WO2020241366A1 - Power conversion device and power conversion device control method - Google Patents
Power conversion device and power conversion device control method Download PDFInfo
- Publication number
- WO2020241366A1 WO2020241366A1 PCT/JP2020/019719 JP2020019719W WO2020241366A1 WO 2020241366 A1 WO2020241366 A1 WO 2020241366A1 JP 2020019719 W JP2020019719 W JP 2020019719W WO 2020241366 A1 WO2020241366 A1 WO 2020241366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- phase
- power conversion
- failure
- circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/10—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
- H02H7/12—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
- H02H7/122—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
- H02H7/1225—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
- H02M7/5395—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
- H02P27/085—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/024—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
Definitions
- the present invention relates to a power conversion device and a control method for the power conversion device.
- Hybrid vehicles and electric vehicles are equipped with a power conversion device to drive the motor.
- the power conversion device converts the direct current supplied from the battery into an alternating current by switching the power semiconductors constituting the upper arm circuit and the lower arm circuit corresponding to each phase of the motor, and drives the motor. There is.
- Patent Document 1 has a drive circuit for switching ON / OFF of the power semiconductor for each power semiconductor, and when it is determined that a failure has occurred inside the power conversion device, an abnormality notification is sent to an external abnormality notification device.
- a device that outputs a signal is disclosed.
- the power conversion device is composed of an upper arm circuit and a lower arm circuit corresponding to each phase of a multi-phase motor, and has a power conversion circuit that converts a direct current into a multi-phase alternating current and the upper arm circuit.
- a power conversion circuit that converts a direct current into a multi-phase alternating current and the upper arm circuit.
- the failure determination unit that detects the failure of the upper arm circuit or the lower arm circuit of any phase. Be prepared.
- a power conversion circuit is formed by an upper arm circuit and a lower arm circuit corresponding to each phase of a multi-phase motor, and a direct current is converted into a multi-phase alternating current.
- the simulated DC current at the time of the first failure is calculated based on the AC current value of the remaining phases, and the DC current input to the power conversion circuit or the DC current based on the AC current value output from the power conversion circuit and the above Based on the duty ratio of the PWM signal and the simulated DC current at the time of the first failure, the failure of the upper arm circuit or the lower arm circuit of any phase is detected.
- FIG. 1 is a circuit configuration diagram of the power conversion device 100 according to the first embodiment.
- the power conversion device 100 converts the DC power obtained from the DC power supply 10 into AC power to drive the motor 20 during power running.
- the DC power supply 10 is a power supply for driving the motor 20. Further, the power conversion device 100 converts the power of the motor 20 into DC power to charge the DC power supply 10 at the time of regeneration.
- the motor 20 is a three-phase electric motor having three windings inside. Further, the motor 20 is equipped with an angle sensor (not shown) for measuring the rotation angle of the motor 20, and the angle sensor outputs the measured rotation angle as an angle sensor value to the power conversion device 100. .. The power conversion device 100 detects a failure described later and notifies the failure notification device 30 of the failure.
- the power conversion device 100 includes a control circuit 40, a driver circuit 50, and a power conversion circuit 60.
- the control circuit 40 includes a motor speed calculation unit 41, a target current calculation unit 42, a duty calculation unit 43, a PWM signal generation unit 44, and a power semiconductor diagnosis unit 45.
- the power semiconductor diagnosis unit 45 includes a simulated direct current calculation unit 451 and a failure determination unit 452.
- the voltage sensor 70 is a sensor that measures the output voltage of the DC power supply 10, and outputs the measured voltage value as a voltage sensor value to the target current calculation unit 42 in the control circuit 40.
- the DC current sensor 80 measures the DC current flowing between the DC power supply 10 and the power conversion circuit (inverter circuit) 60, and outputs the measured current value as the DC current sensor value Idcs to the failure determination unit 452.
- the DC current sensor 80 is installed so as to measure the current flowing from the DC power supply 10 into the power conversion circuit 60 as a positive current value, but the reverse current value is used as a positive current value.
- a DC current sensor 80 may be installed to measure.
- the AC current sensor 90 is a sensor for measuring the AC current flowing through each phase (U phase, V phase, W phase) of the motor 20. Specifically, the AC current Iu flowing through the U phase is measured, and the AC current sensor value Ius is output to the duty calculation unit 43 and the simulated DC current calculation unit 451. Similarly, the AC current Iv flowing through the V phase is measured, and the AC current sensor value Ivs is output to the duty calculation unit 43 and the simulated DC current calculation unit 451. Similarly, the AC current Iw flowing through the W phase is measured, and the AC current sensor value Iws is output to the duty calculation unit 43 and the simulated DC current calculation unit 451.
- the motor speed calculation unit 41 calculates the motor speed value from the change in the angle sensor value in the motor 20, and outputs the calculated motor speed value to the target current calculation unit 42.
- the control circuit 40 communicates with an electronic control device (not shown) provided outside the power conversion device 100, receives a target torque of the motor 20 from the external electronic control device, and inputs the target torque to the target current calculation unit 42.
- the target current calculation unit 42 calculates the current value to be passed through the motor 20 by using the target torque, the voltage sensor value, and the motor speed value output by the motor speed calculation unit 41, and calculates the duty using this current value as the target current value. Output to unit 43.
- This target current value is expressed, for example, in the form of a d-axis target current value and a q-axis target current value.
- the duty calculation unit 43 calculates the U-phase duty value Du, the V-phase duty value Dv, and the W-phase duty value Dw based on the target current value output by the target current calculation unit 42 and the AC current sensor values Ius, Ivs, and Iws. , Output to the PWM signal generation unit 44 and the simulated DC current calculation unit 451.
- the U-phase duty value Du indicates the ON time ratio of the U-phase upper arm circuit power semiconductor, and the ON time ratio of the U-phase lower arm circuit power semiconductor is indicated by 1-Du.
