WO2020241819A1 - 複合体、医薬、癌治療剤、キット及び結合体 - Google Patents

複合体、医薬、癌治療剤、キット及び結合体 Download PDF

Info

Publication number
WO2020241819A1
WO2020241819A1 PCT/JP2020/021301 JP2020021301W WO2020241819A1 WO 2020241819 A1 WO2020241819 A1 WO 2020241819A1 JP 2020021301 W JP2020021301 W JP 2020021301W WO 2020241819 A1 WO2020241819 A1 WO 2020241819A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
peg
solution
fpba
lys
Prior art date
Application number
PCT/JP2020/021301
Other languages
English (en)
French (fr)
Inventor
西山 伸宏
本田 雄士
貴大 野本
宏泰 武元
誠 松井
宏昭 喜納
片岡 一則
学瑩 劉
アンジャネユル ディリサラ
Original Assignee
国立大学法人東京工業大学
公益財団法人川崎市産業振興財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 公益財団法人川崎市産業振興財団 filed Critical 国立大学法人東京工業大学
Priority to CN202080038623.1A priority Critical patent/CN113905786A/zh
Priority to US17/613,912 priority patent/US20220265836A1/en
Priority to JP2021522894A priority patent/JPWO2020241819A1/ja
Priority to EP20814608.4A priority patent/EP3978078A4/en
Publication of WO2020241819A1 publication Critical patent/WO2020241819A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1767Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/593Polyesters, e.g. PLGA or polylactide-co-glycolide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6901Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to complexes, pharmaceuticals, therapeutic agents for cancer, kits and conjugates.
  • the present application claims priority based on Japanese Patent Application No. 2019-100395 filed in Japan on May 29, 2019, the contents of which are incorporated herein by reference.
  • Biopharmacy and other bioactive proteins are highly expected as epoch-making therapeutic agents for intractable diseases such as cancer.
  • proteins whose size is smaller than the filtration threshold of renal glomeruli are poorly retained in blood because they are rapidly excreted from the body, and their blood stability is not always sufficient because they undergo enzymatic degradation in blood.
  • the reality is that the expected pharmacological effects have not been obtained.
  • bioactive proteins for the application of bioactive proteins to the treatment of cancer, it may be required to have selective accumulation in tumors.
  • Non-Patent Document 1 an antibody as a physiologically active protein is used, and an amino group of the antibody is modified with a negatively charged pH-responsive molecule, and then a positively charged polymer compound and a polyion complex (PIC) are used. The technique of forming is shown. According to this, it is said that the antibody can be released specifically in the cell by dissociating the pH-responsive molecule at the intracellular pH and dissociating the PIC.
  • PEG polyethylene glycol
  • Non-Patent Document 2 discloses a technique for encapsulating a protein in a catechol structure-introduced polymer.
  • a molecule having a catechol structure for example, tannic acid is known. It is known that tannic acid can bind to proteins to form a complex by hydrophobic interaction and hydrogen bonding (Non-Patent Documents 3 to 4). According to the bond between tannic acid and a protein or the like, it is possible to form a complex without utilizing chemical modification.
  • micellar nanocomplexes computing green tea catechin derivatives and protein drugs for cancer therapy J. E. Chung, S. Tan, S. J. Gao, N. , H. S. Choi, H. Yano, L. Zhuo, M. Kurisawa, and J. Y. Ying, Nat. Nanotech. 9 (11), 907-912 (2014).
  • Non-Patent Document 1 since the antibody is chemically modified, there is a concern that the pharmacological activity of the antibody may be lowered as in the case of PEG modification. In addition, there is no report that the complexation of proteins shown in Non-Patent Documents 2 to 4 has improved the retention and stability of proteins in blood and exhibited tumor accumulation.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a complex having excellent blood retention and pH responsiveness.
  • the present invention has the following aspects.
  • ⁇ 1> A conjugate in which a polymer having a boronic acid group and a compound having a diol structure are bonded, and The substance complexed with the conjugate and Including the complex.
  • ⁇ 3> A conjugate in which a polymer having a boronic acid group and a compound having a diol structure are bonded, and With protein The complex according to the above ⁇ 1> or ⁇ 2>, which comprises.
  • ⁇ 4> The complex according to any one of ⁇ 1> to ⁇ 3>, wherein the compound having a diol structure is a polyphenol.
  • boronic acid group is a phenylboronic acid group which may have a substituent or a pyridylboronic acid group which may have a substituent.
  • the complex described in one. ⁇ 8> The above ⁇ 1> to ⁇ 7>, wherein the boronic acid group is a phenylboronic acid group represented by the following general formula (I) or a pyridylboronic acid group represented by the following general formula (II).
  • the polymer is selected from the group consisting of polyethylene glycol, acrylic resin, polyamino acid, polyvinylamine, polyallylamine, polynucleotide, polyacrylamide, polyether, polyester, polyurethane, polysaccharide, and copolymers thereof.
  • the polymer having a boronic acid group includes a first biocompatible polymer chain and a second biocompatible polymer chain different from the first biocompatible polymer chain.
  • the complex according to any one of ⁇ 1> to ⁇ 9> is selected from the group consisting of polyethylene glycol, acrylic resin, polyamino acid, polyvinylamine, polyallylamine, polynucleotide, polyacrylamide, polyether, polyester, polyurethane, polysaccharide, and copolymers thereof.
  • L represents a linker part and represents B represents the second biocompatible polymer chain having a boronic acid group, and contains the repeating structure represented by (b2) below, or the repeating structure represented by (b1) and (b2). Includes the repeating structure represented. )
  • R 1 represents the amino acid side chain
  • R 2 is for the boronic acid group has been introduced into the amino acid side chain
  • n represents the total number of (b1) and (b2)
  • n is an integer of 1 to 1000
  • m is an integer of 1 to 1000 (where m ⁇ n)
  • n ⁇ m is 2 or more.
  • a plurality of R 1 may be the same or different, when m is 2 or more, plural R 2 may be the same or different from each other. ).
  • ⁇ 14> The above-mentioned ⁇ 1> to ⁇ 13>, wherein the average particle size determined by dynamic light scattering (DLS) or fluorescence correlation spectroscopy (FCS) is 5 nm or more and 200 nm or less.
  • ⁇ 15> The complex according to any one of ⁇ 1> to ⁇ 14>, wherein the number average molecular weight of the polymer having a boronic acid group is 2,000 to 200,000.
  • a kit comprising a polymer having a boronic acid group and a compound having a diol structure.
  • the complex of the embodiment is a compound in which a polymer having a boronic acid group and a compound having a diol structure are bonded, and a substance that is complexed with the conjugate (hereinafter, may be referred to as a “composite element”). And may be included, and the polymer may be a biocompatible polymer.
  • the complex of the embodiment contains a conjugate to which a biocompatible polymer having a boronic acid group and a compound having a diol structure are bound, and a substance that is complexed with the conjugate.
  • FIG. 1 is a schematic diagram showing an example of a schematic configuration of the complex of the embodiment.
  • the complex 1 of the embodiment includes a conjugate 10 and a substance 40 that is complexed with the conjugate 10.
  • Examples of the substance to be complexed with the conjugate 10 include at least one selected from the group consisting of proteins, viruses, inorganic particles, nucleic acids, and small molecule drugs.
  • the substance to be complexed with the conjugate is a protein
  • the protein complex as an embodiment of the complex can be exemplified.
  • the protein complex of the embodiment may contain a conjugate in which a polymer having a boronic acid group and a compound having a diol structure are bound, and a protein.
  • diol structure refers to a structure in which two hydroxyl groups are bonded to different carbon atoms, and may be a structure in which two hydroxyl groups are bonded to adjacent carbon atoms.
  • the compound having a diol structure is not limited to the aliphatic compound.
  • the protein complex 1 of the embodiment contains the conjugate 10 and the protein 4.
  • the conjugate 10 is a bond of a polymer 2 having a boronic acid group and a compound 3 having a diol structure.
  • the diol structure represented by the following formula (10a) and the boronic acid group represented by the following formula (10b) can form a boronic acid diol bond represented by the following formula (10c). That is, the conjugate 10 in the complex 1 of the embodiment may be a conjugate in which the polymer 2 having a boronic acid group and the compound 3 having a diol structure form a boronic acid diol bond.
  • the compound 3 having a diol structure forms a conjugate 10 with a polymer 2 having a boronic acid group, and at the same time, as shown in FIG. 1, also binds to a complex element 40 such as a protein 4 to form a complex. be able to. It is considered that the compound 3 having a diol structure and the protein 4 (composite element 40) can be bonded by hydrophobic interaction and / or hydrogen bond, and the protein 4 (composite element 40) is compounded without chemical modification. It can be embodied.
  • the protein 4 (composite element 40) is a polymer having a boronic acid group via the compound 3 having a diol structure (that is, via a portion derived from the compound 3 having a diol structure of the conjugate 10). It looks like 2 is added. From this, in the complex 1 of the embodiment, the complex can be formed with the conjugate 10 without chemically modifying the complex element such as a protein.
  • the complex of the embodiment may take a form in which a complex element such as a protein is used as a core and a conjugate is arranged around the complex element like a shell. More specifically, a form in which a composite element such as a protein is used as a core, a portion derived from a compound having a diol structure as a part of a conjugate is arranged around the core, and a polymer portion is further arranged on the outside thereof. Can be taken. Therefore, since the complex element is encapsulated and protected by the conjugate, it is possible to suppress the involvement of the complex element such as a protein in an unintended biological reaction.
  • An example of an unintended biological reaction is, for example, an immune reaction.
  • a compound having a diol structure has a property of easily interacting with a protein or the like, and in the conventional techniques shown in Non-Patent Documents 2 to 4, an unintended interaction in a living body is caused by a compound having a diol structure. May occur.
  • the polymer portion since the polymer portion may be arranged outside the portion derived from the compound having a diol structure, it is not intended in vivo as compared with the conventional technique. It is considered that the interaction can be suppressed, and the stability of substance delivery is superior to that when the compound having a diol structure is used as it is.
  • the polymer 2 having a boronic acid group and the compound 3 having a diol structure are bonded to form a boronic acid diol bond, so that the complex 1 has a boronic acid.
  • the group and diol structures may not be included.
  • the boronic acid diol bond can be a reversible covalent bond.
  • the bond between the boronic acid group and the diol structure is reversible depending on the pH condition, and the boronic acid diol bond is dissociated by the transition to a low pH, and the diol structure (10a) and the boronic acid group (10b) are again formed.
  • FIG. 2 is a schematic diagram showing an example of the configuration of the complex of the embodiment in vivo.
  • the pH in blood is around 7.4, and the pH in cells (particularly in acidic organelles such as endosomes and lysosomes) is around 5.5.
  • the conjugate 10 and the protein 4 are complexed to improve blood retention and blood stability.
  • the boronic acid diol bond is dissociated, and the polymer 2 having a boronic acid group is eliminated to form a protein. 4 (composite element 40) is released, and the original function of protein 4 (composite element 40) can be easily exerted.
  • compound 3 having a diol structure such as polyphenols dissociates from protein 4 in the cell.
  • the complex of the embodiment can have pH responsiveness.
  • the pH responsiveness of a complex is defined as the bond between the compound 3 having a diol structure and the polymer 2 having a phenylboronic acid group in the conjugate constituting the complex, depending on the surrounding pH environment.
  • the pH responsiveness may be such that as the pH decreases, the bond between the compound 3 having a diol structure and the polymer 2 having a boronic acid group in the conjugate constituting the complex is dissociated. ..
  • the complex of embodiments can be ATP responsive.
  • the ATP responsiveness that the complex may have refers to the compound 3 having a diol structure and the phenylboronic acid group of the conjugate 10 constituting the complex as the surrounding ATP concentration increases. It refers to the property of dissociating the bond with the polymer 2 having. Since the complex has ATP responsiveness, in blood (pH about 7.4), the conjugate 10 and the protein 4 (complex element 40) are complexed to improve blood retention and blood stability.
  • the dissociation of the boronic acid diol bond causes the polymer 2 having a boronic acid group to be eliminated, the protein 4 (complex element 40) is released, and the protein 4 (composite element 40) is released. ) It is possible to make it easy for the original function to be exhibited.
  • the above binding and its dissociation can be measured by, for example, the alizarin red method.
  • the alizarin red method the method shown in Examples described later can be used.
  • the above-mentioned bond and its dissociation have a particle size of complex particles (including those in which some or all the components of the complex are dissociated) under different pH environments, for example, as described in Examples. If it can be confirmed by measurement that the particle size is smaller under a lower pH condition than under a certain pH condition, it has a compound 3 having a diol structure of a conjugate and a boronate group under the low pH condition.
  • the bond with the polymer 2 is dissociated, and it can be determined that the complex has pH responsiveness.
  • the particle size can be confirmed by a known method, and as an example, the fluorescence correlation spectroscopy or the dynamic light scattering method described in Examples can be used.
  • the particle size determined by fluorescence correlation spectroscopy in the present specification is an arithmetic mean diameter based on the number of particle sizes determined by using the Einstein-Stokes equation.
  • the particle size determined by the dynamic light scattering method in the present specification is an arithmetic mean diameter based on the number of particle sizes determined by using the Einstein-Stokes equation.
  • the complex of the embodiment is, for example, at pH 7.4, the complex element and the conjugate form a complex, for example, pH 7.4. It is preferable that the compound 3 having a diol structure and the polymer 2 having a boronic acid group have a pH responsiveness to dissociate at a pH of less than, pH 6.6 or less, pH 5.5 or less, and the like.
  • the complex of the embodiment is, for example, at pH 7.4, the protein and the conjugate form a complex, for example, less than pH 7.4. It is preferable that the compound 3 having a diol structure has a pH responsiveness at which the bond between the compound 3 having a diol structure and the polymer 2 having a boronic acid group is dissociated at a pH of 6.6 or less, a pH of 5.5 or less, and the like.
  • a decrease in particle size can be confirmed at pH less than 7.4, pH 6.6 or less, pH 5.5 or less, etc., as compared with pH conditions higher than the pH (for example, pH 7.4). , It is preferable to have pH responsiveness.
  • the pH environment in blood is known to be about pH 7.4, the pH environment around the tumor is known to be about pH 6.6, and the intracellular pH environment is about pH 5. It is known to be 5.
  • the complex of the embodiment having a pH responsiveness in which a decrease in particle size can be confirmed at a pH of less than 7.4 as compared with a pH of 7.4 or more forms a complex in blood and has retention in blood and stability in blood.
  • a complex element such as a protein around a tumor or inside a cell
  • the complex is dissociated and the protein or the like is released, so that the original function of the protein or the like is more effectively exhibited at the delivery destination. ..
  • the complex of the embodiment having pH responsiveness capable of confirming a decrease in particle size at pH 6.6 or less as compared with pH 7.4 or more forms a complex in blood and has retention in blood and stability in blood. Since the complex is dissociated and the complex element such as protein is released around the tumor and inside the cell, the original function of the complex element such as protein can be more effectively exerted around the tumor and inside the cell. Can be done.
  • the complex of the embodiment having a pH responsiveness capable of confirming a decrease in particle size at a pH of 5.5 or less as compared with a pH of 7.4 or more forms a complex in blood and has retention in blood and stability in blood. Since the complex is dissociated in the cell and the complex element such as protein is released, the original function of the complex element such as protein can be exerted more effectively in the cell.
  • the pH related to the pH responsiveness of the complex of the embodiment is not limited to those exemplified above.
  • the bond and dissociation of the compound 3 having a diol structure of the conjugate and the polymer 2 having a boronic acid group and the confirmation of the above particle size are not limited to the measurement under the conditions shown in Examples described later. It can be appropriately determined depending on the environment in which the complex of the embodiment is used.
  • the degree of pH responsiveness under the delivery environment (for example, the degree of decrease in the size of the complex particle size) can be arbitrarily adjusted by adjusting the pKa of the boronic acid group related to the pH responsiveness.
  • the degree of pH responsiveness (for example, the degree of decrease in the size of the complex particle size) is poor in the delivery environment, the usefulness of the complex of the present embodiment is not denied. .. Rather, such a complex is considered to be capable of exerting sustained release of a complex element such as a protein, and may be suitably used for long-term substance delivery.
  • the average particle size of the composite of the embodiment is, for example, preferably 5 nm or more and 200 nm or less, more preferably 10 nm or more and 150 nm or less, and further preferably 15 nm or more and 100 nm or less.
  • the particle size of the complex can be measured by dynamic light scattering (DLS) or fluorescence correlation spectroscopy (FCS) under the measurement conditions described in Examples described later.
  • DLS dynamic light scattering
  • FCS fluorescence correlation spectroscopy
  • the tumor accumulation of the complex is considered to be exerted by the selective accumulation in the tumor utilizing the enhanced vascular leakage property of the tumor, that is, the enhanced permeability and retention effect (EPR effect), and is selectively exerted on the tumor. Achieve a better antitumor effect with good delivery.
  • EPR effect enhanced permeability and retention effect
  • the ratio of the conjugate 10 to the complex element 40 included in the complex of the embodiment is not particularly limited, but for example, one molecule of the complex element is complexed with one or more conjugates. It may be complexed with two or more conjugates, it may be complexed with five or more conjugates, or it may be complexed with 1-100 conjugates. It may be complexed with 2 to 50 conjugates, or may be complexed with 5-20 conjugates.
  • the ratio of the conjugate 10 to the protein 4 contained in the complex is not particularly limited, but for example, one or more conjugates per molecule of the protein. It may be complexed with 2 or more conjugates, it may be complexed with 5 or more conjugates, and it may be complexed with 1 to 100 conjugates. It may be complexed, it may be complexed with 2 to 50 conjugates, or it may be complexed with 5-20 conjugates.
  • the compound 3 having a diol structure according to the present embodiment forms a bond with a polymer having a boronic acid group and also forms a complex with a complex element such as a protein, so to speak, as a mediator between the two. Contributes to the formation of the body.
  • the compound having a diol structure according to the present embodiment is not particularly limited as long as it has one or more diol structures in the molecule, and from the viewpoint of bond stability, one or more catechol structures and / or galloyl in the molecule. It preferably has a structure.
  • the compound has a catechol structure and / or a galloyl structure, it is preferable because the hydrophobic interaction with the benzene ring in the structure further promotes the complexing with a complex element such as a protein.
  • a structure represented by the following formula (3a) can be exemplified.
  • a structure represented by the following formula (3b) can be exemplified.
  • the galloyl structure represented by the following formula (3b) is preferable because hydrogen bonding with a hydroxyl group further promotes complexation with a complex element such as a protein.
  • the number of diol structures contained in the compound 3 according to the present embodiment is 1 or more, may be 2 or more, and may be 5 or more.
  • the upper limit of the number of diol structures in the compound according to the present embodiment is not particularly limited, but as an example, it may be 30 or less, 15 or less, and 13 or less.
  • the number of diol structures contained in the compound 3 according to the present embodiment may be an integer of 1 to 30, an integer of 2 to 15, and 5 to 13. Can be an integer of.
  • the binding force between the polymer having a boronic acid group and the compound having a diol structure can be measured by, for example, the alizarin red method.
  • the alizarin red method the method shown in Examples described later can be used.
  • Examples of the compound having a diol structure include those corresponding to polyphenols.
  • Examples of polyphenols include those having a structure in which two or more hydrogen atoms are substituted with hydroxyl groups in aromatic hydrocarbons. Natural ones are known to be produced by plants.
  • Examples of the polyphenols include gallic acid, catechins (catechins and their derivatives), epicatechins (epicatechins and their derivatives), proanthocyanidins, anthocyanidins, galloylated catechins (galloylated catechins and their derivatives), flavonoids and isoflavonoids. , Neoflavonoids, flavonoids, tannins, tannic acids, derivatives thereof and the like.
  • the compound having a diol structure is preferably at least one selected from the group consisting of tannic acid, gallic acid and derivatives thereof.
  • examples of the above derivative include compounds having a diol structure in which one or more hydrogen atoms or groups are substituted with other groups (substituents).
  • the compound having a diol structure may have a hydrogen atom added or removed.
  • examples of the substituent include a hydroxyl group, an amino group, a monovalent chain saturated hydrocarbon group having 1 to 4 carbon atoms, a halogen atom and the like.
  • Examples of the monovalent chain saturated hydrocarbon group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group and the like.
  • Examples of the halogen atom include a fluorine atom and a chlorine atom.
  • the polymer may be a biocompatible polymer.
  • the biocompatible polymer means a polymer that does not or does not have a significant adverse effect such as a strong inflammatory reaction or injury when administered to a living body.
  • the biocompatible polymer having a boronate group is not particularly limited as long as the effects of the present invention can be obtained.
  • a structural unit derived from polyethylene glycol (PEG) or acrylic resin ((meth) acrylic acid ester) can be used.
  • the biocompatible polymer having a boronic acid group may partially have any group introduced in the process of its synthesis. Examples of such a group include a part of a polymerization initiator and the like.
  • the dispersity (Mw / Mn) of the polymer is preferably 1.0 or more and less than 2.0, more preferably 1.0 to 1.5, and even more preferably 1.0 to 1.3. In order for the complex of the embodiment to more effectively exhibit excellent tumor accumulation, it is preferable that the dispersity of the polymer is within the above range.
  • the value calculated from the ratio of the peak integral values based on the 1 H NMR spectrum can be adopted as the number average molecular weight of the polymer.
  • a calculation method for example, as shown in Examples described later, from the ratio of the peak integrated value of the structure derived from the initiator present at the end of the polymer chain and the peak integrated value of the structure derived from the monomer of the calculation target portion, By calculating the degree of polymerization of the monomer and adding the total molecular weight of the structure derived from the polymerized monomer to the molecular weight of the structure derived from the initiator, the number average molecular weight of the polymer before the introduction of the boronic acid group can be calculated. ..
  • the number average molecular weight of the polymer having a boronic acid group a value calculated from the ratio of the peak integral values based on the 1 H NMR spectrum can be adopted.
  • the ratio of the peak integrated value of the structure derived from the initiator present at the end of the polymer chain to the peak integrated value of the structure derived from the phenylboronic acid group of the calculation target portion Therefore, it can be calculated by calculating the number of bonds of the phenylboronic acid group and adding the total molecular weight of the structure derived from the bonded phenylboronic acid group to the number average molecular weight of the polymer chain.
  • the polymer having a boronic acid group of the present embodiment preferably has a number average molecular weight (Mn) of 2,000 to 200,000 calculated by 1 1 H NMR, for example, 5,000 to 100,000. It may be 10,000 to 50,000, or 12,000 to 45,000.
  • Mn number average molecular weight
  • the number average molecular weight of the polymer having a boronic acid group is within the above range, the retention of the complex in blood and the accumulation in tumor tissue are appropriately improved, and the complex is accumulated in normal tissues such as liver. Can be prevented.
  • complex elements such as proteins can be efficiently delivered to tumor tissue.
  • the tumor accumulation of the complex is considered to be exerted by the selective accumulation in the tumor utilizing the enhanced vascular leakage property of the tumor, that is, the enhanced permeability and retention effect (EPR effect), and is selectively exerted on the tumor. Achieve a better antitumor effect with good delivery.
  • the polymer having a boronic acid group may form a polymer micelle or may be in the form of a polymer vesicle.
  • the polymer having a boronic acid group of the present embodiment is preferably biodegradable.
  • Biodegradability means a property that can be absorbed or decomposed in the living body.
  • the biodegradable biocompatible polymer is not particularly limited as long as the effects of the present invention can be obtained, and examples thereof include polyamino acids, polyesters, polynucleotides, and polysaccharides.
  • the accumulation of the conjugate or complex in the living body can be suppressed, and side effects can be reduced.
  • biostability means that it can exist in vivo without being immediately absorbed or immediately degraded.
  • a polymer has biodegradability and biostability, it means that it can exist in the living body until it is absorbed or decomposed in the living body.
  • a polymer is biostable means that at least a part of the polymer is biostable. Therefore, block copolymers of polyamino acids, polyesters, polynucleotides, polysaccharides, etc. with PEG, acrylic resins (resins containing structural units derived from (meth) acrylic acid esters), polyacrylamides, polyethers, polyurethanes, etc. Also falls under the category of biostable biocompatible polymers.
  • the polymer having a boronate group may have a first biocompatible polymer chain and a second biocompatible polymer chain.
  • the first biocompatible polymer chain and the second biocompatible polymer chain are different from each other, and the biocompatible polymer of the present embodiment is the biocompatible polymer chain of the first biocompatible polymer chain. It can be provided as a block copolymer containing a block and a block of a second biocompatible polymer chain. Further, the biocompatible polymer according to the present embodiment may contain yet another polymer chain in addition to the first biocompatible polymer chain and the second biocompatible polymer chain.
  • the "block copolymer” is a polymer to which a plurality of types of blocks (partial constituents in which the same type of structural units are repeatedly bonded) are bonded.
  • the number of blocks constituting the block copolymer may be two or more.
  • the first biocompatible polymer chain or the second biocompatible polymer chain is preferably polyethylene glycol (PEG) from the viewpoint of excellent biocompatibility and versatility.
  • the first biocompatible polymer chain or the second biocompatible polymer chain is preferably a polyamino acid from the viewpoint of excellent biocompatibility and a balance between biostability and biodegradability.
  • the first biocompatible polymer chain contained in the biocompatible polymer and the second biocompatible polymer chain for example, the first biocompatible polymer chain is polyethylene glycol.
  • a combination in which the second biocompatible polymer chain is a polyamino acid is preferable.
  • the method for producing a biocompatible polymer containing the first biocompatible polymer chain and the second biocompatible polymer chain is not particularly limited.
  • a method in which a first biocompatible polymer chain is synthesized by a known polymerization reaction and then a monomer of the second biocompatible polymer chain is polymerized on the first biocompatible polymer chain. Can be manufactured.
  • the polymer chains obtained by the polymerization reaction may be in the state of precursors (for example, those having a protecting group), respectively, and are ordinary ones selected by those skilled in the art for the precursors obtained by the polymerization reaction.
  • the treatment may be performed to produce a first biocompatible polymer chain and a second biocompatible polymer chain.
  • the first biocompatible polymer chain or its precursor provided as a polymer in advance and the second biocompatible polymer chain or its precursor can be bound by a known reaction. .. At that time, the two may be bonded by utilizing the bond between the reactive functional groups.
  • the same treatment can be performed in the same manner to produce a first biocompatible polymer chain and a second biocompatible polymer chain.
  • the polymer according to the embodiment has a boronic acid group.
  • the boronic acid group may have a structure represented by the above formula (10b), and it is said that a diolboronic acid diol bond can be efficiently formed even under pH conditions near neutrality such as the in vivo environment.
  • the boronic acid group is a phenylboronic acid group which may have a substituent or a pyridylboronic acid group which may have a substituent.
  • the phenylboronic acid group and the pyridylboronic acid group those disclosed in the previous reports (WO2013 / 073697, JP-A-2018-142115, etc.) can also be exemplified and incorporated.
  • phenylboronic acid represented by the following general formula (I) can be expressed. It is preferably an acid group or a pyridylboronic acid group represented by the following general formula (II).
  • n a is an integer of 0-4.
  • the halogen atom of X is an element belonging to Group 17 in the periodic table of F, Cl, Br, I and the like, and F is preferable.
  • the phenylboronic acid group represented by the general formula (I) is preferably a group represented by the following general formula (I-1) or general formula (I-2).
  • the pyridylboronic acid group represented by the general formula (II) is preferably a group represented by the following general formula (II-1).
  • X represents a halogen atom or a nitro group
  • the group represented by the general formula (I-1) is preferably a group represented by the following general formula (I-1-1), and the group represented by the general formula (I-2) is described below. It is preferably a group represented by the general formula (I-2-1).
  • the group represented by the general formula (II-1) is preferably a group represented by the following general formula (II-1-1).
  • one or more boronic acid groups may be introduced into the polymer, two or more may be introduced, or five or more may be introduced.
  • the upper limit of the number of boronic acid groups in the polymer of the present embodiment is not particularly limited, but as an example, it may be 1000 or less, 100 or less, or 50 or less.
  • the number of boronic acid groups contained in the polymer according to the present embodiment may be an integer of 1 to 1000, an integer of 2 to 100, and 5 to 100. It may be an integer of 50. When the number is not less than the lower limit, the action of forming a bond by the boronic acid group is satisfactorily exhibited, which is preferable.
  • the polymer has a plurality of (two or more) boronic acid groups, so that even if the bond of one boronic acid group is dissociated, the other boronic acid group Can combine.
  • the number of boronic acid groups in the polymer according to the present embodiment increases, the apparent binding force between the polymer having a boronic acid group and the compound having a diol structure is dramatically improved.
  • the polymer having a boronic acid group can be obtained by introducing a boronic acid group into the polymer.
  • the boronic acid group can be introduced into any part of the polymer.
  • the boronic acid group may be introduced into the first biocompatible polymer chain and / or the second biocompatible polymer chain.
  • a boronic acid group may be introduced by utilizing the bonds between functional groups that are reactive with each other between the polymer and the "compound having a boronic acid group".
  • the reactive functional group may be one originally possessed by the polymer, or may be modified or introduced.
  • the compound having a phenylboronic acid group and the polymer are each subjected to structural changes necessary for the bonding as long as the effects of the present invention are obtained.
  • the compound having a boronic acid group may be bonded to the functional group of the polymer, and may be bonded to the functional group of the first biocompatible polymer chain and / or the second biocompatible polymer chain.
  • the compound having a boronic acid group may be bonded to the functional group of the side chain of the polymer, and may be attached to the side chain of the first biocompatible polymer chain and / or the second biocompatible polymer chain. It may be bonded to a functional group.
  • the boronic acid group may be introduced into the side chain of the polymer via a divalent linking group.
  • the divalent linking group include amide bond, carbamoyl bond, alkyl bond, ether bond, ester bond, thioester bond, thioether bond, sulfonamide bond, urethane bond, sulfonyl bond, timine bond, urea bond, and thiourea bond. Can be mentioned.
  • the polymer to which the boronic acid group is introduced is preferably one having a cationic group in the side chain. Even when the boronic acid group is introduced into the side chain of the polymer, the cationic group of the side chain remaining without introducing the boronic acid group is the anionic group represented by the above formula (10c). The interaction can stabilize the binding of the conjugate.
  • the polymer according to the present embodiment may have a phenylboronic acid group and a cationic group, and the first biocompatible polymer chain and / or the second biocompatible polymer chain is boron. It may have an acid group and a cationic group.
  • the molar ratio of the boronic acid group to the cationic group may be 10: 1 to 1:10. : 3 to 3: 1 and may be 10: 8 to 8:10.
  • the amino group is preferable as the above cationic group.
  • the amino group can be coordinated with boron of boronic acid in an aqueous medium, and the bond of the conjugate can be further stabilized.
  • biocompatible polymer chain having an amino group in the molecule examples include polyamino acids, polyacrylamides, polyvinylamines, polyallylamines, etc., and polyamino acids are preferable.
  • the polyamino acid preferably has a cationic group in the side chain, and more preferably has an amino group in the side chain.
  • the amino group may be an amino group protected by a protecting group.
  • the compound having a boronic acid group is preferably one having a carboxyl group from the viewpoint of bond stability with the amino group and easiness of synthesis.
  • An amide bond is formed between the amino group of the biocompatible polymer to which the boronate group is introduced and the carboxyl group of the compound having the boronate group, and the boronate group is introduced into the biocompatible polymer. Can be made to.
  • the formed amide bond also has the effect of lowering the apparent pKa of the boronic acid group.
  • Examples of the compound having a boronic acid group and a carboxyl group include 4-carboxy-phenylboronic acid, 3-carboxy-4-fluorophenylboronic acid, 4-carboxy-2-fluorophenylboronic acid, and 4-carboxy-3-.
  • Fluorophenylboronic acid (FPBA) 3-carboxy-4-chlorophenylboronic acid, 4-carboxy-2-chlorophenylboronic acid, 4-carboxy-3-chlorophenylboronic acid and the like can be used.
  • a biocompatible polymer chain having an amino group and a compound having a boronic acid group and a carboxyl group are combined with a condensing agent such as DMT-MM.
  • the condensation reaction may be carried out below. Further, in the case of a biocompatible polymer chain having an amino group protected by a protecting group, the protecting group is deprotected by a known reaction to obtain a biocompatible polymer chain having an amino group, and then condensation is performed in the same manner. Can react.
  • the boronic acid group may be introduced into only one of the first biocompatible polymer chain and the second biocompatible polymer chain.
  • the boronic acid group can be introduced into the second biocompatible polymer chain.
  • the biocompatible polymer 2 having a phenylboronic acid group includes a second biocompatible polymer chain 22 having a phenylboronic acid group and a first biocompatible polymer chain 21 having no phenylboronic acid group.
  • the second biocompatible polymer chain may have a side chain, and the phenylboronic acid group may be introduced into the side chain of the second biocompatible polymer chain.
  • polymer having a boronic acid group there is a polymer containing a structure represented by the following general formula (1) or (1-1).
  • A represents the first biocompatible polymer chain
  • L represents a linker portion
  • B represents the second biocompatible polymer having a boronic acid group. Represents a sex polymer chain.
  • the linker portion is preferably an alkylene group having 1 to 20 carbon atoms, preferably a linear alkylene group having 1 to 20 carbon atoms, and is preferably a linear alkylene group having 1 to 5 carbon atoms. It is more preferably an alkylene group.
  • Examples of the alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a pentamethylene group.
  • the second biocompatible polymer chain is preferably a polyamino acid.
  • B in the general formula (1) or (1-1) may be referred to as B.
  • the following is preferable.
  • B represents the second biocompatible polymer chain having a boronic acid group
  • the second biocompatible polymer chain is represented by the repeating structure represented by the following (b2) or (b1). It is preferable to include a repeating structure represented by (b2) and a repeating structure represented by (b2).
  • R 1 represents the amino acid side chain
  • R 2 is for the boronic acid group has been introduced into the amino acid side chain
  • n represents the total number of (b1) and (b2)
  • n is an integer of 1 to 1000
  • m is an integer of 1 to 1000 (where m ⁇ n)
  • n ⁇ m is 2 or more.
  • a plurality of R 1 may be the same or different, when m is 2 or more, plural R 2 may be the same or different from each other. ).
  • amino acids in R 1 and R 2 naturally occurring amino acids are preferable, and for example, valine, leucine, isoleucine, alanine, glycine, phenylalanine, tyrosine, tryptophan, methionine, cysteine, serine, threonine, glutamine, aspartic acid, lysine, etc.
  • examples thereof include arginine, histidine, aspartic acid, glutamic acid, and proline.
  • the amino acid side chain is used in the usual sense in the art and refers to a structure other than the amino group and the carboxy group involved in the amide bond of the polypeptide.
  • glycine is a hydrogen atom and alanine is an amino acid. It is a methyl group, and if it is valine, it is an isopropyl group.
  • the sequences of (b1) and (b2) may be random.
  • m represents the total number of (b2) in the second biocompatible polymer chain
  • nm represents the total number of (b1) in the second biocompatible polymer chain.
  • nm may be 0 (ie, the second biocompatible polymeric chain may have only (b2) into which the boronic acid group has been introduced, of (b1) and (b2). Good.).
  • the second biocompatible polymer chain may have a repeating structure represented by (b2), a repeating structure represented by (b1), and a repeating structure represented by (b2). ..
  • amino acid side chain of R 1 and the amino acid side chain of R 2 may be the same or different from each other.
  • n is an integer of 1 to 1000, may be an integer of 10 to 500, and may be an integer of 15 to 100.
  • the value of n is within the above range, the value of the molecular weight of the second biocompatible polymer chain is preferable, which is preferable.
  • m is an integer of 1 to 1000, may be an integer of 3 to 100, and may be an integer of 5 to 50.
  • the value of m is at least the lower limit, the action of forming a conjugate by the boronic acid group is satisfactorily exhibited, which is preferable.
  • the numerical range when n is larger than m is also illustrated here, n and m may be the same number.
  • the mode of introducing the boronic acid group into the polyamino acid is not particularly limited, but a bond between the amino acid side chain of the polyamino acid and the compound having a boronic acid group is preferable.
  • a method for binding a compound having a boronate group to the amino acid side chain of a polyamino acid an amide bond with the carboxyl group of the aspartic acid side chain or the glutamate side chain and a disulfide bond with the thiol group of the cysteine side chain are formed. The method etc. can be mentioned.
