WO2020241523A1 - ポリイミド前駆体及びポリイミド樹脂組成物 - Google Patents

ポリイミド前駆体及びポリイミド樹脂組成物 Download PDF

Info

Publication number
WO2020241523A1
WO2020241523A1 PCT/JP2020/020402 JP2020020402W WO2020241523A1 WO 2020241523 A1 WO2020241523 A1 WO 2020241523A1 JP 2020020402 W JP2020020402 W JP 2020020402W WO 2020241523 A1 WO2020241523 A1 WO 2020241523A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ppm
general formula
resin composition
polyimide
Prior art date
Application number
PCT/JP2020/020402
Other languages
English (en)
French (fr)
Inventor
健 柏田
直志 篠原
敏章 奥田
隆行 金田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020217032595A priority Critical patent/KR102618096B1/ko
Priority to CN202311788895.5A priority patent/CN117924699A/zh
Priority to JP2021522328A priority patent/JP7300504B2/ja
Priority to CN202080038151.XA priority patent/CN113874419B/zh
Publication of WO2020241523A1 publication Critical patent/WO2020241523A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide precursor resin composition, a polyimide resin composition, and a method for producing these.
  • the present invention also relates to the polyimide precursor resin composition and a method for producing a polyimide film, a display, a laminate and a flexible device using the polyimide resin composition.
  • Polyimide resin is an insoluble and insoluble super heat resistant resin, and has excellent properties such as heat oxidation resistance, heat resistance, radiation resistance, low temperature resistance, and chemical resistance. For this reason, polyimide resins are used in a wide range of fields including electronic materials. Examples of applications of the polyimide resin in the field of electronic materials include an insulating coating material, an insulating film, a semiconductor, an electrode protective film of a thin film transistor liquid crystal display (TFT-LCD), and the like. Recently, taking advantage of the lightness and flexibility of the polyimide film, adoption as a flexible substrate is being considered in place of the glass substrate conventionally used in the field of display materials.
  • TFT-LCD thin film transistor liquid crystal display
  • Patent Document 1 describes a resin precursor (weight average molecular weight of 30,000 to 90,000) polymerized from bis (diaminodiphenyl) sulfone (hereinafter, also referred to as DAS) and having a siloxane unit.
  • DAS bis (diaminodiphenyl) sulfone
  • Patent Document 2 describes a resin precursor polymerized from 2,2'-bis (trifluoromethyl) benzidine (hereinafter, also referred to as TFMB) and having a siloxane unit.
  • Patent Document 2 describes that the polyimide film obtained by curing the precursor has a specific glass transition temperature, has a low residual stress generated between the precursor and the inorganic film, and is excellent in mechanical properties and thermal stability. doing.
  • Patent Documents 1 and 2 use a siloxane-containing compound as a monomer of a polyimide precursor, and such a siloxane-containing compound contains a low molecular weight cyclic siloxane (hereinafter, also referred to as a low molecular weight cyclic siloxane). It is known that since this low molecular weight cyclic siloxane is volatile, it may generate outgas, which may cause contact failure in the manufacturing equipment of the process. See, for example, Non-Patent Document 1.
  • Patent Documents 3 to 5 Prior art documents relating to the polyimide precursor obtained by reducing this low molecular weight cyclic siloxane by purification include Patent Documents 3 to 5.
  • Patent Document 3 describes that a low molecular weight cyclic siloxane is removed by adding a siloxane-containing compound to acetone, centrifuging it, and decanting it, and the obtained polyimide is transparent and generates little outgas. ing.
  • Patent Documents 4 and 5 the siloxane-containing compound is purified by stripping the siloxane-containing compound under specific conditions, or by dissolving the siloxane-containing compound in 2-butanone and reprecipitating with methanol, and the obtained polyimide is obtained. It is described that the adhesiveness of the siloxane is improved.
  • the present inventors synthesized a polyimide precursor and a polyimide using a siloxane-containing compound purified by the same purification method as those described in Patent Documents 3 to 5, and produced a polyimide film using them.
  • the defect evaluation of the polyimide resin film when a large amount of polyimide precursor or polyimide is treated in the polyimide film manufacturing process is inferior, and the yellowness (YI value) when the unrefined product is changed to the refined product.
  • YI value yellowness
  • a polyimide precursor resin composition capable of further improving the YI value and reducing defects on the surface of the polyimide resin film generated in the polyimide film manufacturing process as compared with the case of using an unpurified siloxane compound. And to provide a polyimide resin composition.
  • P 1 represents a divalent organic group
  • P 2 represents a tetravalent organic group
  • p represents a positive integer
  • P 1 represents a divalent organic group
  • P 2 represents a tetravalent organic group
  • p represents a positive integer
  • P 3 and P 4 are independently monovalent aliphatic hydrocarbons having 1 to 5 carbon atoms or monovalent aromatic groups having 6 to 10 carbon atoms
  • q is 1 to 1 to 1. It is an integer of 200.
  • n is an integer of 2 or more.
  • the total amount of the compound in which n is 4 in the general formula (3) is more than 0 ppm and 30 ppm or less based on the mass of the resin composition, or The resin composition according to item 1, wherein the total amount of the compound in which n is 5 in the general formula (3) is more than 0 ppm and 15 ppm or less based on the mass of the resin composition.
  • P 1 represents a divalent organic group
  • P 2 represents a tetravalent organic group
  • p represents a positive integer
  • P 1 represents a divalent organic group
  • P 2 represents a tetravalent organic group
  • p represents a positive integer
  • P 3 and P 4 are independently monovalent aliphatic hydrocarbons having 1 to 5 carbon atoms or monovalent aromatic groups having 6 to 10 carbon atoms
  • q is 1 to 1 to 1. It is an integer of 200.
  • n is an integer of 2 or more.
  • the total amount of the compound in which n is 4 in the general formula (3) is more than 0 ppm and 300 ppm or less based on the mass of the non-solvent component of the resin composition, or The resin composition according to item 3, wherein the total amount of the compound in which n is 5 in the general formula (3) is more than 0 ppm and 100 ppm or less based on the mass of the non-solvent component of the resin composition.
  • the total amount of the compound in which n is 4 in the general formula (3) is more than 0 ppm and 10 ppm or less based on the mass of the non-solvent component of the resin composition, or The resin composition according to item 3, wherein the total amount of the compound in which n is 5 in the general formula (3) is more than 0 ppm and 5 ppm or less based on the mass of the non-solvent component of the resin composition.
  • a resin composition comprising The above resin composition is as follows:
  • a raw material composition containing a silicon-containing compound represented by the following general formula (4) and a compound represented by the following general formula (3) is polycondensed with a tetracarboxylic dianhydride and a diamine to carry out a polyimide.
  • Manufactured by a method comprising providing a precursor or imidizing the polyimide precursor to provide a polyimide.
  • the total amount of the compounds in which n is 4 in the following general formula (3) contained in the raw material composition is based on the total mass of the silicon-containing compounds represented by the following general formulas (3) and (4). More than 0 ppm and less than 1300 ppm, or The total amount of the compounds in which n is 5 in the following general formula (3) contained in the raw material composition is more than 0 ppm based on the total mass of the silicon-containing compounds in the general formulas (3) and (4).
  • ⁇ ⁇ In the formula P 1 represents a divalent organic group, P 2 represents a tetravalent organic group, and p represents a positive integer.
  • P 3 and P 4 are independently monovalent aliphatic hydrocarbons having 1 to 5 carbon atoms or monovalent aromatic groups having 6 to 10 carbon atoms, and q is 1 to 1 to 1. It is an integer of 200.
  • n is an integer of 2 or more.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • the total amount of the compounds in which n is 4 in the general formula (3) contained in the raw material composition is based on the total mass of the silicon-containing compounds represented by the general formulas (3) and (4). More than 0 ppm and less than 800 ppm, or The total amount of the compounds in which n is 5 in the general formula (3) contained in the raw material composition is more than 0 ppm based on the total mass of the silicon-containing compounds in the general formulas (3) and (4).
  • the total amount of the compounds in which n is 4 in the general formula (3) contained in the raw material composition is based on the total mass of the silicon-containing compounds represented by the general formulas (3) and (4). More than 0 ppm and less than 30 ppm, or The total amount of the compounds in which n is 5 in the general formula (3) contained in the raw material composition is more than 0 ppm based on the total mass of the silicon-containing compounds in the general formulas (3) and (4).
  • P 1 represents a divalent organic group
  • P 2 represents a tetravalent organic group
  • p represents a positive integer.
  • P 1 represents a divalent organic group
  • P 2 represents a tetravalent organic group
  • p represents a positive integer
  • P 3 and P 4 are independently monovalent aliphatic hydrocarbons having 1 to 5 carbon atoms or monovalent aromatic groups having 6 to 10 carbon atoms
  • q is 1 to 1 to 1. It is an integer of 200.
  • n is an integer of 2 or more.
  • P 1 represents a divalent organic group
  • P 2 represents a tetravalent organic group
  • p represents a positive integer.
  • P 1 represents a divalent organic group
  • P 2 represents a tetravalent organic group
  • p represents a positive integer
  • P 3 and P 4 are independently monovalent aliphatic hydrocarbons having 1 to 5 carbon atoms or monovalent aromatic groups having 6 to 10 carbon atoms
  • q is 1 to 1 to 1. It is an integer of 200.
  • n is an integer of 2 or more.
  • a resin composition comprising The above resin composition is as follows: A raw material composition containing a silicon-containing compound represented by the following general formula (4) and a compound represented by the following general formula (3) is polycondensed with a tetracarboxylic dianhydride and a diamine to carry out a polyimide.
  • Manufactured by a method comprising providing a precursor or imidizing the polyimide precursor to provide a polyimide.
  • the total amount of the compounds having n of 3 or more and 8 or less in the following general formula (3) contained in the raw material composition is based on the total mass of the silicon-containing compounds represented by the following general formulas (3) and (4).
  • a resin composition which is more than 0 ppm and 4500 ppm or less.
  • P 1 represents a divalent organic group
  • P 2 represents a tetravalent organic group
  • p represents a positive integer
  • P 1 represents a divalent organic group
  • P 2 represents a tetravalent organic group
  • p represents a positive integer.
  • ⁇ ⁇ In the formula, P 3 and P 4 are independently monovalent aliphatic hydrocarbons having 1 to 5 carbon atoms or monovalent aromatic groups having 6 to 10 carbon atoms, and q is 1 to 1 to 1. It is an integer of 200.
  • ⁇ ⁇ In the formula, n is an integer of 2 or more.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • i is an integer of 1 to 200.
  • j and k are independently integers from 0 to 200, and 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • L 1 and L 2 of the silicon-containing compound represented by the general formula (4) are independently selected from the group consisting of an amino group, an acid anhydride group, an epoxy group, a hydroxy group, and a mercapto group.
  • the resin composition according to any one of items 6, 7, 8 and 11, wherein L 1 and L 2 of the silicon-containing compound represented by the general formula (4) are amino groups.
  • the resin composition according to any one of items 6, 7, 8 and 11, wherein the silicon-containing compound represented by the general formula (4) has a functional group equivalent of 800 or more.
  • the above tetracarboxylic dianhydride is pyromellitic dianhydride (PMDA), 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), 9,9-bis (3,4-bis).
  • PMDA pyromellitic dianhydride
  • BPDA 3,3', 4,4'-biphenyltetracarboxylic dianhydride
  • BPAF 4,4'-oxydiphthalic acid anhydride
  • HPMDA 1,2,4,5-cyclohexanetetracarboxylic dianhydride
  • the resin composition according to any one of items 6 to 8 and 11 to 14, which is at least one selected from the group consisting of 3,4-cyclobutanetetracarboxylic dianhydride (CBDA).
  • CBDA 3,4-cyclobutanetetracarboxylic dianhydride
  • the diamines are 4,4'-diaminodiphenyl sulfone (4,4'-DAS), 3,3'-bis (diaminodiphenyl) sulfone (3,3'-DAS), 9,9-bis (4-amino).
  • Phenyl) fluorene (BAFL), 2,2'-dimethylbenzidine (mTB), p-phenylenediamine (PDA), diaminobis (trifluoromethyl) biphenyl (TFMB), 2,2'-bis [4- (4-amino) Phenoxy) Phenyl]
  • BAPP propane
  • ODA 4,4'-diaminodiphenyl ether
  • CHDA 1,4-cyclohexanediamine
  • a raw material composition containing a silicon-containing compound represented by the following general formula (4) and a compound represented by the following general formula (3) is polycondensed with a tetracarboxylic dianhydride and a diamine to carry out a polyimide.
  • a method for producing a resin composition which comprises providing a precursor or imidizing the above-mentioned polyimide precursor to provide a polyimide.
  • the total amount of the compounds in which n is 4 in the following general formula (3) contained in the raw material composition is based on the total mass of the silicon-containing compounds represented by the following general formulas (3) and (4). More than 0 ppm and less than 1300 ppm, or The total amount of the compound having n of 5 in the following general formula (3) contained in the raw material composition is more than 0 ppm based on the total mass of the silicon-containing compounds in the general formulas (3) and (4).
  • a method for producing a resin composition which is 500 ppm or less. ⁇ In the formula, n is an integer of 2 or more.
  • R 1 is a single bond or a divalent organic group having 1 to 10 carbon atoms, respectively.
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R are R 4 and R.
  • 5 is an independently monovalent organic group having 1 to 10 carbon atoms, at least one is a monovalent aromatic group having 6 to 10 carbon atoms, and R 6 and R 7 are independent of each other.
  • a monovalent organic group having 1 to 10 carbon atoms, and L 1 and L 2 are independently amino groups, acid anhydride groups, isocyanate groups, carboxyl groups, acid ester groups, acid halide groups, and hydroxy groups, respectively.
  • Epoxy group, or mercapto group i is an integer of 1 to 200, j and k are independently integers of 0 to 200, and 0 ⁇ j / (i + j + k) ⁇ 0.50. is there. ⁇ [21]
  • the total amount of the compounds in which n is 4 in the general formula (3) contained in the raw material composition is based on the total mass of the silicon-containing compounds represented by the general formulas (3) and (4).
  • a raw material composition containing a silicon-containing compound represented by the following general formula (4) and a compound represented by the following general formula (3) is polycondensed with a tetracarboxylic dianhydride and a diamine to carry out a polyimide.
  • a method for producing a resin composition which comprises providing a precursor or imidizing the above-mentioned polyimide precursor to provide a polyimide.
  • the total amount of the compounds having n of 3 or more and 8 or less in the following general formula (3) contained in the raw material composition is based on the total mass of the silicon-containing compounds represented by the following general formulas (3) and (4).
  • a method for producing a resin composition which is more than 0 ppm and 4500 ppm or less.
  • n is an integer of 2 or more.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • a raw material composition containing a silicon-containing compound represented by the following general formula (4) and a compound represented by the following general formula (3) is polycondensed with a tetracarboxylic dianhydride and a diamine to carry out a polyimide.
  • a method for producing a resin composition which comprises providing a precursor or imidizing the above-mentioned polyimide precursor to provide a polyimide.
  • the total amount of the compound in which n is 5 or the total amount of the compound in which n is 6 or the total amount of the compound in which n is 7 in the following general formula (3) is the silicon of the following general formulas (4) and (3).
  • Including the step of reducing the total mass of the contained compounds as a reference. The reduction step comprises treating the composition at 150-300 ° C. and 300 Pa or less for 2-12 hours.
  • n is an integer of 2 or more.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • L 1 and L 2 of the silicon-containing compound represented by the general formula (4) are independently selected from the group consisting of an amino group, an acid anhydride group, an epoxy group, a hydroxy group, and a mercapto group. , The method according to any one of items 20 to 24. [26] The method according to any one of items 20 to 24, wherein L 1 and L 2 of the silicon-containing compound represented by the general formula (4) are amino groups.
  • the above tetracarboxylic dianhydride is pyromellitic dianhydride (PMDA), 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), 9,9-bis (3,4-bis).
  • PMDA pyromellitic dianhydride
  • BPDA 3,3', 4,4'-biphenyltetracarboxylic dianhydride
  • BPAF 4,4'-oxydiphthalic acid anhydride
  • HPMDA 1,2,4,5-cyclohexanetetracarboxylic dianhydride
  • CBDA 3,4-cyclobutanetetracarboxylic dianhydride
  • the diamines are 4,4'-diaminodiphenyl sulfone (4,4'-DAS), 3,3'-bis (diaminodiphenyl) sulfone (3,3'-DAS), 9,9-bis (4-amino).
  • Phenyl) fluorene (BAFL), 2,2'-dimethylbenzidine (mTB), p-phenylenediamine (PDA), diaminobis (trifluoromethyl) biphenyl (TFMB), 2,2'-bis [4- (4-amino) Any one of items 20-26, which is at least one selected from the group consisting of phenoxy) phenyl] propane (BAPP), 4,4'-diaminodiphenyl ether (ODA), and 1,4-cyclohexanediamine (CHDA).
  • BAPP phenoxy) phenyl] propane
  • ODA 4,4'-diaminodiphenyl ether
  • CHDA 1,4-cyclohexanediamine
  • a method for producing a laminate according to item 32 further comprising a step of peeling the polyimide resin film on which the element is formed from the support.
  • a method for manufacturing a flexible device which comprises manufacturing the laminate by the method according to item 32 or 33.
  • a polyimide film which is a cured product of the resin composition according to any one of items 1 to 19.
  • a polyimide precursor resin composition capable of reducing defects on the surface of the obtained polyimide resin film and further improving the yellowness (YI value) as compared with the case of using an unpurified siloxane compound can be obtained.
  • YI value yellowness
  • FIG. 1 is a schematic view showing the structure of a top emission type flexible organic EL display above the polyimide substrate as an example of the display of the present embodiment.
  • the present embodiment an exemplary embodiment of the present invention (hereinafter, abbreviated as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the present embodiment, and can be variously modified and implemented within the scope of the gist thereof.
  • the upper limit value and the lower limit value of each numerical range can be arbitrarily combined.
  • the resin composition of this embodiment is a polyimide precursor containing a structural unit represented by the following general formula (1-1) or the following general formula (1).
  • P 1 represents a divalent organic group
  • P 2 represents a tetravalent organic group
  • p represents a positive integer
  • P 1 represents a divalent organic group
  • P 2 represents a tetravalent organic group
  • p represents a positive integer
  • Polyimide precursor having a structure represented by the general formula (1-1), and polyimides represented by the general formula (1-2), a diamine having an acid dianhydride having a P 2 radical, the P 1 group It is preferably a copolymer with.
  • acid dianhydride containing an acid dianhydride P 2 group pyromellitic dianhydride (PMDA), 3,3 ', 4,4'- biphenyltetracarboxylic dianhydride (BPDA), 2, 2 ', 3,3'-biphenyltetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl -Cyclohexene-1,2 dicarboxylic acid anhydride, 1,2,3,4-benzenetetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 2,2', 3,3'-benzophenone tetracarboxylic acid dianhydride, 3,3', 4,4'-diphenylsulfone tetracarboxylic
  • Acid dianhydrides are pyromellitic dianhydride (PMDA), 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), 9,9-bis (3,4-dicarboxyphenyl).
  • PMDA pyromellitic dianhydride
  • BPDA 3,3', 4,4'-biphenyltetracarboxylic dianhydride
  • ODPA 4,4'-oxydiphthalic acid anhydride
  • HPPMDA 1,2,4,5-cyclohexanetetracarboxylic dianhydride
  • CBDA 1,2,3,4 -Preferably at least one selected from the group consisting of cyclobutanetetracarboxylic dianhydride
  • the acid dianhydride one type may be used alone, or two or more types may be used in combination.
  • pyromellitic dianhydride (PMDA) and biphenyltetracarboxylic dianhydride (BPDA) have high mechanical properties such as mechanical properties of polyimide film, low thickness direction retardation (Rth) and low YI value, and high YI value. Preferred from the viewpoint of glass transition temperature.
  • the polyimide precursor having the structure represented by the general formula (1-1) and the polyimide having the structure represented by the general formula (1-2) are copolymers of tetracarboxylic dianhydride and diamine. It is more preferable that the tetracarboxylic dianhydride contains pyromellitic dianhydride (PMDA).
  • the total content of pyromellitic dianhydride (PMDA) and biphenyltetracarboxylic dianhydride (BPDA) in total acid dianhydride is from the viewpoint of low Rth and YI values of polyimide film and high glass transition temperature. Therefore, it is preferably 60 mol% or more, more preferably 80 mol% or more, and further preferably 100 mol%.
  • the content of pyromellitic dianhydride (PMDA) in the total acid dianhydride is preferably 0 mol% or more, preferably 10 mol% or more, and preferably 20 mol% from the viewpoint of the high glass transition temperature of the polyimide film.
  • the above is preferable, 100 mol% or less is preferable, and 90 mol% or less is preferable.
  • the content of biphenyltetracarboxylic dianhydride (BPDA) in the total acid dianhydride is preferably 0 mol% or more, preferably 10 mol% or more, preferably 20 mol% or more, from the viewpoint of low Rth and YI values of the polyimide film. It is preferably mol% or more, preferably 100 mol% or less, and preferably 90 mol% or less.
  • the content ratio of pyromellitic dianhydride (PMDA): biphenyltetracarboxylic dianhydride (BPDA) in acid dianhydride is low Rth and YI value of polyimide film, high glass transition temperature, elongation, etc. From the viewpoint of achieving both, 20:80 to 80:20 is preferable, and 30:70 to 70:30 is more preferable.
  • the acid dianhydride contains 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride (BAPF). Is more preferable.
  • Diamines examples of the diamine in the general formulas (1-1) and (1-2) include diaminodiphenylsulfone (for example, 4,4'-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone) and p-phenylenediamine (PDA).
  • diaminodiphenylsulfone for example, 4,4'-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone
  • PDA p-phenylenediamine
  • Diamines are 4,4'-diaminodiphenylsulfone (4,4′-DAS), 3,3′-bisdiaminodiphenylsulfone (3,3′-DAS), 9,9-bis (4-aminophenyl) fluorene.
  • BAFL 2,2'-dimethylbenzidine
  • mTB 2,2'-dimethylbenzidine
  • PDA p-phenylenediamine
  • TFMB diaminobis (trifluoromethyl) biphenyl
  • BAPP propane
  • ODA 4,4'-diaminodiphenyl ether
  • CHDA 1,4-cyclohexanediamine
  • Diamines may include diaminodiphenyl sulfone, for example 4,4'-diaminodiphenyl sulfone (4,4'-DAS) and / or 3,3'-diaminodiphenyl sulfone (3,3'-DAS). preferable.
  • diaminodiphenyl sulfone for example 4,4'-diaminodiphenyl sulfone (4,4'-DAS) and / or 3,3'-diaminodiphenyl sulfone (3,3'-DAS).
  • the diamines are 4,4'-diaminodiphenyl sulfone (4,4'-DAS) and 3,3'-diaminodiphenyl sulfone (3, More preferably, it is at least one selected from the group consisting of 3'-DAS) and 9,9-bis (4-aminophenyl) fluorene (BAFL).
  • the content of diaminodiphenyl sulfone in the total diamine may be 50 mol% or more, 70 mol% or more, 90 mol% or more, or 95 mol% or more.
  • As the diaminodiphenyl sulfone 4,4'-diaminodiphenyl sulfone is particularly preferable from the viewpoint of reducing the YI value.
  • diamine one type may be used alone, or two or more types may be used in combination. It is preferable to copolymerize diaminodiphenyl sulfone with other diamines.
  • diamines copolymerized with diaminodiphenyl sulfone include diamide biphenyls, more preferably diaminobis (trifluoromethyl) biphenyl (TFMB), from the viewpoint of high heat resistance of the polyimide film and low YI value. ..
  • the content of diaminobis (trifluoromethyl) biphenyl (TFMB) in the total diamine is preferably 20 mol% or more, more preferably 30 mol% or more, from the viewpoint of the low YI value of the polyimide film.
  • the content of TFMB is preferably 80 mol% or less, more preferably 70 mol% or less in the total diamine. Is.
  • the structural unit of the general formula (2) The polyimide precursor and the polyimide in the resin composition of the present embodiment further include the structural unit represented by the following general formula (2).
  • P 3 and P 4 are independently monovalent aliphatic hydrocarbons having 1 to 5 carbon atoms or monovalent aromatic groups having 6 to 10 carbon atoms, and q is 1 to 1 to 1. It is an integer of 200.
  • P 3 and P 4 are independently, preferably monovalent aliphatic hydrocarbons having 1 to 5 carbon atoms, more preferably monovalent aliphatic hydrocarbons having 1 to 3 carbon atoms, and further preferably methyl groups. is there. ⁇
  • the lower limit of the ratio of the structural parts represented by the general formula (2) based on the mass of the polyimide precursor or the polyimide is preferably 5 from the viewpoint of reducing the residual stress of the polyimide film generated between the polyimide precursor and the support. It is by mass% or more, more preferably 6% by mass or more, still more preferably 7% by mass or more.
  • the upper limit of the ratio of the structural parts represented by the general formula (2) based on the mass of the polyimide precursor or the polyimide is preferably 40% by mass or less, more preferably from the viewpoint of transparency and heat resistance of the polyimide film. Is 30% by mass or less, more preferably 25% by mass or less.
  • q is an integer of 1 to 200, and an integer of 3 to 200 is preferable from the viewpoint of heat resistance of the obtained polyimide.
  • the polyimide precursor and the polyimide may have the structure of the general formula (2) at any site in the molecule.
  • the structure of the general formula (2) is preferably a structure derived from a silicon-containing compound represented by the general formula (4) described later.
  • Dicarboxylic acid As the acid component for forming the polyimide precursor and the polyimide in the present embodiment, in addition to the acid dianhydride (for example, the tetracarboxylic dianhydride exemplified above) as long as its performance is not impaired. , Dicarboxylic acid may be used. That is, the polyimide precursor of the present disclosure may be a polyamide-imide precursor, and the polyimide may be a polyamide-imide. Such a polyimide precursor or a polyimide film obtained from a polyimide may have good performances such as mechanical elongation, glass transition temperature Tg, and YI value.
  • the polyimide precursor of the present disclosure may be a polyamide-imide precursor
  • the polyimide may be a polyamide-imide.
  • Such a polyimide precursor or a polyimide film obtained from a polyimide may have good performances such as mechanical elongation, glass transition temperature Tg, and YI value.
  • dicarboxylic acid used examples include a dicarboxylic acid having an aromatic ring and an alicyclic dicarboxylic acid.
  • it is preferably at least one compound selected from the group consisting of aromatic dicarboxylic acids having 8 to 36 carbon atoms and alicyclic dicarboxylic acids having 6 to 34 carbon atoms.
  • the number of carbons referred to here also includes the number of carbons contained in the carboxyl group.
  • a dicarboxylic acid having an aromatic ring is preferable.
  • dicarboxylic acid having an aromatic ring examples include isophthalic acid, terephthalic acid, 4,4'-biphenyldicarboxylic acid, 3,4'-biphenyldicarboxylic acid, 3,3'-biphenyldicarboxylic acid, 1, 4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-sulfonylbis benzoic acid, 3,4'-sulfonylbis benzoic acid, 3,3'-sulfonylbis benzoic acid, 4,4'-oxybis benzoic acid, 3,4'-oxybis benzoic acid, 3,3'-oxybis benzoic acid, 2,2-bis (4-carboxyphenyl) propane, 2,2-Bis (3-carboxyphenyl) propane, 2,2'-dimethyl-4,4'-bi
  • the polyimide precursor and the polyimide in the resin composition of the present embodiment can also be described as a copolymer containing a silicon-containing compound, a tetracarboxylic dianhydride, and a diamine as a monomer unit.
  • the silicon-containing compound may contain the following general formula (4) and compounds of the general formula (3) and / or the general formula (5).
  • the silicon-containing compound may be synthesized by using the common general technical knowledge at the time of filing, or a commercially available product may be used.
  • the silicon-containing compound obtained by synthesis or a commercially available silicon-containing compound may be used as a polyimide precursor and a monomer unit of polyimide after undergoing a purification treatment described later.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups.
  • j and k are independently integers from 0 to 200, and 0 ⁇ j / (i + j + k) ⁇ 0.50. ⁇
  • L 1 and L 2 of the silicon-containing compound represented by the general formula (4) are not limited, but independently, an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, and an acid halide group. , A hydroxy group, an epoxy group, or a mercapto group is preferable.
  • L 1 and L 2 are preferably selected from the group consisting of an amino group, an acid anhydride group, an epoxy group, a hydroxy group, and a mercapto group, and an amino group. Is more preferable.
  • the functional group equivalent of the silicon-containing compound represented by the general formula (4) is preferably 800 or more, more preferably 1500 or more, from the viewpoint of heat resistance (glass transition temperature) of the obtained polyimide film and residual stress.
  • the functional group equivalent is the molecular weight of the silicon-containing compound per 1 mol of the functional group (unit: g / mol).
  • the functional group include an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, and a mercapto group.
  • the functional group equivalent can be measured by the method described in Examples. When the functional group equivalent of the silicon-containing compound is 800 or more, the silicone domain is increased and stress is relaxed, so that it is considered that the residual stress of the polyimide film is reduced.
  • R 1 is independently a single bond or a divalent organic group having 1 to 10 carbon atoms.
  • the divalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • Examples of the divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms include methylene, ethylene, n-propylene, i-propylene, n-butylene, s-butylene, t-butylene, n-pentylene, neopentylene and n.
  • Linear or branched alkylene groups such as -hexylene, n-heptylene, n-octylene, n-nonylene, and n-decylene groups; and cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptyrene, and cyclooctylene.
  • Cycloalkylene groups such as groups can be mentioned.
  • the divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms is preferably at least one selected from the group consisting of ethylene, n-propylene, and i-propylene.
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms. Is.
  • the monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • monovalent organic groups having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, n-pentyl, neopentyl, n-hexyl, and the like.
  • Linear or branched alkyl groups such as n-heptyl, n-octyl, n-nonyl, and n-decyl groups; and cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl groups.
  • Examples include aromatic groups such as phenyl, trill, xylyl, ⁇ -naphthyl, and ⁇ -naphthyl groups.
  • the monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • monovalent aliphatic hydrocarbon groups having 1 to 5 carbon atoms include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, n-pentyl, and neopentyl groups. Such as linear or branched alkyl groups; cycloalkyl groups such as cyclopropyl, cyclobutyl, and cyclopentyl groups.
  • the monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably at least one selected from the group consisting of methyl, ethyl, and n-propyl, and more preferably methyl.
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is a monovalent aromatic group having 6 to 10 carbon atoms. ..
