WO2020241850A1 - 放射温度計を較正する方法、およびシステム - Google Patents
放射温度計を較正する方法、およびシステム Download PDFInfo
- Publication number
- WO2020241850A1 WO2020241850A1 PCT/JP2020/021421 JP2020021421W WO2020241850A1 WO 2020241850 A1 WO2020241850 A1 WO 2020241850A1 JP 2020021421 W JP2020021421 W JP 2020021421W WO 2020241850 A1 WO2020241850 A1 WO 2020241850A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- radiation thermometer
- control unit
- polishing
- measuring body
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 398
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000005498 polishing Methods 0.000 claims abstract description 194
- 238000010438 heat treatment Methods 0.000 claims abstract description 182
- 230000007246 mechanism Effects 0.000 claims description 44
- 238000006243 chemical reaction Methods 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 5
- 238000005259 measurement Methods 0.000 abstract description 31
- 239000007788 liquid Substances 0.000 description 53
- 235000012431 wafers Nutrition 0.000 description 33
- 238000012790 confirmation Methods 0.000 description 23
- 238000012937 correction Methods 0.000 description 23
- 239000002826 coolant Substances 0.000 description 18
- 239000000758 substrate Substances 0.000 description 18
- 238000001816 cooling Methods 0.000 description 12
- 239000000110 cooling liquid Substances 0.000 description 12
- 238000009529 body temperature measurement Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000007517 polishing process Methods 0.000 description 7
- 230000005856 abnormality Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- 229920002545 silicone oil Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000006061 abrasive grain Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000005314 correlation function Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/005—Control means for lapping machines or devices
- B24B37/015—Temperature control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/12—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/52—Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
- G01J5/53—Reference sources, e.g. standard lamps; Black bodies
- G01J5/532—Reference sources, e.g. standard lamps; Black bodies using a reference heater of the emissive surface type, e.g. for selectively absorbing materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/80—Calibration
- G01J5/802—Calibration by correcting for emissivity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67248—Temperature monitoring
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
- G01J2005/065—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by shielding
Definitions
- the present invention relates to a method and a system for calibrating a radiation thermometer, and more particularly to a method and a system for automatically calibrating a radiation thermometer placed in a polishing apparatus.
- the CMP (Chemical Mechanical Polishing) device is used in the process of polishing the surface of a substrate such as a wafer in the manufacture of semiconductor devices.
- the CMP apparatus has at least one polishing unit, in which the polishing unit holds the substrate with a polishing head, rotates the substrate, and further presses the substrate against a polishing pad on a rotating polishing table to press the surface of the substrate. Polish.
- a polishing liquid slurry
- the surface of the substrate is flattened by the chemical action of the polishing liquid and the mechanical action of the abrasive grains contained in the polishing liquid.
- the polishing rate of the substrate depends not only on the polishing load on the polishing pad of the substrate but also on the surface temperature of the polishing pad. This is because the chemical action of the polishing liquid on the substrate depends on the temperature. Therefore, in the manufacture of semiconductor devices, it is important to keep the surface temperature of the polishing pad during substrate polishing at an optimum value in order to increase the polishing rate of the substrate and keep it constant.
- the pad temperature control device controls the surface temperature of the polishing pad, a heat exchanger that can contact the surface (polishing surface) of the polishing pad, a liquid supply system that supplies the temperature-controlled heating liquid and cooling liquid to the heat exchanger. It includes a radiation thermometer to measure and a control unit that controls the liquid supply system based on the surface temperature of the polishing pad measured by the radiation thermometer. The control unit controls the flow rates of the heating liquid and the cooling liquid based on the surface temperature of the polishing pad measured by the radiation thermometer so as to maintain the surface temperature of the polishing pad at a predetermined target temperature.
- the polishing device may be equipped with a radiation thermometer different from the radiation thermometer of the pad temperature controller.
- Another radiation thermometer is, for example, a thermometer for monitoring whether or not the surface temperature of the polishing pad near the polishing head is maintained at a predetermined set temperature during polishing of the substrate.
- Another radiation thermometer is also connected to the control unit, and when the measured value of the surface temperature of the polishing pad transmitted from the other radiation thermometer exceeds the permissible range stored in advance in the control unit. In addition, the operation of the polishing device is stopped and an alarm is issued. This prevents polishing abnormalities from occurring on the substrate.
- the radiation thermometer In order to keep the polishing rate of the substrate constant and to effectively prevent polishing abnormalities from occurring on the substrate, the radiation thermometer needs to output an accurate measurement value of the pad surface temperature to the control unit. is there. Therefore, the manufacturer of the polishing device calibrates the radiation thermometer before shipping the polishing device.
- Calibration of the conventional radiation thermometer is performed as follows.
- the operator who calibrates the radiation thermometer first prepares a heating device such as a hot plate and a portable radiation thermometer (that is, a portable radiation thermometer).
- a heating device such as a hot plate and a portable radiation thermometer (that is, a portable radiation thermometer).
- the heat radiation surface of the heating device is heated to a predetermined target temperature, and the temperature of the heat radiation surface is measured by both a radiation thermometer arranged in the polishing device and a portable radiation thermometer.
- the operator then calibrates the radiation thermometer so that the readings on the radiation thermometer match the readings on the portable radiation thermometer.
- the measured value of the radiation thermometer (that is, the temperature output value of the radiation thermometer) may deviate from the actual surface temperature of the polishing pad. .. Therefore, it is preferable that the radiation thermometer is calibrated by the customer on a regular basis even after the polishing device is delivered.
- the conventional calibration work of the radiation thermometer requires a certain amount of labor, and the polishing device is stopped during the calibration work. Therefore, it is practical to calibrate the radiation thermometer regularly. Have difficulty.
- the portable radiation thermometer handled by the operator is used as a standard device for calibrating the radiation thermometer of the polishing device.
- the calibration result of the radiation thermometer may vary depending on the skill level of the operator and the like. For example, if the angle at which the operator points the portable thermometer toward the heat radiation surface of the heating device and the distance between the portable thermometer and the heat radiation surface of the heating device change, the calibration result of the radiation thermometer may vary. is there. Therefore, a method and a system for automatically calibrating a radiation thermometer are required, and in particular, a method and a system capable of automatically calibrating a radiation thermometer in a short time are required.
- an object of the present invention is to provide a method and a system for automatically calibrating a radiation thermometer provided in a polishing apparatus.
- it is a method of automatically calibrating a radiation thermometer arranged in a polishing device, in which a heating device to which a measuring body is attached is placed below the radiation thermometer and connected to the heating device.
- the temperature of the measuring body is heated to a plurality of target temperatures, the temperature of the measuring body at each target temperature is measured by the radiation thermometer, and the target temperature and the target temperature are obtained.
- Calculate the amount of temperature deviation which is the difference from the temperature output value of the corresponding radiation thermometer, and calibrate the radiation thermometer so that all of the amount of temperature deviation falls within the preset reference range.
- it is a method of automatically calibrating a radiation thermometer arranged in a polishing device, in which a plurality of heating devices to which measuring bodies are attached are prepared, and the polishing device connected to the plurality of heating devices.
- the temperature of each measuring body is heated to a predetermined target temperature by using the control unit of the above, and each measuring body is moved below the radiation thermometer, and the temperature of the measuring body at the target temperature is measured by the radiation thermometer.
- the temperature deviation amount which is the difference between each target temperature and the temperature output value of the radiation thermometer corresponding to the target temperature, is calculated, and all of the temperature deviation amounts are within a preset reference range.
- a method is provided characterized in that the radiation thermometer is calibrated to enter.
- the step of calibrating the radiation thermometer is the step of correcting the conversion parameters stored in the analog-to-digital converter of the radiation thermometer.
- the temperature of the measuring body is heated to a plurality of target temperatures again, the temperature of the measuring body at each target temperature is measured by the radiation thermometer, and the temperature shift is achieved. The amount is calculated again, and it is confirmed whether or not all of the temperature deviation amounts fall within the preset reference range.
- the measuring body is composed of a material having an emissivity similar to that of a polishing pad arranged in the polishing apparatus.
- a method of automatically calibrating a radiation thermometer placed in a polishing device in which a heating device equipped with a plurality of measuring bodies having different known radiation rates is placed below the radiation thermometer. Then, the temperature of the plurality of measuring bodies is heated to a predetermined target temperature by using the control unit of the polishing device connected to the heating device, and the temperature of the plurality of measuring bodies at the target temperature is set to the radiation temperature.
- each temperature expected value to be output from the radiation thermometer and the radiation thermometer Provided is a method comprising calculating the temperature deviation amount, which is the difference from the temperature output value, and calibrating the radiation thermometer so that all of the temperature deviation amount falls within a preset reference range.
- the step of calibrating the radiation thermometer is the step of correcting the conversion parameters stored in the analog-to-digital converter of the radiation thermometer.
- the temperatures of the plurality of measuring bodies maintained at the target temperature are measured again with the radiation thermometer, the temperature deviation amount is calculated again, and the temperature is described. It is confirmed whether or not all the deviation amounts are within the preset reference range.
- it is a system that calibrates a radiation thermometer placed in a polishing device, a heating device to which a measuring body is attached and arranged below the radiation thermometer, and a temperature control connected to the heating device.
- the temperature controller is connected to a control unit arranged in the polishing apparatus, and the control unit sets the temperature of the measuring body to a plurality of target temperatures via the temperature controller.
- the temperature of the measuring body at each target temperature is measured with the radiation thermometer, and the amount of temperature deviation, which is the difference between each target temperature and the temperature output value of the radiation thermometer corresponding to the target temperature, is measured.
- a system is provided that calculates and calibrates the radiation thermometer so that all of the temperature shifts fall within a preset reference range.
- it is a system for calibrating a radiation thermometer arranged in a polishing device, which comprises a plurality of heating devices to which measuring bodies are attached, a temperature controller connected to the plurality of heating devices, and the plurality of heating devices.
- the heating device moving mechanism for moving each of the heating devices below the radiation thermometer is provided, and the temperature controller and the heating device moving mechanism are connected to a control unit arranged in the polishing device.
- the control unit heats the temperature of each measuring body to a predetermined target temperature via the temperature regulator, and moves each measuring body below the radiation thermometer by using the heating device moving mechanism.
- the temperature of the measuring body at each target temperature is measured by the radiation thermometer, and the amount of temperature deviation, which is the difference between each target temperature and the temperature output value of the radiation thermometer corresponding to the target temperature, is calculated.
- a system is provided characterized in that the radiation thermometer is calibrated so that all of the temperature shift amounts fall within a preset reference range.
- the control unit corrects the conversion parameters stored in the analog-to-digital converter of the radiation thermometer so that all of the temperature shift amount falls within a preset reference range.
- the control unit heats the temperature of the measuring body to a plurality of target temperatures again, and measures the temperature of the measuring body at each target temperature with the radiation thermometer. Then, the temperature deviation amount is calculated again, and it is confirmed whether or not all of the temperature deviation amounts are within the preset reference range.
- the measuring body is composed of a material having an emissivity similar to that of a polishing pad arranged in the polishing apparatus.
- a system that calibrates a radiation thermometer placed in a polishing device, wherein a plurality of measuring bodies having different known radiation rates are attached and placed below the radiation thermometer.
- a temperature controller connected to the heating device, the temperature controller is connected to a control unit arranged in the polishing device, and the control unit is connected to the temperature controller via the temperature controller.
- the temperature of the plurality of measuring bodies is heated to a predetermined target temperature, the temperatures of the plurality of measuring bodies at the target temperature are measured by the radiation thermometer, and the plurality of measuring bodies heated to the target temperature are measured.
- the amount of temperature deviation which is the difference between each expected temperature value to be output from the radiation thermometer and the temperature output value of the radiation thermometer when measured by the radiation thermometer, is calculated, and the temperature deviation amount is calculated.
- a system is provided characterized in that the radiation thermometer is calibrated so that all of the above are within a preset reference range.
- control unit corrects the conversion parameters stored in the analog-to-digital converter of the radiation thermometer so that all of the temperature shift amount falls within a preset reference range.
- control unit measures the temperatures of the plurality of measuring objects maintained at the target temperature again with the radiation thermometer, and measures the temperature shift amount again. It is calculated and it is confirmed whether or not all of the temperature deviation amount falls within the preset reference range.
- the heating device to which the measuring body is attached is placed below the radiation thermometer, and the control unit automatically calibrates the radiation thermometer simply by connecting the control unit of the polishing device to the heating device. To do. Therefore, it can be expected that the radiation thermometer calibration process will be performed on a regular basis as it reduces the burden on the operator and the downtime of the polishing device. As a result, the substrate can be polished at a desired polishing rate, and further, it is possible to effectively prevent the substrate from being abnormally polished.
- FIG. 1 is a schematic view showing a polishing apparatus according to an embodiment.
- FIG. 2 is a schematic view showing a radiation thermometer that measures the pad surface temperature in the vicinity of the polishing head.
- FIG. 3 is a schematic view showing an enlarged sensor portion of the radiation thermometer shown in FIG.
- FIG. 4 is a schematic diagram showing the configuration of the calibration system according to the embodiment.
- FIG. 5A is a top view schematically showing the calibration tool of the calibration system shown in FIG.
- FIG. 5B is a side view of the calibration tool shown in FIG. 5A.
- FIG. 6 is a schematic view showing an example of the internal structure of the radiation thermometer.
- FIG. 7 is a flowchart showing the first half of the calibration method of the radiation thermometer according to the embodiment.
- FIG. 1 is a schematic view showing a polishing apparatus according to an embodiment.
- FIG. 2 is a schematic view showing a radiation thermometer that measures the pad surface temperature in the vicinity of the polishing head.
- FIG. 3 is
- FIG. 8 is a flowchart showing the latter half of the calibration method of the radiation thermometer according to the embodiment.
- FIG. 9 is a graph showing an example of a function showing the relationship between each target temperature and the temperature output value of the radiation thermometer corresponding to the target temperature.
- FIG. 10 is a graph showing an example in which the y-intercept of the function shown in FIG. 9 is corrected.
- FIG. 11 is a graph showing an example in which the inclination of the function shown in FIG. 10 is corrected.
- FIG. 12 is a schematic view showing an example of a calibration sheet.
- FIG. 13 is a perspective view schematically showing a calibration tool according to another embodiment.
- FIG. 14 is a schematic view showing a state in which the heating device is moved below the radiation thermometer by the heating device moving mechanism shown in FIG. FIG.
- FIG. 15 is a schematic view showing a protective cover of the heating device.
- FIG. 16 is a flowchart showing the first half of the method for confirming the temperature output value of the radiation thermometer according to the embodiment.
- FIG. 17 is a flowchart showing the latter half of the method for confirming the temperature output value of the radiation thermometer according to the embodiment.
- FIG. 18A is a top view schematically showing a calibration tool according to still another embodiment.
- FIG. 18B is a perspective view schematically showing a moving mechanism for moving the heating plate shown in FIG. 18A.
- FIG. 19A is a schematic for explaining the measurement error of the temperature output value output from the radiation thermometer when the temperatures of the plurality of measuring objects heated to the target temperature of 100 ° C. are measured by the radiation thermometer. It is a figure.
- FIG. 19B is a schematic for explaining the measurement error of the temperature output value output from the radiation thermometer when the temperatures of the plurality of measuring objects heated to the target temperature of 100 ° C. are measured by the radiation thermometer. It is a figure.
- FIG. 19C is a schematic for explaining the measurement error of the temperature output value output from the radiation thermometer when the temperatures of the plurality of measuring objects heated to the target temperature of 100 ° C. are measured by the radiation thermometer. It is a figure.
- FIG. 19D is a schematic for explaining the measurement error of the temperature output value output from the radiation thermometer when the temperatures of the plurality of measuring objects heated to the target temperature of 100 ° C. are measured by the radiation thermometer. It is a figure.
- FIG. 19C is a schematic for explaining the measurement error of the temperature output value output from the radiation thermometer when the temperatures of the plurality of measuring objects heated to the target temperature of 100 ° C. are measured by the radiation thermometer. It is a figure.
- FIG. 19D is a schematic for explaining
- FIG. 20 is a flow chart showing the first half of a method of performing calibration of a radiation thermometer in a calibration system with the calibration tool shown in FIG. 18A.
- FIG. 21 is a flow chart showing the second half of the method of performing calibration of a radiation thermometer in a calibration system with the calibration tool shown in FIG. 18A.
- FIG. 1 is a schematic view showing a polishing apparatus according to an embodiment.
- a polishing head 1 that holds and rotates a wafer W, which is an example of a substrate
- a polishing table 2 that supports a polishing pad 3
- a polishing liquid for example, a slurry
- It is provided with a polishing liquid supply nozzle 4 to be supplied and a pad temperature adjusting device 5 for adjusting the surface temperature of the polishing pad 3.
- the surface (upper surface) of the polishing pad 3 constitutes a polishing surface for polishing the wafer W.
- the polishing head 1 can move in the vertical direction and can rotate in the direction indicated by the arrow around its axis.
- the wafer W is held on the lower surface of the polishing head 1 by vacuum suction or the like.
- a motor (not shown) is connected to the polishing table 2 so that it can rotate in the direction indicated by the arrow. As shown in FIG. 1, the polishing head 1 and the polishing table 2 rotate in the same direction.
- the polishing pad 3 is attached to the upper surface of the polishing table 2.
- Wafer W is polished as follows.
- the wafer W to be polished is held by the polishing head 1 and further rotated by the polishing head 1.
- the polishing pad 3 is rotated together with the polishing table 2.
- the polishing liquid is supplied from the polishing liquid supply nozzle 4 to the surface of the polishing pad 3, and the surface of the wafer W is pressed against the surface of the polishing pad 3 (that is, the polishing surface) by the polishing head 1.
- the surface of the wafer W is polished by sliding contact with the polishing pad 3 in the presence of the polishing liquid.
- the surface of the wafer W is flattened by the chemical action of the polishing liquid and the mechanical action of the abrasive grains contained in the polishing liquid.
- the pad temperature adjusting device 5 includes a heat exchanger 11 capable of contacting the surface of the polishing pad 3 and a liquid supply system 30 for supplying the temperature-controlled heating liquid and cooling liquid to the heat exchanger 11.
- the liquid supply system 30 includes a heating liquid supply tank 31 as a heating liquid supply source for storing a temperature-controlled heating liquid, a heating liquid supply pipe 32 connecting the heating liquid supply tank 31 and the heat exchanger 11, and heating. It includes a liquid return pipe 33. One end of the heating liquid supply pipe 32 and the heating liquid return pipe 33 is connected to the heating liquid supply tank 31, and the other end is connected to the heat exchanger 11.
- the temperature-adjusted heating liquid is supplied from the heating liquid supply tank 31 to the heat exchanger 11 through the heating liquid supply pipe 32, flows through the heat exchanger 11, and is heated from the heat exchanger 11 through the heating liquid return pipe 33. It is returned to the supply tank 31. In this way, the heating liquid circulates between the heating liquid supply tank 31 and the heat exchanger 11.
- the heating liquid supply tank 31 has a heater (not shown), and the heating liquid is heated to a predetermined temperature by the heater.
- a first on-off valve 41 and a first flow rate control valve 42 are attached to the heating liquid supply pipe 32.
- the first flow rate control valve 42 is arranged between the heat exchanger 11 and the first on-off valve 41.
- the first on-off valve 41 is a valve that does not have a flow rate adjusting function, whereas the first flow rate control valve 42 is a valve that has a flow rate adjusting function.