  • the amino group coordinates with the boron of boronic acid in the aqueous medium to form a bond of the conjugate. Since it can be further stabilized, a method of forming an amide bond between an amino acid side chain having an amino group and a carboxyl group of a compound having a boronic acid group and a carboxyl group is preferable.
  • the amino acid side chain having an amino group may be an amino group of a natural amino acid side chain such as a lysine side chain, an arginine side chain, an alparagin side chain, or a glutamine side chain, and any amino acid side chain has an amino group. It may be introduced, and the lysine side chain is preferable from the viewpoint of biocompatibility and the like.
  • the repeating structure shown in (b2) above preferably contains a structure in which a boronic acid group is introduced into an amino acid side chain in which R 2 has a cationic group, and R 2 has an amino group. It is more preferable to include a structure in which a boronate group is introduced into the amino acid side chain as a constituent unit, and R 2 may include a structure in which a boronate group is introduced into the lysine side chain as a constituent unit. More preferred.
  • the repeating structure shown in (b1) above preferably contains a structure in which R 1 is an amino acid side chain having a cationic group as a constituent unit, and R 1 contains an amino group. More preferably comprising a structure which is an amino acid side chain having a constituent unit, it is further preferably includes a structure R 1 is lysine side chain as a constituent unit.
  • the first biocompatible polymer chain is preferably polyethylene glycol.
  • the structure represented by the above general formula (1) is as follows.
  • the structure represented by 1-2) is preferable.
  • l is an integer of 1 to 1500
  • B represents a second biocompatible polymer chain having a phenylboronic acid group
  • the second biocompatible polymer chain has a repeating structure represented by the following (b2). , Or a repeating structure represented by (b1) and a repeating structure represented by (b2). )
  • l is an integer of 1 to 1500, may be an integer of 10 to 1000, and may be an integer of 100 to 500.
  • the substance to be complexed with the conjugate in the complex of the present embodiment is not particularly limited as long as it can be complexed with the conjugate to form the complex, and may be any material.
  • the substance to be complexed with the conjugate can be complexed with the conjugate via a portion derived from the compound having a diol structure of the conjugate.
  • a substance can be complexed with the conjugate via a moiety derived from a compound having a diol structure of the conjugate, for example, in a composition comprising the substance and a compound having a diol structure. Can be preliminarily confirmed by the fact that can form a complex. For example, in a composition containing a protein and a polyphenol, if both can form a complex, the protein is likely to be complexed with the conjugate via a polyphenol-derived moiety of the conjugate.
  • the compounding can be determined by the fact that the particle size of the particles contained in the composition is larger than the particle size of the substance alone.
  • the complexing of a substance with a conjugate can be evaluated, for example, by confirming that both can form a complex in a composition containing the substance and the conjugate.
  • the formation of the complex can be determined by the fact that the particle size of the particles contained in the composition is larger than the particle size of the substance alone.
  • the size of the substance to be complexed with the conjugate is not particularly limited, but as an example, the particle size of the substance may be 500 nm or less, 0.1 nm or more and 500 nm or less, and 0.2 nm. It may be 100 nm or more, and may be 0.3 nm or more and 50 nm or less.
  • the particle size can be measured by dynamic light scattering (DLS) or fluorescence correlation spectroscopy (FCS) under the measurement conditions described in Examples described later.
  • a substance complexed with a conjugate at least one selected from the group consisting of proteins, viruses, inorganic particles, nucleic acids, and small molecule drugs can be exemplified.
  • the substance included in the concept exemplified here may be included in a plurality of the above concepts.
  • the protein as a complex element in the complex of the present embodiment is not particularly limited and may be any protein as long as it can be complexed with the conjugate to form a complex.
  • the protein in the morphological complex is preferably a bioactive protein.
  • the bioactive protein preferably has a pharmacological action and preferably contains a protein-type drug.
  • a protein-type drug is a drug containing a protein or a component containing a protein as an active ingredient.
  • antibody drugs such as Herceptin, Avastin, and Cyramza
  • various enzymes such as hyaluronidase, insulin, cytokines, interferon, and viruses.
  • vectors examples include vectors.
  • the viral vector include those containing adeno-associated virus (AAV).
  • protein is a concept including peptides.
  • a membrane-permeable peptide can also be preferably exemplified.
  • the complex of the present embodiment preferably exhibits tumor accumulation, and the protein in the complex preferably has an antitumor effect.
  • protein-type drugs having an antitumor effect examples include antibody drugs, interferons, viral vectors, and the like.
  • the virus as a complex element in the complex of the present embodiment is not particularly limited and may be any virus as long as it can be complexed with the conjugate to form a complex. Since the complex of the present embodiment has excellent blood retention, has pH responsiveness, and exhibits tumor accumulation, and can be suitably used for drug delivery in vivo, the present embodiment is carried out.
  • the virus in the morphological complex is preferably a therapeutic virus used as a viral vector for the treatment of diseases (viral therapy), and more preferably a cancer therapeutic virus used for the treatment of cancer.
  • the therapeutic virus may contain a nucleic acid having a pharmacological action in the viral vector, or may contain a nucleic acid encoding a protein having a pharmacological action.
  • the therapeutic virus may include a nucleic acid introduced for the treatment of a disease or may contain a nucleic acid introduced for the treatment of cancer.
  • the nucleic acid can include an operably linked promoter sequence in order to express the sequence contained in the nucleic acid.
  • Examples of the therapeutic virus include various viruses or artificial viruses that can be used as a virus vector for humans, and examples of the virus species of the virus vector include adeno-associated virus, adenovirus, herpesvirus, Sendai virus, retrovirus, and lentivirus. Etc. can be exemplified.
  • Examples of the adeno-associated virus (AAV) include AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, and AAV11.
  • the complex of the present embodiment preferably exhibits tumor accumulation, and the virus in the complex preferably has an antitumor effect.
  • the inorganic particles as a composite element in the composite of the present embodiment are not particularly limited as long as they can be composited with the conjugate to form a composite, and may be any.
  • the inorganic particles are particles containing an inorganic material, and include metal particles such as gold particles, silver particles, platinum particles, iron particles, and titanium oxide particles; silica particles; semiconductor particles such as quantum dots; carbon nanotubes, graphene, and the like. Examples of carbon particles and the like.
  • the inorganic particles are preferably nanoparticles. Nanoparticles are particles with a particle size of 1 to 100 nm.
  • the particle size of the particles can be measured by dynamic light scattering (DLS) or fluorescence correlation spectroscopy (FCS) under the measurement conditions described in Examples described later.
  • the inorganic particles may be further modified with at least one selected from the group consisting of the above-mentioned proteins, viruses, nucleic acids, and small molecule drugs.
  • nucleic acid as a complex element in the complex of the present embodiment is not particularly limited and may be any as long as it can be combined with the conjugate to form a complex.
  • the nucleic acid in the complex of forms is preferably a nucleic acid having physiological activity.
  • the nucleic acid having a physiological activity preferably has a pharmacological action, and preferably contains a nucleic acid drug.
  • the nucleic acid as a complex element in the complex of the present embodiment is preferably a nucleic acid drug used for the treatment of a disease.
  • nucleic acid drugs include various nucleic acids having physiological activity in the human body, and artificial nucleic acids such as DNA, RNA, and LNA can be exemplified. Types of nucleic acids include siRNA, miRNA, antisense nucleic acid, aptamer, and ribozyme. Etc. can be exemplified.
  • the complex of the present embodiment preferably exhibits tumor accumulation, and the nucleic acid in the complex preferably has an antitumor effect.
  • nucleic acids having an antitumor effect include TUG1 (taurine upregulated gene 1) antisense nucleic acid, PLK1 (polo-like kinase 1) siRNA, VEGF (vascular endothelial growth factor) siRNA and the like.
  • the low-molecular-weight drug as a complex element in the complex of the present embodiment is not particularly limited as long as it can be combined with the conjugate to form a complex, and may be any.
  • the complex of the present embodiment has excellent blood retention, has pH responsiveness, and exhibits tumor accumulation, and thus can be suitably used for drug delivery in vivo.
  • small molecular weight drug means a drug having a molecular weight of 1000 or less, preferably a drug having a molecular weight of 500 or less, for example, a drug having a molecular weight of 200 to 1000, or a drug having a molecular weight of 300 to 500.
  • the molecular weight of pitavastatin, a therapeutic agent for dyslipidemia, used in the examples described later is about 421.
  • the complex of the present embodiment preferably exhibits tumor accumulation, and the small molecule drug in the complex preferably has an antitumor effect.
  • low-molecular-weight drugs having an antitumor effect include anticancer agents such as bleomycin or a salt thereof, acoustic sensitizers such as rose bengal, photosensitizers such as chlorine e6, and radiation sensitizers such as boron clusters.
  • a complex with a conjugate can be formed without chemically modifying a complex element such as a protein, and the polymerization of the conjugate by a polymer causes blood retention. It has been improved.
  • the conjugate is a bond of a polymer having a boronate group and a compound having a diol structure, and has a pH responsiveness in which the conjugate dissociates according to the pH environment of the target site. Therefore, the complex of the present embodiment has excellent blood retention and is expected to selectively dissociate the conjugate at the target delivery destination to express the function of the complex element such as protein. It is a period.
  • a medicine containing the complex of the embodiment as an active ingredient containing the complex of the embodiment as an active ingredient.
  • the complex of embodiments can have a pharmacological effect on the disease.
  • the embodiment is suitable when a complex element such as a protein in the complex of the present embodiment is an active ingredient and has a pharmacological action.
  • a complex element such as a protein in the complex of the present embodiment is an active ingredient and has a pharmacological action.
  • any protein having a pharmacological action, a protein-type drug, or a therapeutic agent can be used.
  • a cancer therapeutic agent containing the complex of the embodiment as an active ingredient is provided.
  • a complex of embodiments for the treatment of cancer As one embodiment of the present invention, there is provided the use of a complex of embodiments for producing a therapeutic agent for cancer.
  • the complex of embodiments can have a cancer therapeutic effect.
  • the embodiment is suitable when a complex element such as a protein in the complex of the present embodiment is an active ingredient and has an antitumor effect.
  • various proteins capable of exerting an antitumor effect are protein types.
  • Pharmaceuticals, therapeutic viruses, nucleic acids, nucleic acid drugs, small molecule drugs and the like can be used.
  • target diseases expected to have a cancer therapeutic effect include blood cancer, solid cancer, and the like, and when the complex of the present embodiment has tumor accumulation, it is suitable for solid cancer.
  • Solid cancers include, for example, brain cancer, head and neck cancer, esophageal cancer, thyroid cancer, small cell cancer, non-small cell cancer, breast cancer, gastric cancer, cholecyst / bile duct cancer, lung cancer, etc.
  • Liver cancer hepatocellular carcinoma, pancreatic cancer, colon cancer, rectal cancer, ovarian cancer, villous epithelial cancer, uterine body cancer, cervical cancer, renal pelvis / urinary tract cancer, bladder cancer , Prostate cancer, penis cancer, testicular cancer, fetal cancer, Wilms cancer, skin cancer, malignant melanoma, neuroblastoma, osteosarcoma, Ewing tumor, soft sarcoma and the like.
  • Examples of formulation of the cancer therapeutic agent of the present embodiment include tablets coated with sugar, capsules, elixirs, and oral preparations used orally as microcapsules, if necessary.
  • aseptic solutions with water or other pharmaceutically acceptable liquids, or those used parenterally in the form of injections of suspensions can be mentioned.
  • pharmacologically acceptable carriers or vehicles specifically sterile water, saline, vegetable oils, emulsifiers, suspensions, surfactants, stabilizers, flavoring agents, excipients, vehicles, preservatives. Examples thereof include those formulated by appropriately combining with an agent, a binder and the like and mixing in a unit dose form required for generally accepted pharmaceutical practice.
  • Additives that can be mixed with tablets and capsules include, for example, binders such as gelatin, corn starch, traganth gum, gum arabic, excipients such as crystalline cellulose, swelling such as corn starch, gelatin and alginic acid. Agents, lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, flavors such as peppermint, reddish oil or cherry are used.
  • the dispensing unit form is a capsule, the above-mentioned material can further contain a liquid carrier such as fat or oil.
  • Aseptic compositions for injection can be formulated according to routine formulation practices using vehicles such as distilled water for injection.
  • Aqueous solutions for injection include, for example, saline, isotonic solutions containing glucose and other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, sodium chloride, and suitable solubilizers such as.
  • Alcohols, specifically ethanol, polyalcohols such as propylene glycol, polyethylene glycol and nonionic surfactants such as polysorbate 80 (TM), HCO-50 may be used in combination.
  • oily liquid examples include sesame oil and soybean oil, and benzyl benzoate and benzyl alcohol may be used in combination as solubilizing agents. It may also be blended with buffers such as phosphate buffers, sodium acetate buffers, soothing agents such as procaine hydrochloride, stabilizers such as benzyl alcohol, phenol and antioxidants.
  • buffers such as phosphate buffers, sodium acetate buffers, soothing agents such as procaine hydrochloride, stabilizers such as benzyl alcohol, phenol and antioxidants.
  • the prepared injection solution is usually filled in a suitable ampoule.
  • Administration to patients is performed by methods known to those skilled in the art, for example, intraarterial injection, intravenous injection, subcutaneous injection, intranasal, transbronchial, intramuscular, percutaneous, or oral. sell.
  • the dose varies depending on the weight and age of the patient, the administration method, and the like, but those skilled in the art can appropriately select an appropriate dose.
  • the dose and administration method vary depending on the weight, age, symptoms, etc. of the patient, but those skilled in the art can appropriately select the dose.
  • the cancer therapeutic agent of the embodiment may further contain another anticancer agent or the like. With such a configuration, a synergistic effect on cancer treatment can be expected.
  • the kit of the present embodiment includes a polymer having a boronic acid group and a compound having a diol structure.
  • the polymer may be a biocompatible polymer.
  • the kit of the embodiment may include a biocompatible polymer having a boronic acid group and a compound having a diol structure.
  • the kit of this embodiment can be used to form the complex of the above-described embodiment.
  • the kit of this embodiment may further include a substance (composite element) that is complexed with the conjugate.
  • kits of the embodiment an example including a conjugate of the embodiment and a substance complexed with the conjugate can be exemplified.
  • At least one selected from the group consisting of proteins, viruses, inorganic particles, nucleic acids, and small molecule drugs can be exemplified.
  • the kit of this embodiment may further include a solution, reagents such as a buffer, a reaction vessel, an instruction manual, and the like.
  • the kit of the present embodiment can form a complex of the embodiment including a complex element of an arbitrary protein or the like by combining with a complex element of any of the above proteins, and is excellent in versatility. ..
  • the conjugate of the present embodiment is a bond of a polymer having a boronic acid group and a compound having a diol structure.
  • the polymer may be a biocompatible polymer.
  • the conjugate of the embodiment may be a bond of a biocompatible polymer having a boronic acid group and a compound having a diol structure.
  • the conjugate of this embodiment can be used to form the complex of the above embodiment.
  • the compound having a diol structure is bonded to the polymer, unintended interaction of the compound having a diol structure in the living body can be suppressed, and the compound having a diol structure can be used as it is. It is more stable in substance delivery than when it is used.
  • the compound having a diol structure is bonded to the polymer, oxidation of the compound having a diol structure can be suppressed, and the quality is higher than that when the compound having a diol structure is used as it is. Excellent stability.
  • the solution or complex obtained by adding the substances X and Y may be referred to as an X / Y solution, an X / Y complex, or simply "X / Y".
  • the solution or complex obtained by adding the substances X, Y, and Z is the X / Y / Z solution, the X / Y / Z complex, simply "X / Y / Z", or the X ternary system. It may be referred to as a complex, a ternary complex, or the like.
  • PEG-P [Lys (FPBA) m ] n may be simply referred to as a polymer.
  • PEG 10k -Poly [L-Lysine (Fluoro-Phenylboronic acid) m ] n ⁇ 1.1. Overview> PEG 10k -Poly [L-Lysine (Fluoro-Phenylboronic acid) m ] n (hereinafter PEG-P [Lys (FPBA) m ] n produced in the examples, in the synthesis scheme (1), n is the degree of polymerization of Lys. , And m represents the number of FPBAs introduced).
  • PEG-P [Lys (TFA)] n was synthesized by N-carboxyanhydride (NCA) polymerization using PEG 10k -NH 2 as the initiator and Lys (TFA) -NCA as the monomer.
  • NCA N-carboxyanhydride
  • the TFA group in the side chain was deprotected under basic conditions to obtain PEG-PLys n .
  • FPBA carboxyl group of 3-carboxyl-4-fluoro- phenyl boronic acid attached to the amino group of PEG-PLys n, PEG-P [Lys (FPBA)] to obtain a n.
  • the GPC curve (column: TSK-gel superAW3000, eluent: NMP (50 mM LiBr), flow rate: 0.30 mL / min, detector: RI-2031 measurement temperature: acquired at 40 ° C.) is shown in FIGS. 3 and 4. ..
  • PEG 10k -FPBA Synthesis of PEG 10k -FPBA ⁇ 2.1. Overview> The synthesis method of the PEG 10k- Fluoro-Phenylboronic acid (hereinafter referred to as PEG-FPBA, in the synthesis scheme (2)) produced in the examples is described.
  • the obtained solution was freeze-dried to obtain a white solid PEG-P [Lys (FPBA) m ] n in a yield of 90 mg and a yield of 88%.
  • 1 H-NMR spectrum is shown in Fig.
  • the GFP solution and the tannic acid solution were mixed and centrifuged twice at 10,000 g x 5 minutes using an ultrafiltration membrane (Mwco: 10 kDa) to prepare a GFP / TA solution.
  • a confocal microscope LSM710 manufactured by Carl Zeiss
  • the diffusion time of the fluorescent molecule to be measured was calculated with a confocal microscope. Since the diffusion coefficient ⁇ diffusion time is constant, the diffusion time of Rhodamine 6G (diffusion coefficient: 4.14 ⁇ 10 -10 m 2 / sec, 25 ° C), whose diffusion coefficient is known, is simultaneously measured and measured. The diffusion coefficient was calculated. Substituting it into the Einstein-Stokes equation, the particle size was calculated.
  • the Einstein-Stokes equation is as follows.
  • the GFP solution and the tannic acid solution were mixed and centrifuged twice at 10,000 g ⁇ 5 minutes using an ultrafiltration membrane (Mwco: 3.5 kDa) to prepare a GFP / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 is separately added to the GFP / TA solution to prepare the GFP / TA / PEG-P [Lys (FPBA) 10 ] 20 solution, and PEG-P [ Lys (FPBA) 10 ] 20 was added to prepare a GFP / PEG-P [Lys (FPBA) 10 ] 20 solution.
  • FIG. 15 shows the results of measuring the particle size of the particles contained in each solution by fluorescence correlation spectroscopy using LSM710.
  • the particle size of the particles contained in the GFP / TA / PEG-P [Lys (FPBA) 10 ] 20 solution is contained in the GFP solution, the GFP / TA solution, and the GFP / PEG-P [Lys (FPBA) 10 ] 20 solution, respectively. It was confirmed that the GFP / TA / PEG-P [Lys (FPBA) m ] n complex was formed by these ternary systems because it was significantly increased compared to the particle size of the particles. ..
  • FIG. 16 shows the results of measuring the particle size of the particles contained in each of these solutions by LSM710 and fluorescence correlation spectroscopy.
  • FIG. 17 shows the results of measuring the particle size of the particles contained in each solution by using LSM710 for these solutions and fluorescence correlation spectroscopy.
  • FIG. 18 shows the results of measuring the particle sizes of the particles contained in each solution by LSM710 and fluorescence correlation spectroscopy.
  • GFP / TA / PEG-P was adjusted to pH6.6 [Lys (FPBA) 10] 20 particle size of the particles contained in the solution
  • GFP / TA / PEG-P was adjusted to pH7.4 [Lys (FPBA) 10 ] 20 It decreased compared to the particle size of the particles contained in the solution.
  • the GFP solution and the tannic acid solution were mixed and centrifuged twice at 10,000 g ⁇ 5 minutes using an ultrafiltration membrane (Mwco: 10 kDa) to prepare a GFP / TA solution.
  • PEG-P [Lys (FPBA 10 / Cy5)] 20 solution was separately added to the GFP / TA solution to prepare GFP / TA / PEG-P [Lys (FPBA 10 / Cy5)] 20 solution.
  • a precipitate was generated by ultracentrifuging the solution with an ultracentrifuge (CS 150GX) at 50,000 g ⁇ 1 h.
  • the precipitate selectively contains a GFP / TA / PEG-P [Lys (FPBA 10 / Cy5)] 20 complex having a large sedimentation coefficient. Dissolve the precipitate in 1 ml of D-PBS (-), measure the fluorescence spectrum (Ex: 640 nm / Em: 680 nm), and calculate the concentration to calculate the concentration of PEG-P [Lys (FPBA 10 / Cy5) per GFP molecule. ] The number of 20 meetings was measured. The results are shown in Table 1.
  • the binding constant of gallic acid and PEG-P [Lys (FPBA) 10 ] 20 was 2.5 times higher than that of gallic acid and PEG-FPBA.
  • the binding constant of tannic acid and PEG-P [Lys (FPBA) 10 ] 20 was 5 times higher than that of tannic acid and PEG-FPBA.
  • Penicillin / streptomycin Sigma life science Co., Ltd. ⁇ 5 mol / L HCl: Wako Pure Chemical Industries Co., Ltd. ⁇ CT26 cells (mouse colon carcinoma cell line): American Type Culture Collection. -LysoTracker® red DND --99: Thermo Fisher Scientific Inc. ⁇ Hoechst 33342: Thermo Fisher Scientific Inc. ⁇ Paraformaldehyde: Nacalai Tesque Inc. Used as a 4% Paraformaldehyde / D-PBS (-) solution.
  • the GFP solution and the tannic acid solution were mixed and centrifuged twice at 10,000 g ⁇ 5 minutes using an ultrafiltration membrane (Mwco: 10 kDa) to prepare a GFP / TA solution. Then, PEG-P [Lys (FPBA) 10 ] 20 solution was separately added to the GFP / TA solution to prepare GFP / TA / PEG-P [Lys (FPBA) 10 ] 20 solution.
  • GFP / TA / PEG-P [Lys (FPBA) 10 ] 20 Complex pharmacokinetics> GFP / TA / PEG-P [Lys (FPBA) 10 ] 20 to evaluate blood retention and tumor accumulation of GFP, GFP / TA and GFP / TA / PEG-P [Lys (FPBA) 10 ] 20 was intravenously injected into CT26 subcutaneous tumor model mice, and the GFP content of blood and tumor after a certain period of time was measured by ELISA.
  • the GFP solution and the tannic acid solution were mixed and centrifuged twice at 10,000 g ⁇ 5 minutes using an ultrafiltration membrane (Mwco: 10 kDa) to prepare a GFP / TA solution. Then, PEG-P [Lys (FPBA) 10 ] 20 solution was separately added to the GFP / TA solution to prepare GFP, GFP / TA and GFP / TA / PEG-P [Lys (FPBA) 10 ] 20 solution.
  • CT26 subcutaneous tumor model mouse 100 ⁇ l of CT26 cell suspension (1.0 ⁇ 10 6 cells / ml) was subcutaneously injected into BALB / c mice.
  • GFP and GFP / TA were about 5.0% and 1.5% 2 to 6 hours after administration, showing rapid disappearance from the blood, while GFP / TA / PEG-P [Lys (FPBA)). 10 ] 20 showed a significantly high blood concentration of 15% 6 hours after administration and 3.8% 24 hours after administration. Furthermore, GFP / TA / PEG-P [Lys (FPBA) 10 ] 20 is a tumor 2.5 times, 5.5 times, and 10 times higher than GFP at 2, 6 and 24 hours later. Showed accumulation. From these results, the protein delivery system composed of GFP / TA / PEG-P [Lys (FPBA) 10 ] 20 achieved tumor accumulation and retention in addition to improvement of blood retention. It was shown that
  • ternary complex formation containing various substances ⁇ 6.1. Overview> A ternary complex was formed using not only GFP protein but also small molecule drugs, peptides, adeno-associated viruses, inorganic particles, nucleic acids and the like, and the particle size change was measured. As a measurement method, dynamic light scattering (DLS) or fluorescence correlation spectroscopy (FCS) was used.
  • DLS dynamic light scattering
  • FCS fluorescence correlation spectroscopy
  • Chlorin e6 596.7 g / mol, Cayman Chemical Co., Ltd.
  • -Pitavastatin calcium (simply abbreviated as pitavastatin): 880.98 g / mol, Wako Pure Chemical Industries Co., Ltd.
  • Gelonin Mw ⁇ 30 kDa, Enzo Life Sciences, Inc.
  • Pseudomonas exotoxin A (PE) Mw ⁇ 60kDa, Sigma Aldrich Co., llc.
  • the measurement method of dynamic light scattering is as follows. DLS measurement was performed at a detection angle of 173 ° and a temperature of 25 ° C. using dynamic light scattering (DLS Zetasizer Nano ZS (manufactured by Malvern Instruments). A He-Ne laser (633 nm) was used as an incident beam. Each composite. The body solution was added to a small glass cuvette (capacity 12 ⁇ L, ZEN2112, manufactured by Malvern Instruments). The data obtained from the decay rate in the photon correlation function was analyzed by the Cumulant method and then by the Einstein-Stokes equation above. The hydrodynamic diameter of each complex (mathematical average diameter based on the number) was calculated.
  • the particle size of the bleomycin ternary complex was clearly increased compared to the particle size of bleomycin alone, confirming the formation of the bleomycin ternary complex.
  • the Rose Bengal solution and the tannic acid solution were mixed to prepare a Rose Bengal / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 was added to the Rose Bengal / TA solution, and the Rose Bengal / TA / PEG-P [Lys (FPBA) 10 ] 20 (Rose Bengal ternary complex) solution was added. It was adjusted.
  • Table 3 shows the results of particle size measurement using Zetasizer.
  • the particle size of the rose bengal ternary complex was clearly larger than that of rose bengal alone, confirming the formation of the rose bengal ternary complex.
  • Chlorin e6 ternary complex formation [Final concentration of Chlorin e6, TA, PEG-P [Lys (FPBA) 10 ] 20 ] ⁇ Chlorin e6: 1 ⁇ M ⁇ Tannic acid: 15 ⁇ M ⁇ PEG-P [Lys (FBPA) 10 ] 20 : 30 ⁇ M Each of these was dissolved in D-PBS (-) and adjusted.
  • Chlorin e6 solution and tannic acid solution were mixed to prepare Chlorin e6 / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 was added to the Chlorin e6 / TA solution, and the Chlorin e6 / TA / PEG-P [Lys (FPBA) 10 ] 20 (Chlorin e6 ternary complex) solution was added. It was adjusted.
  • Table 3 shows the results of particle size measurement by FCS using LSM710.
  • the particle size of the Chlorin e6 ternary complex was clearly increased compared to the particle size of Chlorin e6 alone, confirming the formation of the Chlorin e6 ternary complex.
  • the pitavastatin solution and the tannic acid solution were mixed to prepare a pitavastatin / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 was added to the pitavastatin / TA solution to prepare a pitavastatin / TA / PEG-P [Lys (FPBA) 10 ] 20 (pitavastatin ternary complex) solution.
  • Table 3 shows the results of particle size measurement using Zetasizer.
  • the pitavastatin (measured value: 4586 nm) that had aggregated in the pitavastatin solution became a particle size of 60.2 nm in the pitavastatin / TA / PEG-P [Lys (FPBA) 10 ] 20 solution. The formation of the body was confirmed.
  • the particle size of the Gelonin ternary complex was clearly increased compared to the particle size of Gelonin alone, confirming the formation of the Gelonin ternary complex.
  • the PE / TA solution was prepared by mixing the PE solution and the tannic acid solution and centrifuging twice at 10,000 g ⁇ 5 minutes using an ultrafiltration membrane (Mwco: 3.5 k Da). After that, PEG-P [Lys (FPBA) 10 ] 20 was added to the PE / TA solution to prepare a PE / TA / PEG-P [Lys (FPBA) 10 ] 20 solution (PE ternary complex solution). .. Table 3 shows the results of particle size measurement using Zetasizer.
  • the particle size of the PE ternary complex was clearly increased compared to the particle size of PE alone, confirming the formation of the PE ternary complex.
  • Table 3 shows the results of particle size measurement in the same manner as in the evaluation of complex formation in 3.4.
  • the particle size of the ⁇ Gal ternary complex was clearly larger than the particle size of ⁇ Gal alone, confirming the formation of the ⁇ Gal ternary complex.
  • the particle size of the Peptide ternary complex was clearly increased compared to the particle size of Peptide alone, confirming the formation of the Peptide ternary complex.
  • the AAV / TA solution was prepared by mixing the AAV solution and the tannic acid solution. After that, PEG-P [Lys (FPBA) 10 ] 20 was added to the AAV / TA solution to prepare AAV / TA / PEG-P [Lys (FPBA) 10 ] 20 solution (AAV ternary complex solution). .. Table 3 shows the results of particle size measurement using Zetasizer.
  • the particle size of the AAV ternary complex was clearly increased compared to the particle size of AAV alone, confirming the formation of the AAV ternary complex.
  • the AuNP solution and the tannic acid solution were mixed and centrifuged twice at 10,000 g ⁇ 5 minutes using an ultrafiltration membrane (Mwco: 10 k Da) to prepare the AuNP / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 was added to the AuNP / TA solution to prepare AuNP / TA / PEG-P [Lys (FPBA) 10 ] 20 solution (AuNP ternary complex solution). ..
  • Table 3 shows the results of particle size measurement using Zetasizer.
  • the particle size of the AuNP ternary complex was clearly larger than that of AuNP alone, confirming the formation of the AuNP ternary complex.
  • TUG1 ternary complex formation [Final concentration of TUG1, TA, PEG-P [Lys (FPBA) m ] n ] ⁇ TUG1: 100 nM ⁇ Tannic acid: 5 ⁇ M ⁇ PEG-P [Lys (FBPA) 10 ] 20 : 10 ⁇ M Each of these was dissolved in D-PBS (-) and adjusted.
  • TUG1 solution and the tannic acid solution were mixed to prepare a TUG1 / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 was added to the TUG1 / TA solution to prepare a TUG1 / TA / PEG-P [Lys (FPBA) 10 ] 20 (TUG1 ternary complex) solution.
  • Table 3 shows the results of particle size measurement by FCS using LSM710.
  • the particle size of the TUG1 complex was clearly increased compared to the particle size of TUG1 alone, confirming the formation of the TUG1 complex.
  • the Rose Bengal solution and the tannic acid solution were mixed to prepare a Rose Bengal / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 was added to the rose bengal / TA solution, and the rose bengal solution, the rose bengal / TA complex solution, and the rose bengal / TA / PEG-P [Lys (FPBA) 10 ] were added.
  • 20 (Rose Bengal ternary complex) solution was prepared.
  • the blood concentrations of rose bengal and rose bengal / TA complex 3 hours after administration were about 0.22% and 1.02%, respectively.
  • the blood concentration of the rose bengal ternary complex was 2.2% 3 hours after administration, which was about 10 times higher than that of rose bengal alone. From this result, it was shown that the rose bengal ternary complex achieved an improvement in blood retention as compared with rose bengal alone and rose bengal / TA.
  • GFP ternary complex 8. Functional evaluation of GFP ternary complex ⁇ 8.1. Overview> The functionality of the GFP ternary complex was evaluated. Specifically, it is an evaluation of the stability of tannic acid oxidation in a solution and an evaluation of the responsiveness of adenosine triphosphate (ATP), which is an intracellular molecule of the GFP ternary complex.
  • ATP adenosine triphosphate
  • the tannic acid solution and the PEG-P [Lys (FPBA) 10 ] 20 solution were mixed to prepare a TA / PEG-P [Lys (FPBA) 10 ] 20 solution.
  • the GFP solution and the tannic acid solution were mixed and centrifuged twice at 10,000 g ⁇ 5 minutes using an ultrafiltration membrane (Mwco: 3.5 k Da) to prepare a GFP / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 solution is added to the GFP / TA solution to prepare the GFP / TA / PEG-P [Lys (FPBA) 10 ] 20 complex (GFP ternary complex) solution. It was adjusted.
  • the GFP solution and the tannic acid solution were mixed and centrifuged twice at 10,000 g ⁇ 5 minutes using an ultrafiltration membrane (Mwco: 3.5 k Da) to prepare a GFP / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 solution is added to the GFP / TA solution to prepare the GFP / TA / PEG-P [Lys (FPBA) 10 ] 20 complex (GFP ternary complex) solution. It was adjusted.
  • the GFP ternary complex contained tannic acid and PEG-P [Lys (FPBA) 10 ] 20 with increasing ATP concentration. It was confirmed that there is ATP responsiveness in which the bond is dissociated.
  • ⁇ Gal solution and the tannic acid solution were mixed to prepare a ⁇ Gal / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 was added to the ⁇ Gal / TA solution to prepare a ⁇ Gal / TA / PEG-P [Lys (FPBA) 10 ] 20 solution ( ⁇ Gal ternary complex solution). ..
  • the ⁇ Gal solution and the tannic acid solution were mixed to prepare a ⁇ Gal / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 was added to the ⁇ Gal / TA solution, and ⁇ Gal, ⁇ Gal / TA, and ⁇ Gal / TA / PEG-P [Lys (FPBA) 10 ] 20 solution ( ⁇ Gal ternary system).
  • Complex solution was prepared respectively.
  • Alexa647- ⁇ Gal instead of ⁇ Gal, Alexa647- ⁇ Gal, Alexa647- ⁇ Gal / TA complex, and Alexa647- ⁇ Gal / TA ⁇ Gal / TA / PEG-P [Lys (FPBA) 10 ] 20 solutions.
  • Alexa647- ⁇ Gal ternary complex solution were prepared respectively.
  • RPMI was mixed with FBS and PS at 10 wt% and 2 wt%, respectively, and the cell medium was prepared.
  • CT26 cells were suspended in cell medium to prepare a cell suspension of 1.25 ⁇ 10 5 cells / ml. 400 ⁇ l of this cell suspension was seeded on a 24-well plate (5.0 ⁇ 10 4 cells per well) and incubated at 37 ° C. for 24 hours. After removing the medium, the cells were washed once with D-PBS (-), 400 ⁇ l of each solution prepared with Alexa647- ⁇ Gal was added, and the mixture was incubated at 37 ° C. for 6 hours.
  • CT26 cells were suspended in cell medium to prepare a cell suspension of 1.25 ⁇ 10 5 cells / ml. 400 ⁇ l of this cell suspension was seeded on a 24-well plate (5.0 ⁇ 10 4 cells per well) and incubated at 37 ° C. for 24 hours. After removing the medium, the cells were washed once with D-PBS (-), 400 ⁇ l of each solution prepared with ⁇ Gal was added, and the mixture was incubated at 37 ° C. for 6 hours.
  • FIG. 26B After incubating for a predetermined time, the solution was removed, washing with D-PBS (-) was performed twice, 400 ⁇ l of GlycoGREEN- ⁇ Gal prepared to 1 ⁇ M was added, and the mixture was incubated for 30 minutes. Then, after removing the solution and washing with D-PBS (-) twice, add 150 ⁇ l of Trp and incubate at 37 ° C for 7 minutes, then add 150 ⁇ l of D-PBS (-) + 10% FBS.
  • Alexa647- ⁇ Gal solution and tannic acid solution were mixed to prepare Alexa647- ⁇ Gal / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 was added to the Alexa647- ⁇ Gal / TA solution, and Alexa647- ⁇ Gal and Alexa647- ⁇ Gal / TA / PEG-P [Lys (FPBA) 10 ] 20 solution (Alexa647-).
  • ⁇ Gal ternary complex solution was prepared.
  • CT26 subcutaneous tumor model mouse 100 ⁇ l of CT26 cell suspension (1.0 ⁇ 10 6 cells / ml) was subcutaneously injected into Balb / c mice.
  • Alexa647- ⁇ Gal is referred to as ⁇ -galactosidase
  • Alexa647- ⁇ Gal / TA / PEG-P [Lys (FPBA) 10 ] 20 is referred to as ⁇ -galactosidase / TA / polymer.
  • the blood retention and tumor accumulation of the Alexa647- ⁇ Gal ternary complex were improved 4-fold and 15-fold, respectively, as compared with Alexa647- ⁇ Gal.
  • the accumulation of the Alexa647- ⁇ Gal ternary complex in the liver, kidney, and lung, which are normal tissues was 1.4 times, 5.0 times, and 0.2 times, respectively, as compared with Alexa647- ⁇ Gal, and the accumulation in tumors was increased. It was significantly suppressed compared to the agglomeration.
  • Trp Trypsin-EDTA solution
  • PS Penicillin / streptomycin
  • CT26 cells mouse colon carcinoma cell line
  • BALB / c mice Charles River Japan Inc.
  • Passive Lysis Buffer Promega corporation.
  • -Luciferase Assay System Promega corporation.
  • Anti-AAV-9, Mouse-Mono PROGEN
  • AAV solution and the tannic acid solution were mixed to prepare an AAV / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 is added to the AAV / TA solution, and AAV, AAV / TA, and AAV / TA / PEG-P [Lys (FPBA) 10 ] 20 solution (AAV ternary system). Complex solution) was prepared.
  • RPMI was mixed with FBS and PS at 10 wt% and 2 wt%, respectively, and the cell medium was prepared.
  • CT26 cells were suspended in cell medium to prepare a 2.0 ⁇ 10 5 cells / ml cell suspension. 25 ⁇ l of this cell suspension was seeded on a 96-well plate (5.0 ⁇ 10 3 cells per well), 25 ⁇ l of each prepared solution was added, and the cells were incubated at 37 ° C. for 72 hours.
  • AAV / TA / PEG-P [Lys (FPBA) 10 ] 20 is referred to as AAV / TA / polymer.
  • AAV solution and the tannic acid solution were mixed to prepare an AAV / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 is added to the AAV / TA solution, and AAV, AAV / TA, and AAV / TA / PEG-P [Lys (FPBA) 10 ] 20 solution (AAV ternary system). Complex solution) was prepared.
  • CT26 subcutaneous tumor model mouse 100 ⁇ l of CT26 cell suspension (1.0 ⁇ 10 6 cells / ml) was subcutaneously injected into Balb / c mice.
  • the gene expression ratio of the AAV ternary complex in normal tissues such as liver, kidney, and heart was 0.80 times and 0.02 times, respectively, as compared with AAV alone. , 0.27 times, which was significantly suppressed.
  • the gene expression ratio of the AAV ternary complex in tumors was improved 6.16 times compared to AAV alone.
  • the separately collected blood was centrifuged at 5,000 g ⁇ 10 minutes at 20 ° C., plasma components were collected, and ALT and AST were measured using Fuji Drychem NX500 to evaluate liver toxicity.
  • the obtained results are shown in FIGS. 30A and 30B. From the results shown in FIGS. 30A and 30B, hepatic toxicity was observed in the AAV / TA complex due to the increase in ALT and AST, but no liver toxicity was observed in the AAV ternary complex.
  • the AAV / TA solution was prepared by mixing the AAV solution and the tannic acid solution. After that, PEG-P [Lys (FPBA) 10 ] 20 was added to prepare AAV, AAV / TA, AAV / TA / PEG-P [Lys (FPBA) 10 ] 20 solutions (AAV ternary complex solution). did.
  • CT26 cells were suspended in RPMI to prepare a 2.0 ⁇ 10 5 cells / ml cell suspension. 25 ⁇ l of this cell suspension was seeded on a 96-well plate (5.0 ⁇ 10 3 cells per well), 25 ⁇ l of each prepared AAV solution and 1 ⁇ l of AAV antibody solution were added, and the cells were incubated at 37 ° C. for 48 hours. After incubating for a predetermined time, remove the solution, wash once with D-PBS (+), add 50 ⁇ l of Passive Lysis Buffer, incubate at 37 ° C for 15 minutes, and then measure 20 ⁇ l of each cell suspension by luminescence.
  • AAV / TA / PEG-P [Lys (FPBA) 10 ] 20 is referred to as AAV / TA / polymer.
  • TUG1 ternary complex 11.
  • Overview> The functionality of the TUG1 ternary complex was evaluated. Specifically, the blood retention of the TUG1 ternary complex was evaluated in animal experiments.
  • TUG1 solution and the tannic acid solution were mixed to prepare a TUG1 / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 was added to the TUG1 / TA solution to prepare a TUG1 / TA / PEG-P [Lys (FPBA) 10 ] 20 (TUG1 ternary complex) solution.
  • TUG1 retention in blood by in vivo confocal laser scanning microscope To model mice, 200 ⁇ l of the above prepared solution was administered to the tail vein. Then, the blood retention of TUG1 was measured for a predetermined time using an in vivo confocal laser scanning microscope. The results obtained are shown in FIG. 32 and Table 4. In the figure, TUG1 / TA / PEG-P [Lys (FPBA) 10 ] 20 is referred to as TUG1 / TA / polymer.
  • TUG1 retention in blood by blood sampling [Final concentration of TUG1, TA, PEG-P [Lys (FPBA) 10 ] 20 ] ⁇ TUG1: 6.25 nM ⁇ Tannic acid: 312.5 ⁇ M ⁇ PEG-P [Lys (FBPA) 10 ] 20 : 625 ⁇ M Each of these was dissolved in D-PBS (-) and adjusted.
  • TUG1 solution and the tannic acid solution were mixed to prepare a TUG1 / TA solution.
  • PEG-P [Lys (FPBA) 10 ] 20 was added to the TUG1 / TA solution to prepare a TUG1 / TA / PEG-P [Lys (FPBA) 10 ] 20 (TUG1 ternary complex) solution.
  • the blood retention of the TUG1 ternary complex was about 40 times higher than that of TUG1 and TUG1 / TA, and the blood retention of the TUG1 ternary complex was dramatic. It was shown to extend to.
  • PEG-P [Lys (FPBA) 10 ] 20 binds to tannic acid with a higher binding force than PEG-FPBA. Furthermore, when the intracellular distribution was measured, lysosomes and GFP were co-localized, suggesting that GFP was taken up by endocytosis.
  • a protein delivery system composed of GFP / TA / PEG-P [Lys (FPBA) 10 ] 20 has improved blood retention, as well as tumor accumulation and retention, compared to GFP alone and GFP / TA. It was shown that the sex was improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