  • the monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • monovalent organic groups having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, n-pentyl, neopentyl, n-hexyl, and the like.
  • Linear or branched alkyl groups such as n-heptyl, n-octyl, n-nonyl, and n-decyl groups; and cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl groups.
  • Examples include aromatic groups such as phenyl, trill, xylyl, ⁇ -naphthyl, and ⁇ -naphthyl groups.
  • Examples of the monovalent aromatic group having 6 to 10 carbon atoms include phenyl, trill, xsilyl, ⁇ -naphthyl, ⁇ -naphthyl group and the like, and phenyl, trill or xsilyl is preferable.
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, even if some of them are organic groups having an unsaturated aliphatic hydrocarbon group. Good.
  • the monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, etc.
  • Linear or branched alkyl groups such as t-butyl, n-pentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, and n-decyl groups; and cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl.
  • Cycloalkyl groups such as cycloheptyl, and cyclooctyl groups, and aromatic groups such as phenyl, trill, xsilyl, ⁇ -naphthyl, and ⁇ -naphthyl groups.
  • the monovalent organic group having 1 to 10 carbon atoms is preferably at least one selected from the group consisting of methyl, ethyl, and phenyl.
  • the organic group having an unsaturated aliphatic hydrocarbon group may be an unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms, and may be linear, cyclic or branched. Examples of unsaturated aliphatic hydrocarbon groups having 3 to 10 carbon atoms include vinyl, allyl, propenyl, 3-butenyl, 2-butenyl, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, octenyl, nonenyl, decenyl, and the like.
  • the unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms is preferably at least one selected from the group consisting of vinyl, allyl, and 3-butenyl.
  • a part or all of the hydrogen atoms of R 1 to R 7 may be substituted with a substituent such as a halogen atom such as F, Cl, Br, etc., or may be unsubstituted. ..
  • I is an integer of 1 to 200, preferably an integer of 2 to 100, more preferably an integer of 4 to 80, and even more preferably an integer of 8 to 40.
  • j and k are independently integers of 0 to 200, preferably an integer of 0 to 50, more preferably an integer of 0 to 20, and even more preferably an integer of 0 to 50.
  • the silicon-containing compound of the general formula (4) is preferably a silicon-containing diamine.
  • the silicon-containing diamine for example, a diamino (poly) siloxane represented by the following formula (6) is preferable.
  • P 5 independently represents a divalent hydrocarbon group, which may be the same or different, and P 3 and P 4 are the same as those defined in the general formula (2).
  • l represents an integer from 1 to 200.
  • Preferred structures of P 3 and P 4 in the general formula (2) include a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group and the like. Of these, the methyl group is preferred.
  • l is an integer of 1 to 200, and an integer of 3 to 200 is preferable from the viewpoint of heat resistance of the obtained polyimide.
  • the preferred range of the functional group equivalent of the compound represented by the general formula (6) is preferably 800 or more, more preferably 1500 or more, as in the case of the silicon-containing compound represented by the general formula (4) described above.
  • the copolymerization ratio of the silicon-containing diamine is preferably 0.5 to 30% by mass, more preferably 1.0% by mass to 25% by mass, and further preferably 1.5 to the total mass of the polyimide precursor or the polyimide. It is from mass% to 20% by mass.
  • the silicon-containing diamine is 0.5% by mass or more, the residual stress generated between the silicon-containing diamine and the support can be effectively reduced.
  • the silicon-containing diamine is 30% by mass or less, the transparency (particularly low HAZE) of the obtained polyimide film is good, which is preferable from the viewpoint of achieving high total light transmittance and high glass transition temperature.
  • the polyimide precursor and the silicon-containing compound as a monomer used for the polyimide may be synthesized by using the common general technical knowledge at the time of filing, or a commercially available product may be used.
  • Commercially available products include both-terminal amine-modified methylphenyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd .: X22-1660B-3 (functional group equivalent 2200), X22-9409 (functional group equivalent 670)), and both-terminal acid anhydride-modified methylphenyl.
  • Silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd .: X22-168-P5-B (functional group equivalent 2100)), both-terminal epoxy-modified methylphenyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd .: X22-2000 (functional group equivalent 620)), both ends Amino-modified dimethyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .: PAM-E (functional group equivalent 130), X22-161A (functional group equivalent 800), X22-161B (functional group equivalent 1500), KF8012 (functional group equivalent 2200), Toredau Corning: BY16-853U (functional group equivalent 450), JNC: Silaplane FM3311 (number average molecular weight 1000)), both-terminal epoxy-modified dimethyl silicone (Shinetsu Chemical Co., Ltd .: X-22-163A (functional group equivalent 1750) ), Both-terminal ali
  • the tetracarboxylic dianhydride may be the tetracarboxylic dianhydride mentioned in the above general formulas (1-1) and (1-2).
  • Tetracarboxylic dianhydrides are pyromellitic dianhydrides (PMDA), 3,3', 4,4'-biphenyltetracarboxylic dianhydrides (BPDA), 9,9-bis (3,4-di).
  • Carboxyphenyl) fluorenedioic acid anhydride BPAF
  • 4,4'-oxydiphthalic acid anhydride ODPA
  • 1,2,4,5-cyclohexanetetracarboxylic dianhydride HPMDA
  • 1,2,3 4-Cyclobutanetetracarboxylic dianhydride (CBDA)
  • BPAF Carboxyphenyl fluorenedioic acid anhydride
  • ODPA 4,4'-oxydiphthalic acid anhydride
  • HPMDA 1,2,4,5-cyclohexanetetracarboxylic dianhydride
  • CBDA 4-Cyclobutanetetracarboxylic dianhydride
  • the diamine may be the diamine mentioned in the above general formulas (1-1) and (1-2).
  • Diamines include 4,4'-diaminodiphenyl sulfone (4,4'-DAS), 3,3'-bisdiaminodiphenyl sulfone (3,3'-DAS), 2,2'-dimethylbenzidine (mTB), p.
  • PDA diaminobis (trifluoromethyl) biphenyl
  • BAPP 2,2'-bis [4- (4-aminophenoxy) phenyl] propane
  • ODA 4,4'-diaminodiphenyl ether
  • CHDA 1,4-cyclohexanediamine
  • the weight average molecular weight of the polyimide precursor and the polyimide is preferably 50,000 or more, more preferably 60,000 or more, from the viewpoint of reducing the YI value of the polyimide film. From the viewpoint of reducing the haze of the polyimide film, the weight average molecular weight of the polyimide precursor and the polyimide is preferably 150,000 or less, more preferably 120,000 or less.
  • the desired weight average molecular weight of the polyimide precursor and the polyimide may vary depending on the desired application, the type of the polyimide precursor and the polyimide, the content of the non-solvent component of the resin composition, the type of the solvent that the resin composition can contain, and the like.
  • particularly preferable polyimide precursors include polycondensates of the acid dianhydride components (1) to (4) below and a silicon-containing diamine.
  • the acid dianhydride component is pyromellitic dianhydride (PMDA) and biphenyltetracarboxylic dianhydride (BPDA)
  • the diamine component is diaminodiphenylsulfone (DAS) and diaminobis (trifluoromethyl) biphenyl ( A polycondensate which is a TFMB) and a silicon-containing diamine.
  • the polycondensate has a weight average molecular weight of 60,000 to 110,000 and a non-solvent component content of 10 to 25% by mass.
  • the acid dianhydride component is pyromellitic dianhydride (PMDA) and biphenyltetracarboxylic dianhydride (BPDA)
  • the diamine component is diaminodiphenylsulfone (DAS) and silicon-containing diamine. Stuff.
  • the polycondensate has a weight average molecular weight of 50,000 to 110,000 and a non-solvent component content of 10 to 25% by mass.
  • the acid dianhydride component is pyromellitic acid dianhydride (PMDA) and 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride (BPAF), and the diamine component is diaminodiphenylsulfone.
  • DAS diaminobis (trifluoromethyl) biphenyl
  • TFMB diaminobis (trifluoromethyl) biphenyl
  • a polycondensate which is a silicon-containing diamine. More preferably, the polycondensate has a weight average molecular weight of 70,000 to 110,000 and a non-solvent component content of 10 to 25% by mass.
  • PMDA pyromellitic dianhydride
  • BAFL 9,9-bis (4-aminophenyl) fluorene
  • the silicon-containing diamine is preferably a diamino (poly) siloxane represented by the above general formula (6).
  • the number average molecular weight of the diamino (poly) siloxane is preferably 500 to 12,000, and more preferably the diamino (poly) siloxane is a two-terminal amine-modified dimethyl silicone oil.
  • the resin composition of the present embodiment may contain a cyclic siloxane represented by the following general formula (5), and the silicon-containing compound used in the resin composition of the present embodiment (monomer used for the polycondensation reaction of the polyimide precursor). May contain a silicon-containing compound represented by the general formula (3) and a silicon-containing compound represented by the general formula (4).
  • P 6 and P 7 are independently monovalent aliphatic hydrocarbon groups having 1 to 5 carbon atoms or aromatic groups having 6 to 10 carbon atoms, and m is 2 or more. It is an integer. ⁇
  • the resin composition of the present embodiment contains the compound represented by the cyclic siloxane represented by the following general formula (3) in a specific ratio.
  • n is an integer of 2 or more.
  • the total amount of the compound in the general formula (3) in which n is 4 is preferably more than 0 ppm and 70 ppm or less, more preferably more than 0 ppm and 50 ppm or less, and further preferably more than 0 ppm and 40 ppm based on the mass of the resin composition. Hereinafter, it is more preferably more than 0 ppm and 30 ppm or less.
  • the total amount of the compound in the general formula (3) in which n is 5 is preferably more than 0 ppm and 30 ppm or less, more preferably more than 0 ppm and 20 ppm or less, and further preferably more than 0 ppm and 15 ppm, based on the mass of the resin composition. It is as follows.
  • the total amount of the compound having n of 6 in the general formula (3) is preferably more than 0 ppm and 70 ppm or less, more preferably more than 0 ppm and 60 ppm or less, and further preferably more than 0 ppm and 50 ppm or less, based on the mass of the resin composition. , More preferably more than 0 ppm and 40 ppm or less.
  • the total amount of the compound having n of 7 in the general formula (3) is preferably more than 0 ppm and 80 ppm or less, more preferably more than 0 ppm and 70 ppm or less, and further preferably more than 0 ppm and 60 ppm or less, based on the mass of the resin composition.
  • the total amount of the compound in which n is 4 in the general formula (3) is preferably more than 0 ppm and 500 ppm or less, more preferably more than 0 ppm and 400 ppm or less. It is more preferably more than 0 ppm and 300 ppm or less, and even more preferably more than 0 ppm and 10 ppm or less.
  • the total amount of the compound in which n is 5 in the general formula (3) is preferably more than 0 ppm and 200 ppm or less, more preferably more than 0 ppm and 100 ppm or less.
  • the total amount of the compound in which n is 6 in the general formula (3) is preferably more than 0 ppm and 450 ppm or less, more preferably more than 0 ppm and 300 ppm or less. It is more preferably more than 0 ppm and 250 ppm or less, and even more preferably more than 0 ppm and 230 ppm or less.
  • the total amount of the compound in which n is 7 in the general formula (3) is preferably more than 0 ppm and 500 ppm or less, more preferably more than 0 ppm and 400 ppm or less. It is more preferably more than 0 ppm and 300 ppm or less, and even more preferably more than 0 ppm and 250 ppm or less.
  • the total amount of the compound represented by the general formula (3) is within the above range, the defects of the polyimide resin film obtained from the resin composition are reduced, and the YI value is further lowered, which is preferable.
  • the "non-solvent component” is all components other than the solvent in the resin composition, and the liquid monomer component is also included in the mass of the non-solvent component.
  • the polyimide precursor corresponds to a non-solvent component.
  • the mass of the non-solvent component corresponds to the total mass of all the monomers contained in the polyimide precursor.
  • the mass of the non-solvent component can also be determined by determining the mass of the solvent by gas chromatography (hereinafter, also referred to as GC) analysis of the resin composition and subtracting the mass of the solvent from the mass of the resin composition.
  • the mass of the non-solvent component can also be determined by heating the resin composition, volatilizing and removing the solvent, determining the mass of the solvent, and subtracting the mass of the solvent from the mass of the resin composition.
  • the total amount of the compounds in which n is 4 in the general formula (3) is preferably more than 0 ppm and 1300 ppm or less. , More preferably more than 0 ppm and 800 ppm or less, further preferably more than 0 ppm and 500 ppm or less, and even more preferably more than 0 ppm and 30 ppm or less.
  • the total amount of the compounds in which n is 5 in the general formula (3) is preferably more than 0 ppm and 500 ppm or less.
  • the total amount of the compounds in which n is 6 in the general formula (3) is preferably more than 0 ppm and 2000 ppm or less. , More preferably more than 0 ppm and 1000 ppm or less, further preferably more than 0 ppm and 500 ppm or less, and even more preferably more than 0 ppm and 20 ppm or less.
  • the total amount of the compounds in which n is 7 in the general formula (3) is preferably more than 0 ppm and 2200 ppm or less. , More preferably more than 0 ppm and 1100 ppm or less, further preferably more than 0 ppm and 600 ppm or less, and even more preferably more than 0 ppm and 10 ppm or less.
  • the total amount of the compound represented by the general formula (3) is within the above range, the defects of the polyimide resin film obtained from the resin composition are reduced, and the YI value is further lowered, which is preferable.
  • the total amount of the compounds having n of 3 or more and 8 or less in the general formula (3) is preferably more than 0 ppm and 150 ppm or less, more preferably more than 0 ppm and 130 ppm or less, still more preferable. Is more than 0 ppm and less than 100 ppm.
  • the total amount of the compounds having n of 3 or more and 8 or less in the general formula (3) is preferably more than 0 ppm and 900 ppm or less, more preferably more than 0 ppm.
  • the total amount of the compounds having n of 3 or more and 8 or less in the general formula (3) is preferably 0 ppm or more. It is as much as 4500 ppm or less, more preferably more than 0 ppm and 4000 ppm or less, still more preferably more than 0 ppm and 3000 ppm or less.
  • the total amount of the compound represented by the general formula (3) is within the above range, the defects of the polyimide resin film obtained from the resin composition are reduced, and the YI value is further lowered, which is preferable.
  • the method for producing a polyimide resin film is typically that a polyimide precursor composition / a composition containing a polyimide resin is applied to a support such as a glass substrate and heated in an oven, for example, at 100 ° C. for 30 minutes under reduced pressure.
  • This includes a step of removing the solvent (solvent removing step) and a step of imidizing (or removing the solvent) by heating at a higher temperature, for example, 400 ° C. for 1 hour to form a polyimide resin film.
  • the compound of the general formula (3) (methyl side chain cyclic siloxane) has a boiling point of less than 400 ° C.
  • n 4 and 5 among the compounds of the general formula (3). It is believed that the amount of compound will increase. As a result, it is estimated that defects on the polyimide resin film will increase.
  • the inventors have purified the compounds containing the general formulas (3) and (4) under specific conditions (vacuum distillation), and in particular, the n of the general formula (3) is 4 and 5. Defects on the polyimide resin film can be reduced by adjusting the amount of the compound to a specific amount, or by adjusting the total amount of compounds having n of the general formula (3) of 3 or more and 8 or less to a specific amount. I found.
  • the YI value is influenced by, for example, the amine value (ratio of compounds having an amine terminal) of the silicon-containing compound used.
  • the amine value ratio of compounds having an amine terminal
  • the purified silicon-containing compound is used, that is, the amount of the compound having n of 4 and 5 in the general formula (3) is within the above range, or the amount of the compound having n of 3 or more and 8 or less is within the above range.
  • the polyimide precursor inside is a polyimide resin film obtained as compared with an unpurified polyimide precursor and a polyimide precursor using a silicon-containing compound in which the amount of the compound of the general formula (3) is reduced by a conventional method.
  • YI value tends to be low.
  • the mechanism is not yet clear, but the inventors presume as follows. That is, in the conventional purification method, the non-cyclic low molecular weight diamine used in the production of the polyimide precursor remains, which decomposes when the polyimide is cured to generate radicals, which causes the YI value to increase (worse). Can be.
  • the polyimide precursor in which the amount of the compound represented by n in the general formula (3) is reduced or the amount of the compound in which n is 3 or more and 8 or less is reduced is a polyimide precursor. It is estimated that the YI value of the polyimide resin film is further improved.
  • the degree of improvement in the YI value of the polyimide resin film is the present implementation. It is considered to be smaller than the morphology.
  • the compounds having n of 3 or more and 8 or less in the general formula (3) it is also preferable to reduce the amount of the compound having n of 3 or more and 7 or less and the amount of the compound having n of 3 and 4. That is, based on the mass of the non-solvent component of the resin composition, the total amount of the compound having n of 3 in the general formula (3) is d3 (ppm), the total amount of the compound having n is 4 is d4 (ppm), and n is When the total amount of the compound of 5 is d5 (ppm), the total amount of the compound of n is 6 is d6 (ppm), and the total amount of the compound of n is 7 is d7 (ppm), d3 + d4 + d5 + d6 + d7 is preferably more than 0 ppm and 2000 ppm.
  • d3 + d4 is more than 0 ppm and 10 ppm or less.
  • the amount of the compound having n of 3 or more and 7 or less in the general formula (3) is more than 0 ppm and less than 2000 ppm, it is preferable from the viewpoint of defect evaluation of the obtained polyimide film.
  • the amount of the compound having n 3 and 4 in the general formula (3) is more than 0 ppm and 10 ppm or less, a polyimide precursor using the purified silicon-containing compound and an unpurified silicon-containing compound are used. It is preferable from the viewpoint of the difference in YI value between the polyimide precursors and the polyimide films obtained for each.
  • the resin composition typically contains a solvent.
  • the solvent those having good solubility of the polyimide precursor and the polyimide and capable of appropriately controlling the solution viscosity of the resin composition are preferable, and the reaction solvent of the polyimide precursor can be used as the solvent of the composition.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • Specific examples of the solvent composition include N-methyl-2-pyrrolidone (NMP) alone, or a mixed solvent of N-methyl-2-pyrrolidone (NMP) and ⁇ -butyrolactone (GBL).
  • the resin composition of the present embodiment may further contain additional components in addition to the polyimide precursor and polyimide, cyclic siloxane, and solvent. Additional components include, for example, surfactants, alkoxysilane compounds and the like.
  • surfactant By adding a surfactant to the resin composition of the present embodiment, the coatability of the resin composition can be improved. Specifically, it is possible to prevent the occurrence of streaks in the coating film.
  • surfactants include silicone-based surfactants, fluorine-based surfactants, and other nonionic surfactants.
  • silicone-based surfactant include organosiloxane polymers KF-640, 642, 643, KP341, X-70-092, X-70-093 (trade name, manufactured by Shin-Etsu Chemical Industry Co., Ltd.); SH-28PA, SH.
  • fluorine-based surfactant examples include Megafuck F171, F173, R-08 (manufactured by Dainippon Ink and Chemicals, Inc., trade name); Florard FC4430, FC4432 (Sumitomo 3M Ltd., trade name) and the like. ..
  • nonionic surfactant other than these include polyoxyethylene uralyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether and the like.
  • silicone-based surfactants and fluorine-based surfactants are preferable from the viewpoint of coatability (suppression of coating streaks) of the resin composition, and the YI value and the total amount depending on the oxygen concentration during the curing process.
  • a silicone-based surfactant is preferable from the viewpoint of reducing the influence on the light transmittance.
  • the blending amount thereof is preferably 0.001 to 5 parts by mass, and more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyimide precursor in the resin composition.
  • the resin composition is a polyimide precursor from the viewpoint of obtaining good adhesion between the support and the polyimide film in the manufacturing process. 0.01 to 20 parts by mass of the alkoxysilane compound can be contained with respect to 100 parts by mass.
  • the content of the alkoxysilane compound with respect to 100 parts by mass of the polyimide precursor is 0.01 parts by mass or more, good adhesion between the support and the polyimide film can be obtained.
  • the content of the alkoxysilane compound is preferably 20 parts by mass or less from the viewpoint of storage stability of the resin composition.
  • the content of the alkoxysilane compound is preferably 0.02 to 15 parts by mass, more preferably 0.05 to 10 parts by mass, and further preferably 0.1 to 8 parts by mass with respect to 100 parts by mass of the polyimide precursor. is there.
  • the alkoxysilane compound in addition to the above-mentioned improvement of the adhesion, the coatability of the resin composition is improved (sujimura suppression), and the influence of the oxygen concentration at the time of curing on the YI value of the polyimide film is reduced. You can also do it.
  • alkoxysilane compound examples include 3-ureidopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, and ⁇ -aminopropyltrimethoxysilane.
  • ⁇ -Aminopropyltripropoxysilane ⁇ -aminopropyltributoxysilane, ⁇ -aminoethyltriethoxysilane, ⁇ -aminoethyltripropoxysilane, ⁇ -aminoethyltributoxysilane, ⁇ -aminobutyltriethoxysilane, ⁇ - Aminobutyltrimethoxysilane, ⁇ -aminobutyltripropoxysilane, ⁇ -aminobutyltributoxysilane, phenylsilanetriol, trimethoxyphenylsilane, trimethoxy (p-tolyl) silane, diphenylsilanediol, dimethoxydiphenylsilane, diethoxydiphenyl Examples thereof include silane, dimethoxydi-p-tolylsilane, triphenylsilanol, and an alkoxysi
  • the method for producing the resin composition in the present embodiment is not particularly limited, and for example, the following method can be used.
  • the polyimide precursor contained in the resin composition of the present embodiment can be produced by subjecting a polycondensation component containing an acid dianhydride, a diamine, and a silicon-containing compound to a polycondensation reaction.
  • a polycondensation component containing an acid dianhydride, a diamine, and a silicon-containing compound to a polycondensation reaction.
  • the silicon-containing compound is purified before the polycondensation reaction, and the general formula (3) is used.
  • the resin composition may be purified to reduce the total amount of the compound of the general formula (3).
  • stripping may be performed while blowing an inert gas, for example, nitrogen gas, into the silicon-containing compound in an arbitrary container.
  • the stripping temperature is preferably 150 ° C. or higher and 300 ° C. or lower, more preferably 200 ° C. or higher and 300 ° C. or lower, and further preferably 230 ° C. or higher and 300 ° C. or lower.
  • the lower the stripping vapor pressure the more preferably 1000 Pa or less, more preferably 300 Pa or less, still more preferably 200 Pa or less, and even more preferably 133.32 Pa (1 mmHg) Pa or less.
  • the stripping time is preferably 4 hours or more and 12 hours or less, and more preferably 6 hours or more and 10 hours or less.
  • the polyimide precursor of the present embodiment can be synthesized by subjecting a polycondensation component containing an acid dianhydride, a diamine, and a silicon-containing compound to a polycondensation reaction. It can be synthesized by imidization.
  • the silicon-containing compound it is preferable to use the above-mentioned purified compound.
  • the polycondensation component comprises an acid dianhydride, a diamine, and a silicon-containing compound.
  • the polycondensation reaction is preferably carried out in a suitable solvent.
  • the molar ratio of acid dianhydride to diamine when synthesizing the polyimide precursor is determined from the viewpoint of increasing the molecular weight of the obtained polyimide precursor and the polyimide resin and the slit coating characteristics of the resin composition.
  • the range of 100: 90 to 100: 110 (0.90 to 1.10 parts of diamine with respect to 1 mol of acid dianhydride) is preferable, and 100: 95 to 100: 105 (1 mol of acid dianhydride).
  • the range of diamine (0.95 to 1.05 mol parts) is more preferable.
  • the molecular weight of the polyimide precursor and the polyimide is controlled by adjusting the types of acid dianhydride, diamine and silicon-containing compounds, adjusting the molar ratio of acid dianhydride and diamine, adding an end-capping agent, adjusting reaction conditions, and the like. It is possible. The closer the molar ratio of the acid dianhydride component to the diamine component is to 1: 1 and the smaller the amount of the end-capping agent used, the higher the molecular weight of the polyimide precursor and the polyimide.
  • the purity is preferably 98% by mass or more, more preferably 99% by mass or more, and further preferably 99.5% by mass or more, respectively. Purification can also be achieved by reducing the water content of the acid dianhydride component and the diamine component.
  • the acid dianhydride components as a whole and the diamine components as a whole have the above-mentioned purity, and all types to be used. It is more preferable that the acid dianhydride component and the diamine component of the above have the above-mentioned purity, respectively.
  • the solvent for the reaction is not particularly limited as long as it can dissolve the acid dianhydride component and the diamine component, and the resulting polyimide precursor and polyimide, and a high-molecular-weight polymer can be obtained.
  • a solvent include an aprotic solvent, a phenol solvent, an ether and a glycol solvent and the like.
  • the aprotic solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), N-methylcaprolactam, 1,3-dimethyl.
  • Examples of the phenolic solvent include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3, Examples thereof include 4-xylenol and 3,5-xylenol.
  • Examples of the ether and glycol-based solvent include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, and bis [2- (2-methoxyethoxy) ethyl.
  • Ether tetrahydrofuran, 1,4-dioxane, dipropylene glycol methyl ether acetate, dipropylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and the like can be mentioned. These solvents may be used alone or in combination of two or more.
  • the boiling point of the polyimide precursor and the solvent used for synthesizing the polyimide at normal pressure is preferably 60 to 300 ° C, more preferably 140 to 280 ° C, and further preferably 170 to 270 ° C. Since the boiling point of the solvent is lower than 300 ° C., the drying step is shortened. When the boiling point of the solvent is 60 ° C. or higher, roughening of the surface of the resin film and mixing of air bubbles in the resin film are less likely to occur during the drying step, and a more uniform film can be obtained. In particular, it is preferable to use a solvent having a boiling point of 170 to 270 ° C. and / or a vapor pressure of 250 Pa or less at 20 ° C.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • (7) a compound represented by the general formula (7)
  • the water content in the solvent is preferably, for example, 3,000 mass ppm or less in order to allow the polycondensation reaction to proceed satisfactorily.
  • the content of molecules having a molecular weight of less than 1,000 is preferably less than 5% by mass. It is considered that the reason why molecules having a molecular weight of less than 1,000 are present in the resin composition is that the water content of the solvent and the raw material (acid dianhydride, diamine) used at the time of synthesis is involved. That is, it is considered that the acid anhydride group of some acid dianhydride monomers is hydrolyzed by water to become a carboxyl group and remains in a low molecular weight state without increasing the molecular weight.
  • the water content of the solvent used for the polycondensation reaction is small.
  • the water content of the solvent is preferably 3,000 mass ppm or less, and more preferably 1,000 mass ppm or less.
  • the amount of water contained in the raw material is preferably 3,000 mass ppm or less, and more preferably 1,000 mass ppm or less.
  • the water content of the solvent is the grade of the solvent used (dehydration grade, general-purpose grade, etc.), solvent container (bin, 18L can, canister can, etc.), solvent storage state (presence or absence of rare gas filling, etc.), from opening to use (Whether to use immediately after opening or after a lapse of time after opening, etc.) is considered to be involved. It is considered that the replacement of rare gas in the reactor before synthesis and the presence or absence of rare gas flow during synthesis are also involved. Therefore, when synthesizing the polyimide precursor, it is recommended to use a high-purity product as a raw material, use a solvent with a low water content, and take measures to prevent water from the environment from entering the system before and during the reaction. Will be done.
  • the reaction temperature during the synthesis of the polyimide precursor may be preferably 0 ° C. to 120 ° C., 40 ° C. to 100 ° C., or 60 ° C. to 100 ° C., and the polymerization time. It may be preferably 1 hour to 100 hours, or 2 hours to 10 hours.
  • a polyimide precursor having a uniform degree of polymerization can be obtained by setting the polymerization time to 1 hour or more, and a polyimide precursor having a high degree of polymerization can be obtained by setting the polymerization time to 100 hours or less.
  • the resin composition of the present embodiment may contain other additional polyimide precursors in addition to the polyimide precursor of the present embodiment.
  • the mass ratio of the additional polyimide precursor is preferably 30 mass with respect to the total amount of the polyimide precursor in the resin composition from the viewpoint of reducing the oxygen dependence of the YI value and the total light transmittance of the polyimide film. % Or less, more preferably 10% by mass or less.
  • a part of the polyimide precursor in the present embodiment may be imidized (partially imidized).
  • the imidization ratio in this case is preferably 5% or more, more preferably 8% or more, and preferably 8% or more, from the viewpoint of balancing the solubility of the polyimide precursor in the resin composition and the storage stability of the solution. It is 80% or less, more preferably 70% or less, still more preferably 50% or less.
  • This partial imidization is obtained by heating the polyimide precursor to dehydrate and ring closure. This heating can be carried out at a temperature of preferably 120 ° C. to 200 ° C., more preferably 150 ° C. to 180 ° C., preferably for 15 minutes to 20 hours, more preferably 30 minutes to 10 hours.
  • a part or all of the carboxylic acid is esterified by adding N, N-dimethylformamide dimethylacetal or N, N-dimethylformamide diethylacetal to the polyamic acid obtained by the above reaction and heating. It may be used as the polyimide precursor of the embodiment. Esterification can improve viscosity stability during storage.
  • These ester-modified polyamic acids are prepared by sequentially reacting the above-mentioned acid dianhydride component with an equivalent amount of a monohydric alcohol with respect to an acid anhydride group and a dehydration condensing agent such as thionyl chloride or dicyclohexylcarbodiimide. It can also be obtained by a method of condensation reaction with a diamine component.
  • the acid dianhydride component and the diamine component are dissolved in a solvent, for example, an organic solvent, a co-boiling solvent such as toluene is added, and water generated during imidization is removed from the system. By removing it, it can be produced as a polyimide solution (also referred to as polyimide varnish) containing polyimide and a solvent.
