object, an executable file, a thread of execution, and a calculation program.
  • microcirculation is a blood circulation found in small blood vessels such as capillary arteries, capillaries, capillaries, and capillary lymphatic vessels, and is also referred to as microcirculation or capillary circulation, and is the center of metabolism among tissues. It is a place where necessary materials are supplied and discharged.
  • microcirculation can quantify microcirculation based on the area of functional capillaries measured from a plurality of moving images of target elements in the first bloodstream, or provide information for diagnosing microcirculation disorders of an individual.
  • the microcirculation may be, for example, microcirculation in the lungs, microcirculation in the eye, microcirculation in the kidney, microcirculation in the skin, and the skin may be hands, feet, etc., but is limited thereto. It doesn't work.
  • any individual for the purpose of quantifying microcirculation or diagnosing microcirculation disorders is not particularly limited, and any individual can be applied.
  • the individual may be a non-human animal or human such as a monkey, dog, cat, rabbit, morpho, rat, mouse, cow, sheep, pig, goat, etc., but is not limited thereto.
  • the individual may be an individual having a microcirculation disorder, a microcirculation disorder, a capillary circulation disorder, or a peripheral circulation disorder, but is not limited thereto.
  • the capillaries of an individual can quantify microcirculation by measuring the area of functional capillaries from a plurality of moving images of target elements in the first blood flow or provide information for diagnosing microcirculation disorders of the individual. Restricted if it is a capillary that can be used or if it is a capillary that can determine whether an individual has a microcirculation disorder by analyzing the dynamic element of the target element in the second blood flow from a plurality of moving images of the target element in the second blood flow. It is not, and may be one or more capillaries selected from the group consisting of lungs, kidneys, skin, and eyes of the individual, but is not limited thereto.
  • the plurality of moving images according to time may be a plurality of images captured with a time difference of 1/900 seconds to 1 second.
  • the plurality of images are images of the viewpoints T-1, T+1 before and after the same time difference t and the image M of the viewpoint T based on one viewpoint T (
  • the three captured images M-1, M, and M+1 are consecutive first and second time points of the same time difference t, respectively. Since each of the images at the time point T and the third time point T+1 is represented, the three images M-1, M, and M+1 respectively include target elements in the first blood flow passing through the capillaries of the individual or The movement path of the target element in the second blood flow according to time may appear.
  • microcirculation disorder may be provided by analyzing a dynamic element of the target element in the second blood flow, for example, the isolation time, displacement, moving distance, moving speed, or track flexion index of the target element, Specifically, by discriminating the same target element shown in each of the three images M-1, M, and M+1 photographed with a time difference t, the dynamic element of the same target element can be analyzed.
  • the time difference (t) for photographing the three images (M-1, M, M+1) may be 1/900 seconds to 1 second, and specifically 1/300 seconds to 1/3 It may be a second, more specifically 1/900 seconds or more, 1/800 seconds or more, 1/700 seconds or more, 1/600 seconds or more, 1/500 seconds or more, 1/ 400 seconds or more, 1/300 seconds or more, 1 /200 seconds or more, 1/100 seconds or more, 1/90 seconds or more, 1/80 seconds or more, 1/70 seconds or more, 1/60 seconds or more, 1/50 seconds or more, 1/45 seconds or more, 1/40 Seconds or more, 1/35 seconds or more, 1/30 seconds or more, 1/25 seconds or more, 1/20 seconds or more, 1/15 seconds or more, 1/10 seconds or more, or 1/5 seconds or more, and 1 second or less , 1/5 sec or less, 1/10 sec or less, 1/15 sec or less, 1/20 sec or less, 1/25 sec or less, 1/30 sec or less, 1/35 sec or less, 1/30 sec or
  • the plurality of moving images according to time may be a plurality of images taken at a frame rate or speed in the range of 1 to 900 frames/second, and the frame rate or speed is specifically 3 to 300 It may be frames/second, and more specifically, 1 frame/second or more, 5 frames/second or more, 10 frames/second or more, 15 frames/second or more, 20 frames/second or more, 25 frames/second or more, 30 frames/second or more , 35 frames/s or more, 40 frames/s or more, 45 frames/s or more, 50 frames/s or more, 60 frames/s or more, 70 frames/s or more, 80 frames/s or more, 90 frames/s or more, 100 Frames/second or more, 200 frames/second or more, 300 frames/second or more, 400 frames/second or more, 500 frames/second or more, 600 frames/second or more, 700 frames/second or more, or 800 frames/second or more, and 900 Frames/second or less, 800 frames/second or less, 700 frames/second
  • a plurality of images is taken by a confocal scanning laser microscope, a fluorescence microscopy, a two-photon microscopy, or a three-photon microscopy.
  • the image may be, but is not limited thereto.
  • a functional capillary is a capillary in which the function of capillaries among capillaries, for example, a function of exchanging oxygen, carbon dioxide, nutrients and other substances between blood and tissues by diffusion, occurs smoothly.
  • the functional capillaries may be capillaries through which target elements in the first blood flow such as leukocytes, red blood cells, platelets, and lymphocytes, or through which target elements in the second blood flow such as neutrophils move or pass.
  • target elements in the first blood flow such as leukocytes, red blood cells, platelets, and lymphocytes
  • target elements in the second blood flow such as neutrophils move or pass.
  • the present invention provides a method for quantifying microcirculation of an individual, the method comprising: obtaining a plurality of moving images of a target element in a first blood flow passing through the capillaries of the individual over time; Measuring an area of a functional capillary through which the target element in the first blood flow moves from the plurality of moving images; And calculating a functional capillary fraction (FCR) by the following Equation 1; containing, a microcirculation quantification method is provided.
  • FCR functional capillary fraction
  • Functional capillary fraction area of functional capillaries / area of total capillaries.
  • Quantifying the microcirculation of an individual means quantifying the degree of circulation of the microcirculation of the individual.
  • the method for quantifying microcirculation of the individual may include obtaining a plurality of moving images of a target element in the first blood flow passing through the capillaries of the individual according to time.
  • the target element in the first blood flow is an element passing through the capillaries of the microcirculation of the individual, and an area in which the target element moves from a plurality of moving images of the target element in the first blood flow according to time, for example, a functional capillary
  • the target element in the first blood flow may be an element that moves along the microcirculation and passes through the capillaries of the individual, and specifically, can substantially reflect the velocity or the amount of blood flow through the capillaries of the individual.
  • the type of the label is not limited, and specifically, the label is fluorescent staining, a transgenic probe, and an antibody label. It may be one or more selected from the group consisting of. More specifically, the genetically modified probe may be at least one selected from the group consisting of cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), green fluorescent protein (GFP), and red fluorescent protein (RFP), but is not limited thereto.
  • CFP cyan fluorescent protein
  • YFP yellow fluorescent protein
  • GFP green fluorescent protein
  • RFP red fluorescent protein
  • the antibody label may be a form in which a fluorescent probe is bound, for example, an antibody to which one or more fluorescent probes selected from the group consisting of Alexa 405, Alexa 488, Alexa 555 and Alexa 647 are bound.
  • a fluorescent probe for example, an antibody to which one or more fluorescent probes selected from the group consisting of Alexa 405, Alexa 488, Alexa 555 and Alexa 647 are bound.
  • the target element in the first blood flow is red blood cells
  • the area where red blood cells move from a plurality of moving images thereof by fluorescent staining with Vybrant DiD (V22887, ThermoFisher Scientific) (area of functional capillaries) Microcirculation was quantified by measuring.
  • the method for quantifying microcirculation of the individual may include measuring an area of a functional capillary through which a target element in the first blood flow moves from the plurality of moving images.
  • the functional capillary refers to a capillary in which a function of capillaries among capillaries, for example, a function of exchanging oxygen, carbon dioxide, nutrients, and other substances between blood and tissues by diffusion, occurs smoothly.
  • the functional capillaries may be capillaries through which target elements in the first blood stream such as white blood cells, red blood cells, platelets, and lymphocytes move or pass. The more functional capillaries among the total capillaries, the smoother microcirculation of the individual or no microcirculation disorder.
  • the functional capillary area measurement may be to determine the same target element from the plurality of moving images to measure the area of the functional capillary, and measure the moving area from a position difference according to a time difference of the target element in the first blood flow. It may be calculated by doing. Specifically, the movement path of the target element in the first blood flow passing through the capillaries of the individual is measured from each of the plurality of moving images over time, and the area of the functional capillary is determined from the movement path of the target element in the plurality of first blood flows. It can be measuring.
  • the target element in the same first blood flow can be easily identified and tracked to move the target element in a single first blood flow. Is measured, and the area of the functional capillaries can be measured from the movement paths of the target elements in the plurality of first blood flows obtained by the same method.
  • a target element in the first blood flow is used as red blood cells and fluorescently stained, and moving images of the same red blood cells are obtained for each time period (0.000 seconds, 0.033 seconds, and 0.066 seconds) to obtain a plurality of the same red blood cells.
  • the moving images of are combined, the moving path of red blood cells moving through capillaries can be measured (Experimental Example 1-1 and Fig. 2).
  • the method for quantifying microcirculation of the individual may include calculating a functional capillary ratio (FCR) according to Equation 1 below.
  • FCR functional capillary ratio
  • Functional capillary fraction area of functional capillaries / area of total capillaries.
  • Quantification of the microcirculation may be performed by calculating the functional capillary fraction according to Equation 1.
  • the microcirculation quantification can quantify microcirculation based on the concept of area rather than density, so that the area through which one red blood cell passes and the area through which a plurality of red blood cells pass can be differentiated, thereby reflecting the space (area) through which the actual red blood cells pass. It is possible to quantify the microcirculation more easily, simply and accurately, and it is possible to quantify the microcirculation in the form of a mesh that is difficult to quantify with the concept of density.
  • the total capillary area is the area of the blood vessel detected by the Tie2 or dextran signal as the total capillary area, and the area in which the red blood cells stained with DiD move is the functional capillary area.
  • the functional capillary fraction was calculated by 1, and it was confirmed that microcirculation of the individual could be quantified through this (Experimental Example 2, and FIGS. 3 and 4).
  • the present invention is an apparatus for measuring microcirculation of an individual, based on a plurality of moving images of a target element in a first blood flow passing through a capillary of the individual over time, according to Equation 1 above. It provides an individual microcirculation measurement device that derives quantitative data on circulation. Specifically, the device includes: a photographing unit for photographing a target element in the first blood flow passing through the capillaries of the individual; And a measurement unit that derives quantitative data on the microcirculation of the individual by Equation 1 below based on the image captured by the photographing unit. The description of the object, microcirculation, target element in the first blood flow, image, and quantification of microcirculation are as described above.
  • Functional capillary fraction area of functional capillaries / area of total capillaries.
  • the microcirculation measurement of the individual may be measured by quantitative data on the microcirculation of the individual, and the quantitative data on the microcirculation may be derived by calculating the functional capillary fraction according to Equation 1 above. .
  • the photographing unit may capture a plurality of moving images according to time of the target element in the first blood flow passing through the capillaries, and if, based on one viewpoint T, the image M of the viewpoint T and the same
  • the three captured images (M-1, M, M +1) denotes images of the first time point (T-1), the second time point (T), and the third time point (T+1) consecutively with the same time difference (t), respectively, so that three images (M In -1, M, M+1), the movement path of the target element in the first blood flow passing through the capillaries of the individual according to time may be displayed.
  • the time difference (t) for capturing the three images (M-1, M, M+1) may be 1/900 seconds to 1 second, specifically 1/300 seconds to 1/3 seconds, and more specifically 1/900 s or more, 1/800 s or more, 1/700 s or more, 1/600 s or more, 1/500 s or more, 1/ 400 s or more, 1/300 s or more, 1/200 s or more, 1 /100 seconds or more, 1/90 seconds or more, 1/80 seconds or more, 1/70 seconds or more, 1/60 seconds or more, 1/50 seconds or more, 1/45 seconds or more, 1/40 seconds or more, 1/35 Seconds or more, 1/30 seconds or more, 1/25 seconds or more, 1/20 seconds or more, 1/15 seconds or more, 1/10 seconds or more, or 1/5 seconds or more, and 1 second or less, 1/5 seconds or less , 1/10 sec or less, 1/15 sec or less, 1/20 sec or less, 1/25 sec or less, 1/30 sec or less, 1/35 sec or less, 1/40
  • the plurality of moving images according to time may be a plurality of images captured at a frame rate in the range of 1 to 900 frames/second, and the frame rate may be specifically 3 to 300 frames/second, and more specifically 1 Frames/sec., 5 frames/sec., 10 frames/sec., 15 frames/sec., 20 frames/sec., 25 frames/sec., 30 frames/sec., 35 frames/sec., 40 frames/ Seconds or more, 45 frames/s or more, 50 frames/s or more, 60 frames/s or more, 70 frames/s or more, 80 frames/s or more, 90 frames/s or more, 100 frames/s or more, 200 frames/s or more , 300 frames/second or more, 400 frames/second or more, 500 frames/second or more, 600 frames/second or more, 700 frames/second or more, or 800 frames/second or more, 900 frames/second or less, 800 frames/second or less , 700 frames/s or less, 600 frames/s or less, 500 frames/s or less, 400 frames/s or less, 800
  • the photographing unit may be a confocal scanning laser microscope, a fluorescence microscopy, a two-photon microscopy, or a three-photon microscopy, but is not limited thereto.
  • the measurement unit determines the same target element from a plurality of moving images of the target element in the first blood flow photographed by the photographing unit and measures the moving area from the position difference of the target element in the first blood flow according to the time difference. It may be to measure the area of and calculate the functional capillary fraction according to Equation 1. Specifically, the movement path of the target element in the first blood flow passing through the capillaries of the individual is measured from each of the plurality of movement images of the target element in the first blood flow, and the movement path of the target element in the plurality of first blood flows. It may be to measure the area of functional capillaries.
  • the target element in the same first blood flow can be easily identified and tracked to move the target element in a single first blood flow. It may be to measure the area of the functional capillaries from the movement paths of the target elements in the plurality of first blood streams obtained by the same method as above, and calculate the functional capillary fraction by Equation 1. In order to measure the moving area along the moving path, for example, the area may be obtained through pixel analysis on the moving path. For reference, in the following examples, an analysis program such as ImageJ was used.
  • the present invention comprises the step of extracting information for diagnosing microcirculation disorder of an individual from a functional capillary ratio (FCR) calculated according to the microcirculation quantification method of the individual, Provides a method of providing information for diagnosing microcirculation disorders in individuals.
  • FCR functional capillary ratio
  • the present invention provides an information providing device for diagnosing microcirculation disorders of an individual, which extracts information for diagnosing microcirculation disorders of an individual from the calculated functional capillary ratio (FCR). do.
  • the device is a microcirculation quantification that derives quantitative data on the microcirculation of the individual according to Equation 1 above based on a plurality of moving images of the target element in the first blood flow passing through the capillaries of the individual over time. part; And a microcirculatory disorder determination unit that determines whether or not microcirculation disorder is based on the derived functional capillary ratio (FCR).
  • the microcirculation disorder refers to a case in which microcirculation is not normal, and it means that microcirculation is not performed normally because target elements in the first blood flow such as white blood cells, red blood cells, platelets, and lymphocytes do not pass smoothly through capillaries.
  • the functional capillary fraction is 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, 40% of the functional capillary fraction of the normal group without microcirculation disorder.
  • the microcirculation disorder may have a functional capillary fraction of 0.4 or less, 0.38 or less, 0.36 or less, 0.34 or less, 0.32 or less, 0.3 or less, 0.28 or less, 0.26 or less, 0.24 or less, 0.22 or less, 0.2 or less, 0.18 or less, 0.16 or less, 0.14 or less, 0.12 or less, 0.1 or less, 0.08 or less, 0.06 or less, 0.04 or less Alternatively, it may be 0.02 or less, but the range of the functional capillary fraction for determining whether or not microcirculation disorder may vary depending on the type of organ of the individual in which capillaries for measuring microcirculation disorder are distributed, and is limited to the above range. It is not.
  • the control model (PBS treatment) and the mouse model having acute lung injury due to sepsis caused by LPS treatment have no difference in total capillary area, but the acute lung injury mouse model compared to the control model.
  • the area of the functional capillaries to which the red blood cells move of was rapidly decreased, and thus the functional capillary fraction (FCR) was reduced by 50% or more (Experimental Example 3, and FIGS. 6A and 6B), according to the method according to an aspect of the present invention.
  • FCR functional capillary fraction
  • a method of providing information for diagnosing microcirculatory disorders comprising: obtaining a plurality of moving images of a target element in a second bloodstream passing through capillaries of an individual according to time; From the plurality of moving images, the sequestration time, the track displacement length, the track length, the track velocity, and the meandering index of the target element in the second bloodstream. Analyzing one or more dynamic elements selected from the group consisting of; And extracting information for diagnosing microcirculation disorders of the individual from the dynamic element analysis result.
  • endothelial dysfunction and vasoconstriction have been proposed as central mechanisms related to systemic microcirculation disorders, and sequestration in pulmonary capillaries functions as an immune monitoring system to detect pathogens in blood circulation.
  • microcirculation disorders such as acute respiratory distress syndrome
  • neutrophils the formation of clusters of recruited neutrophils in the early stages of acute lung injury caused by sepsis plays an important role in pulmonary microcirculation disorders, specifically neutrophils. It can be seen that microcirculation disorders occur by forming a group and acting as an obstacle to circulation in capillaries and arteries, causing redistribution and disorder of microcirculation.
  • the method of providing information for diagnosing microcirculation disorders may include obtaining a plurality of moving images according to time of a target element in a second blood flow passing through the capillaries of the individual.
  • the target element in the second blood flow is an element passing through the capillaries of the microcirculation of the individual, and a dynamic element of the target element, for example, the target element, from a plurality of moving images of the target element in the second blood flow over time It is possible to provide information for diagnosing microcirculation disorders by analyzing the sequestration time, track displacement length, track length, track velocity, or meandering index. have.
  • the target element in the second blood flow may be an element that moves along the microcirculation and passes through the capillaries of the individual, and specifically, can substantially reflect the speed or amount of blood flow through the capillaries of the individual. It may be a component of existing blood, and more specifically, a neutrophil, but is not limited thereto.
  • the type of the indication is not limited.
  • the neutrophil may be a fluorophore bound to a nucleic acid (DNA or RNA) encoding a peptide expressed in neutrophils, and the neutrophil is specific to neutrophils.
  • a typical antibody is bound, and the antibody may be bound to a fluorophore.
  • the nucleic acid encoding the peptide expressed in the neutrophil is specifically a nucleic acid encoding a lysine motif (Lysin Motif, LysM) domain, a nucleic acid encoding a leukocyte 6G (Ly6G), a differentiation molecule cluster 11B (cluster of differentiation molecule 11B). , CD11b) and a nucleic acid encoding a differentiation molecule cluster 18B (cluster of differentiation molecule 18, CD18), but it may be one or more selected from the group consisting of a nucleic acid encoding a neutrophil and analyzing the dynamic element from its photographed image. If it is a nucleic acid, it is not limited.
  • the neutrophil-specific antibody may be an antibody specific to a peptide expressed in neutrophils, and specifically, a lysine motif (Lysin Motif, LysM) domain, leukocyte 6G (Ly6G), differentiation molecule cluster 11B (cluster of Differentiation molecule 11B, CD11b) and differentiation molecule cluster 18B (cluster of differentiation molecule 18, CD18), but may be an antibody specific to one or more selected from the group consisting of, but it is possible to analyze the dynamic element from its photographed image by labeling neutrophils. If it is an antibody, it is not limited.
  • the luminescent fluorophore may be specifically a transgenic probe or a fluorescent probe, and more specifically, the genetically mutated probe may be a cyan fluorescent protein (CFP), a yellow fluorescent protein (YFP), or GFP. (green fluorescent protein) and RFP (red fluorescent protein) may be one or more selected from the group consisting of, and the fluorescent probe may be one or more selected from the group consisting of Alexa 405, Alexa 488, Alexa 555 and Alexa 647, but is not limited thereto. Does not.
  • an anti-Ly6G+ combined with Alexa Fluor 555 or 647 (A-20005 / A-20006, ThermoFisher Scientific), which is a fluorophore
  • Alexa Fluor 555 or 647 A-20005 / A-20006, ThermoFisher Scientific
  • Information for diagnosing microcirculatory disorders can be provided by injecting a monoclonal antibody (Clone 1A8, 551459, BD Biosciences) into an individual and measuring the movement of neutrophils bound to the antibody through a fluorescent signal.
  • ARDS acute respiratory distress syndrome
  • the method for providing information for diagnosing microcirculatory disorders is a dead cavity with respiration/perfusion mismatch. space) clearly shows how neutrophils are made within the microcirculation, and the dead cavity fraction, which was measured indirectly as the difference in arterial to expiratory carbon dioxide partial pressure using conventional volumetric volume measurement, is directly measured. As it can be imaged, information can be provided more conveniently and accurately.
  • the method for providing information for diagnosing microcirculatory disorders includes a sequestration time, a track displacement length, a track length, and a track speed of the target element in the second bloodstream from the plurality of moving images. velocity) and a track meandering index, analyzing one or more dynamic elements selected from the group consisting of.
  • the sequestration time refers to a sequestration time in which the target element in the second blood flow passes through the capillary vessel in a specific region of the capillary vessel.
  • control mouse model PBS
  • lung injury mouse model ALI mouse model
  • the displacement is the amount of change in the position of the target element in the second blood flow over time (unit: ⁇ m), which means that the greater the magnitude of the displacement, the greater the mobility of the target element.
  • the track length is a distance (unit: ⁇ m) that the target element in the second blood flow actually moves over time, and it means that the greater the moving distance, the greater the mobility of the target element.
  • the track velocity is a distance (unit: ⁇ m/m) that the target element in the second blood flow has moved during a unit time, which means that the greater the moving speed, the greater the mobility of the target element.
  • the track meandering index represents a target point in the second blood flow or a tendency to move in a specific direction (unit: au, that is, an arbitrary unit), and the larger the curvature index of the track, the target point or It means that the target element in the second blood flow moves in a straight line in a specific direction, so that the target point can be reached within the fastest time.
  • the track curvature index (a.u.) may be calculated using Spots & Tracking of the IMARIS program.
  • the lung injury mouse model (ALI mouse model, LPS 3h mouse model, LPS 6h mouse model) compared to the control group (PBS) is the isolation time, displacement, movement distance, movement speed and track. Since there is a difference in the flexural index, it was found that information for diagnosing microcirculation disorders of an individual can be provided through the dynamic element analysis (Experimental Example 6 and FIGS. 12A to 12E).
  • the dynamic element analysis may be to determine and analyze the same target element from the plurality of moving images, and specifically, the movement path of the target element in the second blood flow passing through the capillaries of the individual from each of the plurality of moving images over time And measuring one or more dynamic elements selected from the group consisting of isolation time, displacement, moving distance, moving speed, and track flexion index from the moving paths of the target elements in the plurality of second blood flows. More specifically, by comparing a plurality of images with each other based on an image captured with a time difference (t), target elements in the same second blood flow can be easily identified and tracked to move the target element in a single second blood flow. Is measured, and the dynamic element can be measured from the moving paths of the target elements in the plurality of second blood streams obtained by the same method.
  • the method of providing information for diagnosing microcirculation disorder may include extracting information for diagnosing microcirculation disorder of the individual from the dynamic element analysis result.
  • the information for diagnosing a microcirculation disorder of the individual may be determining that a microcirculation disorder is determined if the isolation time of the target element in the second blood flow is 5 minutes or more. As described above, in the case of an individual with a microcirculation disorder compared to the control group, the target element in the second bloodstream tends to stay in a specific region rather than passing through the capillaries, so the sequestration time increases.
  • the isolation time of the target element in the second bloodstream is 5 minutes or more, it can be determined that microcirculation is impaired, and specifically, the isolation time is 5 minutes or more, 5 minutes 10 seconds or more, 5 minutes 20 seconds or more, 5 minutes 30 seconds or more, 5 minutes 40 seconds or more, 5 minutes 50 seconds or more, 6 minutes or more, 6 minutes 10 seconds or more, 6 minutes 20 seconds or more, 6 minutes 30 seconds or more, 6 minutes 40 seconds or more, 6 minutes 50 seconds or more, 7 minutes or more, 7 minutes 10 seconds or more, 7 minutes 20 seconds or more, 7 minutes 30 seconds or more, 7 minutes 40 seconds or more, 7 minutes 50 seconds or more, 8 minutes or more, 8 minutes 10 seconds or more, 8 minutes 20 seconds or more, 8 minutes 30 seconds or more, 8 minutes 40 seconds or more, 8 minutes 50 seconds or more, 9 minutes or more, 9 minutes 10 seconds or more, 9 minutes 20 seconds or more, 9 minutes 30 seconds or more, 9 minutes 40 seconds or more, 9 minutes 50 seconds More than, 10 minutes or more, 11 minutes or more, 12 minutes or more,
  • the range of isolation time which is a criterion for determining whether the microcirculatory disorder, is based on the type of the individual, the type of capillaries, the age, sex, and weight of the individual, the disease type or pathological state of the individual, and the severity of the disease or pathology.
  • the determination of microcirculation disorder based on these factors is within the level of those skilled in the art, and is not limited to the above range.
  • the isolation time of the control group is about 3 minutes
  • the LPS 3h mouse model is about 8 minutes
  • the LPS 6h mouse model is about 18 minutes
  • the isolation time of neutrophils in the (LPS administration group) was longer, and the isolation time was about 2 times longer when 6 hours elapsed (LPS 6h mouse model) than when 3 hours LPS administration elapsed (LPS 3h mouse model). It was found (Experimental Example 6 and Fig. 12a).
  • the information for diagnosing microcirculatory disorders of the individual is that the curvature index of the track of the target element in the second blood flow is 0.4 a.u. If it is below, it may be judged as a microcirculation disorder. In the case of an individual with microcirculation disorder compared to the control group, the target element in the second blood flow tends to be isolated in a specific area or move without direction at a very slow speed rather than passing through the capillaries according to the blood flow. Therefore, the flexural index of the track of the target element in the second blood flow is 0.4 a.u. If it is less than or equal to, it may be determined that the microcirculation is impaired, and specifically, the curvature index of the track is 0.4 a.u.
  • the microcirculation disorder is, but the range of the curvature index of the track that is the criterion for determining whether the microcirculation disorder is the type of the individual, the type of capillaries, the age, sex, weight, and disease of the individual It may vary depending on the type or pathological condition, the severity of the disease or the pathological condition, and the determination of microcirculation disorder based on these factors is within the level of those skilled in the art, and is not limited to the above range.
  • the flexural index of the control is about 0.5 au
  • the LPS 3h mouse model is about 0.4 au
  • the LPS 6h mouse model is about 0.2 au
  • the flexion index of the track of the neutrophil of the (LPS administration group) is smaller, and the flexion index of the track is about 1/ when 6 hours have elapsed than when 3 hours of LPS administration (LPS 3h mouse model) elapsed (LPS 6h mouse model). It was confirmed that it decreased to about 2 (Experimental Example 6 and Fig. 12e).
  • a plurality of moving images of the target element in the second blood stream according to time are taken at a time interval (t') of 2 hours or more as follows. It may be a set of two or more multiple moving images:
  • the second image set is one view ( t 2) image (M 2 -1, M 2 on the basis of the image (M 2) and in the same time difference (t) before and after the point in time (t 2 -1, t 2 +1 of) the point in time (t 2) + Includes 1).
  • the third image set is one view ( t 3) image (3 M -1, based on the image of the (M 3) and before and after the time (t 3 -1, t 3 +1 ) with the same time difference (t) of the time (t 3) 3 M + Includes 1).
  • the two or more plurality of moving image sets may be obtained in the same manner as in (1) to (3), and the plurality of moving image sets may be 2 or more, 3 or more, 4 or more, 5 or more, or 6 or more image sets.
  • the plurality of moving image sets may be 2 or more, 3 or more, 4 or more, 5 or more, or 6 or more image sets.
  • the time interval (t') between the plurality of image sets may be 2 hours or more, 3 hours or more, 4 hours or more, 5 hours or more, or 6 hours or more, but the displacement of the target element in the second blood flow from the plurality of image sets , If a time interval that can provide information for diagnosing microcirculation disorder by analyzing one or more dynamic elements selected from the group consisting of a moving distance and a moving speed is not limited to the above range.
  • the dynamic element analysis is to analyze the dynamic element in chronological order from the two or more sets of moving images, and
  • the information for diagnosing a circulatory disorder may be determined as a microcirculatory disorder when the dynamic component decreases over time as a result of analyzing the dynamic component.
  • the target element in the second bloodstream is microcirculation disorder, for example, when lung damage occurs due to endotoxin, the motility of neutrophils increases at the beginning of lung injury, but microcirculation disorder If the inflammation is intensified due to the lung injury, the motility of the neutrophils decreases, and the displacement, travel distance, and movement speed tend to decrease.
  • the displacement, movement distance, and movement speed of the control group were increased in the lung injury mouse model (LPS 3h mouse model) 3 hours after LPS administration compared to the control group (PBS), and then again LPS. It was confirmed that the lung injury mouse model 6 hours after administration (LPS 6h mouse model) decreased to a level similar to that of the control group (Experimental Example 6 and FIGS. 12B to 12D).
  • the method of providing information for diagnosing microcirculation disorder may further include detecting whether or not reactive oxygen is generated in a target element in the second blood flow passing through the capillary blood vessel.
  • the detection of whether active oxygen is produced may be specifically detected through dihydroethidium (DHE) staining, but if it is a method capable of detecting whether an individual has produced active oxygen in vivo or in situ The method is not limited.
  • DHE dihydroethidium
  • information for determining that the microcirculation is impaired may be provided.
  • neutrophils that are temporarily isolated from the control group do not generate active oxygen, but neutrons in the capillaries of the lung injury mouse model (ALI mouse model) generate active oxygen and generate active oxygen.
  • ALI mouse model lung injury mouse model
  • the present invention provides an apparatus for diagnosing microcirculation disorder, comprising: a photographing unit for photographing a target element in a second blood flow passing through capillaries of an individual; And a sequestration time, a track displacement length, a track length, a track velocity, and a target element in the second bloodstream based on a plurality of moving images captured by the photographing unit. It provides an apparatus for diagnosing microcirculation disorders, including; an analysis unit that analyzes one or more dynamic elements selected from the group consisting of a meandering index.
  • the description of the object, microcirculation, microcirculation disorder, target element in the second blood flow, multiple moving images, dynamic elements, analysis of dynamic elements, and information for diagnosing microcirculation disorders are as described above.
  • the information for diagnosing the microcirculation disorder may be derived from a dynamic element analysis result of the target element in the second blood flow of the individual.
  • the photographing unit may capture a plurality of moving images according to time of the target element in the second blood flow passing through the capillary vessel, and if, based on one viewpoint T, the image M of the viewpoint T and the same
  • the three captured images (M-1, M, M Since +1) represents images of consecutive first time point (T-1), second time point (T), and third time point (T+1) of the same time difference t, respectively, three images (M In -1, M, M+1), the movement path of the target element in the second bloodstream passing through the capillary vessel of the individual according to time may be displayed.
  • the time difference (t) for capturing the three images (M-1, M, M+1) may be 1/900 seconds to 1 second, specifically 1/300 seconds to 1/3 seconds, and more specifically 1/900 s or more, 1/800 s or more, 1/700 s or more, 1/600 s or more, 1/500 s or more, 1/ 400 s or more, 1/300 s or more, 1/200 s or more, 1 /100 seconds or more, 1/90 seconds or more, 1/80 seconds or more, 1/70 seconds or more, 1/60 seconds or more, 1/50 seconds or more, 1/45 seconds or more, 1/40 seconds or more, 1/35 Seconds or more, 1/30 seconds or more, 1/25 seconds or more, 1/20 seconds or more, 1/15 seconds or more, 1/10 seconds or more, or 1/5 seconds or more, and 1 second or less, 1/5 seconds or less , 1/10 sec or less, 1/15 sec or less, 1/20 sec or less, 1/25 sec or less, 1/30 sec or less, 1/35 sec or less, 1/40
  • the plurality of moving images according to time may be a plurality of images captured at a frame speed in the range of 1 to 900 frames/second, and the frame speed may be specifically 3 to 300 frames/second, and more specifically 1 Frames/sec., 5 frames/sec., 10 frames/sec., 15 frames/sec., 20 frames/sec., 25 frames/sec., 30 frames/sec., 35 frames/sec., 40 frames/ Seconds or more, 45 frames/s or more, 50 frames/s or more, 60 frames/s or more, 70 frames/s or more, 80 frames/s or more, 90 frames/s or more, 100 frames/s or more, 200 frames/s or more , 300 frames/second or more, 400 frames/second or more, 500 frames/second or more, 600 frames/second or more, 700 frames/second or more, or 800 frames/second or more, 900 frames/second or less, 800 frames/second or less , 700 frames/s or less, 600 frames/s or less, 500 frames/s or less, 400 frames/s or less, 800
  • the photographing unit may be a confocal scanning laser microscope, a fluorescence microscopy, a two-photon microscopy, or a three-photon microscopy, but is not limited thereto.
  • the plurality of moving images captured by the photographing unit may be a set of two or more moving images taken at a time interval (t') of two or more hours as follows:
  • the second image set is one view ( T 2) image (M 2 -1, M 2 on the basis of the image (M 2) and in the same time difference (t) before and after the point in time (T 2 -1, T 2 +1 of) the point in time (T 2) + Includes 1).
  • the third image set is one view ( T 3) image (3 M -1, based on the image of the (M 3) and before and after the time (T 3 -1, T 3 +1 ) with the same time difference (t) of the time (T 3) 3 M + Includes 1).
  • the two or more plurality of moving image sets may be obtained in the same manner as in (1) to (3), and the plurality of moving image sets are 2 or more, 3 or more, 4 or more, 5 or more, or 6 or more image sets.
  • the plurality of moving image sets are 2 or more, 3 or more, 4 or more, 5 or more, or 6 or more image sets.
  • the time interval (t') between the plurality of image sets may be 2 hours or more, 3 hours or more, 4 hours or more, 5 hours or more, or 6 hours or more, but the displacement of the target element in the second blood flow from the plurality of image sets , If a time interval that can provide information for diagnosing microcirculation disorder by analyzing one or more dynamic elements selected from the group consisting of a moving distance and a moving speed is not limited to the above range.
  • the apparatus for diagnosing microcirculation disorders may further include an active oxygen detection unit for detecting whether reactive oxygen is generated in the target element in the second bloodstream, and the detection unit is specifically dihydroethidial ( Dihydroethidium, DHE) may be used to detect whether active oxygen is produced through staining, but the type is not limited as long as it can detect whether an individual has produced active oxygen in vivo or in situ .
  • DHE Dihydroethidium
  • the present invention is a composition for preventing, ameliorating or treating lung damage diseases, wherein the composition is a macrophage-1 antigen (Mac-1) in neutrophils in pulmonary capillaries as an active ingredient. It provides a composition for preventing, improving or treating lung injury disease, comprising an inhibitor of expression or activity of, and preventing, improving or treating lung injury disease by improving microcirculation disorders in the lung. In addition, the present invention provides a composition for improving pulmonary microcirculation disorders comprising an inhibitor of the expression or activity of macrophage-1 antigen (Mac-1) in neutrophils in pulmonary capillaries as an active ingredient. do.
  • Mac-1 antigen Mac-1 antigen
  • an individual to be prevented or treated is not particularly limited as long as it is an individual for the purpose of preventing or treating a lung injury disease, and any individual can be applied.
  • the individual may be a non-human animal or human such as a monkey, dog, cat, rabbit, morpho, rat, mouse, cow, sheep, pig, goat, etc., but is not limited thereto.
  • the individual may be an individual having a microcirculation disorder, a microcirculation disorder, a capillary circulation disorder, or a peripheral circulation disorder, but is not limited thereto.
  • the neutrophil is a type of granular leukocyte (granulocyte) mainly made in the bone marrow, and is a cell of the same family as monocytes, and occupies 50-70% of leukocytes and about 90% of granulocytes in human blood, neutrophils, and neutral cells. Also called neutrophil leukocyte and neutrophil leukocyte.
  • the neutrophils are leukocytes that first reach the damaged or infected site when tissue is damaged or infected with microorganisms, and various chemotaxis factors such as interleukin 8 (IL8) are made at the damaged or infected site, and neutrophils are attracted to the neutrophils. Is known to cause a strong acute inflammatory reaction. Among the functions of the neutrophil, the most remarkable is the predation and sterilization of bacteria.
  • the neutrophils may be neutrophils in pulmonary capillaries.
  • the macrophage-1 antigen (Mac-1) is an adhesive molecule belonging to the integrin family, and is a glycoprotein expressed in neutrophils, monocytes, macrophages, and parts of activated lymphocytes, and CD11b ( ⁇ M chain, molecular weight of about 170,000 Da) and CD18 ( ⁇ 2 chain, molecular weight of about 95,000 Da) are non-covalently bonded heterodimer, which is also called CD11b/CD18.
  • the macrophage-1 antigen is also stored in secreted granules within cells and is rapidly expressed on the cell surface upon activation.
  • the molecular-mediated adhesion is involved in adhesion of leukocytes to vascular endothelial cells, infiltration into tissues, and phagocytosis, and the molecule associates with the cytoskeleton or protein kinase in the cytoplasm, and respiration explosion of leukocytes ( It is known to be involved in signaling in respiratory burst, oxidative burst, etc.
  • neutrophil removal improves pulmonary microcirculation disorders, but the effect of treatment-induced neutrophil removal in sepsis is unclear because the effect of bacterial clearance and improvement of systemic inflammatory response are unclear. It is unclear. Accordingly, the present inventors explored and evaluated a subpopulation of neutrophils capable of alleviating lung damage, and as a result of flow cytometry, Mac-1 (CD11b/CD18) reacting with ICAM-1 in endothelial cells and various coagulation factors It was confirmed that the expression level was increased in the isolated neutrophils of the lung of the lung injury model.
  • expression of a gene is a concept in the broadest sense including transcription, translation, and post-translational modification.
  • composition according to an aspect of the present invention may include an inhibitor of the expression or activity of macrophage-1 antigen in neutrophils in pulmonary capillaries as an active ingredient.
  • the macrophage-1 antigen expression or activity inhibitor may be a substance that inhibits translation of the mRNA encoding the macrophage-1 antigen, and specifically, may be an oligonucleotide that binds to at least a portion of the mRNA encoding the macrophage-1 antigen.
  • siRNA, shRNA and miRNA may be any one or more.
  • the macrophage-1 antigen expression or activity inhibitor may be any one or more of siRNA, shRNA, and miRNA that induces RNA interference (RNAi), and to inhibit mRNA expression of a gene encoding the macrophage-1 antigen. Using the RNAi phenomenon that induces interference of the mRNA encoding the macrophage-1 antigen can be used to prevent or treat lung damage.
  • miRNA is a type of endogenous small RNA (RNA) that exists in cells and is derived from DNA that does not synthesize proteins and is produced from a hairpin-shaped transcript. miRNA binds to the complementary sequence of 3'-UTR of target mRNA and induces translational inhibition or destabilization of the mRNA, and ultimately acts as a repressor to inhibit protein synthesis of the target mRNA. .
  • RNA small interfering RNA
  • shRNA having a short hairpin structure.
  • the macrophage-1 antigen expression or activity inhibitor may include a peptide that specifically binds to macrophage-1 antigen in neutrophils, and specifically, an antibody that specifically binds to macrophage-1 antigen in neutrophils. It may include.
  • the antibody may be an antibody that specifically binds to CD11b or CD18, and more specifically, may specifically bind to CD11b represented by the amino acid sequence of SEQ ID NO: 1 or 2, and more specifically, the following sequence 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% of the amino acid sequence of number 1 or 2 It may specifically bind to a peptide having homology above, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more. And, more specifically, BC Bioscience's BD Pharming
  • the antibody may be specifically Absiksimab (Abciximab), and the Absiksimab may be Absiksimab (Clotinab) manufactured by ISU abxis, but is not limited thereto.
  • the macrophage-1 antigen expression or activity inhibitor may be contained 0.2 to 20 mg/mL based on the total volume of the composition, and specifically 0.2 mg/mL or more, 0.3 mg/mL or more, 0.4 mg/mL or more, 0.5 mg/mL or more, 0.6 mg/mL or more, 0.7 mg/mL or more, 0.8 mg/mL or more, 0.9 mg/mL or more, 1 mg/mL or more, 1.1 mg/mL or more, 1.2 mg/mL or more, 1.3 mg/ mL or more, 1.4 mg/mL or more, 1.5 mg/mL or more, 1.6 mg/mL or more, 1.7 mg/mL or more, 1.8 mg/mL or more, 1.9 mg/mL or more, 2 mg/mL or more, 3 mg/mL or more , 4 mg/mL or more, 5 mg/mL or more, 6 mg/mL or more, 7 mg/mL or more, 8 mg/mL or more, 9 mg
  • the microcirculation disorder refers to a case in which microcirculation is not normal, and means that microcirculation is not performed normally because white blood cells, red blood cells, platelets, and lymphocytes do not pass smoothly through capillaries.
  • the microcirculation disorder has a functional capillary ratio (FCR) according to Equation 1 below of 70% or less, 65% or less, 60% or less, 55% of the functional capillary fraction of the normal group without microcirculation disorder.
  • the microcirculation disorder Is a functional capillary fraction of 0.4 or less, 0.38 or less, 0.36 or less, 0.34 or less, 0.32 or less, 0.3 or less, 0.28 or less, 0.26 or less, 0.24 or less, 0.22 or less, 0.2 or less, 0.18 or less, 0.16 or less, 0.14 or less, 0.12 or less , 0.1 or less, 0.08 or less, 0.06 or less, 0.04 or less, or 0.02 or less, but the range of the functional capillary fraction for determining whether the microcirculatory disorder is It may vary depending on the type, and is not limited to the above range.
  • Functional capillary fraction functional capillary area / total capillary area
  • the improvement of the microcirculation disorder may be to increase the ratio of functional capillaries through which red blood cells pass among the total capillaries of the lung, and specifically, to increase the functional capillary ratio (FCR) according to the following equation 1.
  • FCR functional capillary ratio
  • Functional capillary fraction functional capillary area / total capillary area
  • the functional capillary area measurement is performed by discriminating the same target element from a plurality of moving images of a target element in the first blood flow such as leukocytes, red blood cells, platelets, lymphocytes, neutrophils, etc. May be measured, and may be calculated by measuring a moving distance from a position difference according to a time difference between the target element in the first blood flow or the target element in the second blood flow, and specifically, the object from each of the plurality of moving images Measuring the movement path according to the target element in the first blood flow or the target element in the second blood flow passing through the capillaries of, and from the movement path of the target element in the plurality of first blood flow or the target element in the second blood flow, It may be measuring the area.
  • a target element in the first blood flow such as leukocytes, red blood cells, platelets, lymphocytes, neutrophils, etc. May be measured, and may be calculated by measuring a moving distance from a position difference according to a time difference between the target element in the first blood flow or
  • a target element in the same first blood flow or a target element in the second blood flow can be easily identified and tracked to achieve a single target element. It is possible to measure the movement path of and measure the area of the functional capillaries from the movement paths of the plurality of target elements obtained by the same method.
  • the lung injury disease may be a disease caused by microcirculation disorders in the lungs, specifically pulmonary vasoconstriction, asthma, respiratory retardation, respiratory distress syndrome (RDS), acute respiratory distress syndrome (ARDS). ), cystic fibrosis (CF), allergic rhinitis (AR), pulmonary hypertension, emphysema, chronic obstructive pulmonary disease (COPD), lung transplant rejection, lung infection, bronchitis, and It may be one or more diseases selected from the group consisting of cancer, but is not limited thereto if it is a disease caused by microcirculation disorders in the lungs.
  • the expression or activity inhibitor of the macrophage-1 antigen may increase the functional capillary fraction (FCR) in the pulmonary capillaries of an individual compared to a normal control or a control group before administration of the inhibitor, Specifically, 1.1 times or more, 1.2 times or more, 1.3 times or more, 1.4 times or more, 1.5 times or more, 1.6 times or more, 1.7 times or more, 1.8 times or more, 1.9 times or more, 2 times or more, 2.1 times or more, 2.2 times or more, It may increase 2.3 times or more, 2.4 times or more, 2.5 times or more, 2.6 times or more, 2.7 times or more, 2.8 times or more, 2.9 times or more, or 3 times or more, but functional capillaries capable of improving pulmonary microcirculation disorder of the individual The extent of the increase in the vascular fraction is not limited to the above range.
  • the FCR decreased by 50% or more compared to the normal group (Sham), and then Mac-1 expression or When the activity is suppressed (anti-Mac-1 mouse model, absiksimab mouse model, or post-Abc mouse model), FCR is increased by about 2 times or more, thereby improving pulmonary microcirculation disorder, according to an embodiment of the present invention. It was found that the composition has an effect of preventing or treating lung injury diseases (Experimental Example 12-2 and FIG. 28A, and Experimental Example 12-3 and FIG. 30).
  • the macrophage-1 antigen expression or activity inhibitor is the number of isolated neutrophils per unit area (512 X 512 ⁇ m) in the lung capillaries of an individual compared to the normal control or the control group before administration of the inhibitor.
  • the degree of reduction is 10% or more based on the number of isolated neutrophils per unit area (512 X 512 ⁇ m) in the pulmonary capillaries of the control group or the control group before administration of the inhibitor, It may be 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, or 55% or more, but the pulmonary microcirculation disorder of the individual is improved As long as the number of isolated neutrophils per unit area (512 X 512 ⁇ m) in capillaries is reduced, the range is not limited.
  • the composition may be a pharmaceutical composition or a food composition.
  • the pharmaceutical composition may be formulated as an oral dosage form in a solid, semi-solid or liquid form by adding a commercially available inorganic or organic carrier using the composition as an active ingredient.
  • the preparations for oral administration include tablets, pills, granules, soft capsules, powders, fine granules, powders, emulsions, syrups, pellets, and the like.
  • active ingredient of the present invention it can be easily formulated if carried out according to conventional methods, and surfactants, excipients, coloring agents, spices, preservatives, stabilizers, buffers, suspensions, and other commonly used auxiliary agents can be appropriately used.
  • the pharmaceutical composition according to the present invention may contain an increase in the number of neutrophils isolated in the pulmonary capillaries due to lung damage diseases, specifically lung microcirculation disorders, more specifically pulmonary microcirculation disorders, or dead space ) Increases, or the number of red blood cells passing through capillaries decreases. It can be usefully used to prevent or treat lung injury diseases.
  • the lung damage diseases include pulmonary vasoconstriction, asthma, respiratory retardation, respiratory distress syndrome (RDS), acute respiratory distress syndrome (ARDS), cystic fibrosis (CF), allergies.
  • Allergic rhintis (AR), pulmonary hypertension, emphysema, chronic obstructive pulmonary disease (COPD), lung graft rejection, lung infection, bronchitis, cancer, etc., but are not limited thereto.
  • the pharmaceutical composition may be administered orally, rectal, topical, transdermal, intravenous, intramuscular, intraperitoneal, subcutaneous, or the like.
  • the dosage of the composition or the active ingredient in the composition will vary depending on the age, sex, and weight of the subject to be treated, the specific disease or pathological condition to be treated, the severity of the disease or pathological condition, the route of administration, and the judgment of the prescriber. Dosage determination based on these factors is within the level of those skilled in the art.
  • the dosage may be 0.001 mg/kg/day to 2000 mg/kg/day, specifically 0.5 mg/kg/day to 1500 mg/kg/day, more specifically 0.001 mg/kg/day or more, 0.01 mg/kg/day or more, 0.1 mg/kg/day or more, 0.5 mg/kg/day or more, 1 mg/kg/day or more, 10 mg/kg/day or more, 50 mg/kg/day or more, 100 mg/ kg/day or more, 150 mg/kg/day or more, 200 mg/kg/day or more, 250 mg/kg/day or more, 300 mg/kg/day or more, 350 mg/kg/day or more, 400 mg/kg/ Day or more, 450 mg/kg/day or more, 500 mg/kg/day or more, 550 mg/kg/day or more, 600 mg/kg/day or more, 650 mg/kg/day or more, 700 mg/kg/day or more , 750 mg/kg/day or more, 800 mg/kg/day or more, 850 mg/kg/day or
  • the food composition may be a health food composition
  • the macrophage-1 antigen expression or activity inhibitor of the present invention may be added as it is or may be used with other foods or food ingredients, and may be appropriately used according to a conventional method.
  • the kind of the health food There is no particular limitation on the kind of the health food.
  • foods to which the green tea extract can be added include meat, sausage, bread, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gum, dairy products including ice cream, various soups, beverages, tea, and drinks. , Alcoholic beverages and vitamin complexes, and includes all health foods in the usual sense.
  • the health beverage composition of the present invention may contain various flavoring agents or natural carbohydrates as an additional component, like a conventional beverage.
  • the natural carbohydrates described above are monosaccharides such as glucose and fructose, disaccharides such as maltose and sucrose, and polysaccharides such as dextrin and cyclodextrin, and sugar alcohols such as xylitol, sorbitol and erythritol.
  • natural sweeteners such as taumatin and stevia extract, and synthetic sweeteners such as saccharin and aspartame can be used.
  • the ratio of the natural carbohydrate may be 0.01 to 0.04% by weight, specifically 0.02 to 0.03% by weight, based on the total weight of the composition of the present invention.
  • the health food of the present invention includes various nutrients, vitamins, electrolytes, flavoring agents, colorants, pectic acids and salts thereof, alginic acid and salts thereof, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohols. , Carbonated beverages used in carbonated beverages, and the like. In addition, it may contain flesh for the manufacture of natural fruit juice, fruit juice beverage and vegetable beverage. These ingredients may be used independently or in combination. The proportion of these additives may be 0.01 to 0.1% by weight based on the total weight of the composition of the present invention.
  • the present invention comprises the steps of: (a) preparing a lung injury model; (b) treating a test substance in the lung injury model; (c) measuring a change in the expression or activity of the macrophage-1 antigen (Mac-1) in neutrophils in the lung capillaries of the lung injury model by the test substance; And (d) determining whether the test substance increases the ratio of functional capillaries through which red blood cells pass among the total capillaries of the lung injury model.
  • the description of the microcirculation, microcirculation disorder, neutrophil, macrophage-1 antigen, and lung injury disease are as described above.
  • the lung injury model may be a non-human animal such as monkey, dog, cat, rabbit, mormote, rat, mouse, cow, sheep, pig, goat, etc., and specifically, may be a non-human animal with lung damage due to sepsis, More specifically, it may be a CLP (cecal ligation and puncture) model, which is a non-human animal that caused sepsis by LPS administration or a non-human animal that made a puncture and ligated it in the cecum, but is limited thereto. It is not.
  • CLP cecal ligation and puncture
  • the "relative expression level” is macrophage in neutrophils in pulmonary capillaries after treatment with a test substance for expression or activity of macrophage-1 antigen in neutrophils in pulmonary capillaries before treatment of the test substance. 1 When the expression or activity of the antigen is compared, the expression or activity may be suppressed. Alternatively, the "relative expression level” is compared with the expression or activity of the macrophage-1 antigen in neutrophils in pulmonary capillaries treated with the test substance and the expression or activity of the macrophage-1 antigen in neutrophils in the pulmonary capillaries treated with the test substance. It may be the degree to which the expression is suppressed.
  • the relative expression level may include, for example, a relative expression level of an mRNA or a relative expression level of a protein.
  • the step (c) may include comparing the expression or activity of the macrophage-1 antigen in neutrophils in the pulmonary capillaries before and after treatment of the test substance in the lung injury model.
  • the step (c) may include comparing the expression or activity of the macrophage-1 antigen in neutrophils in the lung capillaries of the lung injury model treated with the test substance and the lung injury model not treated with the test substance. .
  • the screening method is when the expression or activity of the macrophage-1 antigen is decreased compared to before treatment of the test substance as a result of measuring the expression or activity in step (c), and red blood cells pass through the total capillaries of the lung injury model.
  • the step of determining the test substance as a substance for preventing, improving, or treating lung damage disease may be further included.
  • the step of determining as a substance for preventing, improving, or treating lung damage disease is when the expression or activity (relative expression amount) of the macrophage-1 antigen decreases by about 10% or more as a result of measuring the expression or activity in step (c). It may include determining as a substance for preventing, improving, or treating damage diseases. That is, after treatment of the test substance for the expression or activity of the macrophage-1 antigen in neutrophils in the lung capillaries of the lung injury model before treatment of the test substance, the neutrophils in the pulmonary capillaries of the lung injury model were treated with the macrophage-1 antigen.
  • the expression or activity When the expression or activity is reduced by about 10% or more when the degree of expression or activity is compared, it can be determined as a substance for preventing, improving, or treating lung injury diseases.
  • the expression or activity of the macrophage-1 antigen in neutrophils in the pulmonary capillaries of the lung injury model treated with the test substance was determined by the expression of the macrophage-1 antigen in neutrophils in the pulmonary capillaries of the lung injury model not treated with the test substance, or When the expression decreases by about 10% or more compared to the level of activity, it can be determined as a substance for preventing, improving, or treating lung injury diseases.
  • the expression or activity (relative expression level) of the macrophage-1 antigen is 10% or more, 11% or more, 12% or more, 13% or more, 14% or more, 15% or more, 16% than before treatment with the test substance. More than, 17% or more, 18% or more, 19% or more, 20% or more, 21% or more, 22% or more, 23% or more, 24% or more, 25% or more, 26% or more, 27% or more, 28% or more, 29% or more, 30% or more, 31% or more, 32% or more, 33% or more, 34% or more, 35% or more, 36% or more, 37% or more, 38% or more, 39% or more, 40% or more, 41% More than, 42% or more, 43% or more, 44% or more, 45% or more, 46% or more, 47% or more, 48% or more, 49% or more, 50% or more, 51% or more, 52% or more, 53% or more, 54% or more, 55% or more, 5
  • the degree of expression or activity of the macrophage-1 antigen is determined by known techniques, such as reverse transcription polymerase chain reaction (RT-PCR), ELISA, Western Blot, or Immune. It can be confirmed using a blot (Immune Blot), but is not limited thereto.
  • RT-PCR reverse transcription polymerase chain reaction
  • ELISA ELISA
  • Western Blot Western Blot
  • Immune Immune
  • the step of determining as a substance for preventing, improving or treating lung damage disease is a result of measuring the ratio of functional capillaries through which red blood cells pass among the total capillaries in step (c), and when the ratio increases by about 1.1 times or more, lung damage It may include determining as a disease prevention, improvement or treatment substance. Specifically, if the functional capillary fraction of the lung injury model is 1.1 times or more after treatment of the test substance for the functional capillary ratio (FCR) according to Equation 1 below in the lung injury model before treatment of the test substance, It can be determined as a substance for preventing, improving, or treating lung injury diseases.
  • FCR functional capillary ratio
  • the lung injury disease prevention Can be judged as an improvement or therapeutic substance.
  • Functional capillary fraction functional capillary area / total capillary area
  • the functional capillary fraction when comparing the functional capillary fraction of the lung injury model treated with the test substance with the functional capillary fraction of the lung injury model not treated with the test substance, the functional capillary fraction was 1.1 times or more, 1.2 times or more, 1.3 times or more, 1.4 times or more, 1.5 times or more, 1.6 times or more, 1.7 times or more, 1.8 times or more, 1.9 times or more, 2 times or more, 2.1 times or more, 2.2 times or more, 2.3 times or more, 2.4 times or more, 2.5 times If it is more than, 2.6 times, 2.7 times, 2.8 times, 2.9 times, or 3 times, it can be determined as a substance for preventing, improving, or treating lung damage.
  • the present invention comprises the steps of: (a) preparing a lung injury model; (b) treating the test substance to the lung injury model; (c) measuring a change in the expression or activity of the macrophage-1 antigen (Mac-1) in neutrophils in the lung capillaries of the lung injury model by the test substance; And (d) determining whether the test substance increases the ratio of functional capillaries through which red blood cells pass among the total capillaries of the lung injury model. do.
  • the lung injury model, microcirculation, microcirculation disorder, neutrophils, macrophage-1 antigen, relative expression levels, and the ratio of functional capillaries are as described above.
  • the step (c) may include comparing the expression or activity of the macrophage-1 antigen in neutrophils in pulmonary capillaries before and after treatment of the test substance in the lung injury model.
  • step (c) may include comparing the expression or activity of the macrophage-1 antigen in neutrophils in the pulmonary capillaries of the lung injury model treated with the test substance and the lung injury model not treated with the test substance. .
  • the screening method is when the expression or activity of the macrophage-1 antigen is decreased compared to before treatment of the test substance as a result of measuring the expression or activity in step (c), and red blood cells pass through the total capillaries of the lung injury model.
  • the step of determining the test substance as a material for improving microcirculation disorder in the lung may be further included.
  • the step of determining as a substance for improving the microcirculation disorder in the lungs is when the expression or activity (relative expression amount) of the macrophage-1 antigen decreases by about 10% or more as a result of measuring the expression or activity in step (c), It may include determining as a circulatory disorder improving substance. That is, after treatment of the test substance for the expression or activity of the macrophage-1 antigen in neutrophils in the lung capillaries of the lung injury model before treatment of the test substance, the neutrophils in the pulmonary capillaries of the lung injury model were treated with the macrophage-1 antigen. When the expression or activity is reduced by about 10% or more when the degree of expression or activity is compared, it can be determined as a substance for improving microcirculation disorders in the lungs.
  • the expression or activity of the macrophage-1 antigen in neutrophils in the pulmonary capillaries of the lung injury model treated with the test substance was determined by the expression of the macrophage-1 antigen in neutrophils in the pulmonary capillaries of the lung injury model not treated with the test substance, or When the expression decreases by about 10% or more compared to the degree of activity, it can be determined as a substance for improving microcirculation disorders in the lung.
  • the expression or activity (relative expression level) of the macrophage-1 antigen is 10% or more, 11% or more, 12% or more, 13% or more, 14% or more, 15% or more, 16% than before treatment with the test substance.
  • the degree of expression or activity of the macrophage-1 antigen is determined by known techniques, such as reverse transcription polymerase chain reaction (RT-PCR), ELISA, Western Blot, or Immune. It can be confirmed using a blot (Immune Blot), but is not limited thereto.
  • RT-PCR reverse transcription polymerase chain reaction
  • ELISA ELISA
  • Western Blot Western Blot
  • Immune Immune
  • Determining the pulmonary microcirculation disorder as a substance for improving the microcirculation disorder in the lungs is a result of measuring the ratio of functional capillaries through which red blood cells pass among the total capillaries in step (c). When the ratio is increased by about 1.1 times or more, microcirculation in the lungs It may include determining as a disability ameliorating substance. Specifically, if the functional capillary fraction of the lung injury model is 1.1 times or more after treatment of the test substance for the functional capillary ratio (FCR) according to Equation 1 below in the lung injury model before treatment of the test substance, It can be determined as a substance that improves microcirculation disorders in the lungs.
  • FCR functional capillary ratio
  • the functional capillary fraction is about 1.1 times or more when the functional capillary fraction of the lung injury model treated with the test substance is compared with the functional capillary fraction of the lung injury model without the test substance, the microcirculation of the lung It can be judged as a disability improvement substance.
  • Functional capillary fraction functional capillary area / total capillary area
  • the functional capillary fraction when comparing the functional capillary fraction of the lung injury model treated with the test substance with the functional capillary fraction of the lung injury model not treated with the test substance, the functional capillary fraction was 1.1 times or more, 1.2 times or more, 1.3 times or more, 1.4 times or more, 1.5 times or more, 1.6 times or more, 1.7 times or more, 1.8 times or more, 1.9 times or more, 2 times or more, 2.1 times or more, 2.2 times or more, 2.3 times or more, 2.4 times or more, 2.5 times Above, 2.6 times or more, 2.7 times or more, 2.8 times or more, 2.9 times or more, or 3 times or more, it can be determined as a substance to improve microcirculation disorders in the lungs.
  • one embodiment of the present invention can provide a macrophage-1 antigen in neutrophils in the pulmonary capillaries as a biomarker capable of diagnosing pulmonary microcirculation disorders
  • another embodiment of the present invention uses this A composition or kit for diagnosing microcirculatory disorders may be provided.
  • another embodiment of the present invention may provide a method of providing information for diagnosing pulmonary microcirculation disorder using the same.
  • the present invention comprises the steps of measuring the expression or activity of macrophage-1 antigen (Mac-1) in neutrophils isolated from pulmonary capillaries of a test subject; And it is possible to provide a method for providing information for diagnosing whether or not a pulmonary microcirculation disorder, including; checking a ratio of functional capillaries through which red blood cells pass among the total capillaries of the lung of the test subject.
  • Mac-1 antigen Mac-1 antigen
  • the method is to determine the level of expression or activity of macrophage-1 antigen in neutrophils isolated from pulmonary capillaries of the test subject and the level of expression or activity of macrophage-1 antigen in neutrophils isolated from pulmonary capillaries of a normal control group. It may further include comparing with.
  • the method includes the expression or activity of macrophage-1 antigen in neutrophils isolated from pulmonary capillaries of the test subject. If it is higher than the degree, the step of providing information that there is a pulmonary microcirculation disorder may be further included.
  • the level of macrophage-1 antigen expression or activity in neutrophils isolated from pulmonary capillaries of the test subject is 10% or more than the expression or activity of macrophage-1 antigen in neutrophils isolated from pulmonary capillaries of the normal control.
  • the method further comprises comparing the ratio of functional capillaries through which red blood cells pass among the total capillaries in the lung of the test subject with the ratio of functional capillaries through which red blood cells pass through the total capillaries in the lung of a normal control group.
  • the method is a case where the ratio of functional capillaries through which red blood cells pass among the total capillaries in the lung of the test subject is lower than the ratio of functional capillaries through which red blood cells pass through the total capillaries in the lung of the normal control group. It may further include providing information that there is a circulation disorder.
  • the ratio of functional capillaries through which red blood cells pass among the total capillaries in the lung may be a functional capillary ratio (FCR) according to Equation 1 above.
  • the ratio of functional capillaries through which red blood cells pass among the total lung capillaries of the test subject is 70% or less, less than 65%, and 60% of the ratio of the functional capillaries through which red blood cells pass through the total capillaries in the lung of the normal control group. % Or less, 55% or less, 50% or less, 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, or 5% or less, lung microscopic
  • the ratio for determining whether the microcirculation disorder is present may vary depending on the type of organ of the individual in which capillaries for measuring whether the microcirculation disorder is distributed, and is not limited to the above range. .
  • the proportion of functional capillaries through which red blood cells pass among the total capillaries in the lungs is a result measured while ensuring statistical significance.
  • the concept of statistical significance is a case in which a significant difference is shown through biological statistical analysis, and in a quantitative case, the p value is less than 0.05.
  • the present invention can provide a composition for diagnosing pulmonary microcirculation disorders, including a reagent for detecting mRNA or protein of macrophage-1 antigen (Mac-1) in neutrophils in pulmonary capillaries.
  • a composition for diagnosing pulmonary microcirculation disorders including a reagent for detecting mRNA or protein of macrophage-1 antigen (Mac-1) in neutrophils in pulmonary capillaries.
  • Mac-1 antigen Mac-1 antigen
  • the present invention can provide a kit for diagnosing pulmonary microcirculation disorders comprising a reagent for detecting mRNA or protein of macrophage-1 antigen (Mac-1) in neutrophils in pulmonary capillaries,
  • the kit may further include an instruction sheet describing a method of providing information for diagnosing microcirculation disorder as described above.
  • the reagent for detecting mRNA or protein of macrophage-1 antigen included in the composition or kit for diagnosing whether or not pulmonary microcirculation disorder may include one or more of primers and probes that specifically bind to macrophage-1 antigen.
  • the macrophage-1 antigen protein detection reagent may include at least one of an antibody and a probe that specifically binds to the macrophage-1 antigen.
  • probe refers to a polynucleotide having a base of a sequence capable of complementarily binding to a target site of a gene, a variant thereof, or a polynucleotide and a labeling material bound thereto.
  • primer refers to a polynucleotide having a base of a sequence capable of complementarily binding to the end of a specific region of a gene used to amplify a specific region corresponding to a target site of a gene using PCR, or Means that variant.
  • the primer is not required to be completely complementary to the end of a specific region, and may be used as long as it is complementary enough to hybridize to the end to form a double chain structure.
  • hybridization means that two single-stranded nucleic acids form a duplex structure by pairing of complementary base sequences.
  • Hybridization can occur not only when the complementarity between single-stranded nucleic acid sequences is perfect, but also in the presence of some mismatch bases.
  • polynucleotide refers to a polymer of a plurality of nucleotides, and refers to a polynucleotide in a broad sense including an oligonucleotide, which is a polymer of dozens of nucleotides in a conventional sense.
  • a mouse model of acute lung injury induced by sepsis was prepared in the following manner.
  • mice used in this example were ventilated under a light:dark cycle of 12 hours: 12 hours (12:12 h), and temperature (22.5°C) and humidity (52.5%) were controlled in cages. They were housed individually and provided with a standard diet and ad libitum .
  • Male mice (20 to 30 g) aged 8 to 20 weeks were used as the experimental group.
  • C57BL/6N mice were purchased from OrientBio (Suwon, Korea), Tie2-GFP mice (Stock No. 003658, Jackson Laboratory) were purchased from Jackson Laboratory, and GFP in the Tie2-GFP mice was endothelium-specific Tie2 Expressed under the promoter.
  • LPS 10 mg/kg, E.coli serotype 055:B5, L2880, Sigma-Aldrich
  • mice injected with the same amount of PBS into the peritoneum were prepared.
  • Example 1-1 In order to diagnose microcirculation disorder, a mouse model of acute lung injury induced by sepsis was prepared in the same manner as in Example 1-1.
  • mice used at this time were LysM GFP/+ mice, not Tie2-GFP mice, which were all mice used in this example, which were provided by Professor Minsoo Kim of the University of Rochester, USA (hereinafter, LysM Referred to as GFP/+ mouse model).
  • the following experiment was performed using a mouse model in which a high dose of LPS was administered to the LysM GFP/+ mice as a sepsis-induced acute lung injury (ALI) mouse model.
  • ALI sepsis-induced acute lung injury
  • mice to LPS the peritoneum (10 mg / kg, E.coli serotype 055 B5, L2880, Sigma-Aldrich ) ( peritoneum) intraperitoneally
  • a mouse model 3 hours after LPS administration among ALI mouse models is referred to as an LPS 3h mouse model
  • a mouse model 6 hours after LPS administration is referred to as an LPS 6h mouse model
  • mice injected with the same amount of PBS into the peritoneum hereinafter referred to as a control group or a PBS mouse model
  • Example 1-3 Preparation of a mouse model to study a composition for preventing or treating lung injury disease
  • Example 1-1 In order to study a composition for preventing or treating lung injury disease, a mouse model of acute lung injury induced by sepsis was prepared in the same manner as in Example 1-1.
  • mice used at this time were LysM GFP/+ mice, not Tie2-GFP mice, which were all mice used in this example, which were provided by Professor Minsoo Kim of the University of Rochester, USA (hereinafter, LysM Referred to as GFP/+ mouse model).
  • the LysM GFP/+ mouse model administered with a high dose of LPS or a CLP (cecal ligation and puncture) mouse model was used as a sepsis-induced acute lung injury (ALI) mouse model. The experiment was carried out.
  • mice to LPS the peritoneum (10 mg / kg, E.coli serotype 055 B5, L2880, Sigma-Aldrich ) ( peritoneum) intraperitoneally
  • a mouse model 3 hours after LPS administration among ALI mouse models is referred to as an LPS 3h mouse model
  • a mouse model 6 hours after LPS administration is referred to as an LPS 6h mouse model
  • mice injected with the same amount of PBS into the peritoneum hereinafter referred to as a control group or a PBS mouse model
  • the CLP model was performed by a single experienced experimenter according to the method described above. Specifically, 75% of the cecum (cecum) of the LysM GFP/+ mouse is firmly housed with 6-0 black silk, and a single puncture with a double hole pierced at the end of the cecum with a 21-gauge needle I made it. Then, the cecum was gently squeezed to check whether a puncture for pushing the feces was open. The cecum was replaced with the abdominal cavity, and the abdominal incision was sutured with 4-0 black silk. The shame group went through the same surgical procedure except for cecal ligation and puncture.
  • neutrophil removal model a mouse model depleted of neutrophils. Specifically, neutrophils by intraperitoneally injecting 200 ⁇ g of anti-Ly6G+ monoclonal antibody (Clone 1A8, 551459, BD Biosciences) to the LysM GFP/+ mice of Example 1-3 24 hours before in vivo lung imaging.
  • a mouse model (hereinafter, N-Dep model) without lung injury was prepared.
  • Example 1-3 In the same manner, 24 hours before the acute lung injury mouse model of Example 1-3 was prepared in the acute lung injury mouse model by the process of Example 1-3, anti-Ly6G+ monoclonal antibody (Clone 1A8, 551459, BD Biosciences) 200 ⁇ g was injected intraperitoneally to prepare a lung injury mouse model (hereinafter, N-Dep+LPS model) depleted of neutrophils.
  • anti-Ly6G+ monoclonal antibody (Clone 1A8, 551459, BD Biosciences) 200 ⁇ g was injected intraperitoneally to prepare a lung injury mouse model (hereinafter, N-Dep+LPS model) depleted of neutrophils.
  • Example 2 Red blood cells and blood vessel structure staining, neutrophil labeling, and in vivo lung imaging
  • erythrocytes and vasculatures of the mouse model of Example 1-1 were fluorescently stained. Specifically, red blood cells were obtained through cardiac puncture, and then labeled according to the method described in the product information sheet. At this time, the red blood cells were fluorescently labeled with Vybrant DiD (V22887, ThermoFisher Scientific). Then, immediately before photographing, the 50 million count of DiD-labeled red blood cells were injected through the vascular catheter of the tail vein of the Tie2-GFP-ALI mouse model of Example 1-1, and adoptive transfer. Was performed.
  • Vybrant DiD V22887, ThermoFisher Scientific
  • FITC molecular weight 2M Da, Sigma-Aldrich
  • TMR tetramethylrhodamine
  • erythrocytes and vasculature of the mouse model of Example 1-2 were fluorescently stained. Specifically, red blood cells were obtained through cardiac puncture, and then labeled with Vybrant DiD (V22887, ThermoFisher Scientific) according to the method described in the product information sheet. Then, just before photographing, the 50 million count of DiD-labeled red blood cells were injected through the vascular catheter of the tail vein of the mouse model of Example 1-2. In addition, in order to visualize the vasculature, FITC (molecular weight 2M Da, Sigma-Aldrich) or tetramethylrhodamine (TMR) bound with dextran dye was added to the mouse model of Example 1 as described above. It was injected through the same vascular catheter.
  • Vybrant DiD V22887, ThermoFisher Scientific
  • erythrocytes and vasculature of the mouse model of Examples 1-3 were fluorescently stained. Specifically, red blood cells were obtained through cardiac puncture, and then labeled with Vybrant DiD (V22887, ThermoFisher Scientific) according to the method described in the product information sheet. Then, just before photographing, the 50 million count of DiD-labeled red blood cells were injected through the vascular catheter of the tail vein of the mouse model of Example 1-3. In addition, in order to visualize the vasculature, FITC (molecular weight 2M Da, Sigma-Aldrich) or tetramethylrhodamine (TMR) to which dextran dye is bound was added to the mouse model of Examples 1-3. It was injected through the same vascular catheter as above.
  • Vybrant DiD V22887, ThermoFisher Scientific
  • the Tie2-GFP-ALI mouse model of Example 1-1 the control mouse model and the normal group (Sham group) mouse model
  • the LysM GFP/+ mouse model of Example 1-2 the ALI mouse model, LPS 3h mouse model, LPS 6h mouse model and PBS mouse model
  • the LysM GFP/+ mouse model of Example 1-3 ALI mouse model, PBS mouse model, and Shame group mouse model
  • Example 1- Each of the N-Dep mouse model and N-Dep+LPS mouse model of 4, and the Mac-1 inhibitory mouse model of Experimental Example 12-1 below were used as ketamine (80 mg/kg) and xylazine (12 mg).
  • the tail vein was cannulated with a 30-gauge needle attached to a PE-10 tube for intravenous injection of the dye, red blood cells and neutrophils of (1) above. Then, the mouse model was placed on the right side, and left thoracotomy was performed. The skin and muscles were incised until the ribs were exposed, and the pleura was exposed by making an incision between the 3rd and 4th ribs. After thoracotomy, the imaging window of the following experimental example was applied to the pleural surface, and a pump (DOA-P704-AA, GAST) and a regulator (NVC 2300a, EYELA) through a tube connected to the lung imaging window were used to provide a negative suction pressure. ) was added.
  • a pump DOA-P704-AA, GAST
  • a regulator NVC 2300a, EYELA
  • the laser scanning unit includes X-axis scanning using a rotating polygonal mirror with 36 sides (MC-5, aluminum coating, Lincoln Laser) and Y-axis scanning using a galvanometer scanning mirror (6230H, Cambridge Technology). It consists of four axes. Lung of the Tie2-GFP-ALI mouse model of Example 1-1 through a commercially available objective lens (LUCPLFLN, 20X, NA 0.45, Olympus, LUCPLFLN, 40X, NA 0.6, Olympus, LCPLFLN100XLCD, 100X, NA 0.85, Olympus) A two-dimensional raster scanning laser beam was transferred.
  • LOCPLFLN 20X, NA 0.45, Olympus, LUCPLFLN, 40X, NA 0.6, Olympus, LCPLFLN100XLCD, 100X, NA 0.85, Olympus
  • the fluorescence signal emitted from the lungs of the mouse model was detected in advance in the XYZ conversion 3D step (3DMS, Sutter Instrument) by the objective lens.
  • the de-scanned three-color fluorescent signal is divided into a spectrum with a dichroic beam splitter (DBS4; FF560-Di01, DBS5; FF649-Di01, Semrock), and then a band pass filter (BPF1). ; FF02-525/50, BPF2; FF01-600/37, BPF3; FF01-685/40, Semrock) through a photomultiplier (PMT; R9110, Hamamatsu).
  • DBS4 dichroic beam splitter
  • BPF1 band pass filter
  • PMT photomultiplier
  • each PMT was digitized by a 3-channel frame grabber (Solios, Matrox) with 8 bit resolution at a sampling rate of 10 MHz.
  • a 3-channel frame grabber Solios, Matrox
  • MIL9, Matrox Matrox Imaging Library
  • Visual C# movies with an image rate were displayed and recorded in real time with a frame rate of 30 Hz and a frame size of 512 X 512 pixels. .
  • Images captured using the imaging system were displayed and stored at an acquisition rate of 30 frames per second of 512 X 512 pixels per frame.
  • Real-time image frames were averaged over 30 frames using MATLAB (Mathworks) code to improve contrast and signal-to-noise ratio.
  • MATLAB Mathet al.
  • Image rendering using 3D reconstruction, track analysis of red blood cells and neutrophils, and track displacement display were performed with IMARIS 8.2 (Bitplane).
  • the lung microcirculation of the control mouse model of Example 1-1 was photographed by the imaging system, and an image obtained therefrom was processed according to the image processing procedure as shown in FIG. 2.
  • red blood cells (DiD-labeled red blood cells) moving at a high speed are detected inside the pulmonary capillaries labeled with GFP. Since it can be seen clearly, a plurality of moving images of red blood cells moving through capillaries can be obtained, and spatial information on the flow trajectory and velocity of each red blood cell can be obtained.
  • the pulmonary microcirculation of the LysM GFP/+ mouse model of Example 1-2 without administration of LPS was photographed by the imaging system, and the image obtained therefrom was processed according to the image processing procedure as shown in FIG. 7. .
  • the functional capillary ratio (FCR; calculated as the functional capillary area to the total capillary area) decreases at the beginning of the acute lung injury.
  • the capillary obstruction or blockages found in is induced by an object inside the capillary that can represent the primary pathological mechanism underlying the FCR reduction. From the results shown in FIG. 7, since neutrophils respond rapidly to systemic inflammation, it was found that the target inducing the obstruction was neutrophils.
  • the neutrophils in the capillaries is related to microcirculation disorders, particularly sepsis, a method for providing information according to an aspect of the present invention, and microcirculation
  • the disorder diagnosis device is used, the movement of neutrophils can be clearly seen inside the capillaries, so that multiple moving images of neutrophils moving through the capillaries can be obtained, and information on the movement of each neutrophil is obtained to You can easily and conveniently diagnose the presence of a circulatory disorder.
  • Functional capillary fraction area of functional capillaries / area of total capillaries.
  • Equation 1 the total capillary area is the area of the blood vessel detected by the Tie2 or dextran signal, and the functional capillary area is the area where the DiD-labeled red blood cells move. All image processing for calculating the functional capillary fraction was performed by ImageJ (https://imagej.nih.gov/ij/), and the results are shown in FIGS. 3 and 4.
  • microcirculation can be quantified by calculating a functional capillary fraction using a microcirculation quantification method and a microcirculation device according to an aspect of the present invention.
  • the functional capillary fraction of the Tie2-GFP-ALI mouse model in which sepsis was induced by administration of LPS prepared in Example 1-1 and the control group to which PBS was administered instead of LPS was compared.
  • the control mouse model also photographed lung microcirculation in the same manner as in Experimental Example 1-1 and Experimental Example 2 and analyzed the image.
  • red blood cells were expressed as maximal intensity projection in a sequential image of 600 frames (20 seconds).
  • the perfusion of the control model shows a broad and diffuse characteristic
  • the perfusion of the lung injury mouse model (Tie2-GFP-ALI mouse model) is more concentrated and affects the arteries and some capillaries.
  • the acute lung injury mouse model (Tie2-GFP-ALI mouse model) has a dead space in which red blood cells cannot pass through the entire area of the pulmonary capillary vessels (dead space, white star in FIG. 5). Confirmed.
  • microcirculation quantification method and the microcirculation measuring device it is possible to more easily and conveniently quantify the microcirculation of an individual in vivo based on the functional capillary fraction, and the quantified result Based on this, it is possible to accurately and quickly determine whether there is a microcirculation disorder.
  • the number of neutrophils in the control group is about 10 cells/field
  • the number of neutrophils in the ALI mouse model is about 200 cells/field
  • the entrapment of the neutrophils in the capillaries is related to the microcirculation disorder, and the information providing method and the microcirculation disorder diagnosis apparatus according to an aspect of the present invention are used to control the movement of neutrophils. Since it is clearly visible inside the capillaries, it is possible to obtain a plurality of moving images of neutrophils moving through the capillaries, and by obtaining information on the movement of each neutrophil, it is possible to easily and conveniently diagnose whether an individual has a microcirculation disorder. .
  • neutrophils detected continuously for 2 minutes or more are neutrophils that do not move, so neutrophils are capillary due to lung damage.
  • FIG. 11 the x-axis represents time (sequestration time), and the y-axis represents the number of tracks shown in FIGS. 10A and 10B for each time.
  • the mouse model (LPS 6h) 6 hours after LPS administration had about 300 tracks between 29 and 30 minutes.
  • the mouse model confirmed that there were many tracks in which neutrophils were trapped or isolated for a long time in the microcirculation compared to the control group. That is, in the control group, most of the neutrophils were isolated for a very short time, and the ratio of the isolated neutrophils was confirmed to be significantly increased in the lung injury mouse model (LPS 3h, LPS 6h) compared to the control group.
  • the isolation time of the control group is about 3 minutes
  • the LPS 3h mouse model is about 8 minutes
  • the LPS 6h mouse model is about 18 minutes
  • the control (PBS) The isolation time of neutrophils in the lung injury mouse model (LPS administration group) was longer, and the isolation time was approximately 6 hours after LPS administration 3 hours (LPS 3h mouse model) (LPS 6h mouse model). It was confirmed that it was about twice as long.
  • the displacement of the control (PBS) is about 3 ⁇ m
  • the LPS 3h mouse model is about 8 ⁇ m
  • the LPS 6h mouse model is about 4 ⁇ m
  • the displacement of the lung injury mouse model (LPS 3h mouse model) 3 hours after administration increased by about 2 to 3 times
  • the displacement of the lung injury mouse model (LPS 6h mouse model) 6 hours after LPS administration was again similar to that of the control group. It was confirmed that it decreased.
  • the moving distance of the control group is about 10 ⁇ m
  • the LPS 3h mouse model is about 23 ⁇ m
  • the LPS 6h mouse model is about 15 ⁇ m
  • the control (PBS) In comparison, the movement distance of the lung injury mouse model (LPS 3h mouse model) 3 hours after LPS administration increased by about 2 times, and the movement distance of the lung injury mouse model (LPS 6h mouse model) 6 hours after LPS administration was again similar to the control group. It was confirmed that it decreased to the level.
  • the moving speed of the control group is about 1.0 ⁇ m/m
  • the LPS 3h mouse model is about 1.9 ⁇ m/m
  • the LPS 6h mouse model is about 0.8 ⁇ m/m
  • the movement speed of the lung injury mouse model (LPS 3h mouse model) 3 hours after LPS administration increased by about 1.5 times or more
  • the movement speed of the lung injury mouse model (LPS 6h mouse model) after LPS administration 6 hours It was confirmed that again decreased to a level similar to that of the control group.
  • the meandering index (Fig.12e) of the track indicates the tendency of the neutrophils to advance in one direction.
  • the flexion index of the control is about 0.5 au
  • the LPS 3h mouse model is about 0.4 au
  • the LPS 6h mouse model is about 0.2 au
  • the lung injury mouse model had a smaller flexion index
  • the flexion index of the track was about 1/2 when 6 hours elapsed (LPS 6h mouse model) than 3 hours after LPS administration (LPS 3h mouse model). It was confirmed that it decreased.
  • the flexion index of the track decreases in the order of a control group, a lung injury mouse model 3 hours after LPS administration (LPS 3h mouse model), and a lung injury mouse model 6 hours after LPS administration (LPS 6h mouse model). , This is due to the increased sequestration time and retention (or sequestration) properties of the neutrophils.
  • neutrophils when the dynamic elements of the neutrophils are synthesized, neutrophils are activated in the early stages of acute lung injury induced by endotoxin, thereby increasing motility inside the capillaries, but it can be seen that they are gradually sequestered inside the capillaries in the later stages.
  • the information providing method and the microcirculation disorder diagnosis apparatus are used, the movement of neutrophils can be clearly seen inside the capillaries, so that a plurality of moving images of neutrophils moving through the capillaries can be obtained. Also, by obtaining information on the movement of each neutrophil, it is possible to easily and conveniently diagnose whether an individual has a microcirculation disorder.
  • neutrophils circulating in capillaries are already trapped in an area of blood vessels that are obstructed by other neutrophils. As the flow between the two neutrophils ceased, a dead cavity was formed in the microcirculation. In some capillary regions, it was possible to observe neutrophil clusters in which no flow was detected (FIG. 14), and the microcirculation disorder is not limited to capillaries, and a branching region of arteries connected to capillaries was also observed.
  • red blood cells were formed and stained to visualize functional capillary in which red blood cells move, that is, smooth microcirculation occurs.
  • the pulmonary microcirculation of the ALI mouse model with DiD-labeled red blood cells of Example 2 was photographed for 10 minutes at a slow speed by the method of Experimental Example 5, and the imaging treatment of Experimental Examples 1-1 and 1-2, respectively
  • the neutrophil track derivation method of Experimental Example 5 was used to obtain DiD-labeled red blood cells track paths.
  • the results are the same as in FIG. 15, and in FIG. 15, a circle with a white dotted line indicates a dead space in the microcirculation, and a white arrow indicates the direction of blood flow.
  • the scale bar in FIG. 16 is 100 ⁇ m.
  • red blood cells do not move in the region where neutrophils form a cluster, so that obstruction of capillaries and arteries induced by neutrophils forms dead spaces in the microcirculation.
  • DHE dihydroethidium staining was performed with neutrophil activation and glomerular injury in the acutely inflamed glomerulus.Proc Natl Acad Sci USA 2016: 113(35): E5172-5181), but a high dose of DHE (10 mg/kg) was used. 15.7 mg of DHE stock was prepared in 1.5 mL of DMSO and stored at a temperature of -20°C.
  • ROS active oxygen
  • control group PBS
  • LPS ALI mouse model
  • microcirculation quantification method and microcirculation measuring device makes it possible to more easily and conveniently quantify the microcirculation of an individual in vivo based on the functional capillary fraction, and the quantified result Based on this, it is possible to accurately and quickly determine whether microcirculation disorders exist.
  • mice model Pulmonary microcirculation was photographed in the same manner as in Experimental Example 1-1.
  • the mouse model is not the Tie2-GFP-ALI mouse model of Example 1-1, but the control mouse model (PBS) of Example 1-3, ALI mouse model (LPS), and of Example 1-4.
  • PBS control mouse model
  • LPS ALI mouse model
  • a neutrophil removal model N-Dep mouse model and N-Dep+LPS mouse model was used.
  • the lung microstructure of each of the control mouse model (PBS) of Example 1-3, the ALI mouse model (LPS), and the neutrophil removal model of Example 1-4 (N-Dep mouse model and N-Dep+LPS mouse model)
  • the circulation is photographed by the imaging system, and the result of processing the image obtained therefrom according to the image processing procedure is shown in FIG. 20.
  • the N-Dep+LPS mouse model among the neutrophil removal models of Example 1-4 was photographed by the image system by the above method 6 hours after LPS injection.
  • the functional capillary ratio (FCR; calculated as the functional capillary area to the total capillary area) decreases at the beginning of the acute lung injury, as shown in FIG.
  • the ALI mouse model forms a dead space in which red blood cells do not pass through capillaries, and the number of isolated neutrophils increases.
  • the neutrophil removal model N-Dep mouse model and N-Dep+LPS mouse model
  • neutrophils were decreased, which resulted in an increase in FCR and improvement in pulmonary microcirculation disorder.
  • Functional capillary fraction area of functional capillaries / area of total capillaries.
  • Example 1-3 As shown in Fig. 21A, compared to the control (PBS) mouse model of Example 1-3, the FCR (%) of the ALI mouse model (LPS) of Example 1-3 was reduced by 50% or more due to lung injury. It was confirmed that pulmonary microcirculation disorder occurred, and the neutrophil removal model of Example 1-4 (N-Dep mouse model and N-Dep+LPS mouse model) when compared with the ALI mouse model (LPS) of Examples 1-3. It was confirmed that the pulmonary microcirculation disorder was improved by increasing the FCR (%) by about 3 times or more.
  • Example 1-3 The unit area of each of the control mouse model (PBS) of Example 1-3, the ALI mouse model (LPS), and the neutrophil removal model of Example 1-4 (N-Dep mouse model and N-Dep+LPS mouse model) Histological analysis was performed to compare the number of neutrophils per (512 X 512 ⁇ m).
  • neutrophils were separated from each of the left ventricle (LV) and lungs of the control (PBS) mouse model and ALI mouse model (LPS) of Example 1-3, and the neutrophils and lungs derived from the left ventricle were separated.
  • flow cytometry was performed on the two isolated neutrophils.
  • the lungs were harvested without perfusion and were digested. Then, the lungs were put in a PBS solution, finely chopped, filtered through a 40 ⁇ m filter, and stained at 4° C. for 30 minutes. Meanwhile, in order to separate neutrophils from the left ventricle, 100 ⁇ l of blood was extracted from the left ventricle of a mouse model using injection, and then neutrophils 1.0 X 10 6 cells were hemolyzed using flow cytometry (FACS) (BD, LSRFortessa TM ). Was separated.
  • FACS flow cytometry
  • Clonal antibodies used in this experimental example were Ly6G-FITC (1A8, 551460, BD Biosciences), CD11a-BV510 (M17/4, 563669, BD Biosciences) CD11b-PE-Cy7 (M1/70, 552850, BD Biosciences), CD18-APC (C71/16, 562828, BD Biosciences), CD62L (MEL-14, 560514, BD Biosciences), Viability Dye eFluor 506 (65-0866-14, ThermoFisher Scientific), and stained cells are LSR Fortessa flow cytometer (BD Biosciences).
  • FIGS. 26A and 26C The filed in FIGS. 26A and 26C is a unit area (512 X 512 ⁇ m).
  • the number of neutrophils expressing CD11b on the surface of neutrophils per unit area is almost no control (PBS), whereas ALI mouse model (LPS) is about 300 ( Figure 26a), the number of neutrophils expressing CD18 on the surface of neutrophils per unit area (CD18+ Ly6G+ cells per field) is also about 40 in the control group (PBS), but about 330 in the ALI mouse model (LPS), which is about 8 times as large. It was confirmed that the difference remained (FIG. 26C).
  • the ratio of neutrophils expressing CD11b on the surface of neutrophils to all neutrophils is about 0.05 in the control (PBS), but in the ALI mouse model (LPS), it is 0.8, which is about 16 times (Fig. 26b), the ratio of neutrophils expressing CD18 on the surface of neutrophils to all neutrophils (CD18b+ Ly6G+ / total Ly6G+) was about 0.4 in the control (PBS), and 0.9, which is more than about twice the ALI mouse model (LPS) ( Figure 26d).
  • Mac-1 inhibition model In order to confirm the effect of inhibiting Mac-1 activity in lung injury disease, a mouse model (hereinafter, Mac-1 inhibition model) in which the activity of Mac-1 was inhibited was prepared. Specifically, 1 hour after the preparation of the CLP mouse model of Examples 1-3, 5 hours before in vivo imaging, an anti-CD11b antibody (5 mg/kg, Clone M1/70, 553307, BD Biosciences) was intraperitoneally injected to Mac A mouse model in which -1 activity was inhibited, an anti-Mac-1 model was prepared. In addition, as another Mac-1 inhibition model, absiximab (10 mg/kg, Clotinab, ISU Abxis) was applied to the CLP mouse model of Example 1-3 in the same manner as the anti-Mac-1 model. Injecting to prepare a absiksimab model.
  • the CLP mouse model (Fc) formed a dead space in which red blood cells did not pass through the capillaries, and then Mac-1 activity was suppressed (anti-Mac -1 mouse model and absiksimab mouse model), it was confirmed that the pulmonary microcirculation disorder was improved as red blood cells passed through the capillaries and the functional capillaries in which microcirculation smoothly occurred increased more and the dead space decreased.
  • the FCR (%) of the CLP mouse model (Fc) decreased by 50% or more, confirming that pulmonary microcirculation disorders occurred due to lung damage, and the CLP mouse Compared with the model (Fc), the Mac-1 inhibition model (anti-Mac-1 mouse model and absiksimab mouse model) increased FCR (%) by about 2 times or more, confirming that the pulmonary microcirculation disorder was improved.
  • the lung injury mouse model (CLP mouse model) is a capillary in which red blood cells cannot pass because the proportion of functional capillaries (FCR) of the total capillaries is less than 20% before the administration of absiksimab.
  • FCR functional capillaries
  • the number of red blood cells passing through capillaries increased rapidly, such as an increase in the functional capillary fraction (FCR) by about two times or more when the expression or activity of Mac-1 was suppressed by administration of absiksimab.
  • FIGS. 31A and 31B compared to the normal group (Sham), the partial pressure of oxygen in the artery of the CLP mouse model (corresponding to the Fc, pre-Abc mouse model) decreased (FIG. 31A ), and the partial pressure of carbon dioxide increased ( 31B), it was confirmed that the decrease in the functional capillary fraction in the lung injury mouse model (CLP mouse model) was a result of hypoxemia and hypercapnia.
  • Pulmonary microcirculation disorders due to hypoxia and hypercapnia were improved by suppression of the expression or activity of Mac-1 following administration of absikimab, which is a normal group in which the partial pressure of oxygen and carbon dioxide in the arteries of the post-Abc mouse model (Abc) were normal. It can be confirmed by changing the degree corresponding to (Figs. 31A and 31B). Through this, it was found that the pulmonary microcirculation disorder can be improved by increasing gas exchange in individuals with pulmonary microcirculation disorders through inhibition of Mac-1 expression or activity.
  • composition comprising the inhibitor of Mac-1 expression or activity in neutrophils according to an aspect of the present invention has an excellent effect of preventing or treating lung damage diseases by improving microcirculation disorders in the lungs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pulmonology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)