- the V-phase duty value Dv indicates the ON time ratio of the V-phase upper arm circuit power semiconductor, and the ON time ratio of the V-phase lower arm circuit power semiconductor is indicated by 1-Dv.
- the W-phase duty value Dw indicates the ON time ratio of the W-phase upper arm circuit power semiconductor, and the ON time ratio of the W-phase lower arm circuit power semiconductor is indicated by 1-Dw.
- the PWM signal generation unit 44 has a timer (not shown) inside, and based on this timer value, U-phase duty value Du, V-phase duty value Dv, and W-phase duty value Dw, PWM (Pulse Wide Modulation). ) Generates a signal and outputs it to the driver circuit 50.
- the PWM signal generation unit 44 controls the PWM signal so that the motor 20 is not driven when an abnormality notification signal is output from the power semiconductor diagnosis unit 45.
- the state in which the motor 20 is not driven includes, for example, a state in which all six power semiconductors in the power conversion circuit 60 are turned off (referred to as a freewheel state in the present embodiment).
- a state in which all six power semiconductors in the power conversion circuit 60 are turned off referred to as a freewheel state in the present embodiment.
- three power semiconductors in the upper arm circuit are turned on and three power semiconductors in the lower arm circuit are turned off (in this embodiment, the upper arm active short state and the state). (Called), conversely, a state in which three power semiconductors in the upper arm circuit are turned off and three power semiconductors in the lower arm circuit are turned on (referred to as a lower arm active short state in this embodiment) can be mentioned.
- the driver circuit 50 receives the PWM signal output by the PWM signal generation unit 44 and outputs a drive signal for switching ON / OFF of the power semiconductor to the power conversion circuit 60.
- the power conversion circuit 60 has a smoothing capacitor and six power semiconductors inside, and converts the DC power obtained from the DC power supply 10 into AC power to drive the motor 20 at the time of power running. Further, at the time of regeneration, the power of the motor 20 is converted into DC power to charge the DC power supply 10.
- the power semiconductor diagnosis unit 45 diagnoses the failure of the power semiconductor in the power conversion circuit 60.
- the simulated DC current calculation unit 451 in the power semiconductor diagnostic unit 45 calculates the simulated DC current value at the time of the first failure of each phase based on the duty values Du, Dv, Dw of each phase and the AC current sensor values Ius, Ivs, Iws. It is calculated and output to the failure determination unit 452.
- the failure determination unit 452 uses the simulated DC current value at the time of the first failure of each phase, the DC current sensor value Idcs, the duty values Du, Dv, Dw of each phase, and the target torque of the power semiconductor in the power conversion circuit 60. It is determined which part has failed, and a failure notification signal corresponding to the failed part is output to the failure notification device 30 and the PWM signal generation unit 44.
- the failure determination unit 452 determines the target torque and identifies whether it is during power running or regeneration. Specifically, when the target torque is positive, it means that it is in power running, and when the target torque is negative, it means that it is in regeneration. As another identification method, if the DC current sensor value Idcs is positive, it may be identified as power running, and if the DC current sensor value Idcs is negative, it may be identified as regenerative.
- FIG. 2 is a circuit configuration diagram of the power conversion circuit 60.
- the power conversion circuit 60 has a UVW phase upper and lower arm series circuit.
- the U-phase upper and lower arm series circuit 61 includes a U-phase upper arm power semiconductor Tu and a U-phase upper arm diode Du, and a U-phase lower arm power semiconductor Tu and a U-phase lower arm diode Du.
- the V-phase upper and lower arm series circuit 62 includes a V-phase upper arm power semiconductor Tv and a V-phase upper arm diode Dvu, and a V-phase lower arm power semiconductor Tvl and a V-phase lower arm diode Dvl.
- the W-phase upper and lower arm series circuit 63 includes a W-phase upper arm power semiconductor Tww and a W-phase upper arm diode Dwoo, and a W-phase lower arm power semiconductor Twl and a W-phase lower arm diode Dwl.
- the upper arm circuit 64 includes a U-phase upper arm power semiconductor Tu and a U-phase upper arm diode Du, a V-phase upper arm power semiconductor Tv and a V-phase upper arm diode Dv, and a W-phase upper arm power semiconductor Tww and a W-phase upper arm. It has a diode Dwoo.
- the lower arm circuit 65 includes a U-phase lower arm power semiconductor Tul and a U-phase lower arm diode Dul, a V-phase lower arm power semiconductor Tvl and a V-phase lower arm diode Dvl, and a W-phase lower arm power semiconductor Twl and a W-phase lower arm. It has a diode Dwl.
- the power semiconductor is, for example, a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor).
- the smoothing capacitor 66 smoothes the current generated by ON / OFF of the power semiconductor and suppresses the ripple of the DC current supplied from the DC power supply 10 to the power conversion circuit 60.
- an electrolytic capacitor or a film capacitor is used for the smoothing capacitor 66.
- FIG. 3 is a flowchart showing a failure determination process of the power semiconductor in the power semiconductor diagnosis unit 45. As shown in step S10 of FIG. 3, the power semiconductor diagnostic unit 45 acquires the AC current sensor values Ius, Ivs, Iws and the DC current sensor value Idcs.
- step S11 the simulated DC current calculation unit 451 uses the duty values Du, Dv, Dw of each phase and the AC current sensor values Ius, Ivs, and Iws based on the following equations (1) to (3). 1
- the simulated DC current value Idcu at the time of failure, the simulated DC current value Idcv at the time of the first failure of the V phase, and the simulated DC current value Idcw at the time of the first failure of the W phase are calculated and output to the failure determination unit 452.
- step S12 the failure determination unit 452 determines that a failure has occurred in the U-phase power semiconductor when the difference between the DC current sensor value Idcs and the simulated DC current value Idcu at the time of the first U-phase failure is less than the threshold value 1. To do. When an OFF sticking failure of a power semiconductor occurs, the simulated DC current at the time of the first failure of the phase concerned becomes substantially equal to the actual DC current value during the time period when a current is to be passed through the failed power semiconductor. The threshold value 1 is set to a value at which this relationship holds. This makes it possible to determine in which phase the failure occurred. In step S13, the failure determination unit 452 determines whether the motor 20 is in the power running state or the regenerative state based on the input target torque or the like.