  • a solvent for example, an organic solvent
  • a co-boiling solvent such as toluene
  • water generated during imidization is removed from the system.
  • the conditions at the time of reaction are not particularly limited, but for example, the reaction temperature is 0 ° C. to 180 ° C., and the reaction time is 3 hours to 72 hours.
  • reaction In order to sufficiently proceed with the reaction with the sulfone group-containing diamines, it is preferable to carry out a heating reaction at 180 ° C. for about 12 hours. Further, it is preferable that the reaction is in an inert atmosphere such as argon or nitrogen.
  • the synthesized polyimide precursor solution or polyimide solution is used as it is as the resin composition of the present embodiment. can do.
  • the resin composition is prepared by adding one or more of a further solvent and additional components to the polyimide precursor or the polyimide solution in a temperature range of room temperature (25 ° C.) to 80 ° C. and stirring and mixing them. May be adjusted. This stirring and mixing can be performed by using an appropriate device such as a three-one motor (manufactured by Shinto Chemical Co., Ltd.) equipped with a stirring blade and a rotation / revolution mixer. If necessary, the resin composition may be heated to 40 ° C. to 100 ° C.
  • the solvent in the synthesized polyimide precursor solution or polyimide solution is, for example, reprecipitated or solvent.
  • the polyimide precursor or the polyimide may be isolated by removing it by an appropriate method such as distillation. Then, in the temperature range of room temperature (25 ° C.) to 80 ° C., the desired solvent and, if necessary, additional components are added to the isolated polyimide precursor or polyimide, and the resin composition is stirred and mixed. May be prepared.
  • the polymer is precipitated by preparing the resin composition as described above and then heating the resin composition at, for example, 130 ° C. to 200 ° C. for, for example, 5 minutes to 2 hours.
  • a part of the polyimide precursor may be dehydrated and imidized to the extent that The imidization rate can be controlled by controlling the heating temperature and the heating time.
  • the solution viscosity of the resin composition is preferably 500 to 100,000 mPa ⁇ s, more preferably 1,000 to 50,000 mPa ⁇ s, and further preferably 3,000 to 20,000 mPa ⁇ s. s. Specifically, it is preferably 500 mPa ⁇ s or more, more preferably 1,000 mPa ⁇ s or more, and further preferably 3,000 mPa ⁇ s or more in terms of preventing liquid leakage from the slit nozzle.
  • the slit nozzle is less likely to be clogged, and is preferably 100,000 mPa ⁇ s or less, more preferably 50,000 mPa ⁇ s or less, and further preferably 20,000 mPa ⁇ s or less.
  • the solution viscosity of the polyimide precursor or the resin composition at the time of polyimide synthesis is preferably 200,000 mPa ⁇ s or less from the viewpoint of facilitating stirring at the time of synthesis. However, even if the solution becomes highly viscous during synthesis, it is possible to obtain a resin composition having a viscosity that is easy to handle by adding a solvent and stirring after the reaction is completed.
  • the solution viscosity of the resin composition in this embodiment is a value measured at 23 ° C. using an E-type viscometer (for example, VISCONICEHD, manufactured by Toki Sangyo).
  • the water content of the resin composition of the present embodiment is preferably 3,000 mass ppm or less, more preferably 2,500 mass ppm or less, still more preferably 2 from the viewpoint of viscosity stability when the resin composition is stored.
  • a coating step of applying (casting) a solution of the polyimide precursor on the support and a film formation in which the applied solution is heated to dry and imidize to form a polyimide resin film examples thereof include a manufacturing method of a polyimide film including a step (referred to as manufacturing method 1).
  • the production method 1 may optionally include a peeling step of peeling the polyimide resin film from the support to obtain a polyimide film.
  • a coating step of applying (casting) a polyimide solution (polyimide varnish) on a support and a film forming step of heating the applied solution to dry it to form a polyimide resin film are performed.
  • Examples thereof include a method for producing a polyimide film (referred to as production method 2-1).
  • the production method 1 may optionally include a peeling step of peeling the polyimide resin film from the support to obtain a polyimide film.
  • a film is formed from a polyimide solution that has been imidized in advance, it is also possible to produce a polyimide film by temporarily drying it, peeling it from the support, and further drying it. It is possible (manufacturing method 2-2).
  • the resin composition of the present embodiment is coated on the surface of the support.
  • the support is not particularly limited as long as it has heat resistance to the heating temperature in the subsequent film forming step (heating step) and has good peelability in the peeling step.
  • the support include a glass substrate, for example, a non-alkali glass substrate; a silicon wafer; PET (polyethylene terephthalate), OPP (stretched polypropylene), polyethylene glycol terephthalate, polyethylene glycol naphthalate, polycarbonate, polyimide, polyamideimide, and polyetherimide.
  • Resin substrates such as polyether ether ketone, polyether sulfone, polyphenylene sulfone, and polyphenylene sulfide; and metal substrates such as stainless steel, alumina, copper, and nickel.
  • a thin film-shaped polyimide molded body for example, a glass substrate, a silicon wafer, etc. are preferable, and when forming a thick film-shaped film-shaped or sheet-shaped polyimide molded body, for example, PET (polyethylene terephthalate) is used. ), OPP (stretched polypropylene) and the like are preferable.
  • a doctor blade knife coater As a coating method, generally, a doctor blade knife coater, an air knife coater, a roll coater, a rotary coater, a flow coater, a die coater, a bar coater, etc., a spin coat, a spray coat, a dip coat, etc. are applied; screen printing. And printing technology typified by gravure printing and the like.
  • the resin composition of the present embodiment is preferably coated with a slit coat.
  • the coating thickness should be appropriately adjusted according to the desired thickness of the resin film and the content of the polyimide precursor in the resin composition, but is preferably about 1 ⁇ m to 1,000 ⁇ m.
  • the temperature in the coating step may be room temperature, and the resin composition may be heated to, for example, 40 ° C. to 80 ° C. in order to reduce the viscosity and improve the workability.
  • the drying step may be performed after the coating step, or the drying step may be omitted and the process may be directly advanced to the next film forming step (heating step).
  • the drying step is performed for the purpose of removing the organic solvent in the resin composition.
  • an appropriate device such as a hot plate, a box-type dryer, or a conveyor-type dryer can be used.
  • the temperature of the drying step is preferably 80 ° C. to 200 ° C., more preferably 100 ° C. to 150 ° C.
  • the implementation time of the drying step is preferably 1 minute to 10 hours, more preferably 3 minutes to 1 hour.
  • a coating film containing a polyimide precursor is formed on the support.
  • a film forming step (heating step) is performed.
  • the heating step is a step of removing the organic solvent contained in the above-mentioned coating film and advancing the imidization reaction of the polyimide precursor in the coating film to obtain a polyimide resin film. ..
  • it is a step of removing the organic solvent contained in the above coating film to obtain a polyimide resin film.
  • This heating step can be performed using an apparatus such as an inert gas oven, a hot plate, a box-type dryer, or a conveyor-type dryer. This step may be carried out at the same time as the drying step, or both steps may be carried out sequentially.
  • the heating step may be performed in an air atmosphere, but from the viewpoint of safety, good transparency of the obtained polyimide film, low thickness direction Rth and low YI value, it may be performed in an inert gas atmosphere. preferable.
  • the inert gas include nitrogen, argon and the like.
  • the heating temperature may be appropriately set according to the type of the polyimide precursor and the type of the solvent in the resin composition, but is preferably 250 ° C to 550 ° C, more preferably 300 ° C. It is ⁇ 450 ° C. If the temperature is 250 ° C. or higher, imidization proceeds satisfactorily, and if the temperature is 550 ° C.
  • the heating temperature may be appropriately set according to the type of polyimide and the type of solvent in the resin composition, but is preferably 50 ° C to 450 ° C.
  • the heating time is preferably about 6 minutes to 10 hours.
  • the oxygen concentration in the ambient atmosphere in the above heating step is preferably 2,000 mass ppm or less, more preferably 2,000 mass ppm or less, from the viewpoint of the transparency of the obtained polyimide film and the YI value. It is 100 mass ppm or less, more preferably 10 mass ppm or less.
  • the polyimide resin film on the support may be cooled to, for example, room temperature (25 ° C.) to about 50 ° C. and then peeled off.
  • Examples of the peeling step include the following aspects (1) to (4).
  • a laser is irradiated from the support side of the structure to ablate the interface between the support and the polyimide resin film.
  • a method of peeling a polyimide resin examples include a solid (YAG) laser and a gas (UV excimer) laser. It is preferable to use a spectrum having a wavelength of 308 nm or the like (see Japanese Patent Publication No. 2007-512568, Japanese Patent Application Laid-Open No. 2012-511173, etc.).
  • release layer A method in which a release layer is formed on the support before the resin composition is applied to the support, and then a structure including the polyimide resin film / release layer / support is obtained and the polyimide resin film is peeled off. ..
  • the release layer include parylene (registered trademark, manufactured by Japan Parylene LLC) and tungsten oxide; a release agent such as vegetable oil-based, silicone-based, fluorine-based, or alkyd-based may be used (Japanese Patent Laid-Open No. 2010-067957). (No., Japanese Patent Application Laid-Open No. 2013-179306, etc.).
  • This method (2) and the laser irradiation of the method (1) may be used in combination.
  • a method of obtaining a polyimide resin film by using an etchable metal substrate as a support to obtain a structure including a polyimide resin film / support and then etching the metal with an etchant for example, copper (specifically, electrolytic copper foil "DFF" manufactured by Mitsui Mining & Smelting Co., Ltd.), aluminum and the like can be used.
  • the etchant ferric chloride or the like can be used for copper, and dilute hydrochloric acid or the like can be used for aluminum.
  • an adhesive film is attached to the surface of the polyimide resin film to separate the adhesive film / polyimide resin film from the support, and then from the adhesive film.
  • the method (1) or (2) is preferable from the viewpoint of the difference in refractive index between the front and back surfaces of the obtained polyimide resin film, the YI value, and the elongation. From the viewpoint of the difference in refractive index between the front and back surfaces of the obtained polyimide resin film, it is more preferable to perform the method (1), that is, the irradiation step of irradiating the laser from the support side prior to the peeling step.
  • the YI value of the obtained polyimide resin film tends to be large and the elongation tends to be small. This is considered to be the effect of copper ions.
  • the thickness of the obtained polyimide film is not limited, but is preferably 1 to 200 ⁇ m, more preferably 5 to 100 ⁇ m.
  • the YI value of the polyimide film obtained from the resin composition of the present embodiment at a film thickness of 10 ⁇ m is preferably 20 or less, more preferably 18 or less, still more preferably 16 or less, particularly preferably, from the viewpoint of obtaining good optical characteristics. Is 14 or less, particularly preferably 13 or less, particularly preferably 10 or less, and particularly preferably 7 or less.
  • the YI value differs depending on the monomer skeleton of the polyimide precursor, but if the monomer skeleton is the same, the YI value tends to be smaller as the weight average molecular weight of the polyimide precursor is larger.
  • the YI value is influenced by, for example, the amine value of the silicon-containing compound used.
  • the amine value When the amine value is high, the YI value tends to be large, and when the amine value is small, the YI value tends to be small.
  • the polyimide precursor using the purified silicon-containing compound that is, the total amount of the compound represented by the general formula (3) is within the above range, an unpurified silicon-containing compound having the same amine value is used.
  • the YI value of the obtained polyimide resin film tends to be lower than that of the polyimide precursor obtained. The mechanism is not yet clear, but the inventors presume as follows.
  • the non-cyclic low molecular weight diamine used in the production of the polyimide precursor remains, which decomposes when the polyimide is cured to generate radicals, which causes the YI value to increase (worse). Can be.
  • the amount of the cyclic siloxane represented by the general formula (3) not only the cyclic siloxane represented by the general formula (3) is removed during purification, but also among the diamine components that increase the amine value. It is considered that low molecular weight diamine, which is relatively easily volatilized, is also removed.
  • the YI value of the polyimide resin film is further improved in the polyimide precursor in which the total amount of the compound represented by the general formula (3) is reduced according to the present embodiment. Since it is difficult to reduce non-cyclic low molecular weight diamines by the conventional purification method, it is considered that the degree of improvement in the YI value of the polyimide resin film is smaller than that of the present embodiment even if purification is performed. ..
  • the difference in YI value between the polyimide precursor using the purified silicon-containing compound and the polyimide precursor using the unpurified silicon-containing compound can be obtained from the following formula.
  • (Difference in YI value) (YI value of polyimide resin film obtained by curing a polyimide precursor obtained by using an unpurified silicon compound)-(YI value of a polyimide resin film obtained by using a purified silicon compound) YI value of a polyimide resin film with a cured body)
  • the difference in YI value is preferably 1.5 or more, more preferably 2 or more, and further preferably 2.5 or more.
  • the method of measuring the YI value refer to the column of Examples.
  • the polyimide film obtained by curing the resin composition of the present embodiment can be used as, for example, a semiconductor insulating film, a thin film transistor liquid crystal display (TFT-LCD) insulating film, an electrode protective film, a liquid crystal display, an organic electroluminescence display, or a field. It can be applied as a transparent substrate for display devices such as emission displays and electronic paper.
  • the polyimide film obtained by curing the resin composition of the present embodiment is used in the manufacture of flexible devices, such as flexible substrates, flexible displays, thin film transistor (TFT) substrates, color filter substrates, touch panel substrates, and transparent conductive films (ITO, It can be suitably used for an Indium Thin Oxide) substrate or the like.
  • flexible devices to which the polyimide film of the present embodiment can be applied include TFT devices for flexible displays, flexible solar cells, flexible touch panels, flexible lighting, flexible batteries, flexible printed substrates, flexible color filters, surface cover lenses for smartphones, and the like. Can be mentioned.
  • the step of forming a TFT on a flexible substrate using a polyimide film is typically carried out at a temperature in a wide range of 150 ° C. to 650 ° C.
  • a process temperature of 250 ° C. to 350 ° C. is generally required, and the polyimide film of the present embodiment needs to be able to withstand that temperature.
  • a process temperature of 320 ° C. to 400 ° C. is generally required, and the polyimide film of the present embodiment must be able to withstand that temperature. Therefore, it is necessary to appropriately select a polymer structure having a glass transition temperature equal to or higher than the maximum temperature of the TFT fabrication process and a thermal decomposition start temperature.
  • LTPS low temperature polysilicon
  • a process temperature of 380 ° C. to 520 ° C. is generally required, and the polyimide film of the present embodiment needs to be able to withstand that temperature. It is necessary to appropriately select the glass transition temperature and the thermal decomposition start temperature above the maximum temperature of the TFT fabrication process.
  • the optical properties (particularly, light transmittance, Rth and YI values) of the polyimide film tend to decrease as they are exposed to the high temperature process.
  • the polyimide obtained from the polyimide precursor of the present embodiment has good optical properties even after undergoing thermal history.
  • the display manufacturing method of the present embodiment includes a coating step of applying the resin composition of the present embodiment on the surface of the support; and a film forming step of heating the resin composition to form a polyimide resin film; It includes an element forming step of forming an element on the polyimide resin film; and a peeling step of peeling the polyimide resin film on which the element is formed from the support.
  • the display may be a flexible display.
  • FIG. 1 is a schematic view showing a structure above a polyimide substrate of a top emission type flexible organic EL display as an example of the display of the present embodiment.
  • the organic EL structure portion 25 of FIG. 1 will be described.
  • an organic EL element 250a that emits red light, an organic EL element 250b that emits green light, and an organic EL element 250c that emits blue light are arranged in a matrix as one unit, and are arranged in a matrix.
  • the light emitting region of each organic EL element is defined by 251.
  • Each organic EL element is composed of a lower electrode (anode) 252, a hole transport layer 253, a light emitting layer 254, and an upper electrode (cathode) 255.
  • an interlayer insulating film 258 provided with contact holes 257, and a plurality of lower electrodes 259 are provided.
  • the organic EL element is enclosed by a sealing substrate 2b, and a hollow portion 261 is formed between each organic EL element and the sealing substrate 2b.
  • the manufacturing process of the flexible organic EL display includes a step of manufacturing a polyimide film on a glass substrate support and manufacturing an organic EL substrate shown in FIG. 1 above the polyimide film, and a step of manufacturing a sealed substrate.
  • the assembly step of laminating the organic EL display and the peeling step of peeling the organic EL display produced on the polyimide film from the glass substrate support are included.
  • a well-known manufacturing process can be applied to the organic EL substrate manufacturing process, the sealing substrate manufacturing process, and the assembling process. An example is given below, but the present invention is not limited to this.
  • the peeling step is the same as the peeling step of the polyimide film described above.
  • a polyimide film is formed on a glass substrate support by the above method, and a multilayer layer of silicon nitride (SiN) and silicon oxide (SiO) is formed on the polyimide film by a CVD method or a sputtering method.
  • a multi-barrier layer having a structure (lower substrate 2a in FIG. 1) is produced, and a metal wiring layer for driving a TFT is produced on the upper portion by using a photoresist or the like.
  • An active buffer layer such as SiO is produced on the upper part by a CVD method, and a TFT device (TFT256 in FIG.
  • an interlayer insulating film 258 having a contact hole 257 is formed of a photosensitive acrylic resin or the like.
  • An ITO film is formed by a sputtering method or the like, and a lower electrode 259 is formed so as to form a pair with the TFT.
  • the hole transport layer 253 and the light emitting layer 254 are formed in each space partitioned by the partition wall.
  • the upper electrode (cathode) 255 is formed so as to cover the light emitting layer 254 and the partition wall (bank) 251.
  • Emission type flexible organic EL display can be manufactured.
  • a see-through type flexible organic EL display can be manufactured.
  • a bottom emission type flexible organic EL display may be produced by a known method.
  • a flexible liquid crystal display can be manufactured using the polyimide film of the present embodiment.
  • a polyimide film is produced on a glass substrate support by the above method, and the above method is used, for example, composed of amorphous silicon, a metal oxide semiconductor (IGZO, etc.), and low-temperature polysilicon.
  • a TFT substrate is manufactured.
  • a polyimide film is prepared on the glass substrate support according to the coating step and the film forming step of the present embodiment, and a color resist or the like is used according to a known method to provide a color filter glass substrate (CF substrate) provided with the polyimide film. ) Is prepared.
  • CF substrate color filter glass substrate
  • a sealing material made of thermosetting epoxy resin or the like is applied to one of the TFT substrate and the CF substrate by screen printing in a frame-like pattern lacking the liquid crystal injection port portion, and the other substrate corresponds to the thickness of the liquid crystal layer.
  • a flexible liquid crystal display can be manufactured by peeling the glass substrate on the CF side and the glass substrate on the TFT side at the interface between the polyimide film and the glass substrate by a laser peeling method or the like.
  • the method for producing the laminate of the present embodiment includes a coating step of applying the resin composition of the present embodiment on the surface of the support; and a film forming step of heating the resin composition to form a polyimide resin film. Includes an element forming step of forming an element on the polyimide resin film.
  • Examples of the element in the laminated body include those exemplified in the manufacture of the above-mentioned flexible device.
  • As the support for example, a glass substrate can be used.
  • the preferred specific procedure of the coating step and the film forming step is the same as that described for the above-mentioned method for producing a polyimide film.
  • the above-mentioned element is formed on the polyimide resin film as the flexible substrate formed on the support. Then, optionally, the polyimide resin film and the element may be peeled from the support in the peeling step to obtain a flexible substrate.
  • the total mass of the monomers used in the polyimide precursor can be used as the mass of the non-solvent component contained in the resin composition.
  • the mass of the non-solvent component can be determined by obtaining the mass of the solvent by performing gas chromatography (hereinafter, also referred to as GC) analysis on the resin composition and subtracting the mass of the solvent from the mass of the resin composition. ..
  • GC gas chromatography
  • the following conditions can be mentioned as the conditions of GC.
  • Equipment Gas chromatograph (manufactured by Agilent, gas chromatograph 6890N type) Injection port temperature: 280 ° C
  • Injection volume 1 ⁇ L
  • Oven temperature Hold at 50 ° C.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC gel permeation chromatography
  • NMP manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatography
  • 24.8 mmol / L lithium bromide monohydrate manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5%
  • 63. .2 mmol / L phosphoric acid manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph
  • the calibration curve for calculating the weight average molecular weight was prepared using standard polystyrene (manufactured by Toso Co., Ltd.). Column: Shodex KD-806M (manufactured by Showa Denko KK) Flow velocity: 1.0 mL / min Column temperature: 40 ° C Pump: PU-2080Plus (manufactured by JASCO) Detector: RI-2031Plus (RI: differential refractometer, manufactured by JASCO) and UV-2075Plus (UV-VIS: ultraviolet-visible spectrophotometer, manufactured by JASCO)
  • the functional group equivalent was measured according to existing standards and the like as follows.
  • the functional group equivalent of the amino group was measured according to JIS K 7237.
  • the functional group equivalent of the epoxy group was measured according to JIS K 7236.
  • the functional group equivalent of the hydroxy group was measured according to JIS K 0070.
  • the molecular weight of the silicon-containing compound per mole of the functional group was also determined by the titration method.
  • GC / MS measurement was performed using the following device. Pyrolyzer: Py-3030iD (Frontier Lab) GC system: 7890B (Agilent Technologies) MSD: 5977A (Agilent Technologies) Column: UA-1 (inner diameter 0.25 mm, length 15 m, liquid phase thickness 0.25 ⁇ m) (Frontier Lab) All GC / MS measurements were performed under the following measurement conditions.
  • the column was immersed in liquid nitrogen while the pyrolyzer was heated to 400 ° C. to trap the volatile components in the column. One minute after the completion of heating, the column was taken out from liquid nitrogen and GC / MS measurement was performed. From the concentration of D4 body and the obtained peak area, the slope of the D4 body calibration curve was determined. Table 1 below shows the retention time of cyclic siloxane in GC / MS measurement using the equipment used and the measurement conditions. The same applies to the subsequent GC / MS measurements.
  • n corresponds to the number of carbon atoms n in the general formula (3), and n is an integer of 3 or more.
  • the cyclic siloxane concentration is analyzed by GC analysis of a solution of a silicon-containing compound (containing a silicon-containing compound of the general formula (3)) dissolved in acetone (including n-tetradecane as an internal standard substance). Measured by. From the peak area of each of the obtained compounds, the concentration of each compound was determined based on the peak area of n-tetradecane according to the method described later.
  • the GC measurement was performed using the following device.
  • Table 2 shows the retention time (minutes) of the cyclic siloxane in the equipment used and the GC measurement using the above measurement conditions. The same applies to the subsequent GC measurements.
  • a slit coater (LC-R300G, manufactured by SCREEN Finetech Solutions) was used for coating.
  • the obtained coated glass substrate was subjected to solvent removal under the conditions of 80 ° C., 100 Pa, and 30 minutes using a vacuum dryer (manufactured by Tokyo Ohka Kogyo Co., Ltd.), and a polyimide precursor having a length of 290 mm, a width of 340 mm, and a thickness of 10 ⁇ m was removed.
  • a glass substrate having a body composition coating film was obtained. At this time, 10 compositions formed on the glass substrate of the same composition were continuously processed. When treating another composition, it was used after being air-baked at 600 ° C. for 5 hours or more.
  • a glass substrate having the obtained polyimide precursor or polyimide resin composition coating film was placed in an oven (manufactured by INH-9N1 Koyo Thermo System Co., Ltd.) in a nitrogen atmosphere (oxygen concentration of 300 ppm or less) at 400 ° C. for 1 hour. It was heated to form a polyimide resin film on a glass substrate. Defects were evaluated on the surface of the 10th polyimide resin film when 10 sheets were continuously treated using a defect inspection device (LCF-5505XU, manufactured by Takano Co., Ltd.). The number of defects of 10 ⁇ m or more was detected. Number of defects is 0 or more and less than 25: A (good) Number of defects is 25 or more and less than 50: B (possible) Number of defects is 50 or more: C (impossible)
  • (Difference in YI value) (YI value of polyimide precursor obtained by using unpurified silicon compound or polyimide resin film obtained by curing polyimide)-(YI value obtained by using purified silicon compound) YI value of polyimide precursor or polyimide resin film obtained by curing polyimide)
  • the curing of the polyimide precursor or polyimide obtained by using the unpurified silicon compound and the polyimide precursor or polyimide obtained by using the purified silicon compound Curing eliminated equipment error by heat treatment in batches of the same oven.
  • ⁇ In-plane uniformity of polyimide resin film retardation (Rth)> The in-plane uniformity of Rth was evaluated using the polyimide resin film prepared in the above "defect evaluation".
  • the vertical (290 mm width) is 25 mm from the edge of the polyimide resin film at 40 mm intervals from the inside, and the horizontal (340 mm width) is 50 mm from the edge of the polyimide resin film at 80 mm intervals, for a total of 16 locations (4 x).
  • the thickness direction Rth (10 ⁇ m conversion) was measured using a phase difference birefringence measuring device (KOBRA-WR, manufactured by Oji Measuring Instruments Co., Ltd.).
  • In-plane uniformity ( ⁇ 3 sigma) is less than 10
  • In-plane uniformity ( ⁇ 3 sigma) is 10 or more and less than 20
  • In-plane uniformity ( ⁇ 3 sigma) is 20 or more
  • ⁇ Purification D> According to Purification Example 1 described in JP-A-2006-028533, 500 g of a silicon-containing compound was placed in a flask, and stripping was performed at a temperature of 250 ° C. and a pressure of 1330 Pa for 2 hours while blowing nitrogen gas.
  • ⁇ Purification E> According to Purification Example 2 described in JP-A-2006-028533, 100 g of a silicon-containing compound was placed in 300 g of 2-butanone and dissolved uniformly. This solution was slowly poured into methanol with stirring to perform reprecipitation. After repeating the above reprecipitation a total of 3 times, a dry and purified silicon-containing compound was obtained.
  • Example 1 As shown in Table 3, the silicon-containing compound (a) (in the general formula (4), L 1 and L 2 are amino groups (-NH 2 ), R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ), R 2 and R 3 are methyl groups, j and k are 0, and a functional group equivalent of 1500) was purified by the method of Purification B. NMP (330 g) as a solvent, 4,4'-DAS (13.9 g) as a diamine, TFMB (12.0 g), and a purified silicon-containing compound while introducing nitrogen gas into a 3 L separable flask with a stirring rod.
  • Example 1 the same procedure as in Example 1 was carried out, except that the types and amounts of the solvent, acid dianhydride, diamine, and silicon-containing compound were changed to those shown in Tables 3 and 4.
  • the types of silicon-containing compounds in the table are as follows.
  • R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ), R 2 and R 3 are methyl groups, j and k are 0, and the functional group equivalent is 1750.
  • L 1 and L 2 are mercapto groups (-SH), and R 1 is a trimethylene group (-CH 2 CH 2 CH).
  • Example 54 As shown in Table 4 while introducing nitrogen gas into a separable flask with a stirring rod provided with a Dean Stark tube and a reflux tube at the top, the silicon-containing compound (a) (in the general formula (4), L 1 And L 2 are amino groups (-NH 2 ), R 1 is trimethylene group (-CH 2 CH 2 CH 2- ), R 2 and R 3 are methyl groups, j and k are 0, and functional group equivalents. 1500 compounds) were purified by the method of Purification B.
  • NMP (330 g) as a solvent
  • a purified silicon-containing compound (23.2 g) while introducing nitrogen gas into a 3 L separable flask with a stirring rod.
  • the molar ratio of acid dianhydride and diamine was 100:97.
  • the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour to imidize.
  • Examples 55 to 57 A polyimide varnish was prepared in the same manner as in Example 54, except that the amounts of the acid dianhydride, the silicon-containing compound, the solvent, and the like were changed as shown in Table 4.
  • varnish a transparent NMP solution of polyamic acid (hereinafter, also referred to as varnish).
  • the obtained varnish was stored in a freezer (setting -20 ° C., the same applies hereinafter), and was thawed and used for evaluation.
  • Comparative Example 2 Comparative Example 23
  • Comparative Example 25-Comparative Example 27 Comparative Example 1, the same procedure as in Comparative Example 1 was carried out except that the types and amounts of the solvent, acid dianhydride, diamine, and silicon-containing compound were changed to those shown in Table 5.
  • Example 1 the same procedure as in Example 1 was carried out, except that the types and amounts of the solvent, acid dianhydride, diamine, and silicon-containing compound were changed to those shown in Table 5.
  • Comparative Examples 31 to 35 were carried out in the same manner as in Examples 9, 45, 48, 51 and 19, respectively, except that the silicon-containing compound was not purified as shown in Table 9. The results are shown in Table 10.