- the liquid supply system 30 further includes a coolant supply pipe 51 and a coolant discharge pipe 52 connected to the heat exchanger 11.
- the coolant supply pipe 51 is connected to a coolant supply source (for example, a chilled water supply source) provided in the factory where the polishing apparatus is installed.
- the coolant is supplied to the heat exchanger 11 through the coolant supply pipe 51, flows through the heat exchanger 11, and is discharged from the heat exchanger 11 through the coolant discharge pipe 52.
- the coolant flowing through the heat exchanger 11 may be returned to the coolant supply source through the coolant discharge pipe 52.
- a second on-off valve 55 and a second flow rate control valve 56 are attached to the coolant supply pipe 51.
- the second flow rate control valve 56 is arranged between the heat exchanger 11 and the second on-off valve 55.
- the second on-off valve 55 is a valve that does not have a flow rate adjusting function, whereas the second flow rate control valve 56 is a valve that has a flow rate adjusting function.
- the pad temperature adjusting device 5 has a radiation thermometer 39 for measuring the surface temperature of the polishing pad 3 (hereinafter, may be referred to as a pad surface temperature) and a first flow rate based on the pad surface temperature measured by the radiation thermometer 39. It further includes a control valve 42 and a control unit 40 for operating the second flow control valve 56.
- the first on-off valve 41 and the second on-off valve 55 are normally open.
- the radiation thermometer 39 measures the surface temperature of the polishing pad 3 in a non-contact manner, and sends the measured value to the control unit 40.
- the control unit 40 operates the first flow rate control valve 42 and the second flow rate control valve 56 based on the measured pad surface temperature so that the pad surface temperature is maintained at a preset target temperature. Controls the flow rate of the heating liquid and the cooling liquid.
- the first flow rate control valve 42 and the second flow rate control valve 56 operate according to the control signal from the control unit 40, and adjust the flow rate of the heating liquid and the flow rate of the cooling liquid supplied to the heat exchanger 11. Heat exchange is performed between the heating liquid and the cooling liquid flowing through the heat exchanger 11 and the polishing pad 3, which changes the pad surface temperature.
- the control unit 40 is configured to control the operation of the entire polishing device including the pad temperature adjusting device 5, the polishing head 1, and the like.
- the target temperature of the polishing pad 3 is determined according to the type of wafer W or the polishing process, and the determined target temperature is input to the control unit 40 in advance.
- the heat exchanger 11 comes into contact with the surface (that is, the polished surface) of the polishing pad 3 during polishing of the wafer W.
- the mode in which the heat exchanger 11 contacts the surface of the polishing pad 3 is not only the mode in which the heat exchanger 11 directly contacts the surface of the polishing pad 3, but also the mode of the heat exchanger 11 and the polishing pad 3.
- a mode in which the heat exchanger 11 comes into contact with the surface of the polishing pad 3 in a state where the polishing liquid (slurry) is present between the surface and the surface is also included. In either aspect, heat exchange is performed between the heating liquid and the cooling liquid flowing through the heat exchanger 11 and the polishing pad 3, whereby the pad surface temperature is controlled.
- Hot water is used as the heating liquid supplied to the heat exchanger 11.
- silicone oil may be used as a heating liquid.
- Cold water or silicone oil is used as the coolant supplied to the heat exchanger 11.
- the polishing pad 3 can be quickly cooled by connecting the chiller to the coolant supply pipe 51 as the coolant supply source and cooling the silicone oil to 0 ° C. or lower. it can.
- Pure water can be used as the cold water.
- a chiller may be used as a coolant supply source to cool the pure water to produce cold water. In this case, the cold water flowing through the heat exchanger 11 may be returned to the chiller through the coolant discharge pipe 52.
- the heating liquid supply pipe 32 and the cooling liquid supply pipe 51 are completely independent pipes. Therefore, the heating liquid and the cooling liquid are simultaneously supplied to the heat exchanger 11 without being mixed.
- the heating liquid return pipe 33 and the cooling liquid discharge pipe 52 are also completely independent pipes. Therefore, the heating liquid is returned to the heating liquid supply tank 31 without being mixed with the cooling liquid, and the cooling liquid is discharged without being mixed with the heating liquid or returned to the coolant supply source.
- the polishing apparatus has a radiation thermometer that measures the surface temperature (pad surface temperature) of the polishing pad 3 in the vicinity of the polishing head 1.
- FIG. 2 is a schematic view showing a radiation thermometer that measures the pad surface temperature in the vicinity of the polishing head 1.
- the polishing head 1 is connected to a rotating shaft 15 that rotates the polishing head 1, and the rotating shaft 15 is surrounded by a cover 16.
- the cover 16 has a flange portion 16a protruding from the outer surface thereof, and a radiation thermometer 48 is attached to the lower surface of the flange portion 16a.
- the radiation thermometer 39 may be referred to as a "first radiation thermometer 39”
- the radiation thermometer 48 may be referred to as a "second radiation thermometer 48".
- the second radiation thermometer 48 measures the surface temperature of the pad near the polishing head 1 that is polishing the wafer W.
- the second radiation thermometer 48 is also connected to the control unit 40, and the pad surface temperature measured by the second radiation thermometer 48 is sent to the control unit 40.
- the control unit 40 stores in advance the permissible range of the pad surface temperature with respect to the target temperature preset according to the polishing process. While the wafer W is being polished, the control unit 40 monitors whether or not the measured value of the pad surface temperature sent from the second radiation thermometer 48 is within the permissible range. When the measured value of the pad surface temperature deviates from the permissible range, the control unit 40 issues an alarm. In one embodiment, the control unit 40 may issue an alarm and stop polishing the wafer W. During polishing of the wafer W, the control unit 40 monitors the pad surface temperature measured by the second radiation thermometer 48, thereby preventing the wafer W from being abnormally polished.
- FIG. 3 is an enlarged schematic view showing the sensor unit of the second radiation thermometer 48 shown in FIG. Since the sensor unit of the first radiation thermometer 39 has the same configuration as the sensor unit of the second radiation thermometer 48, the overlapping description thereof will be omitted.
- a radiation thermometer generally measures the intensity (energy amount) of an electromagnetic wave such as ultraviolet rays, infrared rays, or visible rays radiated from an object to be measured, and converts the intensity into temperature to measure the temperature of the object to be measured. It is a non-contact thermometer that measures.
- the sensor unit 48a of the second radiation thermometer 48 is a polishing pad so that the electromagnetic wave radiated from the surface of the polishing pad 3 which is the object to be measured effectively reaches the sensor unit 48. It faces the surface of 3.
- the tip of the sensor unit 48a is surrounded by a barrier 49, which is a member that prevents electromagnetic waves radiated from an object other than the polishing pad 3 from reaching the sensor unit 48a.
- the barrier 49 protects the second radiation thermometer 48 from disturbances and allows accurate pad surface temperature measurement.
- the radiation thermometers 39 and 48 are calibrated periodically using the calibration system described below. For example, the calibration process for each radiation thermometer 39,48 is carried out during maintenance of the polishing equipment or after replacing the polishing pad 3.
- FIG. 4 is a schematic diagram showing the configuration of the calibration system according to the embodiment.
- the calibration system shown in FIG. 4 is used to calibrate the first radiation thermometer 39 and the second radiation thermometer 48.
- 5A is a top view schematically showing the calibration tool of the calibration system shown in FIG. 4, and
- FIG. 5B is a side view of the calibration tool shown in FIG. 5A.
- the calibration system shown in FIG. 4 includes a calibration tool 60 arranged below the second radiation thermometer 48 and a temperature controller 66 connected to the calibration tool 60.
- FIG. 4 shows an example in which the calibration tool 60 of the calibration system is placed below the second radiation thermometer 48.
- the calibration tool 60 is placed below the first radiation thermometer 39.
- the calibration tool 60 includes a heating device 61 such as a hot plate and a table 63 that supports the heating device 61.
- the heating device 61 includes a heating plate 61a, a heater 61b arranged below the heating plate 61a, and a temperature sensor 61c capable of measuring the temperature of the heating plate 61a.
- the upper surface of the heater 61b is arranged so as to be in contact with the lower surface of the heating plate 61a, and the lower surface of the heater 61b is fixed to the base 63.
- the heater 61b may be arranged inside the heating plate 61a. In this case, the lower surface of the heating plate 61a is fixed to the base 63.
- the calibration tool 60 is connected to the temperature controller 66 (see FIG. 4).
- the temperature controller 66 controls the operation of the heater 61b (for example, PID control) based on the temperature of the heating plate 61a output from the temperature sensor 61c of the heating device 61, thereby determining the temperature of the heating plate 61a. Maintain at the target temperature of.
- the temperature sensor 61c shown in FIG. 5B is a thermocouple, but the model of the temperature sensor 61c is arbitrary.
- the temperature sensor 61c may be a platinum resistance temperature detector, a thermistor temperature detector, or a bimetal thermometer.
- the base 63 includes a main frame 63a having a substantially C-shaped cross section and a reinforcing rib 63b.
- the main frame 63a is composed of a main plate extending in the vertical direction and two plate-shaped arms connected to both ends of the main plate and extending in the horizontal direction.
- the reinforcing rib 63b extends from one arm to the other arm, and the heating device 61 is fixed to the upper surface of one arm. The lower surface of the other arm comes into contact with the polishing pad 3 when the base 63 is placed on the polishing pad 3.
- the reinforcing rib 63b is a member for preventing the main frame 63a of the base 63 from being bent by the parts of the calibration tool 60 such as the heating device 61.
- the calibration tool 60 includes a frame body 71 fixed to the base 63 so as to surround the heating plate 61a of the heating device 61.
- the frame body 71 is a member that prevents the heating plate 61a from colliding with a member (for example, the polishing head 1) arranged in the polishing apparatus.
- the calibration of the conventional radiation thermometer was performed using a portable radiation thermometer held by the operator.
- the table 63 is placed on the upper surface of the polishing pad 3 so that the upper surface of the heating plate 61a of the heating device 61 faces the second radiation thermometer 48, the heating device 61 and the second radiation thermometer 48 are placed.
- the upper surface of the heating plate 61a faces parallel to the sensor portion 48a of the second radiation thermometer 48. Therefore, it is possible to avoid the problem that the calibration result varies depending on the skill level of the operator.
- the temperature controller 66 is connected to the control unit 40 of the polishing device, and is configured so that the set temperature of the temperature controller 66 can be changed based on a command from the control unit 40. ing. That is, the control unit 40 can adjust the temperature of the heating plate 61a of the heating device 61 to a desired target temperature via the temperature controller 66.
- the calibration tool 60 may have a cooling device capable of cooling the heating plate 61a of the heating device 61.
- the cooling device of the calibration tool 60 is a cooling fan 65 capable of sending air to the heating plate 61a of the heating device 61.
- the cooling fan 65 is connected to the temperature regulator 66, and the temperature regulator 66 controls the operations of the heater 61b and the cooling fan 65 to adjust the temperature of the heating plate 61a to a desired target temperature.
- the temperature of the heating plate 61a can be adjusted more precisely by the air sent from the cooling fan 65 to the heating plate 61a.
- a so-called “overshoot phenomenon” may occur in which the temperature of the heating plate 61a rises significantly above the target temperature.
- the overshoot phenomenon of the heating plate 61a can be quickly converged by the air sent from the cooling fan 65, the time required to calibrate the second radiation thermometer 48 can be shortened.
- FIG. 6 is a schematic view showing an example of the internal structure of the second radiation thermometer 48. Since the first radiation thermometer 39 also has a structure similar to the internal structure shown in FIG. 6, the overlapping description thereof will be omitted.
- the second radiating thermometer 48 has a sensor unit 48a for measuring the intensity (energy amount) of an electromagnetic wave such as an ultraviolet ray, an infrared ray, or a visible light beam radiated from a measurement object, and a sensor unit 48a. It was output from an amplifier 48b that amplifies the output analog signal value, an analog-digital converter (AD converter) 48c that converts the analog signal value amplified by the amplifier 48b into a digital signal value, and an analog-digital converter 48c.
- AD converter analog-digital converter
- a radiation rate correction unit 48d that corrects the digital signal value based on the emissivity of the measurement object, and a conversion unit 48e that converts the correction digital signal value output from the emissivity correction unit 48d into the temperature of the measurement object.
- the sensor unit 48a, the amplifier unit 48b, the AD converter 48c, the emissivity correction unit 48d, and the conversion unit 48e are arranged in this order.
- this embodiment is not limited to this example.
- the sensor unit 48a, the amplifier unit 48b, the emissivity correction unit 48d, the AD converter 48c, and the conversion unit 48e may be arranged in this order.
- the second radiation thermometer 48 In order for the second radiation thermometer 48 to measure the accurate temperature of the object to be measured, it is preferable to input the emissivity of the object to be measured into the emissivity correction unit 48d of the second radiation thermometer 48 in advance. Therefore, in the present embodiment, the measuring body 68 having a predetermined emissivity is attached to the upper surface of the heating plate 61a of the heating device 61 (see FIGS. 5A and 5B). When the heating plate 61a of the heating device 61 is heated by the heater 61b, the temperature of the measuring body 68 becomes the same as the temperature of the heating plate 61a.
- the position of the calibration tool 60 is adjusted so that the measuring body 68 is located directly under the second radiation thermometer 48, and the second radiation thermometer 48 is heated.
- the temperature of the measuring body 68 having the same temperature as the plate 61a is measured.
- the heat radiating surface of the heating device 61 measured by the second radiation thermometer 48 is the surface of the measuring body 68.
- An example of the measuring body 68 is a blackbody tape having a known emissivity.
- a blackbody paint having a known emissivity may be applied to the upper surface of the heating plate 61a to form the measuring body 68.
- the known emissivity of the blackbody tape or the blackbody paint is input to the emissivity correction unit 48d in advance.
- the emissivity correction unit 48d calculates the digital signal value output from the analog-digital converter 48c based on the input emissivity of the measuring body 68, and the emissivity of the measuring body 68 is a predetermined value (for example, 1.0). ) Is corrected to the digital signal value.
- the emissivity of the measuring body 68 may be unknown.
- the emissivity correction unit 48d outputs the digital signal value output from the analog-digital converter 48c to the conversion unit 48e as it is.
- the measuring body 68 may be made of a material having an emissivity similar to that of the polishing pad 3.
- the measuring body 68 made of the same resin as the polishing pad 3 may be attached to the upper surface of the heating plate 61a.
- the measuring body 68 may be omitted, and the heating plate 61a may be used as the measuring body whose temperature is measured by the second radiation thermometer 48.
- the heat radiating surface of the measuring body measured by the second radiation thermometer 48 is the surface (upper surface) of the heating plate 61a.
- the heating plate 61a is made of the same resin as the polishing pad 3.
- FIG. 7 is a flowchart showing the first half of the calibration method of the second radiation thermometer 48 according to one embodiment
- FIG. 8 shows the second half of the calibration method of the second radiation thermometer 48 according to one embodiment. It is a flowchart.
- the calibration tool 60 is placed on the upper surface of the polishing pad 3 so that the measuring body 68 faces the sensor unit 48a of the second radiation thermometer 48 (step 1 in FIG. 7). ). Further, the temperature controller 66 of the calibration system is connected to the control unit 40 of the polishing device (step 2 in FIG. 7).
- the control unit 40 stores in advance a plurality of target temperatures set for executing the calibration of the second radiation thermometer.
- the plurality of target temperatures are, for example, a group of temperatures shifted by a predetermined temperature interval (for example, 10 ° C.), and this group is, for example, 30 ° C., 40 ° C., 50 ° C., 60 ° C., 70 ° C., 80. Includes temperature of ° C.
- the control unit 40 transmits one target temperature Ta selected from the plurality of target temperatures to the temperature controller 66 to heat the heating plate 61a and the measuring body 68 of the heating device 61 to the target temperature Ta (FIG. 6). Step 3 of 7).
- the control unit 40 transmits the smallest target temperature (for example, 30 ° C.) Ta among the plurality of target temperatures to the temperature controller 66.
- the second radiation thermometer 48 measures the temperature of the measuring body 68 (step 4 in FIG. 7). ), The measured value is transmitted to the control unit 40.
- the control unit 40 stores the temperature output value (temperature measurement value) of the measuring body 68 sent from the second radiation thermometer 48 (step 5 in FIG. 7).
- the control unit 40 determines whether or not the temperature measurement of the measuring body 68 by the second radiation thermometer 48 has been executed for all the target temperatures (step 6 in FIG. 7). In the present embodiment, the control unit 40 determines whether or not the target temperature Ta used in step 3 is the highest target temperature (for example, 80 ° C.) among the plurality of target temperatures. When the target temperature Ta used in step 3 is not the highest target temperature (“No” in step 6 of FIG. 7), the control unit 40 determines that the target temperature Ta used in step 3 is among the plurality of target temperatures. The next higher target temperature Tb (for example, 40 ° C.) is selected as the next target temperature Ta (step 7 in FIG. 7), and steps 3 to 5 above are repeated.
- the next higher target temperature Tb for example, 40 ° C.
- the control unit 40 sets each target temperature Ta and the target.
- the difference between the temperature output values of the second radiation thermometer 48 corresponding to the temperature Ta is calculated (step 8 in FIG. 7).
- the difference between the target temperature Ta and the temperature output value of the second radiation thermometer 48 corresponding to the target temperature Ta is an error of the measured value of the second thermometer 48 with respect to the target temperature Ta.
- the difference between each target temperature Ta and the temperature output value of the second radiation thermometer 48 corresponding to the target temperature Ta is referred to as "temperature deviation amount”.
- the control unit 40 determines whether or not all the temperature deviation amounts are within the reference range (step 9 in FIG. 7).
- the reference range of the temperature shift amount is preset and stored in the control unit 40 in advance.
- the control unit 40 starts from the second radiation thermometer 48 so that all the temperature shift amounts fall within the reference range.
- the temperature output value of is corrected (step 10 in FIG. 8).
- the control unit 40 corrects the conversion parameters stored in the analog-digital converter 48c of the second radiation thermometer 48 (that is,). change.
- FIGS. 9 to 11 are graphs for explaining an example of a method of correcting the temperature output value of the second radiation thermometer 48. More specifically, FIG. 9 is a graph showing an example of a function showing the relationship between each target temperature Ta and the temperature output value of the second radiation thermometer 48 corresponding to the target temperature Ta, and FIG. Is a graph showing an example in which the y-intercept of the function shown in FIG. 9 is corrected, and FIG. 11 is a graph showing an example in which the slope of the function shown in FIG. 10 is corrected.
- the vertical axis (y-axis) represents the temperature output value of the second radiation thermometer 48
- the horizontal axis (x-axis) represents the target temperature Ta.
- the upper limit straight line UL corresponding to the upper limit of the reference range of the temperature deviation amount and the lower limit straight line LL corresponding to the lower limit are shown by virtual lines (dotted lines), respectively.
- the control unit 40 stores a plurality of target temperature Tas to be output to the temperature regulator 66 in advance, and the second radiation temperature 48 is the temperature of the measuring body 68 heated to each target temperature Ta. The measured value is transmitted to the control unit 40. Therefore, the control unit 40 can plot the temperature output value of the second radiation thermometer 48 corresponding to each target temperature Ta on a graph as shown in FIG. Further, the control unit 40 calculates the function RF based on all the plot points. For example, the control unit 40 calculates an approximate straight line based on all the plot points by the least squares method, and uses this approximate straight line as the function RF.
- the plot point Px exceeds the upper limit straight line UL.