- step S14 the failure determination unit 452 determines whether the U-phase duty value Du is larger than the threshold value 2.
- the threshold value 2 is set to, for example, 0.5. As a result, it is determined whether the current is going to flow through the upper arm circuit or the lower arm circuit.
- step S13 If it is determined in step S13 that the state is regenerated, the process proceeds to step S15, and in step S15, the failure determination unit 452 determines whether the U-phase duty value Du is equal to or less than the threshold value 2. If the U-phase duty value Du is a threshold value of 2 or less, it is determined in step S16 that the U-phase upper arm circuit power semiconductor has an OFF sticking failure. If the U-phase duty value Du is not equal to or less than the threshold value 2, it is determined in step S17 that the U-phase lower arm circuit power semiconductor has an OFF sticking failure. In step S18, the failure determination unit 452 outputs a failure notification signal corresponding to the failure location to the PWM signal generation unit 44 and the failure notification device 30.
- the DC current becomes substantially equal to the simulated DC current at the time of the first failure of the failure phase when the current is tried to flow to the failure location.
- the failure location of the upper and lower arms can be determined by the duty. Since the phases of the voltage (that is, the duty) and the current are the same during power running, the time zone in which the duty is larger than the threshold value 0.5 and the time zone in which the current is to be passed through the upper arm match.
- Steps S22 to S27 indicate a V-phase failure determination process
- steps S32 to S37 indicate a W-phase failure determination process.
- step S22 the failure determination unit 452 determines that a failure has occurred in the V-phase power semiconductor when the difference between the DC current sensor value Idcs and the simulated DC current value Idcv at the time of the first failure of the V phase is less than the threshold value 1. To do.
- steps S22 to S27 are the same as steps S12 to S17 which are U-phase failure determination processes, the description thereof will be omitted.
- step S32 the failure determination unit 452 determines that a failure has occurred in the W-phase power semiconductor when the difference between the DC current sensor value Idcs and the simulated DC current value Idcw at the time of the first W-phase failure is less than the threshold value 1.
- steps S32 to S37 are the same as steps S12 to S17, which are U-phase failure determination processes, and thus the description thereof will be omitted.
- step S32 the failure determination unit 452 proceeds to step S39 if the difference between the DC current sensor value Idcs and the simulated DC current value Idcw at the time of the first W phase failure is not less than the threshold value 1. In step S39, it is determined that there is no OFF sticking failure in the power semiconductor.
- FIG. 4 is a flowchart showing a failure handling process of the PWM signal generation unit 44.
- the PWM signal generation unit 44 receives the failure notification signal from the failure determination unit 452 and starts the failure handling process.
- the failure notification signal is received in step S18 of FIG. 3 and it is determined in step S40 of FIG. 4 that an upper arm OFF sticking failure of any of the U phase, V phase, and W phase has occurred.
- the step is taken. Proceed to S41.
- step S41 a PWM signal is generated so as to be in the freewheel state or the lower arm active short state. Since the power semiconductor of the upper arm circuit cannot be turned on due to a failure, the upper arm circuit is not put into the active short state.
- step S42 If it is determined in step S42 that the lower arm OFF sticking failure of any of the U phase, V phase, and W phase has occurred, the process proceeds to step S43.
- step S43 a PWM signal is generated so as to be in the freewheel state or the upper arm active short state. Since the power semiconductor of the lower arm circuit cannot be turned on due to a failure, the lower arm circuit is not put into the active short state.
- step S44 since no failure has occurred, the PWM signal generation unit 44 continues the PWM operation, generates a PWM signal corresponding to the duty values Du, Dv, and Dw of each phase, and outputs the PWM signal to the driver circuit 50.
- 5 (A), 5 (B), and 5 (C) are graphs of alternating current, duty, and direct current when a failure of OFF sticking occurs in the U-phase upper arm circuit during power running. ..
- FIG. 5A shows an alternating current
- FIG. 5B shows a duty
- FIG. 5C shows a direct current
- the horizontal axis of each graph is time. At time t, a case where a failure of OFF sticking occurs in the U-phase upper arm circuit during power running is shown.
- FIG. 6 is a circuit configuration diagram of the power conversion device 200 according to the second embodiment.
- the power conversion device 200 according to the second embodiment does not include the DC current sensor 80 as compared with the power conversion device 100 according to the first embodiment shown in FIG. 1, and the power semiconductor diagnostic unit 46 It is different.
- the same parts as those of the power conversion device 100 according to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the different parts will be described below.
- the simulated DC current calculation unit 461 of the power semiconductor diagnostic unit 46 calculates the simulated DC current at the time of the first failure of each phase based on the equations (1) to (3) shown in the first embodiment. Furthermore, the simulated DC current value at normal time is calculated using the phase duty Du, Dv, Dw and the AC current sensor values Ius, Ivs, and Iws of each phase. That is, since the DC current in the normal state can be calculated by the following equation (4), the value calculated by this equation (4) is used instead of the DC current sensor.
- DC current (Du x Ius) + (Dv x Ivs) + (Dv x Iws) (4)
- Du U phase duty ratio
- Dv V phase duty ratio
- Dw W phase duty ratio
- Ius U phase AC current sensor value
- Ivs V phase AC current sensor value
- Iws W phase AC current sensor value Is.
- the simulated DC current calculation unit 461 outputs the calculated DC current to the failure determination unit 462.
- the failure determination unit 462 uses the simulated DC current value at the time of the first failure of each phase, the simulated DC current value at the time of normal operation, the duty values Du, Dv, Dw of each phase, and the target torque, and uses the power semiconductor in the power conversion circuit 60. It is determined which part of the device is out of order, and a failure notification signal corresponding to the failure part is output to the failure notification device 30 and the PWM signal generation unit 44.