Abstract

特定の一般式で表される構造単位を含む、ポリイミド前駆体又はポリイミドと、下記一般式(3)で表される化合物とを含む、樹脂組成物。下記一般式(3)のうちnが4である化合物の総量が、上記樹脂組成物の質量を基準として、0ppmより多く70ppm以下であるか、あるいは、下記一般式(3)のうちnが5である化合物の総量が、上記樹脂組成物の質量を基準として、0ppmより多く30ppm以下である。

Description

ポリイミド前駆体及びポリイミド樹脂組成物
 本発明は、ポリイミド前駆体樹脂組成物、及びポリイミド樹脂組成物、並びにこれらの製造方法に関する。本発明は、該ポリイミド前駆体樹脂組成物、及びポリイミド樹脂組成物を用いた、ポリイミドフィルム、ディスプレイ、積層体及びフレキシブルデバイスの製造方法にも関する。
 ポリイミド樹脂は、不溶、不融の超耐熱性樹脂であり、耐熱酸化性、耐熱特性、耐放射線性、耐低温性、耐薬品性等に優れた特性を有している。このため、ポリイミド樹脂は、電子材料を含む広範囲な分野で用いられている。電子材料分野におけるポリイミド樹脂の適用例としては、例えば絶縁コーティング材、絶縁膜、半導体、薄膜トランジスタ液晶ディスプレイ(TFT-LCD)の電極保護膜等を挙げることができる。最近は、ポリイミドフィルムの軽さ、柔軟性を利用して、ディスプレイ材料の分野において従来使用されていたガラス基板に代わり、フレキシブル基板としても採用が検討されている。
 例えば特許文献1は、ビス(ジアミノジフェニル)スルホン(以下、DASともいう)から重合され、シロキサン単位を有する樹脂前駆体(重量平均分子量3万~9万)を記載している。特許文献1は、当該前駆体を硬化して得られるポリイミドは、ガラス等の支持体との間に発生する残留応力が低く、耐薬品性に優れ、キュア工程時の酸素濃度による黄色度(YI値)及び全光線透過率への影響が小さいことを記載している。特許文献2は、2,2’-ビス(トリフルオロメチル)ベンジジン(以下、TFMBともいう)から重合され、シロキサン単位を有する樹脂前駆体を記載している。特許文献2は、当該前駆体を硬化して得られるポリイミドフィルムは特定のガラス転移温度を有し、無機膜との間に生じる残留応力が低く、機械的物性及び熱安定性に優れることを記載している。
国際公開第2014/148441号 国際公開第2014/098235号 特開2016-029126号公報 特開2006-028533号公報 特開2002-012666号公報 特表2007-512568号公報 特表2012-511173号公報 特開2010-067957号公報 特開2013-179306号公報 国際公開第2005/068535号
信越化学工業株式会社ホームページ、"Q&A"、"シリコーングリース・オイルコンパウンドについて"、[online]、[2020年4月24日検索]、インターネット〈URL:https://www.silicone.jp/contact/qa/qa103.shtml〉
 特許文献1及び2は、ポリイミド前駆体のモノマーとして、シロキサン含有化合物を用いているが、この様なシロキサン含有化合物は、低分子量の環状シロキサン(以下、低分子環状シロキサンともいう)を含有する。この低分子環状シロキサンは揮発性であるため、アウトガスを発生させ、それによってプロセスの製造装置の接点不良を発生するおそれがあることが知られている。例えば、非特許文献1を参照されたい。
 この低分子環状シロキサンを精製によって低減したポリイミド前駆体に関する先行技術文献としては、特許文献3~5が挙げられる。特許文献3では、シロキサン含有化合物をアセトンに添加後、遠心分離し、デカンテーションすることにより低分子環状シロキサンを除去しており、得られるポリイミドは、透明性、アウトガスの発生が少ないことが記載されている。特許文献4及び5では、シロキサン含有化合物を特定条件でストリッピングし、またはシロキサン含有化合物を2-ブタノンに溶解してメタノールで再沈殿することにより、シロキサン含有化合物を精製しており、得られるポリイミドの接着性が改善されることが記載されている。
 本発明者らは、上記特許文献3~5に記載されたものと同様の精製法で精製したシロキサン含有化合物を用いてポリイミド前駆体及びポリイミドを合成し、それらを用いてポリイミドフィルムを製造した。その結果、ポリイミドフィルム製造プロセスで多量のポリイミド前駆体又はポリイミドを処理した場合におけるポリイミド樹脂膜の欠陥評価が劣ること、及び、未精製品から精製品に変更した場合の黄色度(YI値)の改善の程度が不十分であることを見出した。従って本発明は、未精製のシロキサン化合物を用いた場合と比較して、YI値がより改善され、ポリイミドフィルム製造プロセスで発生するポリイミド樹脂膜表面の欠陥を低減しうるポリイミド前駆体樹脂組成物、及びポリイミド樹脂組成物を提供することを目的とする。
 本発明者らは、鋭意検討を行った結果、上記先行技術文献に記載の精製方法では、一般式(3)のうち一部の化合物は十分に低減されないことを見出した。そして、ケイ素含有化合物をさらに精製し、一般式(3)の一部の化合物を特定の量に低減することで、上記課題を解決することができることを見いだした。以下[1]~[35]に、本発明の実施形態の例を列記する。
[1]
 下記一般式(1-1)及び/又は(1-2)で表される構造単位、及び下記一般式(2)で表される構造単位を含む、ポリイミド前駆体又はポリイミドと;
 下記一般式(3)で表される化合物と;
を含む、樹脂組成物であって、
 下記一般式(3)のうちnが4である化合物の総量が、上記樹脂組成物の質量を基準として、0ppmより多く70ppm以下であるか、あるいは、
 下記一般式(3)のうちnが5である化合物の総量が、上記樹脂組成物の質量を基準として、0ppmより多く30ppm以下である、樹脂組成物。
Figure JPOXMLDOC01-appb-C000033
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
Figure JPOXMLDOC01-appb-C000034
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
Figure JPOXMLDOC01-appb-C000035
{式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素、又は炭素数6~10の一価の芳香族基であり、qは、1~200の整数である。}
Figure JPOXMLDOC01-appb-C000036
{式中、nは2以上の整数である。}
[2]
 上記一般式(3)のうちnが4である化合物の総量が、上記樹脂組成物の質量を基準として、0ppmより多く30ppm以下であるか、あるいは、
 上記一般式(3)のうちnが5である化合物の総量が、上記樹脂組成物の質量を基準として、0ppmより多く15ppm以下である、項目1に記載の樹脂組成物。
[3]
 下記一般式(1-1)及び/又は(1-2)で表される構造単位、及び下記一般式(2)で表される構造単位を含む、ポリイミド前駆体又はポリイミドと;
 下記一般式(3)で表される化合物と;
を含む、樹脂組成物であって、
 下記一般式(3)のうちnが4である化合物の総量が、上記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く500ppm以下であるか、あるいは、
上記一般式(3)のうちnが5である化合物の総量が、上記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く200ppm以下である、樹脂組成物。
Figure JPOXMLDOC01-appb-C000037
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
Figure JPOXMLDOC01-appb-C000038
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
Figure JPOXMLDOC01-appb-C000039
{式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素、又は炭素数6~10の一価の芳香族基であり、qは、1~200の整数である。}
Figure JPOXMLDOC01-appb-C000040
{式中、nは2以上の整数である。}
[4]
 上記一般式(3)のうちnが4である化合物の総量が、上記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く300ppm以下であるか、あるいは、
 上記一般式(3)のうちnが5である化合物の総量が、上記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く100ppm以下である、項目3に記載の樹脂組成物。
[5]
 上記一般式(3)のうちnが4である化合物の総量が、上記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く10ppm以下であるか、あるいは、
 上記一般式(3)のうちnが5である化合物の総量が、上記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く5ppm以下である、項目3に記載の樹脂組成物。
[6]
 下記一般式(1-1)及び/又は(1-2)で表される構造単位、及び下記一般式(2)で表される構造単位を含む、ポリイミド前駆体又はポリイミドと;
 下記一般式(3)で表される化合物と;
を含む、樹脂組成物であって、
 上記樹脂組成物は、以下:
 下記一般式(4)で表されるケイ素含有化合物と、下記一般式(3)で表される化合物とを含有する原料組成物を、テトラカルボン酸二無水物及びジアミンと重縮合反応させてポリイミド前駆体を提供すること、又は、上記ポリイミド前駆体をイミド化してポリイミドを提供することを含む方法により製造され、
 上記原料組成物に含まれる、下記一般式(3)のうちnが4である化合物の総量は、下記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く1300ppm以下であるか、あるいは、
 上記原料組成物に含まれる、下記一般式(3)のうちnが5である化合物の総量は、上記一般式(3)及び(4)のケイ素含有化合物の合計質量を基準として、0ppmより多く500ppm以下である、樹脂組成物。
Figure JPOXMLDOC01-appb-C000041
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
Figure JPOXMLDOC01-appb-C000042
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
Figure JPOXMLDOC01-appb-C000043
{式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素、又は炭素数6~10の一価の芳香族基であり、qは、1~200の整数である。}
Figure JPOXMLDOC01-appb-C000044
{式中、nは2以上の整数である。}
Figure JPOXMLDOC01-appb-C000045
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
[7]
 上記原料組成物に含まれる、上記一般式(3)のうちnが4である化合物の総量は、上記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く800ppm以下であるか、あるいは、
 上記原料組成物に含まれる、上記一般式(3)のうちnが5である化合物の総量は、上記一般式(3)及び(4)のケイ素含有化合物の合計質量を基準として、0ppmより多く300ppm以下である、項目6に記載の樹脂組成物。
[8]
 上記原料組成物に含まれる、上記一般式(3)のうちnが4である化合物の総量は、上記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く30ppm以下であるか、あるいは、
 上記原料組成物に含まれる、上記一般式(3)のうちnが5である化合物の総量は、上記一般式(3)及び(4)のケイ素含有化合物の合計質量を基準として、0ppmより多く15ppm以下である、項目6に記載の樹脂組成物。
[9]
 下記一般式(1-1)及び/又は(1-2)で表される構造単位、及び下記一般式(2)で表される構造単位を含む、ポリイミド前駆体又はポリイミドと;
 下記一般式(3)で表される化合物と;
を含む、樹脂組成物であって、
 下記一般式(3)のうちnが3以上8以下の化合物の総量が、上記樹脂組成物の質量を基準として、0ppmより多く150ppm以下である、樹脂組成物。
Figure JPOXMLDOC01-appb-C000046
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
Figure JPOXMLDOC01-appb-C000047
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
Figure JPOXMLDOC01-appb-C000048
{式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素、又は炭素数6~10の一価の芳香族基であり、qは、1~200の整数である。}
Figure JPOXMLDOC01-appb-C000049
{式中、nは2以上の整数である。}
[10]
 下記一般式(1-1)及び/又は(1-2)で表される構造単位、及び下記一般式(2)で表される構造単位を含む、ポリイミド前駆体又はポリイミドと;
 下記一般式(3)で表される化合物と;
を含む、樹脂組成物であって、
 下記一般式(3)のうちnが3以上8以下の化合物の総量が、上記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く900ppm以下である、樹脂組成物。
Figure JPOXMLDOC01-appb-C000050
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
Figure JPOXMLDOC01-appb-C000051
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
Figure JPOXMLDOC01-appb-C000052
{式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素、又は炭素数6~10の一価の芳香族基であり、qは、1~200の整数である。}
Figure JPOXMLDOC01-appb-C000053
{式中、nは2以上の整数である。}
[11]
 下記一般式(1-1)及び/又は(1-2)で表される構造単位、及び下記一般式(2)で表される構造単位を含む、ポリイミド前駆体又はポリイミドと;
 下記一般式(3)で表される化合物と;
を含む、樹脂組成物であって、
 上記樹脂組成物は、以下:
 下記一般式(4)で表されるケイ素含有化合物と、下記一般式(3)で表される化合物とを含有する原料組成物を、テトラカルボン酸二無水物及びジアミンと重縮合反応させてポリイミド前駆体を提供すること、又は、上記ポリイミド前駆体をイミド化してポリイミドを提供することを含む方法により製造され、
 上記原料組成物に含まれる、下記一般式(3)のうちnが3以上8以下の化合物の総量は、下記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く4500ppm以下である、樹脂組成物。
Figure JPOXMLDOC01-appb-C000054
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
Figure JPOXMLDOC01-appb-C000055
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
Figure JPOXMLDOC01-appb-C000056
{式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素、又は炭素数6~10の一価の芳香族基であり、qは、1~200の整数である。}
Figure JPOXMLDOC01-appb-C000057
{式中、nは2以上の整数である。}
Figure JPOXMLDOC01-appb-C000058
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
[12]
 上記一般式(4)で表されるケイ素含有化合物の、L及びLが、それぞれ独立に、アミノ基、酸無水物基、エポキシ基、ヒドロキシ基、及びメルカプト基からなる群から選択される、項目6、7、8及び11のいずれか一項に記載の樹脂組成物。
[13]
 上記一般式(4)で表されるケイ素含有化合物の、L及びLが、アミノ基である、項目6、7、8及び11のいずれか一項に記載の樹脂組成物。
[14]
 上記一般式(4)で表されるケイ素含有化合物の官能基当量が800以上である、項目6、7、8及び11のいずれか一項に記載の樹脂組成物。
[15]
 上記テトラカルボン酸二無水物が、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、4,4’-オキシジフタル酸無水物(ODPA)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)、及び1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)からなる群から選択される少なくとも1つである、項目6~8及び11~14のいずれか一項に記載の樹脂組成物。
[16]
 上記ジアミンが、4,4’-ジアミノジフェニルスルホン(4,4’-DAS)、3,3’-ビス(ジアミノジフェニル)スルホン(3,3’-DAS)、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、2,2’-ジメチルベンジジン(mTB)、p-フェニレンジアミン(PDA)、ジアミノビス(トリフルオロメチル)ビフェニル(TFMB)、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、4,4’-ジアミノジフェニルエーテル(ODA)、及び1,4-シクロヘキサンジアミン(CHDA)からなる群から選択される少なくとも1つである、項目6~8及び11~14のいずれか一項に記載の樹脂組成物。
[17]
 上記樹脂組成物を硬化して得られるポリイミド樹脂膜が、フレキシブル基板に用いられる、項目1~16のいずれか一項に記載の樹脂組成物。
[18]
 上記樹脂組成物を硬化して得られるポリイミド樹脂膜が、フレキシブルディスプレイに用いられる、項目1~16のいずれか一項に記載の樹脂組成物。
[19]
 上記樹脂組成物の非溶媒成分の質量を基準として、一般式(3)のうちnが3の化合物の総量をd3(ppm)、nが4の化合物の総量をd4(ppm)、nが5の化合物の総量をd5(ppm)、nが6の化合物の総量をd6(ppm)、及びnが7の化合物の総量をd7(ppm)としたとき、d3+d4+d5+d6+d7が2000ppm未満であり、かつ、d3+d4が10ppm以下である、項目1~18のいずれか一項に記載の樹脂組成物。
[20]
 下記一般式(4)で表されるケイ素含有化合物と、下記一般式(3)で表される化合物とを含有する原料組成物を、テトラカルボン酸二無水物及びジアミンと重縮合反応させてポリイミド前駆体を提供すること、又は、上記ポリイミド前駆体をイミド化してポリイミドを提供することを含む、樹脂組成物の製造方法であって、
 上記原料組成物に含まれる、下記一般式(3)のうちnが4である化合物の総量は、下記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く1300ppm以下であるか、あるいは、
 上記原料組成物に含まれる、下記一般式(3)のうちnが5である化合物の総量は、上記一般式(3)及び(4)のケイ素含有化合物の合計質量を基準として、0ppmより多く500ppm以下である、樹脂組成物の製造方法。
Figure JPOXMLDOC01-appb-C000059
{式中、nは2以上の整数である。}
Figure JPOXMLDOC01-appb-C000060
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、
及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
[21]
 上記原料組成物に含まれる、上記一般式(3)のうちnが4である化合物の総量は、上記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く800ppm以下であるか、あるいは、
 上記原料組成物に含まれる、上記一般式(3)のうちnが6である化合物の総量は、上記一般式(3)及び(4)のケイ素含有化合物の合計質量を基準として、0ppmより多く300ppm以下である、項目20に記載の樹脂組成物の製造方法。
[22]
 下記一般式(4)で表されるケイ素含有化合物と、下記一般式(3)で表される化合物とを含有する原料組成物を、テトラカルボン酸二無水物及びジアミンと重縮合反応させてポリイミド前駆体を提供すること、又は、上記ポリイミド前駆体をイミド化してポリイミドを提供することを含む、樹脂組成物の製造方法であって、
 上記原料組成物に含まれる、下記一般式(3)のうちnが3以上8以下の化合物の総量は、下記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く4500ppm以下である、樹脂組成物の製造方法。
Figure JPOXMLDOC01-appb-C000061
{式中、nは2以上の整数である。}
Figure JPOXMLDOC01-appb-C000062
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
[23]
 上記一般式(4)で表されるケイ素含有化合物の官能基当量が800以上である、項目20~22のいずれか一項に記載の樹脂組成物の製造方法。
[24]
 下記一般式(4)で表されるケイ素含有化合物と、下記一般式(3)で表される化合物とを含有する原料組成物を、テトラカルボン酸二無水物及びジアミンと重縮合反応させてポリイミド前駆体を提供すること、又は、上記ポリイミド前駆体をイミド化してポリイミドを提供することを含む、樹脂組成物の製造方法であって、
 下記一般式(3)のうちnが5である化合物の総量、またはnが6である化合物の総量、またはnが7である化合物の総量を、下記一般式(4)及び(3)のケイ素含有化合物の合計質量を基準として、低減する工程とを含み、
 上記低減する工程は、上記組成物を、150~300℃、300Pa以下で2~12時間処理することを含む、方法。
Figure JPOXMLDOC01-appb-C000063
{式中、nは2以上の整数である。}
Figure JPOXMLDOC01-appb-C000064
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
[25]
 上記一般式(4)で表されるケイ素含有化合物の、L及びLが、それぞれ独立に、アミノ基、酸無水物基、エポキシ基、ヒドロキシ基、及びメルカプト基からなる群から選択される、項目20~24のいずれか一項に記載の方法。
[26]
 上記一般式(4)で表されるケイ素含有化合物の、L及びLが、アミノ基である、項目20~24のいずれか一項に記載の方法。
[27]
 上記テトラカルボン酸二無水物が、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、4,4’-オキシジフタル酸無水物(ODPA)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)、及び1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)からなる群から選択される少なくとも1つである、項目20~26のいずれか一項に記載の方法。
[28]
 上記ジアミンが、4,4’-ジアミノジフェニルスルホン(4,4’-DAS)、3,3’-ビス(ジアミノジフェニル)スルホン(3,3’-DAS)、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、2,2’-ジメチルベンジジン(mTB)、p-フェニレンジアミン(PDA)、ジアミノビス(トリフルオロメチル)ビフェニル(TFMB)、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、4,4’-ジアミノジフェニルエーテル(ODA)、及び1,4-シクロヘキサンジアミン(CHDA)からなる群から選択される少なくとも1つである、項目20~26のいずれか一項に記載の方法。
[29]
 支持体の表面上に、項目1~19のいずれか一項に記載の樹脂組成物を塗布する塗布工程と、
 上記樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
 上記ポリイミド樹脂膜を上記支持体から剥離する剥離工程と、
を含む、ポリイミドフィルムの製造方法。
[30]
 上記剥離工程に先立って、上記支持体側から上記樹脂組成物にレーザーを照射する照射工程を含む、項目29に記載のポリイミドフィルムの製造方法。
[31]
 支持体の表面上に、項目1~19のいずれか一項に記載の樹脂組成物を塗布する塗布工程と、
 上記樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
 上記ポリイミド樹脂膜上に素子を形成する素子形成工程と、
 上記素子が形成された上記ポリイミド樹脂膜を上記支持体から剥離する剥離工程と、
を含む、ディスプレイの製造方法。
[32]
 支持体の表面上に、項目1~19のいずれか一項に記載の樹脂組成物を塗布する塗布工程と、
 上記樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
 上記ポリイミド樹脂膜上に素子を形成する素子形成工程と、
を含む、積層体の製造方法。
[33]
 上記素子が形成された上記ポリイミド樹脂膜を上記支持体から剥離する工程をさらに含む、項目32に記載の積層体の製造方法。
[34]
 項目32又は33に記載の方法で積層体を製造することを含む、フレキシブルデバイスの製造方法。
[35]
 項目1~19のいずれか一項に記載の樹脂組成物の硬化物である、ポリイミドフィルム。
 本発明によれば、未精製のシロキサン化合物を用いた場合と比較して、得られるポリイミド樹脂膜表面の欠陥を低減し、黄色度(YI値)がより改善されうるポリイミド前駆体樹脂組成物を提供することができる。なお、上述の記載は、本発明の全ての実施形態及び本発明に関する全ての利点を開示したものとみなしてはならない。本発明の更なる実施形態及びその利点は、以下の記載を参照することにより明らかとなる。
図1は、本実施形態のディスプレイの例として、トップエミッション型フレキシブル有機ELディスプレイの、ポリイミド基板より上部の構造を示す模式図である。
 以下、本発明の例示の実施の形態(以下、「本実施形態」と略記する。)について、詳細に説明する。本発明は、本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。本願明細書において、各数値範囲の上限値及び下限値は任意に組み合わせることができる。
《樹脂組成物》
〈ポリイミド前駆体及びポリイミド〉
 一般式(1-1)及び(1-2)の構造単位
 本実施形態の樹脂組成物は、下記一般式(1-1)で表される構造単位を含むポリイミド前駆体または、下記一般式(1-2)で表される構造単位を含むポリイミドを含み、下記一般式(1-1)で表される構造単位及び一般式(1-2)で表される構造単位の両方を含む、ポリイミド前駆体又はポリイミド樹脂組成物であってもよい。
Figure JPOXMLDOC01-appb-C000065
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
Figure JPOXMLDOC01-appb-C000066
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
 一般式(1-1)で表される構造を有するポリイミド前駆体、及び一般式(1-2)で表されるポリイミドは、P基を有する酸二無水物と、P基を有するジアミンとの共重合体であることが好ましい。
 酸二無水物
 P基を含む酸二無水物としては、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-シクロヘキセン-1,2ジカルボン酸無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’―ジフェニルスルホンテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、p-フェニレンビス(トリメリテート酸無水物)、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、1,4-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2-ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、及び1,2,7,8-フェナントレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、ビシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物(CpODA)、4,4’-オキシジフタル酸無水物(ODPA)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)、及び1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)等が挙げられる。
 酸二無水物は、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、4,4’-オキシジフタル酸無水物(ODPA)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)、及び1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)からなる群から選択される少なくとも1つであることが好ましい。
 酸二無水物は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、ピロメリット酸二無水物(PMDA)及びビフェニルテトラカルボン酸二無水物(BPDA)は、ポリイミドフィルムの機械特性、低い厚み方向リタデーション(Rth)及び低いYI値などの光学特性、並びに高いガラス転移温度の観点から好ましい。一般式(1-1)で表される構造を有するポリイミド前駆体、及び一般式(1-2)で表される構造を有するポリイミドは、テトラカルボン酸二無水物とジアミンとの共重合体であり、かつ該テトラカルボン酸二無水物はピロメリット酸二無水物(PMDA)を含むことがより好ましい。
 全酸二無水物中の、ピロメリット酸二無水物(PMDA)及びビフェニルテトラカルボン酸二無水物(BPDA)の合計含有量は、ポリイミドフィルムの低いRth及びYI値、並びに高いガラス転移温度の観点から、好ましくは60モル%以上、より好ましくは80モル%以上、更に好ましくは100モル%である。
 全酸二無水物中の、ピロメリット酸二無水物(PMDA)の含有量は、ポリイミドフィルムの高いガラス転移温度の観点から、0モル%以上が好ましく、10モル%以上が好ましく、20モル%以上が好ましく、100モル%以下が好ましく、90モル%以下が好ましい。
 全酸二無水物中の、ビフェニルテトラカルボン酸二無水物(BPDA)の含有量は、ポリイミドフィルムの低いRth及びYI値の観点から、0モル%以上が好ましく、10モル%以上が好ましく、20モル%以上が好ましく、100モル%以下が好ましく、90モル%以下が好ましい。
 酸二無水物中の、ピロメリット酸二無水物(PMDA):ビフェニルテトラカルボン酸二無水物(BPDA)の含有比率は、ポリイミドフィルムの低いRth及びYI値、高いガラス転移温度、並びに伸度等を両立させる観点から、20:80~80:20が好ましく、30:70~70:30がより好ましい。
 得られるポリイミド樹脂膜の厚さ方向Rthの面内均一性の観点から、酸二無水物は、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BAPF)を含むことがより好ましい。
 ジアミン