- the control unit 40 determines in step 9 shown in FIG. 7 that there is a temperature shift amount exceeding the reference range, and the slope (that is, gain) of the function RF so that all the temperature shift amounts fall within the reference range. And y-intercept (ie, offset) are corrected.
- the slope of the function RF and the y-intercept are changed by correcting the conversion parameters stored in the analog-digital converter 48c of the second radiation thermometer 48.
- the y-intercept of the function RF corresponds to the value of the temperature output value of the second radiation thermometer 48 in the function RF when the target temperature Ta is 0.
- the control unit 40 calculates the correction amount of the y-intercept based on all the temperature deviation amounts, and moves the function RF up and down along the y-axis based on this correction amount.
- the function RF shown in FIG. 9 is raised along the y-axis so that the y-intercept of the function RF becomes 0.
- the function RF may be lowered along the y-axis so that all the temperature shifts fall within the reference range.
- the corrected y-intercept may be different from 0.
- the control unit 40 calculates the correction amount of the inclination of the function RF based on all the temperature deviation amounts, and changes the inclination of the function RF based on this correction amount.
- FIG. 11 shows an example of reducing the slope of the function RF passing through the corrected y-intercept (origin in the graph shown in FIG. 11) so that all the temperature shift amounts fall within the reference range.
- the slope of the correlation function RF may be increased so that all the temperature deviations fall within the reference range.
- control unit 40 may correct the y-intercept of the function RF after correcting the slope of the function RF, or may correct the slope of the function RF and the y-intercept at the same time. Further, if all the temperature deviations fall within the reference range after correcting the y-intercept (or y-intercept) of the function RF, the control unit 40 corrects the slope (or y-intercept) of the function RF. It may be omitted.
- the conversion unit 48e of the second radiation thermometer 48 converts the corrected digital signal value output from the emissivity correction unit 48d into the temperature of the object to be measured. That is, the conversion unit 48e stores in advance a conversion formula for converting the corrected digital signal value into the pad surface temperature. Therefore, in one embodiment, the control unit 40 uses the parameters of the conversion formula stored in the conversion unit 48e in order to correct the slope of the function RF and the y-intercept (that is, calibrate the second radiation thermometer 48). It may be corrected (ie, changed). For example, when the conversion formula is a linear function, the slope and y-intercept of the conversion formula may be corrected, and when the conversion formula is a quadratic function, the coefficient of the conversion formula may be corrected.
- the calibration operation of the second radiation thermometer executed by the control unit 40 is the operation shown in steps 3 to 10 above.
- the control unit 40 measures the temperature of the measuring body 68 at each target temperature Ta with the second radiation thermometer 48 while changing the temperatures of the heating plate 61a and the measuring body 68 of the heating device 61 to each of the plurality of target temperatures Ta. Then, the amount of temperature shift is calculated. Further, the control unit 40 has a conversion parameter (or a conversion formula stored in the conversion unit 48e) stored in the analog-digital converter 48c of the second radiation thermometer 48 so that all the temperature deviation amounts fall within the reference range. Parameter) is corrected.
- the control unit 40 preferably confirms whether or not all the corrected temperature deviation amounts at each target temperature Ta are within the above reference range (step 11 in FIG. 8). Specifically, the control unit 40 again changes the temperatures of the heating plate 61a and the measuring body 68 of the heating device 61 to each target temperature Ta, and emits the temperature of the measuring body 68 at each target temperature Ta to the second radiation. It is measured with a thermometer 48, the amount of temperature deviation at each target temperature Ta is calculated, and it is confirmed whether or not all of these amounts of temperature deviation fall within the reference range.
- the operation shown in step 11 is a confirmation operation for determining whether or not the second radiation thermometer 48 has been reliably calibrated.
- the control unit 40 operates the cooling fan 65 to gradually cool the temperatures of the heating plate 61a and the measuring body 68 to each target temperature Ta from the highest target temperature to the lowest target temperature. I will go. In this case, since the time required for the confirmation operation can be shortened, the downtime of the polishing apparatus can be shortened.
- control unit 40 may operate the cooling fan 65 to cool the temperatures of the heating plate 61a and the measuring body 68 to room temperature (normal temperature).
- the confirmation operation is performed while gradually heating the temperatures of the heating plate 61a and the measuring body 68 to each target temperature Ta from the lowest target temperature to the highest target temperature.
- the control unit 40 When all the corrected temperature deviations are within the reference range, the control unit 40 generates a signal indicating that the calibration process of the second radiation thermometer 48 is completed (step 12 in FIG. 7).
- the completion signal is used, for example, as a triger for operating the buzzer of the polishing apparatus. By sounding the buzzer of the polishing device, the operator of the polishing device can quickly recognize that the calibration of the second radiation thermometer 48 is completed.
- the control unit 40 needs to calibrate the second radiation thermometer 48. It is determined that this is not the case, and a completion signal of the calibration process of the second radiation thermometer 48 is generated (step 12 in FIG. 7).
- step 11 when there is even one temperature shift amount exceeding the reference range (“No” in step 11 in FIG. 8), the control unit 40 performs the calibration operation shown in steps 3 to 10 above and the calibration operation shown in steps 3 to 10.
- the confirmation operation shown in step 11 is repeated. Specifically, the control unit 40 adds 1 to the number of repetitions N of the combination of the calibration operation and the confirmation operation (step 13 in FIG. 8).
- the initial value of the repetition number N is 0, and the control unit 40 stores the upper limit value NA of the repetition number N in advance.
- the control unit 40 compares the repetition number N with the upper limit value NA (step 14 in FIG. 8), and when the repetition number N is smaller than the upper limit value NA (“Yes” in step 14 in FIG. 8), FIG. Returning to step 3, the calibration operation and the confirmation operation are repeated. When the number of repetitions N reaches the upper limit value NA (“No” in step 14 of FIG. 8), the control unit 40 generates a signal prompting the replacement of the second radiation thermometer 48 (step 15 of FIG. 8). .. This exchange signal is used, for example, as a triger for issuing an alarm for the polishing apparatus.
- the control unit 40 issues an alarm to prompt the replacement of the second radiation thermometer 48, and prevents the wafer W from having a polishing abnormality.
- the upper limit NA may be 1. In this case, if there is even one temperature shift amount exceeding the reference range in step 11 of FIG. 8, the control unit 40 immediately sends a replacement signal for the second radiation thermometer 48 without repeating the calibration operation and the confirmation operation. Generate.
- the calibration tool 60 of the calibration system is placed below the second radiation thermometer 48 (or the first radiation thermometer 39), and the temperature controller 66 is connected to the control unit 40 of the polishing device. Only by, the control unit 40 automatically calibrates the second radiation thermometer 48 (or the first radiation thermometer 39). Therefore, it can be expected that the calibration process of the first radiation thermometer 39 and the second radiation thermometer 48 will be performed periodically because the burden on the operator and the downtime of the polishing apparatus will be reduced. As a result, the wafer W can be polished at a desired polishing rate, and further, it is possible to effectively prevent the wafer W from having a polishing abnormality.
- the calibration system may have an output device 43 such as a printer.
- the output device 43 shown in FIG. 4 is provided outside the polishing device, and is configured to be able to communicate wirelessly with the control unit 40.
- the output device 43 may be configured to be connectable to the control unit 40 by wire.
- an output device 43 connected to the control unit 40 by wire or wirelessly may be provided inside the polishing device.
- the output device 43 reads out the calibration result of the second radiation thermometer 48 (or the first radiation thermometer 39) from the control unit 40, and outputs a calibration sheet as shown in FIG.
- a calibration sheet On the calibration sheet, at least the date when the radiation thermometer was calibrated, the slope (ie, gain) and y-intercept (ie, offset) of the function RF before and after the correction, and the confirmation operation (see step 11 in FIG. 8). It is preferable that the acquired temperature deviation amount of the radiation thermometer is described.
- the life that is, replacement time
- FIG. 13 is a perspective view schematically showing a calibration tool of the configuration system according to another embodiment. Since the configuration of the present embodiment not particularly described is the same as the configuration of the above-described embodiment, the duplicate description will be omitted.
- the radiation thermometers 39 and 48 may become dirty due to the adhesion of polishing liquid or the like to the radiation thermometers 39 and 48. In addition, the radiation thermometers 39 and 48 may fail. In these cases, since the radiation thermometers 39 and 48 cannot measure the pad surface temperature accurately, there is a possibility that a polishing abnormality may occur in the wafer W or the yield may decrease. Therefore, every time a predetermined number of wafers W are polished (for example, each time one wafer W is polished), it is confirmed whether or not the radiation thermometers 39 and 48 accurately measure the pad surface temperature. It is preferable to do so. Therefore, in the present embodiment, the calibration tool 60 is arranged in the vicinity of the radiation thermometer, and the temperature output values of the radiation thermometers 39 and 48 are confirmed every time a predetermined number of wafers W are polished.
- FIG. 13 shows a calibration tool 60 arranged in the vicinity of the first radiation thermometer 39.
- a calibration tool having the same configuration as the calibration tool 60 shown in FIG. 13 is also arranged in the vicinity of the second radiation thermometer 48.
- the calibration tool 60 shown in FIG. 13 may be placed in the vicinity of either the first radiation thermometer 39 or the second radiation thermometer 48.
- the calibration tool 60 shown in FIG. 13 includes a plurality of (two in the illustrated example) heating devices 61A and 61B, a thermometer 66 connected to the heating devices 61A and 61B, and heating devices 61A and 61B, respectively.
- 80 is provided with a moving mechanism (heating device moving mechanism) 80 for moving the first radiation thermometer 39 below.
- each of the heating devices 61A and 61B has the same configuration as the heating device 61 described with reference to FIGS. 4 to 6. Therefore, each of the heating devices 61A and 61B has the above-mentioned measuring body 68 (see FIGS. 5A and 5B).
- each of the heating devices 61A and 61B may have a Peltier element as a heating source for the heating plate 61a and the measuring body 68 instead of the heater 61b.
- the heating devices 61A and 61B are connected to a common temperature controller 66, but may have individual temperature regulators 66 corresponding to each of the plurality of heating devices 61A and 61B.
- the control unit 40 heats each of the plurality of heating devices 61A and 61B to a predetermined target temperature via the temperature controller 66.
- the predetermined target temperatures in the heating devices 61A and 61B may be the same as or different from each other.
- the control unit 40 stores in advance predetermined target temperatures of the heating devices 61A and 61B.
- the moving mechanism 80 shown in FIG. 13 includes a base 63 for supporting the heating devices 61A and 61B, and an actuator 82 for rotating the base 63.
- the base 63 is a semi-disc-shaped plate member, and the actuator 82 is a motor.
- the moving mechanism 80 further includes a support arm 84 that supports the actuator 82, and the support arm 84 is fixed to the first radiation thermometer 39.
- the support arm 84 can be fixed to any stationary member as long as the moving mechanism 80 can be supported.
- the support arm 84 may be fixed to the frame (not shown) of the polishing apparatus.
- the rotation shaft 82a of the actuator 82 is connected to the base 63. When the actuator 82 is driven, the base 63 rotates about the rotation shaft 82a.
- the actuator 82 is configured so that the base 63 can be rotated at an arbitrary rotation angle.
- FIG. 14 is a schematic view showing a state in which one of the heating devices 61A is moved below the first radiation thermometer 39.
- FIG. 14 shows the first measurement position in which the table 63 is moved so that one heating device 61A is located below the first radiation thermometer 39.
- the position of the table 63 when the other heating device 61B is located below the first radiation thermometer 39 is referred to as a second measurement position.
- FIG. 13 shows the standby position where the table 63 is evacuated from the first radiation thermometer 39.
- the first radiation thermometer 39 can measure the surface temperature of the polishing pad 3.
- the control unit 40 drives the actuator 82 to move the base 63 from the shunting position to the first measurement position and the second measurement position, respectively.
- the control unit 40 further acquires the temperature output values of the measuring bodies 68 of the heating devices 61A and 61B heated to a predetermined target temperature from the first radiation thermometer, respectively.
- the distance from the first radiation thermometer 39 to the heating devices 61A and 61B is preferably as small as possible so that the temperature output value of the first radiation thermometer 39 does not have a large error due to disturbance.
- the distance between the first radiation thermometer 39 and the heating devices 61A and 61B is set so that the surface area of the measuring body 68 is 1.5 times or less the field of view of the first radiation thermometer 39.
- the model of the temperature sensor 61c is arbitrary.
- the temperature sensor 61c may be a thermocouple, a platinum resistance temperature detector, a thermistor thermometer, a bimetal thermometer, or an IC temperature sensor. Since the platinum resistance temperature detector has high measurement accuracy, the temperature sensor 61c is preferably a platinum resistance temperature detector.
- FIG. 15 is a schematic view showing the protective covers of the heating devices 61A and 61B. If dirt (for example, polishing liquid) adheres to the measuring body 68 of the heating devices 61A and 61B, the first radiation thermometer 39 cannot measure the accurate temperature of the measuring body 68. Therefore, a protective cover 85 may be provided to cover the heating devices 61A and 61B that have moved to the standby position.
- the protective cover 85 shown in FIG. 15 has a substantially semicircular shape, and a storage space for accommodating the heating devices 61A and 61B together with a part of the table 63 is formed inside the protective cover 85.
- the protective cover 85 is fixed to a stationary member such as a frame of a polishing device via a fixing member (not shown) such as a bracket.
- thermometer 39 a method for confirming the temperature output value of the first radiation thermometer 39 will be described. Since the method of confirming the temperature output value of the second radiation thermometer 48 is the same as the method of confirming the temperature output value of the first radiation thermometer 39, the overlapping description will be omitted. As described below, if the temperature output values of the radiation thermometers 39 and 48 deviate from the allowable range set for a predetermined target temperature, the radiation thermometers 39 and 48 are calibrated.
- FIG. 16 is a flowchart showing the first half of the method of confirming the temperature output value of the first radiation thermometer 39 according to the embodiment
- FIG. 17 is the temperature output value of the first radiation thermometer according to the embodiment. It is a flowchart which shows the latter half part of the method of confirming.
- the control unit 40 executes the polishing process of the wafer W (step 1 in FIG. 16).
- the control unit 40 determines whether or not the number of polishing sheets Nw of the wafer W has reached a predetermined number of sheets NB (step 2 in FIG. 16).
- the control unit 40 stores a predetermined number of NBs in advance.
- the predetermined number of sheets NB may be "1".
- the process returns to step 1 and the control unit 40 executes the next wafer W polishing process. To do.
- the control unit 40 stores in advance a plurality of target temperatures Tb and Tc set for each measuring body 68 of the plurality of heating devices 61A and 61B in order to confirm the temperature output value of the first radiation thermometer 39. ing. These target temperatures Tb and Tc may be the same as each other or may be different from each other.
- the control unit 40 of the heating devices 61A and 61B via the temperature regulator 66.
- Each measuring body 68 is heated to the target temperatures Tb and Tc, respectively (step 3 in FIG. 16).
- the first radiation thermometer 39 measures the temperature of each measuring body 68 (step 4 in FIG. 16), and transmits these measured values to the control unit 40. Further, the control unit 40 stores the temperature output value (temperature measurement value) of each measuring body 68 sent from the first radiation thermometer 39 (step 5 in FIG. 16).
- the control unit 40 calculates the difference between each target temperature Tb, Tc and the temperature output value of the first radiation thermometer 39 corresponding to the target temperature Tb, Tc (step 6 in FIG. 16). That is, the control unit 40 calculates the "temperature deviation amount" which is the difference between the target temperatures Tb and Tc and the temperature output value of the first radiation thermometer 39 corresponding to the target temperatures Tb and Tc, respectively.
- the control unit 40 determines whether or not all the temperature deviation amounts are within the reference range (step 8 in FIG. 16).
- the reference range of the temperature shift amount is preset and stored in the control unit 40 in advance.
- the control unit 40 When there is even one temperature shift amount exceeding the reference range (“No” in step 8 of FIG. 16), the control unit 40 starts from the first radiation thermometer 39 so that all the temperature shift amounts fall within the reference range.
- the temperature output value of is corrected (step 10 in FIG. 17).
- the control unit 40 corrects the conversion parameters stored in the analog-digital converter 48c of the first radiation thermometer 39 in order to correct the temperature output value from the first radiation thermometer 39 (that is,). change.
- the control unit 40 uses the method described with reference to FIGS. 9 to 11 to ensure that the slope (ie, gain) of the function RF and the y-intercept (ie, gain) so that all temperature shifts fall within the reference range. That is, the offset) is corrected.
- the correction of the temperature output value may be the correction of the parameters of the conversion formula stored in the conversion unit 48e of the first radiation thermometer 39.
- the first radiation thermometer 39 when the measuring bodies 68 of the plurality of heating devices 61A and 61B are measured by the first radiation thermometer 39, if even one of the temperature output values of the first radiation thermometer 39 exceeds the permissible range. , The first radiation thermometer 39 is calibrated. As a result, the wafer W can be polished at a desired polishing rate, and further, it is possible to effectively prevent the wafer W from having a polishing abnormality.
- control unit 40 preferably confirms whether or not all the corrected temperature deviation amounts are within the reference range (step 11 in FIG. 17). Specifically, the control unit 40 again measures the temperature of the measuring body 68 of the heating devices 61A and 61B maintained at the predetermined target temperatures Tb and Tc, respectively, with the first radiation thermometer 39, and each target temperature. The amount of temperature deviation with respect to Tb and Tc is calculated, and it is confirmed whether or not all of these amounts of temperature deviation fall within the reference range.
- the operation shown in step 11 is a confirmation operation for determining whether or not the first radiation thermometer 39 has been reliably calibrated.
- control unit 40 When all the corrected temperature deviations are within the reference range, the control unit 40 returns to step 1 and executes the next wafer W polishing process. In step 8 of FIG. 16, even when all the temperature deviation amounts are within the reference range, the control unit 40 executes the next wafer W polishing process without calibrating the first radiation thermometer 39. ..
- the control unit 40 performs the calibration operation shown in steps 3 to 10 above and the calibration operation shown in steps 3 to 10.
- the confirmation operation shown in step 11 is repeated. Specifically, the control unit 40 adds 1 to the number of repetitions N of the combination of the calibration operation and the confirmation operation (step 13 in FIG. 17).
- the initial value of the repetition number N is 0, and the control unit 40 stores the upper limit value NA of the repetition number N in advance.
- the control unit 40 compares the repetition number N with the upper limit value NA (step 13 in FIG. 17), and when the repetition number N is smaller than the upper limit value NA (“Yes” in step 14 in FIG. 17), FIG. Returning to step 3, the calibration operation and the confirmation operation are repeated. When the number of repetitions N reaches the upper limit value NA (“No” in step 13 of FIG. 17), the control unit 40 generates a signal prompting maintenance of the first radiation thermometer 39 (step 14 of FIG. 17). .. This maintenance signal is used, for example, as a triger for issuing an alarm for the polishing apparatus.
- the control unit 40 issues an alarm to promote the maintenance of the first radiation thermometer 39, and prevents the wafer W from being abnormally polished.
- the upper limit NA may be 1. In this case, if there is even one temperature shift amount exceeding the reference range in step 11 of FIG. 17, the control unit 40 immediately sends a maintenance signal of the first radiation thermometer 39 without repeating the calibration operation and the confirmation operation. Generate.
- FIG. 18A is a top view schematically showing the calibration tool 60 of the calibration system according to still another embodiment
- FIG. 18B is a perspective view schematically showing a moving mechanism for moving the heating plate 61a shown in FIG. 18A. Is. Since the configuration of the present embodiment, which is not particularly described, is the same as the configuration of the calibration system described above, the duplicate description will be omitted.