Abstract

본 발명은 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지로부터 기능적 모세혈관 분율을 계산함으로써 개체의 미세순환을 정량화하는 방법 및 개체의 미세순환 측정 장치에 관한 것이고, 개체의 모세혈관을 통과하는 제 2 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지로부터 상기 타겟 요소의 동적 요소를 분석함으로써 개체의 미세순환 장애를 위한 정보를 제공하는 방법 및 개체의 미세순환 장애 진단 장치에 관한 것이며, 폐 모세혈관 내의 중성구(neutrophil)에서의 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성 억제제를 포함하고 폐의 미세순환 장애를 개선하는 폐 손상 질환 예방 또는 치료용 조성물, 스크리닝 방법 및 폐 손상 장애 여부 진단을 위한 정보 제공 방법에 관한 것이다. 본 발명에 일 실시예에 따른 조성물은, 폐 모세혈관 내의 중성구에서의 마크로파지-1 항원의 발현 또는 활성을 억제함으로써 적혈구가 폐 모세혈관을 원활하게 통과할 수 있게 하여 폐 미세순환 장애 개체에서 가스 교환을 증가시켜 폐의 미세순환 장애를 개선할 수 있는바, 폐 손상 질환을 예방 또는 치료용 조성물로서 우수한 효과가 있다.