- the failure determination unit 462 determines the target torque to determine whether it is during power running or regeneration. Specifically, when the target torque is positive, it means that it is in power running, and when the target torque is negative, it means that it is in regeneration.
- the simulated DC current calculated by the simulated DC current calculation unit 461 during normal operation is positive, it is assumed to be during power running, and when the simulated DC current calculated by the simulated DC current calculation unit 461 during normal operation is negative, it is assumed that it is during power running. It may be identified as being regenerated.
- FIG. 7 is a flowchart showing a failure determination process of the power semiconductor in the power semiconductor diagnosis unit 46.
- the failure determination process in the power semiconductor diagnostic unit 46 according to the second embodiment is described by assigning the same reference numerals to the same parts as the flowchart showing the failure determination process according to the first embodiment shown in FIG. Will be omitted, and the different parts will be described below.
- the power semiconductor diagnostic unit 46 acquires the AC current sensor values Ius, Ivs, and Iws.
- the simulated DC current calculation unit 461 uses the duty values Du, Dv, Dw of each phase and the AC current sensor values Ius, Ivs, and Iws based on the equations (1) to (3), and the U phase phase. 1
- the simulated DC current value Idcu at the time of failure, the simulated DC current value Idcv at the time of the first failure of the V phase, and the simulated DC current value Idcw at the time of the first failure of the W phase are calculated and output to the failure determination unit 462.
- the normal simulated DC current Idce which is the normal DC current, is calculated based on the equation (4) and output to the failure determination unit 462.
- step S12' when the difference between the normal simulated DC current Idce and the U-phase first fault simulated DC current value Idcu is less than the threshold value 1, the fault determination unit 462 has failed in the U-phase power semiconductor. Is determined. When an OFF sticking failure of a power semiconductor occurs, the simulated DC current at the time of the first failure of the phase concerned becomes substantially equal to the actual DC current value during the time period when a current is to be passed through the failed power semiconductor.
- the threshold value 1 is set to a value at which this relationship holds. This makes it possible to determine in which phase the failure occurred.
- step S13 the failure determination unit 462 determines whether the motor 20 is in the power running state or the regenerative state based on the input target torque or the like.
- the failure determination unit 462 determines whether the motor 20 is in the power running state or the regenerative state based on the input target torque or the like.
- step S22' when the difference between the normal simulated DC current Idce and the V-phase first fault simulated DC current value Idcv is less than the threshold value 1, the fault determination unit 462 has failed in the V-phase power semiconductor. Is determined.
- steps S23 to S27 are the same as the U-phase failure determination processing steps S13 to S17, the description thereof will be omitted.
- step S22' if the difference between the normal simulated DC current Idce and the V-phase first fault simulated DC current value Idcv is not less than the threshold value 1, the process proceeds to step S32'.
- step S32' when the difference between the normal simulated DC current Idce and the W-phase first fault simulated DC current value Idcw is less than the threshold value 1, the failure determination unit 462 has failed in the W-phase power semiconductor. Is determined.
- steps S33 to S37 are the same as the U-phase failure determination processing steps S13 to S17, the description thereof will be omitted.
- step S32' the failure determination unit 462 proceeds to step S39 if the difference between the normal simulated DC current Idce and the W-phase first fault simulated DC current value Idcw is not less than the threshold value 1. In step S39, it is determined that there is no OFF sticking failure in the power semiconductor.
- FIG. 8 is a circuit configuration diagram of the power conversion device 300 according to the third embodiment.
- the power conversion device 300 according to the third embodiment is different from the power semiconductor diagnostic unit 47 in the power conversion device 100 according to the first embodiment shown in FIG.
- the same parts as those of the power conversion device 100 according to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the different parts will be described below.
- the simulated DC current calculation unit 471 of the power semiconductor diagnostic unit 47 calculates the simulated DC current at the time of the first failure of each phase based on the equations (1) to (3) shown in the first embodiment. Further, the simulated DC current at the time of the second failure of each phase is calculated based on the following equations (5) to (7).
- Du U phase duty ratio
- Dv V phase duty ratio
- Dw W phase duty ratio
- Ius U phase AC current sensor value
- Ivs V phase AC current sensor value
- Iws W phase AC current sensor value
- K is a coefficient.
- the coefficient K is set in the range of 0 ⁇ K ⁇ 1.
- the simulated DC current at the time of the first failure and the simulated DC current at the time of the second failure of each phase calculated by the simulated DC current calculation unit 471 are output to the failure determination unit 472.
- the failure determination unit 472 determines the simulated DC current value at the time of the first failure of each phase, the simulated DC current value at the time of the second failure of each phase, the DC current sensor value Idcs, the duty values Du, Dv, Dw of each phase, and the target torque. It is used to determine which part of the power semiconductor in the power conversion circuit 60 has failed, and outputs a failure notification signal corresponding to the failed part to the failure notification device 30 and the PWM signal generation unit 44.
- the failure determination unit 472 has a difference between the DC current sensor value Idcs and the simulated DC current value at the time of the first failure less than the threshold value 1, and the DC current sensor value Idcs and the simulated DC current value at the time of the second failure are It is determined whether the difference between the and is less than the threshold value 1.
- the simulated DC current at the time of the second failure using the AC current of all three phases and the DC current are also equal. Therefore, it is possible to identify the faulty part even if the simulated DC current at the time of the second fault is additionally used.
- the simulated DC current value at the time of the first failure and the DC current other than the failure phase at the timing when the duty is small Is close to each other, which may induce false detection of failure.
- the difference between the DC current sensor value Idcs and the simulated DC current value at the time of the first failure is less than the threshold value 1
- the DC current sensor value Idcs and the simulated DC current value at the time of the second failure are By determining whether the difference between the current and the current is less than the threshold value 1, the false detection of the failure can be eliminated.