 一般式(1-1)及び(1-2)におけるジアミンとしては、ジアミノジフェニルスルホン(例えば4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン)、p-フェニレンジアミン(PDA)、m-フェニレンジアミン、2,2’-ジメチルベンジジン(mTB)、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、4,4-ビス(4-アミノフェノキシ)ビフェニル、4,4-ビス(3-アミノフェノキシ)ビフェニル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、及び1,4-ビス(3-アミノプロピルジメチルシリル)ベンゼン,9,9-ビス(4-アミノフェニル)フルオレン(BAFL)等が挙げられる。
 ジアミンは、4,4’-ジアミノジフェニルスルホン(4,4’-DAS)、3,3’-ビスジアミノジフェニルスルホン(3,3’-DAS)、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、2,2’-ジメチルベンジジン(mTB)、p-フェニレンジアミン(PDA)、ジアミノビス(トリフルオロメチル)ビフェニル(TFMB)、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、4,4’-ジアミノジフェニルエーテル(ODA)、及び1,4-シクロヘキサンジアミン(CHDA)からなる群から選択される少なくとも1つであることが好ましい。
 ジアミンとしては、ジアミノジフェニルスルホン、例えば、4,4’-ジアミノジフェニルスルホン(4,4’-DAS)、及び/又は3,3’-ジアミノジフェニルスルホン(3,3’-DAS)を含むことが好ましい。
 得られるポリイミド樹脂膜の厚さ方向Rthの面内均一性の観点から、ジアミンは、4,4’-ジアミノジフェニルスルホン(4,4’-DAS)、3,3’-ジアミノジフェニルスルホン(3,3’-DAS)、及び9,9-ビス(4-アミノフェニル)フルオレン(BAFL)からなる群から選択される少なくとも一つであることがより好ましい。
 全ジアミン中のジアミノジフェニルスルホンの含有量は、50モル%以上、又は70モル%以上、又は90モル%以上、又は95モル%以上であってよい。ジアミノジフェニルスルホンの量が多いほど、ポリイミドフィルムのYI値が低減され、高いガラス転移温度が得られるため好ましい。ジアミノジフェニルスルホンとしては、4,4’-ジアミノジフェニルスルホンが、YI値の低減の観点から特に好ましい。
 ジアミンは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。ジアミノジフェニルスルホンと他のジアミンとを共重合させることが好ましい。ジアミノジフェニルスルホンと共重合させる他のジアミンとしては、ポリイミドフィルムの高い耐熱性、及び低いYI値の観点から、好ましくはジアミドビフェニル類、より好ましくはジアミノビス(トリフルオロメチル)ビフェニル(TFMB)が挙げられる。全ジアミン中のジアミノビス(トリフルオロメチル)ビフェニル(TFMB)の含有量は、ポリイミドフィルムの低いYI値の観点から、好ましくは20モル%以上、より好ましくは30モル%以上である。ジアミンがジアミノジフェニルスルホン等の他の有利なジアミンを含むことができるようにする設計上の観点から、TFMBの含有量は、全ジアミン中、好ましくは80モル%以下、より好ましくは70モル%以下である。
 一般式(2)の構造単位
 本実施形態の樹脂組成物におけるポリイミド前駆体及びポリイミドは、下記一般式(2)で表される構造単位を更に含む。
Figure JPOXMLDOC01-appb-C000067
{式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素、又は炭素数6~10の一価の芳香族基であり、qは、1~200の整数である。P及びPは、それぞれ独立に、好ましくは炭素数1~5の一価の脂肪族炭化水素、より好ましくは炭素数1~3の一価の脂肪族炭化水素、更に好ましくはメチル基である。}
 ポリイミド前駆体又はポリイミドの質量を基準として、一般式(2)で表される構造部位の比率の下限は、支持体との間に発生するポリイミドフィルムの残留応力を低減する観点から、好ましくは5質量%以上、より好ましくは6質量%以上、更に好ましくは7質量%以上である。ポリイミド前駆体又はポリイミドの質量を基準として、一般式(2)で表される構造部位の比率の上限は、ポリイミドフィルムの透明性、及び耐熱性の観点から、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下である。上記一般式(2)中、qは1~200の整数であり、得られるポリイミドの耐熱性の観点から3~200の整数が好ましい。
 ポリイミド前駆体及びポリイミドは、一般式(2)の構造を分子中のいずれの部位に有してもよい。一般式(2)の構造は、後述する一般式(4)で表されるケイ素含有化合物に由来する構造が好ましい。
 ジカルボン酸
 本実施態様におけるポリイミド前駆体及びポリイミドを形成するための酸成分としては、その性能を損なわない範囲で、酸二無水物(例えば、上記で例示したテトラカルボン酸二無水物)に加えて、ジカルボン酸を使用してもよい。すなわち、本開示のポリイミド前駆体はポリアミドイミド前駆体であってもよく、ポリイミドはポリアミドイミドであってもよい。このようなポリイミド前駆体又はポリイミドから得られるポリイミドフィルムは、機械伸度、ガラス転移温度Tg、YI値等の諸性能が良好であることがある。用いるジカルボン酸としては、芳香環を有するジカルボン酸及び脂環式ジカルボン酸が挙げられる。特に炭素数が8~36の芳香族ジカルボン酸、及び炭素数が6~34の脂環式ジカルボン酸からなる群から選択される少なくとも1つの化合物であることが好ましい。ここでいう炭素数には、カルボキシル基に含まれる炭素の数も含む。これらのうち、芳香環を有するジカルボン酸が好ましい。
 芳香環を有するジカルボン酸としては、具体的には、例えばイソフタル酸、テレフタル酸、4,4’-ビフェニルジカルボン酸、3,4’-ビフェニルジカルボン酸、3,3’-ビフェニルジカルボン酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-スルホニルビス安息香酸、3,4’-スルホニルビス安息香酸、3,3’-スルホニルビス安息香酸、4,4’-オキシビス安息香酸、3,4’-オキシビス安息香酸、3,3’-オキシビス安息香酸、2,2-ビス(4-カルボキシフェニル)プロパン、2,2-ビス(3-カルボキシフェニル)プロパン、2,2’-ジメチル-4,4’-ビフェニルジカルボン酸、3,3’-ジメチル-4,4’-ビフェニルジカルボン酸、2,2’-ジメチル-3,3’-ビフェニルジカルボン酸、9,9-ビス(4-(4-カルボキシフェノキシ)フェニル)フルオレン、9,9-ビス(4-(3-カルボキシフェノキシ)フェニル)フルオレン、4,4’-ビス(4-カルボキシフェノキシ)ビフェニル、4,4’-ビス(3-カルボキシフェノキシ)ビフェニル、3,4’-ビス(4-カルボキシフェノキシ)ビフェニル、3,4’-ビス(3-カルボキシフェノキシ)ビフェニル、3,3’-ビス(4-カルボキシフェノキシ)ビフェニル、3,3’-ビス(3―カルボキシフェノキシ)ビフェニル、4,4’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、4,4’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、3,4’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、3,3’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、3,4’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、3,3’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、4,4’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、4,4’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、3,4’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、3,3’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、3,4’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、3,3’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、1,1-シクロブタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4,4’-ベンゾフェノンジカルボン酸、1,3-フェニレン二酢酸、1,4-フェニレン二酢酸等;及び国際公開第2005/068535号に記載の5-アミノイソフタル酸誘導体等が挙げられる。これらジカルボン酸をポリマーに実際に共重合させる場合には、塩化チオニル等から誘導される酸クロリド体、活性エステル体等の形で使用してもよい。
 本実施形態の樹脂組成物中のポリイミド前駆体及びポリイミドは、ケイ素含有化合物と、テトラカルボン酸二無水物と、ジアミンとを単量体単位として含む共重合体として記載することもできる。この場合、ケイ素含有化合物は、下記一般式(4)と、一般式(3)及び/又は一般式(5)の化合物を含んでいてもよい。ケイ素含有化合物は、出願時の技術常識を用いて合成してもよいし、市販品を用いてもよい。合成して得たケイ素含有化合物、又は市販品のケイ素含有化合物は、後述する精製処理を行った後、ポリイミド前駆体及びポリイミドの単量体単位として用いてもよい。
Figure JPOXMLDOC01-appb-C000068
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
 上記一般式(4)で表されるケイ素含有化合物のL及びLは、限定されないが、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基が好ましい。得られるポリイミド前駆体及びポリイミドの分子量の観点から、L及びLは、アミノ基、酸無水物基、エポキシ基、ヒドロキシ基、及びメルカプト基からなる群から選択されることが好ましく、アミノ基であることがより好ましい。
 上記一般式(4)で表されるケイ素含有化合物の官能基当量は、得られるポリイミドフィルムの耐熱性(ガラス転移温度)、及び残留応力の観点から、800以上が好ましく、1500以上がより好ましい。ここで官能基当量とは、官能基1molあたりの、ケイ素含有化合物の分子量である(単位:g/mol)。官能基としては、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、及びメルカプト基が挙げられる。官能基当量は、実施例に記載の方法によって測定できる。ケイ素含有化合物の官能基当量が800以上である場合、シリコーンドメインが増えて応力緩和されるため、ポリイミドフィルムの残留応力が低減すると考えられる。
 一般式(4)中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基である。炭素数1~10の二価の有機基としては、直鎖状、環状、分枝状のいずれでもよく、飽和していても不飽和であってもよい。炭素数1~10の二価の脂肪族炭化水素基としては、例えば、メチレン、エチレン、n-プロピレン、i-プロピレン、n-ブチレン、s-ブチレン、t-ブチレン、n-ペンチレン、ネオペンチレン、n-ヘキシレン、n-ヘプチレン、n-オクチレン、n-ノニレン、及びn-デシレン基等の直鎖又は分岐鎖アルキレン基;並びにシクロプロピレン、シクロブチレン、シクロペンチレン、シクロヘキシレン、シクロヘプチレン、及びシクロオクチレン基等のシクロアルキレン基が挙げられる。炭素数1~10の二価の脂肪族炭化水素基としては、エチレン、n-プロピレン、及びi-プロピレンからなる群から選択される少なくとも一つであることが好ましい。
 一般式(4)中、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基である。炭素数1~10の一価の有機基としては、直鎖状、環状、分枝状のいずれでもよく、飽和していても不飽和であってもよい。例えば、炭素数1~10の一価の有機基としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、t-ブチル、n-ペンチル、ネオペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、及びn-デシル基等の直鎖又は分岐鎖アルキル基;並びにシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、及びシクロオクチル基等のシクロアルキル基、フェニル、トリル、キシリル、α-ナフチル、及びβ-ナフチル基等の芳香族基が挙げられる。炭素数1~5の一価の脂肪族炭化水素基としては、直鎖状、環状、分枝状のいずれでもよく、飽和していても不飽和であってもよい。例えば、炭素数1~5の一価の脂肪族炭化水素基としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、t-ブチル、n-ペンチル、及びネオペンチル基等の直鎖または分岐鎖アルキル基;シクロプロピル、シクロブチル、及びシクロペンチル基等のシクロアルキル基が挙げられる。炭素数1~5の一価の脂肪族炭化水素基としては、メチル、エチル、及びn-プロピルからなる群から選択される少なくとも一つであることが好ましく、メチルであることがより好ましい。
 一般式(4)中、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基である。炭素数1~10の一価の有機基としては、直鎖状、環状、分枝状のいずれでもよく、飽和していても不飽和であってもよい。例えば、炭素数1~10の一価の有機基としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、t-ブチル、n-ペンチル、ネオペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、及びn-デシル基等の直鎖又は分岐鎖アルキル基;並びにシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、及びシクロオクチル基等のシクロアルキル基、フェニル、トリル、キシリル、α-ナフチル、及びβ-ナフチル基等の芳香族基が挙げられる。炭素数6~10の一価の芳香族基としては、例えば、フェニル、トリル、キシリル、α-ナフチル、及びβ-ナフチル基等が挙げられ、フェニル、トリル、又はキシリルであることが好ましい。
 一般式(4)中、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、一部が不飽和脂肪族炭化水素基を有する有機基であってもよい。炭素数1~10の一価の有機基としては、直鎖状、環状、分枝状のいずれでもよく、例えば、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、t-ブチル、n-ペンチル、ネオペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、及びn-デシル基等の直鎖又は分岐鎖アルキル基;並びにシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、及びシクロオクチル基等のシクロアルキル基、フェニル、トリル、キシリル、α-ナフチル、及びβ-ナフチル基等の芳香族基が挙げられる。炭素数1~10の一価の有機基としては、メチル、エチル、及びフェニルからなる群から選択される少なくとも一つであることが好ましい。不飽和脂肪族炭化水素基を有する有機基としては、炭素数3~10の不飽和脂肪族炭化水素基であってよく、直鎖状、環状、分枝状のいずれでもよい。炭素数3~10の不飽和脂肪族炭化水素基としては、例えば、ビニル、アリル、プロペニル、3-ブテニル、2-ブテニル、ペンテニル、シクロペンテニル、ヘキセニル、シクロヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル、エチニル、プロピニル、ブチニル、ペンチニル、及びヘキシニル基等が挙げられる。炭素数3~10の不飽和脂肪族炭化水素基としては、ビニル、アリル、及び3-ブテニルからなる群から選択される少なくとも一つであることが好ましい。
 一般式(4)中、R~Rの水素原子の一部又は全部は、F、Cl、Br等のハロゲン原子等の置換基で置換されていてもよく、非置換であってもよい。
 iは、1~200の整数であり、好ましくは2~100の整数、より好ましくは4~80の整数、更に好ましくは8~40の整数である。j及びkは、それぞれ独立に、0~200の整数であり、好ましくは0~50の整数、より好ましくは0~20の整数、更に好ましくは0~50の整数である。
 モノマーの種類、コストの観点および、得られるポリイミド前駆体及びポリイミドの分子量の観点から、一般式(4)の、ケイ素含有化合物は、ケイ素含有ジアミンであることが好ましい。ケイ素含有ジアミンとしては、例えば、下記式(6)で表されるジアミノ(ポリ)シロキサンが好ましい。
Figure JPOXMLDOC01-appb-C000069
{式中、Pは、それぞれ独立に、二価の炭化水素基を示し、同一でも異なっていてもよく、P及びPは、一般式(2)において定義したものと同様であり、lは、1~200の整数を表す。}
 上記一般式(2)中のP及びPの好ましい構造としては、メチル基、エチル基、プロピル基、ブチル基、及びフェニル基等が挙げられる。これらの中でも好ましいのは、メチル基である。上記一般式(6)中、lは1~200の整数であり、得られるポリイミドの耐熱性の観点から、3~200の整数が好ましい。
 一般式(6)で表される化合物の官能基当量の好ましい範囲は、前述した一般式(4)で表されるケイ素含有化合物と同様、800以上が好ましく、1500以上がより好ましい。
 ケイ素含有ジアミンの共重合割合は、ポリイミド前駆体又はポリイミドの全質量に対して、好ましくは0.5~30質量%、より好ましくは1.0質量%~25質量%、更に好ましくは1.5質量%~20質量%である。ケイ素含有ジアミンが0.5質量%以上である場合、支持体との間に発生する残留応力を効果的に低下することができる。ケイ素含有ジアミンが30質量%以下である場合、得られるポリイミドフィルムの透明性(特に低HAZE)が良好であり、高い全光線透過率の実現、及び高いガラス転移温度の観点から好ましい。
 ポリイミド前駆体及びポリイミドに用いる単量体としてのケイ素含有化合物は、上述のとおり、出願時の技術常識を用いて合成してもよいし、市販品を用いてもよい。市販品としては、両末端アミン変性メチルフェニルシリコーンオイル(信越化学社製:X22-1660B-3(官能基当量2200)、X22-9409(官能基当量670))、両末端酸無水物変性メチルフェニルシリコーンオイル(信越化学社製:X22-168-P5-B(官能基当量2100))、両末端エポキシ変性メチルフェニルシリコーンオイル(信越化学社製:X22-2000(官能基当量620))、両末端アミノ変性ジメチルシリコーン(信越化学社製:PAM-E(官能基当量130)、X22-161A(官能基当量800)、X22-161B(官能基当量1500)、KF8012(官能基当量2200)、東レダウコーニング製:BY16-853U(官能基当量450)、JNC社製:サイラプレーンFM3311(数平均分子量1000))、両末端エポキシ変性ジメチルシリコーン(信越化学社製:X-22-163A(官能基当量1750)、両末端脂環式エポキシ変性ジメチルシリコーン(信越化学社製:X-22-169B(官能基当量1700))、両末端ヒドキシ基変性ジメチルシリコーン(信越化学社製:KF-6000)、両末端メルカプト変性ジメチルシリコーン(信越化学社製:X-22-167B(官能基当量1700))、両末端酸無水物変性ジメチルシリコーン(信越化学社製:X-22-168A(官能基当量1000))等が挙げられる。これらの中でも、価格、耐薬品性向上、Tgの向上の観点から、両末端アミン変性ジメチルシリコーンオイルが好ましい。
 テトラカルボン酸二無水物は、上記一般式(1-1)及び(1-2)について挙げたテトラカルボン酸二無水物であってもよい。テトラカルボン酸二無水物は、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、4,4’-オキシジフタル酸無水物(ODPA)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)、及び1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)からなる群から選択される少なくとも1つであることが好ましい。
 ジアミンは、上記一般式(1-1)及び(1-2)について挙げたジアミンであってもよい。ジアミンは、4,4’-ジアミノジフェニルスルホン(4,4’-DAS)、3,3’-ビスジアミノジフェニルスルホン(3,3’-DAS)、2,2’-ジメチルベンジジン(mTB)、p-フェニレンジアミン(PDA)、ジアミノビス(トリフルオロメチル)ビフェニル(TFMB)、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、4,4’-ジアミノジフェニルエーテル(ODA)、及び1,4-シクロヘキサンジアミン(CHDA)からなる群から選択される少なくとも1つであることが好ましい。
 重量平均分子量
 本実施形態において、ポリイミド前駆体及びポリイミドの重量平均分子量は、ポリイミドフィルムのYI値を低減させる観点から、好ましくは50,000以上、より好ましくは60,000以上である。ポリイミドフィルムのヘイズを低減させる観点から、ポリイミド前駆体及びポリイミドの重量平均分子量は、好ましくは150,000以下、より好ましくは120,000以下である。ポリイミド前駆体及びポリイミドの望ましい重量平均分子量は、所望される用途、ポリイミド前駆体及びポリイミドの種類、樹脂組成物の非溶媒成分含有量、樹脂組成物が含み得る溶媒の種類等によって異なってよい。
 ポリイミド前駆体及びポリイミドの好ましい実施形態
 本実施形態において特に好ましいポリイミド前駆体としては、下記(1)~(4)の酸二無水物成分とケイ素含有ジアミンとの重縮合物が挙げられる。
(1)酸二無水物成分がピロメリット酸二無水物(PMDA)及びビフェニルテトラカルボン酸二無水物(BPDA)であり、ジアミン成分がジアミノジフェニルスルホン(DAS)、ジアミノビス(トリフルオロメチル)ビフェニル(TFMB)及びケイ素含有ジアミンである、重縮合物。該重縮合物は、より好ましくは、重量平均分子量が60,000~110,000、非溶媒成分含有量が10~25質量%である。
(2)酸二無水物成分がピロメリット酸二無水物(PMDA)及びビフェニルテトラカルボン酸二無水物(BPDA)であり、ジアミン成分がジアミノジフェニルスルホン(DAS)及びケイ素含有ジアミンである、重縮合物。該重縮合物は、より好ましくは、重量平均分子量が50,000~110,000、非溶媒成分含有量が10~25質量%である。
(3)酸二無水物成分がピロメリット酸二無水物(PMDA)及び9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)であり、ジアミン成分がジアミノジフェニルスルホン(DAS)、ジアミノビス(トリフルオロメチル)ビフェニル(TFMB)及びケイ素含有ジアミンである、重縮合物。該重縮合物は、より好ましくは、重量平均分子量が70,000~110,000、非溶媒成分含有量が10~25質量%である。
(4)酸二無水物成分がピロメリット酸二無水物(PMDA)であり、ジアミン成分が9,9-ビス(4-アミノフェニル)フルオレン(BAFL)及びケイ素含有ジアミンである、重縮合物。該重縮合物は、より好ましくは、重量平均分子量が60,000~110,000、非溶媒成分含有量が10~25質量%である。
 上記(1)~(4)の重縮合物の材料成分において、ケイ素含有ジアミンは、好ましくは上記一般式(6)で表されるジアミノ(ポリ)シロキサンである。この場合、ジアミノ(ポリ)シロキサンの数平均分子量は、好ましくは500~12,000であり、より好ましくは、ジアミノ(ポリ)シロキサンは、両末端アミン変性ジメチルシリコーンオイルである。
〈環状シロキサン〉
 本実施形態の樹脂組成物は、下記一般式(5)で表される環状シロキサンを含んでもよく、本実施形態の樹脂組成物に用いるケイ素含有化合物(ポリイミド前駆体の重縮合反応に用いるモノマー)は、一般式(3)で表されるケイ素含有化合物と、一般式(4)で表されるケイ素含有化合物を含んでもよい。
Figure JPOXMLDOC01-appb-C000070
{式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素基、又は炭素数6~10の芳香族基であり、かつmは、2以上の整数である。}
 本実施形態の樹脂組成物は、一般式(5)の化合物のなかでも、下記一般式(3)で表される環状シロキサンで表される化合物を、特定の割合で含む。
Figure JPOXMLDOC01-appb-C000071
{式中、nは2以上の整数である。}
 一般式(3)のうちnが4である化合物の総量は、樹脂組成物の質量を基準として、好ましくは0ppmより多く70ppm以下、より好ましくは0ppmより多く50ppm以下、更に好ましくは0ppmより多く40ppm以下、より更に好ましくは0ppmより多く30ppm以下である。一般式(3)のうちnが5である化合物の総量は、樹脂組成物の質量を基準として、好ましくは0ppmより多く30ppm以下、より好ましくは0ppmより多く20ppm以下、更に好ましくは0ppmより多く15ppm以下である。一般式(3)のうちnが6の化合物の総量は、樹脂組成物の質量を基準として、好ましくは0ppmより多く70ppm以下、より好ましくは0ppmより多く60ppm以下、更に好ましくは0ppmより多く50ppm以下、より更に好ましくは0ppmより多く40ppm以下である。一般式(3)のうちnが7の化合物の総量は、樹脂組成物の質量を基準として、好ましくは0ppmより多く80ppm以下、より好ましくは0ppmより多く70ppm以下、更に好ましくは0ppmより多く60ppm以下、より更に好ましくは0ppmより多く50ppm以下である。一般式(3)で表される化合物の総量が上記の範囲内であると、樹脂組成物から得られるポリイミド樹脂膜の欠陥が少なくなり、YI値がより低下するため好ましい。
 樹脂組成物中の非溶媒成分の質量を基準とする場合、一般式(3)のうちnが4である化合物の総量は、好ましくは0ppmより多く500ppm以下、より好ましくは0ppmより多く400ppm以下、更に好ましくは0ppmより多く300ppm以下、より更に好ましくは0ppmより多く10ppm以下である。樹脂組成物中の非溶媒成分の質量を基準とする場合、一般式(3)のうちnが5である化合物の総量は、好ましくは0ppmより多く200ppm以下、より好ましくは0ppmより多く100ppm以下、更に好ましくは0ppmより多く50ppm以下、より更に好ましくは0ppmより多く5ppm以下である。樹脂組成物中の非溶媒成分の質量を基準とする場合、一般式(3)のうちnが6である化合物の総量は、好ましくは0ppmより多く450ppm以下、より好ましくは0ppmより多く300ppm以下、更に好ましくは0ppmより多く250ppm以下、より更に好ましくは0ppmより多く230ppm以下である。樹脂組成物中の非溶媒成分の質量を基準とする場合、一般式(3)のうちnが7である化合物の総量は、好ましくは0ppmより多く500ppm以下、より好ましくは0ppmより多く400ppm以下、更に好ましくは0ppmより多く300ppm以下、より更に好ましくは0ppmより多く250ppm以下である。一般式(3)で表される化合物の総量が上記の範囲内であると、樹脂組成物から得られるポリイミド樹脂膜の欠陥が少なくなり、YI値がより低下するため好ましい。
 本願明細書中「非溶媒成分」とは、樹脂組成物中の溶媒以外の全成分であり、液状のモノマー成分も非溶媒成分の質量に含まれる。樹脂組成物が溶媒とポリイミド前駆体のみを含有する場合、ポリイミド前駆体が非溶媒成分に該当する。樹脂組成物が溶媒とポリイミド前駆体のみを含有する場合、非溶媒成分の質量は、ポリイミド前駆体に含まれる全てのモノマーの質量の総量が該当する。非溶媒成分の質量は、樹脂組成物をガスクロマトグラフィー(以下GCともいう)分析することにより溶媒の質量を求め、樹脂組成物の質量から溶媒の質量を差し引くことから求めることもできる。非溶媒成分の質量は、樹脂組成物を加熱し、溶媒を揮発除去し、溶媒の質量を求め、樹脂組成物の質量から溶媒の質量を差し引くことから求めることもできる。
 上記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準とする場合、一般式(3)のうちnが4である化合物の総量は、好ましくは0ppmより多く1300ppm以下、より好ましくは0ppmより多く800ppm以下、更に好ましくは0ppmより多く500ppm以下、より更に好ましくは0ppmより多く30ppm以下である。上記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準とする場合、一般式(3)のうちnが5である化合物の総量は、好ましくは0ppmより多く500ppm以下、より好ましくは0ppmより多く300ppm以下、更に好ましくは0ppmより多く100ppm以下、より更に好ましくは0ppmより多く15ppm以下である。上記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準とする場合、一般式(3)のうちnが6である化合物の総量は、好ましくは0ppmより多く2000ppm以下、より好ましくは0ppmより多く1000ppm以下、更に好ましくは0ppmより多く500ppm以下、より更に好ましくは0ppmより多く20ppm以下である。上記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準とする場合、一般式(3)のうちnが7である化合物の総量は、好ましくは0ppmより多く2200ppm以下、より好ましくは0ppmより多く1100ppm以下、更に好ましくは0ppmより多く600ppm以下、より更に好ましくは0ppmより多く10ppm以下である。一般式(3)で表される化合物の総量が上記の範囲内であると、樹脂組成物から得られるポリイミド樹脂膜の欠陥が少なくなり、YI値がより低下するため好ましい。
 樹脂組成物の質量を基準とする場合、一般式(3)のうち、nが3以上8以下の化合物の総量は、好ましくは0ppmより多く150ppm以下、より好ましくは0ppmより多く130ppm以下、更に好ましくは0ppmより多く100ppm以下である。樹脂組成物中の非溶媒成分の質量を基準とする場合、一般式(3)のうち、nが3以上8以下の化合物の総量は、好ましくは0ppmより多く900ppm以下、より好ましくは0ppmより多く800ppm以下、更に好ましくは0ppmより多く700ppm以下である。上記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準とする場合、一般式(3)のうち、nが3以上8以下の化合物の総量は、好ましくは0ppmより多く4500ppm以下、より好ましくは0ppmより多く4000ppm以下、更に好ましくは0ppmより多く3000ppm以下である。一般式(3)で表される化合物の総量が上記の範囲内であると、樹脂組成物から得られるポリイミド樹脂膜の欠陥が少なくなり、YI値がより低下するため好ましい。
 従来は、得られるポリイミド樹脂膜からのアウトガスを低減すること等と目的として、一般式(3)の環状シロキサンのうち、特にnが4以下の化合物の量を低減することが行われていた(特許文献3~5等)。しかし、従来技術の環状シロキサンの低減方法の場合、一般式(3)の環状シロキサンのうち、nが7以下の化合物量の低減が不十分であることを見出した。そして、一般式(3)の化合物の中でもnが5以上7以下の化合物が特定量の場合、得られるポリイミド樹脂膜の表面の欠陥を低減し、黄色度(YI値)がより改善されうることを見出した。これらの詳細なメカニズムは不明であるが、発明者らは、下記のとおりと推定している。ポリイミド樹脂膜の製造方法は、典型的には、ポリイミド前駆体組成物/ポリイミド樹脂を含む組成物をガラス基板等の支持体に塗布し、オーブン内で、例えば減圧下100℃で30分間加熱することにより溶媒を除去する工程(溶媒除去工程)と、より高い温度、例えば400℃で1時間加熱することによりイミド化(又は溶媒を除去)して、ポリイミド樹脂膜を形成する工程とを含む。一般式(3)の化合物(メチル側鎖環状シロキサン)は、nが3以上8以下の場合、常圧では沸点が400℃未満であり、上記イミド化工程(例えば400℃で1時間加熱)では、揮発し、排除される。一方、溶媒除去工程はイミド化工程よりも温度が低く、一般式(3)の化合物は、nが3以上8以下の場合、この溶媒除去工程において揮発除去されると考えられる。しかしながら、一般式(3)の化合物のうち、特にnが3以上8以下の化合物の量が多い場合、揮発した跡が残り、それがポリイミド樹脂膜上の欠陥になると推定される。また、従来の精製方法である、250℃以上の蒸留の場合、温度が高いため、冷却時に分解したケイ素含有化合物が再度環状化して、一般式(3)の化合物の中でもnが4及び5の化合物の量が増えると考えられる。その結果、ポリイミド樹脂膜上の欠陥が増えると推定している。これらの問題に対して、発明者らは、一般式(3)及び(4)を含む化合物を、特定条件で精製処理(減圧蒸留)し、特に一般式(3)のnが4及び5の化合物の量を特定の量に調整することで、あるいは、一般式(3)のnが3以上8以下の化合物の総量を特定の量に調整することで、ポリイミド樹脂膜上の欠陥を低減できることを見出した。