Description

미세순환 정량화 방법 및 장치
본 출원은 2019년 5월 24일자로 출원된 대한민국 특허출원 제10-2019-0061415호에 대한 우선권을 주장하며, 이 출원 내용 전체가 본 출원에 참조로서 통합된다. 또한, 본 출원은 2019년 5월 24일자로 출원된 대한민국 특허출원 제10-2019-0061416호에 대한 우선권을 주장하며, 이 출원 내용 전체가 본 출원에 참조로서 통합된다. 또한, 본 출원은 2019년 5월 24일자로 출원된 대한민국 특허출원 제10-2019-0061417호에 대한 우선권을 주장하며, 이 출원 내용 전체가 본 출원에 참조로서 통합된다.
본 연구는 한국과학기술원이 주관하여 보건복지부의 질환극복기술개발 사업의 지원을 통해 이루어졌으며, 연구명은 생체 내 현미경기술 기발 폐동맥 고혈압 병태생리의 세포수준 영상분석법 개발이다 (프로젝트 번호: HI15C0399030017). 또한, 본 연구는 한국과학기술원이 주관하여 과학기술정보통신부의 개인기초연구(과기정통부)(R&D) 사업의 지원을 통해 이루어졌으며, 연구명은 인간질환 병태생리 분석 및 진단을 위한 초고속 레이저주사 생체현미경 니들프로브 기반 생체조직 초심부 미세 영상 기술이다 (프로젝트 번호: NRF-2017R1E1A1A01074190).
본 명세서에는 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지로부터 기능적 모세혈관 분율을 계산함으로써 개체의 미세순환을 정량화하는 방법 및 개체의 미세순환 측정 장치가 개시된다. 또한, 본 명세서에는 개체의 모세혈관을 통과하는 제 2 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지로부터 상기 타겟 요소의 동적 요소를 분석함으로써 개체의 미세순환 장애를 위한 정보를 제공하는 방법 및 개체의 미세순환 장애 진단 장치가 개시된다. 또한, 본 명세서에는 폐 모세혈관 내의 중성구(neutrophil)에서의 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성 억제제를 포함하고 폐의 미세순환 장애를 개선하는 폐 손상 질환 예방 또는 치료용 조성물, 스크리닝 방법, 폐 손상 장애 여부 진단을 위한 정보 제공 방법, 폐 미세순환 장애 여부 진단용 조성물 및 키트가 개시된다.
미세순환(microcirculation)은 모세동맥, 모세정맥, 모세혈관, 모세림프관 등의 소혈관에서 볼 수 있는 혈액순환으로서 미소순환 또는 모세순환이라고도 하며, 조직 가운데서 물질 대사의 중심이 되는 곳이고 필요한 물질의 공급과 배출이 행해진다. 기존의 미세순환 정량화는 기능적 모세혈관의 밀도(Functional capillary, density, FCD) 측정에 의해 이루어졌으며, 이는 30 초 내에 혈관 내 적혈구의 통과 유무에 따라 적혈구가 통과하면 1, 통과하지 않으면 0으로 기능적 모세혈관의 수를 계산하는 것이었다. 종래 기능적 모세혈관 밀도 측정 방식은 하나의 모세혈관에서 30 초 내에 하나의 적혈구가 지나가는 경우와 수백 개의 적혈구가 지나가는 경우 모두 동일한 기능적 모세혈관의 밀도로 계산하기 때문에 실제로 기능성에 차이가 있음에도 불구하고, 이를 구분하지 못하는 한계가 있다. 또한, 폐 내 모세혈관은 그물망 구조의 형태를 가지고 있기 때문에 실제로 각 모세혈관의 시작과 끝 부분을 정확히 아는 것은 어려워 구획을 정하기 어렵고, 밀도 계산에 있어 한계가 존재할 수 밖에 없다. 나아가, 기능적 모세혈관의 밀도를 측정하는 방식은 실제로 육안으로 한 눈에 기능적 모세혈관을 확인하기 어려운 문제가 있어, 미세순환계에서 기능적 모세혈관의 밀도를 확인하는 방식이 많이 사용되었으나, 숫자로만 표현하는 방식들이 대부분이고, 이미지로 기능적 모세혈관의 변화를 보여주는 방식은 전무하였다.
한편, 패혈증(sepsis)은 입원 중 발생하는 사망의 가장 큰 부분을 차지하는 것으로(Torio CM, Moore BJ. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2013: Statistical Brief #204. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs, Rockville (MD), 2016; Hall MJ, Levant S, DeFrances CJ. Trends in inpatient hospital deaths: National Hospital Discharge Survey, 2000-2010. NCHS Data Brief 2013(118): 1-8.), 병원균 침입에 대한 숙주의 난독반응(dysregulated response)로 특징지어지는 증후군이며, 생명을 위협하는 여러 가지 장기 기능 부전(dysfunction)을 이끄는 혈류역학적 변화를 수반한다(Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016: 315(8): 801-810; Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med 2013: 369(9): 840-851). 패혈증에 의해 손상되는 장기 중 폐가 가장 먼저, 또한 가장 자주 손상되며, 급성 호흡 곤란 증후군(acute respiratory distress syndrome, ARDS) 또는 급성 폐 손상(acute lung injury, ALI) 여부는 패혈증 환자의 사망 가능성을 예측하는 가장 중요한 인자이다(Lagu T, Rothberg MB, Shieh MS, Pekow PS, Steingrub JS, Lindenauer PK. Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit Care Med 2012: 40(3): 754-761.). 패혈증으로 인한 급성 폐 손상 치료를 목적으로 하는 집중적인 연구 노력에도 불구하고, 미세순환에 목적을 둔 효과적인 치료법은 없는 실정이다(Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. N Engl J Med 2017: 377(6): 562-572). 사강(dead space)을 측정하는 것이 급성 폐 손상에 있어 유의미한 임상적 데이터를 제공할 수 있다는 것이 알려져 있으나(Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002: 346(17): 1281-1286), 현재까지는 폐 골격의 손상 측면에서 혈액에서 산소 공급은 일어나지만(ventilate) 관류(perfuse)되지는 않는 가설에 머물러 있을 뿐이다. 특히, 급성 호흡 곤란 증후군은 폐 손상과 미세순환 사이의 관련성에 대해 명확히 규명되지 않은 증후군이다(Ryan D, Frohlich S, McLoughlin P. Pulmonary vascular dysfunction in ARDS. Ann Intensive Care 2014: 4: 28). 최근, 한 연구에서 체외(ex vivo) 연구로 제한되었던 폐혈관 내 혈전의 증거가 보고되었으나, 중성구 유입의 생체 내(in vivo) 과정과 이에 따른 폐 미세순환의 교란 요인은 아직 연구된 바 없다(Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012: 122(8): 2731-2740; Yuan Y, Alwis I, Wu MCL, Kaplan Z, Ashworth K, Bark D, Jr., Pham A, McFadyen J, Schoenwaelder SM, Josefsson EC, Kile BT, Jackson SP. Neutrophil macroaggregates promote widespread pulmonary thrombosis after gut ischemia. Sci Transl Med 2017: 9(409)).
중성구의 조절되지 않는 모집(recruitment) 및 활성화는 사이토카인과 활성 산소종(reactive oxygen species, ROS)을 포함하는 염증 매개체의 방출을 통해 조직 손상을 유도할 수 있다(Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med 2011: 17(3-4): 293-307; Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM, Acute Lung Injury in Animals Study G. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 2011: 44(5): 725-738). 그러나, 폐 마이크로순환에서 중성구 자체의 구체적인 동적 요소에 대한 종래 연구 결과는 대부분은 전신 순환을 관찰하여 얻은 추측에 제한된다(Phillipson M, Kubes P. The neutrophil in vascular inflammation. Nat Med 2011: 17(11): 1381-1390). 중성구의 직경은 폐 모세혈관의 직경보다 크기 때문에, 중성구는 모세혈관을 통과하기 위해 변형되어야 하며, 이는 상대적으로 오랜 시간이 걸리는 과정이다(Doerschuk CM. Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation 2001: 8(2): 71-88). 중성구 격리(neutrophil sequestration)이라 불리는 이 과정은 원래 폐 내에서 자유롭게 순환하는 중성구 그룹보다는 세포에 대한 것으로 설명되었으며, 어느 정도 육안으로 볼 수 있는 방사선 모델링 영상 장치를 사용하여 관찰된 바 있다(MacNee W, Selby C. New perspectives on basic mechanisms in lung disease; Neutrophil traffic in the lungs: role of haemodynamics, cell adhesion, and deformability. Thorax 1993: 48(1): 79-88). 실제로, 이전의 연구는 폐 모세혈관에서 중성구 격리를 입증하였지만, 중성구 격리가 급성 폐 손상, 또는 급성 호흡 곤란 증후군으로 이어지는 과정에 대한 메커니즘은 알려진 바 없다(Kuebler WM, Borges J, Sckell A, Kuhnle GE, Bergh K, Messmer K, Goetz AE. Role of L-selectin in leukocyte sequestration in lung capillaries in a rabbit model of endotoxemia. Am J Respir Crit Care Med 2000: 161(1): 36-43; Lien DC, Henson PM, Capen RL, Henson JE, Hanson WL, Wagner WW, Jr., Worthen GS. Neutrophil kinetics in the pulmonary microcirculation during acute inflammation. Lab Invest 1991: 65(2): 145-159). 따라서, 급성 폐 손상 또는 급성 호흡 곤란 증후군에서 폐 미세순환의 중요성 및 모호성을 고려할 때, 병리생리학을 규명하기 위해서는 중성구의 동적 요소를 포함한 폐 미세순환의 변화를 이해하는 것이 필수적이며, 이는 패혈증으로 인한 급성 폐 손상 또는 급성 호흡 곤란 증후군에 대한 새로운 치료 전략으로 이어질 수 있다(Looney MR, Bhattacharya J. Live imaging of the lung. Annu Rev Physiol 2014: 76: 431-445).
이에, 본 발명자들은 밀도가 아닌 면적을 기반으로 한 개체의 미세순환 정량화 방법에 대한 연구를 수행하여, 본 발명을 완성하였다. 나아가, 본 발명자들은 폐 손상으로 인한 폐 미세순환을 연구하기 위해, 마이크로 석션(micro-suction)을 기반으로 한 폐 이미징 윈도우와 결합하여 맞춤 설계된 비디오-속력 레이저 스캐닝 공초점 현미경을 사용하였다(Kim P, Puoris'haag M, Cote D, Lin CP, Yun SH. In vivo confocal and multiphoton microendoscopy. J Biomed Opt 2008: 13(1): 010501; Han S, Lee SJ, Kim KE, Lee HS, Oh N, Park I, Ko E, Oh SJ, Lee YS, Kim D, Lee S, Lee DH, Lee KH, Chae SY, Lee JH, Kim SJ, Kim HC, Kim S, Kim SH, Kim C, Nakaoka Y, He Y, Augustin HG, Hu J, Song PH, Kim YI, Kim P, Kim I, Koh GY. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med 2016: 8(335): 335ra355). 또한, 생체 내 폐 이미징 시스템을 사용하여 패혈증으로 유도된 급성 폐 손상(ALI) 모델에서의 미세순환 관류의 변화를 직접 확인하여, 본 발명을 완성하였다. 이에 더하여, 본 발명자들은 폐 손상 질환을 예방 또는 치료하기 위한 조성물을 연구하기 위해, 폐 미세순환 장애를 가진 모델의 중성구를 맞춤 설계된 비디오-속력 레이저 스캐닝 공초점 현미경을 사용하여 관찰하고, 상기 중성구에서 폐 미세순환 장애를 개선하기 위한 타겟을 탐색하여, 본 발명을 완성하였다.
일 측면에서, 본 발명의 목적은, 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지로부터 상기 타겟 요소가 이동하는 기능적 모세혈관의 면적을 측정하고, 전체 모세혈관의 면적에 대한 기능적 모세혈관의 면적의 비율인 기능적 모세혈관 분율(FCR)을 기반으로 개체의 미세순환을 정량화하는 방법 및 장치, 해당 방법을 수행하는 컴퓨터 프로그램을 제공하는 것이다.
다른 측면에서, 본 발명의 목적은, 상기 개체의 미세순환 정량화 방법에 따라 계산된 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)을 이용하여 개체의 미세순환 장애 여부를 빠르고 정확하게 판단할 수 있는 개체의 미세순환 장애 진단을 위한 정보 제공 방법 및 장치, 해당 방법을 수행하는 컴퓨터 프로그램 및 시스템을 제공하는 것이다.
또 다른 측면에서, 본 발명의 목적은, 개체의 모세혈관을 통과하는 제 2 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지로부터 상기 타겟 요소의 격리 시간, 변위, 이동 거리, 이동 속력 또는 트랙 굴곡 지수의 동적 요소를 분석함으로써 개체의 미세순환 장애 진단을 위한 정보를 제공하는 방법 및 미세순환 장애 진단 장치를 제공하는 것이다.
또 다른 측면에서, 본 발명의 목적은, 폐 모세혈관 내의 중성구(neutrophil)에서의 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성을 억제함으로써 적혈구가 폐 모세혈관을 원활하게 통과할 수 있게 하여 폐 미세순환 장애 개체에서 가스 교환을 증가시켜 폐의 미세순환 장애를 개선할 수 있는, 폐 손상 질환 예방 또는 치료용 조성물 및 폐 손상 질환 예방 또는 치료물질을 스크리닝하는 방법을 제공하는 것이다.
또 다른 측면에서, 본 발명의 목적은, 폐 미세순환 장애 여부 진단에 유용한 폐 미세순환 장애 여부 진단 정보를 제공하는 방법, 폐 미세순환 장애 여부 진단용 조성물 및 키트를 제공하는 것이다.
일 측면에서, 본 발명은, 개체의 미세순환 정량화 방법으로서, 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟(target) 요소의 시간에 따른 복수의 이동 이미지를 수득하는 단계; 상기 복수의 이동 이미지로부터 상기 제 1 혈류 내 타겟 요소가 이동하는 기능적 모세혈관의 면적을 측정하는 단계; 및 하기 식 1에 의해 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)을 계산하는 단계;를 포함하는, 미세순환 정량화 방법을 제공한다.
[식 1]
기능적 모세혈관 분율 = 기능적 모세혈관의 면적 / 전체 모세혈관의 면적.
다른 측면에서, 본 발명은, 개체의 미세순환 측정 장치로서, 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟(target) 요소의 시간에 따른 복수의 이동 이미지에 기초하여 상기 식 1에 의해 개체의 미세순환에 대한 정량적인 데이터를 도출하는 개체의 미세순환 측정 장치를 제공한다. 구체적으로, 해당 장치는 상기 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟(target) 요소를 촬영하는 촬영부; 및 상기 촬영부에서 촬영된 이미지에 기반하여 상기 식 1에 의해 개체의 미세순환에 대한 정량적인 데이터를 도출하는 계측부;를 포함할 수 있다.
또 다른 측면에서, 본 발명은, 상기 개체의 미세순환 정량화 방법에 따라 계산된 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)로부터 개체의 미세순환 장애 여부를 진단하기 위한 정보를 추출하는 단계를 포함하는, 개체의 미세순환 장애 진단을 위한 정보 제공 방법 및 장치를 제공한다.
또 다른 측면에서, 본 발명은, 하드웨어와 결합되고 상기 미세순환 정량화 방법 또는 상기 개체의 미세 순환 장애 진단을 위한 정보 제공 방법을 실행하도록 구현되어 컴퓨터로 판독 가능한 매체에 저장된 컴퓨터 프로그램을 제공한다.
또 다른 측면에서, 본 발명은, 미세순환 장애 진단을 위한 정보 제공 방법으로서, 개체의 모세혈관을 통과하는 제 2 혈류 내 타겟(target) 요소의 시간에 따른 복수의 이동 이미지를 수득하는 단계; 상기 복수의 이동 이미지로부터 상기 제 2 혈류 내 타겟 요소의 격리 시간(sequestration time), 변위(track displacement length), 이동 거리(track length), 이동 속력(track velocity) 및 트랙 굴곡 지수(meandering index)로 이루어진 군으로부터 선택된 하나 이상의 동적 요소를 분석하는 단계; 및 상기 동적 요소 분석 결과로부터 개체의 미세순환 장애 진단을 위한 정보를 추출하는 단계;를 포함하는, 정보 제공 방법을 제공한다.
또 다른 측면에서, 본 발명은, 미세순환 장애 진단 장치로서, 개체의 모세혈관을 통과하는 제 2 혈류 내 타겟(target) 요소를 촬영하는 촬영부; 및 상기 촬영부에서 촬영된 복수의 이동 이미지에 기반하여 상기 제 2 혈류 내 타겟 요소의 격리 시간(sequestration time), 변위(track displacement length), 이동 거리(track length), 이동 속력(track velocity) 및 트랙 굴곡 지수(meandering index)로 이루어진 군으로부터 선택된 하나 이상의 동적 요소를 분석하는 분석부;를 포함하는, 미세순환 장애 진단 장치를 제공한다.
또 다른 측면에서, 본 발명은, 폐 모세혈관 내의 중성구(neutrophil)에서의 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성 억제제를 포함하고, 폐의 미세순환 장애 개선에 의해 폐 손상 질환을 예방, 개선 또는 치료하는 것인, 폐 손상 질환 예방 또는 치료용 조성물을 제공한다.
또 다른 측면에서, 본 발명은, (a) 폐 손상 모델을 준비하는 단계; (b) 상기 폐 손상 모델에 시험물질을 처리하는 단계; (c) 상기 시험물질이 상기 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성을 억제하는지 여부를 확인하는 단계; 및 (d) 상기 시험 물질이 상기 폐 손상 모델의 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 증가시키는지 여부를 확인하는 단계;를 포함하는 폐 손상 질환 예방 또는 치료물질을 스크리닝하는 방법을 제공한다.
또 다른 측면에서, 본 발명은, 시험대상의 폐 모세혈관으로부터 분리된 중성구(neutrophil)에서 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성을 측정하는 단계; 및 시험 대상의 폐 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 확인하는 단계;를 포함하는, 폐 미세순환 장애 여부 진단을 위한 정보 제공 방법을 제공한다.
또 다른 측면에서, 본 발명은, 폐 모세혈관 내의 중성구에서 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 mRNA 또는 단백질 검출 시약을 포함하는 폐 미세순환 장애 여부 진단용 조성물을 제공한다.
또 다른 측면에서, 본 발명은, 폐 모세혈관 내의 중성구에서 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 mRNA 또는 단백질 검출 시약을 포함하는 폐 미세순환 장애 여부 진단용 키트를 제공한다.
본 발명은, 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지로부터 상기 타겟 요소가 이동하는 기능적 모세혈관의 면적을 측정하고, 전체 모세혈관의 면적에 대한 기능적 모세혈관의 면적의 비율인 기능적 모세혈관 분율(FCR)을 기반으로 개체의 미세순환을 정량화하는 것에 관한 것으로, 이를 이용하면 밀도가 아닌 면적의 개념으로 미세순환을 정량화할 수 있어 하나의 적혈구가 지나가는 영역과 다수의 적혈구가 지나가는 영역을 차별화할 수 있다.
이를 통해 실제 적혈구가 지나가는 공간(영역)을 반영할 수 있어 보다 쉽고 간편하며 정확하게 미세순환을 정량화할 수 있고, 밀도 개념으로 정량화하기에 어려운 그물망 형태의 미세순환을 정량화할 수 있는 우수한 효과가 있다.
나아가, 한 장의 이미지로 전체 모세혈관의 영역 중 기능적 모세혈관의 영역이 차지하는 비율을 예컨대 눈으로도 확인할 수 있어, 기능적 모세혈관의 위치, 보다 더 많은 적혈구가 통과하는 모세혈관의 위치를 편리하게 확인할 수 있으며, 상기 정량화된 결과를 바탕으로 미세순환 장애 여부를 정확하고 빠르게 판단할 수 있는 우수한 효과가 있다.
또한, 본 발명은, 개체의 모세혈관을 통과하는 제 2 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지로부터 상기 제 2 혈류 내 타겟 요소의 격리 시간, 변위, 이동 거리, 이동 속력 또는 트랙 굴곡 지수의 동적 요소를 분석함으로써 개체의 미세순환 장애 진단을 위한 정보를 제공하는 방법 및 미세순환 장애 진단 장치에 관한 것으로, 상기 방법 및 장치를 이용하면, 모세혈관 내부에서의 중성구의 움직임에 대한 정보를 쉽고 편하게 획득하여 개체의 미세순환 장애 여부를 보다 정확하고 빠르게 진단할 수 있는 우수한 효과가 있다.
또한, 본 발명에 일 실시예에 따른 조성물은, 폐 모세혈관 내의 중성구(neutrophil)에서의 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성을 억제함으로써 적혈구가 폐 모세혈관을 원활하게 통과할 수 있게 하여 폐 미세순환 장애 개체에서 가스 교환을 증가시켜 폐의 미세순환 장애를 개선할 수 있는바, 폐 손상 질환을 예방 또는 치료용 조성물로서 우수한 효과가 있다. 또한, 폐 모세혈관으로부터 분리된 중성구에서 마크로파지-1 항원의 발현 또는 활성을 측정함으로써 폐 미세순환 장애 여부를 보다 빠르고 간편하며 정확하게 진단할 수 있다.
도 1은 본 발명의 일 실시예에 따른, DiD-라벨링된 적혈구의 양자면역전달(adoptive transfer)를 이용한 폐 미세순환 시각화를 위한 생체 내 폐 이미징 과정을 개략적으로 나타낸 도이다.
도 2는 폐 손상 마우스 모델의 폐 미세순환을 본 발명의 일 실시예에 따른 이미징 시스템에 의해 촬영하고 이로부터 수득한 이미지를 상기 이미지 처리 과정에 따라 처리된 결과를 나타낸 도로서, 도 2의 Time sequence는 형광 염색된 적혈구가 지나가는 각각의 시간대(0.000 sec, 0.033 sec 및 0.066 sec)에서의 이미지를 나타내며, 도 2의 Merge는 상기 각각의 시간대를 합한 이미지이다. 도 2에서 초록색(선 또는 면)은 본 발명의 일 실시예에 따른 마우스 모델의 폐 모세혈관에서 덱스트란 염료로 형광 염색된 혈관 구조(전체 모세혈관)를 나타내고, 붉은색(점)은 본 발명의 일 실시예에 따른 마우스 모델의 폐 모세혈관에서 DiD-라벨링된 적혈구(기능적 모세혈관)를 나타낸다.
도 3은 본 발명의 일 실시예에 따른 폐 손상 마우스 모델의 시간 영역별(90 프레임, 180 프레임, 360 프레임, 600 프레임)로 적혈구가 지나가는 공간을 합하여 계산한 기능적 모세혈관의 분율을 전체 모세혈관의 영역과 대비하여 그려진 도이다. 도 3에서 초록색(Capillary, Tie2)은 본 발명의 일 실시예에 따른 폐 손상 마우스 모델의 폐 모세혈관에서 덱스트란 염료로 형광 염색된 혈관 구조(전체 모세혈관)를 나타내고, 붉은색(Functional, DiD-RBC)은 상기 본 발명의 일 실시예에 따른 폐 손상 마우스 모델의 폐 모세혈관에서 DiD-라벨링된 적혈구(기능적 모세혈관)를 나타내며, Merge는 상기 기능적 모세혈관 및 전체 모세혈관 영역을 합한 것이다.
도 4는 본 발명의 일 실시예에 따른 폐 손상 마우스 모델의 시간 영역별로 적혈구가 지나가는 공간을 합하여 계산한 기능적 모세혈관의 분율을 나타낸 그래프이다. 도 4의 x 축은 시간별로 투사된 프레임의 수, y 축은 기능적 모세혈관의 분율(%)을 나타낸다.
도 5는 본 발명의 일 실시예에 따른 대조군 모델(PBS) 및 폐 손상 마우스 모델(LPS)의 미세순환을 촬영한 이미지로서, 전체 모세혈관, 기능적 모세혈관을 나타낸 도이다. 도 5에서 초록색(Capillary)은 폐 모세혈관에서 덱스트란 염료로 형광 염색된 혈관 구조(전체 모세혈관)를, 붉은색(Functional)은 DiD-라벨링된 적혈구(기능적 모세혈관, Functional, 붉은색)를, Merge는 상기 전체 모세혈관 및 기능적 모세혈관 영역을 합한 것을 나타낸다.
도 6a 내지 도 6d는 본 발명의 일 실시예에 따른 대조군 모델(PBS) 및 폐 손상 마우스 모델(LPS)의 전체 모세혈관 면적(도 6a), 기능적 모세혈관 분율(FCR, 도 6b), 동맥 내 산소 분압(도 6c) 및 이산화탄소 분압(도 6d)를 나타낸 그래프이다.
도 7은 LysM GFP/+ 마우스 모델의 폐 미세순환을 본 발명의 일 실시예에 따른 이미징 시스템에 의해 촬영하고 이로부터 수득한 이미지를 본 발명의 일 실시예에 따른 이미지 처리 과정에 따라 처리된 결과를 나타낸 도로서, 도 7에서 초록색(흰 색 면, LysM GFP/+)은 중성구를, 붉은색(*, TMR Dextran)은 폐의 모세혈관을 나타내며, 도 7의 스케일 바는 10 μm 이다.
도 8은 본 발명의 일 실시예에 따른 ALI 마우스 모델(LPS)과 대조군 모델(PBS)에서의 중성구 움직임을 본 발명의 일 실시예에 따른 이미징 시스템에 의해 촬영하고 이로부터 수득한 이미지를 이미지 처리 과정에 따라 처리된 결과를 나타낸 도이다. 도 8에서 붉은색(Ly6G)은 중성구를, 초록색(FITC Dextran)은 폐의 모세혈관을 나타내며, 확대도(Magnified spot)에서 Averaged imaging은 최대 30개 프레임의 평균 이미징을 나타내고, 점선으로 된 화살표는 흐름의 방향을, 흰색 화살촉(밝은 음영, 흰색)는 갇혀있는 중성구를, 노란색 화살촉(어두운 음영, 회색)은 흐름이 없는 모세혈관을 나타낸다. 도 8의 Wide field의 스케일 바는 100 μm, 확대도(magnified spot)의 스케일 바는 20 μm 이다.
도 9는 본 발명의 일 실시예에 따른 ALI 마우스 모델(LPS)과 대조군 모델(PBS) 간의 단위면적(512 X 512 μm)(field)당 중성구의 수를 비교한 그래프이다.
도 10a는 본 발명의 일 실시예에 따른 폐 손상 마우스 모델(LPS 3h 마우스 모델, LPS 6h 마우스 모델)과 대조군 모델(PBS) 각각의 폐 미세순환을 느린 속력으로 30분 동안 촬영한 저속력 이미징(time lapse imaging) 결과와 30분 동안 추적된 중성구(Ly6G+ 세포)의 움직임(트랙, track)을 나타낸 도이다. 도 10a의 스케일 바는 100 μm 이다. 도 10a에서 붉은색(Ly6G, 흰색 사각형)은 중성구를, 초록색(FITC Dextran, Neutrophil spot의 회색 음영의 선 또는 면)은 폐의 모세혈관을 나타낸다.
도 10b는 상기 도 10a에서 중성구(Ly6G+ 세포)의 트랙을 중첩시킨 도로서, 중성구의 각 트랙은 중심에서부터 그려진(plot) XY 변위를 보여주며, 스케일 바는 10 μm 이다.
도 11은 상기 도 10a 및 10b에 나타난 본 발명의 일 실시예에 따른 폐 손상 마우스 모델(LPS 3h 마우스 모델, LPS 6h 마우스 모델)과 대조군 모델(PBS) 각각의 시간(sequestration time) 별 트랙의 수를 나타낸 그래프이다.
도 12a 내지 도 12e는 본 발명의 일 실시예에 따른 폐 손상 마우스 모델(LPS 3h 마우스 모델, LPS 6h 마우스 모델)과 대조군 모델(PBS)에서의 중성구의 동적 요소인, 격리 시간(sequestration time)(도 12a), 변위(track displacement length)(도 12b), 이동 거리(track length)(도 12c), 이동 속력(track velocity)(도 12d) 및 트랙 굴곡 지수(meandering index)(도 12e)를 나타낸 그래프이다.
도 13은 본 발명의 일 실시예인 ALI 마우스 모델의 중성구(Ly6G+ 세포)의 폐 미세순환을 실시간으로 촬영한 도이다. 도 13에서 점선 화살표는 혈액 흐름을 나타내고, 노란색 화살촉(어두운 음영, 회색)은 그 전에 이미 격리된 중성구를 나타내며, 흰색 화살촉(밝은 음영, 흰색)은 새로 나타난 중성구가 모세혈관의 순환을 방해하여 모세혈관 내에서 사강이 형성된 것을 나타낸다. 또한, 도 13에서 점선은 모세혈관에서 형성된 사강을 나타내고, 도 13의 스케일 바는 20 μm 이다.
도 14는 본 발명의 일 실시예인 ALI 마우스 모델의 중성구(Ly6G+ 세포)의 폐 미세순환을 실시간으로 촬영한 도이다. 도 14에서 붉은색(Ly6G+, 어두운 음영)은 중성구를, 초록색(FITC Dextran, 밝은 음영)은 폐의 모세혈관을 나타내며, 도 14의 왼쪽 도는 모세혈관 내부의 혈전 형성에 대한 생체 내 이미징을(스케일 바는 20 μm), 도 14의 가운데 도는 동맥 내 혈전 형성의 생체 내 이미징을(스케일 바는 100 μm), 도 14의 오른쪽 도는 도 14의 가운데 도의 파란색 점선 사각형의 확대도이다(스케일 바는 20 μm).
도 15는 본 발명의 일 실시예에 따른 방법으로 맞춤형 비디오-속력 레이저-스캐닝 공초점 현미경 시스템을 구현하여 본 발명의 일 실시예인 ALI 마우스 모델의 모세혈관에 연결된 동맥의 분기 영역(branching region)에서 중성구(Ly6G+ 세포)에 의해 클러스터(cluster)가 형성되는 과정을 느린 속력으로 10 분 동안 촬영하여 생체 내 이미징을 수행하여 얻은 저속력 이미지(time-lapse imaging)이다. 도 15에서 붉은색(Ly6G, 밝은 음영)은 중성구를, 초록색(FITC Dextran, 어두운 음영)은 폐의 모세혈관을 나타내며, 경과 시간은 MM:SS(분:초)로 표시되고, 스케일 바는 20 μm 이다.
도 16은 본 발명의 일 실시예인 DiD-라벨링된 적혈구를 갖는 ALI 마우스 모델의 폐 미세순환을 본 발명의 일 실시예에 따른 방법으로 느린 속력으로 10 분 동안 촬영하여 이미징 처리 방법으로 처리한 도, 및 본 발명의 일 실시예에 따른 중성구의 트랙 도출 방법으로 얻은 DiD-라벨링된 적혈구의 트랙 경로(track path)이다. 도 16에서 심홍색(Ly6G, 밝은 음영)은 중성구를, 초록색(FITC Dextran, 어두운 음영)은 폐의 모세혈관을 나타내며, 흰색 점선으로 된 원은 미세순환에서의 사강을 나타내고, 흰색 화살표는 혈액 흐름의 방향을 나타내고, 도 16의 스케일 바는 100 μm 이다.
도 17은 본 발명의 일 실시예인 ALI 마우스 모델(LPS)과 대조군 모델(PBS) 각각의 중성구에서 활성 산소 생성 여부를 DHE 염색을 통해 확인한 도이다. 도 17에서, 초록색(FITC Dextran)은 폐의 모세혈관을, 붉은색(Ly6G)은 중성구를, 푸른색(DHE)은 활성 산소(ROS)를 나타내며, 스케일 바는 50 μm이다.
도 18a는 본 발명의 일 실시예인 ALI 마우스 모델(LPS)과 대조군 모델(PBS) 각각의 단위면적(512 X 512 μm)당 활성 산소를 생성하는 중성구(ROS+ Ly6G+)의 수를 비교한 그래프이다.
도 18b는 본 발명의 일 실시예인 ALI 마우스 모델(LPS)과 대조군 모델(PBS) 각각의 전체 중성구(Ly6G+) 중 활성 산소를 생성하는 중성구(ROS+ Ly6G+)의 비율을 비교한 그래프이다.
도 19는 본 발명의 일 실시예에 따른, 급성 폐 손상 마우스 모델(ALI 마우스 모델)을 이용하여 중성구가 고갈된 폐 손상 마우스 모델(N-Dep+LPS 마우스 모델)을 제조하는 과정을 개략적으로 나타낸 도이다.
도 20은 본 발명의 일 실시예에 따른 대조군 마우스 모델(PBS), ALI 마우스 모델(LPS), 중성구 제거 모델(N-Dep 마우스 모델 및 N-Dep+LPS 마우스 모델) 각각의 폐 미세순환을 본 발명의 일 실시예에 따른 이미징 시스템에 의해 촬영하고 이로부터 수득한 이미지를 이미지 처리 과정에 따라 처리된 결과를 나타낸 도이다. 도 20에서 초록색(Capillary, TMR Dextran)은 해부학적 모세혈관을, 붉은색(Functional, DiD-RBC)은 기능적 모세혈관(Functional capillary)을, 심홍색(magenta)(LysM, LysM GFP/+)은 중성구를 나타내고, 흰색 별표(*)는 사강(dead space)을, 흰색 화살촉은 갇힌 또는 격리된 중성구를 나타낸다. 도 20에서 Merge는 해부학적 모세혈관, 기능적 모세혈관 및 중성구 이미징을 모두 합한 것이고, 확대(Magnified) 이미지는 해부학적 모세혈관 및 중성구 이미징을 모두 합한 것이며, 도 20의 확대(Magnified) 이미지에서의 스케일 바는 20 μm, 나머지 이미지에서의 스케일 바는 100 μm 이다.
도 21a는 본 발명의 일 실시예에 따른 대조군 마우스 모델(PBS), ALI 마우스 모델(LPS), 중성구 제거 모델(N-Dep 마우스 모델 및 N-Dep+LPS 마우스 모델) 각각의 기능적 모세혈관 분율(Functional capillary ratio, FCR)을 나타낸 그래프이다.
도 21b는 본 발명의 일 실시예에 따른 대조군 마우스 모델(PBS), ALI 마우스 모델(LPS), 중성구 제거 모델(N-Dep 마우스 모델 및 N-Dep+LPS 마우스 모델) 각각의 단위면적(512 X 512 μm)당 중성구의 수를 나타낸 그래프이다.
도 22는 본 발명의 일 실시예에 따른 마우스 모델의 좌심실(left ventricle, LV)과 폐(lung) 각각으로부터 중성구를 분리하는 과정을 개략적으로 나타낸 도이다.
도 23은 본 발명의 일 실시예에 따른 마우스 모델의 좌심실(left ventricle, LV, 붉은색)과 폐(Lung, 파란색) 각각으로부터 분리된 중성구에 대하여 유세포 분석을 수행한 결과를 나타낸 도이다.
도 24a 내지 24d는 본 발명의 일 실시예에 따른 대조군(PBS) 마우스 모델 및 ALI 마우스 모델(LPS) 각각의 좌심실(left ventricle, LV)과 폐(lung) 각각으로부터 분리된 중성구에서 CD11a, CD11b, CD18 및 CD62L 각각의 발현량을 비교한 그래프이다. 도 24a 내지 24d에서 MFI는 평균 형광 강도(mean fluorescence intensity)를 나타낸다.
도 25a 및 25b는 본 발명의 일 실시예에 따른 대조군(PBS) 마우스 모델 및 ALI 마우스 모델(LPS) 각각의 격리된 중성구, 및 상기 중성구에서 CD11b 및 CD18 각각의 세포 표면에서의 발현을 in vivo 상에서 시각화한 결과를 나타낸 도이다. 도 25a 및 도 25b에서 붉은색(Ly6G+)은 중성구를, 초록색(CD11b 또는 CD18)은 중성구에서 CD11b 및 CD18 각각의 세포 표면에서의 발현을 나타내며, Merge는 중성구와 CD11b의 발현, 또는 중성구와 CD18의 발현을 각각 합한 도이다. 도 25a 및 25b의 스케일 바는 100 μm 이다.
도 26a 내지 26d는 본 발명의 일 실시예에 따른 ALI 마우스 모델(LPS)과 대조군 마우스 모델(PBS) 간의 CD11b 또는 CD18을 발현하는 중성구의 수를 비교한 그래프이다. 도 26a는 단위면적(512 X 512 μm)당 CD11b를 발현하는 중성구의 수를, 도 26b는 전체 중성구의 수에 대한 CD11b를 발현하는 중성구의 수의 비율을, 도 26c는 단위면적(512 X 512 μm)당 CD18을 발현하는 중성구의 수를, 도 26d는 전체 중성구의 수에 대한 CD18을 발현하는 중성구의 수의 비율을 나타낸다.
도 27은 본 발명의 일 실시예에 따른 CLP 마우스 모델(Fc), 항-Mac-1 마우스 모델(Anti-CD11b) 및 압식시맙 마우스 모델 모델(Abc), 및 정상군(Sham) 마우스 모델(Sham)의 폐 미세순환을 본 발명의 일 실시예에 따른 이미징 시스템에 의해 촬영하고 이로부터 수득한 이미지를 이미지 처리 과정에 따라 처리된 결과를 나타낸 도이다. 도 27에서 초록색(Capillary, TMR Dextran)은 해부학적 모세혈관을, 붉은색(Functional, DiD-RBC)은 기능적 모세혈관(Functional capillary)을, 심홍색(magenta)(Ly6G)은 중성구를 나타내고, 흰색 별표(*)는 사강(dead space)을 나타낸다. 도 27에서 Merge는 해부학적 모세혈관, 기능적 모세혈관 및 중성구 이미징을 모두 합한 것이고, 스케일 바는 100 μm 이다.
도 28a는 본 발명의 일 실시예에 따른 CLP 마우스 모델(Fc), 항-Mac-1 마우스 모델(Anti-CD11b) 및 압식시맙 마우스 모델 모델(Abc), 및 정상군(Sham) 마우스 모델(Sham)의 기능적 모세혈관 분율(FCR)을 비교한 그래프이다.
도 28b는 본 발명의 일 실시예에 따른 CLP 마우스 모델(Fc), 항-Mac-1 마우스 모델(Anti-CD11b) 및 압식시맙 마우스 모델 모델(Abc), 및 정상군(Sham) 마우스 모델(Sham)의 본 발명의 일 실시예에 따라 중성구(Ly6G+ 세포)의 수를 비교한 그래프이다.
도 29는 본 발명의 일 실시예에 따른 압식시맙 투여 전 CLP 마우스 모델(pre-Abc) 및 압식시맙 투여 후 CLP 마우스 모델(post-Abc)의 폐 미세순환을 본 발명의 일 실시예에 따른 이미징 시스템에 의해 촬영하고 이로부터 수득한 이미지를 이미지 처리 과정에 따라 처리된 결과를 나타낸 도이다. 도 29에서 초록색(Capillary, FITC Dextran)은 해부학적 모세혈관을, 붉은색(Functional, DiD-RBC)은 기능적 모세혈관(Functional capillary)을, 심홍색(magenta)(LysM, LysM GFP/+)은 중성구를 나타내고, 흰색 화살촉은 적혈구 관류의 회복을 나타낸다. 도 29에서 Merge는 해부학적 모세혈관, 기능적 모세혈관 및 중성구 이미징을 모두 합한 것이고, 스케일 바는 100 μm 이다.
도 30은 본 발명의 일 실시예에 따른 압식시맙 투여 전 CLP 마우스 모델(pre-Abc) 및 압식시맙 투여 후 CLP 마우스 모델(post-Abc)의 기능적 모세혈관 분율(FCR)을 비교한 그래프이다.
도 31a 및 도 31b는 본 발명의 일 실시예에 따른 정상군 마우스 모델(Sham), 압식시맙 투여 전 CLP 마우스 모델(Fc) 및 압식시맙 투여 후 CLP 마우스 모델(Abc)의 동맥혈에서의 산소 분압 및 이산화탄소 분압을 비교한 그래프이다.
본 명세서의 일 측면에서 "부", "모듈", "장치", "시스템" 등의 용어는 하드웨어뿐만 아니라 해당 하드웨어에 의하여 구동되는 소프트웨어의 조합을 지칭할 수 있다. 예컨대, 하드웨어는 CPU 또는 다른 프로세서(processor)를 포함하는 데이터 처리 기기일 수 있다. 또한, 하드웨어에 의해 구동되는 소프트웨어는 실행중인 프로세스, 객체(object), 실행파일(executable), 실행 스레드(thread of execution), 계산 프로그램(program) 등의 프로그램일 수 있다.
본 명세서의 일 측면에서 "미세순환(microcirculation)"은 모세동맥, 모세정맥, 모세혈관, 모세림프관 등의 소혈관에서 볼 수 있는 혈액순환으로서 미소순환 또는 모세순환이라고도 하며, 조직 가운데서 물질 대사의 중심이 되는 곳이고 필요한 물질의 공급과 배출이 행해진다. 본 발명의 일 측면에 있어서 미세순환은 제 1 혈류 내 타겟 요소의 복수의 이동 이미지로부터 측정되는 기능적 모세혈관의 면적에 기반하여 미세순환을 정량화할 수 있거나 개체의 미세순환 장애 진단을 위한 정보를 제공할 수 있는 것이거나, 제 2 혈류 내 타겟 요소의 복수의 이동 이미지로부터 상기 제 2 혈류 내 타겟 요소의 동적 요소를 분석하여 그 결과로부터 개체의 미세순환 장애 여부를 판단할 수 있는 미세순환이라면 제한되지 않는다. 또한, 본 발명의 일 측면에 있어서 미세순환은 예를 들어 폐 내 미세순환, 안구 내 미세순환, 신장 내 미세순환, 피부 내 미세순환일 수 있으며, 상기 피부는 손, 발 등일 수 있으나, 이에 제한되지 않는다.
본 명세서의 일 측면에서 미세순환 정량화 또는 미세순환 장애 진단을 목적으로 하는 개체이면 특별히 한정되지 않고, 어떠한 개체이든 적용 가능하다. 구체적으로 상기 개체는 원숭이, 개, 고양이, 토끼, 모르모트, 랫트, 마우스, 소, 양, 돼지, 염소 등과 같은 비인간동물 또는 인간일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 개체는 미세순환 장애, 미소순환 장애, 모세순환 장애 또는 말초순환 장애를 갖는 개체일 수 있으나, 이에 제한되는 것은 아니다.
본 명세서의 일 측면에서 개체의 모세혈관은 제 1 혈류 내 타겟 요소의 복수의 이동 이미지로부터 기능적 모세혈관의 면적을 측정하여 미세순환을 정량화할 수 있거나 개체의 미세순환 장애 진단을 위한 정보를 제공할 수 있는 모세혈관이거나, 또는 제 2 혈류 내 타겟 요소의 복수의 이동 이미지로부터 상기 제 2 혈류 내 타겟 요소의 동적 요소를 분석하여 그 결과로부터 개체의 미세순환 장애 여부를 판단할 수 있는 모세혈관이라면 제한되지 않으며, 개체의 폐, 신장, 피부 및 안구로 이루어진 군으로부터 선택된 하나 이상의 모세혈관일 수 있으나, 이에 제한되는 것은 아니다.
본 명세서의 일 측면에서 시간에 따른 복수의 이동 이미지는 1/900 초 내지 1 초의 시간 차이로 촬영된 복수의 이미지일 수 있다. 예를 들어, 상기 복수의 이미지가 하나의 시점(T)을 기준으로 상기 시점(T)의 이미지(M) 및 동일한 시간 차(t)의 전후 시점(T-1, T+1)의 이미지(M-1, M+1)인 경우, 상기 촬영된 3개의 이미지(M-1, M, M+1)는 각각 동일한 시간 차(t)의 연속적인 제 1 시점(T-1), 제 2 시점(T) 및 제 3 시점(T+1)의 이미지를 각각 나타내므로, 3개의 이미지(M-1, M, M+1)에는 각각 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟 요소 또는 제 2 혈류 내 타겟 요소의 시간에 따른 이동 경로가 나타날 수 있다. 이로부터 제 1 혈류 내 타겟 요소가 이동하는 기능적 모세혈관의 면적을 측정함으로써 미세순환에 대한 정량적인 데이터를 도출할 수 있고, 구체적으로는, 시간 차(t)를 두고 촬영된 3개의 이미지(M-1, M, M+1)에서 각각 나타난 동일한 타겟 요소를 판별함으로써, 기능적 모세혈관의 면적을 측정할 수 있다. 또는 이로부터 제 2 혈류 내 타겟 요소의 동적 요소, 예를 들어 상기 타겟 요소의 격리 시간, 변위, 이동 거리, 이동 속력 또는 트랙 굴곡 지수를 분석함으로써 미세순환 장애 진단을 위한 정보를 제공할 수 있고, 구체적으로는, 시간 차(t)를 두고 촬영된 3개의 이미지(M-1, M, M+1)에서 각각 나타난 동일한 타겟 요소를 판별함으로써, 상기 동일한 타겟 요소의 동적 요소를 분석할 수 있다.
본 명세서의 일 측면에서 상기 3개의 이미지(M-1, M, M+1)를 촬영하는 시간 차(t)는 1/900 초 내지 1 초일 수 있고, 구체적으로 1/300 초 내지 1/3 초일 수 있으며, 보다 구체적으로 1/900 초 이상, 1/800 초 이상, 1/700 초 이상, 1/600 초 이상, 1/500 초 이상, 1/ 400 초 이상, 1/300 초 이상, 1/200 초 이상, 1/100 초 이상, 1/90 초 이상, 1/80 초 이상, 1/70 초 이상, 1/60 초 이상, 1/50 초 이상, 1/45 초 이상, 1/40 초 이상, 1/35 초 이상, 1/30 초 이상, 1/25 초 이상, 1/20 초 이상, 1/15 초 이상, 1/10 초 이상 또는 1/5 초 이상일 수 있고, 1 초 이하, 1/5 초 이하, 1/10 초 이하, 1/15 초 이하, 1/20 초 이하, 1/25 초 이하, 1/30 초 이하, 1/35 초 이하, 1/40 초 이하, 1/45 초 이하, 1/50 초 이하, 1/60 초 이하, 1/70 초 이하, 1/80 초 이하, 1/90 초 이하, 1/100 초 이하, 1/200 초 이하, 1/300 초 이하, 1/400 초 이하, 1/500 초 이하, 1/600 초 이하, 1/700 초 이하, 1/800 초 이하 또는 1/900 초 이하일 수 있으나, 제 1 혈류 내 타겟 요소의 복수의 이동 이미지로부터 미세순환을 정량화할 수 있는 시간 차이이거나, 제 2 혈류 내 타겟 요소의 복수의 이동 이미지로부터 상기 타겟 요소의 동적 요소를 분석할 수 있는 시간 차이라면 이에 제한되지 않는다.
또는 본 명세서의 일 측면에서, 상기 시간에 따른 복수의 이동 이미지는 1 내지 900 프레임/초의 범위의 프레임 속도 또는 속력로 촬영된 복수의 이미지일 수 있고, 상기 프레임 속도 또는 속력은 구체적으로 3 내지 300 프레임/초일 수 있으며, 보다 구체적으로 1 프레임/초 이상, 5 프레임/초 이상, 10 프레임/초 이상, 15 프레임/초 이상, 20 프레임/초 이상, 25 프레임/초 이상, 30 프레임/초 이상, 35 프레임/초 이상, 40 프레임/초 이상, 45 프레임/초 이상, 50 프레임/초 이상, 60 프레임/초 이상, 70 프레임/초 이상, 80 프레임/초 이상, 90 프레임/초 이상, 100 프레임/초 이상, 200 프레임/초 이상, 300 프레임/초 이상, 400 프레임/초 이상, 500 프레임/초 이상, 600 프레임/초 이상, 700 프레임/초 이상 또는 800 프레임/초 이상일 수 있고, 900 프레임/초 이하, 800 프레임/초 이하, 700 프레임/초 이하, 600 프레임/초 이하, 500 프레임/초 이하, 400 프레임/초 이하, 300 프레임/초 이하, 200 프레임/초 이하, 100 프레임/초 이하, 90 프레임/초 이하, 80 프레임/초 이하, 70 프레임/초 이하, 60 프레임/초 이하, 50 프레임/초 이하, 45 프레임/초 이하, 40 프레임/초 이하, 35 프레임/초 이하, 30 프레임/초 이하, 25 프레임/초 이하, 20 프레임/초 이하, 15 프레임/초 이하, 10 프레임/초 이하 또는 5 프레임/초 이하일 수 있으나, 제 1 혈류 내 타겟 요소의 복수의 이동 이미지로부터 미세순환을 정량화할 수 있는 프레임 속도 또는 속력이거나, 제 2 혈류 내 타겟 요소의 복수의 이동 이미지로부터 상기 타겟 요소의 동적 요소를 분석할 수 있는 프레임 속도 또는 속력이라면 이에 제한되는 것은 아니다.
본 명세서의 일 측면에서 복수의 이미지는 공초점 주사 레이저 현미경(confocal scanning laser microscope), 형광 현미경(Fluorescence microscopy), 이광자현미경(Two-photon microscopy) 또는 삼광자 현미경(Three-photon microscopy)에 의해 촬영된 이미지일 수 있으나, 이에 제한되는 것은 아니다.
본 명세서의 일 측면에서 기능적 모세혈관(functional capillary)은 모세혈관 중 모세혈관의 기능, 예를 들어 확산에 의해 혈액과 조직 사이에서 산소, 이산화탄소, 영양분 및 기타 물질을 교환하는 기능이 원활히 일어나는 모세혈관을 의미한다. 상기 기능적 모세혈관은 백혈구, 적혈구, 혈소판, 림프구 등의 제 1 혈류 내 타겟 요소 또는 중성구 등의 제 2의 혈류 내 타겟 요소가 이동하는, 또는 통과하는 모세혈관일 수 있다. 전체 모세혈관 중 기능적 모세혈관이 많을수록 개체의 미세순환이 원활하거나 미세순환 장애가 없다는 것을 의미한다.
이하, 본 발명을 상세하게 설명한다.
일 측면에서, 본 발명은 개체의 미세순환 정량화 방법으로서, 상기 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟(target) 요소의 시간에 따른 복수의 이동 이미지를 수득하는 단계; 상기 복수의 이동 이미지로부터 상기 제 1 혈류 내 타겟 요소가 이동하는 기능적 모세혈관의 면적을 측정하는 단계; 및 하기 식 1에 의해 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)을 계산하는 단계;를 포함하는, 미세순환 정량화 방법을 제공한다.
[식 1]
기능적 모세혈관 분율 = 기능적 모세혈관의 면적 / 전체 모세혈관의 면적.
상기 개체의 미세순환 정량화는 개체의 미세순환의 순환 정도를 정량화하는 것을 의미한다.
상기 개체의 미세순환 정량화 방법은 상기 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟(target) 요소의 시간에 따른 복수의 이동 이미지를 수득하는 단계를 포함할 수 있다.
상기 제 1 혈류 내 타겟 요소는 개체의 미세순환의 모세혈관을 통과하는 요소로서, 상기 제 1 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지로부터 상기 타겟 요소가 이동하는 면적, 예를 들어 기능적 모세혈관의 면적을 측정함으로써 미세순환에 대한 정량적인 데이터를 도출할 수 있다. 이 때, 상기 제 1 혈류 내 타겟 요소는 미세순환을 따라 이동하는, 개체의 모세혈관을 통과하는 요소일 수 있고, 구체적으로 개체의 모세혈관을 통과하는 혈류의 속도 또는 혈류량을 실질적으로 반영할 수 있는 혈액의 구성 요소일 수 있으며, 보다 구체적으로 백혈구, 적혈구, 혈소판 및 림프구로 이루어진 군으로부터 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 제 1 혈류 내 타겟 요소는 이동 이미지를 수득할 수 있도록 표지(label)된 것이면 그 표시의 종류는 제한되지 않으며, 구체적으로 상기 표지는 형광 염색, 유전자변이 프로브(transgenic probe) 및 항체 표지로 이루어진 군으로부터 선택된 하나 이상일 수 있다. 보다 구체적으로 상기 유전자변이 프로브는 CFP(cyan fluorescent protein), YFP(yellow fluorescent protein), GFP(green fluorescent protein) 및 RFP(red fluorescent protein)으로 이루어진 군으로부터 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다. 또한 보다 구체적으로 상기 항체 표지는 형광 프로브(fluorescent probe)가 결합된 형태일 수 있으며, 예를 들어 Alexa 405, Alexa 488, Alexa 555 및 Alexa 647로 이루어진 군으로부터 선택된 하나 이상의 형광 프로브가 결합된 항체일 수 있으나, 이에 제한되지 않는다. 본 발명의 일 실시예에 따르면, 상기 제 1 혈류 내 타겟 요소가 적혈구인 경우 Vybrant DiD (V22887, ThermoFisher Scientific)으로 형광 염색하여 이의 복수의 이동 이미지로부터 적혈구가 이동하는 면적(기능적 모세혈관의 면적)을 측정함으로써 미세순환을 정량화하였다.
상기 개체의 미세순환 정량화 방법은 상기 복수의 이동 이미지로부터 상기 제 1 혈류 내 타겟 요소가 이동하는 기능적 모세혈관의 면적을 측정하는 단계를 포함할 수 있다.
상기 기능적 모세혈관(functional capillary)은 모세혈관 중 모세혈관의 기능, 예를 들어 확산에 의해 혈액과 조직 사이에서 산소, 이산화탄소, 영양분 및 기타 물질을 교환하는 기능이 원활히 일어나는 모세혈관을 의미한다. 상기 기능적 모세혈관은 백혈구, 적혈구, 혈소판, 림프구 등의 제 1 혈류 내 타겟 요소가 이동하는, 또는 통과하는 모세혈관일 수 있다. 전체 모세혈관 중 기능적 모세혈관이 많을수록 개체의 미세순환이 원활하거나 미세순환 장애가 없다는 것을 의미한다.
상기 기능적 모세혈관 면적 측정은 상기 복수의 이동 이미지로부터 동일한 타겟 요소를 판별하여 기능적 모세혈관의 면적을 측정하는 것일 수 있고, 상기 제 1 혈류 내 타겟 요소의 시간 차에 따른 위치 차이로부터 이동 면적을 측정함으로써 계산되는 것일 수 있다. 구체적으로 상기 복수의 이동 이미지 각각으로부터 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟 요소의 시간에 따른 이동 경로를 측정하고, 복수의 제 1 혈류 내 타겟 요소의 이동 경로로부터 기능적 모세혈관의 면적을 측정하는 것일 수 있다. 보다 구체적으로, 시간 차(t)를 갖고 촬영된 이미지를 바탕으로 복수의 이미지들을 상호간에 비교함으로써, 동일한 제 1 혈류 내 타겟 요소를 용이하게 판별 및 추적하여 단일 제 1 혈류 내 타겟 요소의 이동 경로를 측정하고, 이와 동일한 방법으로 수득한 복수의 제 1 혈류 내 타겟 요소의 이동 경로로부터 기능적 모세혈관의 면적을 측정할 수 있다.