- FIG. 9 is a flowchart showing a failure determination process of the power semiconductor in the power semiconductor diagnosis unit 47.
- the failure determination process in the power semiconductor diagnostic unit 47 according to the third embodiment is described by assigning the same reference numerals to the same parts as the flowchart showing the failure determination process according to the first embodiment shown in FIG. Will be omitted, and the different parts will be described below.
- step S10 of FIG. 9 the power semiconductor diagnostic unit 45 acquires the AC current sensor values Ius, Ivs, Iws and the DC current sensor value Idcs, and in step S11'', the simulated DC current calculation unit 471 obtains the duty value Du. , Dv, Dw and AC current sensor values Ius, Ivs, Iws, U phase, simulated DC current value at the time of the first failure, Idcu, V phase, based on the equations (1) to (3) described in the first embodiment.
- the simulated DC current value Idcv at the time of the first failure and the W phase simulated DC current value Idcw at the time of the first failure are calculated and output to the failure determination unit 472.
- the simulated DC current calculation unit 471 is based on the equations (5) to (7), the simulated DC current value Idcu2 at the time of the U-phase second failure, the simulated DC current value Idcv2 at the time of the V-phase second failure, and the W-phase second.
- the simulated DC current value Idcw2 at the time of failure is calculated and output to the failure determination unit 472.
- step S12'' the failure determination unit 472 simulates that the difference between the DC current sensor value Idcs and the U-phase first failure simulated DC current value Idcu is less than the threshold value 1 and the DC current sensor value Idcs and the U-phase second failure.
- the difference between the DC current values Idcu2 is less than the threshold value 1, it is determined that the U-phase power semiconductor has a failure.
- step S13 the failure determination unit 462 determines whether the motor 20 is in the power running state or the regenerative state based on the input target torque or the like.
- steps S13 to S18 are the same as the flowchart showing the failure determination process according to the first embodiment shown in FIG.
- step S12'' the failure determination unit 472 simulates that the difference between the DC current sensor value Idcs and the U-phase first failure simulated DC current value Idcu is less than the threshold value 1 and the DC current sensor value Idcs and the U-phase second failure. If the condition that the difference between the DC current values Idcu2 is less than the threshold value 1 is not satisfied, the process proceeds to step S22''. In step S22'', the failure determination unit 472 simulates that the difference between the DC current sensor value Idcs and the V-phase first failure simulated DC current value Idcv is less than the threshold value 1 and the DC current sensor value Idcs and the V-phase second failure.
- steps S23 to S27 are the same as the U-phase failure determination processing steps S13 to S17, the description thereof will be omitted.
- step S22'' the difference between the DC current sensor value Idcs and the simulated DC current value Idcv at the time of the first failure of the V phase is less than the threshold value 1, and the difference between the DC current sensor value Idcs and the simulated DC current value Idcv2 at the time of the second failure of the V phase. If does not satisfy the condition of less than the threshold value 1, the process proceeds to step S32''.
- the failure determination unit 472 simulates that the difference between the DC current sensor value Idcs and the W-phase first failure simulated DC current value Idcw is less than the threshold value 1 and the DC current sensor value Idcs and the W-phase second failure.
- step S32'' the failure determination unit 462 simulates that the difference between the DC current sensor value Idcs and the W-phase first failure simulated DC current value Idcw is less than the threshold value 1, and the DC current sensor value Idcs and the W-phase second failure simulation. If the difference between the DC current values Idcw2 does not satisfy the condition of less than the threshold value 1, the process proceeds to step S39. In step S39, it is determined that there is no OFF sticking failure in the power semiconductor.
- FIG. 10 is a flowchart showing a failure determination process of the power semiconductor in the present embodiment.
- the failure determination process is different from the flowchart showing the failure determination process according to the first embodiment shown in FIG.
- the same parts as those in the flowchart showing the failure determination process according to the first embodiment shown in FIG. 3 are designated by the same reference numerals, the description thereof will be omitted, and the different parts will be described below.
- step S12 of FIG. 3 it was determined whether the difference between the DC current sensor value Idcs and the simulated DC current value Idcu at the time of the first U-phase failure is less than the threshold value 1.
- step S12 ′′ of FIG. 10 it is determined whether the difference between the DC current sensor value Idcs and the simulated DC current value Idcu at the time of the first U-phase failure continues to be less than the threshold value 1 for a certain period of time or longer. .. Even if the power semiconductor has not failed, when the AC current of a certain phase is 0, the DC current sensor value and the simulated DC current value at the time of the first failure of the corresponding phase match, so there is a risk of false detection of failure. is there.
- the failure is detected by detecting the failure when the difference between the DC current sensor value Idcs and the simulated DC current value Idcu at the time of the first U-phase failure is less than the threshold value 1 for a certain period of time or longer. Avoid false positives.
- step S22'''' in FIG. 10 it is determined whether the state in which the difference between the DC current sensor value Idcs and the simulated DC current value Idcv at the time of the first failure of the V phase is less than the threshold value 1 continues for a certain period of time or more.
- step S32'''in FIG. 10 it is determined whether the state in which the difference between the DC current sensor value Idcs and the simulated DC current value Idcw at the time of the first W phase failure is less than the threshold value 1 continues for a certain period of time or more.
- the power conversion device 300 according to the fifth embodiment is the same as the power conversion device 300 according to the third embodiment shown in FIG. 8, the same reference numerals are given to the same parts and the description thereof will be omitted. ..
- FIG. 11 is a flowchart showing a failure determination process of the power semiconductor in the present embodiment.
- the failure determination process is different from the flowchart showing the failure determination process according to the third embodiment shown in FIG.
- the same parts as those in the flowchart showing the failure determination process according to the third embodiment shown in FIG. 9 are designated by the same reference numerals, the description thereof will be omitted, and the different parts will be described below.