ボロン酸基を有する高分子、及びジオール構造を有する化合物、が結合した結合体と、前記結合体と複合化する物質と、を含む、複合体。

Description

複合体、医薬、癌治療剤、キット及び結合体
 本発明は、複合体、医薬、癌治療剤、キット及び結合体に関する。
 本願は、2019年5月29日に、日本に出願された特願2019-100395号に基づき優先権を主張し、その内容をここに援用する。
 バイオ医薬品等の生理活性タンパク質は、がんをはじめとする難病に対する画期的な治療薬として大きな期待を集めている。しかしながら、腎糸球体の濾過閾値よりサイズが小さいタンパク質は、迅速に体外に排出されてしまうために血中滞留性に乏しく、血中で酵素分解を受けるために血中安定性も必ずしも十分とはいえず、期待されるほどの薬理効果を得られていないのが実情である。さらに、生理活性タンパク質のがん治療への適用のためには、腫瘍への選択的な集積性を有することが求められる場合がある。
 血中滞留性及び血中安定性の向上のために、生体適合性高分子であるポリエチレングリコール(PEG)により化学修飾したPEG修飾タンパク質が臨床応用されており、一定の効果が得られているが、PEG修飾による薬理活性の低下が懸念される場合もある。
 また、非特許文献1によれば、生理活性タンパク質としての抗体を用い、抗体の有するアミノ基に負電荷のpH応答性分子を修飾させた後、正電荷の高分子化合物とポリイオンコンプレックス(PIC)を形成させる技術が示されている。これによると、細胞内pHにおいてpH応答性分子が解離し、PICが崩壊することで、細胞内で特異的に、抗体をリリースすることが可能であるとされる。
 一方で、タンパク質に化学修飾を行わず、他の分子との複合体を形成させる方法も知られている。
 非特許文献2には、タンパク質をカテコール構造導入高分子に内包させる技術が示されている。カテコール構造を有する分子としては、例えばタンニン酸が知られている。
 タンニン酸は、疎水性相互作用及び水素結合にて、タンパク質と結合し、複合体を形成可能であることが知られている(非特許文献3~4)。タンニン酸とタンパク質等との結合によれば、化学修飾を利用せずに複合体を形成することが可能である。
"Intracellular Delivery of Charge-Converted Monoclonal Antibodies by Combinatorial Design of Block/Homo Polyion Complex Micelles", A. Kim, Y. Miura, T. Ishii, O. F. Mutaf, N. Nishiyama, H. Cabral, and K. Kataoka, Biomacromolecules, 17(2), 446-453 (2016). "Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy", J. E. Chung, S. Tan, S. J. Gao, N. Yongvongsoontorn, S. H. Kim, J. H. Lee, H. S. Choi, H. Yano, L. Zhuo, M. Kurisawa, and J. Y. Ying, Nat. Nanotech. 9(11), 907-912(2014). "Formation of complexes between protein and tannic acid" J. P. Van Buren, and W. B. Robinson, J. Agric. Food Chem. 17(4), 772-777 (1969). "Gallic acid: Molecular rival of cancer" V. Sharad, S. Amit, and M. Abha, Env. Tox. and pharm. 35(3), 473-485 (2013).
 しかしながら、非特許文献1の方法では、抗体に化学修飾を行うことから、PEG修飾と同様、抗体の薬理活性の低下が懸念される。
 また、非特許文献2~4に示されたタンパク質の複合体化により、タンパク質の血中滞留性及び血中安定性の向上や、腫瘍集積性が発揮されたという報告はない。
 本発明は、上記のような問題点を解消するためになされたものであり、血中滞留性に優れ、更にpH応答性を有する、複合体を提供することを目的とする。
 すなわち、本発明は以下の態様を有する。
<1> ボロン酸基を有する高分子、及びジオール構造を有する化合物、が結合した結合体と、
 前記結合体と複合化する物質と、
 を含む、複合体。
<2> 前記結合体と複合化する物質が、タンパク質、ウイルス、無機粒子、核酸、及び低分子医薬からなる群から選択される少なくとも一種である、前記<1>に記載の複合体。
<3> ボロン酸基を有する高分子、及びジオール構造を有する化合物、が結合した結合体と、
 タンパク質と、
 を含む、前記<1>又は<2>に記載の複合体。
<4> 前記ジオール構造を有する化合物が、ポリフェノールである、前記<1>~<3>のいずれか一つに記載の複合体。
<5> 前記ジオール構造を有する化合物が、タンニン酸、没食子酸及びそれらの誘導体からなる群から選択される少なくとも一種である、前記<1>~<4>のいずれか一つに記載の複合体。
<6> 前記高分子が、2以上のボロン酸基を有する、前記<1>~<5>のいずれか一つに記載の複合体。
<7> 前記ボロン酸基が、置換基を有してもよいフェニルボロン酸基、又は置換基を有してもよいピリジルボロン酸基である、前記<1>~<6>のいずれか一つに記載の複合体。
<8> 前記ボロン酸基が、下記一般式(I)で表されるフェニルボロン酸基、又は下記一般式(II)で表されるピリジルボロン酸基である、前記<1>~<7>のいずれか一つに記載の複合体:
Figure JPOXMLDOC01-appb-C000004
(式中、Xはハロゲン原子又はニトロ基を表し、nは0~4の整数である。)。
<9> 前記高分子が、ポリエチレングリコール、アクリル系樹脂、ポリアミノ酸、ポリビニルアミン、ポリアリルアミン、ポリヌクレオチド、ポリアクリルアミド、ポリエーテル、ポリエステル、ポリウレタン、多糖類、及びこれらのコポリマーからなる群から選択される少なくとも一種の生体適合性高分子である、前記<1>~<8>のいずれか一つに記載の複合体。
<10> 前記ボロン酸基を有する高分子が、第1の生体適合性高分子鎖と、前記第1の生体適合性高分子鎖とは異なる第2の生体適合性高分子鎖とを含む、前記<1>~<9>のいずれか一つに記載の複合体。
<11> 前記第2の生体適合性高分子鎖がポリアミノ酸であり、前記ボロン酸基が前記ポリアミノ酸の側鎖に導入されている、前記<10>に記載の複合体。
<12> 前記第1の生体適合性高分子鎖がポリエチレングリコールである、前記<10>又は<11>に記載の複合体。
<13> 前記ボロン酸基を有する高分子が、下記一般式(1)又は(1-1)で表される構造を含む、前記<10>~<12>のいずれか一つに記載の複合体:
Figure JPOXMLDOC01-appb-C000005
(式(1)~(1-1)中、
 Aは、前記第1の生体適合性高分子鎖を表し、
 Lは、リンカー部を表し、
 Bは、ボロン酸基を有する前記第2の生体適合性高分子鎖を表し、下記(b2)で表される繰り返し構造を含むか、又は(b1)で表される繰り返し構造及び(b2)で表される繰り返し構造を含む。)
Figure JPOXMLDOC01-appb-C000006
(式(b1)~(b2)中、
 Rは、アミノ酸側鎖を表し、
 Rは、アミノ酸側鎖に前記ボロン酸基が導入されたものであり、
 nは(b1)及び(b2)の合計数を表し、nは1~1000の整数であり、mは1~1000の整数であり(ただしm≦n)、n-mが2以上である場合、複数個のRは互いに同一でも異なっていてもよく、mが2以上である場合、複数個のRは互いに同一でも異なっていてもよい。)。
<14> 動的光散乱法(DLS)又は蛍光相関分光法(FCS)により求められる平均粒子径が、5nm以上200nm以下である、前記<1>~<13>のいずれか一つに記載の複合体。
<15> 前記ボロン酸基を有する高分子の数平均分子量が、2,000~200,000である、前記<1>~<14>のいずれか一つに記載の複合体。
<16> 前記<1>~<15>のいずれか一つに記載の複合体を有効成分として含有する、医薬。
<17> 前記<1>~<16>のいずれか一つに記載の複合体を有効成分として含有する、癌治療剤。
<18> ボロン酸基を有する高分子と、ジオール構造を有する化合物と、を備えるキット。
<19> ボロン酸基を有する高分子、及びジオール構造を有する化合物、が結合した結合体。
 本発明によれば、血中滞留性に優れ、更にpH応答性を有する、複合体を提供できる。
実施形態の複合体の概略的な構成の一例を示す模式図である。 実施形態の複合体の、生体内における構成の一例を示す模式図である。 実施例で作製したPEG-PLys(TFA)20のGPCカーブである。 実施例で作製したPEG-PLys(TFA)40のGPCカーブである。 実施例で作製したPEG-PLys201H NMRスペクトルである。 実施例で作製したPEG-PLys401H NMRスペクトルである。 実施例で作製したPEG-P[Lys(FPBA)10]201H NMRスペクトルである。 実施例で作製したPEG-P[Lys(FPBA)20]401H NMRスペクトルである。 PEG-P[Lys(FPBA)10]20のGPCカーブである。 PEG-P[Lys(FPBA)20]40のGPCカーブである。 PEG-FPBAの1H NMRスペクトルである。 PEG-FPBAのGPCカーブである。 PEG-P[Lys(FPBA10/Cy5)]20のFPスペクトルである。 GFP, GFP/TA, GFP/TA/ボロン酸導入高分子の粒子径測定結果である。 GFP, GFP/TA, GFP/PEG-P[Lys(FPBA)10]20, GFP/TA/PEG-P[Lys(FPBA)10]20の粒子径測定結果である。 グルコース溶液中でのGFP/TA/PEG-P[Lys(FPBA)10]20の粒子径測定結果である。 FBS溶液中でのGFP/TA/PEG-P[Lys(FPBA)10]20の粒子径測定結果である。 様々なpHにおけるGFP/TA/PEG-P[Lys(FPBA)10]20の粒子径測定結果である。 GFP/TA/PEG-P[Lys(FPBA)10]20の細胞内分布を示す共焦点顕微鏡の観察画像である。 CT26皮下腫瘍モデルマウスにおいて、GFPとGFP/TAと GFP/TA/PEG-P[Lys(FPBA)10]20とでの、血中滞留性を比較した結果を示すグラフである。 CT26皮下腫瘍モデルマウスにおいて、GFPとGFP/TAと GFP/TA/PEG-P[Lys(FPBA)10]20とでの、腫瘍集積性を比較した結果を示すグラフである。 モデルマウスにおいて、ローズベンガル、ローズベンガル/TA複合体およびローズベンガル三元系複合体の血中滞留性を比較した結果である。 吸光度測定により、TA溶液とTA/PEG-P[Lys(FPBA)10]20溶液の酸化の継時変化を示した結果である。 TA溶液とTA/PEG-P[Lys(FPBA)10]20溶液を24時間インキュベートした後の写真である。 粒径と蛍光強度の測定から、GFP三元系複合体の溶液中での安定性を示す結果である。 ATP溶液中での、GFP三元系複合体の粒子径測定結果である。 GlycoGREEN-βGalを用いた、βGal、βGal/TA複合体およびβGal三元系複合体の継時的な活性変化を測定した結果である。 GlycoGREEN-βGalを用いた、βGal、βGal/TA複合体およびβGal三元系複合体の最大活性値を測定した結果である。 Alexa647-βGal、Alexa647-βGal/TA複合体およびAlexa647-βGal三元系複合体のCT26細胞への取り込み量を測定した結果である。 GlycoGREEN-βGalを用いたβGal、βGal/TA複合体およびβGal三元系複合体のCT26細胞内での活性を測定した結果である。 GlycoGREEN-βGalを用いたβGal、βGal/TA複合体およびβGal三元系複合体のCT26細胞内での活性を、取り込み量で除した結果を示すグラフである。 CT26皮下腫瘍モデルマウスにおいて、Alexa647-βGalとAlexa647-βGal三元系複合体とでの、血中滞留性および各臓器への集積性を比較した結果を示すグラフである。 AAV、AAV/TA複合体およびAAV三元系複合体の、CT26細胞における遺伝子発現効率を評価した結果である。 CT26皮下腫瘍モデルマウスにおいて、AAV、AAV/TA複合体およびAAV三元系複合体の各臓器での遺伝子発現量を、AAV単体での遺伝子発現量を1とした場合の結果を示すグラフである。 CT26皮下腫瘍モデルマウスにおいて、AAV、AAV/TA複合体又はAAV三元系複合体を投与した際の、血中のALT量を測定した結果である。 CT26皮下腫瘍モデルマウスにおいて、AAV、AAV/TA複合体又はAAV三元系複合体を投与した際の、血中のAST量を測定した結果である。 AAV、AAV/TA複合体又はAAV三元系複合体の、AAV抗体添加によるCT26細胞における遺伝子発現効率の変化を評価した結果である。 モデルマウスにおいてTUG1、TUG1/TA複合体およびTUG1三元系複合体の血中滞留性をin vivo共焦点レーザー顕微鏡で継時的に比較した結果である。
 以下、本発明の一実施形態における、複合体、医薬、癌治療剤、キット及び結合体を説明する。
≪複合体≫
 実施形態の複合体は、ボロン酸基を有する高分子、及びジオール構造を有する化合物、が結合した結合体と、前記結合体と複合化する物質(以下、「複合要素」ということがある。)と、を含むものであってよく、前記高分子は生体適合性高分子であってよい。
 実施形態の複合体は、ボロン酸基を有する生体適合性高分子、及びジオール構造を有する化合物、が結合した結合体と、前記結合体と複合化する物質と、を含むものである。
 図1は、実施形態の複合体の概略的な構成の一例を示す模式図である。実施形態の複合体1は、結合体10と、結合体10と複合化する物質40と、を含む。
 結合体10と複合化する物質としては、タンパク質、ウイルス、無機粒子、核酸、及び低分子医薬からなる群から選択される少なくとも一種が挙げられる。
 結合体と複合化する物質がタンパク質である場合、複合体の一実施形態としてのタンパク質複合体を例示できる。
 実施形態のタンパク質複合体は、ボロン酸基を有する高分子、及びジオール構造を有する化合物、が結合した結合体と、タンパク質と、を含むものであってよい。本明細書において「ジオール構造」とは、2個の水酸基がそれぞれ異なる炭素原子に結合した構造を指し、2個の水酸基が隣り合う炭素原子にそれぞれ結合した構造であってよい。ジオール構造を有する化合物は、脂肪族化合物に限定されるものではない。
 図1において、結合体10と複合化する物質40がタンパク質4である場合、実施形態のタンパク質複合体1は、結合体10、及びタンパク質4を含む。
 結合体10は、ボロン酸基を有する高分子2と、ジオール構造を有する化合物3と、が結合したものである。例えば、下記式(10a)で示されるジオール構造と、下記式(10b)で示されるボロン酸基とは、下記式(10c)で示されるボロン酸ジオール結合を形成可能である。すなわち、実施形態の複合体1における結合体10は、ボロン酸基を有する高分子2と、ジオール構造を有する化合物3と、がボロン酸ジオール結合を形成した結合体であってよい。
Figure JPOXMLDOC01-appb-C000007
 ジオール構造を有する化合物3は、ボロン酸基を有する高分子2と結合体10を形成する一方で、図1に示されるように、タンパク質4等の複合要素40とも結合して複合体を形成することができる。ジオール構造を有する化合物3とタンパク質4(複合要素40)とは、疎水性相互作用及び/又は水素結合にて結合できるものと考えられ、タンパク質4(複合要素40)に化学修飾を施さずとも複合体化が可能である。すなわち、タンパク質4(複合要素40)には、ジオール構造を有する化合物3を介して(つまり、結合体10のジオール構造を有する化合物3に由来する部分を介して)、ボロン酸基を有する高分子2が付加されたような格好となる。このことから、実施形態の複合体1では、タンパク質等の複合要素に対し化学修飾を施さずに、結合体10と複合体を形成できる。
 上記で説明した複合体の形成様式から、実施形態の複合体は、タンパク質等の複合要素をコアとして、その周囲に結合体がシェルの如く配されている形態をとり得る。より詳細には、タンパク質等の複合要素をコアとして、その周囲に結合体の一部としてジオール構造を有する化合物に由来する部分が配され、さらにその外側に高分子の部分が配されている形態をとり得る。そのため、複合要素が結合体によって内包され保護されるので、タンパク質等の複合要素が意図しない生体反応に関与することを抑制できる。意図しない生体反応の例としては、例えば免疫反応である。
 ジオール構造を有する化合物の持つ性質として、タンパク質等と相互作用し易い性質があり、非特許文献2~4に示される従来の技術では、ジオール構造を有する化合物により、生体内での意図しない相互作用が生じる可能性がある。一方、実施形態の複合体では、ジオール構造を有する化合物に由来する部分の外側に、高分子の部分が配されている形態をとり得るため、従来の技術と比較し、生体内での意図しない相互作用を抑制できるものと考えられ、ジオール構造を有する化合物をそのまま用いる場合よりも、物質送達の安定性に優れる。
 なお、実施形態の複合体1においては、ボロン酸基を有する高分子2と、ジオール構造を有する化合物3とが結合して、ボロン酸ジオール結合を形成するので、複合体1には、ボロン酸基及びジオール構造は含まれていなくともよい。
 当該ボロン酸ジオール結合は、可逆的な共有結合であり得る。上記ボロン酸基とジオール構造との結合はpH条件に応じて可逆的で、低pHへの移行でボロン酸ジオール結合が解離して、再びジオール構造(10a)とボロン酸基(10b)とになり得る。
 図2は、実施形態の複合体の、生体内における構成の一例を示す模式図である。一般的に、血中のpHは7.4付近とされ、細胞内の(特に、エンドソーム、リソソーム等の酸性オルガネラ内の)pHは5.5付近とされる。例えば、実施形態の複合体1は、血中(pH約7.4)では、結合体10とタンパク質4(複合要素40)とが複合体化され、血中滞留性や血中安定性を向上させることができ、細胞内(pH約5.5)や腫瘍周辺(pH約6.6)では、ボロン酸ジオール結合が解離することで、ボロン酸基を有する高分子2が脱離して、タンパク質4(複合要素40)がリリースされ、タンパク質4(複合要素40)本来の機能が発揮され易い状態とすることができる。
 また、ポリフェノール類等のジオール構造を有する化合物3は、細胞内でタンパク質4から解離することが知られている。
 このように、実施形態の複合体は、pH応答性を有することができる。本明細書において、複合体のpH応答性とは、周囲のpH環境に応じて、複合体を構成する結合体の、ジオール構造を有する化合物3とボロン酸基を有する高分子2との結合が解離する性質をいう。前記pH応答性は、pHが低くなるのに伴い、複合体を構成する結合体の、ジオール構造を有する化合物3とボロン酸基を有する高分子2との結合が解離する性質であってもよい。
 実施形態の複合体は、ATP応答性を有することができる。本明細書において、複合体が有してもよいATP応答性とは、周囲のATP濃度が高くなるのに伴い、複合体を構成する結合体10の、ジオール構造を有する化合物3とボロン酸基を有する高分子2との結合が解離する性質をいう。
 複合体がATP応答性を有することで、血中(pH約7.4)では、結合体10とタンパク質4(複合要素40)とが複合体化され、血中滞留性や血中安定性を向上させることができ、細胞質内では、ボロン酸ジオール結合が解離することで、ボロン酸基を有する高分子2が脱離して、タンパク質4(複合要素40)がリリースされ、タンパク質4(複合要素40)本来の機能が発揮され易い状態とすることができる。
 上記結合とその解離は、例えば、アリザリンレッド法により測定できる。アリザリンレッド法については後述の実施例に示す手法を用いることができる。
 或いは、上記結合とその解離は、例えば、実施例に記載のように、異なるpH環境下での複合体粒子(複合体の一部又は全部の構成要素が解離したものも含む)の粒子径を測定し、あるpH条件下よりも低pHの条件下にて粒子サイズが小さくなったことが確認できれば、その低pHの条件下では、結合体のジオール構造を有する化合物3とボロン酸基を有する高分子2との結合が解離しており、複合体がpH応答性を有すると判断できる。
 粒子径の確認は、公知の方法で行うことができ、一例として、実施例に記載の蛍光相関分光法や、動的光散乱法を用いることができる。
 なお、本明細書における蛍光相関分光法により求められた粒子径は、アインシュタイン-ストークスの式を用いて求められた粒径の個数基準の算術平均径である。
 なお、本明細書における動的光散乱法により求められた粒子径は、アインシュタイン-ストークスの式を用いて求められた粒径の個数基準の算術平均径である。
 上記解離は、pH環境下に存在する全ての実施形態の複合体で生じる必要はない。複合体がpH応答性を有するかどうかは、例えば、複数個の複合体について解析した値(例えば平均値)に基づき判断することができる。
 複合要素を効率的に生体内の標的部位に送達するとの観点からは、実施形態の複合体は、例えば、pH7.4において複合要素と結合体とが複合体を形成し、例えば、pH7.4未満、pH6.6以下、pH5.5以下などで、上記ジオール構造を有する化合物3とボロン酸基を有する高分子2との結合が解離するpH応答性を有することが好ましい。
 タンパク質を効率的に生体内の標的部位に送達するとの観点からは、実施形態の複合体は、例えば、pH7.4においてタンパク質と結合体とが複合体を形成し、例えば、pH7.4未満、pH6.6以下、pH5.5以下などで、上記ジオール構造を有する化合物3とボロン酸基を有する高分子2との結合が解離するpH応答性を有することが好ましい。
 実施形態の複合体は、例えば、pH7.4未満、pH6.6以下、pH5.5以下などで、当該pHよりも高いpH条件(例えばpH7.4)と比較し、粒子サイズの低下を確認できる、pH応答性を有することが好ましい。
 上記のとおり、血中のpH環境はpH約7.4であることが知られ、腫瘍周辺のpH環境はpH約6.6であることが知られ、細胞内のpH環境はpH約5.5であることが知られている。
 pH7.4以上と比べてpH7.4未満で、粒子サイズの低下を確認できるpH応答性を有する実施形態の複合体は、血中で複合体を形成して血中滞留性及び血中安定性に優れ、腫瘍周辺や細胞内といったタンパク質等の複合要素の送達先では、複合体が解離してタンパク質等がリリースされるため、送達先でより効果的にタンパク質等の本来の機能が発揮される。
 pH7.4以上と比べてpH6.6以下で、粒子サイズの低下を確認できるpH応答性を有する実施形態の複合体は、血中で複合体を形成して血中滞留性及び血中安定性に優れ、腫瘍周辺及び細胞内では、複合体が解離してタンパク質等の複合要素がリリースされるため、腫瘍周辺及び細胞内でより効果的にタンパク質等の複合要素の本来の機能を発揮させることができる。
 pH7.4以上と比べてpH5.5以下で、粒子サイズの低下を確認できるpH応答性を有する実施形態の複合体は、血中で複合体を形成して血中滞留性及び血中安定性に優れ、細胞内では複合体が解離してタンパク質等の複合要素がリリースされるので、細胞内でより効果的にタンパク質等の複合要素の本来の機能を発揮させることができる。
 なお、実施形態の複合体のpH応答性に係るpHとして、上記を例示したが、pH応答性に係るボロン酸基のpKaは、ボロン酸基が結合する構造を改変すること等により適宜調整可能であるため、実施形態の複合体のpH応答性に係るpHとしては上記に例示したものに限定されるものではない。
 また、結合体のジオール構造を有する化合物3とボロン酸基を有する高分子2との結合と解離や上記の粒子径の確認は、後述の実施例に示す条件下での測定に限定されず、実施形態の複合体が使用される環境下に応じて適宜定めることができる。ある条件で上記解離が確認されない場合であっても、より長時間にわたり測定することや、より使用環境や送達環境に近い条件で確認をすることが推奨される。
 また、送達環境下でのpH応答性の程度(例えば、複合体粒子サイズの低下率の程度)は、pH応答性に係るボロン酸基のpKaを調整することで任意に調整可能である。また、送達環境下での、pH応答性の程度(例えば、複合体粒子サイズの低下率の程度)が乏しい場合であっても、本実施形態の複合体の有用性が否定されるわけではない。むしろそのような複合体は、タンパク質等の複合要素の徐放性を発揮できると考えられ、長期的な物質送達に好適に利用することが可能となり得る。
 実施形態の複合体の平均粒径は、例えば、5nm以上200nm以下が好ましく、10nm以上150nm以下がより好ましく、15nm以上100nm以下がさらに好ましい。複合体の粒径は、動的光散乱法(DLS)又は蛍光相関分光法(FCS)により、後述の実施例に記載の測定条件により測定できる。
 実施形態の複合体の粒径が上記の範囲であることにより、複合体の血中滞留性、腫瘍組織への集積性を適度に向上させ、また、肝臓等の正常組織への集積を防止できる。この結果、タンパク質等の複合要素を効率よく腫瘍組織に送達することが可能になる。
 複合体の腫瘍集積性は、腫瘍の亢進した血管漏出性を利用した腫瘍への選択的な集積、すなわちenhanced permeability and retention効果(EPR効果)により発揮されるものと考えられ、腫瘍への選択的な送達により、より優れた抗腫瘍効果を達成する。
 実施形態の複合体に含まれる、結合体10と複合要素40との比率は、特に制限されるものではないが、例えば、複合要素1分子あたり、1個以上の結合体と複合体化されていてもよく、2個以上の結合体と複合体化されていてもよく、5個以上の結合体と複合体化されていてもよく、1~100個の結合体と複合体化されていてもよく、2~50個の結合体と複合体化されていてもよく、5~20個の結合体と複合体化されていてもよい。
 実施形態の複合体がタンパク質を含む場合、複合体に含まれる、結合体10とタンパク質4との比率は、特に制限されるものではないが、例えば、タンパク質1分子あたり、1個以上の結合体と複合体化されていてもよく、2個以上の結合体と複合体化されていてもよく、5個以上の結合体と複合体化されていてもよく、1~100個の結合体と複合体化されていてもよく、2~50個の結合体と複合体化されていてもよく、5~20個の結合体と複合体化されていてもよい。
 以下、実施形態の複合体に含まれる各要素の詳細について説明する。
(ジオール構造を有する化合物)
 本実施形態に係るジオール構造を有する化合物3は、ボロン酸基を有する高分子との結合体を形成するとともに、タンパク質等の複合要素との複合体を形成し、いわば両者の仲介役として、複合体の形成に寄与する。
 本実施形態に係るジオール構造を有する化合物は、分子内に1以上のジオール構造を有するものであれば特に制限されず、結合安定性の観点から、分子内に1以上のカテコール構造及び/又はガロイル構造を有することが好ましい。当該化合物がカテコール構造及び/又はガロイル構造を有する場合には、該構造におけるベンゼン環との疎水性相互作用によって、タンパク質等の複合要素との複合体化がより促進されるため好ましい。
 カテコール構造としては、下記式(3a)で表される構造を例示できる。ガロイル構造としては、下記式(3b)で表される構造を例示できる。下記に示される構造のうちでは、下記式(3b)で表されるガロイル構造のほうが、水酸基との水素結合によって、タンパク質等の複合要素との複合体化がより促進されるため好ましい。
Figure JPOXMLDOC01-appb-C000008
 本実施形態に係る化合物3の有するジオール構造の個数は、1以上であり、2以上であってよく、5以上であってよい。本実施形態に係る化合物におけるジオール構造の個数の上限値は特に制限されるものではないが、一例として30以下であってよく、15以下であってよく、13以下であってよい。上記数値の数値範囲の一例として、本実施形態に係る化合物3の有するジオール構造の個数は、一例として、1~30の整数であってよく、2~15の整数であってよく、5~13の整数であってよい。
 ジオール構造における解離と結合の平衡状態を考えたとき、化合物3が複数(2以上)のジオール構造を有することで、一方のジオール構造の結合が解離しても、他方のジオール構造が結合し得る。このように、本実施形態に係るジオール構造を有する化合物における、ジオール構造の個数が多いほど、ジオール構造を有する化合物とボロン酸基を有する高分子とでの、見かけの結合力は飛躍的に向上する。
 ボロン酸基を有する高分子とジオール構造を有する化合物とでの、上記結合力は、例えば、アリザリンレッド法により測定できる。アリザリンレッド法については後述の実施例に示す手法を用いることができる。
 前記ジオール構造を有する化合物としては、ポリフェノールに該当するものが挙げられる。ポリフェノールとしては、芳香族炭化水素において、2個以上の水素原子が、水酸基で置換された構造を有するものが挙げられる。天然のものは植物により生産されることが知られる。当該ポリフェノールとしては、没食子酸、カテキン類(カテキン及びその誘導体)、エピカテキン類(エピカテキン及びその誘導体)、プロアントシアニジン、アントシアニジン、ガロイル化カテキン類(ガロイル化カテキン及びその誘導体)、フラボノイド、イソフラボノイド、ネオフラボノイド、フラボン、タンニン、タンニン酸、それらの誘導体等が挙げられる。前記ジオール構造を有する化合物としては、タンニン酸、没食子酸及びそれらの誘導体からなる群から選択される少なくとも一種であることが好ましい。上記の誘導体としては、ジオール構造を有する化合物において、1個以上の水素原子又は基が、それ以外の基(置換基)で置換されたものが挙げられる。また、ジオール構造を有する化合物において、水素原子が付加または脱離されたものであってもよい。ここで置換基としては、水酸基、アミノ基、炭素数1~4の1価の鎖状飽和炭化水素基、ハロゲン原子等が挙げられる。炭素数1~4の1価の鎖状飽和炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子等が挙げられる。
(ボロン酸基を有する高分子)
 以下、本実施形態に係るボロン酸基を有する高分子2について説明する。
 前記高分子は生体適合性高分子であってよい。生体適合性高分子とは、生体に投与した場合に、強い炎症反応や傷害等の著しい有害作用や悪影響を及ぼさない又は及ぼしにくいポリマーを意味する。
 ボロン酸基を有する生体適合性高分子としては、本発明の効果が得られる限り特に制限されず、例えば、ポリエチレングリコール(PEG)、アクリル系樹脂((メタ)アクリル酸エステルに由来する構成単位を含む樹脂)、ポリアミノ酸、ポリビニルアミン、ポリアリルアミン、ポリヌクレオチド、ポリアクリルアミド、ポリエーテル、ポリエステル、ポリウレタン、多糖類、これらのコポリマー等にボロン酸基が導入されたものが挙げられる。ボロン酸基を有する生体適合性高分子は、一部にその合成過程で導入された任意の基を有していてもよい。このような基としては、例えば重合開始剤の一部等が挙げられる。
 前記高分子の分散度(Mw/Mn)は、1.0以上2.0未満が好ましく、1.0~1.5がより好ましく、1.0~1.3がさらに好ましい。実施形態の複合体が、優れた腫瘍集積性をより効果的に発揮するためには、高分子の分散度が上記範囲内にあることが好ましい。
 本明細書において、高分子の数平均分子量は、H NMRスペクトルによるピーク積分値の比から算出した値を採用できる。算出方法としては、例えば後述の実施例で示すように、高分子鎖末端に存在する開始剤由来の構造のピーク積分値と、算出対象部分のモノマー由来の構造のピーク積分値との比から、モノマーの重合度を算出し、重合したモノマー由来の構造の合計分子量を開始剤由来の構造の分子量に加算することでボロン酸基が導入される前の高分子の数平均分子量を算出可能である。