 YI値は、例えば使用するケイ素含有化合物のアミン価(アミン末端を有する化合物の割合)に影響され、アミン価が高いとYI値は大きく、アミン価が小さいとYI値も小さくなる傾向にある。しかしながら、精製したケイ素含有化合物を用いた、すなわち一般式(3)のnが4及び5の化合物の量が上記の範囲内である、あるいはnが3以上8以下の化合物の量が上記の範囲内であるポリイミド前駆体は、未精製のポリイミド前駆体、及び従来の方法で一般式(3)の化合物の量を低減したケイ素含有化合物を用いたポリイミド前駆体に比べて、得られるポリイミド樹脂膜のYI値が低い傾向にある。このメカニズムについては未だ明らかではないが、発明者らは以下のように推定している。すなわち、従来の精製方法では、ポリイミド前駆体の製造に用いた、環状ではない低分子量のジアミンが残存し、ポリイミド硬化時に分解してラジカルを発生し、YI値を増大させる(悪化させる)原因になりうる。一般式(3)のnが4及び5の化合物で表される環状シロキサンの量を少なくすることにより、あるいはnが3以上8以下の化合物の量を少なくすることにより、精製時に上記環状シロキサンだけが除去されるわけではなく、アミン価を増大させるジアミン成分のうち、比較的揮発しやすい環状ではない低分子量のジアミンも除去されると考えられる。したがって、本実施形態に従い、一般式(3)のnが4及び5で表される化合物の量が低減された、あるいはnが3以上8以下の化合物の量が低減されたポリイミド前駆体は、ポリイミド樹脂膜のYI値がより改善されると推定される。従来の精製方法(デカンテーション、再沈殿等)では、環状ではない低分子量のジアミンを低減することが難しいため、たとえ精製を行ったとしても、ポリイミド樹脂膜のYI値の改善の程度が本実施形態に比べて小さいと考えられる。
 一般式(3)のうちnが3以上8以下の化合物のなかでも、nが3以上7以下の化合物の量、及びnが3及び4の化合物の量を低減することもまた好ましい。すなわち、樹脂組成物の非溶媒成分の質量を基準として、一般式(3)のうちnが3の化合物の総量をd3(ppm)、nが4の化合物の総量をd4(ppm)、nが5の化合物の総量をd5(ppm)、nが6の化合物の総量をd6(ppm)、及びnが7の化合物の総量をd7(ppm)としたとき、d3+d4+d5+d6+d7は、好ましくは0ppmより多く2000ppm未満である。さらに、d3+d4が0ppmより多く10ppm以下であることが好ましい。一般式(3)のうちnが3以上7以下の化合物の量が0ppmより多く2000ppm未満であると、得られるポリイミドフィルムの欠陥評価の観点で好ましい。また、一般式(3)のうちnが3及び4の化合物の量が0ppmより多く10ppm以下であると、精製したケイ素含有化合物を用いたポリイミド前駆体と、精製していないケイ素含有化合物を用いたポリイミド前駆体、それぞれにつて得られるポリイミドフィルムのYI値の差の観点で好ましい。
〈溶媒〉
 樹脂組成物は典型的に溶媒を含む。溶媒としては、ポリイミド前駆体及びポリイミドの溶解性が良好で、かつ樹脂組成物の溶液粘度を適切に制御できるものが好ましく、ポリイミド前駆体の反応溶媒を、組成物の溶媒として用いることができる。その中でも、N-メチル-2-ピロリドン(NMP)、γ-ブチロラクトン(GBL)、上記一般式(4)で表される化合物等が好ましい。溶媒組成の具体例としては、N-メチル-2-ピロリドン(NMP)単独、又はN-メチル-2-ピロリドン(NMP)とγ-ブチロラクトン(GBL)との混合溶媒等が挙げられる。NMPとGBLとの質量比は、例えば、NMP:GBL(質量比)=10:90~90:10であってよい。
〈追加の成分〉
 本実施形態の樹脂組成物は、ポリイミド前駆体及びポリイミド、環状シロキサン、及び溶媒に加えて、追加の成分を更に含んでもよい。追加の成分としては、例えば、界面活性剤、及びアルコキシシラン化合物等が挙げられる。
 界面活性剤
 本実施形態の樹脂組成物に界面活性剤を添加することによって、樹脂組成物の塗布性を向上することができる。具体的には、塗工膜におけるスジの発生を防ぐことができる。
 このような界面活性剤は、例えば、シリコーン系界面活性剤、フッ素系界面活性剤、これら以外の非イオン界面活性剤等を挙げることができる。シリコーン系界面活性剤としては、例えば、オルガノシロキサンポリマーKF-640、642、643、KP341、X-70-092、X-70-093(商品名、信越化学工業社製);SH-28PA、SH-190、SH-193、SZ-6032、SF-8428、DC-57、DC-190(商品名、東レ・ダウコーニング・シリコーン社製);SILWET L-77,L-7001,FZ-2105,FZ-2120,FZ-2154,FZ-2164,FZ-2166,L-7604(商品名、日本ユニカー社製);DBE-814、DBE-224、DBE-621、CMS-626、CMS-222、KF-352A、KF-354L、KF-355A、KF-6020、DBE-821、DBE-712(Gelest)、BYK-307、BYK-310、BYK-378、BYK-333(商品名、ビックケミー・ジャパン製);グラノール(商品名、共栄社化学社製)等が挙げられる。フッ素系界面活性剤としては、例えば、メガファックF171、F173、R-08(大日本インキ化学工業株式会社製、商品名);フロラードFC4430、FC4432(住友スリーエム株式会社、商品名)等が挙げられる。これら以外の非イオン界面活性剤としては、例えば、ポリオキシエチレンウラリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェノールエーテル等が挙げられる。
 これらの界面活性剤の中でも、樹脂組成物の塗工性(塗工スジ抑制)の観点から、シリコーン系界面活性剤、フッ素系界面活性剤が好ましく、キュア工程時の酸素濃度によるYI値及び全光線透過率への影響を低減する観点から、シリコーン系界面活性剤が好ましい。界面活性剤を用いる場合、その配合量は、樹脂組成物中のポリイミド前駆体100質量部に対して、好ましくは0.001~5質量部、より好ましくは0.01~3質量部である。
 アルコキシシラン化合物
 本実施形態の樹脂組成物から得られるポリイミドフィルムをフレキシブル基板等に用いる場合、製造プロセスにおける支持体とポリイミドフィルムとの良好な密着性を得る観点から、樹脂組成物は、ポリイミド前駆体100質量部に対して、アルコキシシラン化合物を0.01~20質量部含有することができる。ポリイミド前駆体100質量部に対するアルコキシシラン化合物の含有量が0.01質量部以上であることにより、支持体とポリイミドフィルムとの間に良好な密着性を得ることができる。またアルコキシシラン化合物の含有量が20質量部以下であることが、樹脂組成物の保存安定性の観点から好ましい。アルコキシシラン化合物の含有量は、ポリイミド前駆体100質量部に対して、好ましくは0.02~15質量部、より好ましくは0.05~10質量部、更に好ましくは0.1~8質量部である。アルコキシシラン化合物を用いることにより、上記の密着性の向上に加えて、樹脂組成物の塗工性が向上し(スジムラ抑制)、及びキュア時の酸素濃度によるポリイミドフィルムのYI値への影響を低減することもできる。
 アルコキシシラン化合物としては、例えば、3-ウレイドプロピルトリエトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリプロポキシシラン、γ-アミノプロピルトリブトキシシラン、γ-アミノエチルトリエトキシシラン、γ-アミノエチルトリプロポキシシラン、γ-アミノエチルトリブトキシシラン、γ-アミノブチルトリエトキシシラン、γ-アミノブチルトリメトキシシラン、γ-アミノブチルトリプロポキシシラン、γ-アミノブチルトリブトキシシラン、フェニルシラントリオール、トリメトキシフェニルシラン、トリメトキシ(p-トリル)シラン、ジフェニルシランジオール、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシジ-p-トリルシラン、トリフェニルシラノール、及び下記構造のそれぞれで表されるアルコキシシラン化合物等を挙げることができる。アルコキシシラン化合物は、一種を単独で用いても二種以上を組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-C000072
《樹脂組成物の製造方法》
 本実施形態における樹脂組成物の製造方法は、特に限定されるものではなく、例えば、以下の方法によることができる。
〈ケイ素含有化合物の精製〉
 本実施形態の樹脂組成物に含まれるポリイミド前駆体は、酸二無水物、ジアミン、及びケイ素含有化合物を含む重縮合成分を重縮合反応させることにより製造することができる。本実施形態の樹脂組成物中に含まれる、一般式(3)の化合物の総量を低減する方法としては、例えば、重縮合反応の前に、ケイ素含有化合物を精製して、一般式(3)の化合物の総量を低減することが挙げられる。あるいは、重縮合反応の後に、樹脂組成物を精製して、一般式(3)の化合物の総量を低減してもよい。
 ケイ素含有化合物を精製する方法としては、例えば、任意の容器内でケイ素含有化合物に不活性ガス、例えば窒素ガスを吹き込みながらストリッピングを行うことが挙げられる。ストリッピングの温度としては、好ましくは150℃以上300℃以下、より好ましくは200℃以上300℃以下、更に好ましくは230℃以上300℃以下である。ストリッピングの蒸気圧としては、低いほど好ましく、1000Pa以下、より好ましくは300Pa以下、更に好ましくは200Pa以下、より更に好ましくは133.32Pa(1mmHg)Pa以下である。ストリッピングの時間としては、好ましくは4時間以上12時間以下、より好ましくは6時間以上10時間以下である。上記の条件に調整することにより、一般式(3)の化合物を効率的に除去することができ、また、一般式(3)及び(4)の総量を好ましい範囲に制御することができる。
〈ポリイミド前駆体及びポリイミドの合成〉
 本実施形態のポリイミド前駆体は、酸二無水物、ジアミン、及びケイ素含有化合物を含む重縮合成分を重縮合反応させることにより合成することができ、本実施形態のポリイミドは、上記ポリイミド前駆体をイミド化することによって合成することができる。ケイ素含有化合物は、上記の精製したものを用いることが好ましい。好ましい態様において、重縮合成分は、酸二無水物と、ジアミンと、ケイ素含有化合物とからなる。重縮合反応は、適当な溶媒中で行うことが好ましい。具体的には、例えば、溶媒に所定量のジアミン成分及びケイ素含有化合物を溶解させた後、得られたジアミン溶液に、酸二無水物を所定量添加し、撹拌する方法が挙げられる。
 ポリイミド前駆体を合成する際の酸二無水物とジアミンとのモル比は、得られるポリイミド前駆体及びポリイミド樹脂の高分子量化、樹脂組成物のスリットコーティング特性の観点から、酸二無水物:ジアミン=100:90~100:110(酸二無水物1モル部に対してジアミン0.90~1.10モル部)の範囲が好ましく、100:95~100:105(酸二無水物1モル部に対してジアミン0.95~1.05モル部)の範囲が更に好ましい。
 ポリイミド前駆体及びポリイミドの分子量は、酸二無水物、ジアミン及びケイ素含有化合物の種類、酸二無水物とジアミンとのモル比の調整、末端封止剤の添加、反応条件の調整等によってコントロールすることが可能である。酸二無水物成分とジアミン成分とのモル比が1:1に近いほど、及び末端封止剤の使用量が少ないほど、ポリイミド前駆体及びポリイミドを高分子量化することができる。
 酸二無水物成分及びジアミン成分として、高純度品を使用することが推奨される。その純度としては、それぞれ、好ましくは98質量%以上、より好ましくは99質量%以上、更に好ましくは99.5質量%以上である。酸二無水物成分及びジアミン成分における水分含量を低減することによって高純度化することもできる。複数種類の酸二無水物成分、及び/又は複数種類のジアミン成分を使用する場合には、酸二無水物成分全体として、及びジアミン成分全体として上記の純度を有することが好ましく、使用する全種類の酸二無水物成分及びジアミン成分が、それぞれ上記の純度を有していることがより好ましい。
 反応の溶媒としては、酸二無水物成分及びジアミン成分、並びに生じるポリイミド前駆体及びポリイミドを溶解することができ、高分子量の重合体が得られる溶媒であれば特に限定されない。このような溶媒としては、例えば、非プロトン性溶媒、フェノール系溶媒、エーテル及びグリコール系溶媒等が挙げられる。非プロトン性溶媒としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素、N,N-ジメチルイソブチルアミド、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、及び下記一般式(7)のアミド系溶媒:
Figure JPOXMLDOC01-appb-C000073
{式中、R12=メチル基で表されるエクアミドM100(商品名:出光興産社製)、及び、R12=n-ブチル基で表されるエクアミドB100(商品名:出光興産社製)};γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶媒;ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶媒;ピコリン、ピリジン等の3級アミン系溶媒;酢酸(2-メトキシ-1-メチルエチル)、3-メトキシ-3-メチル-1-ブチルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のエステル系溶媒等が挙げられる。フェノ-ル系溶媒としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。エーテル及びグリコール系溶媒としては、例えば、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス[2-(2-メトキシエトキシ)エチル]エーテル、テトラヒドロフラン、1,4-ジオキサン、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらの溶媒は、単独で又は2種類以上混合して用いてもよい。
 ポリイミド前駆体及びポリイミドの合成に用いられる溶媒の常圧における沸点は、好ましくは60~300℃、より好ましくは140~280℃、更に好ましくは170~270℃である。溶媒の沸点が300℃より低いことにより、乾燥工程が短時間になる。溶媒の沸点が60℃以上であると、乾燥工程中に、樹脂膜の表面における荒れの発生、樹脂膜中への気泡の混入等が起こりにくく、より均一なフィルムを得ることができる。特に、沸点が170~270℃であり、及び/又は20℃における蒸気圧が250Pa以下である溶媒を使用することが、溶解性及び塗工時のエッジ異常の低減の観点から好ましい。より具体的には、N-メチル-2-ピロリドン(NMP)、γ-ブチロラクトン(GBL)、及び一般式(7)で表される化合物から成る群より選択される1種以上が好ましい。
 溶媒中の水分含量は、重縮合反応を良好に進行させるために、例えば3,000質量ppm以下であることが好ましい。本実施形体における樹脂組成物中、分子量1,000未満の分子の含有量が5質量%未満であることが好ましい。樹脂組成物中に分子量1,000未満の分子が存在するのは、合成時に使用する溶媒や原料(酸二無水物、ジアミン)の水分量が関与しているためと考えられる。すなわち、一部の酸二無水物モノマーの酸無水物基が水分によって加水分解してカルボキシル基になり、高分子量化することなく低分子の状態で残存することによると考えられる。従って、上記の重縮合反応に使用する溶媒の水分量は少ないほど好ましい。溶媒の水分量は、3,000質量ppm以下とすることが好ましく、1,000質量ppm以下とすることがより好ましい。同様に、原料に含まれる水分量についても、3,000質量ppm以下とすることが好ましく、1,000質量ppm以下とすることがより好ましい。
 溶媒の水分量は、使用する溶媒のグレード(脱水グレード、汎用グレード等)、溶媒容器(ビン、18L缶、キャニスター缶等)、溶媒の保管状態(希ガス封入の有無等)、開封から使用までの時間(開封後すぐ使用するか、開封後経時した後に使用するか等)等が関与すると考えられる。合成前の反応器の希ガス置換、合成中の希ガス流通の有無等も関与すると考えられる。従って、ポリイミド前駆体の合成時には、原料として高純度品を用い、水分量の少ない溶媒を用いるとともに、反応前および反応中に系内に環境からの水分が混入しないような措置を講ずることが推奨される。
 溶媒中に各重縮合成分を溶解させるときには、必要に応じて加熱してもよい。重合度の高いポリイミド前駆体を得る観点から、ポリイミド前駆体合成時の反応温度としては、好ましくは0℃~120℃、40℃~100℃、又は60℃~100℃であってよく、重合時間としては、好ましくは1時間~100時間、又は2時間~10時間であってよい。重合時間を1時間以上とすることによって均一な重合度のポリイミド前駆体となり、100時間以下とすることによって重合度の高いポリイミド前駆体を得ることができる。
 本実施形態の樹脂組成物は、本実施形態におけるポリイミド前駆体以外に、他の追加のポリイミド前駆体を含んでもよい。しかしながら、追加のポリイミド前駆体の質量割合は、ポリイミドフィルムのYI値及び全光線透過率の酸素依存性を低減する観点から、樹脂組成物中のポリイミド前駆体の総量に対して、好ましくは30質量%以下、更に好ましくは10質量%以下である。
 本実施形態におけるポリイミド前駆体は、その一部がイミド化されていてもよい(部分イミド化)。ポリイミド前駆体を部分イミド化することにより、樹脂組成物を保存する際の粘度安定性を向上できる。この場合のイミド化率は、樹脂組成物中のポリイミド前駆体の溶解性と溶液の保存安定性とのバランスをとる観点から、好ましくは5%以上、より好ましくは8%以上であり、好ましくは80%以下、より好ましくは70%以下、更に好ましくは50%以下である。この部分イミド化は、ポリイミド前駆体を加熱して脱水閉環することにより得られる。この加熱は、好ましくは120℃~200℃、より好ましくは150℃~180℃の温度において、好ましくは15分~20時間、より好ましくは30分~10時間行うことができる。
 上述の反応によって得られたポリアミド酸に、N,N-ジメチルホルムアミドジメチルアセタール又はN,N-ジメチルホルムアミドジエチルアセタールを加えて加熱することでカルボン酸の一部又は全部をエステル化したものを、本実施形態のポリイミド前駆体として用いてもよい。エステル化によって、保存時の粘度安定性を向上することができる。これらエステル変性ポリアミド酸は、上述の酸二無水物成分を、酸無水物基に対して1当量の1価のアルコール、及び塩化チオニル、ジシクロヘキシルカルボジイミド等の脱水縮合剤と順次に反応させた後、ジアミン成分と縮合反応させる方法によっても得ることができる。
〈ポリイミドの合成〉
 より好ましい様態としては、ポリイミドワニスは、酸二無水物成分及びジアミン成分を、溶媒、例えば有機溶媒に溶解し、トルエンなどの共沸溶媒を加え、イミド化の際に発生する水を系外に除去することでポリイミド及び溶媒を含有するポリイミド溶液(ポリイミドワニスとも言う)として製造することが出来る。ここで、反応時の条件は特に限定されないが、例えば、反応温度は0℃~180℃、反応時間は3時間~72時間である。スルホン基含有ジアミン類との反応を充分に進めるために、180℃で12時間程度加熱反応させることが好ましい。また、反応時、アルゴンや窒素などの不活性雰囲気であることが好ましい。
〈樹脂組成物の調整〉
 ポリイミド前駆体又はポリイミドを合成した際に用いた溶媒と、樹脂組成物に含有させる溶媒とが同一の場合には、合成したポリイミド前駆体溶液又はポリイミド溶液をそのまま本実施形態の樹脂組成物として使用することができる。必要に応じて、室温(25℃)~80℃の温度範囲で、ポリイミド前駆体又はポリイミド溶液に更なる溶媒及び追加の成分の1種以上を添加して、攪拌混合することにより、樹脂組成物を調整してもよい。この攪拌混合は、撹拌翼を備えたスリーワンモータ(新東化学株式会社製)、自転公転ミキサー等の適宜の装置を用いて行うことができる。必要に応じて樹脂組成物を40℃~100℃に加熱してもよい。
 他方、ポリイミド前駆体又はポリイミドを合成した際に用いた溶媒と、樹脂組成物に含有させる溶媒とが異なる場合には、合成したポリイミド前駆体溶液又はポリイミド溶液中の溶媒を、例えば再沈殿、溶媒留去等の適宜の方法により除去して、ポリイミド前駆体又はポリイミドを単離してもよい。次いで、室温(25℃)~80℃の温度範囲で、単離したポリイミド前駆体又はポリイミドに、所望の溶媒及び必要に応じて追加の成分を添加して、攪拌混合することにより、樹脂組成物を調製してもよい。
 ポリイミド前駆体を含む樹脂組成物の場合、上述のように樹脂組成物を調製した後、樹脂組成物を、例えば130℃~200℃で、例えば5分~2時間加熱することにより、ポリマーが析出を起こさない程度にポリイミド前駆体の一部を脱水イミド化してもよい(部分イミド化)。加熱温度及び加熱時間をコントロールすることにより、イミド化率を制御することができる。ポリイミド前駆体を部分イミド化することにより、樹脂組成物を保存する際の粘度安定性を向上することができる。
 樹脂組成物の溶液粘度は、スリットコート性能の観点においては、好ましくは500~100,000mPa・s、より好ましくは1,000~50,000mPa・s、更に好ましくは3,000~20,000mPa・sである。具体的には、スリットノズルから液漏れしにくい点で、好ましくは500mPa・s以上、より好ましくは1,000mPa・s以上、更に好ましくは3,000mPa・s以上である。スリットノズルが目詰まりしにくい点で、好ましくは100,000mPa・s以下、より好ましくは50,000mPa・s以下、更に好ましくは20,000mPa・s以下である。
 ポリイミド前駆体又はポリイミド合成時における樹脂組成物の溶液粘度については、合成時の撹拌を容易にする観点から、200,000mPa・s以下であることが好ましい。ただし、合成する際に溶液が高粘度になったとしても、反応終了後に溶媒を添加して撹拌することにより、取扱い性のよい粘度の樹脂組成物を得ることが可能である。本実施形態における樹脂組成物の溶液粘度は、E型粘度計(例えばVISCONICEHD、東機産業製)を用い、23℃で測定される値である。
 本実施形態の樹脂組成物の水分量は、樹脂組成物を保存する際の粘度安定性の観点から、好ましくは3,000質量ppm以下、より好ましくは2,500質量ppm以下、更に好ましくは2,000質量ppm以下、より更に好ましくは1,500質量ppm以下、特に好ましくは1,000質量ppm以下、特に好ましくは500質量ppm以下、特に好ましくは300質量ppm以下、特に好ましくは100質量ppm以下である。
《ポリイミドフィルム及びその製造方法》
 以下に本実施形態におけるポリイミドフィルムの製法について説明する。第一の製法として、ポリイミド前駆体の溶液を支持体上に塗布(キャスト)する塗布工程と、塗布された溶液を加熱することにより、乾燥とイミド化を施してポリイミド樹脂膜を形成する膜形成工程とを含む、ポリイミドフィルムの製造製法が挙げられる(製法1とする)。製法1は、任意にポリイミド樹脂膜を支持体から剥離して、ポリイミドフィルムを得る剥離工程を含んでもよい。第二の製法として、ポリイミドの溶液(ポリイミドワニス)を支持体上に塗布(キャスト)する塗布工程と、塗布された溶液を加熱することにより乾燥してポリイミド樹脂膜を形成する膜形成工程とを含む、ポリイミドフィルムの製造方法が挙げられる(製法2-1とする)。製法1は、任意にポリイミド樹脂膜を支持体から剥離して、ポリイミドフィルムを得る剥離工程を含んでもよい。また、第二の製法は、あらかじめイミド化されたポリイミド溶液から成膜している為、仮乾燥を行った後、支持体から剥離し、更なる乾燥を施して、ポリイミドフィルムを製造することも可能である(製法2-2とする)。
〈塗布工程〉
 塗布工程では、支持体の表面上に本実施形態の樹脂組成物を塗布する。支持体は、その後の膜形成工程(加熱工程)における加熱温度に対する耐熱性を有し、かつ剥離工程における剥離性が良好であれば特に限定されない。支持体としては、例えば、ガラス基板、例えば無アルカリガラス基板;シリコンウェハー;PET(ポリエチレンテレフタレート)、OPP(延伸ポリプロピレン)、ポリエチレングリコールテレフタレート、ポリエチレングリコールナフタレート、ポリカーボネート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルホン、ポリフェニレンスルフィド等の樹脂基板;ステンレス、アルミナ、銅、ニッケル等の金属基板等が挙げられる。
 薄膜状のポリイミド成形体を形成する場合には、例えば、ガラス基板、シリコンウェハー等が好ましく、厚膜状のフィルム状又はシート状のポリイミド成形体を形成する場合には、例えばPET(ポリエチレンテレフタラート)、OPP(延伸ポリプロピレン)等からなる支持体が好ましい。
 塗布方法としては、一般には、ドクターブレードナイフコーター、エアナイフコーター、ロールコーター、ロータリーコーター、フローコーター、ダイコーター、バーコーター等の塗布方法、スピンコート、スプレイコート、ディップコート等の塗布方法;スクリーン印刷及びグラビア印刷等に代表される印刷技術等が挙げられる。本実施形態の樹脂組成物には、スリットコートによる塗布が好ましい。塗布厚は、所望の樹脂フィルムの厚さと樹脂組成物中のポリイミド前駆体の含有量に応じて適宜調整するべきであるが、好ましくは1μm~1,000μm程度である。塗布工程における温度は室温でもよく、粘度を下げて作業性をよくするために、樹脂組成物を例えば40℃~80℃に加温してもよい。
〈任意の乾燥工程〉
 塗布工程に続いて乾燥工程を行ってもよく、又は乾燥工程を省略して直接次の膜形成工程(加熱工程)に進んでもよい。乾燥工程は、樹脂組成物中の有機溶剤除去の目的で行われる。乾燥工程を行う場合、例えば、ホットプレート、箱型乾燥機、コンベヤー型乾燥機等の適宜の装置を使用することができる。乾燥工程の温度は、好ましくは80℃~200℃、より好ましくは100℃~150℃である。乾燥工程の実施時間は、好ましくは1分~10時間、より好ましくは3分~1時間である。上記のようにして、支持体上にポリイミド前駆体を含有する塗膜が形成される。
〈膜形成工程〉
 続いて、膜形成工程(加熱工程)を行う。加熱工程は、ポリイミド前駆体溶液の場合、上記の塗膜中に含まれる有機溶剤の除去を行うとともに、塗膜中のポリイミド前駆体のイミド化反応を進行させ、ポリイミド樹脂膜を得る工程である。また、ポリイミド溶液の場合、上記の塗膜中に含まれる有機溶剤の除去を行い、ポリイミド樹脂膜を得る工程である。この加熱工程は、例えば、イナートガスオーブン、ホットプレート、箱型乾燥機、コンベヤー型乾燥機等の装置を用いて行うことができる。この工程は乾燥工程と同時に行っても、両工程を逐次的に行ってもよい。
 加熱工程は、空気雰囲気下で行ってもよいが、安全性と、得られるポリイミドフィルムの良好な透明性、低い厚み方向Rth及び低いYI値を得る観点から、不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、例えば、窒素、アルゴン等が挙げられる。加熱温度は、ポリイミド前駆体溶液の場合、ポリイミド前駆体の種類、及び樹脂組成物中の溶媒の種類に応じて適宜に設定されてよいが、好ましくは250℃~550℃、より好ましくは300℃~450℃である。250℃以上であればイミド化が良好に進行し、550℃以下であれば得られるポリイミドフィルムの透明性の低下、耐熱性の悪化等の不都合を回避できる。加熱温度は、ポリイミド溶液の場合、ポリイミドの種類、及び樹脂組成物中の溶媒の種類に応じて適宜に設定してよいが、好ましくは50℃~450℃である。加熱時間は、好ましくは6分~10時間程度である。
 本実施形態では、ポリイミド前駆体溶液の場合、上記の加熱工程における周囲雰囲気の酸素濃度は、得られるポリイミドフィルムの透明性及びYI値の観点から、好ましくは2,000質量ppm以下、より好ましくは100質量ppm以下、更に好ましくは10質量ppm以下である。酸素濃度が2,000質量ppm以下の雰囲気中で加熱を行うことにより、得られるポリイミドフィルムのYI値を30以下にすることができる。
〈剥離工程〉
 剥離工程では、支持体上のポリイミド樹脂膜を、例えば室温(25℃)~50℃程度まで冷却した後に剥離してもよい。この剥離工程としては、例えば下記の(1)~(4)の態様が挙げられる。
 (1)上記の方法によりポリイミド樹脂膜/支持体を含む構成体を作製した後、構造体の支持体側からレーザーを照射して、支持体とポリイミド樹脂膜との界面をアブレーション加工することにより、ポリイミド樹脂を剥離する方法。レーザーの種類としては、固体(YAG)レーザー、ガス(UVエキシマー)レーザー等が挙げられる。波長308nm等のスペクトルを用いることが好ましい(特表2007-512568号公報、特表2012-511173号公報等を参照)。
 (2)支持体に樹脂組成物を塗工する前に、支持体に剥離層を形成し、その後ポリイミド樹脂膜/剥離層/支持体を含む構成体を得て、ポリイミド樹脂膜を剥離する方法。剥離層としては、パリレン(登録商標、日本パリレン合同会社製)、酸化タングステンが挙げられ;植物油系、シリコーン系、フッ素系、アルキッド系等の離型剤を用いてもよい(特開2010-067957号公報、特開2013-179306号公報等を参照)。
 この方法(2)と方法(1)のレーザー照射とを併用してもよい。
 (3)支持体としてエッチング可能な金属基板を用いて、ポリイミド樹脂膜/支持体を含む構成体を得た後、エッチャントで金属をエッチングすることにより、ポリイミド樹脂フィルムを得る方法。金属としては、例えば、銅(具体例としては、三井金属鉱業株式会社製の電解銅箔「DFF」)、アルミニウム等を使用することができる。エッチャントとしては、銅に対しては塩化第二鉄等を、アルミニウムに対しては希塩酸等を使用することができる。
 (4)上記方法によりポリイミド樹脂膜/支持体を含む構成体を得た後、ポリイミド樹脂膜表面に粘着フィルムを貼り付けて、支持体から粘着フィルム/ポリイミド樹脂膜を分離し、その後粘着フィルムからポリイミド樹脂膜を分離する方法。
 これらの剥離方法の中でも、得られるポリイミド樹脂フィルムの表裏の屈折率差、YI値及び伸度の観点から、方法(1)又は(2)が好ましい。得られるポリイミド樹脂フィルムの表裏の屈折率差の観点から方法(1)、すなわち、剥離工程に先立って、支持体側からレ-ザ-を照射する照射工程を行うことがより好ましい。なお、方法(3)において、支持体として銅を用いた場合は、得られるポリイミド樹脂フィルムのYI値が大きくなり、伸度が小さくなる傾向が見られる。これは、銅イオンの影響であると考えられる。
 得られるポリイミドフィルムの厚さは、限定されないが、好ましくは1~200μm、より好ましくは5~100μmである。
〈黄色度(YI値)〉
 本実施形態の樹脂組成物から得られるポリイミドフィルムの、膜厚10μmにおけるYI値は、良好な光学特性を得る観点で、好ましくは20以下、より好ましくは18以下、更に好ましくは16以下、特に好ましくは14以下、特に好ましくは13以下、特に好ましくは10以下、特に好ましくは7以下である。YI値は、ポリイミド前駆体のモノマー骨格によって異なるが、同一のモノマー骨格であれば、ポリイミド前駆体の重量平均分子量が大きいほどYI値が小さい傾向がある。
 YI値は、例えば使用するケイ素含有化合物のアミン価に影響され、アミン価が高いとYI値は大きく、アミン価が小さいとYI値も小さくなる傾向にある。しかしながら、精製したケイ素含有化合物を用いた、すなわち一般式(3)で表される化合物の総量が上記の範囲内であるポリイミド前駆体は、同じアミン価を有する精製していないケイ素含有化合物を用いたポリイミド前駆体に比べて、得られるポリイミド樹脂膜のYI値が低い傾向にある。このメカニズムについては未だ明らかではないが、発明者らは以下のように推定している。すなわち、従来の精製方法では、ポリイミド前駆体の製造に用いた、環状ではない低分子量のジアミンが残存し、ポリイミド硬化時に分解してラジカルを発生し、YI値を増大させる(悪化させる)原因になりうる。一般式(3)で表される環状シロキサンの量を少なくすることにより、精製時に一般式(3)で表される環状シロキサンだけが除去されるわけではなく、アミン価を増大させるジアミン成分のうち、比較的揮発しやすい低分子量のジアミンも除去されると考えられる。したがって、本実施形態に従い一般式(3)で表される化合物の総量が低減されたポリイミド前駆体は、ポリイミド樹脂膜のYI値がより改善されると推定される。従来の精製方法では、環状ではない低分子量のジアミンを低減することが難しいため、たとえ精製を行ったとしても、ポリイミド樹脂膜のYI値の改善の程度が本実施形態に比べて小さいと考えられる。