- step S12 ′′ of FIG. 9 the difference between the DC current sensor value Idcs and the simulated DC current value Idcu at the time of the first U-phase failure is less than the threshold value 1, and the DC current sensor values Idcs and the U-phase first. 2 It was determined whether the difference between the simulated DC current values Idcu2 at the time of failure was less than the threshold value 1. In the present embodiment, in step S12'''' of FIG. 11, it is determined whether the difference between the simulated DC current value Idcu at the time of the first U-phase failure and the simulated DC current value Idcu2 at the time of the second U-phase failure is less than the threshold value 1. To do.
- the difference between the DC current sensor value Idcs and the U-phase first failure simulated DC current value Idcu is less than the threshold value 1, and the DC current sensor value Idcs and the U-phase second failure simulated DC current value Idcu2.
- the condition that the difference is less than the threshold value 1 is satisfied, the difference between the simulated DC current value Idcu at the time of the first U-phase failure and the simulated DC current value Idcu2 at the time of the second U-phase failure also falls within a certain range. Therefore, by setting the determination conditions of the present embodiment, it is possible to perform a determination equivalent to the determination conditions of the third embodiment while simplifying the determination conditions as compared with the third embodiment.
- step S22'''' in FIG. 11 it is determined whether the difference between the simulated DC current value Idcv at the time of the first failure of the V phase and the simulated DC current value Idcv2 at the time of the second failure of the V phase is less than the threshold value 1.
- step S32'''' of FIG. 11 it is determined whether the difference between the simulated DC current value Idcw at the time of the first failure of the W phase and the simulated DC current value Idcw2 at the time of the second failure of the W phase is less than the threshold value 1.
- the power conversion device 100 is composed of an upper arm circuit and a lower arm circuit corresponding to each phase of the multi-phase motor 20, and includes a power conversion circuit 60 that converts a direct current into a multi-phase alternating current.
- a power conversion circuit 60 that converts a direct current into a multi-phase alternating current.
- the failure determination unit 452 for detecting the failure of the upper arm circuit or the lower arm circuit of either phase is provided. Thereby, it is possible to identify which part of the power semiconductor constituting the upper arm circuit and the lower arm circuit is out of order.
- a power conversion circuit 60 is configured by an upper arm circuit and a lower arm circuit corresponding to each phase of the multi-phase motor 20, and a direct current is converted into a multi-phase alternating current. Then, a PWM signal is output to the upper arm circuit and the lower arm circuit, and the remainder when one of the plurality of phases fails based on the AC current output from the power conversion circuit 60 and the duty ratio of the PWM signal.
- the simulated DC current at the time of the first failure is calculated based on the AC current value of the phase, and the DC current input to the power conversion circuit 60 or the DC current based on the AC current value output from the power conversion circuit 60 and the PWM signal.
- the failure of the upper arm circuit or the lower arm circuit of either phase is detected based on the duty ratio of the above and the simulated DC current at the time of the first failure. Thereby, it is possible to identify which part of the power semiconductor constituting the upper arm circuit and the lower arm circuit is out of order.
- the present invention can be implemented by modifying the first to fifth embodiments described above as follows.
- (1) Although the motor 20 has been described with the example of three phases having three windings inside, the motor 20 is not limited to the three phases and may be a multi-phase motor. In this case as well, a failure of the upper arm circuit or the lower arm circuit of either phase can be detected.
- the power conversion device 100 has an AC current sensor 90 for three phases inside, but may have only two phases.
- the remaining one-phase alternating current can be calculated by utilizing the fact that the sum of the three-phase alternating currents becomes 0, as in the case of having the three-phase alternating current sensors 90. Failure of the upper arm circuit or lower arm circuit of either phase can be detected.
- the present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Conventionally, it is impossible to specify which location of a power semiconductor constituting an upper arm circuit and a lower arm circuit is failed. In the present invention, a simulated DC current calculation unit 451 in a power semiconductor diagnosis unit 45 calculates a first failure occasion simulated DC current value of each phase on the basis of the duty values Du, Dv, Dw and AC current sensor values Ius, Ivs, Iws of respective phases and outputs the first failure occasion simulated DC current value to a failure determination unit 452. The failure determination unit 452 determines, using the first failure occasion simulated DC current value of each phase, a DC current sensor value Idcs, the duty values Du, Dv, Dw of the respective phases, and a target torque, which location of a power semiconductor in a power conversion circuit 60 is failed and outputs a failure notification signal according to the failed location to a failure notification device 30 and a PWM signal generation unit 44. The failure determination unit 452 discriminates the target torque and identifies whether the failure has occurred in powering time or regenerative time.
Description
本発明は、電力変換装置、および電力変換装置の制御方法に関する。
The present invention relates to a power conversion device and a control method for the power conversion device.
ハイブリッド自動車や電気自動車には、モータを駆動させるために電力変換装置が搭載されている。電力変換装置は、モータの各相に対応して上アーム回路と下アーム回路を構成するパワー半導体をスイッチングさせることで、バッテリから供給される直流電流を交流電流に変換し、モータを駆動させている。
Hybrid vehicles and electric vehicles are equipped with a power conversion device to drive the motor. The power conversion device converts the direct current supplied from the battery into an alternating current by switching the power semiconductors constituting the upper arm circuit and the lower arm circuit corresponding to each phase of the motor, and drives the motor. There is.
近年、自動車を対象とした機能安全規格に基づいて、電力変換装置内の異常や故障を検知する必要性が高まっている。そのため、パワー半導体に対しても異常や故障を検知できる診断を実施する必要がある。
In recent years, there has been an increasing need to detect abnormalities and failures in power converters based on functional safety standards for automobiles. Therefore, it is necessary to carry out a diagnosis that can detect an abnormality or failure even in a power semiconductor.
特許文献1には、パワー半導体ごとにパワー半導体のON/OFFを切り替えるための駆動回路を有し、電力変換装置内部に故障が発生したと判定した場合、外部の異常通知装置に対して異常通知信号を出力する装置が開示されている。
Patent Document 1 has a drive circuit for switching ON / OFF of the power semiconductor for each power semiconductor, and when it is determined that a failure has occurred inside the power conversion device, an abnormality notification is sent to an external abnormality notification device. A device that outputs a signal is disclosed.