본 발명의 일 실시예에 따르면, 제 1 혈류 내 타겟 요소를 적혈구로 하여 이를 형광 염색하고 각각의 시간대(0.000초, 0.033초 및 0.066초)별로 동일한 적혈구의 이동 이미지를 수득하여 상기 동일한 적혈구의 복수의 이동 이미지를 합한 경우, 모세혈관을 통해 이동하는 적혈구의 이동 경로를 측정할 수 있다(실험예 1-1 및 도 2). 또한, 상기와 같은 방법으로 복수의 적혈구 이동 경로를 합하여 기능적 모세혈관의 면적을 측정할 수 있다(실험예 2 및 도 3).
상기 개체의 미세순환 정량화 방법은 하기 식 1에 의해 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)을 계산하는 단계;를 포함할 수 있다.
[식 1]
기능적 모세혈관 분율 = 기능적 모세혈관의 면적 / 전체 모세혈관의 면적.
상기 미세순환 정량화는 상기 식 1에 의한 기능적 모세혈관 분율 계산에 의할 수 있다. 상기 미세순환 정량화는 밀도가 아닌 면적의 개념으로 미세순환을 정량화할 수 있어 하나의 적혈구가 지나가는 영역과 다수의 적혈구가 지나가는 영역을 차별화할 수 있으며, 이를 통해 실제 적혈구가 지나가는 공간(영역)을 반영할 수 있어 보다 쉽고 간편하며 정확하게 미세순환을 정량화할 수 있고, 밀도 개념으로 정량화하기에 어려운 그물망 형태의 미세순환을 정량화할 수 있다.
본 발명의 일 실시예에 따르면, 전체 모세혈관 면적은 Tie2 또는 덱스트란 신호에 의해 감지된 혈관 면적을 전체 모세혈관 면적으로, DiD 로 염색된 적혈구가 이동하는 면적을 기능적 모세혈관 면적으로 하여 상기 식 1에 의하여 기능적 모세혈관 분율을 계산하였으며, 이를 통해 개체의 미세순환을 정량화할 수 있음을 확인하였다(실험예 2, 및 도 3 및 4).
다른 측면에서, 본 발명은 개체의 미세순환 측정 장치로서, 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟(target) 요소의 시간에 따른 복수의 이동 이미지에 기초하여 상기 식 1에 의해 개체의 미세순환에 대한 정량적인 데이터를 도출하는 개체의 미세순환 측정 장치를 제공한다. 구체적으로, 해당 장치는 상기 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟(target) 요소를 촬영하는 촬영부; 및 상기 촬영부에서 촬영된 이미지에 기반하여 하기 식 1에 의해 개체의 미세순환에 대한 정량적인 데이터를 도출하는 계측부;를 포함할 수 있다. 상기 개체, 미세순환, 제 1 혈류 내 타겟 요소, 이미지, 미세순환 정량화에 대한 설명은 상술한 바와 같다.
[식 1]
기능적 모세혈관 분율 = 기능적 모세혈관의 면적 / 전체 모세혈관의 면적.
상기 개체의 미세순환 측정은 개체의 미세순환에 대한 정량적인 데이터에 의해 측정되는 것일 수 있으며, 상기 미세순환에 대한 정량적인 데이터는 상기 식 1에 의한 기능적 모세혈관 분율을 계산함으로써 도출되는 것일 수 있다.
상기 촬영부는 모세혈관을 통과하는 제 1 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지를 촬영할 수 있고, 만일, 하나의 시점(T)을 기준으로 상기 시점(T)의 이미지(M) 및 동일한 시간 차(t)의 전후 시점(T-1, T+1)의 이미지(M-1, M+1)를 각각 촬영한 것인 경우, 상기 촬영된 3개의 영상(M-1, M, M+1)은 각각 동일한 시간 차(t)의 연속적인 제 1 시점(T-1), 제 2 시점(T) 및 제 3 시점(T+1)의 이미지를 각각 나타내므로, 3개의 이미지(M-1, M, M+1)에는 각각 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟 요소의 시간에 따른 이동 경로가 나타날 수 있다. 이로부터 제 1 혈류 내 타겟 요소가 이동하는 기능적 모세혈관의 면적을 측정함으로써 미세순환에 대한 정량적인 데이터를 도출할 수 있고, 구체적으로는, 시간 차(t)를 두고 촬영된 3개의 영상(M-1, M, M+1)에서 각각 나타난 동일한 타겟 요소를 판별함으로써, 기능적 모세혈관의 면적을 측정할 수 있다.
상기 3개의 이미지(M-1, M, M+1)를 촬영하는 시간 차(t)는 1/900 초 내지 1 초일 수 있고, 구체적으로 1/300 초 내지 1/3 초일 수 있으며, 보다 구체적으로 1/900 초 이상, 1/800 초 이상, 1/700 초 이상, 1/600 초 이상, 1/500 초 이상, 1/ 400 초 이상, 1/300 초 이상, 1/200 초 이상, 1/100 초 이상, 1/90 초 이상, 1/80 초 이상, 1/70 초 이상, 1/60 초 이상, 1/50 초 이상, 1/45 초 이상, 1/40 초 이상, 1/35 초 이상, 1/30 초 이상, 1/25 초 이상, 1/20 초 이상, 1/15 초 이상, 1/10 초 이상 또는 1/5 초 이상일 수 있고, 1 초 이하, 1/5 초 이하, 1/10 초 이하, 1/15 초 이하, 1/20 초 이하, 1/25 초 이하, 1/30 초 이하, 1/35 초 이하, 1/40 초 이하, 1/45 초 이하, 1/50 초 이하, 1/60 초 이하, 1/70 초 이하, 1/80 초 이하, 1/90 초 이하, 1/100 초 이하, 1/200 초 이하, 1/300 초 이하, 1/400 초 이하, 1/500 초 이하, 1/600 초 이하, 1/700 초 이하, 1/800 초 이하 또는 1/900 초 이하일 수 있으나, 제 1 혈류 내 타겟 요소의 복수의 이동 이미지로부터 미세순환을 측정할 수 있는 시간 차이라면 이에 제한되지 않는다.
또는, 상기 시간에 따른 복수의 이동 이미지는 1 내지 900 프레임/초의 범위의 프레임 속도로 촬영된 복수의 이미지일 수 있고, 상기 프레임 속도는 구체적으로 3 내지 300 프레임/초일 수 있으며, 보다 구체적으로 1 프레임/초 이상, 5 프레임/초 이상, 10 프레임/초 이상, 15 프레임/초 이상, 20 프레임/초 이상, 25 프레임/초 이상, 30 프레임/초 이상, 35 프레임/초 이상, 40 프레임/초 이상, 45 프레임/초 이상, 50 프레임/초 이상, 60 프레임/초 이상, 70 프레임/초 이상, 80 프레임/초 이상, 90 프레임/초 이상, 100 프레임/초 이상, 200 프레임/초 이상, 300 프레임/초 이상, 400 프레임/초 이상, 500 프레임/초 이상, 600 프레임/초 이상, 700 프레임/초 이상 또는 800 프레임/초 이상일 수 있고, 900 프레임/초 이하, 800 프레임/초 이하, 700 프레임/초 이하, 600 프레임/초 이하, 500 프레임/초 이하, 400 프레임/초 이하, 300 프레임/초 이하, 200 프레임/초 이하, 100 프레임/초 이하, 90 프레임/초 이하, 80 프레임/초 이하, 70 프레임/초 이하, 60 프레임/초 이하, 50 프레임/초 이하, 45 프레임/초 이하, 40 프레임/초 이하, 35 프레임/초 이하, 30 프레임/초 이하, 25 프레임/초 이하, 20 프레임/초 이하, 15 프레임/초 이하, 10 프레임/초 이하 또는 5 프레임/초 이하일 수 있으나, 제 1 혈류 내 타겟 요소의 복수의 이동 이미지로부터 미세순환을 정량화할 수 있는 프레임 속도라면 이에 제한되는 것은 아니다.
상기 촬영부는 공초점 주사 레이저 현미경(confocal scanning laser microscope), 형광 현미경(Fluorescence microscopy), 이광자현미경(Two-photon microscopy) 또는 삼광자 현미경(Three-photon microscopy)일 수 있으나, 이에 제한되는 것은 아니다.
상기 계측부는 상기 촬영부에서 촬영된 제 1 혈류 내 타겟 요소의 복수의 이동 이미지로부터 동일한 타겟 요소를 판별하여 상기 제 1 혈류 내 타겟 요소의 시간 차에 따른 위치 차이로부터 이동 면적을 측정함으로써 기능적 모세혈관의 면적을 측정하고, 상기 식 1에 의해 기능적 모세혈관 분율을 계산하는 것일 수 있다. 구체적으로 제 1 혈류 내 타겟 요소의 복수의 이동 이미지 각각으로부터 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟 요소의 시간에 따른 이동 경로를 측정하고, 복수의 제 1 혈류 내 타겟 요소의 이동 경로로부터 기능적 모세혈관의 면적을 측정하는 것일 수 있다. 보다 구체적으로, 시간 차(t)를 갖고 촬영된 이미지를 바탕으로 복수의 이미지들을 상호간에 비교함으로써, 동일한 제 1 혈류 내 타겟 요소를 용이하게 판별 및 추적하여 단일 제 1 혈류 내 타겟 요소의 이동 경로를 측정하고, 이와 동일한 방법으로 수득한 복수의 제 1 혈류 내 타겟 요소의 이동 경로로부터 기능적 모세혈관의 면적을 측정하여 상기 식 1에 의해 기능적 모세혈관 분율을 계산하는 것일 수 있다. 이러한 이동 경로에 따른 이동 면적 측정을 위하여 예컨대 이동 경로 상의 픽셀 분석을 통해 면적을 구할 수 있다. 참고로, 아래 실시예에서는 ImageJ와 같은 분석 프로그램을 이용하였다.
또 다른 측면에서, 본 발명은 상기 개체의 미세순환 정량화 방법에 따라 계산된 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)로부터 개체의 미세순환 장애 여부를 진단하기 위한 정보를 추출하는 단계를 포함하는, 개체의 미세순환 장애 진단을 위한 정보 제공 방법을 제공한다. 상기 개체의 미세순환 정량화 방법, 기능적 모세혈관 분율, 미세순환에 대한 설명은 상술한 바와 같다.
또 다른 측면에서, 본 발명은 상기 계산된 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)로부터 개체의 미세순환 장애 여부를 진단하기 위한 정보를 추출하는 개체의 미세순환 장애 진단을 위한 정보 제공 장치를 제공한다. 해당 장치는 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟(target) 요소의 시간에 따른 복수의 이동 이미지에 기초하여 상기 식 1에 의해 개체의 미세순환에 대한 정량적인 데이터를 도출하는 미세순환 정량화 부; 및 상기 도출된 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)에 근거하여 미세순환 장애 여부를 결정하는 미세순환 장애 판별 부;를 포함할 수 있다.
상기 미세순환 장애는 미세순환이 정상이 아닌 경우를 말하며, 백혈구, 적혈구, 혈소판, 림프구 등의 제 1 혈류 내 타겟 요소가 모세혈관을 원활하게 통과하지 못하여 미세순환이 정상적으로 이루어지지 않는 것을 의미한다. 구체적으로 상기 미세순환 장애는 기능적 모세혈관 분율이 미세순환 장애가 없는 정상군의 기능적 모세혈관 분율의 70% 이하, 65% 이하, 60% 이하, 55% 이하, 50% 이하, 45% 이하, 40% 이하, 35% 이하, 30% 이하, 25% 이하, 20% 이하, 15% 이하, 10% 이하 또는 5% 이하인 것일 수 있고, 또는 상기 미세순환 장애는 기능적 모세혈관 분율이 0.4 이하, 0.38 이하, 0.36 이하, 0.34 이하, 0.32 이하, 0.3 이하, 0.28 이하, 0.26 이하, 0.24 이하, 0.22 이하, 0.2 이하, 0.18 이하, 0.16 이하, 0.14 이하, 0.12 이하, 0.1 이하, 0.08 이하, 0.06 이하, 0.04 이하 또는 0.02 이하일 수 있으나, 상기 미세순환 장애 여부를 판단하기 위한 기능적 모세혈관 분율의 범위는 미세순환 장애 여부를 측정하는 모세혈관이 분포한 개체의 장기의 종류에 따라 달라질 수 있으며, 상기 범위에 제한되는 것이 아니다.
본 발명의 일 실시예에 따르면, 대조군 모델(PBS 처리)과 LPS 처리로 인해 패혈증이 유발되어 급성 폐 손상을 가진 마우스 모델은 전체 모세혈관 면적은 차이가 없으나, 대조군 모델에 비해 급성 폐 손상 마우스 모델의 적혈구가 이동하는 기능적 모세혈관의 면적이 급격히 감소하여 기능적 모세혈관 분율(FCR)이 50% 이상 감소하였는바(실험예 3, 및 도 6a 및 도 6b), 본 발명의 일 측면에 따른 방법에 의해 기능적 모세혈관 분율을 측정함으로써 개체의 미세순환 장애 여부를 쉽고 편리하게 진단할 수 있는 우수한 효과가 있음을 알 수 있었다.
또 다른 측면에서, 미세순환 장애 진단을 위한 정보 제공 방법으로서, 개체의 모세혈관을 통과하는 제 2 혈류 내 타겟(target) 요소의 시간에 따른 복수의 이동 이미지를 수득하는 단계; 상기 복수의 이동 이미지로부터 상기 제 2 혈류 내 타겟 요소의 격리 시간(sequestration time), 변위(track displacement length), 이동 거리(track length), 이동 속력(track velocity) 및 트랙 굴곡 지수(meandering index)로 이루어진 군으로부터 선택된 하나 이상의 동적 요소를 분석하는 단계; 및 상기 동적 요소 분석 결과로부터 개체의 미세순환 장애 진단을 위한 정보를 추출하는 단계;를 포함하는, 정보 제공 방법을 제공한다. 종래 전신 미세순환 장애와 관련된 중심 메커니즘으로 내피 기능 이상(endothelial dysfunction)과 혈관 수축(vasoconstriction)이 제안되었으며, 폐 모세혈관에서의 격리(sequestration)이 혈액 순환에서 병원균을 검출하기 위한 면역 감시 시스템으로 기능을 할 뿐이라고 알려져 있었으나, 이것만으로는 중성구의 격리가 미세순환 장애, 특히 급성 호흡 곤란 증후군과 같은 폐 미세순환 장애로 어떻게 진행되는지는 설명할 수 없었다. 그러나, 본 발명의 일 실시예에 따르면, 패혈증으로 인해 유발된 급성 폐 손상의 초기 단계에서 모집된 중성구(recruited neutrophil)의 군집(cluster) 형성이 폐 미세순환 장애에 중요한 역할을 하며, 구체적으로 중성구가 집단을 형성하고 모세혈관 및 동맥에서의 순환에 장애물로 작용하여 미세순환의 재분배와 장애를 일으켜 미세순환 장애를 발생시키는 것을 알 수 있다.
상기 미세순환 장애 진단을 위한 정보 제공 방법은 상기 개체의 모세혈관을 통과하는 제 2 혈류 내 타겟(target) 요소의 시간에 따른 복수의 이동 이미지를 수득하는 단계를 포함할 수 있다.
상기 제 2 혈류 내 타겟 요소는 개체의 미세순환의 모세혈관을 통과하는 요소로서, 상기 제 2 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지로부터 상기 타겟 요소의 동적 요소, 예를 들어 상기 타겟 요소의 격리 시간(sequestration time), 변위(track displacement length), 이동 거리(track length), 이동 속력(track velocity) 또는 트랙 굴곡 지수(meandering index)를 분석함으로써 미세순환 장애 진단을 위한 정보를 제공할 수 있다. 이 때, 상기 제 2 혈류 내 타겟 요소는 미세순환을 따라 이동하는, 개체의 모세혈관을 통과하는 요소일 수 있고, 구체적으로 개체의 모세혈관을 통과하는 혈류의 속력 또는 혈류량을 실질적으로 반영할 수 있는 혈액의 구성 요소일 수 있으며, 보다 구체적으로 중성구일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 제 2 혈류 내 타겟 요소는 이동 이미지를 수득할 수 있도록 표지(label)된 것이면 그 표시의 종류는 제한되지 않는다. 상기 제 2 혈류 내 타겟 요소가 중성구인 경우 상기 중성구는 중성구에서 발현되는 펩티드(peptide)를 코딩하는 핵산(DNA 또는 RNA)에 발광형광단(fluorophore)이 결합한 것일 수 있고, 상기 중성구는 중성구에 특이적인 항체가 결합한 것이고, 상기 항체는 발광형광단(fluorophore)이 결합한 것일 수 있다. 상기 중성구에서 발현되는 펩티드를 코딩하는 핵산은 구체적으로 리신 모티프(Lysin Motif, LysM) 도메인을 코딩하는 핵산, 루코사이트6G(Leukocyte6G, Ly6G)를 코딩하는 핵산, 분화 분자 클러스터 11B(cluster of differentiation molecule 11B, CD11b)를 코딩하는 핵산 및 분화 분자 클러스터 18B (cluster of differentiation molecule 18, CD18)을 코딩하는 핵산으로 이루어진 군으로부터 선택된 하나 이상일 수 있으나, 중성구를 표지하여 이의 촬영 이미지로부터 동적 요소를 분석할 수 있는 핵산이라면 제한되지 않는다. 또한, 상기 중성구에 특이적인 항체는 중성구에서 발현되는 펩티드에 특이적인 항체일 수 있고, 구체적으로 리신 모티프(Lysin Motif, LysM) 도메인, 루코사이트6G(Leukocyte6G, Ly6G), 분화 분자 클러스터 11B (cluster of differentiation molecule 11B, CD11b) 및 분화 분자 클러스터 18B (cluster of differentiation molecule 18, CD18)로 이루어진 군으로부터 선택된 하나 이상에 특이적인 항체일 수 있으나, 중성구를 표지하여 이의 촬영 이미지로부터 동적 요소를 분석할 수 있는 항체라면 제한되지 않는다. 또한, 상기 발광형광단은 구체적으로 유전자변이 프로브(transgenic probe) 또는 형광 프로브(fluorescent probe)일 수 있고, 보다 구체적으로 상기 유전자 변이 프로브는 CFP(cyan fluorescent protein), YFP(yellow fluorescent protein), GFP(green fluorescent protein) 및 RFP(red fluorescent protein)으로 이루어진 군으로부터 선택된 하나 이상일 수 있고, 상기 형광 프로브는 Alexa 405, Alexa 488, Alexa 555 및 Alexa 647로 이루어진 군으로부터 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 실시예에 따르면, 상기 제 2 혈류 내 타겟 요소가 중성구인 경우 발광형광단(fluorophore)인 Alexa Fluor 555 또는 647 (A-20005 / A-20006, ThermoFisher Scientific)가 결합된 항-Ly6G+ 단일 클론 항체(monoclonal antibody)(Clone 1A8, 551459, BD Biosciences)을 개체에 주입하여 상기 항체가 결합한 중성구의 움직임을 형광 신호를 통해 측정함으로써 미세순환 장애 진단을 위한 정보를 제공할 수 있다. 또한, 종래 알려진 바와 같이, 중성구에 의해 유도된 혈액 흐름 방해는 호흡(ventilation) 및 관류(perfusion)의 불일치 영역을 증가시켜 패혈증에 의해 유도된 급성 호흡 곤란 증후군(ARDS)로 인한 저산소증을 심화시킨다. 폐 모세혈관에서의 중성자의 접착(adhesion)에 대한 종래 생체 내 이미징 연구와 비교할 때(Yang N, Liu YY, Pan CS, Sun K, Wei XH, Mao XW, Lin F, Li XJ, Fan JY, Han JY. Pretreatment with andrographolide pills((R)) attenuates lipopolysaccharide-induced pulmonary microcirculatory disturbance and acute lung injury in rats. Microcirculation 2014: 21(8): 703-716.; Gill SE, Rohan M, Mehta S. Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis-induced lung injury in vivo. Respir Res 2015: 16: 109), 본 발명의 일 실시예에 따른 미세순환 장애 진단을 위한 정보 제공방법은 호흡/관류 불일치가 있는 사강(dead space)이 어떻게 중성구에 의해 미세순환 내에서 만들어지는지를 명확히 보여주며, 종래 용적 측정에 따른 호기말 이산화탄소 분압측정(volumetric capnography)를 이용하여 동맥 대 호기 이산화탄소 분압 차이로 간접적으로 측정하였던 사강 분율을 직접적으로 이미지화할 수 있어, 보다 간편하고 정확하게 정보를 제공할 수 있다.
상기 미세순환 장애 진단을 위한 정보 제공 방법은 상기 복수의 이동 이미지로부터 상기 제 2 혈류 내 타겟 요소의 격리 시간(sequestration time), 변위(track displacement length), 이동 거리(track length), 이동 속력(track velocity) 및 트랙 굴곡 지수(meandering index)로 이루어진 군으로부터 선택된 하나 이상의 동적 요소를 분석하는 단계를 포함할 수 있다.
상기 격리 시간(sequestration time)은 상기 제 2 혈류 내 타겟 요소가 모세혈관을 통과하는 과정에서 모세혈관의 특정 영역에 머무르는(sequestration) 시간을 의미한다. 상기 제 2 혈류 내 타겟 요소의 직경이 커서 모세혈관을 통과하기 위해 변형되어야 하는 경우, 혈류 속력에 비해 모세혈관을 통과하는 속력이 보다 오래 걸리게 되는데, 상기 타겟 요소의 격리 시간이 일정 시간 이상인 경우 모세혈관을 통과하기 보다는 특정 영역에 격리되어 미세순환 장애가 발생할 가능성이 높다. 본 발명의 일 실시예에 따르면, 대조군 마우스 모델(PBS)은 중성구가 모세혈관을 통과하는 것과는 달리, 폐 손상 마우스 모델(ALI 마우스 모델)은 미세순환의 수많은 지점에서 중성구의 흐름이 중단됨을 확인하였다(실험예 4, 및 도 8 및 9). 또한, 본 발명의 일 실시예에 따르면, 대조군 마우스 모델(PBS)은 대부분의 중성구가 매우 짧은 시간 격리된 반면, 폐 손상 마우스 모델(LPS 3h, LPS 6h)은 폐 손상으로 인해 중성구가 모세혈관의 특정 영역에 격리되고, 격리된 중성구의 비율이 대조군에 비하여 크게 증가함을 확인하였다(실험예 5, 및 도 10a 내지 10b 및 도 11a 내지 11c).
상기 변위(track displacement length)는 상기 제 2 혈류 내 타겟 요소의 시간에 따른 위치의 변화량(단위: μm)으로, 상기 변위의 크기가 클수록 상기 타겟 요소의 운동성이 크다는 것을 의미한다.
상기 이동 거리(track length)는 상기 제 2 혈류 내 타겟 요소가 시간에 따라 실제로 움직인 거리(단위: μm)로서, 상기 이동 거리가 클수록 상기 타겟 요소의 운동성이 크다는 것을 의미한다.
상기 이동 속력(track velocity)은 단위 시간 동안에 상기 제 2 혈류 내 타겟 요소가 이동한 거리(단위: μm/m)로서, 상기 이동 속력이 클수록 상기 타겟 요소의 운동성이 크다는 것을 의미한다.
상기 트랙 굴곡 지수(track meandering index)는 상기 제 2 혈류 내 타겟 요소가 목표하는 지점 또는 특정 방향으로 나아가려는 경향성(단위: a.u. 즉, 임의 단위)을 나타내는데, 트랙의 굴곡 지수가 클수록 목표하는 지점 또는 특정 방향으로 직선으로 상기 제 2 혈류 내 타겟 요소가 이동하여 가장 빠른 시간 내에 목표 지점에 도달할 수 있게 되는 것을 의미한다. 상기 트랙 굴곡 지수(a.u.)는 IMARIS 프로그램의 Spots & Tracking 을 이용하여 계산되는 것일 수 있다.
본 발명의 일 실시예에 따르면, 대조군(PBS)과 비교하였을 때 폐 손상 마우스 모델(ALI 마우스 모델, LPS 3h 마우스 모델, LPS 6h 마우스 모델)은 상기 격리 시간, 변위, 이동 거리, 이동 속력 및 트랙 굴곡 지수에 있어 차이가 있는바, 상기 동적 요소 분석을 통해 개체의 미세순환 장애 진단을 위한 정보를 제공할 수 있음을 알 수 있었다(실험예 6 및 도 12a 내지 12e).
상기 동적 요소 분석은 상기 복수 이동 이미지로부터 동일한 타겟 요소를 판별하여 분석하는 것일 수 있고, 구체적으로 상기 복수의 이동 이미지 각각으로부터 개체의 모세혈관을 통과하는 제 2 혈류 내 타겟 요소의 시간에 따른 이동 경로를 측정하고, 복수의 제 2 혈류 내 타겟 요소의 이동 경로로부터 격리 시간, 변위, 이동 거리, 이동 속력 및 트랙 굴곡 지수로 이루어진 군으로부터 선택된 하나 이상의 동적 요소를 측정하는 것일 수 있다. 보다 구체적으로, 시간 차(t)를 갖고 촬영된 이미지를 바탕으로 복수의 이미지들을 상호간에 비교함으로써, 동일한 제 2 혈류 내 타겟 요소를 용이하게 판별 및 추적하여 단일 제 2 혈류 내 타겟 요소의 이동 경로를 측정하고, 이와 동일한 방법으로 수득한 복수의 제 2 혈류 내 타겟 요소의 이동 경로로부터 동적 요소를 측정할 수 있다.
상기 미세순환 장애 진단을 위한 정보 제공 방법은 상기 동적 요소 분석 결과로부터 개체의 미세순환 장애 진단을 위한 정보를 추출하는 단계를 포함할 수 있다.
상기 개체의 미세순환 장애 진단을 위한 정보는 상기 제 2 혈류 내 타겟 요소의 격리 시간이 5 분 이상이면 미세순환 장애인 것으로 판단하는 것일 수 있다. 상술한 바와 같이, 대조군에 비하여 미세순환 장애가 있는 개체의 경우, 상기 제 2 혈류 내 타겟 요소는 모세혈관을 통과하기 보다 특정 영역에 머무르는(entrapment) 경향이 커서 격리 시간(sequestration time)이 증가한다. 따라서, 상기 제 2 혈류 내 타겟 요소의 격리 시간이 5 분 이상이면 미세순환 장애인 것으로 판단할 수 있고, 구체적으로 상기 격리 시간이 5 분 이상, 5 분 10 초 이상, 5 분 20 초 이상, 5 분 30 초 이상, 5 분 40 초 이상, 5 분 50 초 이상, 6 분 이상, 6 분 10 초 이상, 6 분 20 초 이상, 6 분 30 초 이상, 6 분 40 초 이상, 6 분 50 초 이상, 7 분 이상, 7 분 10 초 이상, 7 분 20 초 이상, 7 분 30 초 이상, 7 분 40 초 이상, 7 분 50 초 이상, 8 분 이상, 8 분 10 초 이상, 8 분 20 초 이상, 8 분 30 초 이상, 8 분 40 초 이상, 8 분 50 초 이상, 9 분 이상, 9 분 10 초 이상, 9 분 20 초 이상, 9 분 30 초 이상, 9 분 40 초 이상, 9 분 50 초 이상, 10 분 이상, 11 분 이상, 12 분 이상, 13 분 이상, 14 분 이상, 15 분 이상, 16 분 이상, 17 분 이상, 18 분 이상 또는 19 분 이상이면 미세순환 장애인 것으로 판단할 수 있으나, 상기 미세순환 장애 여부를 판단하는 기준이 되는 격리 시간의 범위는 개체의 종류, 모세혈관의 종류, 개체의 연령, 성별, 체중과, 개체의 질환 종류 또는 병리 상태, 질환 또는 병리 상태의 심각도에 따라 달라질 수 있으며, 이러한 인자에 기초한 미세순환 장애 여부 판단은 당업자의 수준 내에 있는바, 상기 범위에 제한되는 것은 아니다. 본 발명의 일 실시예에 따르면, 대조군(PBS)의 격리 시간은 약 3 분, LPS 3h 마우스 모델은 약 8 분, LPS 6h 마우스 모델은 약 18 분으로, 대조군(PBS)에 비하여 폐 손상 마우스 모델(LPS 투여군)의 중성구의 격리 시간이 더 길고, LPS 투여 3 시간이 경과했을 때(LPS 3h 마우스 모델)보다 6 시간이 경과하였을 때(LPS 6h 마우스 모델) 격리 시간이 약 2 배 정도 더 긴 것을 알 수 있었다(실험예 6 및 도 12a).
상기 개체의 미세순환 장애 진단을 위한 정보는 상기 제 2 혈류 내 타겟 요소의 트랙의 굴곡 지수가 0.4 a.u. 이하이면 미세순환 장애인 것으로 판단하는 것일 수 있다. 대조군에 비하여 미세순환 장애가 있는 개체의 경우, 상기 제 2 혈류 내 타겟 요소는 혈류의 흐름에 따라 모세혈관을 통과하기 보다는 특정 영역에 격리되어 있거나 아주 느린 속도로 방향성 없이 움직이는 경향이 있다. 따라서, 상기 제 2 혈류 내 타겟 요소의 트랙의 굴곡 지수가 0.4 a.u. 이하이면 미세순환 장애인 것으로 판단할 수 있고, 구체적으로 상기 트랙의 굴곡 지수가 0.4 a.u. 이하, 0.39 a.u. 이하, 0.38 a.u. 이하, 0.37 a.u. 이하, 0.36 a.u. 이하, 0.35 a.u. 이하, 0.34 a.u. 이하, 0.33 a.u. 이하, 0.32 a.u. 이하, 0.31 a.u. 이하, 0.3 a.u. 이하, 0.29 a.u. 이하, 0.28 a.u. 이하, 0.27 a.u. 이하, 0.26 a.u. 이하, 0.25 a.u. 이하, 0.24 a.u. 이하, 0.23 a.u. 이하, 0.22 a.u. 이하, 0.21 a.u. 이하 또는 0.2 a.u. 이하이면 미세순환 장애인 것으로 판단할 수 있으나, 상기 미세순환 장애 여부를 판단하는 기준이 되는 트랙의 굴곡 지수의 범위는 개체의 종류, 모세혈관의 종류, 개체의 연령, 성별, 체중과, 개체의 질환 종류 또는 병리 상태, 질환 또는 병리 상태의 심각도에 따라 달라질 수 있으며, 이러한 인자에 기초한 미세순환 장애 여부 판단은 당업자의 수준 내에 있는바, 상기 범위에 제한되는 것은 아니다. 본 발명의 일 실시예에 따르면, 대조군(PBS)의 굴곡 지수는 약 0.5 a.u., LPS 3h 마우스 모델은 약 0.4 a.u., LPS 6h 마우스 모델은 약 0.2 a.u.로, 대조군(PBS)에 비하여 폐 손상 마우스 모델(LPS 투여군)의 중성구의 트랙의 굴곡 지수가 더 작고, LPS 투여 3 시간이 경과했을 때(LPS 3h 마우스 모델)보다 6 시간이 경과하였을 때(LPS 6h 마우스 모델) 트랙의 굴곡 지수가 약 1/2 정도로 감소하는 것을 확인하였다(실험예 6 및 도 12e).
상기 동적 요소가 변위, 이동 거리 및 이동 속력으로 이루어진 군으로부터 선택된 하나 이상인 경우, 상기 제 2 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지는 하기와 같은 2 시간 이상의 시간 간격(t')으로 촬영된 2 이상의 복수의 이동 이미지 세트일 수 있다:
(1) 하나의 시점(T 1)의 복수의 이미지 제 1 세트(SET_M 1)로서, 상기 제 1 이미지 세트는 하나의 시점(T 1)을 기준으로 상기 시점(T 1)의 이미지(M 1) 및 동일한 시간 차(t)의 전후 시점(T 1-1, T 1+1)의 이미지(M 1-1, M 1+1)를 포함한다.
(2) 상기 하나의 시점(T 1)으로부터 2 시간 이상의 시간(t') 이후인 시점(T 2)의 복수의 이미지 제 2 세트(SET_M 2)로서, 상기 제 2 이미지 세트는 하나의 시점(T 2)을 기준으로 상기 시점(T 2)의 이미지(M 2) 및 동일한 시간 차(t)의 전후 시점(T 2-1, T 2+1)의 이미지(M 2-1, M 2+1)를 포함한다.
(3) 상기 하나의 시점(T 2)으로부터 2 시간 이상의 시간(t') 이후인 시점(T 3)의 복수의 이미지 제 3 세트(SET_M 3)로서, 상기 제 3 이미지 세트는 하나의 시점(T 3)을 기준으로 상기 시점(T 3)의 이미지(M 3) 및 동일한 시간 차(t)의 전후 시점(T 3-1, T 3+1)의 이미지(M 3-1, M 3+1)를 포함한다.
상기 2 이상의 복수의 이동 이미지 세트는 상기 (1) 내지 (3)과 동일한 방식으로 수득한 것일 수 있고, 상기 복수의 이동 이미지 세트는 2 이상, 3 이상, 4 이상, 5 이상 또는 6 이상의 이미지 세트일 수 있다.
상기 복수의 이미지 세트 간의 시간 간격(t')은 2 시간 이상, 3 시간 이상, 4 시간 이상, 5 시간 이상 또는 6 시간 이상일 수 있으나, 상기 복수의 이미지 세트로부터 상기 제 2 혈류 내 타겟 요소의 변위, 이동 거리 및 이동 속력으로 이루어진 군으로부터 선택된 하나 이상의 동적 요소를 분석하여 미세순환 장애를 진단하기 위한 정보를 제공할 수 있는 시간 간격이라면 상기 범위에 제한되지 않는다.
상기 동적 요소가 변위, 이동 거리 및 이동 속력으로 이루어진 군으로부터 선택된 하나 이상인 경우, 상기 동적 요소 분석은 상기 2 세트 이상의 복수의 이동 이미지 세트로부터 상기 동적 요소를 시간 순서대로 분석하는 것이고, 상기 개체의 미세순환 장애 진단을 위한 정보는 상기 동적 요소를 분석한 결과 상기 동적 요소가 시간이 지남에 따라 감소하면 미세순환 장애인 것으로 판단하는 것일 수 있다. 대조군에 비하여 미세순환 장애가 있는 개체의 경우, 상기 제 2 혈류 내 타겟 요소는 미세순환 장애, 예를 들어 내독신에 의해 폐 손상이 발생하는 경우 폐 손상 초기에는 중성구의 운동성이 증가하나, 미세순환 장애로 인해 염증이 심화되면 폐 손상 초기 이후에는 중성구의 운동성이 감소하여 변위, 이동 거리 및 이동 속력이 감소하는 경향이 있다. 따라서, 상기 제 2 혈류 내 타겟 요소의 변위, 이동 거리 또는 이동 속력이 시간이 지남에 따라 감소하면 미세순환 장애인 것으로 판단할 수 있다. 본 발명의 일 실시예에 따르면, 대조군(PBS)의 변위, 이동 거리 및 이동 속력은 대조군(PBS)에 비하여 LPS 투여 3 시간 후의 폐 손상 마우스 모델(LPS 3h 마우스 모델)에서 증가하였다가, 다시 LPS 투여 6 시간 후의 폐 손상 마우스 모델(LPS 6h 마우스 모델)은 대조군과 비슷한 수준으로 감소하는 것을 확인하였다(실험예 6 및 도 12b 내지 12d).
상기 미세순환 장애 진단을 위한 정보 제공 방법은 모세혈관을 통과하는 제 2 혈류 내 타겟 요소에서 활성 산소(reactive oxygen)의 생성 여부를 검출하는 단계를 추가로 포함할 수 있다. 상기 활성 산소 생성 여부 검출은 구체적으로 디하이드로에티디움(dihydroethidium, DHE) 염색(staining)을 통해 검출하는 것일 수 있으나, in vivo 또는 in situ 상에서 개체의 활성 산소 생성 여부를 검출할 수 있는 방법이라면 그 방법은 제한되지 않는다. 또한, 상기 제 2 혈류 내 타겟 요소에서 활성 산소가 생성되면 미세순환 장애인 것으로 판단할 수 있는 정보를 제공할 수 있다.
본 발명의 일 실시예에 따르면, 대조군(PBS)의 일시적으로 격리된 중성구에서는 활성 산소를 생성하지 않으나, 폐 손상 마우스 모델(ALI 마우스 모델)의 모세혈관 내 중성자는 활성 산소를 생성하고 전체 중성구를 기준으로 활성 산소를 생성하는 중성구의 비율이 큰 폭으로 증가함을 확인하였다(실험예 8, 및 도 16, 17a 및 17b).
또 다른 측면에서, 본 발명은 미세순환 장애 진단 장치로서, 개체의 모세혈관을 통과하는 제 2 혈류 내 타겟(target) 요소를 촬영하는 촬영부; 및 상기 촬영부에서 촬영된 복수의 이동 이미지에 기반하여 상기 제 2 혈류 내 타겟 요소의 격리 시간(sequestration time), 변위(track displacement length), 이동 거리(track length), 이동 속력(track velocity) 및 트랙 굴곡 지수(meandering index)로 이루어진 군으로부터 선택된 하나 이상의 동적 요소를 분석하는 분석부;를 포함하는, 미세순환 장애 진단 장치를 제공한다. 상기 개체, 미세순환, 미세순환 장애, 제 2 혈류 내 타겟 요소, 복수의 이동 이미지, 동적 요소, 동적 요소의 분석, 미세순환 장애 진단을 위한 정보에 대한 설명은 상술한 바와 같다.
상기 미세순환 장애 진단을 위한 정보는 개체의 제 2 혈류 내 타겟 요소의 동적 요소 분석 결과로부터 도출되는 것일 수 있다.
상기 촬영부는 모세혈관을 통과하는 제 2 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지를 촬영할 수 있고, 만일, 하나의 시점(T)을 기준으로 상기 시점(T)의 이미지(M) 및 동일한 시간 차(t)의 전후 시점(T-1, T+1)의 이미지(M-1, M+1)를 각각 촬영한 것인 경우, 상기 촬영된 3개의 영상(M-1, M, M+1)은 각각 동일한 시간 차(t)의 연속적인 제 1 시점(T-1), 제 2 시점(T) 및 제 3 시점(T+1)의 이미지를 각각 나타내므로, 3개의 이미지(M-1, M, M+1)에는 각각 개체의 모세혈관을 통과하는 제 2 혈류 내 타겟 요소의 시간에 따른 이동 경로가 나타날 수 있다.
상기 3개의 이미지(M-1, M, M+1)를 촬영하는 시간 차(t)는 1/900 초 내지 1 초일 수 있고, 구체적으로 1/300 초 내지 1/3 초일 수 있으며, 보다 구체적으로 1/900 초 이상, 1/800 초 이상, 1/700 초 이상, 1/600 초 이상, 1/500 초 이상, 1/ 400 초 이상, 1/300 초 이상, 1/200 초 이상, 1/100 초 이상, 1/90 초 이상, 1/80 초 이상, 1/70 초 이상, 1/60 초 이상, 1/50 초 이상, 1/45 초 이상, 1/40 초 이상, 1/35 초 이상, 1/30 초 이상, 1/25 초 이상, 1/20 초 이상, 1/15 초 이상, 1/10 초 이상 또는 1/5 초 이상일 수 있고, 1 초 이하, 1/5 초 이하, 1/10 초 이하, 1/15 초 이하, 1/20 초 이하, 1/25 초 이하, 1/30 초 이하, 1/35 초 이하, 1/40 초 이하, 1/45 초 이하, 1/50 초 이하, 1/60 초 이하, 1/70 초 이하, 1/80 초 이하, 1/90 초 이하, 1/100 초 이하, 1/200 초 이하, 1/300 초 이하, 1/400 초 이하, 1/500 초 이하, 1/600 초 이하, 1/700 초 이하, 1/800 초 이하 또는 1/900 초 이하일 수 있으나, 제 2 혈류 내 타겟 요소의 복수의 이동 이미지로부터 미세순환을 측정할 수 있는 시간 차이라면 이에 제한되지 않는다.
또는, 상기 시간에 따른 복수의 이동 이미지는 1 내지 900 프레임/초의 범위의 프레임 속력으로 촬영된 복수의 이미지일 수 있고, 상기 프레임 속력은 구체적으로 3 내지 300 프레임/초일 수 있으며, 보다 구체적으로 1 프레임/초 이상, 5 프레임/초 이상, 10 프레임/초 이상, 15 프레임/초 이상, 20 프레임/초 이상, 25 프레임/초 이상, 30 프레임/초 이상, 35 프레임/초 이상, 40 프레임/초 이상, 45 프레임/초 이상, 50 프레임/초 이상, 60 프레임/초 이상, 70 프레임/초 이상, 80 프레임/초 이상, 90 프레임/초 이상, 100 프레임/초 이상, 200 프레임/초 이상, 300 프레임/초 이상, 400 프레임/초 이상, 500 프레임/초 이상, 600 프레임/초 이상, 700 프레임/초 이상 또는 800 프레임/초 이상일 수 있고, 900 프레임/초 이하, 800 프레임/초 이하, 700 프레임/초 이하, 600 프레임/초 이하, 500 프레임/초 이하, 400 프레임/초 이하, 300 프레임/초 이하, 200 프레임/초 이하, 100 프레임/초 이하, 90 프레임/초 이하, 80 프레임/초 이하, 70 프레임/초 이하, 60 프레임/초 이하, 50 프레임/초 이하, 45 프레임/초 이하, 40 프레임/초 이하, 35 프레임/초 이하, 30 프레임/초 이하, 25 프레임/초 이하, 20 프레임/초 이하, 15 프레임/초 이하, 10 프레임/초 이하 또는 5 프레임/초 이하일 수 있으나, 제 2 혈류 내 타겟 요소의 복수의 이동 이미지로부터 미세순환을 정량화할 수 있는 프레임 속력이라면 이에 제한되는 것은 아니다.
상기 촬영부는 공초점 주사 레이저 현미경(confocal scanning laser microscope), 형광 현미경(Fluorescence microscopy), 이광자현미경(Two-photon microscopy) 또는 삼광자 현미경(Three-photon microscopy)일 수 있으나, 이에 제한되는 것은 아니다.
또는 상기 촬영부로부터 촬영된 복수의 이동 이미지는 하기와 같은 2 시간 이상의 시간 간격(t')으로 촬영된 2 이상의 복수의 이동 이미지 세트일 수 있다:
(1) 하나의 시점(T 1)의 복수의 이미지 제 1 세트(SET_M 1)로서, 상기 제 1 이미지 세트는 하나의 시점(T 1)을 기준으로 상기 시점(T 1)의 이미지(M 1) 및 동일한 시간 차(t)의 전후 시점(T 1-1, T 1+1)의 이미지(M 1-1, M 1+1)를 포함한다.
(2) 상기 하나의 시점(T 1)으로부터 2 시간 이상의 시간(t') 이후인 시점(T 2)의 복수의 이미지 제 2 세트(SET_M 2)로서, 상기 제 2 이미지 세트는 하나의 시점(T 2)을 기준으로 상기 시점(T 2)의 이미지(M 2) 및 동일한 시간 차(t)의 전후 시점(T 2-1, T 2+1)의 이미지(M 2-1, M 2+1)를 포함한다.
(3) 상기 하나의 시점(T 2)으로부터 2 시간 이상의 시간(t') 이후인 시점(T 3)의 복수의 이미지 제 3 세트(SET_M 3)로서, 상기 제 3 이미지 세트는 하나의 시점(T 3)을 기준으로 상기 시점(T 3)의 이미지(M 3) 및 동일한 시간 차(t)의 전후 시점(T 3-1, T 3+1)의 이미지(M 3-1, M 3+1)를 포함한다.
상기 2 이상의 복수의 이동 이미지 세트는 상기 (1) 내지 (3)과 동일한 방식으로 수득한 것일 수 있고, 상기 복수의 이동 이미지 세트는 2 이상, 3 이상, 4 이상, 5 이상 또는 6 이상의 이미지 세트일 수 있다.
상기 복수의 이미지 세트 간의 시간 간격(t')은 2 시간 이상, 3 시간 이상, 4 시간 이상, 5 시간 이상 또는 6 시간 이상일 수 있으나, 상기 복수의 이미지 세트로부터 상기 제 2 혈류 내 타겟 요소의 변위, 이동 거리 및 이동 속력으로 이루어진 군으로부터 선택된 하나 이상의 동적 요소를 분석하여 미세순환 장애를 진단하기 위한 정보를 제공할 수 있는 시간 간격이라면 상기 범위에 제한되지 않는다.
상기 미세순환 장애 진단 장치는 상기 제 2 혈류 내 타겟 요소에서 활성 산소(reactive oxygen)의 생성 여부를 검출하는 활성 산소 검출부;를 추가로 포함하는 것일 수 있고, 검출부는 구체적으로 디하이드로에티디움(dihydroethidium, DHE) 염색(staining)을 통해 활성 산소 생성 여부를 검출하는 것일 수 있으나, in vivo 또는 in situ 상에서 개체의 활성 산소 생성 여부를 검출할 수 있는 것이라면 그 종류는 제한되지 않는다.
또 다른 측면에서, 본 발명은 폐 손상 질환 예방, 개선 또는 치료용 조성물로서, 상기 조성물은 유효성분으로서 폐 모세혈관 내의 중성구(neutrophil)에서의 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성 억제제를 포함하고, 폐의 미세순환 장애 개선에 의해 폐 손상 질환을 예방, 개선 또는 치료하는 것인, 폐 손상 질환 예방, 개선 또는 치료용 조성물을 제공한다. 또한, 본 발명은 유효성분으로서 폐 모세혈관 내의 중성구(neutrophil)에서의 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성 억제제를 포함하는 폐의 미세순환 장애 개선용 조성물을 제공한다.
본 발명의 일 측면에 있어서, 예방 또는 치료 대상이 되는 개체는 폐 손상 질환 예방 또는 치료를 목적으로 하는 개체이면 특별히 한정되지 않고, 어떠한 개체이든 적용 가능하다. 구체적으로 상기 개체는 원숭이, 개, 고양이, 토끼, 모르모트, 랫트, 마우스, 소, 양, 돼지, 염소 등과 같은 비인간동물 또는 인간일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 개체는 미세순환 장애, 미소순환 장애, 모세순환 장애 또는 말초순환 장애를 갖는 개체일 수 있으나, 이에 제한되는 것은 아니다.
상기 중성구(neutrophil)는 주로 골수에서 만들어지는 과립백혈구(과립구)의 일종으로 단핵구와 같은 계열의 세포로서, 사람의 혈액에서는 백혈구의 50~70%, 과립구의 약 90%를 차지하며, 호중구, 중성호성백혈구, 호중성 백혈구라고도 한다. 상기 중성구는 조직이 손상되거나 미생물에 감염되면 손상 또는 감염 부위에 최초로 도달하는 백혈구로, 손상 또는 감염 부위에서는 인터류킨8(IL8) 등의 여러 가지 주화성인자가 만들어지고, 그로 인해 중성구가 유인되어 상기 중성구가 강한 급성염증 반응을 일으키는 것으로 알려져 있다. 상기 중성구의 기능 중 가장 현저한 것은 세균의 포식과 살균이다. 본 발명의 일 측면에 있어서, 상기 중성구는 폐 모세혈관 내의 중성구일 수 있다.
상기 마크로파지-1 항원(macrophage-1 antigen, Mac-1)은 인테그린 패밀리에 속하는 접착분자로, 중성구, 단구, 대식세포, 활성화 림프구의 일부 등에서 발현하는 당단백질이며, CD11b(αM 사슬, 분자량 약 170,000 Da)과 CD18(β2 사슬, 분자량 약 95,000 Da)이 비공유결합한 헤테로이합체로 CD11b/CD18로 불리기도 한다. 상기 마크로파지-1 항원은 세포 내의 분비과립에도 저장되며 활성화에 따라 급속히 세포 표면에서 발현되기도 한다. 상기 αM사슬에는 2가 금속이온 결합부위가 3군데 존재하고, 이 분자의 접착은 2가 금속이온 의존적이며, 배위자는 ICAM-1, iC3b, 피브리노겐, 혈액응고 X인자, LPS(지질다당) 등이다. 상기 분자를 매개로 한 접착은, 백혈구의 혈관내피세포에 대한 접착 및 조직으로의 침윤, 식작용 등에 관여하고 있으며, 상기 분자는 세포질부분에서 세포골격이나 단백질인산화효소 등과 회합하고, 백혈구의 호흡 폭발(respiratory burst, oxidative burst) 등에서 신호전달에 관여하는 것으로 알려져 있다.
본 발명의 일 실시예에 따르면, 중성구 제거는 폐 미세순환 장애를 개선하지만, 박테리아 사멸(bacterial clearance) 효과 및 전신 염증 반응의 개선이 불명확하기 때문에 패혈증에 있어서 치료로 인해 유도된 중성구 제거의 효과는 불분명하다. 이에, 본 발명자들은 폐 손상을 완화할 수 있는 중성구의 하위집단(subpopulation)을 탐색 및 평가하였으며, 유세포 분석 결과 내피 세포 및 다양한 응고 인자에서 ICAM-1과 반응하는 Mac-1 (CD11b/CD18)이 폐 손상 모델의 폐의 격리된 중성구에서 발현량이 증가함을 확인하였다.
본 명세서에서 "유전자의 발현"이라 함은 전사, 번역 및 번역 후 변형 등을 포함하는 최광의의 개념이다.
본 발명의 일 측면에 따른 조성물은 유효성분으로서 폐 모세혈관 내의 중성구에서의 마크로파지-1 항원의 발현 또는 활성 억제제를 포함할 수 있다.
상기 마크로파지-1 항원의 발현 또는 활성 억제제는 마크로파지-1 항원을 코딩하는 mRNA의 번역을 억제하는 물질일 수 있으며, 구체적으로 마크로파지-1 항원을 코딩하는 mRNA의 적어도 일부에 결합하는 올리고뉴클레오티드일 수 있고, siRNA, shRNA 및 miRNA 중 어느 하나 이상일 수 있다. 상기 마크로파지-1 항원의 발현 또는 활성 억제제는 RNA 간섭(RNA interference, RNAi) 현상을 유도하는 siRNA, shRNA 및 miRNA 중 어느 하나 이상일 수 있으며, 마크로파지-1 항원을 코딩하는 유전자의 mRNA 발현을 억제하기 위해 상기 마크로파지-1 항원을 코딩하는 mRNA의 간섭을 유도하는 RNAi현상을 이용하여 폐 손상 예방 또는 치료 효과를 가져올 수 있다. miRNA는 세포 내에 존재하는 작은 RNA(endogenous small RNA)의 일종으로 단백질을 합성하지 않는 DNA에서 유래되어 헤어핀-구조 전사체(hairpin-shaped transcript)로부터 생성이 된다. miRNA는 표적 mRNA의 3'-UTR의 상보적 서열(sequence)에 결합하여 그 mRNA의 번역 억제 또는 불안정화를 유도하여, 궁극적으로 그 표적 mRNA의 단백질 합성을 억제하는 리프레서(repressor) 역할을 하게 된다. 하나의 miRNA는 여러 개의 mRNA를 타겟팅하며, mRNA 역시 여러 개의 miRNA에 의해 조절될 수 있다고 알려져 있다. RNAi 현상을 유도하는 다른 RNA로 19 내지 27 mer 내외의 짧은 RNA인 short interfering RNA(siRNA)가 있으며, 짧은 헤어핀(short hairpin) 구조를 가지는 shRNA가 있다.
상기 마크로파지-1 항원의 발현 또는 활성 억제제는 중성구에서의 마크로파지-1 항원에 특이적으로 결합하는 펩티드(peptide)를 포함할 수 있고, 구체적으로 중성구에서의 마크로파지-1 항원에 특이적으로 결합하는 항체를 포함할 수 있다. 상기 항체는 구체적으로 CD11b 또는 CD18에 특이적으로 결합하는 항체일 수 있고, 보다 구체적으로 하기 서열번호 1 또는 2의 아미노산 서열로 표시되는 CD11b에 특이적으로 결합하는 것일 수 있으며, 보다 구체적으로 하기 서열번호 1 또는 2의 아미노산 서열과 80% 이상, 81% 이상, 82% 이상, 83% 이상, 84% 이상, 85% 이상, 86% 이상, 87% 이상, 88% 이상, 89% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상의 상동성을 가지는 펩티드에 특이적으로 결합하는 것일 수 있으며, 보다 더 구체적으로 BC bioscience 사의 BD Pharmingen TM(Catalog Number: BD 553307)일 수 있으나, 이에 제한되는 것은 아니다.
[서열번호 1] CD11b의 아미노산 서열 (Integrin alpha-M isoform 1 precursor)
1 malrvlllta ltlchgfnld tenamtfqen argfgqsvvq lqgsrvvvga pqeivaanqr
61 gslyqcdyst gscepirlqv pveavnmslg lslaattspp qllacgptvh qtcsentyvk
121 glcflfgsnl rqqpqkfpea lrgcpqedsd iaflidgsgs iiphdfrrmk efvstvmeql
181 kksktlfslm qyseefrihf tfkefqnnpn prslvkpitq llgrthtatg irkvvrelfn
241 itngarknaf kilvvitdge kfgdplgyed vipeadregv iryvigvgda frseksrqel
301 ntiaskpprd hvfqvnnfea lktiqnqlre kifaiegtqt gssssfehem sqegfsaait
361 sngpllstvg sydwaggvfl ytskekstfi nmtrvdsdmn daylgyaaai ilrnrvqslv
421 lgapryqhig lvamfrqntg mwesnanvkg tqigayfgas lcsvdvdsng stdlvligap
481 hyyeqtrggq vsvcplprgq rarwqcdavl ygeqgqpwgr fgaaltvlgd vngdkltdva
541 igapgeednr gavylfhgts gsgispshsq riagsklspr lqyfgqslsg gqdltmdglv
601 dltvgaqghv lllrsqpvlr vkaimefnpr evarnvfecn dqvvkgkeag evrvclhvqk
661 strdrlregq iqsvvtydla ldsgrphsra vfnetknstr rqtqvlgltq tcetlklqlp
721 nciedpvspi vlrlnfslvg tplsafgnlr pvlaedaqrl ftalfpfekn cgndnicqdd
781 lsitfsfmsl dclvvggpre fnvtvtvrnd gedsyrtqvt fffpldlsyr kvstlqnqrs
841 qrswrlaces asstevsgal kstscsinhp ifpensevtf nitfdvdska slgnklllka
901 nvtsennmpr tnktefqlel pvkyavymvv tshgvstkyl nftasentsr vmqhqyqvsn
961 lgqrslpisl vflvpvrlnq tviwdrpqvt fsenlsstch tkerlpshsd flaelrkapv
1021 vncsiavcqr iqcdipffgi qeefnatlkg nlsfdwyikt shnhllivst aeilfndsvf
1081 tllpgqgafv rsqtetkvep fevpnplpli vgssvgglll lalitaalyk lgffkrqykd
1141 mmseggppga epq
[서열번호 2] CD11b의 아미노산 서열 (Integrin alpha-M isoform 2 precursor)
1 malrvlllta ltlchgfnld tenamtfqen argfgqsvvq lqgsrvvvga pqeivaanqr
61 gslyqcdyst gscepirlqv pveavnmslg lslaattspp qllacgptvh qtcsentyvk
121 glcflfgsnl rqqpqkfpea lrgcpqedsd iaflidgsgs iiphdfrrmk efvstvmeql
181 kksktlfslm qyseefrihf tfkefqnnpn prslvkpitq llgrthtatg irkvvrelfn
241 itngarknaf kilvvitdge kfgdplgyed vipeadregv iryvigvgda frseksrqel
301 ntiaskpprd hvfqvnnfea lktiqnqlre kifaiegtqt gssssfehem sqegfsaait
361 sngpllstvg sydwaggvfl ytskekstfi nmtrvdsdmn daylgyaaai ilrnrvqslv
421 lgapryqhig lvamfrqntg mwesnanvkg tqigayfgas lcsvdvdsng stdlvligap
481 hyyeqtrggq vsvcplprgr arwqcdavly geqgqpwgrf gaaltvlgdv ngdkltdvai
541 gapgeednrg avylfhgtsg sgispshsqr iagsklsprl qyfgqslsgg qdltmdglvd
601 ltvgaqghvl llrsqpvlrv kaimefnpre varnvfecnd qvvkgkeage vrvclhvqks
661 trdrlregqi qsvvtydlal dsgrphsrav fnetknstrr qtqvlgltqt cetlklqlpn
721 ciedpvspiv lrlnfslvgt plsafgnlrp vlaedaqrlf talfpfeknc gndnicqddl
781 sitfsfmsld clvvggpref nvtvtvrndg edsyrtqvtf ffpldlsyrk vstlqnqrsq
841 rswrlacesa sstevsgalk stscsinhpi fpensevtfn itfdvdskas lgnklllkan