 ボロン酸基を有する高分子の数平均分子量についても、H NMRスペクトルによるピーク積分値の比から算出した値を採用できる。算出方法としては、例えば後述の実施例で示すように、高分子鎖末端に存在する開始剤由来の構造のピーク積分値と、算出対象部分のボロン酸基由来の構造のピーク積分値との比から、ボロン酸基の結合数を算出し、結合したボロン酸基由来の構造の合計分子量を高分子鎖の数平均分子量に加算することで算出可能である。
 本実施形態のボロン酸基を有する高分子は、H NMRにより算出された数平均分子量(Mn)が2,000~200,000であることが好ましく、例えば5,000~100,000であってもよく、10,000~50,000であってもよく、12,000~45,000であってもよい。
 ボロン酸基を有する高分子の数平均分子量が上記の範囲であることにより、複合体の血中滞留性、腫瘍組織への集積性を適度に向上させ、また、肝臓等の正常組織への集積を防止できる。この結果、タンパク質等の複合要素を効率よく腫瘍組織に送達することが可能になる。
 複合体の腫瘍集積性は、腫瘍の亢進した血管漏出性を利用した腫瘍への選択的な集積、すなわちenhanced permeability and retention効果(EPR効果)により発揮されるものと考えられ、腫瘍への選択的な送達により、より優れた抗腫瘍効果を達成する。
 また、複合体において、ボロン酸基を有する高分子は、高分子ミセルを形成していてもよく、高分子ベシクルの形態であってもよい。
 本実施形態のボロン酸基を有する高分子は、生体分解性であることが好ましい。
 生体分解性とは、生体内で吸収又は分解され得る性質を意味する。生体分解性である生体適合性ポリマーとしては、本発明の効果が得られる限り特に制限されず、例えば、ポリアミノ酸、ポリエステル、ポリヌクレオチド、多糖類等が挙げられる。
 本明細書において、ボロン酸基を有する高分子が生体分解性であるとは、ボロン酸基を有する高分子の少なくとも一部が生体分解性であることを意味する。したがって、ポリアミノ酸、ポリエステル、ポリヌクレオチド、多糖類等と、PEG、アクリル系樹脂((メタ)アクリル酸エステルに由来する構成単位を含む樹脂)、ポリアクリルアミド、ポリエーテル、ポリウレタン等とのブロックコポリマー等も生体分解性の生体適合性高分子に該当する。
 生体分解性であるポリマーを用いることにより、結合体又は複合体の生体内への蓄積を抑制することができ、副作用を低減させることができる。
 本明細書において、生体安定性とは、生体内で即時に吸収又は即時に分解されることなく、存在可能であることを意味する。高分子が生体分解性且つ生体安定性を有する場合には、生体内で吸収又は分解されるまでの間、生体内で存在可能であることを意味する。
 本明細書において、高分子が生体安定性であるとは、高分子の少なくとも一部が生体安定性であることを意味する。したがって、ポリアミノ酸、ポリエステル、ポリヌクレオチド、多糖類等と、PEG、アクリル系樹脂((メタ)アクリル酸エステルに由来する構成単位を含む樹脂)、ポリアクリルアミド、ポリエーテル、ポリウレタン等とのブロックコポリマー等も生体安定性の生体適合性高分子に該当する。
 ボロン酸基を有する高分子は、第1の生体適合性高分子鎖と、第2の生体適合性高分子鎖とを有するものであってよい。なお、前記第1の生体適合性高分子鎖と第2の生体適合性高分子鎖とは異なるものであり、本実施形態の生体適合性高分子は、第1の生体適合性高分子鎖のブロックと第2の生体適合性高分子鎖のブロックとを含むブロック共重合体として提供できる。また、本実施形態に係る生体適合性高分子は、第1の生体適合性高分子鎖及び第2の生体適合性高分子鎖の他に、さらに別の高分子鎖を含むことができる。
 本実施形態において、「ブロック共重合体」とは、複数種類のブロック(同種の構成単位が繰り返し結合した部分構成成分)が結合した高分子である。ブロック共重合体を構成するブロックは、2種類であってもよく、3種類以上であってもよい。
 第1の生体適合性高分子鎖又は第2の生体適合性高分子鎖は、生体適合性及び汎用性に優れるとの観点から、ポリエチレングリコール(PEG)であることが好ましい。
 第1の生体適合性高分子鎖又は第2の生体適合性高分子鎖は、生体適合性及び生体安定性と生体分解性とのバランスに優れるとの観点から、ポリアミノ酸であることが好ましい。
 生体適合性高分子が含む第1の生体適合性高分子鎖と、第2の生体適合性高分子鎖との組み合わせとしては、例えば、第1の生体適合性高分子鎖がポリエチレングリコールであり、第2の生体適合性高分子鎖がポリアミノ酸である組み合わせが好ましい。
 第1の生体適合性高分子鎖と第2の生体適合性高分子鎖とを含む生体適合性高分子の製造方法は、特に制限されない。例えば、第1の生体適合性高分子鎖を公知の重合反応により合成した後、第1の生体適合性高分子鎖に、第2の生体適合性高分子鎖の単量体を重合させる方法により製造することができる。重合反応によって得られた前記高分子鎖は、それぞれ前駆体(例えば保護基を有するもの)の状態であってもよく、重合反応によって得られた前駆体に対して当業者により選択された通常の処理を行い、第1の生体適合性高分子鎖及び第2の生体適合性高分子鎖を製造してもよい。
 或いは、予め重合体として提供された、第1の生体適合性高分子鎖又はその前駆体と、第2の生体適合性高分子鎖又はその前駆体とを、公知の反応によって結合させることができる。その際、反応性の官能基同士の結合を利用して、両者を結合させてもよい。前駆体を用いる場合には、同様に適宜処理を行い、第1の生体適合性高分子鎖及び第2の生体適合性高分子鎖を製造することができる。
 実施形態に係る高分子は、ボロン酸基を有するものである。ボロン酸基は、上記式(10b)で示される構造であってよく、生体内環境等の中性付近のpH条件下であっても、ボロン酸ジオール結合を効率的に形成可能であるとの観点から、前記ボロン酸基が、置換基を有してもよいフェニルボロン酸基、又は置換基を有してもよいピリジルボロン酸基であることが好ましい。フェニルボロン酸基及びピリジルボロン酸基については、既報(WO2013/073697、特開2018-142115等)に開示されたものも例示及び援用できる。
 前記ボロン酸基は、より効率的にボロン酸ジオール結合を形成可能であり、上記のpH応答性をより容易に発現可能であるとの観点から、下記一般式(I)で表されるフェニルボロン酸基、又は下記一般式(II)で表されるピリジルボロン酸基であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式中、Xはハロゲン原子又はニトロ基を表し、nは0~4の整数である。)。
 Xの前記ハロゲン原子は、F,Cl, Br, I等の周期表において第17族に属する元素であり、Fが好ましい。
 一般式(I)で表されるフェニルボロン酸基は、下記一般式(I-1)又は一般式(I-2)で表される基であることが好ましい。一般式(II)で表されるピリジルボロン酸基は、下記一般式(II-1)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
(式中、Xはハロゲン原子又はニトロ基を表す。)。
 一般式(I-1)及び一般式(I-2)において、Xが係る位置に結合していることで、Xは電子吸引性基として効果的に作用し、上記式(10c)で示されるボロン酸ジオール結合の安定化に寄与すると考えられる。そのため、生体内の中性付近のpH環境においても、ボロン酸ジオール結合が形成されやすくなるため、上記のpH応答性をより容易に発現可能とすることができる。
 一般式(I-1)で表される基は、下記一般式(I-1-1)で表される基であることが好ましく、一般式(I-2)で表される基は、下記一般式(I-2-1)で表される基であることが好ましい。一般式(II-1)で表される基は、下記一般式(II-1-1)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 上記一般式(I-1-1)、一般式(I-2-1)及び一般式(II-1-1)で表される基がアミド結合を有していることにより、ボロン酸基の見かけのpKaを低下させる作用を奏する。
 実施形態の高分子において、ボロン酸基は、高分子に1つ以上導入されていればよく、2つ以上導入されていてもよく、5つ以上導入されていてもよい。
 本実施形態の高分子における、ボロン酸基の個数の上限値は特に制限されるものではないが、一例として1000以下であってよく、100以下であってよく、50以下であってよい。上記数値の数値範囲の一例として、本実施形態に係る高分子の有するボロン酸基の個数は、一例として、1~1000の整数であってよく、2~100の整数であってよく、5~50の整数であってよい。
 上記個数が上記下限値以上であることで、ボロン酸基による結合体の形成作用が良好に発揮され好ましい。
 ボロン酸基における解離と結合の平衡状態を考えたとき、高分子が複数(2以上)のボロン酸基を有することで、一方のボロン酸基の結合が解離しても、他方のボロン酸基が結合し得る。このように、本実施形態に係る高分子における、ボロン酸基の個数が多いほど、ボロン酸基を有する高分子とジオール構造を有する化合物とでの、見かけの結合力は飛躍的に向上する。
 よって、両者の結合力を向上させる観点から、2以上のジオール構造を有する化合物と、2以上のボロン酸基を有する高分子との組み合わせを用いることがより好ましい。ジオール構造及びボロン酸基の個数の2以上の各数については、各々上記で例示したものが挙げられる。
 前記ボロン酸基を有する高分子は、高分子に、ボロン酸基を導入して得ることができる。
 本実施形態の高分子において、ボロン酸基は、高分子のうちのいずれの箇所にも導入可能である。ボロン酸基は、第1の生体適合性高分子鎖及び/又は第2の生体適合性高分子鎖に導入されていてもよい。
 例えば、高分子と“ボロン酸基を有する化合物”との互いの反応性の官能基同士の結合を利用してボロン酸基を導入してもよい。反応性の官能基は、高分子が元から有しているものでもよく、改変又は導入されたものであってもよい。
 高分子とボロン酸基を有する化合物との結合においては、ボロン酸基を有する化合物及び高分子は、それぞれ、本発明の効果が得られる限り、それらが結合するのに必要な構造の変化を受けてもよい。
 例えば、ボロン酸基を有する化合物は、高分子の有する官能基と結合してもよく、第1の生体適合性高分子鎖及び/又は第2の生体適合性高分子鎖の有する官能基と結合してもよい。
 例えば、ボロン酸基を有する化合物は、高分子の側鎖の官能基と結合してもよく、第1の生体適合性高分子鎖及び/又は第2の生体適合性高分子鎖の側鎖の官能基と結合してもよい。
 前記ボロン酸基は、高分子の側鎖に2価の連結基を介して導入されたものであってよい。当該二価の連結基としては、例えば、アミド結合、カルバモイル結合、アルキル結合、エーテル結合、エステル結合、チオエステル結合、チオエーテル結合、スルホンアミド結合、ウレタン結合、スルホニル結合、チミン結合、ウレア結合、チオウレア結合が挙げられる。
 ここで、ボロン酸基が導入される対象となる高分子は、側鎖にカチオン性基を有するものが好ましい。ボロン酸基が高分子の側鎖に導入される場合であっても、ボロン酸基が導入されずに残った側鎖のカチオン性基は、上記式(10c)で示されるアニオン性基との相互作用により当該結合体の結合を安定化させることができる。
 したがって、本実施形態に係る高分子は、ボロン酸基及びカチオン性基を有するものであってよく、第1の生体適合性高分子鎖及び/又は第2の生体適合性高分子鎖は、ボロン酸基及びカチオン性基を有するものであってよい。
 高分子が、ボロン酸基及びカチオン性基を有する場合、ボロン酸基とカチオン性基とのモル比(カチオン性基:ボロン酸基)は、10:1~1:10であってよく、10:3~3:1であってよく、10:8~8:10であってよい。
 上記のカチオン性基としてはアミノ基が好ましい。側鎖にアミノ基を有することにより、水性媒体中において、該アミノ基がボロン酸のホウ素に配位し、該結合体の結合をより一層安定化させることができる。
 分子内にアミノ基を有する生体適合性高分子鎖としては、ポリアミノ酸や、ポリアクリルアミド、ポリビニルアミン、ポリアリルアミン等が挙げられ、ポリアミノ酸であることが好ましい。ポリアミノ酸は、側鎖にカチオン性基を有するものがより好ましく、側鎖にアミノ基を有するものがより好ましい。
 ボロン酸基が導入される対象となる生体適合性高分子がアミノ基を有する場合、当該アミノ基は、保護基で保護されたアミノ基であってもよい。
 アミノ基又は保護基で保護されたアミノ基を有しない生体適合性高分子鎖を用いる場合、エチレンジアミンおよびヒドラジンの導入、ベシャンプ還元、水酸基の直接アミノ化法、アミノリシス、Curtius転移等を用いた公知の方法により、生体適合性高分子にアミノ基を導入することができる。
 上記アミノ基との結合を形成させる場合、アミノ基との結合安定性および合成容易性の観点から、上記のボロン酸基を有する化合物は、カルボキシル基を有するものであることが好ましい。ボロン酸基が導入される対象となる生体適合性高分子のアミノ基と、ボロン酸基を有する化合物のカルボキシル基と、でアミド結合を形成させて、生体適合性高分子にボロン酸基を導入させることができる。また形成されたアミド結合がボロン酸基の見かけのpKaを低下させる作用も奏する。
 ボロン酸基及びカルボキシル基を有する化合物としては、例えば、4-カルボキシ-フェニルボロン酸、3-カルボキシ-4-フルオロフェニルボロン酸、4-カルボキシ-2-フルオロフェニルボロン酸、4-カルボキシ-3-フルオロフェニルボロン酸(FPBA)、3-カルボキシ-4-クロロフェニルボロン酸、4-カルボキシ-2-クロロフェニルボロン酸、4-カルボキシ-3-クロロフェニルボロン酸等を用いることができる。
 カルボキシル基とアミノ基とでアミド結合を形成させる方法としては、例えば、アミノ基を有する生体適合性高分子鎖とボロン酸基及びカルボキシル基を有する化合物とを、DMT-MM等の縮合剤の存在下で縮合反応させることが挙げられる。また、保護基で保護されたアミノ基を有する生体適合性高分子鎖の場合、公知の反応で保護基を脱保護し、アミノ基を有する生体適合性高分子鎖を得た後、同様に縮合反応させることができる。
 また、ボロン酸基は、第1の生体適合性高分子鎖又は第2の生体適合性高分子鎖のいずれか一方のみに導入されてもよい。例えば、ボロン酸基は、第2の生体適合性高分子鎖に導入することができる。図1では、ボロン酸基を有する生体適合性高分子2は、ボロン酸基を有する第2の生体適合性高分子鎖22と、ボロン酸基を有しない第1の生体適合性高分子鎖21を含む。例えば、第2の生体適合性高分子鎖が側鎖を有するものであり、ボロン酸基が、第2の生体適合性高分子鎖の側鎖に導入されたものであってよい。
 本実施形態に係るボロン酸基を有する高分子の一例として、下記一般式(1)又は(1-1)で表される構造を含むものが挙げられる。
Figure JPOXMLDOC01-appb-C000012
(式(1)~(1-1)中、Aは、前記第1の生体適合性高分子鎖を表し、Lはリンカー部を表し、Bは、ボロン酸基を有する前記第2の生体適合性高分子鎖を表す。)
 前記リンカー部は、炭素原子数1~20のアルキレン基であることが好ましく、炭素原子数1~20の直鎖状のアルキレン基であることが好ましく、炭素原子数1~5の直鎖状のアルキレン基であることがより好ましい。該アルキレン基中の1個又は2個以上の-CH-は、それぞれ独立して-CH=CH-、-O-、-CO-、-S-、-NH-、又は-CONH-によって置換されていてもよい。アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基等を例示できる。
 前記第2の生体適合性高分子鎖は、ポリアミノ酸であることが好ましい。
 第2の生体適合性高分子鎖がポリアミノ酸であり、前記ボロン酸基が前記ポリアミノ酸の側鎖に導入されている場合、上記一般式(1)又は(1-1)におけるBとしては、以下が好ましい。
 Bは、ボロン酸基を有する前記第2の生体適合性高分子鎖を表し、第2の生体適合性高分子鎖は、下記(b2)で表される繰り返し構造、又は(b1)で表される繰り返し構造及び(b2)で表される繰り返し構造を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000013
(式(b1)~(b2)中、
 Rは、アミノ酸側鎖を表し、
 Rは、アミノ酸側鎖に前記ボロン酸基が導入されたものであり、
 nは(b1)及び(b2)の合計数を表し、nは1~1000の整数であり、mは1~1000の整数であり(ただしm≦n)、n-mが2以上である場合、複数個のRは互いに同一でも異なっていてもよく、mが2以上である場合、複数個のRは互いに同一でも異なっていてもよい。)。
 R及びRにおけるアミノ酸としては、天然に存在するアミノ酸が好ましく、例えば、バリン、ロイシン、イソロイシン、アラニン、グリシン、フェニルアラニン、チロシン、トリプトファン、メチオニン、システイン、セリン、トレオニン、グルタミン、アスパラギン、リシン、アルギニン、ヒスチジン、アスパラギン酸、グルタミン酸、プロリン等を例示できる。
 アミノ酸側鎖とは、当分野における通常の意味で用いられ、ポリペプチドのアミド結合に関与するアミノ基とカルボキシ基以外の構造を指し、例えば、グリシンであれば水素原子であり、アラニンであればメチル基であり、バリンであればイソプロピル基である。
 第2の生体適合性高分子鎖が、(b1)で表される繰り返し構造及び(b2)で表される繰り返し構造を含む場合、(b1)と(b2)の配列はランダムであってよい。mは第2の生体適合性高分子鎖における(b2)の合計数を表し、n-mは第2の生体適合性高分子鎖における(b1)の合計数を表す。n-mは0であってもよい(すなわち、第2の生体適合性高分子鎖は(b1)及び(b2)のうち、ボロン酸基が導入された(b2)のみを有していてもよい。)。
 第2の生体適合性高分子鎖は、上記(b2)で表される繰り返し構造、又は(b1)で表される繰り返し構造及び(b2)で表される繰り返し構造からなるものであってもよい。
 また、Rのアミノ酸側鎖とRのアミノ酸側鎖とは、互いに同一でも異なっていてもよい。
 式(b1)~(b2)中、nは1~1000の整数であり、10~500の整数であってよく、15~100の整数であってよい。上記nの値が上記範囲内であることで、第2の生体適合性高分子鎖の分子量の値が好適なものとなり好ましい。
 式(b1)~(b2)中、mは1~1000の整数であり、3~100の整数であってよく、5~50の整数であってよい。上記mの値が上記下限値以上であることで、ボロン酸基による結合体の形成作用が良好に発揮され好ましい。
 なお、ここでは、nがmよりも大きい場合の数値範囲も例示しているが、nとmとは同一の数であってよい。
 ポリアミノ酸へのボロン酸基の導入様式は、特に限定されるものではないが、ポリアミノ酸のアミノ酸側鎖とボロン酸基を有する化合物との結合が好ましい。ポリアミノ酸のアミノ酸側鎖にボロン酸基を有する化合物を結合させる方法としては、アスパラギン酸側鎖又はグルタミン酸側鎖のカルボキシル基とのアミド結合、システインの側鎖のチオール基とのジスルフィド結合を形成させる方法などが挙げられる。ただし、上述のとおり、第2の生体適合性高分子鎖が側鎖にアミノ基を有することにより、水性媒体中において、該アミノ基は、ボロン酸のホウ素に配位し、結合体の結合をより一層安定化させることができるから、アミノ基を有するアミノ酸側鎖とボロン酸基及びカルボキシル基を有する化合物のカルボキシル基とのアミド結合を形成させる方法が好ましい。
 アミノ基を有するアミノ酸側鎖は、リシン側鎖、アルギニン側鎖、アルパラギン側鎖、又はグルタミン側鎖などの天然のアミノ酸側鎖のアミノ基であってもよく、任意のアミノ酸側鎖にアミノ基が導入されたものであってもよく、生体適合性等の観点からリシン側鎖が好ましい。
 上記(b2)で示される繰り返し構造は、Rがカチオン性基を有するアミノ酸側鎖にボロン酸基が導入されたものである構造を構成単位として含むことが好ましく、Rがアミノ基を有するアミノ酸側鎖にボロン酸基が導入されたものである構造を構成単位として含むことがより好ましく、Rがリシン側鎖にボロン酸基が導入されたものである構造を構成単位として含むことがさらに好ましい。
 n-mが1以上である場合、上記(b1)で示される繰り返し構造は、Rがカチオン性基を有するアミノ酸側鎖である構造を構成単位として含むことが好ましく、Rがアミノ基を有するアミノ酸側鎖である構造を構成単位として含むことがより好ましく、Rがリシン側鎖である構造を構成単位として含むことがさらに好ましい。
 第1の生体適合性高分子鎖は、ポリエチレングリコールであることが好ましい。
 第1の生体適合性高分子鎖が、ポリエチレングリコールであり、第2の生体適合性高分子鎖がポリアミノ酸である場合、上記一般式(1)で表される構造としては、下記一般式(1-2)で表される構造が好ましい。
Figure JPOXMLDOC01-appb-C000014
(式(1-2)中、
 lは1~1500の整数であり、Bは、ボロン酸基を有する第2の生体適合性高分子鎖を表し、第2の生体適合性高分子鎖は、下記(b2)表される繰り返し構造、又は(b1)表される繰り返し構造及び(b2)表される繰り返し構造を含む。)
 式(1-2)中、lは1~1500の整数であり、10~1000の整数であってよく、100~500の整数であってよい。
Figure JPOXMLDOC01-appb-C000015
(式(b1)~(b2)中、R、R、n、及びmは前記と同一の意味を表す)。
(結合体と複合化する物質)
 本実施形態の複合体における、結合体と複合化する物質は、前記結合体と複合化して複合体を形成可能であれば、特に制限されず、いかなるものであってもよい。
 結合体と複合化する物質は、結合体のジオール構造を有する化合物に由来する部分を介して、前記結合体と複合化することができる。
 ある物質が、結合体のジオール構造を有する化合物に由来する部分を介して、前記結合体と複合化することができることは、例えば、該物質とジオール構造を有する化合物とを含む組成物において、両者が複合体を形成可能であることで予備的に確認できる。例えば、タンパク質とポリフェノールを含む組成物において、両者が複合体を形成可能であれば、タンパク質は、結合体のポリフェノールに由来する部分を介して、前記結合体と複合化する可能性が高い。複合化は、組成物に含まれる粒子の粒子サイズが、該物質単体の粒子サイズよりも大きくなったことで判断できる。
 ある物質が、結合体と複合化することは、例えば、該物質と結合体とを含む組成物において、両者が複合体を形成可能であることを確認することで評価できる。複合体の形成は、組成物に含まれる粒子の粒子サイズが、該物質単体の粒子サイズよりも大きくなったことで判断できる。
 結合体と複合化する物質のサイズは、特に制限されるものではないが、一例として、該物質の粒径が500nm以下であってよく、0.1nm以上500nm以下であってよく、0.2nm以上100nm以下であってよく、0.3nm以上50nm以下であってよい。粒径は、動的光散乱法(DLS)又は蛍光相関分光法(FCS)により、後述の実施例に記載の測定条件により測定できる。
 結合体と複合化する物質の一例として、タンパク質、ウイルス、無機粒子、核酸、及び低分子医薬からなる群から選択される少なくとも一種を例示できる。ここで例示した概念に含まれる物質は、複数の前記概念に包含されるものであってよい。
・タンパク質
 本実施形態の複合体における複合要素としてのタンパク質は、前記結合体と複合化して複合体を形成可能であれば、特に制限されず、いかなるものであってもよい。
 本実施形態の複合体は、血中滞留性に優れ、更にpH応答性を有し、腫瘍集積性を発揮するなど、生体内での薬物送達用途に好適に利用可能であることから、本実施形態の複合体におけるタンパク質は、生理活性タンパク質であることが好ましい。生理活性タンパク質は、薬理作用を有することが好ましく、タンパク質型医薬を含むことが好ましい。
 タンパク質型医薬としては、タンパク質又はタンパク質を構成要素として含む成分を有効成分とする医薬であり、例えば、ハーセプチン、アバスチン、サイラムザ等の抗体医薬や、ヒアルロニダーゼ等の各種酵素、インスリン、サイトカイン、インターフェロン、ウイルスベクター等が挙げられる。ウイルスベクターとしては、アデノ随伴ウイルス(AAV)を含むもの等を例示できる。
 また本明細書において、タンパク質とはペプチドを包含する概念とする。ペプチドとして、膜透過性ペプチドも好適に例示できる。
 本実施形態の複合体は、腫瘍集積性を発揮することが好ましく、当該複合体におけるタンパク質は、抗腫瘍作用を有するものであることが好ましい。
 抗腫瘍作用を有するタンパク質型医薬としては、例えば、抗体医薬、インターフェロン、ウイルスベクター等が挙げられる。
・ウイルス
 本実施形態の複合体における複合要素としてのウイルスは、前記結合体と複合化して複合体を形成可能であれば、特に制限されず、いかなるものであってもよい。
 本実施形態の複合体は、血中滞留性に優れ、更にpH応答性を有し、腫瘍集積性を発揮するなど、生体内での薬物送達用途に好適に利用可能であることから、本実施形態の複合体におけるウイルスは、ウイルスベクターとして疾患の治療(ウイルス療法)に用いられる治療用ウイルスであることが好ましく、癌の治療に用いられる癌治療用ウイルスであることがより好ましい。
 治療用ウイルスは、ウイルスベクターに薬理作用を有する核酸を含むものであってもよく、薬理作用を有するタンパク質をコードする核酸を含むものであってもよい。
 治療用ウイルスは、疾患の治療用に導入される核酸を含むものであってもよく、癌治療用に導入される核酸を含むものであってもよい。
 上記核酸には、該核酸に含まれる配列を発現させるため、作動可能に連結したプロモーター配列を含むことができる。
 治療用ウイルスとしては、ヒトへのウイルスベクターとして使用可能な各種ウイルス又は人工ウイルスが挙げられ、ウイルスベクターのウイルス種としては、アデノ随伴ウイルス、アデノウイルス、ヘルペスウイルス、センダイウイルス、レトロウイルス、レンチウイルス等を例示できる。
 アデノ随伴ウイルス(AAV)としては、AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11等を例示できる。
 本実施形態の複合体は、腫瘍集積性を発揮することが好ましく、当該複合体におけるウイルスは、抗腫瘍作用を有するものであることが好ましい。
・無機粒子
 本実施形態の複合体における複合要素としての無機粒子は、前記結合体と複合化して複合体を形成可能であれば、特に制限されず、いかなるものであってもよい。
 無機粒子としては、無機材料を含む粒子であり、金粒子、銀粒子、白金粒子、鉄粒子、酸化チタン粒子等の金属粒子;シリカ粒子;量子ドット等の半導体粒子;カーボンナノチューブ、グラフェン等を含有する炭素粒子等を例示できる。
 無機粒子は、ナノ粒子であることが好ましい。ナノ粒子とは、粒径が1~100nmの粒子をいう。粒子の粒径は、動的光散乱法(DLS)又は蛍光相関分光法(FCS)により、後述の実施例に記載の測定条件により測定できる。
 無機粒子は、さらに上記のタンパク質、ウイルス、核酸、及び低分子医薬からなる群から選択される少なくとも一種で修飾されたものであってもよい。
・核酸
 本実施形態の複合体における複合要素としての核酸は、前記結合体と複合化して複合体を形成可能であれば、特に制限されず、いかなるものであってもよい。
 本実施形態の複合体は、血中滞留性に優れ、更にpH応答性を有し、腫瘍集積性を発揮するなど、生体内での薬物送達用途に好適に利用可能であることから、本実施形態の複合体における核酸は、生理活性を有する核酸であることが好ましい。生理活性を有する核酸は、薬理作用を有することが好ましく、核酸医薬を含むことが好ましい。
 本実施形態の複合体における複合要素としての核酸は、疾患の治療に用いられる核酸医薬であることが好ましい。
 核酸医薬としては、ヒトの体内で生理活性を有する各種核酸が挙げられ、DNA、RNA、LNA等の人工核酸等を例示でき、核酸の種類としては、siRNA、miRNA、アンチセンス核酸、アプタマー、リボザイム等を例示できる。
 本実施形態の複合体は、腫瘍集積性を発揮することが好ましく、当該複合体における核酸は、抗腫瘍作用を有するものであることが好ましい。
 抗腫瘍作用を有する核酸としては、TUG1(taurine upregulated gene 1)アンチセンス核酸、PLK1(polo-like kinase 1) siRNA、VEGF (vascular endothelial growth factor) siRNA等を例示できる。
・低分子医薬
 本実施形態の複合体における複合要素としての低分子医薬は、前記結合体と複合化して複合体を形成可能であれば、特に制限されず、いかなるものであってもよい。
 本実施形態の複合体は、血中滞留性に優れ、更にpH応答性を有し、腫瘍集積性を発揮するなど、生体内での薬物送達用途に好適に利用可能である。
 本明細書における「低分子医薬」とは、分子量1000以下の医薬を意味し、分子量500以下の医薬が好ましく、例えば分子量200~1000の医薬であってよく、分子量300~500の医薬であってよい。後述の実施例で用いた脂質異常症治療薬のピタバスタチンの分子量は、約421である。
 本実施形態の複合体は、腫瘍集積性を発揮することが好ましく、当該複合体における低分子医薬は、抗腫瘍作用を有するものであることが好ましい。
 抗腫瘍作用を有する低分子医薬としては、ブレオマイシン又はその塩等の抗癌剤、ローズベンガル等の音響増感剤、chlorin e6等の光増感剤、ホウ素クラスター等の放射線増感剤等を例示できる。
 本実施形態の複合体によれば、タンパク質等の複合要素に対し化学修飾を施さずに、結合体との複合体を形成でき、結合体の高分子による高分子化により、血中滞留性が向上されている。また当該結合体は、ボロン酸基を有する高分子と、ジオール構造を有する化合物とが結合したものであり、標的部位のpH環境に応じて結合体が解離するpH応答性を有している。
 そのため、本実施形態の複合体は、血中滞留性に優れ、且つ、目的の送達先で選択的に結合体が解離して、タンパク質等の複合要素の機能発現が期待される、非常に画期的なものである。
≪医薬≫
 本発明の一実施形態として、実施形態の複合体を有効成分として含有する、医薬を提供する。実施形態の複合体は、疾病に対する薬理効果を有することができる。該実施形態は、本実施形態の複合体におけるタンパク質等の複合要素が有効成分であって、薬理作用を有する場合に好適であり、例えば、薬理作用を有する任意のタンパク質、タンパク質型医薬、治療用ウイルス、核酸、核酸医薬、低分子医薬等を用いることができる。
 本発明の一実施形態として、実施形態の複合体を有効成分として含有する癌治療剤を提供する。本発明の一実施形態として、癌の治療のための実施形態の複合体を提供する。本発明の一実施形態として、癌治療薬を製造するための実施形態の複合体の使用を提供する。実施形態の複合体は癌治療効果を有することができる。該実施形態は、本実施形態の複合体におけるタンパク質等の複合要素が有効成分であって、抗腫瘍作用を有する場合に好適であり、例えば、抗腫瘍効果を発揮できる種々のタンパク質、はタンパク質型医薬、治療用ウイルス、核酸、核酸医薬、低分子医薬等を用いることができる。
 癌治療効果が期待される対象疾患としては、例えば血液がん、固形がん等が挙げられ、本実施形態の複合体が腫瘍集積性を有する場合、固形がんに好適である。ヒトの固形がんとしては、例えば、脳がん、頭頸部がん、食道がん、甲状腺がん、小細胞がん、非小細胞がん、乳がん、胃がん、胆のう・胆管がん、肺がん、肝がん、肝細胞がん、膵がん、結腸がん、直腸がん、卵巣がん、絨毛上皮がん、子宮体がん、子宮頸がん、腎盂・尿管がん、膀胱がん、前立腺がん、陰茎がん、睾丸がん、胎児性がん、ウイルムスがん、皮膚がん、悪性黒色腫、神経芽細胞腫、骨肉腫、ユ-イング腫、軟部肉腫などが挙げられる。