特許文献1に記載の装置では、上アーム回路と下アーム回路を構成するパワー半導体のどの箇所が故障しているかを特定することができなかった。
With the device described in Patent Document 1, it was not possible to identify which part of the power semiconductor constituting the upper arm circuit and the lower arm circuit is out of order.
本発明による電力変換装置は、複数相のモータの各相に対応して上アーム回路と下アーム回路により構成され、直流電流を複数相の交流電流に変換する電力変換回路と、前記上アーム回路と前記下アーム回路にPWM信号を出力する制御回路と、前記電力変換回路より出力される前記交流電流と前記PWM信号のデューティ比とに基づいて、複数相のうち1つ相が故障した場合の残りの相の交流電流値に基づく第1故障時模擬直流電流を算出する模擬直流電流計算部と、前記電力変換回路へ入力される直流電流、もしくは前記電力変換回路から出力される交流電流値に基づく直流電流と、前記PWM信号のデューティ比と、前記第1故障時模擬直流電流とに基づいて、いずれかの相の前記上アーム回路もしくは前記下アーム回路の故障を検出する故障判定部とを備える。
本発明による電力変換装置の制御方法は、複数相のモータの各相に対応して上アーム回路と下アーム回路により電力変換回路を構成し、直流電流を複数相の交流電流に変換し、前記上アーム回路と前記下アーム回路にPWM信号を出力し、前記電力変換回路より出力される前記交流電流と前記PWM信号のデューティ比とに基づいて、複数相のうち1つ相が故障した場合の残りの相の交流電流値に基づく第1故障時模擬直流電流を算出し、前記電力変換回路へ入力される直流電流、もしくは前記電力変換回路から出力される交流電流値に基づく直流電流と、前記PWM信号のデューティ比と、前記第1故障時模擬直流電流とに基づいて、いずれかの相の前記上アーム回路もしくは前記下アーム回路の故障を検出する。 The power conversion device according to the present invention is composed of an upper arm circuit and a lower arm circuit corresponding to each phase of a multi-phase motor, and has a power conversion circuit that converts a direct current into a multi-phase alternating current and the upper arm circuit. When one of the plurality of phases fails based on the control circuit that outputs the PWM signal to the lower arm circuit and the direct current output from the power conversion circuit and the duty ratio of the PWM signal. To the simulated DC current calculation unit that calculates the simulated DC current at the time of the first failure based on the AC current value of the remaining phases, and the DC current input to the power conversion circuit or the AC current value output from the power conversion circuit. Based on the DC current, the duty ratio of the PWM signal, and the simulated DC current at the time of the first failure, the failure determination unit that detects the failure of the upper arm circuit or the lower arm circuit of any phase. Be prepared.
In the control method of the power conversion device according to the present invention, a power conversion circuit is formed by an upper arm circuit and a lower arm circuit corresponding to each phase of a multi-phase motor, and a direct current is converted into a multi-phase alternating current. When a PWM signal is output to the upper arm circuit and the lower arm circuit, and one of the plurality of phases fails based on the direct current output from the power conversion circuit and the duty ratio of the PWM signal. The simulated DC current at the time of the first failure is calculated based on the AC current value of the remaining phases, and the DC current input to the power conversion circuit or the DC current based on the AC current value output from the power conversion circuit and the above Based on the duty ratio of the PWM signal and the simulated DC current at the time of the first failure, the failure of the upper arm circuit or the lower arm circuit of any phase is detected.
本発明による電力変換装置の制御方法は、複数相のモータの各相に対応して上アーム回路と下アーム回路により電力変換回路を構成し、直流電流を複数相の交流電流に変換し、前記上アーム回路と前記下アーム回路にPWM信号を出力し、前記電力変換回路より出力される前記交流電流と前記PWM信号のデューティ比とに基づいて、複数相のうち1つ相が故障した場合の残りの相の交流電流値に基づく第1故障時模擬直流電流を算出し、前記電力変換回路へ入力される直流電流、もしくは前記電力変換回路から出力される交流電流値に基づく直流電流と、前記PWM信号のデューティ比と、前記第1故障時模擬直流電流とに基づいて、いずれかの相の前記上アーム回路もしくは前記下アーム回路の故障を検出する。 The power conversion device according to the present invention is composed of an upper arm circuit and a lower arm circuit corresponding to each phase of a multi-phase motor, and has a power conversion circuit that converts a direct current into a multi-phase alternating current and the upper arm circuit. When one of the plurality of phases fails based on the control circuit that outputs the PWM signal to the lower arm circuit and the direct current output from the power conversion circuit and the duty ratio of the PWM signal. To the simulated DC current calculation unit that calculates the simulated DC current at the time of the first failure based on the AC current value of the remaining phases, and the DC current input to the power conversion circuit or the AC current value output from the power conversion circuit. Based on the DC current, the duty ratio of the PWM signal, and the simulated DC current at the time of the first failure, the failure determination unit that detects the failure of the upper arm circuit or the lower arm circuit of any phase. Be prepared.
In the control method of the power conversion device according to the present invention, a power conversion circuit is formed by an upper arm circuit and a lower arm circuit corresponding to each phase of a multi-phase motor, and a direct current is converted into a multi-phase alternating current. When a PWM signal is output to the upper arm circuit and the lower arm circuit, and one of the plurality of phases fails based on the direct current output from the power conversion circuit and the duty ratio of the PWM signal. The simulated DC current at the time of the first failure is calculated based on the AC current value of the remaining phases, and the DC current input to the power conversion circuit or the DC current based on the AC current value output from the power conversion circuit and the above Based on the duty ratio of the PWM signal and the simulated DC current at the time of the first failure, the failure of the upper arm circuit or the lower arm circuit of any phase is detected.