- a plurality of measuring bodies 68A, 68B, 68C, 68D are attached to the upper surface of the heating plate 61a of the heating device 61.
- the plurality of measuring bodies 68A to 68D have different emissivity, and the emissivity correction unit 48d (see FIG. 6) of the second radiation thermometer 48 is selected from the plurality of measuring bodies 68A to 68D.
- the emissivity of one measuring body (for example, measuring body 68A) is input.
- the emissivity of the measuring bodies 68A to 68D is known, and is stored in advance in the control unit 40.
- the calibration tool 60 is provided with a moving mechanism (measuring body moving mechanism) 74 that moves the heating plate 61a in the horizontal direction with respect to the table 63.
- the moving mechanism 74 is composed of a combination of an X-axis moving mechanism 75 and a Y-axis moving mechanism 76 that move the heating plate 61a in the horizontal direction.
- the X-axis moving mechanism 75 is configured to move the heating plate 61a along the X-axis
- the Y-axis moving mechanism 76 is configured to move the heating plate 61a along the Y-axis perpendicular to the X-axis.
- the X-axis moving mechanism 75 and the Y-axis moving mechanism 76 are composed of, for example, a ball screw mechanism and a servomotor that drives the ball screw mechanism.
- the X-axis moving mechanism 75 and the Y-axis moving mechanism 76 may be a piston cylinder mechanism.
- the X-axis movement mechanism 75 and the Y-axis movement mechanism 76 are connected to the control unit 40, and the control unit 40 controls the operations of the X-axis movement mechanism 75 and the Y-axis movement mechanism 76, that is, the operation of the movement mechanism 74. be able to.
- the control unit 40 drives the X-axis moving mechanism 75 and the Y-axis moving mechanism 76 to move the heating plate 61a in the X-axis direction and the Y-axis direction with respect to the second radiation thermometer 48 (or the first radiation thermometer 39). Can be moved to. That is, the control unit 40 controls the operation of the moving mechanism 74, and makes each of the plurality of measuring bodies 68A to 68D attached to the upper surface of the heating plate 61a the second radiation thermometer 48 (or the first radiation thermometer 48). It can be located directly under 39).
- the temperature of each of the plurality of measuring bodies 68A to 68D heated to a predetermined target temperature is measured by the second radiation thermometer 48 (or the first radiation thermometer 39).
- the emissivity of one measuring body 68A selected from the plurality of measuring bodies 68A to 68D is input to the emissivity correction unit 48d of the second radiation thermometer 48.
- the measuring bodies 68B to 68D output from the second radiation thermometer 48
- Each of the 68D temperature output values includes a measurement error due to an emissivity setting error. This measurement error will be described below with reference to FIGS. 19A to 19D.
- FIG. 19A to 19D show the temperature output from the second radiation thermometer when the temperatures of the plurality of measuring bodies 68A to 68D heated to the target temperature of 100 ° C. are measured by the second radiation thermometer 48, respectively. It is a schematic diagram for demonstrating the measurement error of an output value. More specifically, FIG. 19A shows the second radiation thermometer 48 when the temperature of the measuring body 68A having a emissivity ⁇ a of 0.90, which was heated to 100 ° C., was measured by the second radiation thermometer 48.
- FIG. 19B is a schematic view showing a temperature output value Ma to be output from, and FIG. 19B measures the temperature of a measuring body 68B having an emissivity ⁇ b of 0.91 heated to 100 ° C.
- FIG. 19C shows the temperature to be output from the second radiation thermometer 48 when the temperature of the measuring body 68C having an emissivity ⁇ c of 0.92, which is heated to 100 ° C., is measured by the second radiation thermometer 48.
- FIG. 19D is the second when the temperature of the measuring body 68D which was heated to 100 degreeC and has the emissivity ⁇ d of 0.95 was measured by the second radiation thermometer 48.
- Md which should be output from a radiation thermometer 48.
- the temperature output value (temperature measurement value) output from the radiation thermometer is due to the setting error of the emissivity.
- Measurement error is included.
- the emissivity setting error is the ratio of the emissivity input to the radiation thermometer to the emissivity of the object to be measured, and is expressed by the following equation (1).
- E (%) ( ⁇ 0 / ⁇ -1.00) ⁇ 100 ⁇ ⁇ ⁇ (1)
- E represents the emissivity setting error
- ⁇ 0 represents the emissivity input to the radiation thermometer
- ⁇ represents the emissivity of the object to be measured.
- the emissivity input to the second radiation thermometer 48 is 0.90, which is the emissivity ⁇ a of the measuring body 68A. Therefore, when the measuring body 68A is measured by the second radiation thermometer 48, the emissivity setting error is 0%, and the temperature output value output from the second radiation thermometer 48 includes the measurement error. Absent.
- the emissivity ⁇ b- ⁇ d of the measuring bodies 68B to 68D is different from the emissivity ⁇ a of the measuring bodies 68A, respectively. Therefore, when measuring each of the measuring bodies 68B to 68D with the second radiation thermometer 48, each temperature output value output from the second radiation thermometer 48 has a measurement error due to an emissivity setting error. included.
- the emissivity setting error is 1%
- the temperature output value output from the second radiation thermometer 48 is set to Measurement errors due to 1% emissivity setting errors are included.
- the temperature output value output from the second radiation thermometer 48 has a measurement error due to an emissivity setting error of 2%.
- the temperature output value output from the second radiation thermometer 48 is a measurement due to an emissivity setting error of 5%. The error is included.
- the relationship between the intensity (energy amount) of the electromagnetic wave radiated from the object to be measured and the temperature of the object to be measured is not linear. Therefore, even if the emissivity setting error is multiplied by the temperature measurement value output from the radiation thermometer, the measurement error cannot be corrected. For example, when the emissivity setting error is 5%, the actual temperature of the object to be measured cannot be obtained even if the temperature measurement value output from the radiation thermometer is multiplied by 1.05. Further, the measurement error due to the setting error of the emissivity also differs depending on the wavelength of the electromagnetic wave used by the radiation thermometer, the temperature of the object to be measured, and the like.
- each measurement when the temperature of the measuring bodies 68A to 68D heated to a predetermined target temperature Tx is measured by the second radiation thermometer by an experiment.
- the error can be acquired in advance. That is, when the measuring bodies 68A to 68D are measured by the second radiation thermometer 48, the expected value Ma-Md of the temperature output value to be output from the second radiation thermometer 48 can be acquired in advance. it can.
- each of the expected values Ma-Md of the temperature output value to be output from the second radiation thermometer 48 is referred to as "expected temperature value”.
- the target temperature Tx used for calibrating the second radiation thermometer 48 is determined in advance as 100 ° C.
- an experiment is performed in which the temperatures of the measuring bodies 68B to 68D heated to 100 ° C. are actually measured by the second radiation thermometer 48 into which the emissivity ⁇ a of the measuring body 68A is input.
- each of the temperature output values of the measuring bodies 68B to 68D output from the second radiation thermometer 48 is determined as the expected temperature value Mb-Md.
- the measuring body 68A is measured by the second radiation thermometer 48
- the setting error of the emissivity is 0%
- the temperature measurement value of the measuring body 68A output from the second radiation thermometer 48 is measured.
- 19B to 19D show examples of expected temperature values Ma-Md determined by such experiments.
- the equation may be determined in advance. In this case, the expected temperature values Ma to Md are determined from the characteristic equation.
- each of the plurality of measuring bodies 68A to 68D heated to a predetermined target temperature Tx is subjected to the first. It is necessary to determine in advance the expected temperature value Ma-Md output from the second thermometer 48 when measured with the two thermometer 48. The same applies to the case where the calibration tool 60 according to the present embodiment is used to calibrate the first radiation thermometer 39.
- the expected temperature value Ma-Md is stored in advance in the control unit 40.
- FIG. 20 is a flowchart showing the first half of the method of performing the calibration of the second radiation thermometer 48 in the calibration system including the calibration tool 60 shown in FIG. 18A
- FIG. 21 is the calibration tool 60 shown in FIG. 18A. It is a flowchart which shows the latter half part of the method of performing the calibration of the second radiation thermometer 48 in the calibration system provided with. The steps not particularly described in the flowcharts shown in FIGS. 20 and 21 are the same as the steps in the flowcharts shown in FIGS. 7 and 8.
- the calibration tool 60 is placed on the upper surface of the polishing pad 3 so that the heating plate 61a of the heating device 61 faces the sensor unit 48a of the second radiation thermometer 48 (In step 1) of FIG. 20, further, the temperature controller 66 of the calibration system is connected to the control unit 40 of the polishing apparatus (step 2 of FIG. 20).
- the control unit 40 stores in advance a predetermined target temperature Tx set for performing calibration of the second radiation thermometer 48.
- the predetermined target temperature Tx can be arbitrarily set, but it is preferably set to the target temperature of the polishing pad 3 in the frequently used polishing process.
- the control unit 40 heats the temperature of the heating plate 61a of the calibration tool 60 placed on the polishing pad 3 and the plurality of measuring bodies 68A-68D to a predetermined target temperature Tx via the temperature controller 66 (FIG. 20). Step 3).
- control unit 40 drives the moving mechanism 74 to move one of the plurality of measuring bodies 68A to 68D, the measuring body 68A, below the second radiation thermometer 48, and adjusts the temperature of the measuring body 68A.
- the measurement is performed with the second radiation thermometer 48 (step 4 in FIG. 20).
- control unit 40 stores the temperature output value output from the second radiation thermometer 48 (step 5 in FIG. 20).