 本実施形態の癌治療剤における製剤化の例としては、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤として経口的に使用される経口剤が挙げられる。
 または、水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、又は懸濁液剤の注射剤の形で非経口的に使用されるものが挙げられる。更には、薬理学上許容される担体若しくは媒体、具体的には、滅菌水や生理食塩水、植物油、乳化剤、懸濁剤、界面活性剤、安定剤、香味剤、賦形剤、ベヒクル、防腐剤、結合剤等と適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化されたものが挙げられる。
 錠剤、カプセル剤に混和することができる添加剤としては、例えば、ゼラチン、コーンスターチ、トラガントガム、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸のような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖又はサッカリンのような甘味剤、ペパーミント、アカモノ油又はチェリーのような香味剤が用いられる。調剤単位形態がカプセルである場合には、上記の材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用蒸留水のようなベヒクルを用いて通常の製剤実施に従って処方することができる。
 注射用の水溶液としては、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えばD-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80(TM)、HCO-50と併用してもよい。
 油性液としてはゴマ油、大豆油があげられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールと併用してもよい。また、緩衝剤、例えばリン酸塩緩衝液、酢酸ナトリウム緩衝液、無痛化剤、例えば、塩酸プロカイン、安定剤、例えばベンジルアルコール、フェノール、酸化防止剤と配合してもよい。調製された注射液は通常、適当なアンプルに充填させる。
 患者への投与は、例えば、動脈内注射、静脈内注射、皮下注射などのほか、鼻腔内的、経気管支的、筋内的、経皮的、または経口的に当業者に公知の方法により行いうる。投与量は、患者の体重や年齢、投与方法などにより変動するが、当業者であれば適当な投与量を適宜選択することが可能である。投与量、投与方法は、患者の体重や年齢、症状などにより変動するが、当業者であれば適宜選択することが可能である。
 実施形態の癌治療剤は、さらに他の抗がん剤等を含んでいてもよい。かかる構成により、がん治療に対する相乗効果が期待できる。
≪キット≫
 本実施形態のキットは、ボロン酸基を有する高分子と、ジオール構造を有する化合物と、を備えるものである。前記高分子は生体適合性高分子であってよい。実施形態のキットは、ボロン酸基を有する生体適合性高分子と、ジオール構造を有する化合物と、を備えるものであってよい。
 本実施形態のキットは、上記の実施形態の複合体を形成するために用いることができる。本実施形態のキットは、結合体と複合化する物質(複合要素)を、さらに備えていてもよい。
 実施形態のキットの他の例として、実施形態の結合体と、前記結合体と複合化する物質とを備えるものを例示できる。
 結合体と複合化する物質としては、タンパク質、ウイルス、無機粒子、核酸、及び低分子医薬からなる群から選択される少なくとも一種を例示できる。
 ボロン酸基を有する高分子、ジオール構造を有する化合物、並びにタンパク質ウイルス、無機粒子、核酸、及び低分子医薬からなる群から選択される少なくとも一種等の結合体と複合化する物質については、上記の≪複合体≫で例示したものを採用でき、ここでの説明を省略する。
 本実施形態のキットは、溶液や、バッファー等の試薬類、反応容器、取扱い説明書等をさらに備えていてもよい。
 本実施形態のキットは、任意の上記タンパク質等の複合要素と、組み合わせることで、任意のタンパク質等の複合要素を含む、実施形態の複合体を形成することができ、汎用性に優れるものである。
≪結合体≫
 本実施形態の結合体は、ボロン酸基を有する高分子、及びジオール構造を有する化合物、が結合したものである。前記高分子は生体適合性高分子であってよい。実施形態の結合体は、ボロン酸基を有する生体適合性高分子、及びジオール構造を有する化合物、が結合したものであってよい。本実施形態の結合体は、上記の実施形態の複合体を形成するために用いることができる。
 ボロン酸基を有する高分子、及びジオール構造を有する化合物については、上記の≪複合体≫で例示したものを採用でき、ここでの説明を省略する。
 実施形態の結合体によれば、ジオール構造を有する化合物が高分子と結合していることで、ジオール構造を有する化合物の生体内での意図しない相互作用を抑制でき、ジオール構造を有する化合物をそのまま用いる場合よりも、物質送達の安定性に優れる。
 実施形態の結合体によれば、ジオール構造を有する化合物が高分子と結合していることで、ジオール構造を有する化合物の酸化を抑制でき、ジオール構造を有する化合物をそのまま用いる場合よりも、品質の安定性に優れる。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 なお、物質XとYとを添加して得られた溶液や複合体を、X/Y溶液や、X/Y複合体、単に“X/Y”等と表記する場合がある。同様に、物質XとYとZを添加して得られた溶液や複合体をX/Y/Z溶液や、X/Y/Z複合体、単に“X/Y/Z”、X三元系複合体、三元系複合体等と表記する場合がある。
 また、PEG-P[Lys(FPBA)m]nを、単にポリマーと表記する場合がある。
1.PEG10k-Poly[L-Lysine(Fluoro-Phenyl boronic acid)m]nの合成 
<1.1. 概要>
 実施例で製造したPEG10k-Poly[L-Lysine(Fluoro-Phenyl boronic acid)m]n (以下PEG-P[Lys(FPBA)m]n、合成スキーム(1)中、nはLysの重合度を表し、mはFPBAの導入数を表す)の合成法を記す。
Figure JPOXMLDOC01-appb-C000016
 開始剤をPEG10k-NH2、モノマーをLys(TFA)-NCAとするN-carboxyanhydride(NCA)重合によりPEG-P[Lys(TFA)]nを合成した。塩基性条件下で側鎖のTFA基を脱保護し、PEG-PLysnを得た。その後、3-carboxyl-4-fluoro-phenyl boronic acid(FPBA)のカルボキシル基をPEG-PLysnのアミノ基に結合し、PEG-P[Lys(FPBA)]nを得た。
<1.2. 試薬>
 特に記述のない試薬・溶媒は市販品をそのまま使用した。
・α-Methoxy-ω-amino-poly(ethylene glycol) (PEG-NH2) [Mn : 10K]:NOF Co, Inc.
・Benzene:Nacalai Tesque Inc.
・N-ε-Trifluoroacetyl-L-lysine-N-carboxy anhydride (Lys(TFA)-NCA):Chuo Kaseihin Co., Inc.
・Dimethyl sulfoxide(DMSO):Wako Pure Chemical Industries Co., Ltd.
 アルゴン雰囲気下で蒸留して使用した。(b.p. 189 ℃)
・Diethyl ether:Kanto Chemical CO.,Inc.
・Methanol:Kanto Chemical CO.,Inc.
・5 mol/L NaOH:Wako Pure Chemical Industries Co., Ltd.
・Dimethyl sulfoxide (DMSO):Nacalai Tesque Inc.
・4-Carboxy-3-fluorophenylboronic acid (FPBA):Combi-Blocks
・炭酸水素ナトリウム:東京化成工業
・D-Sorbitol:東京化成工業
・4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid(HEPES) : Dojinbo
・Sodium chloride(NaCl) : Wako pure chemical
・Cy5-NHS : Lumiprobe
・1-Methyl-2-pyrrolidinone : Sigma Aldrich Co., llc.
・Lithium bromide: Sigma Aldrich Co., llc.
<1.3. 測定機器>
・NMR (Nuclear Magnetic Resonance):BRUKER AVANCEIII400 (400 MHz, BRUKER BioSpin)
・GPC (Gel Permeation Chromatography):Jasco International Co., Ltd.
 カラム:TSK-gel superAW3000 (Tosoh Corporation), 
     Superdex 200 Increase 10/300 GL (GE Healthcare)
 検出器:RI-2031, UV-2030
・Fluorophotometer FP-8300 : Jasco International Co., Ltd.
<1.4. 合成手法>
[PEG-P[Lys(TFA)]nの合成]
 300 mL二口ナスフラスコにPEG-NH2 500 mg (0.050 mmol)を量り取り、ベンゼン2.0 mLに溶解させた後、凍結乾燥した。アルゴン雰囲気下で100 mL二口ナスフラスコにLys(TFA)-NCAを321, mg (1.2 mmol,24当量) (n=20)および643 mg (2.4 mmol, 48当量) (n=40)量り取った。PEG-NH2にDMSOを5 mL加えた。また、Lys(TFA)-NCAにDMSOをそれぞれ10mL 加え、溶解させた。Lys(TFA)-NCA溶液をPEG-NH2溶液に加え、アルゴン雰囲気下のもと室温で72時間攪拌した。反応溶液をそれぞれDiethyl ether 300mLに滴下し、再沈殿により精製した。その後、減圧乾燥させ、白色固体PEG-PLys(TFA)を収量745 mg(n=20)および 987 mg (n=40)、収率91 % (n=20)および86 % (n=40)で得た。GPCカーブ(カラム:TSK-gel superAW3000, 溶離液:NMP (50 mM LiBr), 流速:0.30 mL/min,検出器: RI-2031 測定温度:40 ℃にて取得)を図3および図4に示す。
[PEG-P[Lys(TFA)]nの脱保護]
 50 mLナスフラスコにPEG-P[Lys(TFA)]20 500 mg(0.0194 mmol)およびPEG-P[Lys(TFA)]40 500 mg (0.0194 mmol)をそれぞれ量り取り、2 mLの5 M NaOHと8 mLのMethanol混合液に加えて室温で一晩攪拌した。反応溶液を透析膜 (MWCO =3.5 kDa)に入れ、2 Lの0.1 M HCl、続いて2 Lの純水でそれぞれ2回ずつ透析した。溶液を凍結乾燥させ、白色固体PEG-PLysをそれぞれ収量367 mg (n=20)および331 mg(n=40)、収率 92 % (n=20)および90 % (n=40)で得た。1H NMR スペクトル(溶媒:D2O)を図5および図6に示す。
1H NMR spectrum of PEG-PLys20
 1H NMR (D2O at 25 °C): δ 3.4-3.9 (909H, -CH2CH2O-), δ 1.25-1.99 (120H, -CH2CH2CH2CH2NH3), δ 2.97 (40H, -CH2CH2NH3), δ 4.30 (20H, -COCHNH-).
1H NMR spectrum of PEG-PLys40
 1H NMR (D2O at 25 °C):帰属は上記1H NMR spectrum of PEG-PLys20と同じ
[FPBAのPEG-PLys nへの結合]
 50 mLナスフラスコにPEG-PLys20 100 mg (7.8 μmol)およびPEG-PLys40 100 mg (6.3 μmol)をそれぞれ量り取り、50mM NaHCO3 pH8.5 10 mLに溶解させた。そこに、DMT-MM 61.2 mg (0.22 mmol) (n=20)又は 100 mg (0.36 mmol) (n=40)、D-Sorbitol 42 mg (0.23 mmol) (n=20) 又は69 mg (0.38 mmol) (n=40)、メタノール1 mL に溶解させたFPBA 14.3 mg (0.078 mmol) (n=20) 又は23.3 mg (0.13 mmol) (n=40)を加え、室温で一晩攪拌した。反応溶液を透析膜 (MWCO=3.5 kD)に入れ、2 Lの0.1 M NaOH、2 Lの0.1 M HCl、続いて2 Lの純水でそれぞれ2回ずつ透析した。得られた溶液を凍結乾燥し、白色固体PEG-P[Lys(FPBA)m]nを収量 126 mg (n=20)および144 g (n=40)、収率 87 % (n=20)および80 % (n=40)で得た。1H-NMR スペクトル(溶媒:D2O with 180mg/ml D-sorbitol)を図7および図8に、GPCカーブ(カラム:Superdex 200 increase 10/300 GL, 溶離液:10 mM HEPES, 140 mM NaCl 500mM D-sorbitol (pH 7.4), 流速:0.75 mL/min,検出器: UV-2030, 測定温度:室温により取得)を図9および図10に示す。
1H NMR spectrum of PEG-P[PEG-P[Lys(FPBA)10]20
1H NMR (D2O with 180 mg/mL of D-sorbitol at 25 °C): δ 0.87-2.22(120H, -CH2CH2CH2CH2NH3) δ 7.00-7.70 (3H, -C6H3FB(OH)2).
1H NMR spectrum of PEG-P[PEG-P[Lys(FPBA)20]40
1H NMR (D2O with 180 mg/mL of D-sorbitol at 25 °C):帰属は上記1H NMR spectrum of PEG-P[PEG-P[Lys(FPBA)10]20と同じ.
[PEG-P[Lys(FPBA)m] nへのCy5導入]
 50 mLナスフラスコにPEG-P[Lys(FPBA)10]20 15 mg (11 μmol)をそれぞれ量り取り、50mM NaHCO3 pH8.5 10 mLに溶解させた。そこに、D-Sorbitol 8 mg (0.04 mmol)、DMSOに溶解させたCy5-NHS 0.7mg(11 μmol)を加え、室温で一晩攪拌した。反応溶液を純水に対して透析(Mwco:3.5 k Da)を4回行った後、凍結乾燥をした。その後PD-10カラム(溶媒は1M NaCl)で未反応のCy5-NHSを除去した後、水中で透析(Mwco:3.5 k Da)を3回行った。最後に凍結乾燥を行いPEG-P[Lys(FPBA10/Cy5)]20を回収した。収率はおよそ65%だった。蛍光スペクトル(Ex:560nm)を図13に示す。
<1.5. 解析>
[PEG-P[Lys(TFA)]]
 GPCカーブから、得られたポリマーのMw/MnはPEG-P[Lys(TFA)]20およびPEG-P[Lys(TFA)]40それぞれ1.25, 1.29と求まり、狭い分子量分布を持つことを確認した。
[PEG-PLysn
 1H NMRスペクトルの開始剤由来のピークδ 3.4-3.9 (909H, -CH2CH2O-)とLys由来のピーク[δ 1.25-1.99 (120H, -CH2CH2CH2CH2NH3), δ 2.97 (40H, -CH2CH2NH3), δ 4.30 (20H, -COCHNH-)]の積分値の比からPLysの重合度DP=20およびDP=40と算出された。
[PEG-P[Lys(FPBA)m]n
 1H NMRスペクトルのPLys由来のピーク[δ 1.25-1.99 (120H, -CH2CH2CH2CH2NH3)]とFPBA由来のピーク[δ 7.00-7.70 (3H, -C6H3FB(OH)2)]の積分値の比からFPBAの導入数は10 (n=20) および20 (n=40)、数平均分子量はMn=14,000 (n=20) およびMn=17,900 (n=40)と求まった。また、GPCカーブから、得られたポリマーは単峰性の狭い分子量分布を持つことを確認した。
2.PEG10k-FPBAの合成
<2.1. 概要>
 実施例で製造したPEG10k-Fluoro-Phenyl boronic acid (以下PEG-FPBA、合成スキーム(2)中、)の合成法を記す。
Figure JPOXMLDOC01-appb-C000017
<2.2. 試薬>
 特に記述のない試薬・溶媒は市販品をそのまま使用した。
・α-Methoxy-ω-amino-poly(ethylene glycol) (PEG-NH2) [Mw : 10K]:NOF Co., Inc.・5 mol/L NaOH:Wako Pure Chemical Industries Co., Ltd.
・4-Carboxy-3-fluorophenylboronic acid (FPBA):Combi-Blocks
・炭酸水素ナトリウム:東京化成工業
・D-Sorbitol:東京化成工業
・4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid(HEPES) : Dojinbo
・Sodium chloride(NaCl) : Wako pure chemical
<2.3. 測定機器>
・NMR (Nuclear Magnetic Resonance):BRUKER AVANCEIII400 (400 MHz, BRUKER BioSpin)
・GPC (Gel Permeation Chromatography):Jasco International Co., Ltd.
 カラム: Superdex 200 Increase 10/300 GL (GE Healthcare)
 検出器:UV-2030
<2.4. 合成手法>
[FPBAのPEG-NH2への結合]
 50 mLナスフラスコにPEG-NH2 100 mg (0.01 mmol)を量り取り、50 mM NaHCO3 pH8.5 10 mLに溶解させた。そこに、DMT-MM 13.8 mg (0.05 mmol)、D-Sorbitol 27 mg (0.15 mmol)、メタノール1 mL に溶解させたFPBA 9.2 mg (0.05 mmol)を加え、室温で一晩攪拌した。反応溶液を透析膜 (MWCO=3.5 kD)に入れ、2 Lの0.1 M NaOH、2 Lの0.1 M HCl、続いて2 Lの純水でそれぞれ2回ずつ透析した。得られた溶液を凍結乾燥し、白色固体PEG-P[Lys(FPBA)m]nを収量 90 mg、収率 88 %で得た。1H-NMR スペクトルを図11にGPCカーブ(カラム:Superdex 200 increase 10/300 GL, 溶離液:10 mM HEPES, 140 mM NaCl 500mM D-sorbitol (pH 7.4), 流速:0.75 mL/min,検出器: UV-2030, 測定温度:室温により取得)を図12に示す。
1H NMR spectrum of PEG-FPBA
1H NMR spectrum of PEG-P[PEG-P[Lys(FPBA)10]20
1H NMR (d-DMSO at 25 °C): δ 3.4-3.9 (909H, -CH2CH2O-), δ 7.00-7.70 (3H, -C6H3FB(OH)2).
<2.5. 解析>
[PEG-FPBA]
 1H NMRスペクトルのPEG由来のピーク[δ 3.4-3.9 (909H, -CH2CH2O-)]とFPBA由来のピーク[δ 7.00-7.70 (3H, -C6H3FB(OH)2)]の積分値の比からFPBAの導入率は100%と求まった。また、GPCカーブから、得られたポリマーは単峰性の狭い分子量分布を持つことを確認した。
3.三元系複合体の物理化学的性質の評価
<3.1. 概要>
 タンパク質とタンニン酸(TA)とボロン酸導入高分子の三元系複合体が形成されると、粒径が増大する。そこで、モデルタンパク質として緑色蛍光タンパク質(GFP)を用いて、蛍光相関分光法にて、粒径測定を行った。実施例として、PEG-P[Lys(FPBA)m]n及びPEG-FPBAを用いた。同時に、PEG-P[Lys(FPBA)m]nの会合数を超遠心機を用いて評価した。また、血液環境中での安定性を評価するため、FBSおよびグルコース溶液中での粒径変化も測定した。さらに、腫瘍周辺および細胞内pH応答性を確認するため、pH変化した際の粒径変化も測定した。
<3.2. 試薬>
 特に記述のない試薬・溶媒は市販品をそのまま使用した。
・緑色蛍光タンパク質(rGFP Protein,Mw: 33k Da):クロンテック
・PEG-P[Lys(FPBA)10]20 (Mn=14,000)
・PEG-P[Lys(FPBA)20]40 (Mn=17,900)
・タンニン酸:(Mw=1,701) Wako Pure Chemical., Ltd.
・D-PBS(-):Wako Pure Chemical., Ltd.
・5 mol/L HCl:Wako Pure Chemical Industries Co., Ltd.
<3.3. 測定機器>
・LSM710:Carl Zeiss Co., Ltd. 
・CS 150GX:日立
・Fluorophotometer FP-8300 : Jasco International Co., Ltd.
<3.4. ボロン酸導入高分子の添加による複合体形成の評価>
[GFP, TA, PEG-FPBA, PEG-P[Lys(FPBA)m]nの最終濃度]
・GFP:0.5 μM
・タンニン酸:40μM (調整濃度:82.5 μM)
・PEG-P[Lys(FPBA)m](n=20, m=10 又は n=40, m=20)に含まれるFPBA由来の構造:250μM 又は 500μM (FPBA濃度で算出)
・PEG-FPBA:250μM 又は 500μM
 これらは、それぞれD-PBS(-)に溶解させ調整した。
GFP溶液と、タンニン酸溶液とを混合させ、限外濾過膜(Mwco:10kDa)を用いて10,000g x 5分で遠心を2回行い、GFP/TA溶液を調整した。その後、別途GFP/TA溶液に、PEG-P[Lys(FPBA)10]20、PEG-P[Lys(FPBA)20]40、又はPEG-FPBA溶液を添加し、GFP/TA/PEG-P[Lys(FPBA)m](n=20, m=10 又は n=40, m=20) 溶液、GFP/TA/PEG-FPBA溶液を調整した。共焦点顕微鏡LSM710(Carl Zeiss製)を用いて、蛍光相関分光法にて、各溶液に含まれる粒子の粒径(個数基準の算術平均径)を測定した。
 まず、共焦点顕微鏡にて、測定する蛍光分子の拡散時間を算出した。拡散係数×拡散時間は一定であることから、拡散係数が公知であるRodamin 6G (拡散係数:4.14×10-10 m2/sec,25℃) の拡散時間を同時に測定し、測定する蛍光分子の拡散係数を算出した。それをアインシュタイン-ストークスの式に代入し、粒径を算出した。アインシュタイン-ストークスの式は以下の通りである。
D=KBT/6πηr
D:拡散係数
KB:ボルツマン定数(1.38×10-23 m2 ・kg/s2・K)
T:温度(298K)
η:粘度(0.00089 Pa・s)
r:粒子半径(nm)
 結果を図14に示す。
 GFP/TA/PEG-FPBA溶液、及びGFP/TA/PEG-P[Lys(FPBA)m](n=20 又は n=40, m=10 又は m=20)溶液に含まれる粒子の粒径は、それぞれGFP溶液及びGFP/TA溶液に含まれる粒子の粒径と比較して増大したことから、GFP、TA及びボロン酸導入高分子の三元系複合体の形成が示唆された。
 なかでも、GFP/TA/PEG-P[Lys(FPBA)m](n=20, m=10 又は n=40, m=20)溶液に含まれる粒子の粒径が有意に増大したことから、これらの三元系複合体の顕著な形成が示唆された。
<3.5. タンニン酸の添加による三元系複合体形成の評価>
[GFP, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・GFP:0.5 μM
・タンニン酸:40μM (調整濃度:82.5 μM)
・PEG-P[Lys(FPBA)10]20に含まれるFPBA由来の構造:250 μM (FPBA濃度で算出)
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 GFP溶液と、タンニン酸溶液とを混合させ、限外濾過膜(Mwco:3.5kDa)を用いて10,000g × 5分で遠心を2回行い、GFP/TA溶液を調整した。その後、別途GFP/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、GFP/TA/PEG-P[Lys(FPBA)10]20溶液を調整し、GFP溶液にPEG-P[Lys(FPBA)10]20を添加し、GFP/PEG-P[Lys(FPBA)10]20溶液を調整した。LSM710を用いて、蛍光相関分光法にて、各溶液に含まれる粒子の粒径を測定した結果を図15に示す。
 GFP/TA/PEG-P[Lys(FPBA)10]20溶液に含まれる粒子の粒径は、それぞれGFP溶液、GFP/TA溶液、GFP/PEG-P[Lys(FPBA)10]20溶液に含まれる粒子の粒径と比較して有意に増大したことから、GFP/TA/ PEG-P[Lys(FPBA)m]n複合体は、これらの三元系によって形成されていることが確認された。
<3.6.グルコース中の複合体形成の評価>
[GFP, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・GFP:0.5 μM
・タンニン酸:40μM (調整濃度:82.5 μM)
・PEG-P[Lys(FPBA)10]20に含まれるFPBA由来の構造:250 μM (FPBA濃度で算出)
 これらは、それぞれ、D-PBS(-)、0.1mg/ml, 1.0mg/ml又は10.0mg/mlのグルコースを含むD-PBS(-)溶液に溶解させ調整した。
 GFP溶液と、タンニン酸溶液とを混合させ、限外濾過膜(Mwco:3.5kDa)を用いて10,000g × 5分で遠心を2回行い、GFP/TA溶液を調整した。その後、別途GFP/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、GFP/TA/PEG-P[Lys(FPBA)10]20溶液を上記のグルコース濃度にて調整した。それらの溶液をLSM710にて、蛍光相関分光法にて、各溶液に含まれる粒子の粒径を測定した結果を図16に示す。
 GFP/TA/PEG-P[Lys(FPBA)10]20溶液に含まれる粒子の粒径は、各濃度のグルコース溶液中で、顕著な変化がなかったことから、GFP/TA/PEG-P[Lys(FPBA)10]20三元系複合体が、グルコース溶液中で安定であることが確認された。
<3.7. FBS中の複合体形成の評価>
[GFP, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・GFP:0.5 μM
・タンニン酸:40μM (調整濃度:82.5 μM)
・PEG-P[Lys(FPBA)10]20に含まれるFPBA由来の構造:250 μM (FPBA濃度で算出)
 これらは、それぞれ、D-PBS(-)に溶解させ調整した後、上記の最終濃度になるように、FBS /D-PBS(-)を以下の体積比(5/95, 10/90, 30/70, 50/50, 75/25(vol))で混合した混合溶液に加え調整した。
 GFP溶液と、タンニン酸溶液とを混合させ、限外濾過膜(Mwco:10kDa)を用いて10,000 g × 5分で遠心を2回行い、GFP/TA溶液を調整した。その後、別途GFP/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、GFP/TA/PEG-P[Lys(FPBA)10]20溶液を上記のFBS濃度にて調整した。それらの溶液をLSM710にて、蛍光相関分光法にて、各溶液に含まれる粒子の粒径を測定した結果を図17に示す。
 GFP/TA/PEG-P[Lys(FPBA)10]20溶液に含まれる粒子の粒径は、各濃度のFBS溶液中で、顕著な変化がなかったことから、GFP/TA/PEG-P[Lys(FPBA)10]20三元系複合体が、FBS溶液中で安定であることが確認された。
<3.8.複合体のpH応答性評価>
[GFP, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・GFP:0.5 μM
・タンニン酸:40μM (調整濃度:82.5 μM)
・PEG-P[Lys(FPBA)10]20に含まれるFPBA由来の構造:250 μM(FPBA濃度で算出)
 これらは、それぞれ、HClで調整したpH7.4 D-PBS(-)、pH6.6 D-PBS(-)、pH5.5 D-PBS(-)に溶解させ調整した。
 GFP溶液と、タンニン酸溶液とを混合させ、限外濾過膜(Mwco:10kDa)を用いて10,000 g × 5分で遠心を2回行い、GFP/TA溶液を調整した。その後、別途GFP/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、GFP/TA/PEG-P[Lys(FPBA)10]20溶液を上記のpHにて調整した。それらの溶液をLSM710にて、蛍光相関分光法にて、各溶液に含まれる粒子の粒径を測定した結果を図18に示す。
 pH6.6 に調整したGFP/TA/PEG-P[Lys(FPBA)10]20溶液に含まれる粒子の粒径は、pH7.4 に調整したGFP/TA/PEG-P[Lys(FPBA)10]20溶液に含まれる粒子の粒径と比べて減少した。また、pH5.5に調整したGFP/TA/PEG-P[Lys(FPBA)10]20溶液に含まれる粒子の粒径は、GFPの粒径と同等であったことから、GFP/TA/PEG-P[Lys(FPBA)10]20三元系複合体は、腫瘍周辺pH(pH6.6)および細胞内pH(pH5.5)において、GFP/TA/PEG-P[Lys(FPBA)10]20が脱離していると考えられ、pHに応じて複合体の形成状態が変化するpH応答性があることが確認された。
<3.9.複合体中のPEG-P[Lys(FPBA10/Cy5)]20 の会合数の評価>
[GFP, TA, PEG-P[Lys(FPBA10/Cy5)]20の最終濃度]
・GFP:0.5 μM
・タンニン酸:40μM (調整濃度:82.5 μM)
・PEG-P[Lys(FPBA10/Cy5)]20に含まれるFPBA由来の構造:250 μM(FPBA濃度で算出)
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 GFP溶液と、タンニン酸溶液とを混合させ、限外濾過膜(Mwco:10kDa)を用いて10,000g × 5分で遠心を2回行い、GFP/TA溶液を調整した。その後、別途GFP/TA溶液にPEG-P[Lys(FPBA10/Cy5)]20溶液を添加し、GFP/TA/PEG-P[Lys(FPBA10/Cy5)]20溶液を調整した。その溶液を超遠心機(CS 150GX)にて、50,000g × 1hにて超遠心することで、沈殿を生成させた。沈殿物には、沈降係数の大きいGFP/TA/ PEG-P[Lys(FPBA10/Cy5)]20複合体が選択的に含有される。沈殿物を1mlのD-PBS(-)に溶解させ、蛍光スペクトル(Ex:640nm/Em:680nm)を測り、濃度を算出することでGFP1分子あたりのPEG-P[Lys(FPBA10/Cy5)]20の会合数を測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000018