901 vtsennmprt nktefqlelp vkyavymvvt shgvstkyln ftasentsrv mqhqyqvsnl
961 gqrslpislv flvpvrlnqt viwdrpqvtf senlsstcht kerlpshsdf laelrkapvv
1021 ncsiavcqri qcdipffgiq eefnatlkgn lsfdwyikts hnhllivsta eilfndsvft
1081 llpgqgafvr sqtetkvepf evpnplpliv gssvggllll alitaalykl gffkrqykdm
1141 mseggppgae pq
또는, 상기 항체는 구체적으로 압식시맙(Abciximab)일 수 있고, 상기 압식시맙은 ISU abxis 사의 압식시맙(Clotinab)일 수 있으나, 이에 제한되는 것은 아니다.
상기 마크로파지-1 항원의 발현 또는 활성 억제제는 상기 조성물의 총 부피를 기준으로 0.2 내지 20 mg/mL 포함될 수 있고, 구체적으로 0.2 mg/mL 이상, 0.3 mg/mL 이상, 0.4 mg/mL 이상, 0.5 mg/mL 이상, 0.6 mg/mL 이상, 0.7 mg/mL 이상, 0.8 mg/mL 이상, 0.9 mg/mL 이상, 1 mg/mL 이상, 1.1 mg/mL 이상, 1.2 mg/mL 이상, 1.3 mg/mL 이상, 1.4 mg/mL 이상, 1.5 mg/mL 이상, 1.6 mg/mL 이상, 1.7 mg/mL 이상, 1.8 mg/mL 이상, 1.9 mg/mL 이상, 2 mg/mL 이상, 3 mg/mL 이상, 4 mg/mL 이상, 5 mg/mL 이상, 6 mg/mL 이상, 7 mg/mL 이상, 8 mg/mL 이상, 9 mg/mL 이상, 10 mg/mL 이상, 15 mg/mL 이상 또는 20 mg/mL 이상 포함될 수 있고, 20 mg/mL 이하, 15 mg/mL 이하, 10 mg/mL 이하, 9 mg/mL 이하, 8 mg/mL 이하, 7 mg/mL 이하, 6 mg/mL 이하, 5 mg/mL 이하, 4 mg/mL 이하, 3.9 mg/mL 이하, 3.8 mg/mL 이하, 3.7 mg/mL 이하, 3.6 mg/mL 이하, 3.5 mg/mL 이하, 3.4 mg/mL 이하, 3.3 mg/mL 이하, 3.2 mg/mL 이하, 3.1 mg/mL 이하, 3 mg/mL 이하, 2.9 mg/mL 이하, 2.8 mg/mL 이하, 2.7 mg/mL 이하, 2.6 mg/mL 이하, 2.5 mg/mL 이하, 2.4 mg/mL 이하, 2.3 mg/mL 이하, 2.2 mg/mL 이하, 2.1 mg/mL 이하, 2 mg/mL 이하, 1.5 mg/mL 이하, 1 mg/mL 이하, 0.5 mg/mL 이하 또는 0.2 mg/mL 이하 포함될 수 있으나, 이에 제한되는 것은 아니다.
상기 미세순환 장애는 미세순환이 정상이 아닌 경우를 말하며, 백혈구, 적혈구, 혈소판, 림프구 등이 모세혈관을 원활하게 통과하지 못하여 미세순환이 정상적으로 이루어지지 않는 것을 의미한다. 구체적으로 상기 미세순환 장애는 하기 식 1에 따른 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)이 미세순환 장애가 없는 정상군의 기능적 모세혈관 분율의 70% 이하, 65% 이하, 60% 이하, 55% 이하, 50% 이하, 45% 이하, 40% 이하, 35% 이하, 30% 이하, 25% 이하, 20% 이하, 15% 이하, 10% 이하 또는 5% 이하인 것일 수 있고, 또는 상기 미세순환 장애는 기능적 모세혈관 분율이 0.4 이하, 0.38 이하, 0.36 이하, 0.34 이하, 0.32 이하, 0.3 이하, 0.28 이하, 0.26 이하, 0.24 이하, 0.22 이하, 0.2 이하, 0.18 이하, 0.16 이하, 0.14 이하, 0.12 이하, 0.1 이하, 0.08 이하, 0.06 이하, 0.04 이하 또는 0.02 이하일 수 있으나, 상기 미세순환 장애 여부를 판단하기 위한 기능적 모세혈관 분율의 범위는 미세순환 장애 여부를 측정하는 모세혈관이 분포한 개체의 장기의 종류에 따라 달라질 수 있으며, 상기 범위에 제한되는 것이 아니다.
[식 1]
기능적 모세혈관 분율 = 기능적 모세혈관의 면적 / 전체 모세혈관의 면적
상기 미세순환 장애 개선은 폐의 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 증가시키는 것일 수 있고, 구체적으로 하기 식 1에 따른 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)을 증가시키는 것일 수 있다.
[식 1]
기능적 모세혈관 분율 = 기능적 모세혈관의 면적 / 전체 모세혈관의 면적
상기 기능적 모세혈관 면적 측정은 백혈구, 적혈구, 혈소판, 림프구, 중성구 등의 제 1 혈류 내 타겟 요소 또는 제 2 혈류 내 타겟 요소가 이동하는 복수의 이동 이미지로부터 동일한 타겟 요소를 판별하여 기능적 모세혈관의 면적을 측정하는 것일 수 있고, 상기 제 1 혈류 내 타겟 요소 또는 제 2 혈류 내 타겟 요소의 시간 차에 따른 위치 차이로부터 이동 거리를 측정함으로써 계산되는 것일 수 있으며, 구체적으로 상기 복수의 이동 이미지 각각으로부터 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟 요소 또는 제 2 혈류 내 타겟 요소에 따른 이동 경로를 측정하고, 복수의 제 1 혈류 내 타겟 요소 또는 제 2 혈류 내 타겟 요소의 이동 경로로부터 기능적 모세혈관의 면적을 측정하는 것일 수 있다. 보다 구체적으로, 시간 차(t)를 갖고 촬영된 이미지를 바탕으로 복수의 이미지들을 상호간에 비교함으로써, 동일한 제 1 혈류 내 타겟 요소 또는 제 2 혈류 내 타겟 요소를 용이하게 판별 및 추적하여 단일 타겟 요소의 이동 경로를 측정하고, 이와 동일한 방법으로 수득한 복수의 타겟 요소의 이동 경로로부터 기능적 모세혈관의 면적을 측정할 수 있다.
상기 폐 손상 질환은 폐의 미세순환 장애에 의한 질환일 수 있고, 구체적으로 폐 혈관 수축, 천식, 호흡지체, 호흡 곤란 증후군(respiratory distress syndrome, RDS), 급성 호흡 곤란 증후군(acute respiratory distress syndrome, ARDS), 낭포성 섬유증(cystic fibrosis, CF), 알레르기성 비염(allergic rhinitis, AR), 폐 고혈압증, 기종, 만성 폐색성 폐질환(chronic obstructive pulmonary disease, COPD), 폐이식 거부증, 폐 감염, 기관지염 및 암으로 이루어진 그룹으로부터 선택된 하나 이상의 질환일 수 있으나, 폐의 미세순환 장애에 의해 발병하는 질환이라면 이에 제한되지 않는다.
본 발명의 일 측면에 따른 마크로파지-1 항원의 발현 또는 활성 억제제는 정상 대조군, 또는 상기 억제제 투여 전 비교군에 비하여 개체의 폐 모세혈관에서의 기능적 모세혈관 분율(FCR)을 증가시키는 것일 수 있고, 구체적으로 1.1 배 이상, 1.2 배 이상, 1.3 배 이상, 1.4 배 이상, 1.5 배 이상, 1.6 배 이상, 1.7 배 이상, 1.8 배 이상, 1.9 배 이상, 2 배 이상, 2.1 배 이상, 2.2 배 이상, 2.3 배 이상, 2.4 배 이상, 2.5 배 이상, 2.6 배 이상, 2.7 배 이상, 2.8 배 이상, 2.9 배 이상 또는 3 배 이상 증가시키는 것일 수 있으나, 상기 개체의 폐 미세순환 장애가 개선될 정도의 기능적 모세혈관 분율의 증가 정도라면 상기 범위에 제한되지 않는다. 본 발명의 일 실시예에 따르면, 폐 미세순환 장애를 가진 CLP 마우스 모델(CLP 마우스 모델 또는 pre-Abc 마우스 모델)은 정상군(Sham)에 비하여 FCR이 50% 이상 감소하였다가 Mac-1 발현 또는 활성을 억제 시(항-Mac-1 마우스 모델, 압식시맙 마우스 모델 또는 post-Abc 마우스 모델) 다시 FCR이 약 2 배 이상 증가하여 폐 미세순환 장애가 개선되는바, 본 발명의 일 실시예에 따른 조성물은 폐 손상 질환을 예방 또는 치료하는 효과가 있음을 알 수 있었다(실험예 12-2 및 도 28a, 및 실험예 12-3 및 도 30).
본 발명의 일 측면에 따른 마크로파지-1 항원의 발현 또는 활성 억제제는 정상 대조군, 또는 상기 억제제 투여 전 비교군에 비하여 개체의 폐 모세혈관에서의 단위면적(512 X 512 μm)당 격리된 중성구의 수를 감소시키는 것일 수 있고, 구체적으로 정상 대조군, 또는 상기 억제제 투여 전 비교군의 폐 모세혈관에서의 단위면적(512 X 512 μm)당 격리된 중성구의 수를 기준으로 그 감소 정도가 10% 이상, 15% 이상, 20% 이상, 25% 이상, 30% 이상, 35% 이상, 40% 이상, 45% 이상, 50% 이상 또는 55% 이상일 수 있으나, 상기 개체의 폐 미세순환 장애가 개선될 정도의 폐 모세혈관에서의 단위면적(512 X 512 μm)당 격리된 중성구의 수의 감소 정도라면 상기 범위에 제한되지 않는다.
상기와 같은 측면에서, 상기 조성물은, 약학적 조성물 또는 식품 조성물일 수 있다.
상기 약학적 조성물은 상기 조성물을 유효성분으로 하여 상용되는 무기 또는 유기의 담체를 가하여 고체, 반고체 또는 액상의 형태로 경구 투여제로 제제화할 수 있다.
상기 경구 투여를 위한 제재로서는 정제, 환제, 과립제, 연, 경 캡슐제, 산제, 세립제, 분제, 유탁제, 시럽제, 펠렛제 등을 들 수 있다. 본 발명의 유효성분을 제제화하기 위해서는 상법에 따라서 실시하면 용이하게 제제화할 수 있으며 계면활성제, 부형제, 착색료, 향신료, 보존료, 안정제, 완충제, 현탁제, 기타 상용하는 보조제를 적당히 사용할 수 있다.
본 발명에 따른 약학적 조성물은 폐 손상 질환, 구체적으로 폐 미세순환 장애로 인한 폐 손상 질환, 보다 구체적으로 폐 미세순환 장애로 인해 폐 모세혈관 내에서 격리된 중성구의 수가 증가하거나, 사강(dead space)이 증가하거나, 또는 모세혈관을 통과하는 적혈구의 수가 감소된 개체의 폐 손상 질환을 예방 또는 치료하는 데 유용하게 사용할 수 있다. 상기 폐 손상 질환으로는 폐 혈관 수축, 천식, 호흡지체, 호흡 곤란 증후군(respiratory distress syndrome, RDS), 급성 호흡 곤란 증후군(acute respiratory distress syndrome, ARDS), 낭포성 섬유증(cystic fibrosis, CF), 알레르기성 비염(allergic rhintis, AR), 폐 고혈압증, 기종, 만성 폐색성 폐질환(chronic obstructive pulmonary disease, COPD), 폐이식 거부증, 폐 감염, 기관지염, 암 등이 있으나, 이에 한정되는 것은 아니다.
상기 약학적 조성물은 경구, 직장, 국소, 경피, 정맥 내, 근육 내, 복강 내, 피하 등으로 투여될 수 있다.
또한, 상기 조성물 또는 조성물 내의 유효성분의 투여량은 치료 받을 대상의 연령, 성별, 체중과, 치료할 특정 질환 또는 병리 상태, 질환 또는 병리 상태의 심각도, 투여경로 및 처방자의 판단에 따라 달라질 것이다. 이러한 인자에 기초한 투여량 결정은 당업자의 수준 내에 있다. 상기 투여량은 0.001 mg/kg/일 내지 2000 mg/kg/일, 구체적으로는 0.5 mg/kg/일 내지 1500 mg/kg/일 일 수 있고, 보다 구체적으로 0.001 mg/kg/일 이상, 0.01 mg/kg/일 이상, 0.1 mg/kg/일 이상, 0.5 mg/kg/일 이상, 1 mg/kg/일 이상, 10 mg/kg/일 이상, 50 mg/kg/일 이상, 100 mg/kg/일 이상, 150 mg/kg/일 이상, 200 mg/kg/일 이상, 250 mg/kg/일 이상, 300 mg/kg/일 이상, 350 mg/kg/일 이상, 400 mg/kg/일 이상, 450 mg/kg/일 이상, 500 mg/kg/일 이상, 550 mg/kg/일 이상, 600 mg/kg/일 이상, 650 mg/kg/일 이상, 700 mg/kg/일 이상, 750 mg/kg/일 이상, 800 mg/kg/일 이상, 850 mg/kg/일 이상, 900 mg/kg/일 이상, 950 mg/kg/일 이상, 1000 mg/kg/일 이상, 1050 mg/kg/일 이상, 1100 mg/kg/일 이상, 1150 mg/kg/일 이상, 1200 mg/kg/일 이상, 1250 mg/kg/일 이상, 1300 mg/kg/일 이상, 1350 mg/kg/일 이상, 1400 mg/kg/일 이상, 1450 mg/kg/일 이상, 1500 mg/kg/일 이상, 1550 mg/kg/일 이상, 1600 mg/kg/일 이상, 1650 mg/kg/일 이상, 1700 mg/kg/일 이상, 1750 mg/kg/일 이상, 1800 mg/kg/일 이상, 1850 mg/kg/일 이상, 1900 mg/kg/일 이상 또는 1950 mg/kg/일 이상일 수 있고, 2000 mg/kg/일 이하, 1950 mg/kg/일 이하, 1900 mg/kg/일 이하, 1850 mg/kg/일 이하, 1800 mg/kg/일 이하, 1750 mg/kg/일 이하, 1700 mg/kg/일 이하, 1650 mg/kg/일 이하, 1600 mg/kg/일 이하, 1550 mg/kg/일 이하, 1500 mg/kg/일 이하, 1450 mg/kg/일 이하, 1400 mg/kg/일 이하, 1350 mg/kg/일 이하, 1300 mg/kg/일 이하, 1250 mg/kg/일 이하, 1200 mg/kg/일 이하, 1150 mg/kg/일 이하, 1100 mg/kg/일 이하, 1050 mg/kg/일 이하, 1000 mg/kg/일 이하, 950 mg/kg/일 이하, 900 mg/kg/일 이하, 850 mg/kg/일 이하, 800 mg/kg/일 이하, 750 mg/kg/일 이하, 700 mg/kg/일 이하, 650 mg/kg/일 이하, 600 mg/kg/일 이하, 550 mg/kg/일 이하, 500 mg/kg/일 이하, 450 mg/kg/일 이하, 400 mg/kg/일 이하, 350 mg/kg/일 이하, 300 mg/kg/일 이하, 250 mg/kg/일 이하, 200 mg/kg/일 이하, 150 mg/kg/일 이하, 100 mg/kg/일 이하, 50 mg/kg/일 이하, 10 mg/kg/일 이하, 1 mg/kg/일 이하, 0.5 mg/kg/일 이하, 0.1 mg/kg/일 이하 또는 0.01 mg/kg/일 이하일 수 있다.
상기 식품 조성물은 건강 식품 조성물일 수 있으며, 본 발명의 마크로파지-1 항원 발현 또는 활성 억제제를 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다.
상기 건강식품의 종류에는 특별한 제한은 없다. 상기 녹차 추출물을 첨가할 수 있는 식품의 예로는 육류, 소시지, 빵, 초콜릿, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알코올음료 및 비타민 복합제 등이 있으며, 통상적인 의미에서의 건강식품을 모두 포함한다.
본 발명의 건강음료 조성물은 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물은 포도당, 과당과 같은 모노사카라이드, 말토스, 슈크로스와 같은 디사카라이드, 및 덱스트린, 사이클로덱스트린과 같은 폴리사카라이드, 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 감미제로서는 타우마틴, 스테비아 추출물과 같은 천연 감미제나, 사카린, 아스파르탐과 같은 합성 감미제 등을 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 총 중량에 대하여 0.01 내지 0.04 중량%, 구체적으로 0.02 내지 0.03 중량%일 수 있다.
상기 외에 본 발명의 건강식품은 여러 가지 영양제, 비타민, 전해질, 풍미제, 착색제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그 밖에 천연 과일주스, 과일주스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 혼합하여 사용할 수 있다. 이러한 첨가제의 비율은 본 발명의 조성물 총 중량에 대하여 0.01 내지 0.1 중량%일 수 있다.
또 다른 측면에서, 본 발명은 (a) 폐 손상 모델을 준비하는 단계; (b) 상기 폐 손상 모델에 시험물질을 처리하는 단계; (c) 상기 시험물질이 상기 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성에 미치는 변화를 측정하는 단계; 및 (d) 상기 시험 물질이 상기 폐 손상 모델의 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 증가시키는지 여부를 확인하는 단계;를 포함하는 폐 손상 질환 예방, 개선 또는 치료물질 스크리닝 방법을 제공한다. 상기 미세순환, 미세순환 장애, 중성구, 마크로파지-1 항원, 폐 손상 질환에 대한 설명은 상술한 바와 같다.
상기 폐 손상 모델은 원숭이, 개, 고양이, 토끼, 모르모트, 랫트, 마우스, 소, 양, 돼지, 염소 등과 같은 비인간동물일 수 있으며, 구체적으로 패혈증(sepsis)으로 인해 폐가 손상된 비인간동물일 수 있으며, 보다 구체적으로 LPS 투여로 패혈증을 유발시킨 비인간동물 또는 맹장에 천자(puncture)를 만들고 이를 결찰(ligation)시킨 비인간동물인 CLP(맹장 결찰 및 천자, cecal ligation and puncture) 모델일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 실시예로, "상대적 발현량"은 시험물질을 처리하기 전의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성에 대한 시험물질을 처리한 후 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성을 비교하였을 때 발현 또는 활성이 억제된 정도일 수 있다. 또는, "상대적 발현량"은 시험 물질을 처리한 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성을 시험 물질을 처리하지 않은 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성과 비교하였을 때의 발현이 억제된 정도일 수 있다. 상기 상대적 발현량은 예컨대, mRNA의 상대적 발현량 또는 단백질의 상대적 발현량을 포함할 수 있다.
상기 (c) 단계는 폐 손상 모델에 시험물질을 처리하기 전과 후의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성을 비교하는 단계를 포함할 수 있다. 또는, 상기 (c) 단계는 시험물질을 처리한 폐 손상 모델과 시험물질을 처리하지 않은 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성을 비교하는 단계를 포함할 수 있다.
또한, 상기 스크리닝 방법은 상기 (c) 단계의 발현 또는 활성을 측정한 결과 마크로파지-1 항원의 발현 또는 활성이 시험물질을 처리하기 전에 비하여 감소한 경우 및 상기 폐 손상 모델의 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 증가시키는 미세 순환 장애 개선이 있는 경우, 상기 시험물질을 폐 손상 질환 예방, 개선 또는 치료물질로 판정하는 단계를 더 포함할 수 있다.
상기 폐 손상 질환 예방, 개선 또는 치료물질로 판정하는 단계는 상기 (c) 단계의 발현 또는 활성을 측정한 결과 마크로파지-1 항원의 발현 또는 활성(상대적 발현량)이 약 10% 이상 감소한 경우, 폐 손상 질환 예방, 개선 또는 치료물질로 판정하는 것을 포함할 수 있다. 즉, 시험물질을 처리하기 전의 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성 정도에 대한 시험물질을 처리한 후 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성 정도를 비교하였을 때 발현 또는 활성이 약 10% 이상 감소한 경우, 폐 손상 질환 예방, 개선 또는 치료물질로 판정할 수 있다. 또는, 시험 물질을 처리한 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성 정도를 시험 물질을 처리하지 않은 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성 정도와 비교하였을 때의 발현이 약 10% 이상 감소한 경우, 폐 손상 질환 예방, 개선 또는 치료물질로 판정할 수 있다. 예를 들어, 상기 마크로파지-1 항원의 발현 또는 활성(상대적 발현량)이 시험물질 처리 전에 비하여 10% 이상, 11% 이상, 12% 이상, 13% 이상, 14% 이상, 15% 이상, 16% 이상, 17% 이상, 18% 이상, 19% 이상, 20% 이상, 21% 이상, 22% 이상, 23% 이상, 24% 이상, 25% 이상, 26% 이상, 27% 이상, 28% 이상, 29% 이상, 30% 이상, 31% 이상, 32% 이상, 33% 이상, 34% 이상, 35% 이상, 36% 이상, 37% 이상, 38% 이상, 39% 이상, 40% 이상, 41% 이상, 42% 이상, 43% 이상, 44% 이상, 45% 이상, 46% 이상, 47% 이상, 48% 이상, 49% 이상, 50% 이상, 51% 이상, 52% 이상, 53% 이상, 54% 이상, 55% 이상, 56% 이상, 57% 이상, 58% 이상, 59% 이상, 60% 이상, 61% 이상, 62% 이상, 63% 이상, 64% 이상, 65% 이상, 66% 이상, 67% 이상, 68% 이상, 69% 이상, 70% 이상, 71% 이상, 72% 이상, 73% 이상, 74% 이상, 75% 이상, 76% 이상, 77% 이상, 78% 이상, 79% 이상, 80% 이상, 81% 이상, 82% 이상, 83% 이상, 84% 이상, 85% 이상, 86% 이상, 87% 이상, 88% 이상, 89% 이상 또는 90% 이상 감소한 경우, 폐 손상 질환 예방, 개선 또는 치료물질로 판정할 수 있으나, 이에 제한되는 것은 아니다. 상기 발현 또는 활성 정도는 통계적 유의성을 확보한 상태에서 측정된 결과이다. 통계적 유의성이라는 개념은 생물학적 통계분석법을 통하여 유의적인 차이를 보이는 경우로, 정량적인 경우 p value가 0.05 미만으로 차이가 나는 경우를 포함한다.
또한, 일 실시예로서, 상기 마크로파지-1 항원의 발현 또는 활성 정도는, 공지의 기술, 예컨대, 역전사 중합효소 연쇄반응(RT-PCR), 엘라이자(ELISA), 웨스턴블럿(Western Blot) 또는 이뮨 블럿(Immune Blot)을 이용하여 확인할 수 있으며, 이에 한정되는 것은 아니다.
상기 폐 손상 질환 예방, 개선 또는 치료물질로 판정하는 단계는 상기 (c) 단계의 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 측정한 결과, 상기 비율이 약 1.1 배 이상 증가한 경우 폐 손상 질환 예방, 개선 또는 치료물질로 판정하는 것을 포함할 수 있다. 구체적으로 시험물질을 처리하기 전의 폐 손상 모델의 하기 식 1에 따른 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)에 대한 시험물질을 처리한 후 폐 손상 모델의 기능적 모세혈관 분율이 1.1 배 이상인 경우, 폐 손상 질환 예방, 개선 또는 치료물질로 판정할 수 있다. 또는, 시험 물질을 처리한 폐 손상 모델의 기능적 모세혈관 분율을 시험 물질을 처리하지 않은 폐 손상 모델의 기능적 모세혈관 분율과 비교하였을 때 상기 기능적 모세혈관 분율이 약 1.1 배 이상인 경우, 폐 손상 질환 예방, 개선 또는 치료물질로 판정할 수 있다.
[식 1]
기능적 모세혈관 분율 = 기능적 모세혈관의 면적 / 전체 모세혈관의 면적
보다 구체적으로, 시험 물질을 처리한 폐 손상 모델의 기능적 모세혈관 분율을 시험 물질을 처리하지 않은 폐 손상 모델의 기능적 모세혈관 분율과 비교하였을 때 상기 기능적 모세혈관 분율이 1.1 배 이상, 1.2 배 이상, 1.3 배 이상, 1.4 배 이상, 1.5 배 이상, 1.6 배 이상, 1.7 배 이상, 1.8 배 이상, 1.9 배 이상, 2 배 이상, 2.1 배 이상, 2.2 배 이상, 2.3 배 이상, 2.4 배 이상, 2.5 배 이상, 2.6 배 이상, 2.7 배 이상, 2.8 배 이상, 2.9 배 이상 또는 3 배 이상인 경우, 폐 손상 질환 예방, 개선 또는 치료물질로 판정할 수 있다.
또 다른 측면에서, 본 발명은 (a) 폐 손상 모델을 준비하는 단계; (b) 상기 폐 손상 모델에 시험물질을 처리하는 단계; (c) 상기 시험물질이 상기 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성에 미치는 변화를 측정하는 단계; 및 (d) 상기 시험 물질이 상기 폐 손상 모델의 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 증가시키는지 여부를 확인하는 단계;를 포함하는 폐의 미세순환 장애 개선 물질 스크리닝 방법을 제공한다. 상기 폐 손상 모델, 미세순환, 미세순환 장애, 중성구, 마크로파지-1 항원, 상대적 발현량, 기능적 모세혈관의 비율에 대한 설명은 상술한 바와 같다.
상기 (c) 단계는 폐 손상 모델에 시험물질을 처리하기 전과 후의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성을 비교하는 단계를 포함할 수 있다. 또는, 상기 (c) 단계는 시험물질을 처리한 폐 손상 모델과 시험물질을 처리하지 않은 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성을 비교하는 단계를 포함할 수 있다.
또한, 상기 스크리닝 방법은 상기 (c) 단계의 발현 또는 활성을 측정한 결과 마크로파지-1 항원의 발현 또는 활성이 시험물질을 처리하기 전에 비하여 감소한 경우 및 상기 폐 손상 모델의 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 증가시키는 미세 순환 장애 개선이 있는 경우, 상기 시험물질을 폐의 미세순환 장애 개선 물질로 판정하는 단계를 더 포함할 수 있다.
상기 폐의 미세순환 장애 개선 물질로 판정하는 단계는 상기 (c) 단계의 발현 또는 활성을 측정한 결과 마크로파지-1 항원의 발현 또는 활성(상대적 발현량)이 약 10% 이상 감소한 경우, 폐의 미세순환 장애 개선 물질로 판정하는 것을 포함할 수 있다. 즉, 시험물질을 처리하기 전의 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성 정도에 대한 시험물질을 처리한 후 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성 정도를 비교하였을 때 발현 또는 활성이 약 10% 이상 감소한 경우, 폐의 미세순환 장애 개선 물질로 판정할 수 있다. 또는, 시험 물질을 처리한 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성 정도를 시험 물질을 처리하지 않은 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성 정도와 비교하였을 때의 발현이 약 10% 이상 감소한 경우, 폐의 미세순환 장애 개선 물질로 판정할 수 있다. 예를 들어, 상기 마크로파지-1 항원의 발현 또는 활성(상대적 발현량)이 시험물질 처리 전에 비하여 10% 이상, 11% 이상, 12% 이상, 13% 이상, 14% 이상, 15% 이상, 16% 이상, 17% 이상, 18% 이상, 19% 이상, 20% 이상, 21% 이상, 22% 이상, 23% 이상, 24% 이상, 25% 이상, 26% 이상, 27% 이상, 28% 이상, 29% 이상, 30% 이상, 31% 이상, 32% 이상, 33% 이상, 34% 이상, 35% 이상, 36% 이상, 37% 이상, 38% 이상, 39% 이상, 40% 이상, 41% 이상, 42% 이상, 43% 이상, 44% 이상, 45% 이상, 46% 이상, 47% 이상, 48% 이상, 49% 이상, 50% 이상, 51% 이상, 52% 이상, 53% 이상, 54% 이상, 55% 이상, 56% 이상, 57% 이상, 58% 이상, 59% 이상, 60% 이상, 61% 이상, 62% 이상, 63% 이상, 64% 이상, 65% 이상, 66% 이상, 67% 이상, 68% 이상, 69% 이상, 70% 이상, 71% 이상, 72% 이상, 73% 이상, 74% 이상, 75% 이상, 76% 이상, 77% 이상, 78% 이상, 79% 이상, 80% 이상, 81% 이상, 82% 이상, 83% 이상, 84% 이상, 85% 이상, 86% 이상, 87% 이상, 88% 이상, 89% 이상 또는 90% 이상 감소한 경우, 폐의 미세순환 장애 개선 물질로 판정할 수 있으나, 이에 제한되는 것은 아니다. 상기 발현 또는 활성 정도는 통계적 유의성을 확보한 상태에서 측정된 결과이다. 통계적 유의성이라는 개념은 생물학적 통계분석법을 통하여 유의적인 차이를 보이는 경우로, 정량적인 경우 p value가 0.05 미만으로 차이가 나는 경우를 포함한다.
또한, 일 실시예로서, 상기 마크로파지-1 항원의 발현 또는 활성 정도는, 공지의 기술, 예컨대, 역전사 중합효소 연쇄반응(RT-PCR), 엘라이자(ELISA), 웨스턴블럿(Western Blot) 또는 이뮨 블럿(Immune Blot)을 이용하여 확인할 수 있으며, 이에 한정되는 것은 아니다.
상기 폐의 미세순환 장애 개선 물질로 판정하는 단계는 상기 (c) 단계의 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 측정한 결과, 상기 비율이 약 1.1 배 이상 증가한 경우 폐의 미세순환 장애 개선 물질로 판정하는 것을 포함할 수 있다. 구체적으로 시험물질을 처리하기 전의 폐 손상 모델의 하기 식 1에 따른 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)에 대한 시험물질을 처리한 후 폐 손상 모델의 기능적 모세혈관 분율이 1.1 배 이상인 경우, 폐의 미세순환 장애 개선 물질로 판정할 수 있다. 또는, 시험 물질을 처리한 폐 손상 모델의 기능적 모세혈관 분율을 시험 물질을 처리하지 않은 폐 손상 모델의 기능적 모세혈관 분율과 비교하였을 때 상기 기능적 모세혈관 분율이 약 1.1 배 이상인 경우, 폐의 미세순환 장애 개선 물질로 판정할 수 있다.
[식 1]
기능적 모세혈관 분율 = 기능적 모세혈관의 면적 / 전체 모세혈관의 면적
보다 구체적으로, 시험 물질을 처리한 폐 손상 모델의 기능적 모세혈관 분율을 시험 물질을 처리하지 않은 폐 손상 모델의 기능적 모세혈관 분율과 비교하였을 때 상기 기능적 모세혈관 분율이 1.1 배 이상, 1.2 배 이상, 1.3 배 이상, 1.4 배 이상, 1.5 배 이상, 1.6 배 이상, 1.7 배 이상, 1.8 배 이상, 1.9 배 이상, 2 배 이상, 2.1 배 이상, 2.2 배 이상, 2.3 배 이상, 2.4 배 이상, 2.5 배 이상, 2.6 배 이상, 2.7 배 이상, 2.8 배 이상, 2.9 배 이상 또는 3 배 이상인 경우, 폐의 미세순환 장애 개선 물질로 판정할 수 있다.
본 발명의 일 실시예는 상기 폐 모세혈관 내의 중성구에서의 마크로파지-1 항원을 폐 미세순환 장애 여부를 진단할 수 있는 바이오마커로서 제공할 수 있으므로, 본 발명의 다른 일 실시예는 이를 이용하여 폐 미세순환 장애 진단용 조성물 또는 키트를 제공할 수 있다. 또한, 본 발명의 다른 일 실시예는 이를 이용한 폐 미세순환 장애 진단을 위한 정보 제공 방법을 제공할 수 있다.
구체적으로, 본 발명은 시험대상의 폐 모세혈관으로부터 분리된 중성구(neutrophil)에서 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성을 측정하는 단계; 및 시험 대상의 폐 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 확인하는 단계;를 포함하는, 폐 미세순환 장애 여부 진단을 위한 정보 제공 방법을 제공할 수 있다.
일 실시예로서, 상기 방법은 상기 시험대상의 폐 모세혈관으로부터 분리된 중성구에서의 마크로파지-1 항원 발현 또는 활성 정도를 정상 대조군의 폐 모세혈관으로부터 분리된 중성구에서의 마크로파지-1 항원 발현 또는 활성 정도와 비교하는 단계를 더 포함할 수 있다.
또한, 일 실시예로서 상기 방법은 상기 시험대상의 폐 모세혈관으로부터 분리된 중성구에서의 마크로파지-1 항원 발현 또는 활성 정도가 정상 대조군의 폐 모세혈관으로부터 분리된 중성구에서의 마크로파지-1 항원 발현 또는 활성 정도보다 높은 경우 폐 미세순환 장애가 있는 것으로 정보를 제공하는 단계를 더 포함할 수 있다. 예를 들어, 상기 시험대상의 폐 모세혈관으로부터 분리된 중성구에서의 마크로파지-1 항원 발현 또는 활성 정도가 정상 대조군의 폐 모세혈관으로부터 분리된 중성구에서의 마크로파지-1 항원 발현 또는 활성 정도보다 10% 이상, 11% 이상, 12% 이상, 13% 이상, 14% 이상, 15% 이상, 16% 이상, 17% 이상, 18% 이상, 19% 이상, 20% 이상, 21% 이상, 22% 이상, 23% 이상, 24% 이상, 25% 이상, 26% 이상, 27% 이상, 28% 이상, 29% 이상, 30% 이상, 31% 이상, 32% 이상, 33% 이상, 34% 이상, 35% 이상, 36% 이상, 37% 이상, 38% 이상, 39% 이상, 40% 이상, 41% 이상, 42% 이상, 43% 이상, 44% 이상, 45% 이상, 46% 이상, 47% 이상, 48% 이상, 49% 이상, 50% 이상, 51% 이상, 52% 이상, 53% 이상, 54% 이상, 55% 이상, 56% 이상, 57% 이상, 58% 이상, 59% 이상, 60% 이상, 61% 이상, 62% 이상, 63% 이상, 64% 이상, 65% 이상, 66% 이상, 67% 이상, 68% 이상, 69% 이상, 70% 이상, 71% 이상, 72% 이상, 73% 이상, 74% 이상, 75% 이상, 76% 이상, 77% 이상, 78% 이상, 79% 이상, 80% 이상, 81% 이상, 82% 이상, 83% 이상, 84% 이상, 85% 이상, 86% 이상, 87% 이상, 88% 이상, 89% 이상 또는 90% 이상 높은 경우, 폐 미세순환 장애가 있는 것으로 판단할 수 있다. 상기 발현 또는 활성 정도는 통계적 유의성을 확보한 상태에서 측정된 결과이다. 통계적 유의성이라는 개념은 생물학적 통계분석법을 통하여 유의적인 차이를 보이는 경우로, 정량적인 경우 p value가 0.05 미만으로 차이가 나는 경우를 포함한다.
일 실시예로서, 상기 방법은 상기 시험대상의 폐 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 정상 대조군의 폐 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율과 비교하는 단계를 더 포함할 수 있다.
또한, 일 실시예로서 상기 방법은 상기 시험대상의 폐 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율이 정상 대조군의 폐 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율보다 낮은 경우 폐 미세순환 장애가 있는 것으로 정보를 제공하는 단계를 더 포함할 수 있다. 상기 폐 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율은 상기 식 1에 따른 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)일 수 있다. 예를 들어, 상기 시험대상의 폐 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율이 정상 대조군의 폐 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율의 70% 이하, 65% 이하, 60% 이하, 55% 이하, 50% 이하, 45% 이하, 40% 이하, 35% 이하, 30% 이하, 25% 이하, 20% 이하, 15% 이하, 10% 이하 또는 5% 이하인 경우, 폐 미세순환 장애가 있는 것으로 판단할 수 있으나, 상기 미세순환 장애 여부를 판단하기 위한 비율은 미세순환 장애 여부를 측정하는 모세혈관이 분포한 개체의 장기의 종류에 따라 달라질 수 있으며, 상기 범위에 제한되는 것이 아니다. 상기 폐 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율은 통계적 유의성을 확보한 상태에서 측정된 결과이다. 통계적 유의성이라는 개념은 생물학적 통계분석법을 통하여 유의적인 차이를 보이는 경우로, 정량적인 경우 p value가 0.05 미만으로 차이가 나는 경우를 포함한다.
또 다른 측면에서, 본 발명은 폐 모세혈관 내의 중성구에서 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 mRNA 또는 단백질 검출 시약을 포함하는 폐 미세순환 장애 여부 진단용 조성물을 제공할 수 있다.
또 다른 측면에서, 본 발명은 폐 모세혈관 내의 중성구에서 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 mRNA 또는 단백질 검출 시약을 포함하는 폐 미세순환 장애 여부 진단용 키트를 제공할 수 있으며, 상기 키트는 상술된 미세순환 장애 여부 진단을 위한 정보 제공 방법이 기재되어 있는 지시서를 더 포함할 수 있다.
일 실시예로서, 상기 폐 미세순환 장애 여부 진단용 조성물 또는 키트에 포함되는 마크로파지-1 항원의 mRNA 또는 단백질 검출 시약은 마크로파지-1 항원에 특이적으로 결합하는 프라이머 및 프로브 중 하나 이상을 포함할 수 있다. 일 실시예로서 상기 마크로파지-1 항원 단백질 검출 시약은 마크로파지-1 항원에 특이적으로 결합하는 항체 및 프로브 중 하나 이상을 포함할 수 있다.
본 명세서에서 "프로브(probe)"란 유전자의 표적 부위와 상보적으로 결합할 수 있는 서열의 염기를 갖는 폴리뉴클레오티드, 그 변이체, 또는 폴리뉴클레오티드와 이에 결합된 표지 물질을 포함하는 것을 의미한다.
본 명세서에서 "프라이머(primer)"란 유전자의 표적 부위에 해당하는 특정 영역을 PCR을 이용하여 증폭하기 위하여 사용하는 유전자 특정 영역의 말단에 상보적으로 결합할 수 있는 서열의 염기를 갖는 폴리뉴클레오티드 또는 그 변이체를 의미한다. 상기 프라이머는 특정 영역 말단과 완전히 상보적일 것을 요구하지 않으며, 상기 말단에 혼성화되어 이중사슬 구조를 형성할 정도로 상보적이라면 사용될 수 있다.
본 명세서에서 "혼성화(hybridization)"란 2개의 단일 가닥 핵산이 상보적인 염기 서열들의 페어링(pairing)에 의하여 이합체 구조(duplex structure)를 형성하는 것을 의미한다.
혼성화는 단일 가닥 핵산 서열 간의 상보성이 완전할 경우(perfect match) 뿐 아니라 일부 미스매치(mismatch) 염기가 존재하여도 일어날 수 있다.
본 명세서에서 "폴리뉴클레오티드(polynucleotide)"란 복수개의 뉴클레오티드의 중합체를 의미하는 것으로, 통상적인 의미의 수십개의 뉴클레오티드의 중합체인 올리고뉴클레오티드를 포함하는 광의의 폴리뉴클레오티드를 의미한다.
이하, 실시예 및 실험예를 들어 본 발명의 구성 및 효과를 보다 구체적으로 설명한다. 그러나 아래 실시예 및 실험예는 본 발명에 대한 이해를 돕기 위해 예시의 목적으로만 제공된 것일 뿐 본 발명의 범주 및 범위가 그에 의해 제한되는 것은 아니다.
한편, 하기 실시예 및 실험예에서의 모든 동물 실험은 실험실 동물의 관리 및 사용에 대한 표준 지침에 따라 수행되었고, KAIST (프로토콜 No. KA2014-30 및 KA2016-55)의 동물실험윤리위원회(Institutional Animal Care and Use Committee, IACUC)의 승인을 받았다.
또한, 하기 실험예에서의 모든 데이터는 각 군의 값을 각각 나타내기 위해 적절한 평균 ±SD 또는 중간값 ±사분범위(interquartile range)로 표시된다. 평균 또는 중간값 간의 통계적 차이는 unpaired 2-tailed Student's t-test, Mann-Whitney test, post hoc Holm-Sidak 의 다중 비교를 사용한 one-way ANOVA, 또는 post hoc Dunn의 다중 비교를 사용한 Kruskal-Wallis test에 의해 적절하게 결정되었다. 통계적 유의성은 P < 0.05로 설정되었으며, Prism 6.0 (GraphPad)로 분석을 수행하였다.
[실시예 1] 패혈증으로 유발된 급성 폐 손상 마우스 모델 준비
[실시예 1-1] 미세순환 정량화를 위한 마우스 모델 준비
미세순환을 정량화하기 위해, 패혈증으로 유발된 급성 폐 손상 마우스 모델을 하기와 같은 방법으로 준비하였다.
본 실시예에서 사용된 모든 마우스는 12시간 : 12시간(12:12h)의 명:암 주기(light:dark cycle) 하에서 환기가 되고 온도(22.5℃)와 습도(52.5%)가 조절된 우리에 개별적으로 수용되었고 표준 식단과 물을 임의로( ad libitum) 제공하였다. 생후 8 내지 20주 된 수컷 마우스 (20 ~ 30 g)을 실험군으로 하였다. C57BL/6N 마우스는 OrientBio 사(대한민국, 수원)에서, Tie2-GFP 마우스 (Stock No. 003658, Jackson Laboratory)는 Jackson Laboratory에서 구입하였고, 상기 Tie2-GFP 마우스에서 GFP는 내피(endothelium)-특이적인 Tie2 프로모터 하에서 발현된다.
상기 Tie2-GFP 마우스에 고용량의 LPS 를 투여한 마우스 모델을 패혈증으로 유발된 급성 폐 손상(acute lung injury, ALI) 마우스 모델(이하, Tie2-GFP-ALI 마우스 모델)로 하여 하기 실험을 수행하였다.
상기 고용량의 LPS 투여 모델의 경우, 모세혈관 촬영 3 내지 6 시간 전, 상기 Tie2-GFP 마우스에 LPS (10 mg/kg, E.coli 혈청형 055:B5, L2880, Sigma-Aldrich)를 복막(peritoneum)에 복강 내 투여하였다. 대조군으로는 동량의 PBS를 복막에 주사한 마우스를 준비하였다.
[실시예 1-2] 미세순환 장애 진단을 위한 마우스 모델 준비
미세순환 장애를 진단하기 위해, 패혈증으로 유발된 급성 폐 손상 마우스 모델을 상기 실시예 1-1과 동일한 방법으로 준비하였다.
다만, 이 때 사용된 마우스는 본 실시예에서 사용된 모든 마우스는 Tie2-GFP 마우스가 아닌, LysM GFP/+ 마우스로, 이는 미국 로체스터 대학(University of Rochester)의 김민수 교수로부터 제공받았다(이하, LysM GFP/+ 마우스 모델이라 함).
상기 LysM GFP/+ 마우스에 고용량의 LPS 를 투여한 마우스 모델을 패혈증으로 유발된 급성 폐 손상(acute lung injury, ALI) 마우스 모델로 하여 하기 실험을 수행하였다.
상기 고용량의 LPS 투여 모델의 경우, 모세혈관 촬영 3 내지 6 시간 전, 상기 LysM GFP/+ 마우스에 LPS (10 mg/kg, E.coli 혈청형 055:B5, L2880, Sigma-Aldrich)를 복막(peritoneum)에 복강 내 투여하였다(이하, ALI 마우스 모델이라 하며, ALI 마우스 모델 중 LPS 투여 3 시간 후의 마우스 모델은 LPS 3h 마우스 모델, LPS 투여 6 시간 후의 마우스 모델은 LPS 6h 마우스 모델이라 함). 대조군으로는 동량의 PBS를 복막에 주사한 마우스(이하, 대조군 또는 PBS 마우스 모델이라 함)를 준비하였다.
[실시예 1-3] 폐 손상 질환 예방 또는 치료를 위한 조성물을 연구하기 위한 마우스 모델 준비
폐 손상 질환 예방 또는 치료하기 위한 조성물을 연구하기 위해, 패혈증으로 유발된 급성 폐 손상 마우스 모델을 상기 실시예 1-1과 동일한 방법으로 준비하였다.
다만, 이 때 사용된 마우스는 본 실시예에서 사용된 모든 마우스는 Tie2-GFP 마우스가 아닌, LysM GFP/+ 마우스로, 이는 미국 로체스터 대학(University of Rochester)의 김민수 교수로부터 제공받았다(이하, LysM GFP/+ 마우스 모델이라 함).
상기 LysM GFP/+ 마우스에 고용량의 LPS 를 투여한 마우스 모델 또는 CLP(맹장 결찰 및 천자, cecal ligation and puncture) 마우스 모델을 패혈증으로 유발된 급성 폐 손상(acute lung injury, ALI) 마우스 모델로 하여 하기 실험을 수행하였다.
상기 고용량의 LPS 투여 모델의 경우, 모세혈관 촬영 3 내지 6 시간 전, 상기 LysM GFP/+ 마우스에 LPS (10 mg/kg, E.coli 혈청형 055:B5, L2880, Sigma-Aldrich)를 복막(peritoneum)에 복강 내 투여하였다(이하, ALI 마우스 모델이라 하며, ALI 마우스 모델 중 LPS 투여 3 시간 후의 마우스 모델은 LPS 3h 마우스 모델, LPS 투여 6 시간 후의 마우스 모델은 LPS 6h 마우스 모델이라 함). 대조군으로는 동량의 PBS를 복막에 주사한 마우스(이하, 대조군 또는 PBS 마우스 모델이라 함)를 준비하였다.
CLP 모델은 앞에서 설명한 방법에 따라 경험이 풍부한 단일 실험자가 수행하였다. 구체적으로, 상기 LysM GFP/+ 마우스의 맹장(막창자, cecum)의 75%를 6-0 검은 실크(black silk)로 단단히 묵고, 21-게이지 바늘로 맹장 말단에 이중 구멍이 뚫린 단일 천자(puncture)를 만들었다. 그런 다음, 상기 맹장을 부드럽게 짜내어 대변을 밀어내기 위한 구멍(puncture)이 개방되어 있는지를 확인하였다. 상기 맹장은 복강으로 교체되었고, 복부 절개는 4-0 검은 실크로 봉합하였다. 정상군(Shame group)은 맹장 결찰 및 천자를 제외하고는 동일한 수술 과정을 거쳤다.
[실시예 1-4] 중성구 제거 모델(N-Dep 모델 및 N-Dep+LPS 모델) 준비
폐 미세순환 장애에 의한 폐 손상에 있어 중성구의 영향을 확인하기 위해, 중성구가 고갈된 마우스 모델(이하, 중성구 제거 모델)을 준비하였다. 구체적으로, 폐 생체 내 이미징 촬영 24 시간 전에 상기 실시예 1-3의 LysM GFP/+ 마우스에 항-Ly6G+ 단일 클론 항체(monoclonal antibody)(Clone 1A8, 551459, BD Biosciences) 200μg을 복강 내 주입함으로써 중성구가 고갈된 폐 손상이 없는 마우스 모델(이하, N-Dep 모델)을 준비하였다. 또한 마찬가지 방법으로 상기 실시예 1-3의 급성 폐 손상 마우스 모델에 상기 실시예 1-3의 과정으로 급성 폐 손상 마우스 모델을 제조하기 24 시간 전에, 항-Ly6G+ 단일 클론 항체(monoclonal antibody)(Clone 1A8, 551459, BD Biosciences) 200μg을 복강 내 주입함으로써 중성구가 고갈된 폐 손상 마우스 모델(이하, N-Dep+LPS 모델)을 준비하였다.
[실시예 2] 적혈구와 혈관 구조 염색, 중성구 표지화(labeling) 및 생체 내 폐 이미징
(1) 적혈구와 혈관 구조 염색
In vivo 상에서 미세순환을 촬영하기 위해, 상기 실시예 1-1의 마우스 모델의 적혈구(erythrocyte) 및 혈관 구조(vasculature)을 형광 염색하였다. 구체적으로, 적혈구는 심장 천자(cardiac puncture)를 통해 수득하고, 그런 다음으로 제품 정보 시트에 기재된 방법에 따라 라벨링하였다. 이 때, 적혈구는 Vybrant DiD (V22887, ThermoFisher Scientific)으로 형광 라벨링하였다. 그런 다음 촬영 직전에 상기 실시예 1-1의 Tie2-GFP-ALI 마우스 모델의 꼬리 정맥의 혈관 카테터를 통해 상기 5천만 카운트(count)의 DiD-라벨링된 적혈구를 주입하여 양자면역전달(adoptive transfer)을 수행하였다.
또한, 형광 염료로 혈관을 시각화하기 위해, 덱스트란 염료(extran dye)가 결합된 FITC (분자량 2M Da, Sigma-Aldrich) 또는 테트라메틸로다민(Tetramethylrhodamine, TMR)을 상기 실시예 1-1의 Tie2-GFP-ALI 마우스 모델에 상기와 동일한 혈관 카테터를 통해 주입하였다.
상기 마우스 모델에 DiD-라벨링된 적혈구, 덱스트란 염료가 결합된 FITC 또는 TMR을 주입하는 과정은 하기 생체 내 폐 이미징에 설명되었다.
(2) 실시예 1-2의 마우스 모델의 중성구 표지화(labeling)
In vivo 상에서 중성구(neutrophil)의 움직임을 촬영하기 위해, 이미징 2 시간 전에, 발광형광단(fluorophore)인 Alexa Fluor 555 또는 647 (A-20005 / A-20006, ThermoFisher Scientific)가 결합된 항-Ly6G+ 단일 클론 항체(monoclonal antibody)(Clone 1A8, 551459, BD Biosciences)를 상기 실시예 1-2의 마우스 모델의 꼬리를 통해 주입하여 중성구를 라벨링(labeling)하였다.
또한, 상기 실시예 1-2의 마우스 모델의 적혈구(erythrocyte) 및 맥관 구조(vasculature)을 형광 염색하였다. 구체적으로, 적혈구는 심장 천자(cardiac puncture)를 통해 수득하고, 그런 다음으로 Vybrant DiD (V22887, ThermoFisher Scientific)으로 제품 정보 시트에 기재된 방법에 따라 라벨링하였다. 그런 다음 촬영 직전에 상기 실시예 1-2의 마우스 모델의 꼬리 정맥의 혈관 카테터를 통해 상기 5천만 카운트(count)의 DiD-라벨링된 적혈구를 주입하였다. 또한, 맥관 구조를 시각화하기 위해, 덱스트란 염료(extran dye)가 결합된 FITC (분자량 2M Da, Sigma-Aldrich) 또는 테트라메틸로다민(Tetramethylrhodamine, TMR)을 상기 실시예 1의 마우스 모델에 상기와 동일한 혈관 카테터를 통해 주입하였다.
상기 마우스 모델에 발광형광단이 결합된 항-Ly6G+ 단일 클론 항체, DiD-라벨링된 적혈구, 덱스트란 염료가 결합된 FITC 또는 TMR를 주입하는 과정은 하기 생체 내 폐 이미징에 설명되었다.
(3) 실시예 1-3의 마우스 모델의 중성구 표지화(labeling)
In vivo 상에서 폐 내 격리된 중성구(sequestered neutrophil)의 분자적 발현을 시각화하기 위해, 이미징 2 시간 전에, 발광형광단(fluorophore)인 Alexa Fluor 555 (A-20005, ThermoFisher Scientific)가 결합된 25 μg의 CD11b (Clone M1/70, 553307, BD Biosciences) 및 25 μg의 CD18 (Clone GAME-46, 555280, BD Biosciences) 각각을 상기 실시예 1-3의 마우스 모델의 꼬리를 통해 주입하여 중성구를 라벨링(labeling)하였다.
또한, 상기 실시예 1-3의 마우스 모델의 적혈구(erythrocyte) 및 맥관 구조(vasculature)을 형광 염색하였다. 구체적으로, 적혈구는 심장 천자(cardiac puncture)를 통해 수득하고, 그런 다음으로 Vybrant DiD (V22887, ThermoFisher Scientific)으로 제품 정보 시트에 기재된 방법에 따라 라벨링하였다. 그런 다음 촬영 직전에 상기 실시예 1-3의 마우스 모델의 꼬리 정맥의 혈관 카테터를 통해 상기 5천만 카운트(count)의 DiD-라벨링된 적혈구를 주입하였다. 또한, 맥관 구조를 시각화하기 위해, 덱스트란 염료(extran dye)가 결합된 FITC (분자량 2M Da, Sigma-Aldrich) 또는 테트라메틸로다민(Tetramethylrhodamine, TMR)을 상기 실시예 1-3의 마우스 모델에 상기와 동일한 혈관 카테터를 통해 주입하였다.
상기 마우스 모델에 발광형광단이 결합된 CD11b 및 CD18, DiD-라벨링된 적혈구, 덱스트란 염료가 결합된 FITC 또는 TMR를 주입하는 과정은 하기 생체 내 폐 이미징에 설명되었다.
(4) 생체 내 폐 이미징
다음과 같이 생체 내 폐 이미징을 수행하였다.
구체적으로, 상기 실시예 1-1의 Tie2-GFP-ALI 마우스 모델, 대조군 마우스 모델 및 정상군(Sham group) 마우스 모델, 상기 실시예 1-2의 LysM GFP/+ 마우스 모델, ALI 마우스 모델, LPS 3h 마우스 모델, LPS 6h 마우스 모델 및 PBS 마우스 모델, 및 상기 실시예 1-3의 LysM GFP/+ 마우스 모델, ALI 마우스 모델, PBS 마우스 모델 및 정상군(Shame group) 마우스 모델, 상기 실시예 1-4의 N-Dep 마우스 모델 및 N-Dep+LPS 마우스 모델, 하기 실험예 12-1의 Mac-1 억제 마우스 모델 각각을 케타민(Ketamine)(80 mg/kg) 및 질라진(Xylazine)(12 mg/kg)으로 마취한 후, 라이트닝 가이드와이어(lightning guidewire)로 20 게이지 혈관 카테터를 사용하여 삽관을 하고 인공호흡기(MouseVent, Kent Scientific)에 연결하였다. 상기 호흡은 24~30 mmHg의 흡기압, 분당 120~130의 호흡수(respiratory rate), 및 2cmH 2O의 호기말 양압(positive-end expiratory pressure, PEEP)로 세팅되어 수행되었다. 마취 상태를 유지하기 위해 2% 이소플루란(isoflurane)을 투여(delivery)하였으며, 산소 공급과 생존 상태를 모니터하기 위해 맥박 산소 측정법(pulse oximetry)를 적용하였다. 항온 시스템(RightTemp, Kent Scientific)의 열침을 직장(rectum)으로 주입하고, 피드백-조절식 열 패트(feedback-regulated heating pad)를 사용하여 체온을 37.0℃로 유지하였다. 꼬리 정맥은 상기 (1)의 염료, 적혈구 및 중성구의 정맥 주입을 위해 PE-10 튜브에 부착된 30-게이지 바늘로 캐뉼러가 삽입되었다(cannulated). 그런 다음, 마우스 모델을 오른쪽으로 옆으로 누운 자세를 취하게 하고, 왼쪽 개흉술(thoracotomy)을 수행하였다. 늑골이 노출될 때까지 피부 및 근육을 절개하고, 3번째 늑골과 4번째 늑골 사이를 절개하여 흉막(pleura)을 노출시켰다. 개흉술 후, 하기 실험예의 이미징 윈도우를 흉막 표면에 적용하고, 폐 이미징 윈도우에 연결된 튜브를 통해 펌프(DOA-P704-AA, GAST) 및 조절기(NVC 2300a, EYELA)로 음의 흡기 압력(negative suction pressure)을 가하였다.