- the control unit 40 determines whether or not the temperatures of all the measuring bodies 68A to 68D have been measured (step 6 in FIG. 20). When the temperatures of all the measuring bodies 68A to 68D have not been measured (“No” in step 6 of FIG. 20), the control unit 40 drives the moving mechanism 74 to send the next measuring body 68B to the second radiation temperature. It was moved below the total 48 (step 7 in FIG. 20), the temperature of the measuring body 68B was measured by the second radiation thermometer 48 (step 4 in FIG. 20), and was output from the second radiation thermometer 48. The temperature output value is stored (step 5 in FIG. 20).
- the control unit 40 calculates the amount of temperature deviation of each of the plurality of measuring bodies 68A to 68D (FIG. Step 8 of 20).
- the temperature shift amount is the difference between the expected temperature values Ma to Md and the temperature output values of the measuring bodies 68A to 68D output from the second radiation thermometer 48.
- the temperature deviation amount of the measuring body 68A is the difference between the expected temperature value Ma (100 ° C. in FIG. 19) and the temperature output value of the second radiation thermometer 48 of the measuring body 68A, and is the temperature of the measuring body 68D.
- the amount of deviation is the difference between the expected temperature value Md (103.2 ° C. in FIG. 19) and the temperature output value of the second radiation thermometer 48 of the measuring body 68D.
- the control unit 40 determines whether or not all the temperature deviation amounts are within the reference range (step 9 in FIG. 20).
- the reference range of the temperature shift amount is preset and stored in the control unit 40 in advance.
- the control unit 40 starts from the second radiation thermometer 48 so that all the temperature shift amounts fall within the reference range.
- the temperature output value of is corrected (step 10 in FIG. 21).
- the correction of the temperature output value may be the correction of the conversion parameter stored in the analog-digital converter 48c of the second radiation thermometer 48, or the conversion formula stored in the conversion unit 48e of the second radiation thermometer 48. It may be the correction of the parameter of.
- the calibration operation of the second radiation thermometer executed by the control unit 40 is the operation shown in steps 3 to 10 above.
- the control unit 40 measures the temperatures of the plurality of measuring bodies 68A to 68D heated to a predetermined target temperature Tx with the second radiation thermometer 48, and calculates the amount of temperature deviation of each measuring body. Further, the control unit 40 has a conversion parameter (or a conversion formula stored in the conversion unit 48e) stored in the analog-digital converter 48c of the second radiation thermometer 48 so that all the temperature deviation amounts fall within the reference range. Parameter) is corrected.
- the control unit 40 preferably confirms whether or not all the corrected temperature deviation amounts of the measuring bodies 68A to 68D are within the above reference range (step 11 in FIG. 21). Specifically, the control unit 40 again measures the temperature of each measuring body 68A to 68D maintained at the target temperature Tx with the second radiation thermometer 48, and calculates the amount of temperature deviation of each measuring body 68A to 68D. Then, check whether all of these temperature deviations are within the reference range.
- the operation shown in step 11 is a confirmation operation for determining whether or not the second radiation thermometer 48 has been reliably calibrated.
- the control unit 40 When all the corrected temperature deviations are within the reference range, the control unit 40 generates a signal indicating that the calibration process of the second radiation thermometer 48 is completed (step 12 in FIG. 20).
- the confirmation operation shown in step 11 when there is even one temperature shift amount exceeding the reference range (“No” in step 11 in FIG. 21), the control unit 40 performs the calibration operation shown in steps 3 to 10 above and the calibration operation shown in steps 3 to 10. The confirmation operation shown in step 11 is repeated. Further, when the repetition number N reaches the upper limit value NA (“No” in step 14 of FIG. 21), the control unit 40 generates a signal prompting the replacement of the second radiation thermometer 48 (step of FIG. 21). 15).
- the control unit 40 maintains the temperature of the measuring bodies 68A to 68D at the target temperature Tx until the confirmation operation is completed, so that the confirmation operation can be performed immediately after the calibration operation is completed.
- the present invention can be used in a method and a system for automatically calibrating a radiation thermometer placed in a polishing apparatus.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
本発明は、研磨装置に配置された放射温度計を自動で較正する方法、およびシステムに関する。本方法は、測定体(68)が取り付けられた加熱装置(61)を放射温度計(48)の下方に配置し、加熱装置(61)に接続された研磨装置の制御部(40)を用いて、測定体(68)の温度を複数の目標温度(Ta)に加熱し、各目標温度(Ta)における測定体(68)の温度を放射温度計(48)で測定し、各目標温度(Ta)と、該目標温度(Ta)に対応する放射温度計(48)の温度出力値との差である温度ずれ量を算出し、該温度ずれ量の全てが予め設定された基準範囲内に入るように、放射温度計(48)を較正する。
Description
本発明は、放射温度計を較正する方法、およびシステムに関し、特に、研磨装置に配置された放射温度計を自動で較正する方法、およびシステムに関する。
CMP(Chemical Mechanical Polishing)装置は、半導体デバイスの製造において、ウェーハなどの基板の表面を研磨する工程に使用される。CMP装置は、少なくとも1つの研磨ユニットを有しており、該研磨ユニットは、基板を研磨ヘッドで保持して基板を回転させ、さらに回転する研磨テーブル上の研磨パッドに基板を押し付けて基板の表面を研磨する。研磨中、研磨パッドには研磨液(スラリー)が供給され、基板の表面は、研磨液の化学的作用と研磨液に含まれる砥粒の機械的作用により平坦化される。
基板の研磨レートは、基板の研磨パッドに対する研磨荷重のみならず、研磨パッドの表面温度にも依存する。これは、基板に対する研磨液の化学的作用が温度に依存するからである。したがって、半導体デバイスの製造においては、基板の研磨レートを上げて更に一定に保つために、基板研磨中の研磨パッドの表面温度を最適な値に保つことが重要とされる。
そこで、研磨パッドの表面温度を調整するためにパッド温度調整装置が従来から使用されている(例えば、特許文献1参照)。パッド温度調整装置は、研磨パッドの表面(研磨面)に接触可能な熱交換器と、温度調整された加熱液および冷却液を熱交換器に供給する液体供給システムと、研磨パッドの表面温度を測定する放射温度計と、該放射温度計により測定された研磨パッドの表面温度に基づいて液体供給システムを制御する制御部とを備えている。制御部は、研磨パッドの表面温度を所定の目標温度に維持するように、放射温度計によって測定された研磨パッドの表面温度に基づいて、加熱液および冷却液の流量を制御する。
研磨装置は、パッド温度調整装置の放射温度計とは別の放射温度計を備えていてもよい。別の放射温度計は、例えば、基板の研磨中に、研磨ヘッド近傍の研磨パッドの表面温度が所定の設定温度に維持されているか否かを監視するための温度計である。別の放射温度計も上記制御部に接続されており、制御部は、別の放射温度計から送信された研磨パッドの表面温度の測定値が制御部に予め記憶された許容範囲を超えたときに、研磨装置の運転を停止して、警報を発する。これにより、基板に研磨異常が発生することが防止される。
基板の研磨レートを一定に保つため、および基板に研磨異常が発生することを効果的に防止するためには、放射温度計は、パッド表面温度の正確な測定値を制御部に出力する必要がある。そのため、研磨装置の製造者は、研磨装置の出荷前に、放射温度計の較正を実施している。
従来の放射温度計の較正は、次のように行われる。放射温度計の較正を行う作業者は、最初に、ホットプレートなどの加熱装置と、持ち運び可能な放射温度計(すなわち、ポータブル放射温度計)を用意する。次に、加熱装置の放熱面を所定の目標温度まで加熱し、該放熱面の温度を研磨装置に配置された放射温度計と、ポータブル放射温度計との両者で測定する。そして、作業者は、放射温度計の測定値がポータブル放射温度計の測定値に一致するように、放射温度計を較正する。
放射温度計の使用を開始してからある程度時間が経過すると、放射温度計の測定値(すなわち、放射温度計の温度出力値)が研磨パッドの実際の表面温度に対してずれてしまうことがある。そのため、研磨装置の納入後でも、放射温度計は客先で定期的に較正されるのが好ましい。
しかしながら、従来の放射温度計の較正作業は、ある程度大きな労力が必要な作業であり、較正作業中は、研磨装置が停止するため、放射温度計の較正を定期的に行うことは現実的には困難である。さらに、従来の放射温度計の較正作業では、作業者が取り扱うポータブル放射温度計を、研磨装置の放射温度計を較正するための標準器として用いている。この場合、作業者の熟練度などに応じて、放射温度計の較正結果にばらつきが生じるおそれがある。例えば、作業者がポータブル温度計を加熱装置の放熱面に向ける角度、およびポータブル温度計と加熱装置の放熱面との間の距離などが変わると、放射温度計の較正結果にばらつきが生じるおそれがある。そのため、放射温度計の較正を自動で行う方法およびシステムが求められており、特に、短時間かつ自動で放射温度計の較正を実行可能な方法およびシステムが求められている。
そこで、本発明は、研磨装置に設けられた放射温度計を自動で較正する方法、およびシステムを提供することを目的とする。
一態様では、研磨装置に配置された放射温度計を自動で較正する方法であって、測定体が取り付けられた加熱装置を前記放射温度計の下方に配置し、前記加熱装置に接続された前記研磨装置の制御部を用いて、前記測定体の温度を複数の目標温度に加熱し、各目標温度における前記測定体の温度を前記放射温度計で測定し、各目標温度と、該目標温度に対応する前記放射温度計の温度出力値との差である温度ずれ量を算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計を較正することを特徴とする方法が提供される。
一態様では、研磨装置に配置された放射温度計を自動で較正する方法であって、測定体がそれぞれ取り付けられた複数の加熱装置を用意し、前記複数の加熱装置に接続された前記研磨装置の制御部を用いて、各測定体の温度を所定の目標温度に加熱し、各測定体を前記放射温度計の下方に移動させて、前記目標温度における前記測定体の温度を前記放射温度計で測定し、各目標温度と、該目標温度に対応する前記放射温度計の温度出力値との差である温度ずれ量を算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計を較正することを特徴とする方法が提供される。
一態様では、前記放射温度計を較正する工程は、前記放射温度計のアナログデジタル変換器に格納された変換パラメータを補正する工程である。
一態様では、前記放射温度計を較正した後で、前記測定体の温度を再度複数の目標温度に加熱し、各目標温度における前記測定体の温度を前記放射温度計で測定し、前記温度ずれ量を再度算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るか否かを確認する。
一態様では、前記測定体は、前記研磨装置に配置された研磨パッドの放射率と同様の放射率を有する材料から構成される。
一態様では、前記放射温度計を較正した後で、前記測定体の温度を再度複数の目標温度に加熱し、各目標温度における前記測定体の温度を前記放射温度計で測定し、前記温度ずれ量を再度算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るか否かを確認する。
一態様では、前記測定体は、前記研磨装置に配置された研磨パッドの放射率と同様の放射率を有する材料から構成される。
一態様では、研磨装置に配置された放射温度計を自動で較正する方法であって、互いに異なる既知の放射率を有する複数の測定体が取り付けられた加熱装置を前記放射温度計の下方に配置し、前記加熱装置に接続された前記研磨装置の制御部を用いて、前記複数の測定体の温度を所定の目標温度に加熱し、前記目標温度における前記複数の測定体の温度を前記放射温度計でそれぞれ測定し、前記目標温度に加熱された前記複数の測定体を前記放射温度計でそれぞれ測定したときに、該放射温度計から出力されるべき各温度期待値と、前記放射温度計の温度出力値との差である温度ずれ量を算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計を較正することを特徴とする方法が提供される。
一態様では、前記放射温度計を較正する工程は、前記放射温度計のアナログデジタル変換器に格納された変換パラメータを補正する工程である。
一態様では、前記放射温度計を較正した後で、前記目標温度に維持された前記複数の測定体の温度を再度前記放射温度計でそれぞれ測定し、前記温度ずれ量を再度算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るか否かを確認する。
一態様では、前記放射温度計を較正した後で、前記目標温度に維持された前記複数の測定体の温度を再度前記放射温度計でそれぞれ測定し、前記温度ずれ量を再度算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るか否かを確認する。
一態様では、研磨装置に配置される放射温度計を較正するシステムであって、測定体が取り付けられ、前記放射温度計の下方に配置される加熱装置と、前記加熱装置に接続された温度調整器と、を備え、前記温度調整器は、前記研磨装置に配置された制御部に接続されており、前記制御部は、前記温度調整器を介して、前記測定体の温度を複数の目標温度に加熱し、各目標温度における前記測定体の温度を前記放射温度計で測定し、各目標温度と、該目標温度に対応する前記放射温度計の温度出力値との差である温度ずれ量を算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計を較正することを特徴とするシステムが提供される。
一態様では、研磨装置に配置される放射温度計を較正するシステムであって、測定体がそれぞれ取り付けられた複数の加熱装置と、前記複数の加熱装置に接続された温度調整器と、前記複数の加熱装置のそれぞれを前記放射温度計の下方に移動させる加熱装置移動機構と、を備え、前記温度調整器および前記加熱装置移動機構は、前記研磨装置に配置された制御部に接続されており、前記制御部は、前記温度調整器を介して、各測定体の温度を所定の目標温度に加熱し、前記加熱装置移動機構を用いて、各測定体を前記放射温度計の下方に移動させ、各目標温度における前記測定体の温度を前記放射温度計で測定し、各目標温度と、該目標温度に対応する前記放射温度計の温度出力値との差である温度ずれ量を算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計を較正することを特徴とするシステムが提供される。
一態様では、前記制御部は、前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計のアナログデジタル変換器に格納された変換パラメータを補正する。
一態様では、前記制御部は、前記放射温度計を較正した後で、前記測定体の温度を再度複数の目標温度に加熱し、各目標温度における前記測定体の温度を前記放射温度計で測定し、前記温度ずれ量を再度算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るか否かを確認する。
一態様では、前記測定体は、前記研磨装置に配置された研磨パッドの放射率と同様の放射率を有する材料から構成される。
一態様では、前記制御部は、前記放射温度計を較正した後で、前記測定体の温度を再度複数の目標温度に加熱し、各目標温度における前記測定体の温度を前記放射温度計で測定し、前記温度ずれ量を再度算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るか否かを確認する。
一態様では、前記測定体は、前記研磨装置に配置された研磨パッドの放射率と同様の放射率を有する材料から構成される。
一態様では、研磨装置に配置される放射温度計を較正するシステムであって、互いに異なる既知の放射率を有する複数の測定体が取り付けられ、前記放射温度計の下方に配置される加熱装置と、前記加熱装置に接続された温度調整器と、を備え、前記温度調整器は、前記研磨装置に配置された制御部に接続されており、前記制御部は、前記温度調整器を介して、前記複数の測定体の温度を所定の目標温度に加熱し、前記目標温度における前記複数の測定体の温度を前記放射温度計でそれぞれ測定し、前記目標温度に加熱された前記複数の測定体を前記放射温度計でそれぞれ測定したときに、該放射温度計から出力されるべき各温度期待値と、前記放射温度計の温度出力値との差である温度ずれ量を算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計を較正することを特徴とするシステムが提供される。
一態様では、前記制御部は、前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計のアナログデジタル変換器に格納された変換パラメータを補正する。
一態様では、前記制御部は、前記放射温度計を較正した後で、前記目標温度に維持された前記複数の測定体の温度を再度前記放射温度計でそれぞれ測定し、前記温度ずれ量を再度算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るか否かを確認する。
一態様では、前記制御部は、前記放射温度計を較正した後で、前記目標温度に維持された前記複数の測定体の温度を再度前記放射温度計でそれぞれ測定し、前記温度ずれ量を再度算出し、前記温度ずれ量の全てが予め設定された基準範囲内に入るか否かを確認する。
本発明によれば、測定体が取り付けられた加熱装置を放射温度計の下方に配置し、研磨装置の制御部を加熱装置に接続するだけで、制御部が放射温度計の較正を自動で実行する。したがって、作業者の負担および研磨装置のダウンタイムが減少するので、放射温度計の較正プロセスが定期的に実行されることが期待できる。その結果、基板を所望の研磨レートで研磨することが可能となり、さらに、基板に研磨異常が発生することを効果的に防止することができる。
以下、本発明の実施形態について図面を参照して説明する。
図1は、一実施形態に係る研磨装置を示す模式図である。図1に示す研磨装置は、基板の一例であるウェーハWを保持して回転させる研磨ヘッド1と、研磨パッド3を支持する研磨テーブル2と、研磨パッド3の表面に研磨液(例えばスラリー)を供給する研磨液供給ノズル4と、研磨パッド3の表面温度を調整するパッド温度調整装置5とを備えている。研磨パッド3の表面(上面)は、ウェーハWを研磨する研磨面を構成する。
図1は、一実施形態に係る研磨装置を示す模式図である。図1に示す研磨装置は、基板の一例であるウェーハWを保持して回転させる研磨ヘッド1と、研磨パッド3を支持する研磨テーブル2と、研磨パッド3の表面に研磨液(例えばスラリー)を供給する研磨液供給ノズル4と、研磨パッド3の表面温度を調整するパッド温度調整装置5とを備えている。研磨パッド3の表面(上面)は、ウェーハWを研磨する研磨面を構成する。
研磨ヘッド1は鉛直方向に移動可能であり、かつその軸心を中心として矢印で示す方向に回転可能となっている。ウェーハWは、研磨ヘッド1の下面に真空吸着などによって保持される。研磨テーブル2にはモータ(図示せず)が連結されており、矢印で示す方向に回転可能となっている。図1に示すように、研磨ヘッド1および研磨テーブル2は、同じ方向に回転する。研磨パッド3は、研磨テーブル2の上面に貼り付けられている。