 GFP/TA/PEG-P[Lys(FPBA10/Cy5)]20複合体においては、GFP1分子に対して、PEG-P[Lys(FPBA10/Cy5)]20が、平均8.9個会合していることが確認された。
4. アリザリンレッド法によるタンニン酸とPEG-P[Lys(FPBA)m]の結合力評価
<4.1. 概要>
ボロン酸とジオール構造の結合力を定量する方法として確立されているアリザリンレッド法により、その結合力を評価した。下記にアリザリンレッド法の原理を、本実施例で実施した方法を例に、簡単に示す。
Figure JPOXMLDOC01-appb-C000019
<4.2. 試薬>
・緑色蛍光タンパク質(rGFP Protein):クロンテック
・PEG-P[Lys(FPBA)10]20 (Mn=14,000)
・PEG-P[Lys(FPBA)20]40 (Mn=17,900)
・タンニン酸 :Wako Pure Chemical Industries Co., Ltd.
・D-PBS(-):Wako Pure Chemical Industries Co., Ltd.
・没食子酸 :Wako Pure Chemical., Ltd.
・Alizarin Red S : Wako Pure Chemical Industries Co., Ltd.
<4.3. 測定機器>
・Fluorophotometer FP-8300 : Jasco International Co., Ltd.
<4.4. 複合体形成の評価>
[GFP, TA, PEG-FPBA, PEG-P[Lys(FPBA)10]20の最終濃度]
・Solution A : ARS (9.0×10-6 M) 
・Solution B : ARS (9.0×10-6 M) + PEG-FPBA (FPBA濃度 :2.0×10-3 M) 
・Solution C : ARS (9.0×10-6 M) + PEG-P[Lys(FPBA)10]20 (FPBA濃度 :2.0×10-3 M) ・Solution D : ARS (9.0×10-6 M) + PEG-FPBA (FPBA濃度 :2.0×10-3 M)+ 
タンニン酸 (ジオール濃度 = 5.0×10-4 M) 
・Solution E : ARS (9.0×10-6 M) + PEG-FPBA (2.0×10-3 M) + 没食子酸 (ジオール濃度 = 5.0×10-4 M) 
・Solution F : ARS (9.0×10-6 M) + PEG-P[Lys(FPBA)10]20 (FPBA濃度 :2.0×10-3 M) + 
タンニン酸 (ジオール濃度 = 5.0×10-4 M) 
・Solution G : ARS (9.0×10-6 M) + PEG-P[Lys(FPBA)10]20 (FPBA濃度 :2.0×10-3 M) + 没食子酸 (ジオール濃度 = 5.0×10-4 M) 
 Solution Aと、Solution B又はSolution Cとを様々な比率で混合し、ディスポセルを用いて蛍光測定を行った (Ex = 468 nm, Em = 572 nm)。得られた蛍光強度や各FPBA濃度を以下の式(1)に代入し、検量線を最小自乗法によって作成した後、検量線の傾きからARS-FPBA系の平衡定数K0を算出した。次に、Solution B又はSolution Cと各ジオール化合物を含むSolution D, E, F, 又はGとを、B+D、B+E、C+F、C+Gの組み合わせでそれぞれ様々な比率で混合し、ディスポセルを用いて蛍光測定を行った (Ex = 468 nm, Em = 572 nm)。得られた蛍光強度と各ジオール化合物の濃度を以下の式(2)に代入し、検量線を最小自乗法によって作成した後、検量線の傾きから各ジオール化合物-BPA系の平衡定数K1を算出した。検量線より得られた平衡定数を相対平衡定数として表2に示す。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-T000021
 没食子酸とPEG-P[Lys(FPBA)10]20の結合定数は、没食子酸とPEG-FPBAの結合定数と比較して、2.5倍になった。また、タンニン酸とPEG-P[Lys(FPBA)10]20の結合定数はタンニン酸とPEG-FPBAの結合定数と比較して、5倍となった。
5.培養細胞に対する評価
<5.1. 概要>
 GFPの細胞内分布を共焦点顕微鏡により観察し、細胞内取り込み経路を確認した。
<5.2. 試薬及び細胞株>
 特に記述のない試薬は市販品をそのまま使用した。
・緑色蛍光タンパク質(rGFP Protein,Mw: 33k Da):クロンテック
・PEG-P[Lys(FPBA)10]20 (Mn=14,000)
・タンニン酸:(Mw=1,701) Wako Pure Chemical., Ltd.
・D-PBS(-):Wako Pure Chemical., Ltd.
・Roswell Park Memorial Institute medium (RPMI):Sigma Aldrich Co., llc.
・Fetal bovine serum (FBS):BioseraInc.
・Trypsin-EDTA solution:Sigma life science Co., Ltd.
・Penicillin / streptomycin:Sigma life science Co., Ltd.
・5 mol/L HCl:Wako Pure Chemical Industries Co., Ltd.
・CT26細胞 (mouse colon carcinoma cell line):American Type Culture Collection.
・LysoTracker(登録商標)red DND - 99:Thermo Fisher Scientific Inc.
・Hoechst 33342:Thermo Fisher Scientific Inc.
・Paraformaldehyde:Nacalai Tesque Inc.
 4 % Paraformaldehyde/D-PBS(-)溶液として使用した。
<5.3. 測定機器>
・Countess:Thermo Fisher Scientific Inc.
・LSM710:Carl Zeiss Co., Ltd. 
<5.4. 共焦点顕微鏡によるGFPの細胞内分布の観察>
[GFP, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・GFP:0. 5 μM
・タンニン酸:40μM (調整濃度:82.5 μM)
・PEG-P[Lys(FPBA)10]20に含まれるFPBA由来の構造:250 μM (FPBA濃度で算出)
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 GFP溶液と、タンニン酸溶液とを混合させ、限外濾過膜(Mwco:10 kDa)を用いて10,000g × 5分で遠心を2回行い、GFP/TA溶液を調整した。その後、別途GFP/TA溶液にPEG-P[Lys(FPBA)10]20溶液を添加し、GFP/TA/PEG-P[Lys(FPBA)10]20溶液を調整した。
[共焦点顕微鏡による観察]
 35 mm2 Glass base dishにCT26細胞を 5.0 × 104 cell / dish となるよう播種し、37 ℃, 5 % CO2下で24時間前培養した。各デッシュに上記のGFP/TA/PEG-P[Lys(FPBA)10]20溶液を200μL加え、6時間インキュベートした。D-PBS(-) 1 mL で洗浄後、100 nM LysoTracker (登録商標) red DND-99/(D-PBS(-):RPMI=1:9) 溶液1 mLを加え、30 min インキュベートした。D-PBS(-) 1 mLで洗浄後、4 % Paraformaldehyde/D-PBS(-)溶液で4分間インキュベートした。D-PBS(-) 1 mLで洗浄後、5.0 μg/mL Hoechst / D-PBS(-) 溶液 1 mLを加え、5 min インキュベートした。D-PBS(-) 1 mL で2回洗浄後、RPMI 2 mLを加え、CLSMで観察した。得られた結果を図19に示す。
 GFPはエンドソーム/リソソームに局在していたことから、エンドサイトーシスにより細胞に取り込まれたことが示唆された。
5.皮下腫瘍モデルマウスに対する効果(血中滞留性・腫瘍集積性)
<5.1. 概要>
 CT26(マウス大腸がん細胞)皮下腫瘍モデルマウスにおけるGFP/TA/PEG-P[Lys(FPBA)10]20複合体の体内動態を評価した。
<5.2. 試薬、細胞及び動物>
・緑色蛍光タンパク質(rGFP Protein,Mw: 33k Da):クロンテック
・PEG-P[Lys(FPBA)10]20 (Mn=14,000)
・タンニン酸:(Mw=1,701) Wako Pure Chemical Industries Co., Ltd.
・CT-26細胞 (mouse colon carcinoma cell line):American Type Culture Collection.
・BALB/c mice : Charles River Japan Inc.
・GFP ELISA Kit (ab171581) :abcam
 Extraction Buffer, 96well plate, 抗体溶液, Wash Buffer, 3,3',5,5'-tetramethylbenzidine (TMB), Stop solutionが含まれている。
<5.3. 機器・設備>
・Countess:Thermo Fisher Scientific Inc.
・iMark:BioRAD
<5.4. GFP/TA/PEG-P[Lys(FPBA)10]20複合体の体内動態>
 GFP, GFP/TAおよびGFP/TA/PEG-P[Lys(FPBA)10]20の血中滞留性および腫瘍集積性を評価するべく、GFP/TA/PEG-P[Lys(FPBA)10]20をCT26皮下腫瘍モデルマウスに静脈注射し、一定時間経過後の血液および腫瘍のGFP含有量をELISAにより測定した。
[GFP, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・GFP:2.2 μM
・タンニン酸:350 μM
・PEG-P[Lys(FPBA)10]20に含まれるFPBA由来の構造:1 mM (FPBA濃度で算出)
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 GFP溶液と、タンニン酸溶液とを混合させ、限外濾過膜(Mwco:10kDa)を用いて10,000g × 5分で遠心を2回行い、GFP/TA溶液を調整した。その後、別途GFP/TA溶液にPEG-P[Lys(FPBA)10]20溶液を添加し、GFP, GFP/TAおよびGFP/TA/PEG-P[Lys(FPBA)10]20溶液を調整した。
[CT26皮下腫瘍モデルマウスの作製]
 CT26細胞懸濁液(1.0×10cells/ml)をBALB/cマウスに対して100 μl皮下注射した。
[体内動態の評価]
 腫瘍サイズがおよそ200 mm3に達したモデルマウスに対して、上記の調製溶液100 μlを尾静脈投与した。試料投与から2, 6, 24時間後に解剖し、血液及び各種臓器を回収し、5倍重量のCell Extraction Bufferを加えて、20分間On iceでインキュベートした。その後、18,000g × 20 minute 4℃で遠心分離を行い、上澄みをCell Extraction Bufferで希釈し、GFP ELISA Kitの96well plateに50μl加え、抗体溶液を添加し、1h × 400rpm 常温で振盪させた。次に、350μlのWash Bufferで3回洗浄した後、100μlのTMBを加えて、10分間常温で振盪させ、Stop solutionを添加した。その後、プレートリーダーにて450nmの吸光度を測定し、検量線からGFPの濃度を算出し、体内動態を評価した。その結果を図20、図21に示す。
 投与から2、6時間後におけるGFPおよびGFP/TAの血中濃度は約5.0 %,1.5%と血中からの速やかな消失を示した一方で、GFP/TA/PEG-P[Lys(FPBA)10]20は投与から6時間後において15%、24時間後においても3.8%と有意に高い血中濃度を示した。さらに、GFP/TA/PEG-P[Lys(FPBA)10]20は2、6、24時間後の時点で、GFPと比較して、2.5倍、5.5倍、10倍と高い腫瘍集積を示した。これらの結果から、GFP/TA/PEG-P[Lys(FPBA)10]20で構成されたタンパク質送達システムにより、血中滞留性の向上に加えて、腫瘍集積性および滞留性の付与が達成されたことが示された。
6.様々な物質を内包させた三元系複合体形成の確認
<6.1. 概要>
 GFPタンパク質だけでなく、低分子医薬、ペプチド、アデノ随伴ウイルス、無機粒子、核酸等を用いて三元系複合体を形成させ、粒径変化を測定した。測定方法は、動的光散乱法(DLS)又は、蛍光相関分光法(FCS)を用いた。
<6.2. 試薬>
 特に記述のない試薬・溶媒は市販品をそのまま使用した。
・PEG-P[Lys(FBPA)10]20 (Mn=14,000)
・タンニン酸:(Mw=1,701) Wako Pure Chemical Industries Co., Ltd.
・D-PBS(-):Wako Pure Chemical Industries Co., Ltd.
・ブレオマイシン硫酸塩(単にブレオマイシンと略す) :1513.6 g/mol, Tokyo Chemical Industry Co., Ltd.
・ローズベンガル:973.67 g/mol,Tokyo Chemical Industry Co., Ltd.
・Chlorin e6:596.7 g/mol,Cayman Chemical Co., Ltd.
・ピタバスタチンカルシウム(単にピタバスタチンと略す):880.98 g/mol, Wako Pure Chemical Industries Co., Ltd.
・Gelonin:Mw ~30 kDa, Enzo Life Sciences, Inc.
・Pseudomonas exotoxin A(PE) :Mw ~60kDa, Sigma Aldrich Co., llc.
・緑色蛍光タンパク質(rGFP) Protein:Mw 33k Da, クロンテック
・β-D-ガラクトシダーゼ(βGal) :Mw 540 kDa , Wako Pure Chemical Industries Co., Ltd.
・FITC-LC-Antennapedia Peptide (単にPeptideと略す) :2748.3 g/mol, Anaspec Inc.
・AAV9-CMV-Luc(単にAAVと略す):SignaGen Laboratories.
・金ナノ粒子(AuNP) :粒子径:15nm, 0.050 mg/ml, 2.3 nM , BBI Solutions.
・Alexa Fluor647-TUG1 (TUG1アンチセンス核酸,単にTUG1と略す) :8058.7 g/mol , GeneDesign, Inc.
<6.3. 測定機器>
(蛍光相関分光法)
・LSM710:Carl Zeiss Co., Ltd. 
 温度:25℃、測定時間:10秒、積算回数:10回
(動的光散乱法)
・Zetasizer Nano ZS (Zetasizer) :Malvern Instruments
 温度:25℃、測定時間:10秒、積算回数:10回
 動的光散乱の測定方法は以下の通りである。動的光散乱(DLS Zetasizer Nano ZS(Malvern Instruments社製)を用いて、検出角度173°および温度25℃でDLS測定を行った。入射ビームとしてHe-Neレーザー(633nm)を用いた。各複合体溶液を小さなガラスキュベット(容量12μL、ZEN2112、Malvern Instruments社製)に加えた。光子相関関数における減衰レートから得られたデータをキュムラント法により分析し、次いで、上記のアインシュタイン-ストークスの式により、各複合体の流体力学径(個数基準の算術平均径)を計算した。
<6.4. ブレオマイシン三元系複合体形成の評価>
[ブレオマイシン, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・ブレオマイシン:0.02 mg/mL
・タンニン酸:0.2 mg/mL
・PEG-P[Lys(FBPA)10]20:3.3 mg/mL
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 ブレオマイシン溶液と、タンニン酸溶液とを混合し、ブレオマイシン/TA溶液を調整した。その後、ブレオマイシン/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、ブレオマイシン/TA/PEG-P[Lys(FPBA)10]20(ブレオマイシン三元系複合体)溶液を調整した。Zetasizerを用いて、粒径測定した結果を表3に示す。
 ブレオマイシン三元系複合体の粒径は、ブレオマイシン単体の粒径と比較して明らかに増大したことから、ブレオマイシン三元系複合体の形成が確認された。
<6.5. ローズベンガル三元系複合体形成の評価>
[ローズベンガル, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・ローズベンガル:0.02 mg/mL
・タンニン酸:0.2 mg/mL
・PEG-P[Lys(FBPA)10]20:3.3 mg/mL
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 実施例で使用したローズベンガルの構造を下記に示す。
Figure JPOXMLDOC01-appb-C000022
 ローズベンガル溶液と、タンニン酸溶液とを混合し、ローズベンガル/TA溶液を調整した。その後、ローズベンガル/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、ローズベンガル/TA/PEG-P[Lys(FPBA)10]20(ローズベンガル三元系複合体)溶液を調整した。Zetasizerを用いて、粒径測定した結果を表3に示す。
 ローズベンガル三元系複合体の粒径は、ローズベンガル単体の粒径と比較して明らかに増大したことから、ローズベンガル三元系複合体の形成が確認された。
<6.6. Chlorin e6三元系複合体形成の評価>
[Chlorin e6, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・Chlorin e6:1 μM
・タンニン酸:15 μM
・PEG-P[Lys(FBPA)10]20:30 μM
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 Chlorin e6溶液と、タンニン酸溶液とを混合し、Chlorin e6/TA溶液を調整した。その後、Chlorin e6/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、Chlorin e6/TA/PEG-P[Lys(FPBA)10]20(Chlorin e6三元系複合体)溶液を調整した。LSM710を用いて、FCSにて粒径測定した結果を表3に示す。
 Chlorin e6三元系複合体の粒径は、Chlorin e6単体の粒径と比較して明らかに増大したことから、Chlorin e6三元系複合体の形成が確認された。
<6.7. ピタバスタチン三元系複合体形成の評価>
[ピタバスタチン, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・ピタバスタチン :0.02 mg/mL
・タンニン酸:0.2 mg/mL
・PEG-P[Lys(FBPA)10]20:3.3 mg/mL
 ピタバスタチンは5% THF含有D-PBS(-)に溶解させ、TAとPEG-P[Lys(FBPA)10]20は、D-PBS(-)に溶解させ調整した。
 ピタバスタチン溶液と、タンニン酸溶液とを混合させ、ピタバスタチン/TA溶液を調整した。その後、ピタバスタチン/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、ピタバスタチン/TA/PEG-P[Lys(FPBA)10]20(ピタバスタチン三元系複合体)溶液を調整した。Zetasizerを用いて、粒径測定した結果を表3に示す。
 ピタバスタチン溶液で凝集していたピタバスタチン(測定値としては4586nm)が、ピタバスタチン/TA/PEG-P[Lys(FPBA)10]20溶液では60.2nmの粒径になったことから、ピタバスタチン三元系複合体の形成が確認された。
<6.8. Gelonin三元系複合体形成の評価>
[Gelonin, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・Gelonin:0.5 μM
・タンニン酸:82.5 μM
・PEG-P[Lys(FBPA)10]20: 50 μM
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 Gelonin溶液と、タンニン酸溶液とを混合し、限外濾過膜(Mwco:3.5 k Da)を用いて10,000g × 5分で遠心を2回行い、Gelonin/TA溶液を調整した。その後、Gelonin/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、Gelonin/TA/PEG-P[Lys(FPBA)10]20溶液(Gelonin三元系複合体溶液)を調整した。Zetasizerを用いて、粒径測定した結果を表3に示す。
 Gelonin三元系複合体の粒径は、Gelonin単体の粒径と比較して明らかに増大したことから、Gelonin三元系複合体の形成が確認された。
<6.9. PE三元系複合体形成の評価>
[PE, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・PE:0.25 μM
・タンニン酸:82.5 μM
・PEG-P[Lys(FBPA)10]20: 50 μM
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 PE溶液と、タンニン酸溶液とを混合し、限外濾過膜(Mwco:3.5 k Da)を用いて10,000g × 5分で遠心を2回行い、PE/TA溶液を調整した。その後、PE/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、PE/TA/PEG-P[Lys(FPBA)10]20溶液(PE三元系複合体溶液)を調整した。Zetasizerを用いて、粒径測定した結果を表3に示す。
 PE三元系複合体の粒径は、PE単体の粒径と比較して明らかに増大したことから、PE三元系複合体の形成が確認された。
<6.10. rGFP三元系複合体形成の評価>
 上記の、3.4.の複合体形成の評価と同様にして、粒径測定した結果を表3に示す。
<6.11. βGal三元系複合体形成の評価>
[βGal, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・βGal:0.1 mg/mL
・タンニン酸:0.37mg/mL
・PEG-P[Lys(FBPA)10]20: 3.95 mg/mL
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 βGal溶液と、タンニン酸溶液とを混合し、βGal/TA溶液を調整した。その後、βGal/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、βGal/TA/PEG-P[Lys(FPBA)10]20溶液(βGal三元系複合体溶液)を調整した。Zetasizerを用いて、粒径測定した結果を表3に示す。
 βGal三元系複合体の粒径は、βGal単体の粒径と比較して明らかに増大したことから、βGal三元系複合体の形成が確認された。
<6.12. Peptide三元系複合体形成の評価>
[Peptide, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・Peptide:1 μM
・タンニン酸:8 μM
・PEG-P[Lys(FBPA)10]20:15 μM
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 Peptide溶液と、タンニン酸溶液とを混合し、Peptide/TA溶液を調整した。その後、Peptide/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、Peptide/TA/PEG-P[Lys(FPBA)10]20(Peptide三元系複合体)溶液を調整した。LSM710を用いて、FCSにて粒径測定した結果を表3に示す。
 Peptide三元系複合体の粒径は、Peptide単体の粒径と比較して明らかに増大したことから、Peptide三元系複合体の形成が確認された。
<6.13. AAV三元系複合体形成の評価>
[AAV, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・AAV:2.0 × 1010 vL/mL
・タンニン酸:2.04 × 10-4 mg/mL
・PEG-P[Lys(FBPA)10]20: 0.0022 mg/mL
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 AAV溶液と、タンニン酸溶液とを混合させ、AAV/TA溶液を調整した。その後、AAV/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、AAV/TA/PEG-P[Lys(FPBA)10]20溶液(AAV三元系複合体溶液)を調整した。Zetasizerを用いて、粒径測定した結果を表3に示す。
 AAV三元系複合体の粒径は、AAV単体の粒径と比較して明らかに増大したことから、AAV三元系複合体の形成が確認された。
<6.14. AuNP三元系複合体形成の評価>
[AuNP, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・AuNP:1.0 nM
・タンニン酸:1 μM
・PEG-P[Lys(FBPA)10]20: 2 μM
 これらは、それぞれ、超純水に溶解させ調整した。
 AuNP溶液と、タンニン酸溶液とを混合し、限外濾過膜(Mwco:10 k Da)を用いて10,000g × 5分で遠心を2回行い、AuNP/TA溶液を調整した。その後、AuNP/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、AuNP/TA/PEG-P[Lys(FPBA)10]20溶液(AuNP三元系複合体溶液)を調整した。Zetasizerを用いて、粒径測定した結果を表3に示す。
 AuNP三元系複合体の粒径は、AuNP単体の粒径と比較して明らかに増大したことから、AuNP三元系複合体の形成が確認された。
<6.15. TUG1三元系複合体形成の評価>
[TUG1, TA, PEG-P[Lys(FPBA)m]nの最終濃度]
・TUG1:100 nM
・タンニン酸:5 μM
・PEG-P[Lys(FBPA)10]20:10 μM
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 TUG1溶液と、タンニン酸溶液とを混合し、TUG1/TA溶液を調整した。その後、TUG1/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、TUG1/TA/PEG-P[Lys(FPBA)10]20(TUG1三元系複合体)溶液を調整した。LSM710を用いて、FCSにて粒径測定した結果を表3に示す。
 TUG1複合体の粒径は、TUG1単体の粒径と比較して明らかに増大したことから、TUG1複合体の形成が確認された。
Figure JPOXMLDOC01-appb-T000023
7.ローズベンガル三元系複合体の機能性評価
<7.1. 概要>
 ローズベンガル三元系複合体動物実験による血中滞留性を評価した。
<7.2. 試薬>
 特に記述のない試薬は市販品をそのまま使用した。
・ローズベンガル: (973.67 g/mol) Tokyo Chemical Industry Co., Ltd.
・PEG-P[Lys(FBPA)10]20 (Mn=14,000)
・タンニン酸:(Mw=1,701) Wako Pure Chemical Industries Co., Ltd.
・D-PBS(-):Wako Pure Chemical Industries Co., Ltd.
・BALB/c mice : Charles River Japan Inc.
・Passive Lysis Buffer : Promega corporation.
<7.3. 測定機器>
・Guava(登録商標) easyCyte Flow Cytometry (FCM):Merck Millipore
・Spark : Tecan Group Ltd.
<7.4. ローズベンガル三元系複合体の体内動態>
[ローズベンガル, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・ローズベンガル:0.1 mg/mL
・タンニン酸:1.0 mg/mL
・PEG-P[Lys(FBPA)10]20:16.5 mg/mL
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 ローズベンガル溶液と、タンニン酸溶液とを混合し、ローズベンガル/TA溶液を調整した。その後、ローズベンガル/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、ローズベンガル溶液、ローズベンガル/TA複合体溶液、及びローズベンガル/TA/PEG-P[Lys(FPBA)10]20(ローズベンガル三元系複合体)溶液を調整した。
[体内動態の評価]
 モデルマウスに対して、上記の調製溶液200 μlを尾静脈投与した。試料投与から1, 3時間後に解剖し、血液を回収し、5,000g × 10minute 20℃で遠心分離を行い、100 μlの血漿成分を回収し、700 μlのPassive Lysis Bufferを加えた。その後、血漿成分と投与したサンプルの蛍光強度(Ex/Em : 520 nm/570 nm)をSparkで測定し、血中滞留性を評価した。その結果を図22に示す。図中では、ローズベンガル/TA/PEG-P[Lys(FPBA)10]20をローズベンガル/TA/ポリマーと表記している。
 投与から3時間後におけるローズベンガルおよびローズベンガル/TA複合体の血中濃度は、それぞれ約0.22 %、1.02%だった。一方で、ローズベンガル三元系複合体の血中濃度は、は投与から3時間後において2.2%であり、ローズベンガル単体と比べて約10倍の血中濃度を示した。この結果から、ローズベンガル三元系複合体は、ローズベンガル単体およびローズベンガル/TAと比較して、血中滞留性の向上を達成したことが示された。
8. GFP三元系複合体の機能性評価
<8.1. 概要>
 GFP三元系複合体の機能性評価を実施した。具体的には、溶液中でのタンニン酸の酸化に関する安定性評価と、GFP三元系複合体の細胞内分子であるアデノシン三リン酸(ATP)応答性の評価である。
<8.2. 試薬>
 特に記述のない試薬・溶媒は市販品をそのまま使用した。