 本実施形態において、精製したケイ素含有化合物を用いたポリイミド前駆体と、精製していないケイ素含有化合物を用いたポリイミド前駆体とのYI値の差は、以下の式から求められる。
 (YI値の差)=(精製を行っていないケイ素化合物を用いて得られたポリイミド前駆体を硬化したポリイミド樹脂膜のYI値)-(精製を行ったケイ素化合物を用いて得られたポリイミド前駆体を硬化したポリイミド樹脂膜のYI値)
 YI値の差が大きいほどYIがより改善されたことを示すため好ましい。本実施形態において、YI値の差は、好ましくは1.5以上、より好ましくは2以上、更に好ましくは2.5以上である。YI値の測定方法は、実施例の欄を参照されたい。
《ポリイミドフィルムの用途》
 本実施形態の樹脂組成物を硬化して得られるポリイミドフィルムは、例えば、半導体絶縁膜、薄膜トランジスタ液晶ディスプレイ(TFT-LCD)絶縁膜、電極保護膜として、また、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ、フィールドエミッションディスプレイ、電子ペーパー等の表示装置の透明基板等として適用できる。特に、本実施形態の樹脂組成物を硬化して得られるポリイミドフィルムは、フレキシブルデバイスの製造において、フレキシブル基板、フレキシブルディスプレイ、薄膜トランジスタ(TFT)基板、カラーフィルタ基板、タッチパネル基板、透明導電膜(ITO、Indium Thin Oxide)の基板等に好適に使用することができる。本実施形態におけるポリイミドフィルムを適用可能なフレキシブルデバイスとしては、例えば、フレキシブルディスプレイ用TFTデバイス、フレキシブル太陽電池、フレキシブルタッチパネル、フレキシブル照明、フレキシブルバッテリー、フレキシブルプリント基板、フレキシブルカラーフィルター、スマートフォン向け表面カバーレンズ等を挙げることができる。
 ポリイミドフィルムを使ったフレキシブル基板上にTFTを形成する工程は、典型的には、150℃~650℃の広い範囲の温度で実施される。具体的にはアモルファスシリコンを使用したTFTデバイスを作製する場合には、一般的に250℃~350℃のプロセス温度が必要となり、本実施形態のポリイミドフィルムはその温度に耐えうる必要があるため、具体的にはプロセス温度以上のガラス転移温度、熱分解開始温度を有するポリマー構造を適宜選択する必要がある。
 金属酸化物半導体(IGZO等)を使用したTFTデバイスを作製する場合には、一般的に320℃~400℃のプロセス温度が必要となり、本実施形態のポリイミドフィルムはその温度に耐えうる必要があるため、TFT作製プロセス最高温度以上のガラス転移温度、熱分解開始温度を有するポリマー構造を適宜選択する必要がある。
 低温ポリシリコン(LTPS)を使用したTFTデバイスを作製する場合には、一般的に380℃~520℃のプロセス温度が必要となり、本実施形態のポリイミドフィルムはその温度に耐えうる必要があるため、TFT作製プロセス最高温度以上のガラス転移温度、熱分解開始温度を適宜選択有する必要がある。
 一方で、これら熱履歴により、ポリイミドフィルムの光学特性(特に、光線透過率、Rth及びYI値)は高温プロセスにさらされるほどに低下する傾向にある。しかし、本実施形態のポリイミド前駆体から得られるポリイミドは、熱履歴を経ても良好な光学特性を有する。
 以下に、本実施形態のポリイミドフィルムの用途例として、ディスプレイ及び積層体の製造方法について説明する。
〈ディスプレイの製造方法〉
 本実施形態のディスプレイの製造方法は、支持体の表面上に、本実施形態の樹脂組成物を塗布する塗布工程と;上記樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と;上記ポリイミド樹脂膜上に素子を形成する素子形成工程と;上記素子が形成された上記ポリイミド樹脂膜を上記支持体から剥離する剥離工程とを含む。ディスプレイは、フレキシブルディスプレイであってもよい。
 フレキシブル有機ELディスプレイの製造例
 図1は、本実施形態のディスプレイの例として、トップエミッション型フレキシブル有機ELディスプレイのポリイミド基板より上部の構造を示す模式図である。図1の有機EL構造部25について説明する。例えば、赤色光を発光する有機EL素子250aと、緑色光を発光する有機EL素子250bと、青色光を発光する有機EL素子250cと1単位として、マトリクス状に配列されており、隔壁(バンク)251により、各有機EL素子の発光領域が画定されている。各有機EL素子は、下部電極(陽極)252、正孔輸送層253、発光層254、上部電極(陰極)255から構成されている。窒化ケイ素(SiN)や酸化ケイ素(SiO)からなるCVD複層膜(マルチバリヤーレイヤー)を示す下部層2a上には、有機EL素子を駆動するためのTFT256(低温ポリシリコン(LTPS)や金属酸化物半導体(IGZO等)から選択される)、コンタクトホール257を備えた層間絶縁膜258、及び下部電極259が複数設けられている。有機EL素子は封止基板2bで封入されており、各有機EL素子と封止基板2bとの間に中空部261が形成されている。
 フレキシブル有機ELディスプレイの製造工程は、ガラス基板支持体上にポリイミドフィルムを作製し、その上部に上記図1に示される有機EL基板を製造する工程と、封止基板を製造する工程と、両基板を貼り合わせる組み立て工程と、ガラス基板支持体からポリイミドフィルム上に作製された有機ELディスプレイを剥離する剥離工程とを含む。有機EL基板製造工程、封止基板製造工程、及び組み立て工程は、周知の製造工程を適用することができる。以下ではその一例を挙げるが、これに限定されるものではない。剥離工程は、上述したポリイミドフィルムの剥離工程と同一である。
 例えば、図1を参照すれば、まず、上記の方法によりガラス基板支持体上にポリイミドフィルムを作製し、その上部にCVD法やスパッタ法により窒化ケイ素(SiN)と酸化ケイ素(SiO)の複層構造からなるマルチバリアレイヤー(図1中の下部基板2a)を作製し、その上部にTFTを駆動するためのメタル配線層を、フォトレジスト等を使用して作製する。その上部にCVD法を用いてSiO等のアクティブバッファー層を作製し、その上部に金属酸化物半導体(IGZO)や低温ポリシリコン(LTPS)などのTFTデバイス(図1中のTFT256)を作製する。フレキシブルディスプレイ用TFT基板を作製後、感光性アクリル樹脂等でコンタクトホール257を備えた層間絶縁膜258を形成する。スパッタ法等にてITO膜を成膜し、TFTと対をなすように下部電極259を形成する。
 次に、感光性ポリイミド等で隔壁(バンク)251を形成した後、隔壁で区画された各空間内に、正孔輸送層253、発光層254を形成する。発光層254及び隔壁(バンク)251を覆うように上部電極(陰極)255を形成する。その後、ファインメタルマスク等をマスクにして、赤色光を発光する有機EL材料(図1中の、赤色光を発光する有機EL素子250aに対応)、緑色光を発光する有機EL材料(図1中の、緑色光を発光する有機EL素子250bに対応)及び青色光を発光する有機EL材料(図1中の、青色光を発光する有機EL素子250cに対応)を公知の方法にて蒸着することで、有機EL基板を作製する。有機EL基板を封止フィルム等(図1中の封止基板2b)で封止し、ガラス基板支持体からポリイミド基板より上部のデバイスをレーザー剥離等の公知の剥離方法で剥離することで、トップエミッション形フレキシブル有機ELディスプレイを作製することができる。本実施形態のポリイミドを使用する場合は、シースルー型のフレキシブル有機ELディスプレイを作製することができる。公知の方法でボトムエミッション形のフレキシブル有機ELディスプレイを作製してもよい。
 フレキシブル液晶ディスプレイの製造例
 本実施形態のポリイミドフィルムを使用してフレキシブル液晶ディスプレイを作製することができる。具体的な作製方法としては、上記の方法でガラス基板支持体上にポリイミドフィルムを作製し、上記の方法を用いて、例えばアモルファスシリコン、金属酸化物半導体(IGZO等)、及び低温ポリシリコンからなるTFT基板を作製する。別途、本実施形態の塗布工程及び膜形成工程に従って、ガラス基板支持体上にポリイミドフィルムを作製し、公知の方法に従ってカラーレジスト等を使用して、ポリイミドフィルムを備えたカラーフィルターガラス基板(CF基板)を作製する。TFT基板およびCF基板の一方に、スクリーン印刷により、熱硬化性エポキシ樹脂などからなるシール材料を液晶注入口の部分を欠いた枠状パターンに塗布し、他方の基板に液晶層の厚さに相当する直径を持ち、プラスチックまたはシリカからなる球状のスペーサーを散布する。
 次いで、TFT基板とCF基板とを貼り合わせ、シール材料を硬化させる。そして、TFT基板及びCF基板並びにシール材料で囲まれる空間に、減圧法により液晶材料を注入し、液晶注入口に熱硬化樹脂を塗布し、加熱によって液晶材料を封止することで液晶層を形成する。最後に、CF側のガラス基板とTFT側のガラス基板とをレーザー剥離法などでポリイミドフィルムとガラス基板の界面で剥離することで、フレキシブル液晶ディスプレイを作製することができる。
〈積層体の製造方法〉
 本実施形態の積層体の製造方法は、支持体の表面上に、本実施形態の樹脂組成物を塗布する塗布工程と;上記樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と;上記ポリイミド樹脂膜上に素子を形成する素子形成工程とを含む。
 積層体における素子としては、上記のフレキシブルデバイスの製造に例示したものが挙げられる。支持体としては、例えばガラス基板を用いることができる。塗布工程及び膜形成工程の好ましい具体的手順は、上記のポリイミドフィルムの製造方法に関して記載したものと同様である。素子形成工程においては、支持体上に形成された、フレキシブル基板としてのポリイミド樹脂膜の上に、上記の素子を形成する。その後、任意に剥離工程においてポリイミド樹脂膜及び素子を支持体から剥離して、フレキシブル基板を得てもよい。
 以下、実施例及び比較例により本発明の実施形態を具体的に説明するが、本発明はこれらの実施例及び比較例に限定されるものではない。
《測定及び評価方法》
〈非溶媒成分〉
 ポリイミド前駆体に用いたモノマーの総質量を樹脂組成物に含まれる非溶媒成分の質量として用いることができる。あるいは、非溶媒成分の質量は、樹脂組成物をガスクロマトグラフィー(以下GCともいう)分析をすることにより溶媒の質量を求め、樹脂組成物の質量から溶媒の質量を差し引くことから求めることができる。
 GCの条件としては、下記の条件が挙げられる。
装置:ガスクロマトグラフ(アジレント社製、ガスクロマトグラフ6890N型)
注入口温度:280℃
注入量:1μL
オーブン温度:50℃で1分ホールド後、昇温速度20℃/分で350℃まで昇温し、350℃で5分ホールドする。
キャリアガス:He、1.0ml/min
カラム:SGE社製、BPX5(0.25mmφ×30m、膜厚0.25μm)
スプリット比:50:1
検出器:水素炎イオン化型検出器
検出器温度:355℃
〈重量平均分子量〉
 重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエ-ションクロマトグラフィー(GPC)にて、下記の条件により測定した。溶媒として、NMP(和光純薬工業社製、高速液体クロマトグラフ用、測定直前に24.8mmol/Lの臭化リチウム一水和物(和光純薬工業社製、純度99.5%)及び63.2mmol/Lのリン酸(和光純薬工業社製、高速液体クロマトグラフ用)を加えて溶解したもの)を使用した。重量平均分子量を算出するための検量線は、スタンダ-ドポリスチレン(東ソ-社製)を用いて作製した。
カラム:Shodex KD-806M(昭和電工社製)
流速:1.0mL/分
カラム温度:40℃
ポンプ:PU-2080Plus(JASCO社製)
検出器:RI-2031Plus(RI:示差屈折計、JASCO社製)及びUV-2075Plus(UV-VIS:紫外可視吸光計、JASCO社製)
〈官能基当量〉
 官能基当量は、下記の通り、既存の規格等に従って、測定した。
アミノ基の官能基当量は、JIS K 7237に準拠して測定した。
エポキシ基の官能基当量は、JIS K 7236に準拠して測定した。
ヒドロキシ基の官能基当量は、JIS K 0070に準拠して測定した。
その他の官能基もまた、滴定法によって官能基1モル当たりのケイ素含有化合物の分子量を求めた。
〈環状シロキサン濃度の分析〉
 ポリイミド前駆体とケイ素含有化合物(一般式(3))とを含む樹脂組成物中に含まれる、一般式(3)の環状シロキサン濃度の分析は、以下に示すように、GC(ガスクロマトグラフィー分析)により定量を行った(下記、環状シロキサン濃度の分析(ケイ素含有化合物基準)参照)。
〈環状シロキサン濃度の分析(組成物基準・非溶媒成分基準)〉
(1)概要
 環状シロキサンの量を定量するための検量線を作成した。検量線は、一般式(3)のn=4の環状シロキサン(以下、D4体ともいう)の標品(東京化成工業製)を用いて、後述する方法に従って作成した。樹脂組成物に含まれる環状シロキサンの量は、パイロライザー内で樹脂組成物を150℃で30分間加熱し、生じた揮発成分をGC/MSで分析することにより測定した。予め作成した検量線を用いて、得られた各化合物のピーク面積をD4体濃度に換算した。
 GC/MS測定は、以下の装置を用いて行った。
パイロライザー:Py-3030iD (フロンティアラボ)
GC system:7890B (アジレントテクノロジー)
MSD:5977A (アジレントテクノロジー)
カラム:UA-1 (内径0.25mm、長さ15m、液相厚0.25μm)(フロンティアラボ)
 GC/MS測定は全て以下の測定条件で行った。
カラム温度:40℃で5分保持、20℃/分で昇温、320℃で11分保持、合計30分
注入口温度:320℃
注入法:スプリット法(スプリット比1/20)
インターフェース温度:320℃
イオン源温度:230℃
イオン化法:電子イオン化法(EI)
測定法:SCAN法(m/z 10-800)
(2)検量線の作成
 一般式(3)のn=4の化合物(以下、D4体ともいう)の標品(東京化成工業製)を10mLメスフラスコに測りとり、クロロホルムを溶媒として用いて、D4体の濃度が0.1mg/mLのサンプルと、0.01mg/mLのサンプルを作製した。400℃に設定したパイロライザーに液体試料用サンプラーを取り付け、濃度を調整した上記サンプルをマイクロシリンジで1μL測りとり、パイロライザーにインジェクションした。パイロライザーを400℃に加熱している間はカラムを液体窒素につけて、揮発成分をカラム内にトラップさせた。加熱終了1分後にカラムを液体窒素から取り出し、GC/MS測定を行った。D4体の濃度と、得られたピーク面積から、D4体検量線の傾きを求めた。使用した装置及び測定条件を用いたGC/MS測定における環状シロキサンの保持時間は下表1のとおりである。以降のGC/MS測定において同様である。
Figure JPOXMLDOC01-appb-T000074
 上記表1におけるDn(n=3~8)は、上記一般式(3)のn=3~8に対応する環状シロキサンである。
(3)樹脂組成物中の一般式(3)の環状シロキサン濃度の分析
 樹脂組成物中に含まれる一般式(3)の化合物の濃度は、樹脂組成物を150℃に加熱し、生じた揮発成分のGC/MS測定を行うことにより測定した。樹脂組成物の揮発成分測定結果のピーク面積から各化合物の濃度を算出した。各化合物のピークが他の化合物と重なっていなければ、トータルイオンクロマトグラム(TIC)から求めたピーク面積を用いた。他の化合物と重なっている場合は、m/z=281のマスクロマトグラム(MS)から求めたピーク面積を用いた。
 150℃に設定したパイロライザーの加熱炉(He雰囲気)に、約1mgの樹脂組成物を入れた試料カップを入れ、150℃で30分加熱した。生じた揮発成分をGC/MSで分析することにより測定した。予め作成した検量線を用いて、得られた各化合物のピーク面積をD4体濃度に換算した。
 Dn(μg/g)={Dn(GC-Area)}/{D4体検量線の傾き}/{秤量した樹脂組成物の質量(mg)}×1000
 式中のnは、一般式(3)の炭素数nに対応し、nは3以上の整数である。
〈原料組成物に含まれる環状シロキサン濃度の分析(ケイ素含有化合物基準)〉
(概要)
 環状シロキサン濃度の分析は、アセトン(内部標準物質としてn-テトラデカンを含む)に溶解させた、ケイ素含有化合物(一般式(3)のケイ素含有化合物を含有する。)の溶液をGCで分析することにより測定した。得られた各化合物のピーク面積から、後述する方法に従ってn-テトラデカンのピーク面積を基準として各化合物濃度を求めた。
 GC測定は、以下の装置を用いて行った。
GC system:7890A (アジレントテクノロジー)
カラム:J&W Scientific Durabond DB-5MS (MEGABORE 内径0.53mm、長さ30m、液相厚1.0μm)
 GC測定は全て以下の測定条件で行った。
カラム温度:50℃、10℃/分で昇温、280℃で17分保持、合計40分
注入口温度:270℃
キャリアガス:He
注入法:スプリット法(スプリット比1/10)
検出器:FID(300℃)
(環状シロキサン量の計算)
 一般式(3)の環状シロキサン量は、下記式に従って計算した。
 Dn(μg/g)={一般式(3)の化合物の総量(μg)}/{一般式(3)及び(4)の化合物の合計質量(g)}={Dn(GC-Area)}/{n-テトラデカン(GC-Area)×GC-Area Factor}×20×100
 式中のnは、一般式(3)の炭素数nに対応し、nは3以上の整数である。
 式中のGC-Area Factorは下記式に従って計算した。
 GC-Area Factor=分子量/炭素数
 使用した装置及び上記測定条件を用いたGC測定における環状シロキサンの保持時間(分)は、下記表2のとおりである。以降のGC測定において同様である。
Figure JPOXMLDOC01-appb-T000075
 上記表2におけるDn(n=3~8)は、上記一般式(3)のnに対応する環状シロキサンである。
(環状シロキサン濃度の分析)
 ケイ素含有化合物に含まれる一般式(3)の環状シロキサン濃度の分析は、下記手順で行った。ケイ素含有化合物0.1gをアセトン10mL(内部標準物質としてn-テトラデカン20μg/mL含有に溶解させ、16時間放置した。放置した溶液をマイクロシリンジで1μL測り取り、GCへ導入し測定を実施した。得られたクロマトグラムにおいて、各環状シロキサンとn-テトラデカンのピーク面積をGC付属のソフトウェアで計算し、上記に示した計算式で、環状シロキサン濃度を求めた。
〈ポリイミド樹脂膜の欠陥評価〉
 この評価では、量産した場合を想定して、ポリイミド前駆体又はポリイミド樹脂組成物の溶媒除去及び加熱硬化を連続して行った場合のポリイミド前駆体又はポリイミド樹脂組成物塗膜表面の欠陥を評価した。縦300mm×横350mm×厚さ0.5mmの無アルカリガラス基板(以下、「ガラス基板」又は単に「基板」ともいう)に、ガラス基板の端から5mm内側のエリアに、実施例及び比較例のポリイミド前駆体組成物を、硬化後の膜厚が10μmになるように塗布した。塗布はスリットコーター(LC-R300G、SCREENファインテックソリューションズ製)を用いた。得られた塗膜付きガラス基板を、減圧乾燥機(東京応化工業製)をもちいて、80℃、100Pa、30分間の条件で溶媒を除去し、縦290mm×横340mm×厚さ10μmのポリイミド前駆体組成物塗膜を有するガラス基板を得た。この時、同一組成物のガラス基板上に形成された組成物を10枚連続で処理するようにした。なお、別の組成物の処理を行う際は、減圧乾燥機を600℃で5時間以上空焼きしてから使用した。得られたポリイミド前駆体又はポリイミド樹脂組成物塗膜を有するガラス基板を、オーブン(INH-9N1 光洋サーモシステム株式会社製)を用いて、窒素雰囲気下(酸素濃度300ppm以下)、400℃で1時間加熱して、ガラス基板上にポリイミド樹脂膜を形成した。
上記、10枚連続で処理した場合の10枚目のポリイミド樹脂膜表面を、欠陥検査装置(LCF-5505XU、タカノ(株)製)をもちいて、欠陥の評価を行った。10μm以上の欠陥の個数を検出した。
 欠陥の個数が0個以上25個未満 :A(良好)
 欠陥の個数が25個以上50個未満:B(可)
 欠陥の個数が50個以上     :C(不可)
〈ポリイミド樹脂膜のYI値の差の評価〉
 この評価では、精製したケイ素化合物を用いて得られたポリイミド前駆体又はポリイミドと、精製を行っていないケイ素化合物を用いて得られたポリイミド前駆体又はポリイミドを、それぞれ加熱して得られるポリイミド樹脂膜のYI値の差を評価した。上記「欠陥評価」で作製したポリイミド樹脂膜を用いて、日本電色工業(株)製(Spectrophotometer:SE600)を用いてYI値を測定した。光源にはD65光源を用いた。YI値の差は、下記式から求めた。
 (YI値の差)=(精製を行っていないケイ素化合物を用いて得られたポリイミド前駆体又はポリイミドを硬化したポリイミド樹脂膜のYI値)-(精製を行ったケイ素化合物を用いて得られたポリイミド前駆体又はポリイミドを硬化したポリイミド樹脂膜のYI値)
 なお、YI値の差を求めるにあたり、精製を行っていないケイ素化合物を用いて得られたポリイミド前駆体又はポリイミドの硬化と、精製を行ったケイ素化合物を用いて得られたポリイミド前駆体又はポリイミドの硬化は、同じオーブンのバッチで加熱処理することにより、装置誤差を排除した。
〈ポリイミド樹脂膜のリタデーション(Rth)の面内均一性〉
 上記「欠陥評価」で作製したポリイミド樹脂膜を用いて、Rthの面内均一性を評価した。縦(290mm幅)についてはポリイミド樹脂膜の端から25mm内側から80mm間隔で4箇所、横(340mm幅)についてはポリイミド樹脂膜の端から50mm内側から80mm間隔で4箇所、合計16箇所(4×4)の測定点について、位相差複屈折測定装置(KOBRA-WR、王子計測機器社製)を用いて厚さ方向Rth(10μm換算)を測定した。その結果から、±3シグマの範囲を算出し、PI前駆体塗膜のRth面内均一性を下記基準で評価した。
  A:面内均一性(±3シグマ)が10未満
  B:面内均一性(±3シグマ)が10以上20未満
  C:面内均一性(±3シグマ)が20以上
〈ポリイミド樹脂膜の残留応力の評価〉
 予め「反り量」を測定しておいた、厚み625μm±25μmの6インチシリコンウェハー上に、各樹脂組成物をスピンコーターにより塗布し、100℃において7分間プリベークした。その後、縦型キュア炉(光洋リンドバーグ社製、型式名VF-2000B)を用いて、庫内の酸素濃度が10質量ppm以下になるように調整して、430℃において1時間の加熱硬化処理(キュア処理)を施し、硬化後膜厚10μmのポリイミド樹脂膜のついたシリコンウェハーを作製した。このウェハーの反り量を、残留応力測定装置(テンコール社製、型式名FLX-2320)を用いて測定し、シリコンウェハーと樹脂膜との間に生じた残留応力を評価した。
《ケイ素含有化合物の精製方法》
 後述する実施例及び比較例に記載のケイ素含有化合物は、下記の精製方法で処理し、含まれる環状シロキサンを低減した。精製後の環状シロキサンの濃度は上記の方法で分析した。
〈精製A〉
 ケイ素含有化合物10kgをフラスコ内に入れ、窒素ガスを吹き込みながら、温度160℃、圧力270Paで、8時間ストリッピングを行った。
〈精製B〉
 ケイ素含有化合物10kgをフラスコ内に入れ、窒素ガスを吹き込みながら、温度200℃、圧力200Paで、8時間ストリッピングを行った。
〈精製C〉特開2016-029126号公報に記載の両末端アミノ変性シリコーンオイル(精製品)の合成例に準拠
 ケイ素含有化合物100g中に、アセトン1000gを添加し、室温で30分間撹拌した。遠心分離機で2500rpm、15分間の遠心分離を行い、アセトンとシリコーンオイルを分離した後、アセトンをデカンテーションにより除去した。この操作を3回繰り返した後に、アセトンをエバポレータで留去して、精製されたケイ素含有化合物を得た。
〈精製D〉特開2006-028533号公報に記載の精製例1に準拠
 ケイ素含有化合物500gをフラスコ内に入れ、窒素ガスを吹き込みながら、温度250℃、圧力1330Paで2時間ストリッピングを行った。
〈精製E〉特開2006-028533号公報に記載の精製例2に準拠
 ケイ素含有化合物100gを2-ブタノン300g中に入れて均一に溶解した。この溶液をメタノール中に攪拌しながらゆっくり投入して、再沈殿を行った。上記の再沈殿を合計3回繰り返した後、乾燥して精製されたケイ素含有化合物を得た。
〈精製F〉
 ケイ素含有化合物10kgをフラスコ内に入れ、窒素ガスを吹き込みながら、温度230℃、圧力200Paで、8時間ストリッピングしたのち、続けて温度200℃、圧力200Paで、8時間ストリッピングを行った。
《実施例1》
 表3に記載するように、ケイ素含有化合物(a)(一般式(4)において、L及びLがアミノ基(-NH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量1500の化合物)を、精製Bの方法で精製した。撹拌棒付き3Lセパラブルフラスコに、窒素ガスを導入しながら、溶媒としてNMP(330g)、ジアミンとして4,4’-DAS(13.9g)、TFMB(12.0g)、及び精製したケイ素含有化合物(a)(10.50g)を撹拌しながら加え、続いて酸二無水物としてPMDA(21.8g)を加えた。酸二無水物、ジアミンのモル比は、100:97であった。混合物を室温で48時間撹拌し、透明なポリアミド酸のNMP溶液(以下、ワニスともいう)を得た。得られたワニスを冷凍庫(設定-20℃、以下同様)で保管し、評価をする際は解凍して使用した。
《実施例2~39、41~53》
 実施例1において、溶媒、酸二無水物、ジアミン、ケイ素含有化合物の種類及び量を表3及び4に記載したものに変更したことを除いて、実施例1と同様に行った。
 表中のケイ素含有化合物の種類は、下記のとおりである。
 ケイ素含有化合物(b):一般式(4)において、L及びLがアミノ基(-NH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量が2200の化合物
 ケイ素含有化合物(d):一般式(4)において、L及びLがエポキシ基(―CH(O)CH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量1750の化合物
 ケイ素含有化合物(e):一般式(4)において、L及びLがヒドロキシ基(―OH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量900の化合物
 ケイ素含有化合物(f):一般式(4)において、L及びLがメルカプト基(―SH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量1700の化合物
 ケイ素含有化合物(g):一般式(4)において、L及びLがアミノ基(-NH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量が800の化合物
 ケイ素含有化合物(h):一般式(4)において、L及びLがアミノ基(-NH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量が650の化合物
 ケイ素含有化合物(i):一般式(4)において、L及びLがアミノ基(-NH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量が430の化合物
《実施例54》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら表4に記載するように、ケイ素含有化合物(a)(一般式(4)において、L及びLがアミノ基(-NH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量1500の化合物)を、精製Bの方法で精製した。撹拌棒付き3Lセパラブルフラスコに、窒素ガスを導入しながら、溶媒としてNMP(330g)、トルエン(119.6g)ジアミンとして4,4’-DAS(23.2g)、及び精製したケイ素含有化合物(a)(10.56g)を撹拌しながら加え、続いて酸二無水物としてPMDA(13.1g)、BPDA(11.8g)を室温で加えた。酸二無水物、ジアミンのモル比は、100:97であった。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し、ポリイミドNMP溶液(以下、ポリイミドワニスともいう)を得た。得られたワニスを冷凍庫(設定-20℃、以下同様)で保管し、評価をする際は解凍して使用した。
《実施例55~57》
 酸二無水物、ケイ素含有化合物、溶媒の量等を表4に示すように変更した以外は、実施例54と同様にポリイミドワニスを作製した。
《比較例1》
 表5に記載するように、撹拌棒付き3Lセパラブルフラスコに、窒素ガスを導入しながら、溶媒としてNMP(345g)、ジアミンとして4,4’-DAS(13.9g)、TFMB(12.0g)、精製処理を行っていないケイ素含有化合物(a)(一般式(4)において、L及びLがアミノ基(-NH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量3000の化合物)(10.97g)を撹拌しながら加え、続いて酸二無水物としてPMDA(15.3g)、BPDA(8.8g)を加えた。酸二無水物とジアミンとのモル比は、100:97であった。次に、室温で48時間撹拌し、透明なポリアミド酸のNMP溶液(以下、ワニスともいう)を得た。得られたワニスを冷凍庫(設定-20℃、以下同様)で保管し、評価をする際は解凍して使用した。
《比較例2~比較例23、比較例25~比較例27》
 比較例1において、溶媒、酸二無水物、ジアミン、ケイ素含有化合物の種類及び量を表5に記載したものに変更したことを除いて、比較例1と同様に行った。
《比較例24、28~30》
 実施例1において、溶媒、酸二無水物、ジアミン、ケイ素含有化合物の種類及び量を表5に記載したものに変更したことを除いて、実施例1と同様に行った。
《比較例31~35》
 比較例31~35は、表9に示すように、ケイ素含有化合物の精製を行わなかったことを除いて、それぞれ、実施例9、45、48、51及び19と同様に行った。結果を表10に示す。
 実施例及び比較例の樹脂組成物について、樹脂組成物基準、非溶媒成分基準、及びケイ素含有化合物基準の環状シロキサン濃度;ポリイミド前駆体の分子量;ポリイミド樹脂膜の欠陥評価;ポリイミド樹脂膜のYI値の差の評価;ポリイミド樹脂膜のリタデーション(Rth)の面内均一性を評価した。結果を表6~8に示す。表6~8において、「n=4化合物」、「n=5化合物」、「n=6化合物」、「n=7化合物」は、一般式(3)のうち、それぞれnが4、5、6、7である化合物に対応する。また、表10において、「n3~n8化合物の総量」は、上記一般式(3)のnが3以上8以下の化合物の濃度の和を示した値である。
 実施例及び比較例における略号は以下のとおりである。
〈酸二無水物〉
PMDA:ピロメリット酸二無水物
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
BPAF:9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物
ODPA:4,4’-オキシジフタル酸無水物
HPMDA:1,2,4,5-シクロヘキサンテトラカルボン酸二無水物
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
〈ジアミン〉
4,4’-DAS:4,4’-ビス(ジアミノジフェニル)スルホン
3,3’-DAS:3,3’-ビス(ジアミノジフェニル)スルホン
BAFL:9,9-ビス(4-アミノフェニル)フルオレン
TFMB:ジアミノビス(トリフルオロメチル)ビフェニル
mTB:2,2’-ジメチルベンジジン
PDA:p-フェニレンジアミン
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
ODA:4,4’-ジアミノジフェニルエーテル
CHDA:1,4-シクロヘキサンジアミン
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000083
 2a  下部基板
 2b  封止基板
 25  有機EL構造部
 250a  赤色光を発光する有機L素子
 250b  緑色光を発光する有機EL素子
 250c  青色光を発光する有機EL素子
 251  隔壁(バンク)
 252  下部電極(陽極)
 253  正孔輸送層
 254  発光層
 255  上部電極(陰極)
 256  TFT
 257  コンタクトホール
 258  層間絶縁膜
 259  下部電極
 261  中空部