ウェーハWの研磨は次のようにして行われる。研磨されるウェーハWは、研磨ヘッド1によって保持され、さらに研磨ヘッド1によって回転される。一方、研磨パッド3は、研磨テーブル2とともに回転される。この状態で、研磨パッド3の表面には研磨液供給ノズル4から研磨液が供給され、さらにウェーハWの表面は、研磨ヘッド1によって研磨パッド3の表面(すなわち研磨面)に対して押し付けられる。ウェーハWの表面は、研磨液の存在下での研磨パッド3との摺接により研磨される。ウェーハWの表面は、研磨液の化学的作用と研磨液に含まれる砥粒の機械的作用により平坦化される。
パッド温度調整装置5は、研磨パッド3の表面に接触可能な熱交換器11と、温度調整された加熱液および冷却液を熱交換器11に供給する液体供給システム30とを備えている。この液体供給システム30は、温度調整された加熱液を貯留する加熱液供給源としての加熱液供給タンク31と、加熱液供給タンク31と熱交換器11とを連結する加熱液供給管32および加熱液戻り管33とを備えている。加熱液供給管32および加熱液戻り管33の一方の端部は加熱液供給タンク31に接続され、他方の端部は熱交換器11に接続されている。
温度調整された加熱液は、加熱液供給タンク31から加熱液供給管32を通じて熱交換器11に供給され、熱交換器11内を流れ、そして熱交換器11から加熱液戻り管33を通じて加熱液供給タンク31に戻される。このように、加熱液は、加熱液供給タンク31と熱交換器11との間を循環する。加熱液供給タンク31は、ヒータ(図示せず)を有しており、加熱液はヒータにより所定の温度に加熱される。
加熱液供給管32には、第1開閉バルブ41および第1流量制御バルブ42が取り付けられている。第1流量制御バルブ42は、熱交換器11と第1開閉バルブ41との間に配置されている。第1開閉バルブ41は、流量調整機能を有しないバルブであるのに対し、第1流量制御バルブ42は、流量調整機能を有するバルブである。
液体供給システム30は、熱交換器11に接続された冷却液供給管51および冷却液排出管52をさらに備えている。冷却液供給管51は、研磨装置が設置される工場に設けられている冷却液供給源(例えば、冷水供給源)に接続されている。冷却液は、冷却液供給管51を通じて熱交換器11に供給され、熱交換器11内を流れ、そして熱交換器11から冷却液排出管52を通じて排出される。一実施形態では、熱交換器11内を流れた冷却液を、冷却液排出管52を通じて冷却液供給源に戻してもよい。
冷却液供給管51には、第2開閉バルブ55および第2流量制御バルブ56が取り付けられている。第2流量制御バルブ56は、熱交換器11と第2開閉バルブ55との間に配置されている。第2開閉バルブ55は、流量調整機能を有しないバルブであるのに対し、第2流量制御バルブ56は、流量調整機能を有するバルブである。
パッド温度調整装置5は、研磨パッド3の表面温度(以下、パッド表面温度ということがある)を測定する放射温度計39と、放射温度計39により測定されたパッド表面温度に基づいて第1流量制御バルブ42および第2流量制御バルブ56を操作する制御部40とをさらに備えている。第1開閉バルブ41および第2開閉バルブ55は、通常は開かれている。
放射温度計39は、非接触で研磨パッド3の表面温度を測定し、その測定値を制御部40に送る。制御部40は、パッド表面温度が、予め設定された目標温度に維持されるように、測定されたパッド表面温度に基づいて、第1流量制御バルブ42および第2流量制御バルブ56を操作することで、加熱液および冷却液の流量を制御する。第1流量制御バルブ42および第2流量制御バルブ56は、制御部40からの制御信号に従って動作し、熱交換器11に供給される加熱液の流量および冷却液の流量を調整する。熱交換器11を流れる加熱液および冷却液と研磨パッド3との間で熱交換が行われ、これによりパッド表面温度が変化する。
このようなフィードバック制御により、研磨パッド3の表面温度(パッド表面温度)は、所定の目標温度に維持される。本実施形態では、制御部40は、パッド温度調整装置5、研磨ヘッド1などを含む研磨装置全体の動作の制御を実行するように構成されている。研磨パッド3の目標温度は、ウェーハWの種類または研磨プロセスに応じて決定され、決定された目標温度は、制御部40に予め入力される。
パッド表面温度を所定の目標温度に維持するために、ウェーハWの研磨中、熱交換器11は、研磨パッド3の表面(すなわち研磨面)に接触する。本明細書において、熱交換器11が研磨パッド3の表面に接触する態様には、熱交換器11が研磨パッド3の表面に直接接触する態様のみならず、熱交換器11と研磨パッド3の表面との間に研磨液(スラリー)が存在した状態で熱交換器11が研磨パッド3の表面に接触する態様も含まれる。いずれの態様においても、熱交換器11を流れる加熱液および冷却液と研磨パッド3との間で熱交換が行われ、これによりパッド表面温度が制御される。
熱交換器11に供給される加熱液としては、温水が使用される。より速やかに研磨パッド3の表面温度を上昇させる場合には、シリコーンオイルを加熱液として使用してもよい。熱交換器11に供給される冷却液としては、冷水またはシリコーンオイルが使用される。シリコーンオイルを冷却液として使用する場合には、冷却液供給源としてチラーを冷却液供給管51に接続し、シリコーンオイルを0℃以下に冷却することで、研磨パッド3を速やかに冷却することができる。冷水としては、純水を使用することができる。純水を冷却して冷水を生成するために、冷却液供給源としてチラーを使用してもよい。この場合は、熱交換器11内を流れた冷水を、冷却液排出管52を通じてチラーに戻してもよい。
加熱液供給管32および冷却液供給管51は、完全に独立した配管である。したがって、加熱液および冷却液は、混合されることなく、同時に熱交換器11に供給される。加熱液戻り管33および冷却液排出管52も、完全に独立した配管である。したがって、加熱液は、冷却液と混合されることなく加熱液供給タンク31に戻され、冷却液は、加熱液と混合されることなく排出されるか、または冷却液供給源に戻される。
本実施形態に係る研磨装置は、研磨ヘッド1近傍の研磨パッド3の表面温度(パッド表面温度)を測定する放射温度計を有している。図2は、研磨ヘッド1近傍のパッド表面温度を測定する放射温度計を示す模式図である。図2に示すように、研磨ヘッド1は、該研磨ヘッド1を回転させる回転軸15に連結されており、回転軸15は、カバー16によって囲まれている。カバー16は、その外面から突出するフランジ部16aを有しており、フランジ部16aの下面に放射温度計48が取り付けられている。以下の説明では、放射温度計39を「第1放射温度計39」と称することがあり、放射温度計48を、「第2放射温度計48」と称することがある。
第2放射温度計48は、ウェーハWを研磨している研磨ヘッド1近傍のパッド表温温度を測定する。第2放射温度計48も、制御部40に接続されており、第2放射温度計48によって測定されたパッド表面温度は制御部40に送られる。制御部40は、研磨プロセスに応じて予め設定された目標温度に対するパッド表面温度の許容範囲を予め記憶している。制御部40は、ウェーハWが研磨されている間、第2放射温度計48から送られたパッド表面温度の測定値が許容範囲内にあるか否かを監視する。パッド表面温度の測定値が許容範囲から逸脱すると、制御部40は警報を発する。一実施形態では、制御部40は、警報を発するとともに、ウェーハWの研磨を停止してもよい。ウェーハWの研磨中に、制御部40が第2放射温度計48によって測定されたパッド表面温度を監視することにより、ウェーハWに研磨異常が発生することが防止される。
図3は、図2に示す第2放射温度計48のセンサ部を拡大して示す模式図である。第1放射温度計39のセンサ部も第2放射温度計48のセンサ部と同様の構成を有するため、その重複する説明は省略する。
放射温度計は、一般に、測定対象物から放射される紫外線、赤外線、または可視光線などの電磁波の強度(エネルギー量)を測定し、その強度を温度に換算することにより、測定対象物の温度を測定する非接触式の温度計である。図3に示すように、第2放射温度計48のセンサ部48aは、測定対象物である研磨パッド3の表面から放射される電磁波が該センサ部48に効果的に到達するように、研磨パッド3の表面に対向している。センサ部48aの先端は、バリア49によって囲まれており、バリア49は、研磨パッド3以外の物体から放射された電磁波がセンサ部48aに到達することを阻止する部材である。バリア49によって、第2放射温度計48は外乱から保護され、正確なパッド表面温度を測定することができる。
放射温度計39,48の使用を開始してからある程度時間が経過すると、放射温度計39,48の各出力値が実際のパッド表面温度に対してずれてしまうことがある。そのため、放射温度計39,48は、以下に説明する較正システムを用いて定期的に較正される。例えば、各放射温度計39,48の較正プロセスは、研磨装置のメンテナンスの間に、または研磨パッド3を交換した後で実施される。
図4は、一実施形態に係る較正システムの構成を示す模式図である。図4に示す較正システムは、第1放射温度計39および第2放射温度計48の較正を実施するために用いられる。図5Aは、図4に示す較正システムの較正ツールを模式的に示す上面図であり、図5Bは、図5Aに示す較正ツールの側面図である。
図4に示す較正システムは、第2放射温度計48の下方に配置される較正ツール60と、較正ツール60に接続される温度調整器66と、を備える。図4は、較正システムの較正ツール60が第2放射温度計48の下方に配置された例を示している。第1放射温度計39の較正プロセスを実施するときは、較正ツール60が第1放射温度計39の下方に配置される。
図5Aおよび図5Bに示すように、較正ツール60は、ホットプレートなどの加熱装置61と、加熱装置61を支持する台63とを備える。加熱装置61は、加熱板61aと、加熱板61aの下方に配置されたヒータ61bと、加熱板61aの温度を測定可能な温度センサ61cと、を備える。ヒータ61bは、その上面が加熱板61aの下面と接触するように配置されており、ヒータ61bの下面は、台63に固定されている。一実施形態では、ヒータ61bを、加熱板61aの内部に配置してもよい。この場合、加熱板61aの下面が台63に固定される。
較正ツール60は、温度調整器66(図4参照)に接続されている。温度調整器66は、加熱装置61の温度センサ61cから出力された加熱板61aの温度に基づいてヒータ61bの動作を制御し(例えば、PID制御し)、これにより、加熱板61aの温度を所定の目標温度に維持する。図5Bに示す温度センサ61cは、熱電対であるが、温度センサ61cの型式は、任意である。例えば、温度センサ61cは、白金測温抵抗体、サーミスタ測温体、バイメタル式温度計であってもよい。
図5Bに示すように、台63は、略C字状の断面を有する主フレーム63aと、補強リブ63bとを備える。主フレーム63aは、鉛直方向に延びる主板と、主板の両端に接続され、水平方向に延びる2つの板状アームから構成される。補強リブ63bは、一方のアームから他方のアームまで延びており、加熱装置61は、一方のアームの上面に固定されている。他方のアームの下面は、台63を研磨パッド3上に載置したときに研磨パッド3と接触する。補強リブ63bは、加熱装置61などの較正ツール60の部品によって台63の主フレーム63aが撓むのを防止するための部材である。台63を研磨パッド3上に載置したときに、補強リブ63bによって、加熱板61aの上面が水平に維持される。さらに、較正ツール60は、加熱装置61の加熱板61aを取り囲むように台63に固定された枠体71を備えている。枠体71は、加熱板61aが研磨装置に配置された部材(例えば、研磨ヘッド1)に衝突することを防止する部材である。
上述したように、従来の放射温度計の較正は、作業者によって保持されるポータブル放射温度計を用いて行っていた。本実施形態では、加熱装置61の加熱板61aの上面が第2放射温度計48と対向するように、台63を研磨パッド3の上面に載置すると、加熱装置61と第2放射温度計48との間の距離は常に一定に保たれる。さらに、加熱板61aの上面は、第2放射温度計48のセンサ部48aと平行に対向する。したがって、作業者の熟練度によって、較正結果にばらつきが生じるという不具合を回避することができる。
図4に示すように、温度調整器66は、研磨装置の制御部40に接続され、制御部40からの指令に基づいて、温度調整器66の設定温度を変更することができるように構成されている。すなわち、制御部40は、加熱装置61の加熱板61aの温度を温度調整器66を介して所望の目標温度に調整することができる。
較正ツール60は、加熱装置61の加熱板61aを冷却可能な冷却装置を有していてもよい。本実施形態では、較正ツール60の冷却装置は、加熱装置61の加熱板61aに空気を送ることが可能な冷却ファン65である。冷却ファン65は、温度調整器66に接続されており、温度調整器66は、上記ヒータ61bと冷却ファン65の動作を制御して、加熱板61aの温度を所望の目標温度に調整する。冷却ファン65から加熱板61aに送られる空気によって、加熱板61aの温度をより精密に調整することができる。さらに、加熱板61aの加熱初期段階では、加熱板61aの温度が目標温度よりも大きく上昇する所謂「オーバーシュート現象」が発生するおそれがある。しかしながら、冷却ファン65から送られる空気によって、加熱板61aのオーバーシュート現象を素早く収束させることができるので、第2放射温度計48を較正するために要する時間を短縮することができる。
図6は、第2放射温度計48の内部構造の一例を示す模式図である。第1放射温度計39も図6に示す内部構造と同様の構造を有するため、その重複する説明を省略する。図6に示すように、第2放射温度計48は、測定対象物から放射される紫外線、赤外線、または可視光線などの電磁波の強度(エネルギ量)を測定するセンサ部48aと、センサ部48aから出力されたアナログ信号値を増幅するアンプ48bと、アンプ48bによって増幅されたアナログ信号値をデジタル信号値に変換するアナログデジタル変換器(AD変換器)48cと、アナログデジタル変換器48cから出力されたデジタル信号値を、測定対象物の放射率に基づいて補正する放射率補正部48dと、放射率補正部48dから出力された補正デジタル信号値を測定対象物の温度に換算する換算部48eと、を備える。図6に示す第2放射温度計48では、センサ部48a、アンプ部48b、AD変換器48c、放射率補正部48d、および換算部48eがこの順に配列されている。しかしながら、本実施形態はこの例に限定されない。例えば、第2放射温度計48では、センサ部48a、アンプ部48b、放射率補正部48d、AD変換器48c、および換算部48eをこの順に配列してもよい。
第2放射温度計48が測定対象物の正確な温度を測定するためには、測定対象物の放射率を第2放射温度計48の放射率補正部48dに予め入力しておくことが好ましい。そこで、本実施形態では、加熱装置61の加熱板61aの上面に、所定の放射率を有する測定体68が取り付けられる(図5Aおよび図5B参照)。加熱装置61の加熱板61aをヒータ61bによって加熱すると、測定体68の温度は、加熱板61aの温度と同一となる。第2放射温度計48の較正を実施するときは、測定体68が第2放射温度計48の直下に位置するように、較正ツール60の位置が調整され、第2放射温度計48は、加熱板61aと同一の温度を有する測定体68の温度を測定する。この場合、第2放射温度計48によって測定される加熱装置61の放熱面は、測定体68の表面である。測定体68の例としては、例えば、既知の放射率を有する黒体テープが挙げられる。一実施形態では、既知の放射率を有する黒体塗料を加熱板61aの上面に塗布して、測定体68を形成してもよい。黒体テープまたは黒体塗料の既知の放射率は、予め放射率補正部48dに入力される。放射率補正部48dは、入力された測定体68の放射率に基づいて、アナログデジタル変換器48cから出力されたデジタル信号値を、測定体68の放射率が所定の値(例えば、1.0)であるときのデジタル信号値に補正する。
一実施形態では、測定体68の放射率が未知であってもよい。この場合は、放射率補正部48dは、アナログデジタル変換器48cから出力されたデジタル信号値をそのまま換算部48eに出力する。
測定体68を、研磨パッド3の放射率と同様の放射率を有する材料から構成してもよい。例えば、研磨パッド3と同一の樹脂から構成される測定体68を、加熱板61aの上面に貼付してもよい。あるいは、測定体68を省略して、加熱板61aを第2放射温度計48によって温度が測定される測定体として使用してもよい。この場合、第2放射温度計48によって測定される測定体の放熱面は、加熱板61aの表面(上面)である。さらに、加熱板61aを研磨パッド3と同一の樹脂から構成するのが好ましい。
次に、第2放射温度計48を較正する方法について説明する。第1放射温度計39を較正する方法は、第2放射温度計48を較正する方法と同様であるため、その重複する説明を省略する。
図7は、一実施形態に係る第2放射温度計48の較正方法の前半部分を示すフローチャートであり、図8は、一実施形態に係る第2放射温度計48の較正方法の後半部分を示すフローチャートである。図4に示すように、最初に、測定体68が第2放射温度計48のセンサ部48aと対向するように、較正ツール60が研磨パッド3の上面に載置される(図7のステップ1)。さらに、較正システムの温度調整器66を研磨装置の制御部40に接続する(図7のステップ2)。
制御部40は、第2放射温度計の較正を実行するために設定された複数の目標温度を予め記憶している。複数の目標温度は、例えば、所定の温度間隔(例えば、10℃)ごとにずれた温度の群であり、この群は、例えば、30℃、40℃、50℃、60℃、70℃、80℃の温度を含む。次いで、制御部40は、複数の目標温度から選択された1つの目標温度Taを温度調整器66に送信して、加熱装置61の加熱板61aおよび測定体68を目標温度Taまで加熱する(図7のステップ3)。本実施形態では、制御部40は、温度調整器66に、複数の目標温度のうち最も小さい目標温度(例えば、30℃)Taを送信する。
測定体68の温度が目標温度Taに到達して、温度センサ61cの測定値が目標温度Taで安定すると、第2放射温度計48は、測定体68の温度を測定し(図7のステップ4)、その測定値を制御部40に送信する。制御部40は、第2放射温度計48から送られた測定体68の温度出力値(温度測定値)を記憶する(図7のステップ5)。
次いで、制御部40は、全ての目標温度に対して第2放射温度計48による測定体68の温度測定が実行されたか否かを決定する(図7のステップ6)。本実施形態では、制御部40は、ステップ3で用いられた目標温度Taが複数の目標温度のうち最も高い目標温度(例えば、80℃)であるか否かを決定する。ステップ3で用いられた目標温度Taが最も高い目標温度でない場合(図7のステップ6の「No」)、制御部40は、複数の目標温度のうち、ステップ3で用いられた目標温度Taの次に高い目標温度Tb(例えば、40℃)を、次の目標温度Taとして選択し(図7のステップ7)、上記ステップ3からステップ5を繰り返す。
全ての目標温度に対して第2放射温度計48による測定体68の温度測定が実行された場合(図7のステップ6の「Yes」)、制御部40は、各目標温度Taと、該目標温度Taに対応する第2放射温度計48の温度出力値の差をそれぞれ算出する(図7のステップ8)。目標温度Taと、該目標温度Taに対応する第2放射温度計48の温度出力値の差は、目標温度Taに対する第2温度計48の測定値の誤差である。本実施形態では、各目標温度Taと、該目標温度Taに対応する第2放射温度計48の温度出力値との差を「温度ずれ量」と称する。次いで、制御部40は、全ての温度ずれ量が基準範囲内にあるか否かを決定する(図7のステップ9)。温度ずれ量の基準範囲は、予め設定されており、制御部40に予め記憶されている。
基準範囲を超える温度ずれ量が1つでもある場合(図7のステップ9の「No」)、制御部40は、全ての温度ずれ量が基準範囲に入るように、第2放射温度計48からの温度出力値を補正する(図8のステップ10)。本実施形態では、第2放射温度計48からの温度出力値を補正するために、制御部40は、第2放射温度計48のアナログデジタル変換器48cに格納された変換パラメータを補正(すなわち、変更)する。
図9乃至図11は、第2放射温度計48の温度出力値を補正する方法の一例を説明するためのグラフである。より具体的には、図9は、各目標温度Taと、該目標温度Taに対応する第2放射温度計48の温度出力値との関係を示す関数の一例を示したグラフであり、図10は、図9に示す関数のy切片を補正した一例を示すグラフであり、図11は、図10に示す関数の傾きを補正した一例を示すグラフである。図9乃至図11に示すグラフにおいて、縦軸(y軸)は第2放射温度計48の温度出力値を表し、横軸(x軸)は目標温度Taを表す。さらに、図9乃至図11に示すグラフには、上記温度ずれ量の基準範囲の上限に対応する上限直線ULと、下限に対応する下限直線LLが仮想線(点線)でそれぞれ示されている。
上述したように、制御部40は、温度調整器66に出力する複数の目標温度Taを予め記憶しており、第2放射温度48は、各目標温度Taに加熱された測定体68の温度の測定値を制御部40に送信する。したがって、制御部40は、各目標温度Taに対応する第2放射温度計48の温度出力値を図9に示すようなグラフにプロットすることができる。さらに、制御部40は、全てのプロット点に基づいて関数RFを算出する。例えば、制御部40は、最小自乗法により全てのプロット点に基づいた近似直線を算出し、この近似直線を関数RFとして用いる。
図9に示す例では、プロット点Pxが上限直線ULを超えている。この場合、制御部40は、図7に示すステップ9で基準範囲を超える温度ずれ量があると決定し、全ての温度ずれ量が基準範囲に入るように、関数RFの傾き(すなわち、ゲイン)とy切片(すなわち、オフセット)を補正する。
本実施形態では、第2放射温度計48のアナログデジタル変換器48cに格納された変換パラメータを補正することにより、関数RFの傾きとy切片を変化させる。関数RFのy切片は、目標温度Taが0であるときの関数RFにおける第2放射温度計48の温度出力値の値に相当する。制御部40は、全ての温度ずれ量に基づいてy切片の補正量を算出し、この補正量に基づいて関数RFをy軸に沿って上下動させる。図10に示す例では、関数RFのy切片が0になるように、図9に示す関数RFをy軸に沿って上昇させている。当然ながら、全ての温度ずれ量が基準範囲に入るように、関数RFをy軸に沿って下降させてもよい。さらに、補正後のy切片が0とは異なっていてもよい。
次に、制御部40は、全ての温度ずれ量に基づいて関数RFの傾きの補正量を算出し、この補正量に基づいて関数RFの傾きを変更する。図11では、全ての温度ずれ量が基準範囲に入るように、補正されたy切片(図11に示すグラフでは、原点)を通る関数RFの傾きを減少させる例を示している。当然ながら、全ての温度ずれ量が基準範囲に入るように、相関関数RFの傾きを増加させてもよい。
一実施形態では、制御部40は、関数RFの傾きを補正した後で、関数RFのy切片を補正してもよいし、関数RFの傾きとy切片を同時に補正してもよい。さらに、関数RFのy切片(または、傾き)を補正した後で、全ての温度ずれ量が基準範囲に入った場合は、制御部40は、関数RFの傾き(または、y切片)の補正を省略してもよい。
上述したように、第2放射温度計48の換算部48eは、放射率補正部48dから出力された補正デジタル信号値を測定対象物の温度に換算する。すなわち、換算部48eは、補正デジタル信号値をパッド表面温度に換算する換算式を予め格納している。そこで、一実施形態では、制御部40は、関数RFの傾きとy切片を補正する(すなわち、第2放射温度計48を較正する)ために、換算部48eに格納された換算式のパラメータを補正(すなわち、変更)してもよい。例えば、換算式が一次関数である場合は、該換算式の傾きとy切片を補正してもよく、換算式が二次関数である場合は、該換算式の係数を補正してもよい。
本実施形態では、制御部40が実行する第2放射温度計の較正動作は、上記ステップ3からステップ10に示す動作である。制御部40は、加熱装置61の加熱板61aおよび測定体68の温度を複数の目標温度Taのそれぞれに変更しながら、各目標温度Taにおける測定体68の温度を第2放射温度計48で測定し、温度ずれ量を算出する。さらに、制御部40は、全ての温度ずれ量が基準範囲に入るように、第2放射温度計48のアナログデジタル変換器48cに格納された変換パラメータ(または、換算部48eに格納された換算式のパラメータ)を補正する。
制御部40は、好ましくは、各目標温度Taにおける補正後の全ての温度ずれ量が上記基準範囲内にあるか否かを確認する(図8のステップ11)。具体的には、制御部40は、再度、加熱装置61の加熱板61aおよび測定体68の温度を各目標温度Taにそれぞれ変更して、各目標温度Taにおける測定体68の温度を第2放射温度計48で測定し、各目標温度Taにおける温度ずれ量を算出し、これら温度ずれ量の全てが基準範囲に入るか否かを確認する。上記ステップ11で示す動作は、第2放射温度計48が確実に較正された否かを決定するための確認動作である。
確認動作を実行する前は、上記較正動作によって、加熱装置61の加熱板61aおよび測定体68の温度は、複数の目標温度のうち最も高い目標温度に加熱されている。そこで、制御部40は、上記冷却ファン65を稼働して、加熱板61aおよび測定体68の温度を、最も高い目標温度から最も低い目標温度に至るまで各目標温度Taに段階的に冷却していく。この場合、確認動作に要する時間を短縮できるので、研磨装置のダウンタイムを短縮することできる。