・緑色蛍光タンパク質(rGFP Protein) :Mw= 33k Da,クロンテック
・PEG-P[Lys(FBPA)10]20 (Mn=14,000)
・タンニン酸:(Mw=1,701) Wako Pure Chemical Industries Co., Ltd.
・D-PBS(-):Wako Pure Chemical Industries Co., Ltd.
・アデノシン三リン酸(ATP) :Wako Pure Chemical Industries Co., Ltd.
<8.3. 測定機器>
・LSM710:Carl Zeiss Co., Ltd. 
・Fluorophotometer FP-8300 : Jasco International Co., Ltd.
・Absorptiometer (V-650, JASCO, Tokyo, Japan)
<8.4. ボロン酸導入高分子を添加することによるTAの酸化抑制の評価>
[TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・タンニン酸:0.5 mg/ml
・PEG-P[Lys(FPBA)10]20:2.2 mg/ml
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 タンニン酸溶液と、PEG-P[Lys(FPBA)10]20溶液とを混合し、TA/PEG-P[Lys(FPBA)10]20溶液を調整した。
[溶液中でのTAの酸化抑制の評価]
 調製したTA溶液、TA/PEG-P[Lys(FPBA)10]20溶液を37 ℃で所定時間インキュベートした後、吸光度計にてTAの酸化物であるキノン由来の吸光波長(380nm)の吸光度増加を測定した。得られた結果を図23Aに、24時間後のそれぞれ溶液の写真を図23Bに示す。
 図23A及び図23Bに示される結果より、TA/PEG-P[Lys(FPBA)10]20溶液の吸光度の継時増加および24時間後の色の変化は、TA溶液と比較して大幅に抑制されたことが示された。これより、PEG-P[Lys(FPBA)10]20の添加によって、タンニン酸の酸化が大幅に抑制されたことが分かる。
<8.5. GFP三元系複合体の継時安定性評価>
[GFP, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・GFP:0.5 μM
・タンニン酸:82.5 μM
・FBPA of PEG-P[Lys(FPBA)10]20:250 μM
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 GFP溶液と、タンニン酸溶液とを混合し、限外濾過膜(Mwco:3.5 k Da)を用いて10,000g × 5分で遠心を2回行い、GFP/TA溶液を調整した。その後、GFP/TA溶液にPEG-P[Lys(FPBA)10]20溶液を添加し、GFP/TA/PEG-P[Lys(FPBA)10]20複合体(GFP三元系複合体)溶液を調整した。
[GFP三元系複合体の安定性評価]
 調製したGFP三元系複合体を37 ℃で所定時間インキュベートした後、LSM710を用いて、FCSにて粒径測定した結果を図23Cに示す。また、FP-8300を用いて、蛍光強度を測定した結果も、同様に図23Cに示す。
 24時間後も、有意な粒径および蛍光強度の変化が見られなかったことから、GFP三元系複合体は、安定して複合体を形成していることが分かる。
<8.6. ATP溶液中でのGFP三元系複合体の安定性評価>
[GFP, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・GFP:0.5 μM
・タンニン酸:82.5 μM
・FBPA of PEG-P[Lys(FPBA)10]20:250 μM
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 GFP溶液と、タンニン酸溶液とを混合し、限外濾過膜(Mwco:3.5 k Da)を用いて10,000g × 5分で遠心を2回行い、GFP/TA溶液を調整した。その後、GFP/TA溶液にPEG-P[Lys(FPBA)10]20溶液を添加し、GFP/TA/PEG-P[Lys(FPBA)10]20複合体(GFP三元系複合体)溶液を調整した。
[ATP溶液中でのGFP三元系複合体の安定性評価]
 調製したGFP三元系複合体を所定濃度のATP溶液と混合させた後、LSM710を用いて、FCSにて粒径測定した。結果を図24に示す。
 ATPの濃度増加に伴い、有意な粒径の減少が見られたことから、GFP三元系複合体は、ATPの濃度増加に伴いタンニン酸とPEG-P[Lys(FPBA)10]20との結合が解離するATP応答性があることが確認された。
9.βGal三元系複合体形成の機能性評価
<9.1. 概要>
 βGal三元系複合体の機能性評価を実施した。具体的には、溶液中および細胞内での、βGal三元系複合体の酵素活性の評価と動物実験による体内動態の評価である。
<9.2. 試薬>
 特に記述のない試薬は市販品をそのまま使用した。
・β-D-ガラクトシダーゼ(βGal): Mw 540 kDa, Wako Pure Chemical Industries Co., Ltd.
・PEG-P[Lys(FBPA)10]20 (Mn=14,000)
・タンニン酸:(Mw=1,701) Wako Pure Chemical Industries Co., Ltd.
・Alexa Fluor647-NHS : Mw=1250, Thermo Fisher Scientific Inc.
・D-PBS(-):Wako Pure Chemical Industries Co., Ltd.
・GlycoGREEN(登録商標)-βGal : GORYO Chemical, Inc.
・Roswell Park Memorial Institute medium (RPMI):Sigma Aldrich Co., llc.
・Fetal bovine serum (FBS):BioseraInc.
・Trypsin-EDTA solution(Trp):Sigma life scienceCo., Ltd.
・Penicillin / streptomycin(PS):Sigma life scienceCo., Ltd.
・CT26細胞 (mouse colon carcinoma cell line):American Type Culture Collection.
・BALB/c mice : Charles River Japan Inc.
・Passive Lysis Buffer : Promega corporation.
・Dimethyl sulfoxide(DMSO):Wako Pure Chemical Industries Co., Ltd.
<9.3. 測定機器>
・LSM710:Carl Zeiss Co., Ltd. 
・Fluorophotometer FP-8300 : Jasco International Co., Ltd.
・Absorptiometer V-650  : Jasco International Co., Ltd.
<9.4. 溶液中でのβGal三元系複合体の活性評価>
[βGal, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・βGal:0.1 mg/mL
・タンニン酸:0.37mg/mL
・PEG-P[Lys(FBPA)10]20: 3.95 mg/mL
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 βGal溶液と、タンニン酸溶液とを混合し、βGal/TA溶液を調整した。その後、βGal/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、βGal/TA/PEG-P[Lys(FPBA)10]20溶液(βGal三元系複合体溶液)を調整した。
[GlycoGREEN-βGalの最終濃度]
・GlycoGREEN-βGal 1 mM
 DMSOに溶解させ調整した。
[溶液中でのβGal三元系複合体の活性評価]
 調製した20 μlのβGal溶液、βGal/TA溶液、及びβGal三元系複合体溶液に、それぞれ1 μlの1mM GlycoGREEN-βGal溶液を加え、FP-8300にて、GlycoGREEN-βGalがβGalと酵素反応した際に検出される蛍光(Ex/Em : 480/510 nm)を継時的に測定した。得られた結果を図25Aに示した。また、各溶液の最大蛍光強度を図25Bに示した。図中では、βGal/TA/PEG-P[Lys(FPBA)10]20を、βガラクトシダーゼ/TA/ポリマーと表記している。
 図25A及び図25Bに示される結果から、βGal三元系複合体の酵素反応は、βGal単体の酵素反応と比べて抑制されたことが示され、複合体にβGalが内包されることで、見かけの酵素活性は低下することが明らかになった。
<9.5. 細胞内でのβGal三元系複合体の活性評価>
[βGal複合体へのAlexa647導入]
・βGal :10 mg
・Alexa Flour647-NHS :0.12 mg
 20 mLバイヤル瓶にβGal 10 mgを量り取り、50mM NaHCO3 pH8.0 10 mLに溶解させた。DMSOに溶解させたAlexa Flour647-NHS 0.12mgを加え、室温で4時間攪拌した。反応溶液に対しD-PBS(-)を用いて限外濾過(Mwco: 10kDa)2回行った後、PD-10カラム(溶媒はD-PBS(-))で未反応のAlexa Flour647-NHSを除去した後、再度D-PBS(-)を用いて限外濾過(Mwco: 10kDa)2回行い、溶液状態でAlexa Flour647修飾βGal(Alexa647-βGal)を回収した。その後、タンパク質由来の吸収波長である280nmの吸光度から、βGal濃度を算出した。
[βGal, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・βGal:0.1 mg/mL
・Alexa647-βGal:0.1 mg/ml
・タンニン酸:0.37mg/mL
・PEG-P[Lys(FBPA)10]20: 3.95 mg/mL
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 βGal溶液と、タンニン酸溶液とを混合し、βGal/TA溶液を調整した。その後、βGal/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、βGal、βGal/TA、及びβGal/TA/PEG-P[Lys(FPBA)10]20溶液(βGal三元系複合体溶液)をそれぞれ調整した。
 同様の操作をβGalに代えてAlexa647-βGalを用いても行い、Alexa647-βGal、Alexa647-βGal/TA複合体、及びAlexa647-βGal/TAβGal/TA/PEG-P[Lys(FPBA)10]20溶液(Alexa647-βGal三元系複合体溶液)をそれぞれ調製した。
[GlycoGREEN-βGalの最終濃度]
・GlycoGREEN-βGal 1 mM
 DMSOに溶解させ調整した。
[細胞内へのβGal三元系複合体の取り込み量の評価]
 RPMIにFBS及びPSをそれぞれ10wt%、2wt%になるよう混合し、細胞用培地を調整した。CT26細胞を細胞用培地に懸濁させ、1.25×105 cells/mlの細胞懸濁液を調製した。この細胞懸濁液400 μlを24ウェルプレートに播き(1ウェル当たり5.0×104cells)、37 ℃で24時間インキュベートした。培地を除去後、D-PBS(-)で1回洗浄した後、Alexa647-βGalを用いて調整した各溶液を、400 μl加え、37℃で6時間インキュベートした。所定時間インキュベートした後、溶液を除去してD-PBS(-)で洗浄を2回行い、Trpを150 μl加え37℃で7分間インキュベートした後、D-PBS(-)+10%FBSを150μl加えてフローサイトメーター (FCM)でAlexa647由来の蛍光強度(Ex/Em : 642/664 nm)を測定し、各サンプルの細胞取り込み量を評価した。得られた結果を図26Aに示す。
[細胞中でのβGal三元系複合体の活性評価]
 CT26細胞を細胞用培地に懸濁させ、1.25×105 cells/mlの細胞懸濁液を調製した。この細胞懸濁液400 μlを24ウェルプレートに播き(1ウェル当たり5.0×104cells)、37 ℃で24時間インキュベートした。培地を除去後、D-PBS(-)で1回洗浄した後、βGalを用いて調整した各溶液を、400 μl加え、37℃で6時間インキュベートした。所定時間インキュベートした後、溶液を除去してD-PBS(-)で洗浄を2回行った後、1μMに調製したGlycoGREEN-βGal を400 μl加え、30分インキュベートした。その後、溶液を除去してD-PBS(-)で洗浄を2回行った後、Trpを150 μl加え37℃で7分間インキュベートした後、D-PBS(-)+10%FBSを150μl加えてフローサイトメーター (FCM)でGlycoGREEN-βGalがβGalと酵素反応した際に検出される、活性由来の蛍光強度(Ex/Em = 488 nm/525 nm)を測定した。得られた結果を図26Bに示す。また、得られた活性由来の蛍光強度を、上記の細胞内取り込み量に対応する蛍光強度で除した結果を図26Cに示す。
 図26Cに示される結果より、細胞内でのβGal三元系複合体の活性は、βGal単体と同等であることが明らかになった。
<9.6. βGal三元系複合体の体内動態>
[Alexa647-βGal, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・Alexa647-βGal:0.5 mg/ml
・タンニン酸:1.85mg/mL
・PEG-P[Lys(FBPA)10]20: 19.74 mg/mL
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 Alexa647-βGal溶液と、タンニン酸溶液とを混合し、Alexa647-βGal/TA溶液を調整した。その後、Alexa647-βGal/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、Alexa647-βGal、及びAlexa647-βGal/TA/PEG-P[Lys(FPBA)10]20溶液(Alexa647-βGal三元系複合体溶液)を調整した。
[CT26皮下腫瘍モデルマウスの作製]
 CT26細胞懸濁液(1.0×10cells/ml)をBalb/cマウスに対して100 μl皮下注射した。
[体内動態の評価]
 腫瘍サイズがおよそ200 mm3に達したモデルマウスに対して、上記の調製溶液200 μlを尾静脈投与した。試料投与から6時間後に解剖し、血液および臓器を回収した。血液は、5,000g × 10minute 20℃で遠心分離を行い、100 μlの血漿成分を回収し、700 μlのPassive Lysis Bufferを加えた。臓器は、それぞれの重量を測り、8倍重量のPassive Lysis Bufferを加えた後、ホモジナイズを行った。その後、10,000 g × 5 minute遠心分離を行い、上澄み溶液の蛍光強度(Ex/Em : 640 nm/680 nm)をTECANで測定し、血中滞留性および体内動態を評価した。その結果を図27に示す。図中では、Alexa647-βGalを、βガラクトシダーゼと表記し、Alexa647-βGal/TA/PEG-P[Lys(FPBA)10]20を、βガラクトシダーゼ/TA/ポリマーと表記している。
 Alexa647-βGal三元系複合体の血中滞留性および腫瘍集積性は、Alexa647-βGalと比較して、それぞれ4倍、15倍向上していた。一方、Alexa647-βGal三元系複合体の、正常組織である肝臓、腎臓、肺への集積性は、Alexa647-βGalと比較して、それぞれ1.4倍、5.0倍、0.2倍であり、腫瘍への集積性に比べて大幅に抑制されていた。
10.AAV三元系複合体形成の機能性評価
<10.1. 概要>
 AAV三元系複合体の機能性評価を実施した。具体的には、AAV三元系複合体による遺伝子発現効率を細胞実験と動物実験によって評価した。
<10.2. 試薬>
 特に記述のない試薬は市販品をそのまま使用した。
・AAV9-CMV-Luc(AAV) : SignaGen Laboratories.
・PEG-P[Lys(FBPA)10]20 (Mn=14,000)
・タンニン酸:(Mw=1,701) Wako Pure Chemical Industries Co., Ltd.
・D-PBS(-):Wako Pure Chemical Industries Co., Ltd.
・D-PBS(+):Wako Pure Chemical Industries Co., Ltd.
・Roswell Park Memorial Institute medium (RPMI):Sigma Aldrich Co., llc.
・Fetal bovine serum (FBS):BioseraInc.
・Trypsin-EDTA solution(Trp):Sigma life scienceCo., Ltd.
・Penicillin / streptomycin(PS):Sigma life scienceCo., Ltd.
・CT26細胞 (mouse colon carcinoma cell line):American Type Culture Collection.
・BALB/c mice : Charles River Japan Inc.
・Passive Lysis Buffer : Promega corporation.
・Luciferase Assay System(Luciferin溶液) : Promega corporation.
・Anti-AAV-9, Mouse-Mono : PROGEN
<10.3. 測定機器>
・GloMax Multi Detection System:Promega corporation.
・富士ドライケム NX500:富士フィルム
<10.4. 細胞実験によるAAV三元系複合体の遺伝子発現効率の評価>
[AAV, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・AAV9-CMV-Luc (単にAAVと略す):2.0 × 1010 vL/mL
・タンニン酸:2.0 × 10-4 mg/mL
・PEG-P[Lys(FBPA)10]20:2.2 × 10-3 mg/mL
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 AAV溶液と、タンニン酸溶液とを混合し、AAV/TA溶液を調整した。その後、AAV/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、AAV、AAV/TA、及びAAV/TA/PEG-P[Lys(FPBA)10]20溶液(AAV三元系複合体溶液)を調整した。
[細胞中でのAAV三元系複合体の取り込み量の評価]
 RPMIにFBS、及びPSをそれぞれ10wt%、2wt%になるよう混合し、細胞用培地を調整した。CT26細胞を細胞用培地に懸濁させ、2.0×105 cells/mlの細胞懸濁液を調製した。この細胞懸濁液25 μlを96ウェルプレートに播き(1ウェル当たり5.0×10cells)、調整した各溶液を、25 μl加え、37℃で72時間インキュベートした。所定時間インキュベートした後、溶液を除去してD-PBS(+)で洗浄を1回行い、Passive Lysis Bufferを50 μl加え37℃で15分間インキュベートした後、各細胞懸濁液20 μlを発光測定用白色プレート96F(MS-8096W,住友ベークライト)に移し、GloMax Multi Detection Systemを用いてLuciferin溶液を100 μl加え、発光強度測定した。得られた結果を図28に示した。図中では、AAV/TA/PEG-P[Lys(FPBA)10]20を、AAV/TA/ポリマーと表記している。
 図28に示される結果より、AAV三元系複合体を使用した場合のLuc遺伝子発現効率は、AAV単体を使用した場合と比較して、顕著に向上していることが明らかになった。
<10.5. 動物実験によるAAV三元系複合体の遺伝子発現効率の評価>
[AAV, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・AAV9-CMV-Luc (単にAAVと略す):2.0 × 1012 vL/mL
・タンニン酸:2.0 × 10-2 mg/mL
・PEG-P[Lys(FBPA)10]20:2.2 × 10-1 mg/mL
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 AAV溶液と、タンニン酸溶液とを混合し、AAV/TA溶液を調整した。その後、AAV/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、AAV、AAV/TA、及びAAV/TA/PEG-P[Lys(FPBA)10]20溶液(AAV三元系複合体溶液)を調整した。
[CT26皮下腫瘍モデルマウスの作製]
 CT26細胞懸濁液(1.0×10cells/ml)をBalb/cマウスに対して100 μl皮下注射した。
[体内動態の評価]
 腫瘍サイズがおよそ200 mm3に達したモデルマウスに対して、上記の調製溶液100 μlを尾静脈投与した。試料投与から2週間後に解剖し、血液および臓器を回収した。臓器は、それぞれの重量を測り、1-3倍重量のPassive Lysis Buffer加えた後、ホモジナイズを行った。その後、ホモジナイズした懸濁液20μlにLuciferin溶液を100μl加え、GloMax Multi Detection Systemを用いて、各臓器の遺伝子発現量を測定した。各臓器のLuc遺伝子発現量について、各臓器のAAV単体でのLuc遺伝子発現量を1とした遺伝子発現比率の結果を図29に示す。図中では、AAV/TA/PEG-P[Lys(FPBA)10]20を、AAV/TA/ポリマーと表記している。
 図29の、各臓器における遺伝子発現比率の結果から、AAV三元系複合体の、肝臓、腎臓、心臓などの正常組織での遺伝子発現比率は、AAV単体と比べてそれぞれ、0.80倍、0.02倍、0.27倍と大幅に抑制された。一方、腫瘍におけるAAV三元系複合体の遺伝子発現比率は、AAV単体と比べて6.16倍に向上した。
 別途回収した血液に対して、5,000g × 10minute 20℃で遠心分離を行い、血漿成分を回収し、富士ドライケム NX500を用いて、ALT及びASTを測定して肝臓毒性を評価した。得られた結果を図30A、及び30Bに示す。
図30A、30Bに示される結果より、AAV/TA複合体ではALT及びASTが上昇したことから肝臓毒性が見られたが、AAV三元系複合体では、肝臓毒性は見られなかった。
<10.6.細胞実験によるAAV三元系複合体のAAV9抗体を用いた際の遺伝子発現効率抑制の評価>
[AAV, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・AAV9-CMV-Luc (単にAAVと略す):2.0 × 1010 vL/mL
・タンニン酸:2.0 × 10-4 mg/mL
・PEG-P[Lys(FBPA)10]20:2.2 × 10-3 mg/mL
・Anti-AAV-9, Mouse-Mono(単にAAV抗体と略す):105、107倍に希釈
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
AAV溶液、タンニン酸溶液を混合させ、AAV/TA溶液を調整した。その後、PEG-P[Lys(FPBA)10]20を添加し、AAV、AAV/TA、AAV/TA/PEG-P[Lys(FPBA)10]20溶液(AAV三元系複合体溶液)を調整した。
[細胞中でのAAV三元系複合体の取り込み量の評価]
 CT26細胞をRPMIに懸濁させ、2.0×105 cells/mlの細胞懸濁液を調製した。この細胞懸濁液25 μlを96ウェルプレートに播き(1ウェル当たり5.0×10cells)、調整した各AAV溶液を、25 μl、AAV抗体溶液を1μl加え、37℃で48時間インキュベートした。所定時間インキュベートした後、溶液を除去してD-PBS(+)で洗浄を1回行い、Passive Lysis Bufferを50 μl加え37℃で15分間インキュベートした後、各細胞懸濁液20 μlを発光測定用白色プレート96F(MS-8096W,住友ベークライト)に移し、GloMax Multi Detection Systemを用いてLuciferin溶液を100 μlを加え、発光強度を測定した。得られた結果を図31に示した。その際、AAV抗体を加えず各AAV溶液サンプルのみをCT26細胞とインキュベートさせた際の発光強度を100%として算出した。図中では、AAV/TA/PEG-P[Lys(FPBA)10]20を、AAV/TA/ポリマーと表記している。
 図31に示される結果より、AAV単体及びAAV/TA複合体は、AAV9抗体を添加することで、添加しない場合と比べて遺伝子発現効率が低下するが、AAV三元系複合体は、AAV9抗体を添加しても遺伝子発現効率が低下しないことが明らかになった。
11.TUG1三元系複合体の薬物動態の評価
<11.1. 概要>
 TUG1三元系複合体の機能性評価を実施した。具体的には、TUG1三元系複合体の血中滞留性を動物実験にて評価した。
<11.2. 試薬及び細胞株>
 特に記述のない試薬は市販品をそのまま使用した。
・Alexa647-TUG1 (単にTUG1と略す):8058.7 g/mol, GeneDesign, Inc.
・PEG-P[Lys(FBPA)10]20 (Mn=14,000)
・タンニン酸:(Mw=1,701) Wako Pure Chemical Industries Co., Ltd.
・D-PBS(-):Wako Pure Chemical Industries Co., Ltd.
・BALB/c mice : Charles River Japan Inc.
・Passive Lysis Buffer : Promega corporation.
<11.3. 測定機器>
・Nikon A1R : Nikon Corporation
・ECLIPSE FN1 : Nikon Corporation
・Spark : Tecan Group Ltd.
 Nikon A1R とECLIPSE FN1を組み合わせて、in vivo共焦点レーザー顕微鏡として使用した。
<11.4. in vivo共焦点レーザー顕微鏡によるTUG1の血中滞留性の測定>
[TUG1, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・TUG1:6.25 μM
・タンニン酸:312.5 μM
・PEG-P[Lys(FBPA)10]20:625 μM
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 TUG1溶液と、タンニン酸溶液とを混合し、TUG1/TA溶液を調整した。その後、TUG1/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、TUG1/TA/PEG-P[Lys(FPBA)10]20(TUG1三元系複合体)溶液を調整した。
[in vivo共焦点レーザー顕微鏡によるTUG1の血中滞留性の測定]
 モデルマウスに対して、上記の調製溶液200 μlを尾静脈投与した。その後、in vivo共焦点レーザー顕微鏡を用いて所定時間、TUG1の血中滞留性を測定した。得られた結果を図32及び表4に示す。図中では、TUG1/TA/PEG-P[Lys(FPBA)10]20を、TUG1/TA/ポリマーと表記している。
Figure JPOXMLDOC01-appb-T000024
 得られた結果より、TUG1三元系複合体の血中滞留性が、TUG1およびTUG1/TAと比較して、劇的に延びていることが示された。
<11.5.血液採取によるTUG1の血中滞留性の測定>
[TUG1, TA, PEG-P[Lys(FPBA)10]20の最終濃度]
・TUG1:6.25 nM
・タンニン酸:312.5 μM
・PEG-P[Lys(FBPA)10]20:625 μM
 これらは、それぞれ、D-PBS(-)に溶解させ調整した。
 TUG1溶液と、タンニン酸溶液とを混合し、TUG1/TA溶液を調整した。その後、TUG1/TA溶液にPEG-P[Lys(FPBA)10]20を添加し、TUG1/TA/PEG-P[Lys(FPBA)10]20(TUG1三元系複合体)溶液を調整した。
[血液採取によるTUG1の血中滞留性の測定]
 モデルマウスに対して、上記の調製溶液200 μlを尾静脈投与した。試料投与から3時間後に解剖し、血液を回収した。血液は、5,000g × 10minute 20℃で遠心分離を行い、100μlの血漿成分を回収し、700 μlのPassive Lysis Bufferを加えた。その後、溶液およびサンプルの蛍光強度(Ex/Em : 640 nm/680 nm)をSparkで測定し、TUG1の血中滞留性を評価した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000025
 得られた結果より、TUG1三元系複合体の血中滞留性は、TUG1およびTUG1/TAと比較して、約40倍と高く、TUG1三元系複合体の血中滞留性が、劇的に延びていることが示された。
12. まとめ
 生理活性タンパク質の血中滞留性および血中安定性を向上させるため、本実施例では、タンパク質とタンニン酸から形成される複合体に、さらにボロン酸導入高分子を加えた三元系のタンパク質送達システムを構築した。モデルタンパク質としてGFPを用いたGFP/TA/PEG-P[Lys(FPBA)10]20は、pH応答性及びATP応答性を示した。GFP/TA/PEG-P[Lys(FPBA)10]20は、血中環境(pH: ~7.4)において安定した複合体を形成することが確認された。また、PEG-P[Lys(FPBA)10]20はPEG-FPBAと比較して、高い結合力でタンニン酸と結合することが確認された。さらに細胞内分布を測定したところ、リソソームとGFPが共局在することから、GFPがエンドサイトーシスで取り込まれていると示唆された。GFP/TA/PEG-P[Lys(FPBA)10]20で構成されたタンパク質送達システムでは、GFP単体およびGFP/TAと比較して、血中滞留性の向上に加えて、腫瘍集積性および滞留性が向上したことが示された。
 また、上記のタンパク質送達システムは、表3に示すように、タンパク質以外の分子をも内包でき、三元系複合体を形成できることが確認された。また、本送達システムを用いることで、内包された内包物の生体内動態を改善できることが示された。三元系複合体に内包したTUG1(核酸)では、TUG1単体及びTUG1/TAと比較して、顕著な血中滞留性が認められた。ローズベンガル(低分子医薬)では、ローズベンガル単体及びローズベンガル/TAと比較して、顕著な血中滞留性が認められた。
 三元系複合体に内包したβGal(タンパク質)の細胞内活性を評価したところ、βGal単体と同等の活性が示された。また、三元系複合体に内包したAAV(ウイルスベクター)を用いて細胞の遺伝子発現効率を測定したところ、三元系複合体にすることで、導入された遺伝子の発現効率の向上が、確認された。
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。
1…複合体、2…ボロン酸基を有する高分子、3…ジオール構造を有する化合物、40…結合体と複合化する物質(複合要素)、4…タンパク質、10…結合体