[실험예 1] 폐 미세순환 촬영
[실험예 1-1] 적혈구 염색을 이용한 위한 폐 미세순환 촬영
폐 이미징 윈도우(pulmonary imaging window)를 통해 in vivo 상 폐 미세순환을 시각화하기 위해, 맞춤형 비디오-속도 레이저-스캐닝 공초점 현미경 시스템(custom-built video-rate laser-scanning confocal microscopy system)을 구현하였다.
이미징 시스템
구체적으로, 3 종의 연속 레이저 모듈 (488 nm (MLD488, 코볼트), 561 nm (Jive, 코볼트), 640 nm (MLD640, 코볼트)의 파장)을 다색 형광 이미징(imaging)을 위한 여기 경량 광원(excitation light source)으로 활용하였다. 레이저 빔은 다이크로닉 빔 분리장치(diachronic beam splitter)(DBS1; FF593-Di03, DSB2; FF520-Di02, Semrock)에 의해 동일 선상으로(collinearly) 통합되었으며, 다지점(multi-edge) 다이크로닉 빔 분리장치(DBS3; Di01-R405/488/561/635, Semrock)에 의해 레이저-빔 스캐너로 전송되었다. 상기 레이저 스캐닝부는 36 개의 측면(MC-5, 알루미늄 코팅, Lincoln Laser)이 있는 회전 다각형 거울을 사용한 X축 스캐닝과 검류계 스캐닝 거울(galvanometer scanning mirror)(6230H, Cambridge Technology)를 사용한 Y축 스캔 등 2개의 축으로 구성되었다. 상용화된 대물렌즈(LUCPLFLN, 20X, NA 0.45, Olympus, LUCPLFLN, 40X, NA 0.6, Olympus, LCPLFLN100XLCD, 100X, NA 0.85, Olympus)를 통해 상기 실시예 1-1의 Tie2-GFP-ALI 마우스 모델의 폐로 2차원 래스터(raster) 스캐닝 레이저 빔을 옮겼다. 상기 대물렌즈에 의해 XYZ 변환 3D 단계(3DMS, Sutter Instrument)에서 상기 마우스 모델의 폐에서 방출된 형광 신호를 미리 감지하였다. 스캐닝되지 않은(de-scanned) 3색 형광 신호를 다이크로닉 빔 분리장치(DBS4; FF560-Di01, DBS5; FF649-Di01, Semrock)로 스펙트럼으로 분할한 다음, 대역필터(band pass filter)(BPF1; FF02-525/50, BPF2; FF01-600/37, BPF3; FF01-685/40, Semrock)를 통해 광전자 증배관(photomultiplier)(PMT; R9110, Hamamatsu)으로 검출하였다. 각각의 PMT의 전압 출력은 10 MHz의 샘플링 속도에서 8 비트 해상도(resolution)를 갖는 3-채널 프레임 그래버(frame grabber)(Solios, Matrox)에 의해 디지털화되었다. Matrox Imaging Library(MIL9, Matrox)와 Visual C#을 기반으로 한 맞춤형 영상 소프트웨어를 사용하여 30 Hz의 프레임률(frame rate)과 512 X 512 픽셀의 프레임 크기로 영상 속도의 영화가 실시간으로 표시되고 기록되었다.
이미지 처리
상기 이미징 시스템을 이용하여 촬영된 이미지는 프레임 당 512 X 512 픽셀의 초당 30 프레임의 획득 속도로 표시되고 저장되었다. 실시간 이미지 프레임은 대조도(contrast) 및 신호-대-노이즈 비율(signal-to-noise ratio)을 개선하기 위해 MATLAB (Mathworks) 코드를 사용하여 평균 30 프레임 이상을 얻었다. 운동 인공물(motion artifact)를 최소화하기 위해, 평균화 전에 각 프레임을 이미지 등록 알고리즘(image registration algorithm)으로 처리하였다. 3차원 재구성을 이용한 이미지 렌더링(rendering), 적혈구 및 중성구의 트랙 분석, 트랙 변위 표시는 IMARIS 8.2(Bitplane)로 실시하였다.
상기 실시예 1-1의 대조군 마우스 모델의 폐 미세순환을 상기 이미징 시스템에 의해 촬영하고 이로부터 수득한 이미지를 상기 이미지 처리 과정에 따라 처리된 결과는 도 2와 같다.
도 2 에 나타난 바와 같이, 본 발명의 일 측면에 따른 미세순환 정량화 방법, 및 미세순환 측정 장치를 이용하면 빠른 속도로 이동하는 적혈구(DiD-라벨링된 적혈구)를 GFP로 라벨링된 폐 모세혈관 내부에서 선명하게 볼 수 있어, 모세혈관을 통해 이동하는 적혈구의 복수의 이동 이미지를 얻을 수 있으며, 적혈구 각각의 이동 궤적(flowing trajectory)과 속도에 대한 공간적 정보를 획득할 수 있다.
[실험예 1-2] 중성구 표지화를 이용한 위한 폐 미세순환 촬영
상기 실험예 1-1과 마찬가지 방법으로 폐 미세순환을 촬영하였다. 다만, 마우스 모델은 상기 실시예 1-1의 Tie2-GFP-ALI 마우스 모델이 아닌, 상기 실시예 1-2의 LysM GFP/+ 마우스 모델을 이용하였다.
상기 실시예 1-2의 LPS를 투여하지 않은 LysM GFP/+ 마우스 모델의 폐 미세순환을 상기 이미징 시스템에 의해 촬영하고 이로부터 수득한 이미지를 상기 이미지 처리 과정에 따라 처리된 결과는 도 7과 같다.
도 7에 나타난 바와 같이, 중성구가 폐 모세혈관을 통해 상부(푸른색 캐럿, ^) 및 하부(붉은색 별표, *)에서 압착된 후에 재개되는 것을 확인하였으며, LysM GFP/+ 마우스 모델의 폐 내 미세순환 중에 모세혈관에 중성구가 과도하게 갇히는(entrapment) 현상을 확인하였다. 또한, 모세혈관 폐색이 일어나는 동안 적혈구로 추정되는 순환하는 세포는 모세혈관을 통해 흐를 수 없으나, 중성구가 모세혈관을 통과한 후에는 모세혈관의 혈액 흐름(flow)이 재개됨을 확인하였다.
한편, 패혈증으로 유발된 급성 폐 손상 마우스 모델은 급성 폐 손상 초기에 기능적 모세혈관 분율(Functional Capillary Ratio, FCR; 전체 모세혈관 면적에 대한 기능적 모세혈관 면적으로 계산됨)이 감소하는데, 상기 폐 손상 마우스에서 발견되는 모세혈관 폐색(capillary obstruction) 또는 막힘들은 상기 FCR 감소의 기초가 되는 일차 병리학적 매커니즘을 나타낼 수 있는 모세혈관 내부의 대상(object)에 의해 유도된다. 도 7에 나타난 결과로부터 중성구가 전신 염증에 빠르게 반응하기 때문에 상기 폐색을 유도하는 대상이 중성구임을 알 수 있었다.
따라서, 모세혈관 내의 중성구, 구체적으로 모세혈관에서 중성구가 갇히는 것(entrapment)이 미세순환 장애, 특히 패혈증과 관련이 있음을 알 수 있는바, 본 발명의 일 측면에 따른 정보 제공 방법, 및 미세순환 장애 진단 장치를 이용하면 중성구의 움직임을 모세혈관 내부에서 선명하게 볼 수 있어, 모세혈관을 통해 이동하는 중성구의 복수의 이동 이미지를 얻을 수 있으며, 중성구 각각의 움직임에 대한 정보를 획득하여 개체의 미세순환 장애 여부를 쉽고 편하게 진단할 수 있다.
[실험예 2] 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)을 기반으로 한 미세순환 정량화
기능적 모세혈관 분율(Functional Capillary Ratio, FCR)을 기반으로 개체의 미세순환을 정량화하기 위해, 상기 실험예 1-1의 이미징 시스템 및 이미지 처리를 통해 수득한 모세혈관에서 이동하는 DiD-라벨링된 적혈구의 실시간 영상을 사용하여 기능적 모세혈관 이미지를 분석하였다. 영상의 색상을 분할한 후, DiD를 검출하는 채널의 순차 이미지를 반경 2 픽셀의 중간값 필터(median filter)로 처리하여 신호-대-노이즈 비율을 증가시켰다. 적혈구에 의해 관류되는 기능적 모세혈관을 보여주기 위해 600 내지 900 프레임 (20 내지 30 초)의 최대 투사 강도(maximal intensity projection)를 생성하였다. 기능적 모세혈관 분율(Functional capillary ratio, FCR)을 하기 식 1에 의해 계산하였다.
[식 1]
기능적 모세혈관 분율 = 기능적 모세혈관의 면적 / 전체 모세혈관의 면적.
상기 식 1에서 전체 모세혈관 면적은 Tie2 또는 덱스트란 신호에 의해 감지된 혈관 면적이고, 기능적 모세혈관 면적은 DiD-라벨링된 적혈구가 이동하는 면적을 의미한다. 상기 기능적 모세혈관 분율을 계산하기 위한 모든 이미지 처리는 ImageJ(https://imagej.nih.gov/ij/)에 의해 수행되었으며, 그 결과는 도 3 및 도 4와 같다.
도 4는 시간 영역별로 적혈구가 지나가는 공간을 합하여 계산한 기능적 모세혈관의 분율을 나타낸 그래프이다.
도 3 및 도 4에 나타난 바와 같이, 본 발명의 일 측면에 따른 미세순환 정량화 방법, 및 미세순환 장치를 이용하여 기능적 모세혈관 분율을 계산함으로써 미세순환을 정량화할 수 있다.
[실험예 3] 폐 손상 마우스 모델과 대조군의 기능적 모세혈관 분율 비교
상기 실시예 1-1에서 제조한 LPS 투여에 의해 패혈증이 유발된 Tie2-GFP-ALI 마우스 모델과 LPS 대신 PBS를 투여한 대조군의 기능적 모세혈관 분율을 비교하였다. 대조군 마우스 모델도 상기 실험예 1-1 및 실험예 2와 동일한 방법으로 폐 미세순환을 촬영하고 그 이미지를 분석하였다. 그 결과, 대조군 마우스 모델과 폐 손상 마우스 모델의 적혈구의 평균 속도는 유의미한 차이가 없었으나, 폐 손상 마우스 모델은 적혈구 관류 패턴(perfusion pattern)이 극적으로 변하였다. 또한, 적혈구의 관류 영역을 정량화하기 위해 600 프레임(20초)의 순차 이미지에서 적혈구를 최대 투사 강도(maximal intensity projection)로 표시하였다.
상기 실험예 2의 식 1을 이용하여 상기 대조군 마우스 모델과 폐 손상 마우스 모델(Tie2-GFP-ALI 마우스 모델)의 기능적 모세혈관 분율(FCR)을 계산하였으며, 그 결과는 도 5 및 도 6에 나타내었다(n (field 개수) = 30, 마우스 1 마리당 FOV(field of view)는 10개, 각 군 별로 마우스는 3 마리, P = 0.8157, * P < 0.05, two-tailed t-test).
도 5에 나타난 바와 같이, 대조군 모델의 관류(perfusion)는 광범위하고 확산된 특성을 보이는 반면, 폐 손상 마우스 모델(Tie2-GFP-ALI 마우스 모델)의 관류는 더욱 집중되고 동맥 및 몇몇의 모세혈관에 겹쳐졌으며(overlapped), 대조군 모델과는 달리 급성 폐 손상 마우스 모델(Tie2-GFP-ALI 마우스 모델)은 폐 모세혈관의 전체 영역 중 적혈구가 지나가지 못하는 사강(dead space, 도 5의 흰색 별)이 확인되었다.
또한, 도 6a 및 도 6b에 나타난 바와 같이, 대조군 모델과 폐 손상 마우스 모델(Tie2-GFP-ALI 마우스 모델)은 전체 모세혈관 면적은 차이가 없으나(도 6a), 대조군 모델에 비해 급성 폐 손상 마우스 모델(Tie2-GFP-ALI 마우스 모델)의 적혈구가 이동하는 기능적 모세혈관의 면적이 급격히 감소하여 기능적 모세혈관 분율(FCR)이 50% 이상 감소함을 확인하였다(도 6b). 패혈증으로 유발된 급성 폐 손상 마우스 모델(Tie2-GFP-ALI 마우스 모델)에서 비정상적인 관류가 나타남을 의미한다.
나아가, 상기 대조군 모델과 폐 손상 마우스 모델(Tie2-GFP-ALI 마우스 모델)의 동맥혈에서의 산소 분압 및 이산화탄소 분압을 측정하기 위해, 동맥혈 가스 분석을 수행하였다. 구체적으로, 22 게이지 바늘이 들어간 1 mL의 주사기를 헤파린으로 코팅하고 상기 대조군 모델(PBS, n = 6)과 폐 손상 마우스 모델(LPS, n = 16)의 심장의 좌심실에 도입하였다. 그 후 약 200 μL의 혈액이 i-STAT 소형 혈액 분석기(i-STAT handheld blood analyzer)(G3 카트리지, Abbott Point of Care Inc.)로 샘플링되고 분석되었으며, 상기 마우스 모델들을 혈액 샘플링 직후 CO 2 챔버로 안락사시켰다. 상기 동맥혈 가스 분석 결과는 도 6c 및 도 6d와 같다(* P <0.05, Mann-Whitney test). 도 6c 및 도 6d에 나타난 바와 같이, 대조군 모델에 비하여 폐 손상 마우스 모델(Tie2-GFP-ALI 마우스 모델)의 동맥 내 산소 분압은 감소하고(도 6c), 이산화탄소 분압은 증가하였는바(도 6d), 상기 폐 손상 마우스 모델(Tie2-GFP-ALI 마우스 모델)에서의 기능적 모세혈관 분율의 감소는 저산소증(hypoxemia) 및 과탄산혈증(hypercapnia)에 따른 결과임을 알 수 있었다.
따라서, 본 발명의 일 측면에 따른 미세순환 정량화 방법, 및 미세순환 측정 장치를 이용하면 기능적 모세혈관 분율을 기반으로 in vivo 상에서 개체의 미세순환을 보다 쉽고 간편하게 정량화할 수 있으며, 상기 정량화된 결과를 바탕으로 미세순환 장애 여부를 정확하고 빠르게 판단할 수 있다.
[실험예 4] 폐 손상 마우스 모델과 대조군 모델의 중성구 움직임 비교
상기 실험예 1-2로부터 모세혈관에서 중성구의 움직임이 미세순환 장애와 관련이 있음을 확인하였는바, 상기 실시예 1-2에서 제조한 ALI 마우스 모델(LPS)과 대조군 모델(PBS)에서의 중성구 움직임을 시각화하기 위해, 상기 실험예 1-1 및 1-2와 동일한 방법으로 맞춤형 비디오-속력 레이저-스캐닝 공초점 현미경 시스템을 구현하였으며, 생체 내 이미징 결과는 도 8와 같다.
도 8에 나타난 바와 같이, 대조군 마우스 모델의 폐 내 미세순환에서 중성구가 모세혈관을 통과하는 것과는 달리, ALI 마우스 모델에서는 수많은 지점에서 폐 미세순환에서 세포의 흐름이 중단되었다.
또한, 상기 도 8의 Wide field의 이미징 처리 결과를 바탕으로 ALI 마우스 모델(LPS)과 대조군 마우스 모델(PBS) 간의 단위면적(512 X 512 μm)(field)당 중성구의 수를 비교하였으며, 그 결과는 도 9과 같다. 도 9에 나타난 바와 같이, 대조군에서의 중성구의 수는 약 10 cells/field 인 반면, ALI 마우스 모델에서의 중성구의 수는 약 200 cells/field 로, 대조군 모델에 비해 ALI 마우스 모델에서 중성구의 수가 약 20 배 정도 더 많음을 확인하였다(n (분석을 수행한 field의 개수) = 30, 마우스 1 마리 당 10 FOV(Field of View), 각 그룹당 3마리, * P < 0.05, two-tailed t-test, 데이터는 평균 ±s.d이다). 이는 상기 실험예 1-2에 따라 폐 내 미세순환을 촬영 시, 포착되는 중성구의 수가 더 많다는 것이며, 이는 급성 폐 손상에 의해 중성구가 모세혈관에서 순환하지 않고 갇히게 되어 일정한 시간차를 두고 촬영된 이미지에서 발견될 확률이 더 높기 때문이다. 이를 통해, 염증 초기에, 선천적인 면역 세포가 모일 때, 폐의 모세혈관에서의 미세순환에 있어 중성구가 1차적인 장애물임을 확인하였다.
따라서, 중성구의 모세혈관에서의 격리(entrapment)가 미세순환 장애와 관련이 있음을 알 수 있는바, 본 발명의 일 측면에 따른 정보 제공 방법, 및 미세순환 장애 진단 장치를 이용하면 중성구의 움직임을 모세혈관 내부에서 선명하게 볼 수 있어, 모세혈관을 통해 이동하는 중성구의 복수의 이동 이미지를 얻을 수 있으며, 중성구 각각의 움직임에 대한 정보를 획득하여 개체의 미세순환 장애 여부를 쉽고 편하게 진단할 수 있다.
[실험예 5] 폐 손상 마우스 모델과 대조군 모델의 중성구의 움직임(track) 비교 분석
상기 실험예 4로부터 중성구가 모세혈관에서 갇히는 것에 의해 폐 손상과 같은 미세순환 장애가 발생할 수 있음을 확인하였는바, 상기 실시예 1-2에서 제조한 LPS 투여에 의해 패혈증이 유발된 급성 폐 손상 마우스 모델(LPS 3h 마우스 모델 및 LPS 6h 마우스 모델)과 LPS 대신 PBS를 투여한 대조군 마우스 모델의 중성구의 움직임(track)을 비교 분석하였다.
저속력 이미징(Time lapse imaging)으로부터 중성구의 트랙 도출
구체적으로, 상기 실험예 1-1 및 1-2와 동일한 방법으로 맞춤형 비디오-속력 레이저-스캐닝 공초점 현미경 시스템을 구현하여 마우스 모델들의 폐 미세순환을 느린 속력으로 30 분 동안 촬영하여 생체 내 이미징을 수행하였으며, 도 10a 및 10b와 같다.
도 10a의 저속력 이미징(time lapse imaging) 및 30 분 동안 추적된 중성구의 움직임(track)에 나타난 바와 같이, 대조군(PBS)에서는 30 분 동안 특정 위치에 머물러 있는 중성구의 수가 매우 적은 반면, LPS 투여 3 시간 후의 폐 손상 마우스 모델(LPS 3h 마우스 모델)은 30 분 동안 특정 위치에 머물러 있는 중성구의 수가 대조군에 비해 증가하였고 LPS 투여 6 시간 후의 폐 손상 마우스 모델(LPS 6h 마우스 모델)에서는 전체 모세혈관 전 영역에서 중성구가 30 분 동안 특정 위치에 머물러 있음을 확인하였다.
이는 도 10b의 중성구의 트랙 변위(track displacement)를 통해 다시 확인할 수 있는데, 대조군에 비하여 LPS 투여 3 시간 후의 폐 손상 마우스 모델(LPS 3h 마우스 모델)에서 중성구의 트랙 변위가 급격히 증가하였는데, 이로부터 LPS 투여 3 시간 후에는 모세혈관에서의 중성구의 운동성이 증가함을 알 수 있었다. 다만, 이후 미세순환 장애로 인한 염증이 심화됨에 따라 LPS 투여 6 시간 후(LPS 6h 마우스 모델)에는 중성구의 운동성이 감소하여 중성구의 트랙 변위가 감소함을 알 수 있었다.
즉, 도 10a 및 10b에 따르면, 적혈구의 이동 속력이 500 μm/s 초과로 빠르다는 점을 감안할 때, 2 분 이상 연속적으로 검출된 중성구는 이동하지 않는 중성구이므로, 폐 손상으로 인해 중성구가 모세혈관의 특정 영역에 격리(즉, 혈관 내부에서 몹시 느리게 이동하거나 가장자리화되어 있음(marginating))되는 것을 알 수 있었다.
중성구의 격리 정도 비교
상기 저속력 이미징(Time lapse imaging) 결과(도 10a 및 10b)로부터 대조군과 폐 손상 마우스 모델의 중성구의 격리 정도를 비교하였으며, 그 결과는 도 11와 같다. 도 11에서 x축은 시간(sequestration time)을, y 축은 시간별로 도 10a 및 도 10b에 나타난 트랙의 수를 의미한다.
도 11에 나타난 바와 같이, 대조군에서는 1 분 미만에는 트랙(track, 구간)이 약 100 개 정도인 반면, LPS 투여 6 시간 후 마우스 모델(LPS 6h)은 29 내지 30 분 사이의 트랙이 약 300 개 이상으로, LPS 투여 6 시간 후 마우스 모델은 대조군에 비하여 미세순환 내에서 중성구가 오래 갇혀 있는, 또는 오래 격리되어 있는 트랙이 많음을 확인하였다. 즉, 대조군에서는 대부분의 중성구가 매우 짧은 시간 격리되어 있으며, 격리된 중성구의 비율이 대조군에 비하여 폐 손상 마우스 모델(LPS 3h, LPS 6h)에서 크게 증가함을 확인하였다.
[실험예 6] 폐 손상 마우스 모델과 대조군 모델의 중성구의 동적 요소 비교 분석
상기 실험예 5으로부터 대조군 모델에 비하여 폐 손상 마우스 모델은 모세혈관에서 중성구가 격리되어 움직임이 적음을 확인하였는바, 상기 실험예 1,4 및 5로부터 얻은 데이터들을 바탕으로 상기 실시예 1-2에서 제조한 LPS 투여에 의해 패혈증이 유발된 급성 폐 손상 마우스 모델(LPS 3h 마우스 모델 및 LPS 6h 마우스 모델)과 LPS 대신 PBS를 투여한 대조군 마우스 모델의 중성구의 동적 요소들(격리 시간, 변위, 이동 거리, 이동 속력 및 트랙의 굴곡 지수(meandering index))을 비교 분석하였으며, 그 결과는 도 12a 내지 12e와 같다 (n (트랙의 개수) = 466(PBS), 794(LPS 3h), 및 1076(LPS 6h) 이며, 상기 3 가지 군 각각의 마우스는 3 마리이다. * P < 0.05, post hoc Dunn의 다중 비교를 사용한 Kruskal-Wallis test이며, 데이터는 중간값 ±사분범위(interquartile range)이다).
먼저, 격리 시간(sequestration time)의 경우(도 12a), 대조군(PBS)의 격리 시간은 약 3 분, LPS 3h 마우스 모델은 약 8 분, LPS 6h 마우스 모델은 약 18 분으로, 대조군(PBS)에 비하여 폐 손상 마우스 모델(LPS 투여군)의 중성구의 격리 시간이 더 길고, LPS 투여 3 시간이 경과했을 때(LPS 3h 마우스 모델)보다 6 시간이 경과하였을 때(LPS 6h 마우스 모델) 격리 시간이 약 2 배 정도 더 긴 것을 확인하였다.
변위(track displacement length)의 경우(도 12b), 대조군(PBS)의 변위는 약 3 μm, LPS 3h 마우스 모델은 약 8 μm, LPS 6h 마우스 모델은 약 4 μm로, 대조군(PBS)에 비하여 LPS 투여 3 시간 후의 폐 손상 마우스 모델(LPS 3h 마우스 모델)의 변위량이 약 2 내지 3 배 정도 증가하고, LPS 투여 6 시간 후의 폐 손상 마우스 모델(LPS 6h 마우스 모델)의 변위는 다시 대조군과 비슷한 수준으로 감소하는 것을 확인하였다.
이동 거리(track length)도(도 12c) 상기 변위와 마찬가지로, 대조군(PBS)의 이동 거리는 약 10 μm, LPS 3h 마우스 모델은 약 23 μm, LPS 6h 마우스 모델은 약 15 μm로, 대조군(PBS)에 비하여 LPS 투여 3 시간 후의 폐 손상 마우스 모델(LPS 3h 마우스 모델)의 이동 거리가 약 2 배 이상 증가하고, LPS 투여 6 시간 후의 폐 손상 마우스 모델(LPS 6h 마우스 모델)의 이동 거리는 다시 대조군과 비슷한 수준으로 감소하는 것을 확인하였다.
이동 속력(track velocity)의 경우(도 12d), 대조군(PBS)의 이동 속력은 약 1.0 μm/m, LPS 3h 마우스 모델은 약 1.9 μm/m, LPS 6h 마우스 모델은 약 0.8 μm/m로, 대조군(PBS)에 비하여 LPS 투여 3 시간 후의 폐 손상 마우스 모델(LPS 3h 마우스 모델)의 이동 속력이 약 1.5 배 이상 증가하고, LPS 투여 6 시간 후의 폐 손상 마우스 모델(LPS 6h 마우스 모델)의 이동 속력은 다시 대조군과 비슷한 수준으로 감소하는 것을 확인하였다.
또한, 트랙의 굴곡 지수(meandering index)(도 12e)는 중성구가 한 쪽 방향으로 나아가려는 경향성을 나타내는데, 트랙의 굴곡 지수가 클수록 목표하는 지점 또는 특정 방향으로 직선으로 상기 혈류 내 타겟 요소(중성구)가 이동하여 가장 빠른 시간 내에 목표 지점에 도달할 수 있게 되는 것을 의미한다. 도 12e에 나타난 바와 같이, 대조군(PBS)의 굴곡 지수는 약 0.5 a.u., LPS 3h 마우스 모델은 약 0.4 a.u., LPS 6h 마우스 모델은 약 0.2 a.u.로, 대조군(PBS)에 비하여 폐 손상 마우스 모델(LPS 투여군)의 중성구의 트랙의 굴곡 지수가 더 작고, LPS 투여 3 시간이 경과했을 때(LPS 3h 마우스 모델)보다 6 시간이 경과하였을 때(LPS 6h 마우스 모델) 트랙의 굴곡 지수가 약 1/2 정도로 감소하는 것을 확인하였다.
상기 도 12b 내지 12d에 따르면, LPS 투여 3 시간 후의 폐 손상 마우스 모델(LPS 3h 마우스 모델)에서 중성구의 동적 요소 중 변위, 이동 거리 및 이동 속력이 증가하였는데, 이로부터 LPS 투여 3 시간 후에는 모세혈관에서의 중성구의 운동성이 증가함을 알 수 있었다. 다만, 이후 미세순환 장애로 인한 염증이 심화됨에 따라 LPS 투여 6 시간 후(LPS 6h 마우스 모델)에는 중성구의 운동성이 감소하여 변위, 이동 거리 및 이동 속력이 감소함을 알 수 있었다.
또한, 상기 도 12e에 따르면, 대조군, LPS 투여 3 시간 후의 폐 손상 마우스(LPS 3h 마우스 모델) 모델, LPS 투여 6 시간 후의 폐 손상 마우스 모델(LPS 6h 마우스 모델) 순으로 트랙의 굴곡 지수가 감소하는데, 이는 중성구의 증가된 격리 시간 및 머무름(또는 격리) 특성에 영향을 받았기 때문이다.
따라서, 상기 중성구의 동적 요소를 종합하면, 내독신에 의해 유도된 급성 폐 손상 초기에는 중성구가 활성화되어 모세혈관 내부에서 운동성이 증가하나, 후기에는 점차적으로 모세혈관 내부에 격리되는 것을 알 수 있는바, 본 발명의 일 측면에 따른 정보 제공 방법, 및 미세순환 장애 진단 장치를 이용하면 중성구의 움직임을 모세혈관 내부에서 선명하게 볼 수 있어, 모세혈관을 통해 이동하는 중성구의 복수의 이동 이미지를 얻을 수 있으며, 중성구 각각의 움직임에 대한 정보를 획득하여 개체의 미세순환 장애 여부를 쉽고 편하게 진단할 수 있다.
[실험예 7] 중성구의 격리와 사강(dead space) 발생의 관계 확인
상기 실험예 6으로부터 급성 폐 손상에 의해 모세혈관 내 중성구가 격리되는 것을 확인하였는바, 상기 실시예 1-2에서 제조한 ALI 마우스 모델의 생체 내 이미징을 이용하여 폐 미세순환에서 사강(dead space)이 형성되는 전체 과정을 확인하였다.
실시간 이미징(real-time imaging) 및 저속력 이미징(time lapse imaging)
구체적으로, 상기 실시예 1-2의 ALI 마우스 모델의 중성구(Ly6G+ 세포)의 폐 미세순환을 상기 실험예 4의 방법으로 실시간으로 촬영하여 도 13 및 14의 실시간 이미지를 얻었다.
또한, 모세혈관에 연결된 동맥의 분기 영역(branching region)에서 중성구(Ly6G+ 세포)에 의해 클러스터(cluster)가 형성되는 과정을, 상기 실험예 1-1 및 1-2와 동일한 방법으로 맞춤형 비디오-속력 레이저-스캐닝 공초점 현미경 시스템을 구현하여 느린 속력으로 10 분 동안 촬영하여 생체 내 이미징을 수행하였으며, 그 결과 도 15의 저속력 이미지(time-lapse imaging)를 얻었다.
도 13에 나타난 바와 같이, 모세혈관에서 순환하는 중성구는 이미 다른 중성구에 의해 이동이 어려운(obstructed) 혈관의 한 영역에 갇히게 되었다. 두 중성구 사이의 흐름이 멈추면서 미세순환에서 사강이 형성되었다. 일부 모세혈관 영역에서는, 흐름이 감지되지 않는 중성구 클러스터(cluster)을 관찰할 수 있었으며(도 14), 상기 미세순환 장애는 모세혈관에 국한되지 않고, 모세혈관에 연결된 동맥의 분기 영역(branching region)에서도 관찰되었다.
또한, 도 15에 나타난 바와 같이, 10 분간 폐의 모세혈관에서의 중성구의 움직임을 촬영하는 동안, 중성구가 분기 영역을 막아 막힌 부위(obstructed region) 근처의 미세순환을 방해하는 것을 확인하였다.
기능적 모세혈관 시각화를 통한 중성구 격리와 사강 형성의 상관관계 확인
중성구 격리와 사강 형성의 상관관계를 확인하기 위해 적혈구를 형성 염색하여 적혈구가 이동하는, 즉 미세순환이 원활하게 일어나는 기능적 모세혈관(Functional capillary)을 시각화하였다. 구체적으로, 상기 실시예 2의 DiD-라벨링된 적혈구를 갖는 ALI 마우스 모델의 폐 미세순환을 실험예 5의 방법으로 느린 속력으로 10 분 동안 촬영하여 각각 실험예 1-1 및 1-2의 이미징 처리 방법으로 처리하였으며, 상기 실험예 5의 중성구의 트랙 도출 방법으로 DiD-라벨링된 적혈구의 트랙 경로(track path)를 얻었다. 그 결과는 도 15과 같으며, 도 15에서 흰색 점선으로 된 원은 미세순환에서의 사강을 나타내고, 흰색 화살표는 혈액 흐름의 방향을 나타낸다. 도 16의 스케일 바는 100 μm 이다.
도 16에 나타난 바와 같이, 중성구가 클러스터를 형성한 영역에서는 적혈구가 이동하지 않아 중성구에 의해 유도된 모세혈관과 동맥의 장애(obstruction)가 미세순환에서 사강을 형성함을 확인하였다.
따라서, 폐 손상과 같은 미세순환 장애 발생 시 중성구가 모세혈관 내부에 격리되어 사강(dead space)을 형성함을 알 수 있는바, 본 발명의 일 측면에 따른 정보 제공 방법, 및 미세순환 장애 진단 장치를 이용하면 중성구의 움직임을 모세혈관 내부에서 선명하게 볼 수 있어, 모세혈관을 통해 이동하는 중성구의 복수의 이동 이미지를 얻을 수 있으며, 중성구 각각의 격리 여부에 대한 정보를 획득하여 개체의 미세순환 장애 여부를 쉽고 편하게 진단할 수 있다.
[실험예 8] 중성구의 격리와 활성 산소(Reactive oxygen species, ROS)의 관계
상기 실험예 6로부터 급성 폐 손상에 의해 모세혈관 내 중성구가 격리되는 것을 확인하였는바, 상기 실시예 1-2에서 제조한 ALI 마우스 모델과 LPS 대신 PBS를 투여한 대조군의 중성구의 격리가 활성 산소(reactive oxygen species, ROS)의 체외에서의 방출에 어떠한 영향을 끼치는지 확인하였다.
구체적으로, 활성 산소 발생 여부를 확인하기 위해 종래 생체 내 이미징(intravital imaging) 연구에서 사용하던 방식(Finsterbusch M, Hall P, Li A, Devi S, Westhorpe CL, Kitching AR, Hickey MJ. Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus. Proc Natl Acad Sci U S A 2016: 113(35): E5172-5181)으로 DHE(dihydroethidium, 디하이드로에티듐) 염색(staining)을 수행하되, 고용량의 DHE (10 mg/kg)을 사용하였다. 15.7 mg 의 DHE 스톡(stock)을 1.5 mL의 DMSO에서 준비하고 -20℃의 온도에서 저장하였다. 그런 다음, DHE 10mg/kg을 최대 60℃까지 가열한 150μL의 식염수에 희석하고 즉시 생체 내 현미경을 위해 준비된 상기 실시예 1-2의 ALI 마우스 모델과 대조군 마우스 모델 각각에 정맥 주사하였다.
활성 산소(ROS) 발생 여부는 DHE 주입 20 분 후에 확인하였다. 이 때 중성구(ROS+ Ly6G+)의 수는 육안으로 개수를 세거나 ImageJ 프로그램을 사용하여 세거나, 또는 IMARIS 프로그램의 Spots 기능을 이용하여 중성구의 수를 확인하였다. 또한, 활성 산소를 생성하는 중성구(ROS+ Ly6G+)의 수는 중성구(Ly6G+, 붉은색)과 DHE(푸른색)이 모두 양성(double positive)으로 확인된 중성구를 IMARIS 프로그램의 Colocalization 기능을 이용하여 확인하였다.
그 결과는 도 17 및 도 18과 같다(n (field의 개수) = 30, 마우스 1 마리 당 10 FOV(Field of View), 각 그룹당 3마리, * P < 0.05, two-tailed t-test, 데이터는 평균 ±s.d이다). 도 17에 나타난 바와 같이, in situ에서 혈관 내 중성자가 활성 산소를 생성함을 확인하였다.
한편, 도 18a에 나타난 바와 같이, 대조군(PBS)과 ALI 마우스 모델(LPS) 간의 단위면적(512 X 512 μm)(field)당 활성 산소를 생성하는 중성구(ROS+ Ly6G+)의 수를 비교한 결과, 대조군에서는 활성 산소를 생성하는 중성구가 거의 없는 반면, ALI 마우스 모델에서는 활성 산소를 생성하는 중성구가 무려 약 30 개 정도임을 확인하였다. 또한, 도 18b에 나타난 바와 같이, 전체 중성구(Ly6G+) 중 활성 산소를 생성하는 중성구(ROS+ Ly6G+)의 비율의 경우, 대조군(PBS)은 거의 0에 가까운 반면, ALI 마우스 모델(LPS)은 약 0.4로 증가하였음을 확인하였다. 즉, 도 18a 및 18b에 따르면, 대조군(PBS)은 일시적으로 격리된 중성구에서 활성 산소를 검출할 수 없었으나, ALI 마우스 모델(LPS)에서는 활성 산소를 생성하는 중성구의 수와 그 비율이 모두 큰 폭으로 증가하였다.
이를 통해, 염증 부위에서 중성구에 의해 활성 산소가 생성된다는 것에 대해 종래 알려진 것과는 달리, 활성 산소 생성이 모세혈관에서의 중성구 격리가 일어나는 것에 의해 훨씬 더 초기 단계에서 시작됨을 알 수 있었다. 또한, 격리된 중성구가 in situ 에서 활성산소를 방출하여 혈관 밖으로 활성 산소가 유출(extravasation)되기 전에 내피세포(endothelial cell) 및 이와 인접한 혈관 내 구조에 해를 끼칠 수 있음을 알 수 있었다.
따라서, 폐 손상과 같은 미세순환 장애 발생 시 중성구가 모세혈관 내부에 격리되어 활성 산소를 생성하는 것을 알 수 있는바, 본 발명의 일 측면에 따른 정보 제공 방법, 및 미세순환 장애 진단 장치를 이용하면 중성구의 움직임을 모세혈관 내부에서 선명하게 볼 수 있어, 모세혈관을 통해 이동하는 중성구의 복수의 이동 이미지를 얻을 수 있으며, 중성구 각각의 격리 여부에 대한 정보를 획득하여 개체의 미세순환 장애 여부를 쉽고 편하게 진단할 수 있다.
종합적으로, 본 발명의 일 측면에 따른 미세순환 정량화 방법, 및 미세순환 측정 장치를 이용하면 기능적 모세혈관 분율을 기반으로 in vivo 상에서 개체의 미세순환을 보다 쉽고 간편하게 정량화할 수 있으며, 상기 정량화된 결과를 바탕으로 미세순환 장애 여부를 정확하고 빠르게 판단할 수 있다.
[실험예 9] 중성구 제거 모델에서의 폐 미세순환 촬영
상기 실험예 1-1과 마찬가지 방법으로 폐 미세순환을 촬영하였다. 다만, 마우스 모델은 상기 실시예 1-1의 Tie2-GFP-ALI 마우스 모델이 아닌, 상기 실시예 1-3의 대조군 마우스 모델(PBS), ALI 마우스 모델(LPS), 상기 실시예 1-4의 중성구 제거 모델(N-Dep 마우스 모델 및 N-Dep+LPS 마우스 모델)을 이용하였다.
상기 실시예 1-3의 대조군 마우스 모델(PBS), ALI 마우스 모델(LPS), 상기 실시예 1-4의 중성구 제거 모델(N-Dep 마우스 모델 및 N-Dep+LPS 마우스 모델) 각각의 폐 미세순환을 상기 이미징 시스템에 의해 촬영하고 이로부터 수득한 이미지를 상기 이미지 처리 과정에 따라 처리된 결과는 도 20과 같다. 이 때, 상기 실시예 1-4의 중성구 제거 모델 중 N-Dep+LPS 마우스 모델은 LPS 주입 6 시간 후에 상기 방법에 의해 이미지 시스템에 의해 촬영한 것이다. 한편, 패혈증으로 유발된 급성 폐 손상 마우스 모델은 급성 폐 손상 초기에 기능적 모세혈관 분율(Functional Capillary Ratio, FCR; 전체 모세혈관 면적에 대한 기능적 모세혈관 면적으로 계산됨)이 감소하는데, 도 20에 나타난 바와 같이, 대조군(PBS)과는 달리 ALI 마우스 모델(LPS)은 적혈구가 모세혈관을 통과하지 못하는 사강(dead space)이 형성되고, 격리된 중성구가 증가함을 확인하였다. 이에 반해, 중성구 제거 모델(N-Dep 마우스 모델 및 N-Dep+LPS 마우스 모델)은 적혈구가 모세혈관을 통과하여 미세순환이 원활하게 일어나는 기능적 모세혈관이 보다 증가하여 사강(dead space) 및 격리된 중성구가 감소하여 FCR이 증가하고 폐 미세순환 장애가 개선됨을 확인하였다.
[실험예 10] 중성구 제거 모델의 기능적 모세혈관 분율(Functional Capillary Ratio, FCR) 확인
기능적 모세혈관 분율(FCR) 비교
상기 실험예 9로부터 중성구 제거 모델에서 폐 미세순환 장애가 개선됨을 확인하였는바, 이를 정량화된 데이터로 확인하기 위해, 상기 실험예 9의 이미징 시스템 및 이미지 처리를 통해 수득한 모세혈관에서 이동하는 DiD-라벨링된 적혈구의 실시간 영상을 사용하여 기능적 모세혈관 이미지를 분석하였다. 영상의 색상을 분할한 후, DiD를 검출하는 채널의 순차 이미지를 반경 2 픽셀의 중간값 필터(median filter)로 처리하여 신호-대-노이즈 비율을 증가시켰다. 적혈구에 의해 관류되는 기능적 모세혈관을 보여주기 위해 600 내지 900 프레임 (20 내지 30 초)의 최대 투사 강도(maximal intensity projection)를 생성하였다. 기능적 모세혈관 분율(Functional capillary ratio, FCR)을 하기 식 1에 의해 계산하였다.
[식 1]
기능적 모세혈관 분율 = 기능적 모세혈관의 면적 / 전체 모세혈관의 면적.
상기 식 1에서 전체 모세혈관 면적은 덱스트란 신호에 의해 감지된 혈관 면적이고, 기능적 모세혈관 면적은 DiD-라벨링된 적혈구가 이동하는 면적을 의미한다. 상기 기능적 모세혈관 분율을 계산하기 위한 모든 이미지 처리는 ImageJ(https://imagej.nih.gov/ij/)에 의해 수행되었으며, 그 결과는 도 21a와 같다(n (field의 개수) = 30, 마우스 1 마리 당 10 FOV(Field of View), 각 그룹당 3마리, P < 0.05, post hoc Holm-Sidak의 다중 비교 test를 사용한 one-way ANOVA, 데이터는 평균 ±s.d이다).
도 21a에 나타난 바와 같이, 상기 실시예 1-3의 대조군(PBS) 마우스 모델에 비하여 상기 실시예 1-3의 ALI 마우스 모델(LPS)의 FCR(%)이 50% 이상 감소하여 폐 손상에 의해 폐 미세순환 장애가 발생함을 확인하였으며, 상기 실시예 1-3의 ALI 마우스 모델(LPS)과 비교할 때 실시예 1-4의 중성구 제거 모델(N-Dep 마우스 모델 및 N-Dep+LPS 마우스 모델)은 FCR(%)이 약 3 배 이상 증가하여 상기 폐 미세순환 장애가 개선됨을 확인하였다.
조직학적 분석(histological analysis)
상기 실시예 1-3의 대조군 마우스 모델(PBS), ALI 마우스 모델(LPS), 상기 실시예 1-4의 중성구 제거 모델(N-Dep 마우스 모델 및 N-Dep+LPS 마우스 모델) 각각의 단위면적(512 X 512 μm)당 중성구의 수를 비교하기 위해 조직학적 분석을 수행하였다.
구체적으로, 상기 마우스 모델의 생체 내 이미징 후 폐 조직을 채취하고, 4% 파라포름알데히드로 관류(perfusion) 및 고정(fixation) 작업을 수행한 후, 4% 파라포름알데히드에서 하룻밤 동안 추가로 고정시켰다. H&E (hematoxylin and eosin) 염색(staining)을 위해, 표준 절차를 사용하여 상기 고정시킨 조직을 처리하고, 파라핀에 넣은 다음 4 μm 섹션(section)으로 잘라내어 종래 방법으로 H&E 염색을 수행하였으며, 그 결과는 도 21b와 같다(n (field의 개수) = 30, 마우스 1 마리 당 10 FOV(Field of View), 각 그룹당 3마리, P < 0.05, post hoc Holm-Sidak의 다중 비교 test를 사용한 one-way ANOVA, 데이터는 평균 ±s.d이다). 도 21b에서 cells/field는 단위면적(512 X 512 μm)당 중성구의 수로서, 상기 filed는 단위면적(512 X 512 μm)을 의미한다.
또한, 도 21b에 나타난 바와 같이, 중성구(LysM+ 세포)의 수는 상기 실시예 1-4의 중성구 제거 모델 준비 과정에서 일정 수준으로 감소하였으나, 도 20의 확대(Magnified) 이미지를 고려하면, 혈관 외 공간에서 폐 대식세포(alveolar macrophage)로 추정되는 대식세포(LysM+ 세포)의 잔해로 인해 중성구가 완전히 고갈되지 못한 것을 확인하였다.
도 21a 및 도 21b의 결과를 종합하면, 대부분 혈관 내 중성구인 LysM+ 세포의 수가 감소하면 폐 미세순환에서 기능적 모세혈관 분율(FCR)이 개선된다는 것을 알 수 있었다. 또한, 중성구가 전신 염증 발생 시 폐 미세순환에서 집락(aggregates)의 주요 성분이자 혈액 흐름의 1차적 차단제(blockers)로서 기능함을 알 수 있었다.
[실험예 11] 폐 손상 질환 예방 또는 치료를 위한 모세혈관 내 중성구의 타겟 탐색
상기 실험예 10으로부터 미세순환을 이루는 모세혈관 내 중성구의 수를 감소시키는 경우 미세순환 장애가 개선되어 폐 손상 질환을 예방 또는 치료할 수 있음을 알 수 있으나, 이러한 중성구 감소 전략은 임상적으로 수행하기에 어려움이 있다. 이에, 폐 손상 질환 예방 또는 치료를 위한 격리된 중성구에서의 타겟을 탐색하기 위해 하기와 같은 실험을 수행하였다. 이 때, 본 발명자들은 이미 폐 모세혈관을 통과한 좌심실 유래 중성구의 인테그린(integrin) 발현 패턴과 폐 유래 중성구의 패턴이 다를 것이라는 가설을 세웠다.
유세포 분석(Flow cytometry)
먼저, 상기 실시예 1-3의 대조군(PBS) 마우스 모델 및 ALI 마우스 모델(LPS) 각각의 좌심실(left ventricle, LV)과 폐(lung) 각각으로부터 중성구를 분리하고, 상기 좌심실 유래 중성구와 폐 유래 중성구의 인테그린 발현을 조사하기 위해, 상기 분리된 2 종의 중성구에 대하여 유세포 분석(flow cytometry)을 수행하였다.
먼저, 폐의 격리된 중성구를 분리하기 위해, 폐를 관류(perfusion) 없이 채취하고 침지(digest)시켰다. 그런 다음, 폐를 PBS 용액에 넣고 잘게 다진 뒤 40 μm 필터로 여과시키고 4 ℃에서 30 분간 염색하였다. 한편, 좌심실로부터 중성구를 분리하기 위해, 마우스 모델의 좌심실로부터 주사를 이용하여 혈액 100 μl을 추출한 다음, 적혈구를 용혈시켜 유세포 분석기(FACS)(BD, LSRFortessa TM)를 이용하여 중성구 1.0 X 10 6 cells를 분리하였다. 본 실험예에서 사용된 클론 항체는 Ly6G-FITC (1A8, 551460, BD Biosciences), CD11a-BV510 (M17/4, 563669, BD Biosciences) CD11b-PE-Cy7 (M1/70, 552850, BD Biosciences), CD18-APC (C71/16, 562828, BD Biosciences), CD62L (MEL-14, 560514, BD Biosciences), Viability Dye eFluor 506 (65-0866-14, ThermoFisher Scientific)이며, 염색된 세포는 LSR Fortessa flow cytometer(BD Biosciences)로 분석되었다. 그런 다음, Flowjo (FlowJo, LLC)을 이용하여 Ly6G+에 게이트된(gated) 상기 분리된 2 종의 중성구에 대하여 유세포 분석을 수행하였으며, 그 결과는 도 23 및 도 24a 내지 24d와 같다(각 그룹(군, group) 당 n (마우스의 수) = 5, * P < 0.05, Mann-Whitney test, MFI는 평균 형광 강도를 나타냄, 데이터는 평균 ±s.d이다).
도 23 및 도 24a 내지 24d로부터, 상기 실시예 1-3의 대조군(PBS)의 중성구에 비하여 상기 실시예 1-3의 ALI 마우스 모델(LPS)의 중성구에서 CD11b 및 CD18의 발현량이 보다 높고, 동일 마우스 모델에서 폐 유래 중성구가 좌심실 유래 중성구에 비하여 CD11b 및 CD18 발현량이 보다 높음을 확인하였다 (n = 5 per each group, * P < 0.05, Mann-Whitney test). MFI, mean fluorescence intensity. Data are means ± s.d.).
생체 내 이미징
상기 실시예 1-3의 대조군(PBS) 마우스 모델 및 ALI 마우스 모델(LPS) 각각의 격리된 중성구에서의 인테그린을 상기 실험예 9의 방법으로 촬영하고 이미징 처리하였다. 도 25a 및 도 25b는 중성구, 중성구에서 CD11b 및 CD18 각각의 세포 표면에서의 발현을 in vivo 상에서 시각화한 결과이다.
도 25a 및 도 25b에 나타난 바와 같이, 상기 대조군(PBS)에서는 매우 적은 수의 중성구가 확인되었고, 중성구의 표면에서 CD11b 및 CD18은 거의 발현되지 않았다. 이에 반해, 상기 ALI 마우스 모델(LPS)에서는 매우 많은 수의 중성구가 확인되었고, 중성구의 표면에서 CD11b 및 CD18의 발현량이 매우 높음을 확인하였다.
CD11b 또는 CD18을 발현하는 중성구의 수 비교
상기 실시예 1-3의 ALI 마우스 모델(LPS)과 대조군 마우스 모델(PBS) 간의 CD11b 또는 CD18을 발현하는 중성구의 수를 비교하였으며, 그 결과는 도 26a 내지 26d과 같다.(n (field의 개수) = 9, 마우스 1 마리 당 3 FOV(Field of View), 각 그룹당 3마리, * P < 0.05, Mann-Whitney test, 데이터는 평균 ±s.d이다) 도 26a 및 도 26c의 filed는 단위면적(512 X 512 μm)을 의미한다.
도 26a 내지 도 26d에 나타난 바와 같이, 단위면적당 중성구 표면에서 CD11b를 발현하는 중성구의 수(CD11b+ Ly6G+ cells per field)가 대조군(PBS)은 거의 없는 반면, ALI 마우스 모델(LPS)은 약 300 개이고(도 26a), 단위면적당 중성구 표면에서 CD18을 발현하는 중성구의 수(CD18+ Ly6G+ cells per field)도 역시 대조군(PBS)은 약 40 개이나, ALI 마우스 모델(LPS)은 약 330 개로 약 8 배 정도로 큰 차이가 남을 확인하였다(도 26c). 또한, 전체 중성구에 대한 중성구 표면에서 CD11b를 발현하는 중성구의 비율(CD11b+ Ly6G+ / total Ly6G+)은 대조군(PBS)은 0.05 정도이나, ALI 마우스 모델(LPS)은 이의 약 16 배에 달하는 0.8이고(도 26b), 전체 중성구에 대한 중성구 표면에서 CD18을 발현하는 중성구의 비율(CD18b+ Ly6G+ / total Ly6G+)은 대조군(PBS)은 약 0.4, ALI 마우스 모델(LPS)은 이의 약 2 배 이상인 0.9임을 확인하였다(도 26d). 이를 통해 폐 손상으로 인해 미세순환을 이루는 모세혈관 내 중성구의 표면에서 CD11b 및 CD18의 발현량이 매우 증가함을 알 수 있었다.
상기 결과로부터, 미세순환 내에서 순환하는 중성구에 비하여 폐 손상으로 인해 폐에서 격리된 중성구는 Mac-1 (CD11b/CD18) 인테그린의 발현량이 증가함을 확인하였다.
[실험예 12] Mac-1 억제에 따른 폐 손상 개선 효과 확인
상기 실험예 11로부터 폐 손상으로 인해 폐에서 격리된 중성구는 Mac-1 (CD11b/CD18) 인테그린의 발현량이 증가함을 확인하였는바, 하기 실험예 12-1에서 제조한 Mac-1 억제 마우스 모델에서 Mac-1 발현 또는 활성 억제제 의해 폐 손상, 나아가 미세순환 장애가 개선되는지를 확인하였다. 하기 실험예에서는 패혈증으로 인해 폐 손상된 마우스 모델을 사용하되, 이를 다양한 균에 의한 패혈증 모델로 확장하고자, 상기 실시예 1-3의 CLP 모델을 패혈증 모델로 사용하였다.
[실험예 12-1] Mac-1 억제 마우스 모델 준비
폐 손상 질환에 있어서의 Mac-1 활성 억제의 효과를 확인하기 위해, Mac-1의 활성을 억제시킨 마우스 모델(이하, Mac-1 억제 모델)을 준비하였다. 구체적으로, 상기 실시예 1-3의 CLP 마우스 모델 준비 1 시간 후, 생체 내 이미징 5 시간 전에 항-CD11b 항체(5 mg/kg, Clone M1/70, 553307, BD Biosciences)를 복강 내 주입함으로써 Mac-1 활성이 억제된 마우스 모델인 항-Mac-1 모델을 준비하였다. 또한, 또 다른 Mac-1 억제 모델로, 상기 항-Mac-1 모델과 동일한 방법으로 실시예 1-3의 CLP 마우스 모델에 압식시맙(Abciximab)(10 mg/kg, Clotinab, ISU Abxis)을 주입하여 압식시맙 모델을 준비하였다.
[실험예 12-2] Mac-1 억제에 의한 폐 미세순환 장애 개선 효과 확인
상기 실험예 9와 동일한 방법으로, 상기 실시예 1-3의 CLP 마우스 모델(도 27 및 28에서 Fc), 상기 실험예 12-1의 항-Mac-1 마우스 모델(도 27 및 28에서 Anti-CD11b) 및 압식시맙 모델(도 27 및 28에서 Abc), 및 정상군(Sham) 마우스 모델(도 27 및 28에서 Sham)의 폐 미세순환을 촬영하고, 이를 바탕으로 상기 실험예 10과 동일한 방법으로 기능적 모세혈관 분율(FCR)을 측정하고 조직학적 분석을 수행하여 미세순환을 정량화하였으며, 그 결과는 도 27 및 도 28과 같다(n (field의 개수) = 14-25, 각 그룹당 3마리, * P < 0.05, two-tailed t-test, 데이터는 평균 ±s.d이다).
도 27에 나타난 바와 같이, 정상군(Sham)과는 달리 CLP 마우스 모델(Fc)은 적혈구가 모세혈관을 통과하지 못하는 사강(dead space)이 형성되었다가, Mac-1 활성이 억제(항-Mac-1 마우스 모델 및 압식시맙 마우스 모델)되면 적혈구가 모세혈관을 통과하여 미세순환이 원활하게 일어나는 기능적 모세혈관이 보다 증가하여 사강(dead space)이 감소함에 따라 폐 미세순환 장애가 개선됨을 확인하였다.
또한, 도 28a에 나타난 바와 같이, 정상군(Sham)에 비하여 CLP 마우스 모델(Fc)의 FCR(%)이 50% 이상 감소하여 폐 손상에 의해 폐 미세순환 장애가 발생함을 확인하였으며, 상기 CLP 마우스 모델(Fc)과 비교할 때 Mac-1 억제 모델(항-Mac-1 마우스 모델 및 압식시맙 마우스 모델)은 FCR(%)이 약 2 배 이상 증가하여 상기 폐 미세순환 장애가 개선됨을 확인하였다.
조직학적 분석 결과도 마찬가지로, 도 27 및 도 28b에 나타난 바와 같이, 중성구(Ly6G+ 세포)의 수는 정상군(Sham)에 비해 상기 CLP 마우스 모델(Fc)에서 격리된 중성구가 증가하였다가, 다시 Mac-1 억제에 의해(항-Mac-1 마우스 모델 및 압식시맙 마우스 모델) 격리된 중성구의 수가 다시 정상군에 상응하는 정도로 회복됨을 확인하였다.
[실험예 12-3] Mac-1 억제 전후 비교를 통한 폐 미세순환 장애 개선 효과 확인
상기 실험예 12-2로부터 Mac-1 발현 또는 활성 억제를 통해 미세순환 장애를 개선할 수 있음을 확인하였는바, 압식시맙 투여 전후 비교를 통해 그 효과를 다시 한 번 확인하였다.
구체적으로, 상기 실시예 1-3의 CLP 마우스 모델을 제조한지 6 시간 후(이하, pre-Abc 마우스 모델이라 함)에 상기 실험예 9와 동일한 방법으로 폐 미세순환을 촬영하고, 상기 실험예 10과 동일한 방법으로 기능적 모세혈관 분율(FCR)을 측정하였다. 그런 다음, 상기 실험예 12-1의 방법으로 압식시맙을 상기 CLP 마우스 모델에 투여하고(이하, post-Abc 마우스 모델이라 함), 30 분 후에 상기와 동일한 방법으로 폐 미세순환 촬영 및 기능적 모세혈관 분율(FCR) 측정을 수행하였으며, 그 결과는 도 29 및 도 30과 같다(n (field의 개수) = 20 및 24, 마우스 1 마리 당 6~8 FOV(Field of View), 각 그룹당 3마리, * P < 0.05, two-tailed t-test, 데이터는 평균 ±s.d이다).
도 29 및 도 30에 나타난 바와 같이, 폐 손상 마우스 모델(CLP 마우스 모델)은 압식시맙 투여 전에는 전체 모세혈관 중에서 기능적 모세혈관이 차지하는 비중(FCR)이 20%가 채 안되어 적혈구가 통과하지 못하는 모세혈관이 매우 많으나, 압식시맙 투여로 Mac-1 발현 또는 활성 억제 시, 기능적 모세혈관 분율(FCR)이 약 2 배 이상 증가하는 등 모세혈관을 통과하는 적혈구의 수가 급증함을 확인하였다.
또한, 상기 pre-Abc 마우스 모델 및 post-Abc 마우스 모델의 동맥혈에서의 산소 분압 및 이산화탄소 분압을 측정하기 위해, 동맥혈 가스 분석을 수행하였다. 구체적으로, 22 게이지 바늘이 들어간 1 mL의 주사기를 헤파린으로 코팅하고 상기 정상군 마우스 모델(Sham)(n = 8), pre-Abc 마우스 모델(Fc)(n = 10) 및 post-Abc 마우스 모델(Abc)(n = 6) 각각의 심장의 좌심실에 도입하였다. 그 후 약 200 μl의 혈액이 i-STAT 소형 혈액 분석기(i-STAT handheld blood analyzer)(G3 카트리지, Abbott Point of Care Inc.)로 샘플링되고 분석되었으며, 상기 마우스 모델들을 혈액 샘플링 직후 CO 2 챔버로 안락사시켰다. 상기 동맥혈 가스 분석 결과는 도 31a 및 도 31b와 같다(* P < 0.05, post hoc Dunn의 다중 비교 test를 사용한 Kruskal-Wallis test, 데이터는 평균 ±s.d이다).
도 31a 및 31b에 나타난 바와 같이, 정상군(Sham)에 비하여 CLP 마우스 모델(Fc, pre-Abc 마우스 모델에 해당)의 동맥 내 산소 분압은 감소하고(도 31a), 이산화탄소 분압은 증가하였는바(도 31b), 상기 폐 손상 마우스 모델(CLP 마우스 모델)에서의 기능적 모세혈관 분율의 감소는 저산소증(hypoxemia) 및 과탄산혈증(hypercapnia)에 따른 결과임을 확인하였다. 저산소증 및 과탄산혈증에 의한 폐 미세순환 장애는 압식시맙 투여에 따른 Mac-1 발현 또는 활성 억제에 의하여 개선되었는데, 이는 post-Abc 마우스 모델(Abc)의 동맥 내 산소 분압 및 이산화탄소 분압이 정상군에 상응하는 정도로 변화하는 것을 통해 확인할 수 있다(도 31a 및 31b). 이를 통해 Mac-1 발현 또는 활성 억제를 통해 폐 미세순환 장애 개체에서 가스 교환을 증가시켜 폐 미세순환 장애를 개선할 수 있음을 알 수 있었다.
따라서, 본 발명의 일 측면에 따른 중성구에서의 Mac-1 발현 또는 활성 억제제를 포함하는 조성물은 폐의 미세순환 장애를 개선하여 폐 손상 질환을 예방 또는 치료하는 우수한 효과가 있다.