一実施形態では、上記較正動作が完了した直後に、制御部40は、冷却ファン65を稼働して、加熱板61aおよび測定体68の温度を室温(常温)まで冷却してもよい。この場合、上記確認動作は、加熱板61aおよび測定体68の温度を、最も低い目標温度から最も高い目標温度に至るまで各目標温度Taに段階的に加熱しながら行われる。
補正後の全ての温度ずれ量が基準範囲内にある場合、制御部40は、第2放射温度計48の較正プロセスが完了したことを示す信号を生成する(図7のステップ12)。完了信号は、例えば、研磨装置のブザーを動作させるトリーガーとして使用される。研磨装置のブザーが鳴ることによって、研磨装置の作業者は、第2放射温度計48の較正が完了したことをいち早く認識することができる。図7のステップ9で、全ての温度ずれ量が基準範囲内にある場合(図7のステップ9の「Yes」)も、制御部40は、第2放射温度計48の較正を実施する必要はないと判断して、第2放射温度計48の較正プロセスの完了信号を生成する(図7のステップ12)。
ステップ11に示す確認動作で、基準範囲を超える温度ずれ量が1つでもある場合(図8のステップ11の「No」)、制御部40は、上記ステップ3からステップ10に示す較正動作と、上記ステップ11に示す確認動作を繰り返す。具体的には、制御部40は、較正動作と確認動作との組み合わせの繰り返し数Nに1を加算する(図8のステップ13)。この繰り返し数Nの初期値は0であり、制御部40は、繰り返し数Nの上限値NAを予め記憶している。
制御部40は、繰り返し数Nを上限値NAと比較し(図8のステップ14)、繰り返し数Nが上限値NAよりも小さい場合(図8のステップ14の「Yes」)は、図7のステップ3に戻り、上記較正動作と確認動作とを繰り返す。繰り返し数Nが上限値NAに達した場合(図8のステップ14の「No」)は、制御部40は、第2放射温度計48の交換を促す信号を生成する(図8のステップ15)。この交換信号は、例えば、研磨装置の警報を発するためのトリーガーとして用いられる。繰り返し数Nが上限値NAに達するまで較正動作を繰り返しても、確認動作で基準範囲を超える少なくとも1つの温度ずれ量がある場合は、第2放射温度計48が故障しているか、または寿命に達したと考えることができる。そのため、制御部40は、警報を発して、第2放射温度計48の交換を促し、ウェーハWに研磨異常が発生することを防止する。
なお、上限値NAは1であってもよい。この場合、図8のステップ11で基準範囲を超える温度ずれ量が1つでもある場合、制御部40は、較正動作と確認動作を繰り返さずに、直ちに、第2放射温度計48の交換信号を生成する。
本実施形態によれば、較正システムの較正ツール60を第2放射温度計48(または、第1放射温度計39)の下方に配置し、温度調整器66を研磨装置の制御部40に接続するだけで、制御部40が第2放射温度計48(または、第1放射温度計39)の較正を自動で実行する。したがって、作業者の負担および研磨装置のダウンタイムが減少するので、第1放射温度計39および第2放射温度計48の較正プロセスが定期的に実行されることが期待できる。その結果、ウェーハWを所望の研磨レートで研磨することが可能となり、さらに、ウェーハWに研磨異常が発生することを効果的に防止することができる。
図4に示すように、較正システムは、プリンタなどの出力装置43を有していてもよい。図4に示す出力装置43は、研磨装置の外部に設けられており、制御部40と無線で通信可能に構成されている。一実施形態では、出力装置43は、制御部40と有線で接続可能に構成されてもよい。あるいは、制御部40と有線または無線で接続された出力装置43を研磨装置の内部に設けてもよい。
出力装置43は、制御部40から第2放射温度計48(または、第1放射温度計39)の較正結果を読み出して、図12に示すような較正シートを出力する。較正シートには、少なくとも放射温度計の較正を実施した日付と、補正前後の関数RFの傾き(すなわち、ゲイン)およびy切片(すなわち、オフセット)と、確認動作(図8のステップ11参照)時に取得された放射温度計の温度ずれ量とが記載されるのが好ましい。このような較正シートを保管しておくことにより、各放射温度計39,48の寿命(すなわち、交換時期)を推測することができる。
図13は、他の実施形態に係る構成システムの較正ツールを模式的に示す斜視図である。特に説明しない本実施形態の構成は、上述した実施形態の構成と同様であるため、その重複する説明を省略する。
放射温度計39,48に研磨液などが付着することで、放射温度計39,48が汚れることがある。また、放射温度計39,48に故障が発生することもある。これらの場合、放射温度計39,48が正確なパッド表面温度を測定できないため、ウェーハWに研磨異常が発生したり、歩留まりが低下したりするおそれがある。したがって、所定枚数のウェーハWが研磨されるたびに(例えば、一枚のウェーハWが研磨されるたびに)、放射温度計39,48がパッド表面温度を正確に測定しているか否かを確認することが好ましい。そのため、本実施形態では、較正ツール60を放射温度計の近傍に配置して、所定枚数のウェーハWが研磨されるたびに、放射温度計39,48の温度出力値を確認する。
図13は、第1放射温度計39の近傍に配置された較正ツール60を示している。図示はしないが、第2放射温度計48の近傍にも、図13に示す較正ツール60と同様の構成を有する較正ツールが配置されている。一実施形態では、図13に示す較正ツール60を第1放射温度計39および第2放射温度計48のいずれか一方の近傍に配置してもよい。
図13に示す較正ツール60は、複数の(図示した例では、2つの)加熱装置61A,61Bと、該加熱装置61A,61Bに接続される温度調整器66と、加熱装置61A,61Bのそれぞれを第1放射温度計39の下方に移動させるための移動機構(加熱装置移動機構)80と、を備える。本実施形態では、加熱装置61A,61Bのそれぞれは、図4乃至図6を参照して説明された加熱装置61と同様の構成を有する。したがって、加熱装置61A,61Bのそれぞれは、上述した測定体68(図5Aおよび図5B参照)を有している。一実施形態では、加熱装置61A,61Bのそれぞれは、ヒータ61bの代わりに、ペルチェ素子を加熱板61aおよび測定体68の加熱源として有していてもよい。
本実施形態では、加熱装置61A,61Bは共通の温度調整器66に接続されているが、複数の加熱装置61A,61Bのそれぞれに対応した個別の温度調整器66を有していてもよい。制御部40は、温度調整器66を介して複数の加熱装置61A,61Bのそれぞれを所定の目標温度に加熱する。加熱装置61A,61Bにおける所定の目標温度は、互いに同一であってもよいし、異なっていてもよい。制御部40は、加熱装置61A,61Bの所定の目標温度を予め記憶している。
図13に示す移動機構80は、加熱装置61A,61Bを支持する台63と、該台63を回動させるためのアクチュエータ82とを備える。本実施形態では、台63は半円板状の板部材であり、アクチュエータ82はモータである。移動機構80は、アクチュエータ82を支持する支持アーム84をさらに有しており、支持アーム84は、第1放射温度計39に固定されている。支持アーム84は、移動機構80を支持可能である限り、任意の静止部材に固定可能である。例えば、支持アーム84を研磨装置のフレーム(図示せず)に固定してもよい。さらに、アクチュエータ82の回転軸82aは、台63に連結されている。アクチュエータ82を駆動すると、台63が回転軸82aを中心に回動する。アクチュエータ82は、台63を任意の回転角度で回動させることができるように構成される。
図14は、一方の加熱装置61Aを第1放射温度計39の下方に移動させた状態を示す模式図である。図14は、第1放射温度計39の下方に一方の加熱装置61Aが位置するように台63が移動された第1測定位置を示している。図示はしないが、他方の加熱装置61Bが第1放射温度計39の下方に位置するときの台63の位置を第2測定位置と称する。なお、図13は、台63が第1放射温度計39から待避させられた待機位置を示している。台63が待避位置に移動されると、第1放射温度計39は、研磨パッド3の表面温度を測定することができる。
第1放射温度計39の温度出力値を確認する際には、制御部40は、アクチュエータ82を駆動して、台63を待避位置から第1測定位置および第2測定位置にそれぞれ移動させる。制御部40は、さらに、第1放射温度計から、所定の目標温度に加熱された加熱装置61A,61Bの測定体68の温度出力値をそれぞれ取得する。第1放射温度計39から加熱装置61A,61Bまでの距離は、外乱によって第1放射温度計39の温度出力値に大きな誤差が生じないように、できる限り小さいのが好ましい。例えば、測定体68の表面積が第1放射温度計39の視野の1.5倍以下となるように、第1放射温度計39と加熱装置61A,61Bとの間の距離が設定される。
上述したように、温度センサ61cの型式は任意である。例えば、温度センサ61cは、熱電対、白金測温抵抗体、サーミスタ測温体、バイメタル式温度計、IC温度センサであってもよい。白金測温抵抗体は測定精度が高いため、温度センサ61cは白金測温抵抗体であるのが好ましい。
図15は、加熱装置61A,61Bの保護カバーを示す模式図である。加熱装置61A,61Bの測定体68に汚れ(例えば、研磨液)が付着すると、第1放射温度計39が測定体68の正確な温度を測定することができない。そこで、待機位置に移動した加熱装置61A,61Bを覆う保護カバー85を設けてもよい。図15に示す保護カバー85は、略半円形状を有しており、その内部に、加熱装置61A,61Bを台63の一部とともに収容する収容空間が形成されている。保護カバー85は、研磨装置のフレームなどの静止部材にブラケットなどの固定部材(図示せず)を介して固定されている。
次に、第1放射温度計39の温度出力値を確認する方法について説明する。第2放射温度計48の温度出力値を確認する方法は、第1放射温度計39の温度出力値を確認する方法と同様であるため、その重複する説明を省略する。以下に説明するように、放射温度計39,48の温度出力値が所定の目標温度に対して設定された許容範囲から逸脱していた場合は、放射温度計39,48の較正が行われる。
図16は、一実施形態に係る第1放射温度計39の温度出力値を確認する方法の前半部分を示すフローチャートであり、図17は、一実施形態に係る第1放射温度計の温度出力値を確認する方法の後半部分を示すフローチャートである。
図16に示すように、制御部40はウェーハWの研磨処理を実行する(図16のステップ1)。次いで、制御部40は、ウェーハWの研磨処理枚数Nwが所定の枚数NBに到達したか否かを決定する(図16のステップ2)。制御部40は、所定の枚数NBを予め記憶している。所定の枚数NBは「1」であってもよい。ウェーハWの研磨処理枚数Nwが所定の枚数NBに到達していない場合(図16のステップ2における「Yes」参照)、ステップ1に戻り、制御部40は、次のウェーハWの研磨処理を実行する。
制御部40は、第1放射温度計39の温度出力値を確認するために、複数の加熱装置61A,61Bの各測定体68に対して設定された複数の目標温度Tb,Tcを予め記憶している。これら目標温度Tb,Tcは、互いに同一であってよいし、異なっていてもよい。ウェーハWの研磨処理枚数Nwが所定の枚数NBに到達していた場合(図16のステップ2における「No」参照)、制御部40は、温度調整器66を介して、加熱装置61A,61Bの各測定体68をそれぞれ目標温度Tb,Tcまで加熱する(図16のステップ3)。
次いで、第1放射温度計39は、各測定体68の温度を測定し(図16のステップ4)、それら測定値を制御部40に送信する。さらに、制御部40は、第1放射温度計39から送られた各測定体68の温度出力値(温度測定値)を記憶する(図16のステップ5)。
次いで、制御部40は、各目標温度Tb,Tcと、該目標温度Tb,Tcに対応する第1放射温度計39の温度出力値の差をそれぞれ算出する(図16のステップ6)。すなわち、制御部40は、各目標温度Tb,Tcと、該目標温度Tb,Tcにそれぞれ対応する第1放射温度計39の温度出力値との差である「温度ずれ量」を算出する。次いで、制御部40は、全ての温度ずれ量が基準範囲内にあるか否かを決定する(図16のステップ8)。温度ずれ量の基準範囲は、予め設定されており、制御部40に予め記憶されている。
基準範囲を超える温度ずれ量が1つでもある場合(図16のステップ8における「No」)、制御部40は、全ての温度ずれ量が基準範囲に入るように、第1放射温度計39からの温度出力値を補正する(図17のステップ10)。本実施形態でも、制御部40は、第1放射温度計39からの温度出力値を補正するために、第1放射温度計39のアナログデジタル変換器48cに格納された変換パラメータを補正(すなわち、変更)する。例えば、制御部40は、図9乃至図11を参照して説明された方法を用いて、全ての温度ずれ量が基準範囲に入るように、関数RFの傾き(すなわち、ゲイン)とy切片(すなわち、オフセット)を補正する。あるいは、温度出力値の補正は、第1放射温度計39の換算部48eに格納された換算式のパラメータの補正であってもよい。
このように、複数の加熱装置61A,61Bの測定体68を第1放射温度計39で測定したときに、第1放射温度計39の温度出力値が一つでも許容範囲を超えていた場合は、第1放射温度計39の較正を実行する。その結果、ウェーハWを所望の研磨レートで研磨することが可能となり、さらに、ウェーハWに研磨異常が発生することを効果的に防止することができる。
本実施形態でも、制御部40は、好ましくは、補正後の全ての温度ずれ量が基準範囲内にあるか否かを確認する(図17のステップ11)。具体的には、制御部40は、再度、所定の目標温度Tb,Tcにそれぞれ維持された、加熱装置61A,61Bの測定体68の温度を第1放射温度計39で測定し、各目標温度Tb,Tcに対する温度ずれ量を算出し、これら温度ずれ量の全てが基準範囲に入るか否かを確認する。上記ステップ11で示す動作は、第1放射温度計39が確実に較正された否かを決定するための確認動作である。
補正後の全ての温度ずれ量が基準範囲内にある場合、制御部40は、ステップ1に戻って、次のウェーハWの研磨処理を実行する。図16のステップ8で、全ての温度ずれ量が基準範囲内にある場合も、制御部40は、第1放射温度計39の較正を実施せずに、次のウェーハWの研磨処理を実行する。
ステップ11に示す確認動作で、基準範囲を超える温度ずれ量が1つでもある場合(図17のステップ11の「No」)、制御部40は、上記ステップ3からステップ10に示す較正動作と、上記ステップ11に示す確認動作を繰り返す。具体的には、制御部40は、較正動作と確認動作との組み合わせの繰り返し数Nに1を加算する(図17のステップ13)。この繰り返し数Nの初期値は0であり、制御部40は、繰り返し数Nの上限値NAを予め記憶している。
制御部40は、繰り返し数Nを上限値NAと比較し(図17のステップ13)、繰り返し数Nが上限値NAよりも小さい場合(図17のステップ14の「Yes」)は、図16のステップ3に戻り、上記較正動作と確認動作とを繰り返す。繰り返し数Nが上限値NAに達した場合(図17のステップ13の「No」)は、制御部40は、第1放射温度計39のメンテナンスを促す信号を生成する(図17のステップ14)。このメンテナンス信号は、例えば、研磨装置の警報を発するためのトリーガーとして用いられる。繰り返し数Nが上限値NAに達するまで較正動作を繰り返しても、確認動作で基準範囲を超える少なくとも1つの温度ずれ量がある場合は、第1放射温度計39に汚れが付着しているか、または第1放射温度計39が故障していると考えることができる。そのため、制御部40は、警報を発して、第1放射温度計39のメンテナンスを促し、ウェーハWに研磨異常が発生することを防止する。
なお、上限値NAは1であってもよい。この場合、図17のステップ11で基準範囲を超える温度ずれ量が1つでもある場合、制御部40は、較正動作と確認動作を繰り返さずに、直ちに、第1放射温度計39のメンテナンス信号を生成する。
図18Aは、さらに他の実施形態に係る較正システムの較正ツール60を模式的に示す上面図であり、図18Bは、図18Aに示す加熱板61aを移動させる移動機構を模式的に示す斜視図である。特に説明しない本実施形態の構成は、上述した較正システムの構成と同様であるため、その重複する説明を省略する。
図18Aに示すように、加熱装置61の加熱板61aの上面には、複数の(図示した例では、4つの)測定体68A,68B,68C,68Dが取り付けられている。複数の測定体68A乃至68Dは、互い異なる放射率を有しており、第2放射温度計48の放射率補正部48d(図6参照)には、複数の測定体68A乃至68Dから選択された1つの測定体(例えば、測定体68A)の放射率が入力されている。測定体68A乃至68Dの放射率はそれぞれ既知であり、制御部40に予め記憶されている。
さらに、較正ツール60は、加熱板61aを台63に対して水平方向に移動させる移動機構(測定体移動機構)74を備えている。本実施形態では、移動機構74は、加熱板61aを水平方向に移動させるX軸移動機構75およびY軸移動機構76の組み合わせから構成される。X軸移動機構75は、加熱板61aをX軸に沿って移動させ、Y軸移動機構76は、X軸に垂直なY軸に沿って加熱板61aを移動させるように構成されている。これらX軸移動機構75およびY軸移動機構76は、例えば、ボールねじ機構と、このボールねじ機構を駆動するサーボモータとから構成される。一実施形態では、X軸移動機構75およびY軸移動機構76は、ピストンシリンダ機構であってもよい。X軸移動機構75およびY軸移動機構76は、制御部40に接続されており、制御部40は、X軸移動機構75およびY軸移動機構76の動作、すなわち移動機構74の動作を制御することができる。
制御部40がX軸移動機構75およびY軸移動機構76を駆動するにより、加熱板61aを第2放射温度計48(または、第1放射温度計39)に対してX軸方向およびY軸方向に移動させることができる。すなわち、制御部40は、移動機構74の動作を制御して、加熱板61aの上面に取り付けられた複数の測定体68A乃至68Dのそれぞれを第2放射温度計48(または、第1放射温度計39)の直下に位置させることができる。
本実施形態では、所定の目標温度まで加熱された複数の測定体68A乃至68Dのそれぞれの温度を第2放射温度計48(または、第1放射温度計39)で測定する。上述したように、第2放射温度計48の放射率補正部48dには、複数の測定体68A乃至68Dから選択された1つの測定体68Aの放射率が入力されている。この場合、測定体68B乃至68Dの放射率は、第2放射温度計48の放射率補正部48dに入力された放射率とは異なるため、第2放射温度計48から出力された測定体68B乃至68Dの温度出力値には、それぞれ、放射率の設定誤差に起因する測定誤差が含まれる。この測定誤差について、図19A乃至図19Dを参照して以下に説明する。
図19A乃至図19Dは、100℃の目標温度に加熱された複数の測定体68A乃至68Dの温度を第2放射温度計48でそれぞれ測定したときに、該第2放射温度計から出力される温度出力値の測定誤差を説明するための模式図である。より具体的には、図19Aは、100℃に加熱された、0.90の放射率εaを有する測定体68Aの温度を第2放射温度計48で測定したときに、第2放射温度計48から出力されるべき温度出力値Maを示す模式図であり、図19Bは、100℃に加熱された、0.91の放射率εbを有する測定体68Bの温度を第2放射温度計48で測定したときに、第2放射温度計48から出力されるべき温度出力値Mbを示す模式図である。図19Cは、100℃に加熱された、0.92の放射率εcを有する測定体68Cの温度を第2放射温度計48で測定したときに、第2放射温度計48から出力されるべき温度出力値をMc示す模式図であり、図19Dは、100℃に加熱された、0.95の放射率εdを有する測定体68Dの温度を第2放射温度計48で測定したときに、第2放射温度計48から出力されるべき温度出力値Mdを示す模式図である。
一般に、放射温度計に予め入力された放射率が測定対象物の放射率と異なる場合は、放射温度計から出力される温度出力値(温度測定値)には、放射率の設定誤差に起因する測定誤差が含まれる。放射率の設定誤差は、測定対象物の放射率に対する、放射温度計に入力された放射率の比であり、以下の式(1)によって表される。
E(%) = (ε0/ε-1.00)・100 ・・・(1)
ここで、Eは、放射率の設定誤差を表し、ε0は、放射温度計に入力された放射率を表し、εは、測定対象物の放射率を表す。
E(%) = (ε0/ε-1.00)・100 ・・・(1)
ここで、Eは、放射率の設定誤差を表し、ε0は、放射温度計に入力された放射率を表し、εは、測定対象物の放射率を表す。
本実施形態では、第2放射温度計48に入力された放射率は、測定体68Aの放射率εaである0.90である。そのため、第2放射温度計48で測定体68Aを測定するときは、放射率の設定誤差は0%であり、第2放射温度計48から出力される温度出力値には、測定誤差は含まれない。これに対し、測定体68B乃至68Dの放射率εb-εdは、それぞれ、測定体68Aの放射率εaとは異なる。そのため、第2放射温度計48で測定体68B乃至68Dのそれぞれを測定するときは、第2放射温度計48から出力される各温度出力値には、放射率の設定誤差に起因する測定誤差が含まれる。具体的には、0.91の放射率εbを有する測定体68Bを測定するときは、放射率の設定誤差は1%であり、第2放射温度計48から出力される温度出力値には、1%の放射率の設定誤差に起因する測定誤差が含まれる。同様に、0.92の放射率εcを有する測定体68Cを測定するときは、第2放射温度計48から出力される温度出力値には、2%の放射率の設定誤差に起因する測定誤差が含まれ、0.95の放射率εdを有する測定体68Dを測定するときは、第2放射温度計48から出力される温度出力値には、5%の放射率の設定誤差に起因する測定誤差が含まれる。
ここで、測定対象物から放射される電磁波の強度(エネルギー量)と、測定対象物の温度との間の関係は直線関係にない。そのため、放射率の設定誤差を放射温度計から出力された温度測定値に乗算しても、測定誤差を補正することができない。例えば、放射率の設定誤差が5%である場合に、放射温度計から出力された温度測定値に1.05を乗算しても、測定対象物の実際の温度を得ることができない。さらに、放射率の設定誤差に起因する測定誤差は、放射温度計が利用している電磁波の波長、および測定対象物の温度などによっても異なる。
しかしながら、複数の測定体68A乃至68Dの放射率が既知であれば、実験によって、所定の目標温度Txに加熱された測定体68A乃至68Dの温度を第2放射温度計で測定したときの各測定誤差を予め取得しておくことができる。すなわち、測定体68A乃至68Dをそれぞれ第2放射温度計48で測定したときに、該第2放射温度計48から出力されるべき温度出力値の期待値Ma-Mdを予め取得しておくことができる。本明細書では、第2放射温度計48から出力されるべき温度出力値の期待値Ma-Mdのそれぞれを、「温度期待値」と称する。
例えば、第2放射温度計48の較正に用いる目標温度Txを100℃として予め決定しておく。この場合、100℃に加熱された測定体68B乃至68Dの温度を、それぞれ、測定体68Aの放射率εaが入力された第2放射温度計48で実際に測定する実験を行う。そして、第2放射温度計48から出力された測定体68B乃至68Dの温度出力値のそれぞれを、温度期待値Mb-Mdとして決定する。なお、第2放射温度計48で測定体68Aを測定するときは、放射率の設定誤差は0%であり、第2放射温度計48から出力される測定体68Aの温度測定値には、測定誤差は含まれない。したがって、第2放射温度計48から出力されるべき測定体68Aの温度期待値Maは、目標温度Tx(=100℃)に等しい。図19B乃至図19Dには、このような実験によって決定された温度期待値Ma-Mdの例が記載されている。
一実施形態では、第2放射温度計48から出力された各測定体68A乃至68Dの温度出力値に基づいて、所定の目標温度Txにおける放射率の設定誤差と、測定誤差との関係を表す特性方程式を予め決定してもよい。この場合、特性方程式から、上記温度期待値Ma乃至Mdが決定される。
このように、本実施形態に係る較正ツール60を用いて、第2放射温度計48の較正を実施する場合は、所定の目標温度Txに加熱された複数の測定体68A乃至68Dのそれぞれを第2温度放射計48で測定したときに、第2温度放射計48から出力される温度期待値Ma-Mdを予め決定しておく必要がある。本実施形態に係る較正ツール60を用いて、第1放射温度計39の較正を実施する場合も同様である。温度期待値Ma-Mdは、制御部40に予め記憶される。
次に、図20および図21を参照して、図18Aに示す較正ツール60を用いて第2放射温度計48を較正する方法を説明する。なお、図18Aに示す較正ツール60を用いて第1放射温度計39を較正する方法は、以下に説明する第2放射温度計48を較正する方法と同様であるため、その重複する説明を省略する。
図20は、図18Aに示す較正ツール60を備えた較正システムで、第2放射温度計48の較正を実施する方法の前半部分を示すフローチャートであり、図21は、図18Aに示す較正ツール60を備えた較正システムで、第2放射温度計48の較正を実施する方法の後半部分を示すフローチャートである。図20および図21に示すフローチャートで特に説明しないステップは、図7および図8に示すフローチャートのステップと同様である。
図20に示すように、本実施形態でも、加熱装置61の加熱板61aが第2放射温度計48のセンサ部48aと対向するように、較正ツール60が研磨パッド3の上面に載置され(図20のステップ1)、さらに、較正システムの温度調整器66を研磨装置の制御部40に接続する(図20のステップ2)。
制御部40は、第2放射温度計48の較正を実施するために設定された所定の目標温度Txを予め記憶している。所定の目標温度Txは、任意に設定可能であるが、頻繁に用いられる研磨プロセスにおける研磨パッド3の目標温度に設定されるのが好ましい。制御部40は、研磨パッド3上に載置された較正ツール60の加熱板61aおよび複数の測定体68A-68Dの温度を温度調整器66を介して所定の目標温度Txまで加熱する(図20のステップ3)。