Claims (35)

  1.  下記一般式(1-1)及び/又は(1-2)で表される構造単位、及び下記一般式(2)で表される構造単位を含む、ポリイミド前駆体又はポリイミドと;
     下記一般式(3)で表される化合物と;
    を含む、樹脂組成物であって、
     下記一般式(3)のうちnが4である化合物の総量が、前記樹脂組成物の質量を基準として、0ppmより多く70ppm以下であるか、あるいは、
     下記一般式(3)のうちnが5である化合物の総量が、前記樹脂組成物の質量を基準として、0ppmより多く30ppm以下である、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000002
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000003
    {式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素、又は炭素数6~10の一価の芳香族基であり、qは、1~200の整数である。}
    Figure JPOXMLDOC01-appb-C000004
    {式中、nは2以上の整数である。}
  2.  前記一般式(3)のうちnが4である化合物の総量が、前記樹脂組成物の質量を基準として、0ppmより多く30ppm以下であるか、あるいは、
     前記一般式(3)のうちnが5である化合物の総量が、前記樹脂組成物の質量を基準として、0ppmより多く15ppm以下である、請求項1に記載の樹脂組成物。
  3.  下記一般式(1-1)及び/又は(1-2)で表される構造単位、及び下記一般式(2)で表される構造単位を含む、ポリイミド前駆体又はポリイミドと;
     下記一般式(3)で表される化合物と;
    を含む、樹脂組成物であって、
     下記一般式(3)のうちnが4である化合物の総量が、前記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く500ppm以下であるか、あるいは、
    前記一般式(3)のうちnが5である化合物の総量が、前記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く200ppm以下である、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000006
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000007
    {式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素、又は炭素数6~10の一価の芳香族基であり、qは、1~200の整数である。}
    Figure JPOXMLDOC01-appb-C000008
    {式中、nは2以上の整数である。}
  4.  前記一般式(3)のうちnが4である化合物の総量が、前記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く300ppm以下であるか、あるいは、
     前記一般式(3)のうちnが5である化合物の総量が、前記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く100ppm以下である、請求項3に記載の樹脂組成物。
  5.  前記一般式(3)のうちnが4である化合物の総量が、前記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く10ppm以下であるか、あるいは、
     前記一般式(3)のうちnが5である化合物の総量が、前記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く5ppm以下である、請求項3に記載の樹脂組成物。
  6.  下記一般式(1-1)及び/又は(1-2)で表される構造単位、及び下記一般式(2)で表される構造単位を含む、ポリイミド前駆体又はポリイミドと;
     下記一般式(3)で表される化合物と;
    を含む、樹脂組成物であって、
     前記樹脂組成物は、以下:
     下記一般式(4)で表されるケイ素含有化合物と、下記一般式(3)で表される化合物とを含有する原料組成物を、テトラカルボン酸二無水物及びジアミンと重縮合反応させてポリイミド前駆体を提供すること、又は、前記ポリイミド前駆体をイミド化してポリイミドを提供することを含む方法により製造され、
     前記原料組成物に含まれる、下記一般式(3)のうちnが4である化合物の総量は、下記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く1300ppm以下であるか、あるいは、
     前記原料組成物に含まれる、下記一般式(3)のうちnが5である化合物の総量は、前記一般式(3)及び(4)のケイ素含有化合物の合計質量を基準として、0ppmより多く500ppm以下である、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000009
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000010
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000011
    {式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素、又は炭素数6~10の一価の芳香族基であり、qは、1~200の整数である。}
    Figure JPOXMLDOC01-appb-C000012
    {式中、nは2以上の整数である。}
    Figure JPOXMLDOC01-appb-C000013
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
  7.  前記原料組成物に含まれる、前記一般式(3)のうちnが4である化合物の総量は、前記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く800ppm以下であるか、あるいは、
     前記原料組成物に含まれる、前記一般式(3)のうちnが5である化合物の総量は、前記一般式(3)及び(4)のケイ素含有化合物の合計質量を基準として、0ppmより多く300ppm以下である、請求項6に記載の樹脂組成物。
  8.  前記原料組成物に含まれる、前記一般式(3)のうちnが4である化合物の総量は、前記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く30ppm以下であるか、あるいは、
     前記原料組成物に含まれる、前記一般式(3)のうちnが5である化合物の総量は、前記一般式(3)及び(4)のケイ素含有化合物の合計質量を基準として、0ppmより多く15ppm以下である、請求項6に記載の樹脂組成物。
  9.  下記一般式(1-1)及び/又は(1-2)で表される構造単位、及び下記一般式(2)で表される構造単位を含む、ポリイミド前駆体又はポリイミドと;
     下記一般式(3)で表される化合物と;
    を含む、樹脂組成物であって、
     下記一般式(3)のうちnが3以上8以下の化合物の総量が、前記樹脂組成物の質量を基準として、0ppmより多く150ppm以下である、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000014
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000015
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000016
    {式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素、又は炭素数6~10の一価の芳香族基であり、qは、1~200の整数である。}
    Figure JPOXMLDOC01-appb-C000017
    {式中、nは2以上の整数である。}
  10.  下記一般式(1-1)及び/又は(1-2)で表される構造単位、及び下記一般式(2)で表される構造単位を含む、ポリイミド前駆体又はポリイミドと;
     下記一般式(3)で表される化合物と;
    を含む、樹脂組成物であって、
     下記一般式(3)のうちnが3以上8以下の化合物の総量が、前記樹脂組成物の非溶媒成分の質量を基準として、0ppmより多く900ppm以下である、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000018
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000019
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000020
    {式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素、又は炭素数6~10の一価の芳香族基であり、qは、1~200の整数である。}
    Figure JPOXMLDOC01-appb-C000021
    {式中、nは2以上の整数である。}
  11.  下記一般式(1-1)及び/又は(1-2)で表される構造単位、及び下記一般式(2)で表される構造単位を含む、ポリイミド前駆体又はポリイミドと;
     下記一般式(3)で表される化合物と;
    を含む、樹脂組成物であって、
     前記樹脂組成物は、以下:
     下記一般式(4)で表されるケイ素含有化合物と、下記一般式(3)で表される化合物とを含有する原料組成物を、テトラカルボン酸二無水物及びジアミンと重縮合反応させてポリイミド前駆体を提供すること、又は、前記ポリイミド前駆体をイミド化してポリイミドを提供することを含む方法により製造され、
     前記原料組成物に含まれる、下記一般式(3)のうちnが3以上8以下の化合物の総量は、下記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く4500ppm以下である、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000022
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000023
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000024
    {式中、P及びPは、それぞれ独立に、炭素数1~5の一価の脂肪族炭化水素、又は炭素数6~10の一価の芳香族基であり、qは、1~200の整数である。}
    Figure JPOXMLDOC01-appb-C000025
    {式中、nは2以上の整数である。}
    Figure JPOXMLDOC01-appb-C000026
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
  12.  前記一般式(4)で表されるケイ素含有化合物の、L及びLが、それぞれ独立に、アミノ基、酸無水物基、エポキシ基、ヒドロキシ基、及びメルカプト基からなる群から選択される、請求項6、7、8及び11のいずれか一項に記載の樹脂組成物。
  13.  前記一般式(4)で表されるケイ素含有化合物の、L及びLが、アミノ基である、請求項6、7、8及び11のいずれか一項に記載の樹脂組成物。
  14.  前記一般式(4)で表されるケイ素含有化合物の官能基当量が800以上である、請求項6、7、8及び11のいずれか一項に記載の樹脂組成物。
  15.  前記テトラカルボン酸二無水物が、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、4,4’-オキシジフタル酸無水物(ODPA)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)、及び1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)からなる群から選択される少なくとも1つである、請求項6~8及び11~14のいずれか一項に記載の樹脂組成物。
  16.  前記ジアミンが、4,4’-ジアミノジフェニルスルホン(4,4’-DAS)、3,3’-ビス(ジアミノジフェニル)スルホン(3,3’-DAS)、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、2,2’-ジメチルベンジジン(mTB)、p-フェニレンジアミン(PDA)、ジアミノビス(トリフルオロメチル)ビフェニル(TFMB)、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、4,4’-ジアミノジフェニルエーテル(ODA)、及び1,4-シクロヘキサンジアミン(CHDA)からなる群から選択される少なくとも1つである、請求項6~8及び11~14のいずれか一項に記載の樹脂組成物。
  17.  前記樹脂組成物を硬化して得られるポリイミド樹脂膜が、フレキシブル基板に用いられる、請求項1~16のいずれか一項に記載の樹脂組成物。
  18.  前記樹脂組成物を硬化して得られるポリイミド樹脂膜が、フレキシブルディスプレイに用いられる、請求項1~16のいずれか一項に記載の樹脂組成物。
  19.  前記樹脂組成物の非溶媒成分の質量を基準として、一般式(3)のうちnが3の化合物の総量をd3(ppm)、nが4の化合物の総量をd4(ppm)、nが5の化合物の総量をd5(ppm)、nが6の化合物の総量をd6(ppm)、及びnが7の化合物の総量をd7(ppm)としたとき、d3+d4+d5+d6+d7が2000ppm未満であり、かつ、d3+d4が10ppm以下である、請求項1~18のいずれか一項に記載の樹脂組成物。
  20.  下記一般式(4)で表されるケイ素含有化合物と、下記一般式(3)で表される化合物とを含有する原料組成物を、テトラカルボン酸二無水物及びジアミンと重縮合反応させてポリイミド前駆体を提供すること、又は、前記ポリイミド前駆体をイミド化してポリイミドを提供することを含む、樹脂組成物の製造方法であって、
     前記原料組成物に含まれる、下記一般式(3)のうちnが4である化合物の総量は、下記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く1300ppm以下であるか、あるいは、
     前記原料組成物に含まれる、下記一般式(3)のうちnが5である化合物の総量は、前記一般式(3)及び(4)のケイ素含有化合物の合計質量を基準として、0ppmより多く500ppm以下である、樹脂組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000027
    {式中、nは2以上の整数である。}
    Figure JPOXMLDOC01-appb-C000028
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、
    及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
  21.  前記原料組成物に含まれる、前記一般式(3)のうちnが4である化合物の総量は、前記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く800ppm以下であるか、あるいは、
     前記原料組成物に含まれる、前記一般式(3)のうちnが6である化合物の総量は、前記一般式(3)及び(4)のケイ素含有化合物の合計質量を基準として、0ppmより多く300ppm以下である、請求項20に記載の樹脂組成物の製造方法。
  22.  下記一般式(4)で表されるケイ素含有化合物と、下記一般式(3)で表される化合物とを含有する原料組成物を、テトラカルボン酸二無水物及びジアミンと重縮合反応させてポリイミド前駆体を提供すること、又は、前記ポリイミド前駆体をイミド化してポリイミドを提供することを含む、樹脂組成物の製造方法であって、
     前記原料組成物に含まれる、下記一般式(3)のうちnが3以上8以下の化合物の総量は、下記一般式(3)及び(4)で表されるケイ素含有化合物の合計質量を基準として、0ppmより多く4500ppm以下である、樹脂組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000029
    {式中、nは2以上の整数である。}
    Figure JPOXMLDOC01-appb-C000030
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
  23.  前記一般式(4)で表されるケイ素含有化合物の官能基当量が800以上である、請求項20~22のいずれか一項に記載の樹脂組成物の製造方法。
  24.  下記一般式(4)で表されるケイ素含有化合物と、下記一般式(3)で表される化合物とを含有する原料組成物を、テトラカルボン酸二無水物及びジアミンと重縮合反応させてポリイミド前駆体を提供すること、又は、前記ポリイミド前駆体をイミド化してポリイミドを提供することを含む、樹脂組成物の製造方法であって、
     下記一般式(3)のうちnが5である化合物の総量、またはnが6である化合物の総量、またはnが7である化合物の総量を、下記一般式(4)及び(3)のケイ素含有化合物の合計質量を基準として、低減する工程とを含み、
     前記低減する工程は、前記組成物を、150~300℃、300Pa以下で2~12時間処理することを含む、方法。
    Figure JPOXMLDOC01-appb-C000031
    {式中、nは2以上の整数である。}
    Figure JPOXMLDOC01-appb-C000032
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
  25.  前記一般式(4)で表されるケイ素含有化合物の、L及びLが、それぞれ独立に、アミノ基、酸無水物基、エポキシ基、ヒドロキシ基、及びメルカプト基からなる群から選択される、請求項20~24のいずれか一項に記載の方法。
  26.  前記一般式(4)で表されるケイ素含有化合物の、L及びLが、アミノ基である、請求項20~24のいずれか一項に記載の方法。
  27.  前記テトラカルボン酸二無水物が、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、4,4’-オキシジフタル酸無水物(ODPA)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)、及び1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)からなる群から選択される少なくとも1つである、請求項20~26のいずれか一項に記載の方法。
  28.  前記ジアミンが、4,4’-ジアミノジフェニルスルホン(4,4’-DAS)、3,3’-ビス(ジアミノジフェニル)スルホン(3,3’-DAS)、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、2,2’-ジメチルベンジジン(mTB)、p-フェニレンジアミン(PDA)、ジアミノビス(トリフルオロメチル)ビフェニル(TFMB)、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、4,4’-ジアミノジフェニルエーテル(ODA)、及び1,4-シクロヘキサンジアミン(CHDA)からなる群から選択される少なくとも1つである、請求項20~26のいずれか一項に記載の方法。
  29.  支持体の表面上に、請求項1~19のいずれか一項に記載の樹脂組成物を塗布する塗布工程と、
     前記樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
     前記ポリイミド樹脂膜を前記支持体から剥離する剥離工程と、
    を含む、ポリイミドフィルムの製造方法。
  30.  前記剥離工程に先立って、前記支持体側から前記樹脂組成物にレーザーを照射する照射工程を含む、請求項29に記載のポリイミドフィルムの製造方法。
  31.  支持体の表面上に、請求項1~19のいずれか一項に記載の樹脂組成物を塗布する塗布工程と、
     前記樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
     前記ポリイミド樹脂膜上に素子を形成する素子形成工程と、
     前記素子が形成された前記ポリイミド樹脂膜を前記支持体から剥離する剥離工程と、
    を含む、ディスプレイの製造方法。
  32.  支持体の表面上に、請求項1~19のいずれか一項に記載の樹脂組成物を塗布する塗布工程と、
     前記樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
     前記ポリイミド樹脂膜上に素子を形成する素子形成工程と、
    を含む、積層体の製造方法。
  33.  前記素子が形成された前記ポリイミド樹脂膜を前記支持体から剥離する工程をさらに含む、請求項32に記載の積層体の製造方法。
  34.  請求項32又は33に記載の方法で積層体を製造することを含む、フレキシブルデバイスの製造方法。
  35.  請求項1~19のいずれか一項に記載の樹脂組成物の硬化物である、ポリイミドフィルム。
PCT/JP2020/020402 2019-05-24 2020-05-22 ポリイミド前駆体及びポリイミド樹脂組成物 WO2020241523A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217032595A KR102618096B1 (ko) 2019-05-24 2020-05-22 폴리이미드 전구체 및 폴리이미드 수지 조성물
CN202311788895.5A CN117924699A (zh) 2019-05-24 2020-05-22 聚酰亚胺前体及聚酰亚胺树脂组合物
JP2021522328A JP7300504B2 (ja) 2019-05-24 2020-05-22 ポリイミド前駆体及びポリイミド樹脂組成物
CN202080038151.XA CN113874419B (zh) 2019-05-24 2020-05-22 聚酰亚胺前体及聚酰亚胺树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019097786 2019-05-24
JP2019-097786 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020241523A1 true WO2020241523A1 (ja) 2020-12-03

Family

ID=73552792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020402 WO2020241523A1 (ja) 2019-05-24 2020-05-22 ポリイミド前駆体及びポリイミド樹脂組成物

Country Status (5)

Country Link
JP (1) JP7300504B2 (ja)
KR (1) KR102618096B1 (ja)
CN (2) CN117924699A (ja)
TW (1) TW202104369A (ja)
WO (1) WO2020241523A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023249079A1 (ja) * 2022-06-23 2023-12-28 株式会社カネカ 樹脂組成物、成形体およびフィルム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202229411A (zh) * 2020-11-30 2022-08-01 日商旭化成股份有限公司 聚醯亞胺前驅體及聚醯亞胺樹脂組合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272739A (ja) * 1996-04-04 1997-10-21 Sumitomo Bakelite Co Ltd ポリイミド樹脂
JPH11217390A (ja) * 1998-01-30 1999-08-10 Dow Corning Toray Silicone Co Ltd 有機官能性オルガノペンタシロキサンの製造方法、有機樹脂改質剤および有機樹脂
WO2010067485A1 (ja) * 2008-12-12 2010-06-17 ソニーケミカル&インフォメーションデバイス株式会社 シールドフィルム及びシールド配線板
WO2014098235A1 (ja) * 2012-12-21 2014-06-26 旭化成イーマテリアルズ株式会社 ポリイミド前駆体及びそれを含有する樹脂組成物
JP2016029126A (ja) * 2014-07-25 2016-03-03 Jsr株式会社 樹脂組成物、それを用いた膜形成方法、および基板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012666A (ja) 2000-06-29 2002-01-15 Shin Etsu Chem Co Ltd ポリイミドシリコーン樹脂、その製造方法およびその組成物
WO2004040648A1 (ja) 2002-10-30 2004-05-13 Semiconductor Energy Laboratory Co., Ltd. 半導体装置および半導体装置の作製方法
GB0327093D0 (en) 2003-11-21 2003-12-24 Koninkl Philips Electronics Nv Active matrix displays and other electronic devices having plastic substrates
EP1707588A4 (en) 2004-01-20 2009-07-01 Asahi Kasei Emd Corp RESIN AND RESIN COMPOSITION
JP2006028533A (ja) 2005-10-13 2006-02-02 Shin Etsu Chem Co Ltd ポリイミドシリコーン樹脂およびその製造方法
TWI354854B (en) 2008-09-15 2011-12-21 Ind Tech Res Inst Substrate structures applied in flexible electrica
US8455872B2 (en) 2008-12-05 2013-06-04 Koninklijke Philips Electronics N.V. Electronic devices having plastic substrates
KR101896268B1 (ko) 2013-03-18 2018-09-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 수지 전구체 및 그것을 함유하는 수지 조성물, 수지 필름 및 그 제조 방법, 그리고, 적층체 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272739A (ja) * 1996-04-04 1997-10-21 Sumitomo Bakelite Co Ltd ポリイミド樹脂
JPH11217390A (ja) * 1998-01-30 1999-08-10 Dow Corning Toray Silicone Co Ltd 有機官能性オルガノペンタシロキサンの製造方法、有機樹脂改質剤および有機樹脂
WO2010067485A1 (ja) * 2008-12-12 2010-06-17 ソニーケミカル&インフォメーションデバイス株式会社 シールドフィルム及びシールド配線板
WO2014098235A1 (ja) * 2012-12-21 2014-06-26 旭化成イーマテリアルズ株式会社 ポリイミド前駆体及びそれを含有する樹脂組成物
JP2016029126A (ja) * 2014-07-25 2016-03-03 Jsr株式会社 樹脂組成物、それを用いた膜形成方法、および基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023249079A1 (ja) * 2022-06-23 2023-12-28 株式会社カネカ 樹脂組成物、成形体およびフィルム

Also Published As

Publication number Publication date
JPWO2020241523A1 (ja) 2021-12-09
CN113874419B (zh) 2024-01-09
CN117924699A (zh) 2024-04-26
KR20210138663A (ko) 2021-11-19
KR102618096B1 (ko) 2023-12-27
JP7300504B2 (ja) 2023-06-29
CN113874419A (zh) 2021-12-31
TW202104369A (zh) 2021-02-01

Similar Documents

Publication Publication Date Title
JP7095024B2 (ja) ポリイミド前駆体、樹脂組成物および樹脂フィルムの製造方法
JP7055832B2 (ja) ポリイミド前駆体、樹脂組成物、樹脂フィルム及びその製造方法
JP7327983B2 (ja) ポリイミド前駆体樹脂組成物
JP2024028330A (ja) ポリイミド前駆体樹脂組成物
WO2020241523A1 (ja) ポリイミド前駆体及びポリイミド樹脂組成物
JP2022087023A (ja) ポリイミド前駆体及びポリイミド樹脂組成物
JP7053807B2 (ja) ケイ素含有化合物
JPWO2019142866A1 (ja) ポリイミド前駆体樹脂組成物
TW202229411A (zh) 聚醯亞胺前驅體及聚醯亞胺樹脂組合物
JP7433007B2 (ja) ポリイミド前駆体樹脂組成物
JP6585329B1 (ja) ポリイミド前駆体樹脂組成物
WO2021241763A1 (ja) 樹脂組成物
KR102112483B1 (ko) 폴리이미드 전구체 수지 조성물
TWI836943B (zh) 樹脂組合物
WO2024048740A1 (ja) 樹脂組成物
JP2022082450A (ja) 樹脂組成物
JP2024035165A (ja) 樹脂組成物
JP2023008996A (ja) 樹脂組成物
JP2023008995A (ja) 樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522328

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217032595

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813780

Country of ref document: EP

Kind code of ref document: A1