Claims (19)

  1.  ボロン酸基を有する高分子、及びジオール構造を有する化合物、が結合した結合体と、
     前記結合体と複合化する物質と、
     を含む、複合体。
  2.  前記結合体と複合化する物質が、タンパク質、ウイルス、無機粒子、核酸、及び低分子医薬からなる群から選択される少なくとも一種である、請求項1に記載の複合体。
  3.  ボロン酸基を有する高分子、及びジオール構造を有する化合物、が結合した結合体と、
     タンパク質と、
     を含む、請求項1又は2に記載の複合体。
  4.  前記ジオール構造を有する化合物が、ポリフェノールである、請求項1~3のいずれか一項に記載の複合体。
  5.  前記ジオール構造を有する化合物が、タンニン酸、没食子酸及びそれらの誘導体からなる群から選択される少なくとも一種である、請求項1~4のいずれか一項に記載の複合体。
  6.  前記高分子が、2以上のボロン酸基を有する、請求項1~5のいずれか一項に記載の複合体。
  7.  前記ボロン酸基が、置換基を有してもよいフェニルボロン酸基、又は置換基を有してもよいピリジルボロン酸基である、請求項1~6のいずれか一項に記載の複合体。
  8.  前記ボロン酸基が、下記一般式(I)で表されるフェニルボロン酸基、又は下記一般式(II)で表されるピリジルボロン酸基である、請求項1~7のいずれか一項に記載の複合体:
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xはハロゲン原子又はニトロ基を表し、nは0~4の整数である。)。
  9.  前記高分子が、ポリエチレングリコール、アクリル系樹脂、ポリアミノ酸、ポリビニルアミン、ポリアリルアミン、ポリヌクレオチド、ポリアクリルアミド、ポリエーテル、ポリエステル、ポリウレタン、多糖類、及びこれらのコポリマーからなる群から選択される少なくとも一種の生体適合性高分子である、請求項1~8のいずれか一項に記載の複合体。
  10.  前記ボロン酸基を有する高分子が、第1の生体適合性高分子鎖と、前記第1の生体適合性高分子鎖とは異なる第2の生体適合性高分子鎖とを含む、請求項1~9のいずれか一項に記載の複合体。
  11.  前記第2の生体適合性高分子鎖がポリアミノ酸であり、前記ボロン酸基が前記ポリアミノ酸の側鎖に導入されている、請求項10に記載の複合体。
  12.  前記第1の生体適合性高分子鎖がポリエチレングリコールである、請求項10又は11に記載の複合体。
  13.  前記ボロン酸基を有する高分子が、下記一般式(1)又は(1-1)で表される構造を含む、請求項10~12のいずれか一項に記載の複合体:
    Figure JPOXMLDOC01-appb-C000002
    (式(1)~(1-1)中、
     Aは、前記第1の生体適合性高分子鎖を表し、
     Lは、リンカー部を表し、
     Bは、ボロン酸基を有する前記第2の生体適合性高分子鎖を表し、下記(b2)で表される繰り返し構造を含むか、又は(b1)で表される繰り返し構造及び(b2)で表される繰り返し構造を含む。)
    Figure JPOXMLDOC01-appb-C000003
    (式(b1)~(b2)中、
     Rは、アミノ酸側鎖を表し、
     Rは、アミノ酸側鎖に前記ボロン酸基が導入されたものであり、
     nは(b1)及び(b2)の合計数を表し、nは1~1000の整数であり、mは1~1000の整数であり(ただしm≦n)、n-mが2以上である場合、複数個のRは互いに同一でも異なっていてもよく、mが2以上である場合、複数個のRは互いに同一でも異なっていてもよい。)。
  14.  動的光散乱法(DLS)又は蛍光相関分光法(FCS)により求められる平均粒子径が、5nm以上200nm以下である、請求項1~13のいずれか一項に記載の複合体。
  15.  前記ボロン酸基を有する高分子の数平均分子量が、2,000~200,000である、請求項1~14のいずれか一項に記載の複合体。
  16.  請求項1~15のいずれか一項に記載の複合体を有効成分として含有する、医薬。
  17.  請求項1~16のいずれか一項に記載の複合体を有効成分として含有する、癌治療剤。
  18.  ボロン酸基を有する高分子と、ジオール構造を有する化合物と、を備えるキット。
  19.  ボロン酸基を有する高分子、及びジオール構造を有する化合物、が結合した結合体。
PCT/JP2020/021301 2019-05-29 2020-05-29 複合体、医薬、癌治療剤、キット及び結合体 WO2020241819A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080038623.1A CN113905786A (zh) 2019-05-29 2020-05-29 复合物、药物、癌症治疗剂、试剂盒和缀合物
US17/613,912 US20220265836A1 (en) 2019-05-29 2020-05-29 Complex, medicine, therapeutic agent for cancer, kit and conjugate
JP2021522894A JPWO2020241819A1 (ja) 2019-05-29 2020-05-29
EP20814608.4A EP3978078A4 (en) 2019-05-29 2020-05-29 COMPLEX, MEDICINE, THERAPEUTIC AGENT FOR CANCER, KIT AND CONJUGATE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-100395 2019-05-29
JP2019100395 2019-05-29

Publications (1)

Publication Number Publication Date
WO2020241819A1 true WO2020241819A1 (ja) 2020-12-03

Family

ID=73553191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021301 WO2020241819A1 (ja) 2019-05-29 2020-05-29 複合体、医薬、癌治療剤、キット及び結合体

Country Status (5)

Country Link
US (1) US20220265836A1 (ja)
EP (1) EP3978078A4 (ja)
JP (1) JPWO2020241819A1 (ja)
CN (1) CN113905786A (ja)
WO (1) WO2020241819A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023219164A1 (ja) * 2022-05-13 2023-11-16 公益財団法人川崎市産業振興財団 医薬、キット及びシステム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023240505A1 (zh) * 2022-06-15 2023-12-21 苏州大学 一种l-4-二羟基硼苯丙氨酸-n-羧酸内酸酐单体和聚氨基酸及其制备方法和应用
CN117586471B (zh) * 2024-01-18 2024-04-19 西南石油大学 一种具有荧光性能的自修复超疏水聚氨酯及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073697A1 (ja) 2011-11-17 2013-05-23 国立大学法人 東京大学 フェニルボロン酸基が導入されたブロックコポリマーおよびその使用
WO2015170757A1 (ja) * 2014-05-08 2015-11-12 国立大学法人 東京大学 医薬組成物
JP2016517393A (ja) * 2013-03-01 2016-06-16 カリフォルニア インスティテュート オブ テクノロジー ニトロフェニルボロン酸組成物によって安定化したナノ粒子
JP2018142115A (ja) 2017-02-27 2018-09-13 沖電気工業株式会社 付着物検出装置、付着物検出方法及び付着物検出プログラム、並びに付着物検出システム
JP2018145115A (ja) * 2017-03-02 2018-09-20 国立大学法人 東京大学 高分子複合体
JP2019100395A (ja) 2017-11-30 2019-06-24 本田技研工業株式会社 防振装置及び防振方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101661746B1 (ko) * 2008-08-13 2016-09-30 캘리포니아 인스티튜트 오브 테크놀로지 캐리어 나노입자, 그리고 관련된 조성물, 방법 및 시스템
US9468681B2 (en) * 2013-03-01 2016-10-18 California Institute Of Technology Targeted nanoparticles
WO2014133547A1 (en) * 2013-03-01 2014-09-04 California Institute Of Technology Targeted nanoparticles
WO2017003668A1 (en) * 2015-07-01 2017-01-05 California Institute Of Technology Cationic mucic acid polymer-based delivery systems
KR101743959B1 (ko) * 2016-03-25 2017-06-08 기초과학연구원 고분자 네트워크를 이용한 유전자 전달체 및 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073697A1 (ja) 2011-11-17 2013-05-23 国立大学法人 東京大学 フェニルボロン酸基が導入されたブロックコポリマーおよびその使用
JP2016517393A (ja) * 2013-03-01 2016-06-16 カリフォルニア インスティテュート オブ テクノロジー ニトロフェニルボロン酸組成物によって安定化したナノ粒子
WO2015170757A1 (ja) * 2014-05-08 2015-11-12 国立大学法人 東京大学 医薬組成物
JP2018142115A (ja) 2017-02-27 2018-09-13 沖電気工業株式会社 付着物検出装置、付着物検出方法及び付着物検出プログラム、並びに付着物検出システム
JP2018145115A (ja) * 2017-03-02 2018-09-20 国立大学法人 東京大学 高分子複合体
JP2019100395A (ja) 2017-11-30 2019-06-24 本田技研工業株式会社 防振装置及び防振方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A. KIMY. MIURAT. ISHIIO. F. MUTAFN. NISHIYAMAH. CABRALK. KATAOKA: "Intracellular Delivery of Charge-Converted Monoclonal Antibodies by Combinatorial Design of Block/Homo Polyion Complex Micelles", BIOMACROMOLECULES, vol. 17, no. 2, 2016, pages 446 - 453, XP055759302, DOI: 10.1021/acs.biomac.5b01335
CHENG, CUI ET AL.: "Phenylboronic acid-containing block copolymers: synthesis, self-assembly,and application for intracellular delivery of proteins", NEW JOURNAL OF CHEMISTRY, vol. 36, 2012, pages 1413 - 1421, XP055237110, DOI: 10.1039/c2nj20997g *
J. E. CHUNGS. TANS. J. GAON. YONGVONGSOONTORNS. H. KIMJ. H. LEEH. S. CHOIH. YANOL. ZHUOM. KURISAWA: "Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy", NAT. NANOTECH., vol. 9, no. 11, 2014, pages 907 - 912, XP055416641, DOI: 10.1038/nnano.2014.208
J. P. VAN BURENW. B. ROBINSON: "Formation of complexes between protein and tannic acid", J. AGRIC. FOOD CHEM., vol. 17, no. 4, 1969, pages 772 - 777
See also references of EP3978078A4
V. SHARADS. AMITM. ABHA: "Gallic acid: Molecular rival of cancer", ENV. TOX. AND PHARM., vol. 35, no. 3, 2013, pages 473 - 485

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023219164A1 (ja) * 2022-05-13 2023-11-16 公益財団法人川崎市産業振興財団 医薬、キット及びシステム

Also Published As

Publication number Publication date
US20220265836A1 (en) 2022-08-25
JPWO2020241819A1 (ja) 2020-12-03
CN113905786A (zh) 2022-01-07
EP3978078A4 (en) 2023-08-02
EP3978078A1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
Verde-Sesto et al. Single-chain nanoparticles: Opportunities provided by internal and external confinement
Mousazadeh et al. Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy
WO2020241819A1 (ja) 複合体、医薬、癌治療剤、キット及び結合体
Bellocq et al. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery
Lale et al. Folic acid and trastuzumab functionalized redox responsive polymersomes for intracellular doxorubicin delivery in breast cancer
Gallo et al. Peptide-based hydrogels and nanogels for delivery of doxorubicin
Kang et al. Tailoring the stealth properties of biocompatible polysaccharide nanocontainers
Fu et al. Galactose targeted pH-responsive copolymer conjugated with near infrared fluorescence probe for imaging of intelligent drug delivery
Kastantin et al. Thermodynamic and kinetic stability of DSPE-PEG (2000) micelles in the presence of bovine serum albumin
Saeed et al. Modular construction of multifunctional bioresponsive cell-targeted nanoparticles for gene delivery
Nguyen et al. Targeting ligand-functionalized and redox-sensitive heparin-Pluronic nanogels for intracellular protein delivery
Sigg et al. Stimuli-responsive codelivery of oligonucleotides and drugs by self-assembled peptide nanoparticles
Sharma et al. Stealth recombinant human serum albumin nanoparticles conjugating 5-fluorouracil augmented drug delivery and cytotoxicity in human colon cancer, HT-29 cells
Zhu et al. Cleavable PEGylation and hydrophobic histidylation of polylysine for siRNA delivery and tumor gene therapy
Du et al. The pH-triggered triblock nanocarrier enabled highly efficient siRNA delivery for cancer therapy
Li et al. Bioreduction-ruptured nanogel for switch on/off release of Bcl2 siRNA in breast tumor therapy
Dandekar et al. Cellular delivery of polynucleotides by cationic cyclodextrin polyrotaxanes
Gao et al. Novel monodisperse PEGtide dendrons: design, fabrication, and evaluation of mannose receptor-mediated macrophage targeting
Nehate et al. Redox responsive polymersomes for enhanced doxorubicin delivery
Zhang et al. Dual-responsive doxorubicin-loaded nanomicelles for enhanced cancer therapy
Vora et al. Self-assembled nanocomplexes of anionic pullulan and polyallylamine for DNA and pH-sensitive intracellular drug delivery
Wang et al. Double click-functionalized siRNA polyplexes for gene silencing in epidermal growth factor receptor-positive tumor cells
JP2018506515A (ja) 両親媒性ポリマー系
Wang et al. Acid-and reduction-sensitive micelles for improving the drug delivery efficacy for pancreatic cancer therapy
Nie et al. In vitro and in vivo evaluation of stimuli-responsive vesicle from PEGylated hyperbranched PAMAM-doxorubicin conjugate for gastric cancer therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020814608

Country of ref document: EP

Effective date: 20220103