次いで、制御部40は、移動機構74を駆動して、複数の測定体68A乃至68Dのうちの1つの測定体68Aを第2放射温度計48の下方に移動させ、該測定体68Aの温度を第2放射温度計48で測定する(図20のステップ4)。そして、制御部40は、第2放射温度計48から出力された温度出力値を記憶する(図20のステップ5)。
次いで、制御部40は,全ての測定体68A乃至68Dの温度を測定したか否かを決定する(図20のステップ6)。全ての測定体68A乃至68Dの温度を測定していない場合(図20のステップ6の「No」)、制御部40は、移動機構74を駆動して、次の測定体68Bを第2放射温度計48の下方に移動させ(図20のステップ7)、該測定体68Bの温度を第2放射温度計48で測定する(図20のステップ4)とともに、第2放射温度計48から出力された温度出力値を記憶する(図20のステップ5)。
全ての測定体68A乃至68Dの温度の測定が完了した場合(図20のステップ6の「Yes」)、制御部40は、複数の測定体68A乃至68Dのそれぞれの温度ずれ量を算出する(図20のステップ8)。本実施形態では、温度ずれ量は、各温度期待値Ma乃至Mdと、第2放射温度計48から出力された各測定体68A乃至68Dの温度出力値との差である。例えば、測定体68Aの温度ずれ量は、温度期待値Ma(図19では、100℃)と、測定体68Aの第2放射温度計48の温度出力値との差であり、測定体68Dの温度ずれ量は、温度期待値Md(図19では、103.2℃)と、測定体68Dの第2放射温度計48の温度出力値との差である。次いで、制御部40は、全ての温度ずれ量が基準範囲内にあるか否かを決定する(図20のステップ9)。温度ずれ量の基準範囲は、予め設定されており、制御部40に予め記憶されている。
基準範囲を超える温度ずれ量が1つでもある場合(図20のステップ9の「No」)、制御部40は、全ての温度ずれ量が基準範囲に入るように、第2放射温度計48からの温度出力値を補正する(図21のステップ10)。温度出力値の補正は、第2放射温度計48のアナログデジタル変換器48cに格納された変換パラメータの補正であってもよいし、第2放射温度計48の換算部48eに格納された換算式のパラメータの補正であってもよい。
本実施形態でも、制御部40が実行する第2放射温度計の較正動作は、上記ステップ3からステップ10に示す動作である。制御部40は、所定の目標温度Txに加熱された複数の測定体68A乃至68Dの温度を第2放射温度計48で測定し、各測定体の温度ずれ量を算出する。さらに、制御部40は、全ての温度ずれ量が基準範囲に入るように、第2放射温度計48のアナログデジタル変換器48cに格納された変換パラメータ(または、換算部48eに格納された換算式のパラメータ)を補正する。
制御部40は、好ましくは、各測定体68A乃至68Dの補正後の全ての温度ずれ量が上記基準範囲内にあるか否かを確認する(図21のステップ11)。具体的には、制御部40は、再度、目標温度Txに維持された各測定体68A乃至68Dの温度を第2放射温度計48で測定し、各測定体68A乃至68Dの温度ずれ量を算出し、これら温度ずれ量の全てが基準範囲に入るか否かを確認する。上記ステップ11で示す動作は、第2放射温度計48が確実に較正された否かを決定するための確認動作である。
補正後の全ての温度ずれ量が基準範囲内にある場合、制御部40は、第2放射温度計48の較正プロセスが完了したことを示す信号を生成する(図20のステップ12)。ステップ11に示す確認動作で、基準範囲を超える温度ずれ量が1つでもある場合(図21のステップ11の「No」)、制御部40は、上記ステップ3からステップ10に示す較正動作と、上記ステップ11に示す確認動作を繰り返す。さらに、制御部40は、繰り返し数Nが上限値NAに達した場合(図21のステップ14の「No」)に、第2放射温度計48の交換を促す信号を生成する(図21のステップ15)。
本実施形態では、第2放射温度計48の較正を実施するために、加熱板61aおよび測定体68A乃至68Dを複数の目標温度に加熱する必要がない。すなわち、加熱板61aおよび測定体68A乃至68Dを1つの目標温度Txに加熱し、その後、該目標温度Txに維持するだけでよい。したがって、第2放射温度計48の較正にかかる時間の短縮が図れるので、研磨装置のダウンタイムを大きく低減することができる。さらに、制御部40は、較正動作が完了しても確認動作が完了するまで、測定体68A乃至68Dの温度を目標温度Txに維持するので、確認動作を較正動作が完了した直後に実施できる。
上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
本発明は、研磨装置に配置された放射温度計を自動で較正する方法、およびシステムに利用可能である。
1 研磨ヘッド
2 研磨テーブル
3 研磨パッド
5 パッド温度調整装置
11 熱交換器
30 液体供給システム
39 (第1)放射温度計
40 制御部
48 (第2)放射温度計
60 較正ツール
61 加熱装置
63 台
65 冷却装置
66 温度調整器
68 測定体
68A,68B,68C,68D 測定体
74 移動機構(測定体移動機構)
75 X軸移動機構
76 Y軸移動機構
80 移動機構(加熱装置移動機構)
82 モータ
2 研磨テーブル
3 研磨パッド
5 パッド温度調整装置
11 熱交換器
30 液体供給システム
39 (第1)放射温度計
40 制御部
48 (第2)放射温度計
60 較正ツール
61 加熱装置
63 台
65 冷却装置
66 温度調整器
68 測定体
68A,68B,68C,68D 測定体
74 移動機構(測定体移動機構)
75 X軸移動機構
76 Y軸移動機構
80 移動機構(加熱装置移動機構)
82 モータ
Claims (16)
- 研磨装置に配置された放射温度計を自動で較正する方法であって、
測定体が取り付けられた加熱装置を前記放射温度計の下方に配置し、
前記加熱装置に接続された前記研磨装置の制御部を用いて、前記測定体の温度を複数の目標温度に加熱し、
各目標温度における前記測定体の温度を前記放射温度計で測定し、
各目標温度と、該目標温度に対応する前記放射温度計の温度出力値との差である温度ずれ量を算出し、
前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計を較正することを特徴とする方法。 - 研磨装置に配置された放射温度計を自動で較正する方法であって、
測定体がそれぞれ取り付けられた複数の加熱装置を用意し、
前記複数の加熱装置に接続された前記研磨装置の制御部を用いて、各測定体の温度を所定の目標温度に加熱し、
各測定体を前記放射温度計の下方に移動させて、前記目標温度における前記測定体の温度を前記放射温度計で測定し、
各目標温度と、該目標温度に対応する前記放射温度計の温度出力値との差である温度ずれ量を算出し、
前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計を較正することを特徴とする方法。 - 前記放射温度計を較正する工程は、前記放射温度計のアナログデジタル変換器に格納された変換パラメータを補正する工程であることを特徴とする請求項1または2に記載の方法。
- 前記放射温度計を較正した後で、前記測定体の温度を再度複数の目標温度に加熱し、
各目標温度における前記測定体の温度を前記放射温度計で測定し、
前記温度ずれ量を再度算出し、
前記温度ずれ量の全てが予め設定された基準範囲内に入るか否かを確認することを特徴とする請求項1乃至3にいずれか一項に記載の方法。 - 前記測定体は、前記研磨装置に配置された研磨パッドの放射率と同様の放射率を有する材料から構成されることを特徴とする請求項1乃至4のいずれか一項に記載の方法。
- 研磨装置に配置された放射温度計を自動で較正する方法であって、
互いに異なる既知の放射率を有する複数の測定体が取り付けられた加熱装置を前記放射温度計の下方に配置し、
前記加熱装置に接続された前記研磨装置の制御部を用いて、前記複数の測定体の温度を所定の目標温度に加熱し、
前記目標温度における前記複数の測定体の温度を前記放射温度計でそれぞれ測定し、
前記目標温度に加熱された前記複数の測定体を前記放射温度計でそれぞれ測定したときに、該放射温度計から出力されるべき各温度期待値と、前記放射温度計の温度出力値との差である温度ずれ量を算出し、
前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計を較正することを特徴とする方法。 - 前記放射温度計を較正する工程は、前記放射温度計のアナログデジタル変換器に格納された変換パラメータを補正する工程であることを特徴とする請求項6に記載の方法。
- 前記放射温度計を較正した後で、前記目標温度に維持された前記複数の測定体の温度を再度前記放射温度計でそれぞれ測定し、
前記温度ずれ量を再度算出し、
前記温度ずれ量の全てが予め設定された基準範囲内に入るか否かを確認することを特徴とする請求項6または7に記載の方法。 - 研磨装置に配置される放射温度計を較正するシステムであって、
測定体が取り付けられ、前記放射温度計の下方に配置される加熱装置と、
前記加熱装置に接続された温度調整器と、を備え、
前記温度調整器は、前記研磨装置に配置された制御部に接続されており、
前記制御部は、
前記温度調整器を介して、前記測定体の温度を複数の目標温度に加熱し、
各目標温度における前記測定体の温度を前記放射温度計で測定し、
各目標温度と、該目標温度に対応する前記放射温度計の温度出力値との差である温度ずれ量を算出し、
前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計を較正することを特徴とするシステム。 - 研磨装置に配置される放射温度計を較正するシステムであって、
測定体がそれぞれ取り付けられた複数の加熱装置と、
前記複数の加熱装置に接続された温度調整器と、
前記複数の加熱装置のそれぞれを前記放射温度計の下方に移動させる加熱装置移動機構と、を備え、
前記温度調整器および前記加熱装置移動機構は、前記研磨装置に配置された制御部に接続されており、
前記制御部は、
前記温度調整器を介して、各測定体の温度を所定の目標温度に加熱し、
前記加熱装置移動機構を用いて、各測定体を前記放射温度計の下方に移動させ、
各目標温度における前記測定体の温度を前記放射温度計で測定し、
各目標温度と、該目標温度に対応する前記放射温度計の温度出力値との差である温度ずれ量を算出し、
前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計を較正することを特徴とするシステム。 - 前記制御部は、前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計のアナログデジタル変換器に格納された変換パラメータを補正することを特徴とする請求項9または10に記載のシステム。
- 前記制御部は、前記放射温度計を較正した後で、
前記測定体の温度を再度複数の目標温度に加熱し、
各目標温度における前記測定体の温度を前記放射温度計で測定し、
前記温度ずれ量を再度算出し、
前記温度ずれ量の全てが予め設定された基準範囲内に入るか否かを確認することを特徴とする請求項9乃至11のいずれか一項に記載のシステム。 - 前記測定体は、前記研磨装置に配置された研磨パッドの放射率と同様の放射率を有する材料から構成されることを特徴とする請求項9乃至12のいずれか一項に記載のシステム。
- 研磨装置に配置される放射温度計を較正するシステムであって、
互いに異なる既知の放射率を有する複数の測定体が取り付けられ、前記放射温度計の下方に配置される加熱装置と、
前記加熱装置に接続された温度調整器と、を備え、
前記温度調整器は、前記研磨装置に配置された制御部に接続されており、
前記制御部は、
前記温度調整器を介して、前記複数の測定体の温度を所定の目標温度に加熱し、
前記目標温度における前記複数の測定体の温度を前記放射温度計でそれぞれ測定し、
前記目標温度に加熱された前記複数の測定体を前記放射温度計でそれぞれ測定したときに、該放射温度計から出力されるべき各温度期待値と、前記放射温度計の温度出力値との差である温度ずれ量を算出し、
前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計を較正することを特徴とするシステム。 - 前記制御部は、前記温度ずれ量の全てが予め設定された基準範囲内に入るように、前記放射温度計のアナログデジタル変換器に格納された変換パラメータを補正することを特徴とする請求項14に記載のシステム。
- 前記制御部は、前記放射温度計を較正した後で、
前記目標温度に維持された前記複数の測定体の温度を再度前記放射温度計でそれぞれ測定し、
前記温度ずれ量を再度算出し、
前記温度ずれ量の全てが予め設定された基準範囲内に入るか否かを確認することを特徴とする請求項14または15に記載のシステム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/614,210 US20220228924A1 (en) | 2019-05-31 | 2020-05-29 | Method of calibrating radiation thermometer and system thereof |
SG11202113160UA SG11202113160UA (en) | 2019-05-31 | 2020-05-29 | Method of calibrating radiation thermometer and system thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-102253 | 2019-05-31 | ||
JP2019102253 | 2019-05-31 | ||
JP2020085788A JP7328931B2 (ja) | 2019-05-31 | 2020-05-15 | 放射温度計を較正する方法、およびシステム |
JP2020-085788 | 2020-05-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020241850A1 true WO2020241850A1 (ja) | 2020-12-03 |
Family
ID=73553797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/021421 WO2020241850A1 (ja) | 2019-05-31 | 2020-05-29 | 放射温度計を較正する方法、およびシステム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220228924A1 (ja) |
SG (1) | SG11202113160UA (ja) |
WO (1) | WO2020241850A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021236812A1 (en) * | 2020-05-19 | 2021-11-25 | Watlow Electric Manufacturing Company | Passive and active calibration methods for a resistive heater |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5127742A (en) * | 1991-04-19 | 1992-07-07 | Thermoscan Inc. | Apparatus and method for temperature measurement by radiation |
JPH04303931A (ja) * | 1991-03-29 | 1992-10-27 | Kyushu Electron Metal Co Ltd | 半導体ウエーハの研磨方法とその装置 |
JPH05296843A (ja) * | 1992-04-22 | 1993-11-12 | Mitsubishi Electric Corp | 可視近赤外放射計の校正装置 |
JPH0729427U (ja) * | 1993-10-28 | 1995-06-02 | 株式会社日鉄エレックス | 放射温度計のオンライン点検装置 |
JP2000515638A (ja) * | 1997-05-22 | 2000-11-21 | アプライド マテリアルズ インコーポレイテッド | 複数の光源を用いたパイロメータの校正 |
JP2000337967A (ja) * | 1999-03-19 | 2000-12-08 | Tokyo Electron Ltd | 擬似黒体放射装置及び放射温度測定装置 |
JP2002301660A (ja) * | 2001-04-05 | 2002-10-15 | Matsushita Electric Ind Co Ltd | 研磨温度測定方法、研磨方法、ワーク保持機構および研磨装置 |
JP2004085685A (ja) * | 2002-08-23 | 2004-03-18 | Hitachi Printing Solutions Ltd | 電子写真式印刷装置のヒートローラ温度制御方式 |
JP2005311246A (ja) * | 2004-04-26 | 2005-11-04 | Tokyo Seimitsu Co Ltd | 化学機械研磨装置及び化学機械研磨方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2251658B1 (en) * | 2009-05-12 | 2012-01-25 | LayTec Aktiengesellschaft | Method for calibrating a pyrometer, method for determining the temperature of a semiconducting wafer and system for determining the temperature of a semiconducting wafer |
JP5737210B2 (ja) * | 2012-02-21 | 2015-06-17 | トヨタ自動車株式会社 | 放射温度計による温度測定方法および温度測定システム |
-
2020
- 2020-05-29 US US17/614,210 patent/US20220228924A1/en active Pending
- 2020-05-29 SG SG11202113160UA patent/SG11202113160UA/en unknown
- 2020-05-29 WO PCT/JP2020/021421 patent/WO2020241850A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04303931A (ja) * | 1991-03-29 | 1992-10-27 | Kyushu Electron Metal Co Ltd | 半導体ウエーハの研磨方法とその装置 |
US5127742A (en) * | 1991-04-19 | 1992-07-07 | Thermoscan Inc. | Apparatus and method for temperature measurement by radiation |
JPH05296843A (ja) * | 1992-04-22 | 1993-11-12 | Mitsubishi Electric Corp | 可視近赤外放射計の校正装置 |
JPH0729427U (ja) * | 1993-10-28 | 1995-06-02 | 株式会社日鉄エレックス | 放射温度計のオンライン点検装置 |
JP2000515638A (ja) * | 1997-05-22 | 2000-11-21 | アプライド マテリアルズ インコーポレイテッド | 複数の光源を用いたパイロメータの校正 |
JP2000337967A (ja) * | 1999-03-19 | 2000-12-08 | Tokyo Electron Ltd | 擬似黒体放射装置及び放射温度測定装置 |
JP2002301660A (ja) * | 2001-04-05 | 2002-10-15 | Matsushita Electric Ind Co Ltd | 研磨温度測定方法、研磨方法、ワーク保持機構および研磨装置 |
JP2004085685A (ja) * | 2002-08-23 | 2004-03-18 | Hitachi Printing Solutions Ltd | 電子写真式印刷装置のヒートローラ温度制御方式 |
JP2005311246A (ja) * | 2004-04-26 | 2005-11-04 | Tokyo Seimitsu Co Ltd | 化学機械研磨装置及び化学機械研磨方法 |
Also Published As
Publication number | Publication date |
---|---|
US20220228924A1 (en) | 2022-07-21 |
SG11202113160UA (en) | 2021-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4515509B2 (ja) | 基板表面温度計測方法、及び、これを用いた基板処理装置 | |
WO2020241850A1 (ja) | 放射温度計を較正する方法、およびシステム | |
US6100506A (en) | Hot plate with in situ surface temperature adjustment | |
US11919124B2 (en) | Pad-temperature regulating apparatus, method of regulating pad-temperature, polishing apparatus, and polishing system | |
JP4493192B2 (ja) | バッチ式熱処理装置及びその制御方法 | |
US7727780B2 (en) | Substrate processing method and semiconductor manufacturing apparatus | |
US9381614B2 (en) | Pressure regulator, polishing apparatus having the pressure regulator, and polishing method | |
KR101730683B1 (ko) | 빌딩 내의 복수의 룸의 온도를 조절하기 위한 방법 및 장치 | |
US20020068371A1 (en) | Temperature measuring method and apparatus in semiconductor processing apparatus, and semiconductor processing method and apparatus | |
US20140361099A1 (en) | System and Method for Thermal Control of Flow Through a Conduit | |
KR20140136482A (ko) | 화학 증착 챔버 내부의 베이스 가열 제어 장치 및 방법 | |
TW201032286A (en) | Method for identifying an incorrect position of a semiconductor wafer during a thermal treatment | |
JPH10154665A (ja) | 適応温度コントローラおよび操作方法 | |
US20220316066A1 (en) | Level monitoring and active adjustment of a substrate support assembly | |
KR100615763B1 (ko) | 열처리 장치의 온도 교정 방법 | |
JP7328931B2 (ja) | 放射温度計を較正する方法、およびシステム | |
EP2572252B1 (en) | Heating in material testing apparatus | |
US20070074660A1 (en) | Thermal processing appratus and thermal processing method | |
TWI809396B (zh) | 用於電阻加熱器之被動和主動校準方法 | |
KR20170114364A (ko) | 히트 재킷 온도 제어 모듈 및 그 운용방법. | |
JP2002301660A (ja) | 研磨温度測定方法、研磨方法、ワーク保持機構および研磨装置 | |
JP4980100B2 (ja) | ウエハ加熱成膜装置、及びウエハ温度制御方法 | |
TWI815203B (zh) | 電子部件處理裝置、電子部件測試裝置及電子部件測試方法 | |
JP2020197528A5 (ja) | ||
US20240011161A1 (en) | Parameter setting method and substrate processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20814500 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20814500 Country of ref document: EP Kind code of ref document: A1 |