Claims (41)

  1. 개체의 미세순환 정량화 방법으로서,
    상기 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟(target) 요소의 시간에 따른 복수의 이동 이미지를 수득하는 단계;
    상기 복수의 이동 이미지로부터 상기 제 1 혈류 내 타겟 요소가 이동하는 기능적 모세혈관의 면적을 측정하는 단계; 및
    하기 식 1에 의해 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)을 계산하는 단계;를 포함하는, 미세순환 정량화 방법:
    [식 1]
    기능적 모세혈관 분율 = 기능적 모세혈관의 면적 / 전체 모세혈관의 면적.
  2. 제1항에 있어서,
    상기 제 1 혈류 내 타겟 요소는 백혈구, 적혈구, 혈소판 및 림프구로 이루어진 군으로부터 선택된 하나 이상인, 미세순환 정량화 방법.
  3. 제2항에 있어서,
    상기 제 1 혈류 내 타겟 요소는 형광 염색된 제 1 혈류 내 타겟 요소인, 미세순환 정량화 방법.
  4. 제1항에 있어서,
    상기 시간에 따른 복수의 이동 이미지는 1 내지 900 프레임/초의 범위의 프레임 속도로 촬영된 복수의 이미지인, 미세순환 정량화 방법.
  5. 제4항에 있어서,
    상기 복수의 이미지는 공초점 주사 레이저 현미경(confocal scanning laser microscope)에 의해 촬영된 이미지인, 미세순환 정량화 방법.
  6. 제1항에 있어서,
    상기 기능적 모세혈관의 면적 측정은 상기 복수의 이동 이미지로부터 동일한 타겟 요소를 판별하여 기능적 모세혈관의 면적을 측정하는 것인, 미세순환 정량화 방법.
  7. 제1항에 있어서,
    상기 기능적 모세혈관의 면적 측정은 상기 제 1 혈류 내 타겟 요소의 시간 차에 따른 위치 차이로부터 이동 면적을 측정함으로써 계산되는 것인, 미세순환 정량화 방법.
  8. 제1항에 있어서,
    상기 개체의 모세혈관은 개체의 폐, 신장, 피부 및 안구로 이루어진 군으로부터 선택된 하나 이상의 모세혈관인, 미세순환 정량화 방법.
  9. 개체의 미세순환 측정 장치로서,
    상기 개체의 모세혈관을 통과하는 제 1 혈류 내 타겟(target) 요소를 촬영하는 촬영부; 및
    상기 촬영부에서 촬영된 이미지에 기반하여 하기 식 1에 의해 개체의 미세순환에 대한 정량적인 데이터를 도출하는 계측부;를 포함하는, 미세순환 측정 장치:
    [식 1]
    기능적 모세혈관 분율 = 기능적 모세혈관의 면적 / 전체 모세혈관의 면적.
  10. 제1항 내지 제8항 중 어느 한 항에 따른 개체의 미세순환 정량화 방법에 따라 계산된 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)로부터 개체의 미세순환 장애 여부를 진단하기 위한 정보를 추출하는 단계를 포함하는, 개체의 미세순환 장애 진단을 위한 정보 제공 방법.
  11. 하드웨어와 결합되어 제1항 내지 제8항 중 어느 한 항에 따른 개체의 미세순환 정량화 방법을 실행하도록 구현되어 컴퓨터로 판독 가능한 매체에 저장된 컴퓨터 프로그램.
  12. 미세순환 장애 진단을 위한 정보 제공 방법으로서,
    개체의 모세혈관을 통과하는 제 2 혈류 내 타겟(target) 요소의 시간에 따른 복수의 이동 이미지를 수득하는 단계;
    상기 복수의 이동 이미지로부터 상기 제 2 혈류 내 타겟 요소의 격리 시간(sequestration time), 변위(track displacement length), 이동 거리(track length), 이동 속력(track velocity) 및 트랙 굴곡 지수(meandering index)로 이루어진 군으로부터 선택된 하나 이상의 동적 요소를 분석하는 단계; 및
    상기 동적 요소 분석 결과로부터 개체의 미세순환 장애 진단을 위한 정보를 추출하는 단계;를 포함하는, 정보 제공 방법.
  13. 제12항에 있어서,
    상기 제 2 혈류 내 타겟 요소는 중성구(neutrophil)인, 정보 제공 방법.
  14. 제13항에 있어서,
    상기 중성구는 중성구에 특이적인 항체가 결합한 것이고, 상기 항체는 발광형광단(fluorophore)이 결합한 것인, 정보 제공 방법.
  15. 제12항에 있어서,
    상기 시간에 따른 복수의 이동 이미지는 1 내지 900 프레임/초의 범위의 프레임 속력으로 촬영된 복수의 이미지인, 정보 제공 방법.
  16. 제15항에 있어서,
    상기 복수의 이미지는 공초점 주사 레이저 현미경(confocal scanning laser microscope)에 의해 촬영된 이미지인, 정보 제공 방법.
  17. 제12항에 있어서,
    상기 동적 요소 분석은 상기 복수 이동 이미지로부터 동일한 타겟 요소를 판별하여 분석하는 것인, 정보 제공 방법.
  18. 제12항에 있어서,
    상기 개체의 미세순환 장애 진단을 위한 정보는 상기 제 2 혈류 내 타겟 요소의 격리 시간이 5 분 이상이면 미세순환 장애인 것으로 판단하는 것인, 정보 제공 방법.
  19. 제12항에 있어서,
    상기 개체의 미세순환 장애 진단을 위한 정보는 상기 제 2 혈류 내 타겟 요소의 트랙의 굴곡 지수가 0.4 a.u. 이하이면 미세순환 장애인 것으로 판단하는 것인, 정보 제공 방법.
  20. 제12항에 있어서,
    상기 복수의 이동 이미지는 2 시간 이상의 간격으로 촬영된 상기 제 2 혈류 내 타겟 요소의 시간에 따른 복수의 이동 이미지가 2 세트 이상인 것이고,
    상기 동적 요소는 상기 제 2 혈류 내 타겟 요소의 변위, 이동 거리 및 이동 속력으로 이루어진 군으로부터 선택된 하나 이상이며,
    상기 동적 요소 분석은 상기 2 세트 이상의 복수의 이동 이미지 세트로부터 상기 동적 요소를 시간 순서대로 분석하는 것인, 정보 제공 방법.
  21. 제20항에 있어서,
    상기 개체의 미세순환 장애 진단을 위한 정보는 상기 2 세트 이상의 복수의 이동 이미지로부터 동적 요소를 분석한 결과, 상기 동적 요소가 시간이 지남에 따라 감소하면 미세순환 장애인 것으로 판단하는 것인, 정보 제공 방법.
  22. 제12항에 있어서,
    상기 정보 제공 방법은 개체의 모세혈관을 통과하는 제 2 혈류 내 타겟 요소에서 활성 산소(reactive oxygen)의 생성 여부를 검출하는 단계를 추가로 포함하는, 정보 제공 방법.
  23. 제22항에 있어서,
    상기 개체의 미세순환 장애 진단을 위한 정보는 상기 타겟 요소에서 활성 산소가 생성되면 미세순환 장애인 것으로 판단하는 것인, 정보 제공 방법.
  24. 제12항에 있어서,
    상기 개체의 모세혈관은 개체의 폐, 신장, 피부 및 안구로 이루어진 군으로부터 선택된 하나 이상의 모세혈관인, 정보 제공 방법.
  25. 미세순환 장애 진단 장치로서,
    개체의 모세혈관을 통과하는 제 2 혈류 내 타겟(target) 요소를 촬영하는 촬영부; 및
    상기 촬영부에서 촬영된 복수의 이동 이미지에 기반하여 상기 제 2 혈류 내 타겟 요소의 격리 시간(sequestration time), 변위(track displacement length), 이동 거리(track length), 이동 속력(track velocity) 및 트랙 굴곡 지수(meandering index)로 이루어진 군으로부터 선택된 하나 이상의 동적 요소를 분석하는 분석부;를 포함하는, 미세순환 장애 진단 장치.
  26. 제25항에 있어서,
    상기 장치는 상기 제 2 혈류 내 타겟 요소에서 활성 산소(reactive oxygen)의 생성 여부를 검출하는 활성 산소 검출부;를 추가로 포함하는 것인, 미세순환 장애 진단 장치.
  27. 폐 손상 질환 예방, 개선 또는 치료용 조성물로서,
    상기 조성물은 유효성분으로서 폐 모세혈관 내의 중성구(neutrophil)에서의 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성 억제제를 포함하고,
    폐의 미세순환 장애 개선에 의해 폐 손상 질환을 예방, 개선 또는 치료하는 것이며,
    상기 미세순환 장애 개선은 폐의 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 증가시키는 것인, 폐 손상 질환 예방, 개선 또는 치료용 조성물.
  28. 폐의 미세순환 장애 개선용 조성물로서,
    상기 조성물은 유효성분으로서 폐 모세혈관 내의 중성구(neutrophil)에서의 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성 억제제를 포함하고,
    상기 미세순환 장애 개선은 폐의 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 증가시키는 것인, 폐의 미세순환 장애 개선용 조성물.
  29. 제27항 또는 제28항에 있어서,
    상기 마크로파지-1 항원의 발현 또는 활성 억제제는 중성구에서의 마크로파지-1 항원에 특이적으로 결합하는 항체인, 조성물.
  30. 제29항에 있어서,
    상기 항체는 압식시맙(abciximab)인, 조성물.
  31. 제27항 또는 제28항에 있어서,
    상기 미세순환 장애 개선은 하기 식 1에 따른 기능적 모세혈관 분율(Functional Capillary Ratio, FCR)을 증가시키는 것인, 조성물:
    [식 1]
    기능적 모세혈관 분율 = 기능적 모세혈관의 면적 / 전체 모세혈관의 면적.
  32. 제27항에 있어서,
    상기 폐 손상 질환은 폐의 미세순환 장애에 의한 질환인, 조성물.
  33. 제27항에 있어서,
    상기 폐 손상 질환은 폐 혈관 수축, 천식, 호흡지체, 호흡 곤란 증후군(respiratory distress syndrome, RDS), 급성 호흡 곤란 증후군(acute respiratory distress syndrome, ARDS), 낭포성 섬유증(cystic fibrosis, CF), 알레르기성 비염(allergic rhinitis, AR), 폐 고혈압증, 기종, 만성 폐색성 폐질환(chronic obstructive pulmonary disease, COPD), 폐이식 거부증, 폐 감염, 기관지염 및 암으로 이루어진 그룹으로부터 선택된 하나 이상의 질환인, 조성물.
  34. (a) 폐 손상 모델을 준비하는 단계;
    (b) 상기 폐 손상 모델에 시험물질을 처리하는 단계;
    (c) 상기 시험물질이 상기 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성에 미치는 변화를 측정하는 단계; 및
    (d) 상기 시험 물질이 상기 폐 손상 모델의 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 증가시키는지 여부를 확인하는 단계;를 포함하는 폐 손상 질환 예방, 개선 또는 치료물질 스크리닝 방법.
  35. 제34항에 있어서,
    상기 (a) 단계의 폐 손상 모델은 패혈증(sepsis) 모델인, 스크리닝 방법.
  36. 제34항에 있어서,
    상기 (c) 단계는 폐 손상 모델에 시험물질을 처리하기 전과 후의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원의 발현 또는 활성을 비교하는 단계를 포함하는, 스크리닝 방법.
  37. 제34항에 있어서,
    상기 (c) 단계의 발현 또는 활성을 측정한 결과 마크로파지-1 항원의 발현 또는 활성이 시험물질 처리 전에 비하여 감소한 경우 및 상기 폐 손상 모델의 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 증가시키는 미세 순환 장애 개선이 있는 경우, 상기 시험물질을 폐 손상 질환 예방, 개선 또는 치료물질로 판정하는 단계를 더 포함하는, 스크리닝 방법.
  38. (a) 폐 손상 모델을 준비하는 단계;
    (b) 상기 폐 손상 모델에 시험물질을 처리하는 단계;
    (c) 상기 시험물질이 상기 폐 손상 모델의 폐 모세혈관 내의 중성구에서 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성에 미치는 변화를 측정하는 단계; 및
    (d) 상기 시험 물질이 상기 폐 손상 모델의 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 증가시키는지 여부를 확인하는 단계;를 포함하는 폐의 미세순환 장애 개선 물질 스크리닝 방법.
  39. 시험대상의 폐 모세혈관으로부터 분리된 중성구(neutrophil)에서 마크로파지-1 항원(macrophage-1 antigen, Mac-1)의 발현 또는 활성을 측정하는 단계; 및
    시험 대상의 폐 전체 모세혈관 중 적혈구가 통과하는 기능적 모세혈관의 비율을 확인하는 단계;를 포함하는, 폐 미세순환 장애 여부 진단을 위한 정보 제공 방법.
  40. 제39항에 있어서,
    상기 시험대상의 폐 모세혈관으로부터 분리된 중성구에서의 마크로파지-1 항원 발현 또는 활성 정도를 정상 대조군의 폐 모세혈관으로부터 분리된 중성구에서의 마크로파지-1 항원 발현 또는 활성 정도와 비교하는 단계를 더 포함하는, 폐 미세순환 장애 여부 진단을 위한 정보 제공 방법.
  41. 제39항에 있어서,
    상기 시험대상의 폐 모세혈관으로부터 분리된 중성구에서의 마크로파지-1 항원 발현 또는 활성 정도가 정상 대조군의 폐 모세혈관으로부터 분리된 중성구에서의 마크로파지-1 항원 발현 또는 활성 정도보다 높은 경우 폐 미세순환 장애가 있는 것으로 정보를 제공하는 단계를 더 포함하는, 폐 미세순환 장애 여부 진단을 위한 정보 제공 방법.
PCT/KR2020/000549 2019-05-24 2020-01-10 미세순환 정량화 방법 및 장치 WO2020242000A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/613,278 US20220296108A1 (en) 2019-05-24 2020-01-10 Method and apparatus for quantitation of microcirculation

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2019-0061415 2019-05-24
KR1020190061417A KR20200135043A (ko) 2019-05-24 2019-05-24 마크로파지-1 항원 억제제를 포함하는 폐 손상 질환 예방 또는 치료용 조성물
KR1020190061415A KR102364786B1 (ko) 2019-05-24 2019-05-24 미세순환 정량화 방법 및 장치
KR10-2019-0061417 2019-05-24
KR1020190061416A KR102354222B1 (ko) 2019-05-24 2019-05-24 미세순환 장애 진단을 위한 정보 제공 방법 및 장치
KR10-2019-0061416 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020242000A1 true WO2020242000A1 (ko) 2020-12-03

Family

ID=73552023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000549 WO2020242000A1 (ko) 2019-05-24 2020-01-10 미세순환 정량화 방법 및 장치

Country Status (2)

Country Link
US (1) US20220296108A1 (ko)
WO (1) WO2020242000A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510112A (ja) * 1999-09-23 2003-03-18 ジー.ナドウ リチャード 直交偏光スペクトルイメージングの医学的応用
KR20090110600A (ko) * 2008-04-18 2009-10-22 한국과학기술원 약물동역학을 이용한 혈관의 기능적 영상화 장치 및 방법
KR101136814B1 (ko) * 2010-12-03 2012-04-19 부산대학교 산학협력단 적혈구를 추적입자로 이용한 혈류유동의 혈액 유변학적 인자 추정방법
US20120269420A1 (en) * 2009-04-07 2012-10-25 Kayvan Najarian Image Processing and Machine Learning for Diagnostic Analysis of Microcirculation
JP2016509505A (ja) * 2013-01-28 2016-03-31 オスロ ユニヴェルジテットサイケフス ホーエフ 循環不全の評価

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510112A (ja) * 1999-09-23 2003-03-18 ジー.ナドウ リチャード 直交偏光スペクトルイメージングの医学的応用
KR20090110600A (ko) * 2008-04-18 2009-10-22 한국과학기술원 약물동역학을 이용한 혈관의 기능적 영상화 장치 및 방법
US20120269420A1 (en) * 2009-04-07 2012-10-25 Kayvan Najarian Image Processing and Machine Learning for Diagnostic Analysis of Microcirculation
KR101136814B1 (ko) * 2010-12-03 2012-04-19 부산대학교 산학협력단 적혈구를 추적입자로 이용한 혈류유동의 혈액 유변학적 인자 추정방법
JP2016509505A (ja) * 2013-01-28 2016-03-31 オスロ ユニヴェルジテットサイケフス ホーエフ 循環不全の評価

Also Published As

Publication number Publication date
US20220296108A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
Faucherre et al. Piezo1 is required for outflow tract and aortic valve development.
WO2018034522A1 (ko) 코어와 그의 표면에 결합된 시알산, 시알릴락토스 또는 이들의 유도체를 포함하는 결합체 및 그의 용도
BR112018005905B1 (pt) Composto, composição farmacêutica, e, uso de um composto
WO2020242000A1 (ko) 미세순환 정량화 방법 및 장치
de Ceglia et al. Down-sizing of neuronal network activity and density of presynaptic terminals by pathological acidosis are efficiently prevented by diminazene aceturate
Hong et al. Cardioprotection and improvement in endothelial-dependent vasodilation during late-phase of whole body hypoxic preconditioning in spontaneously hypertensive rats via VEGF and endothelin-1
JP2017128572A (ja) 光撮像プローブ
Falk et al. Biomechanical stress in myocardial infarctions: can endothelin-1 and growth differentiation factor 15 serve as immunohistochemical markers?
CA2907965C (en) Composition and use for treating cardiac failure
US20090124555A1 (en) Use of histogranin and histogranin-like compounds as inhibitors of p2x7 receptor function and as anti-arthritic agents
Van den Broek et al. New developments in colonic imaging
Lee et al. Plasma substance P levels in patients with liver cirrhosis: relationship to systemic and portal hemodynamics.
WO2007041775A1 (en) Cysteine protease inhibitors incorporating azide groups
JP2005506295A (ja) 細胞間連絡促進化合物の新規医薬使用
Ermert et al. Reduction of endothelial glycocalyx on peritubular capillaries in chronic kidney disease
CN112469403A (zh) 肾损伤的预防或治疗用的药物组合物
Sobenin et al. Quantitative analysis of the expression of caspase 3 and caspase 9 in different types of atherosclerotic lesions in the human aorta
Hwang et al. Design and synthesis of tryptophan containing dipeptide derivatives as formyl peptide receptor 1 antagonist
AU2002218431B2 (en) Perturbed membrane-binding compounds
FI64797B (fi) Foerfarande foer framstaellning av nya blodtrycknedsaettande peptider
Sabbione et al. Amaranth peptides decreased the activity and expression of cellular tissue factor on LPS activated THP-1 human monocytes
WO2017213435A1 (ko) Slit-robo 시스템을 이용한 근감소증 예방 또는 치료용 조성물
KR102563078B1 (ko) 마크로파지-1 항원 억제제를 포함하는 폐 손상 질환 예방 또는 치료용 조성물
KR20050086846A (ko) 펩티드 간극 결합 조절체
JP2013044698A (ja) 細胞ストレス状態のバイオマーカー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813627

Country of ref document: EP

Kind code of ref document: A1