本発明によれば、上アーム回路と下アーム回路を構成するパワー半導体のどの箇所が故障しているかを特定することができる。
According to the present invention, it is possible to identify which part of the power semiconductor constituting the upper arm circuit and the lower arm circuit is out of order.
[第1の実施形態]
図1は、第1の実施形態に係る電力変換装置100の回路構成図である。
電力変換装置100は、力行時において、直流電源10から得られる直流電力を交流電力に変換してモータ20を駆動する。直流電源10はモータ20を駆動させるための電源である。また、電力変換装置100は、回生時において、モータ20の動力を直流電力に変換して直流電源10を充電する。 [First Embodiment]
FIG. 1 is a circuit configuration diagram of thepower conversion device 100 according to the first embodiment.
Thepower conversion device 100 converts the DC power obtained from the DC power supply 10 into AC power to drive the motor 20 during power running. The DC power supply 10 is a power supply for driving the motor 20. Further, the power conversion device 100 converts the power of the motor 20 into DC power to charge the DC power supply 10 at the time of regeneration.
図1は、第1の実施形態に係る電力変換装置100の回路構成図である。
電力変換装置100は、力行時において、直流電源10から得られる直流電力を交流電力に変換してモータ20を駆動する。直流電源10はモータ20を駆動させるための電源である。また、電力変換装置100は、回生時において、モータ20の動力を直流電力に変換して直流電源10を充電する。 [First Embodiment]
FIG. 1 is a circuit configuration diagram of the
The
モータ20は内部に3個の巻き線を有した3相電動機である。また、このモータ20には、モータ20の回転角度を測定するための角度センサ(図示省略)が搭載されており、この角度センサは測定した回転角度を角度センサ値として電力変換装置100に出力する。電力変換装置100は、後述する故障を検知して、故障通知装置30へ故障を通知する。
The motor 20 is a three-phase electric motor having three windings inside. Further, the motor 20 is equipped with an angle sensor (not shown) for measuring the rotation angle of the motor 20, and the angle sensor outputs the measured rotation angle as an angle sensor value to the power conversion device 100. .. The power conversion device 100 detects a failure described later and notifies the failure notification device 30 of the failure.
電力変換装置100は、制御回路40、ドライバ回路50、電力変換回路60を備える。制御回路40は、モータ速度計算部41、目標電流計算部42、デューティ計算部43、PWM信号生成部44、パワー半導体診断部45を備える。パワー半導体診断部45は、模擬直流電流計算部451、故障判定部452を備える。
電圧センサ70は、直流電源10の出力電圧を測定するセンサであり、測定した電圧値を電圧センサ値として制御回路40内の目標電流計算部42に出力する。 Thepower conversion device 100 includes a control circuit 40, a driver circuit 50, and a power conversion circuit 60. The control circuit 40 includes a motor speed calculation unit 41, a target current calculation unit 42, a duty calculation unit 43, a PWM signal generation unit 44, and a power semiconductor diagnosis unit 45. The power semiconductor diagnosis unit 45 includes a simulated direct current calculation unit 451 and a failure determination unit 452.
Thevoltage sensor 70 is a sensor that measures the output voltage of the DC power supply 10, and outputs the measured voltage value as a voltage sensor value to the target current calculation unit 42 in the control circuit 40.
電圧センサ70は、直流電源10の出力電圧を測定するセンサであり、測定した電圧値を電圧センサ値として制御回路40内の目標電流計算部42に出力する。 The
The
直流電流センサ80は、直流電源10と電力変換回路(インバータ回路)60の間を流れる直流電流を測定し、測定した電流値を直流電流センサ値Idcsとして故障判定部452に出力する。なお、本実施形態では、直流電源10から電力変換回路60に流れ込む電流を正の電流値として測定するように直流電流センサ80を設置しているが、逆向きの電流値を正の電流値として測定するように直流電流センサ80を設置しても良い。
The DC current sensor 80 measures the DC current flowing between the DC power supply 10 and the power conversion circuit (inverter circuit) 60, and outputs the measured current value as the DC current sensor value Idcs to the failure determination unit 452. In the present embodiment, the DC current sensor 80 is installed so as to measure the current flowing from the DC power supply 10 into the power conversion circuit 60 as a positive current value, but the reverse current value is used as a positive current value. A DC current sensor 80 may be installed to measure.
交流電流センサ90は、モータ20の各相(U相、V相、W相)に流れる交流電流を測定するためのセンサである。具体的には、U相を流れる交流電流Iuを測定し、デューティ計算部43および模擬直流電流計算部451に対して交流電流センサ値Iusを出力する。同様に、V相を流れる交流電流Ivを測定し、デューティ計算部43および模擬直流電流計算部451に対して交流電流センサ値Ivsを出力する。同様に、W相を流れる交流電流Iwを測定し、デューティ計算部43および模擬直流電流計算部451に対して交流電流センサ値Iwsを出力する。
The AC current sensor 90 is a sensor for measuring the AC current flowing through each phase (U phase, V phase, W phase) of the motor 20. Specifically, the AC current Iu flowing through the U phase is measured, and the AC current sensor value Ius is output to the duty calculation unit 43 and the simulated DC current calculation unit 451. Similarly, the AC current Iv flowing through the V phase is measured, and the AC current sensor value Ivs is output to the duty calculation unit 43 and the simulated DC current calculation unit 451. Similarly, the AC current Iw flowing through the W phase is measured, and the AC current sensor value Iws is output to the duty calculation unit 43 and the simulated DC current calculation unit 451.
モータ速度計算部41は、モータ20内の角度センサ値の変化からモータ速度値を計算し、計算したモータ速度値を目標電流計算部42に出力する。
制御回路40は、電力変換装置100の外部に設けられた電子制御装置(図示省略)と通信を行い、外部の電子制御装置からモータ20の目標トルクを受け取り、目標電流計算部42へ入力する。 The motorspeed calculation unit 41 calculates the motor speed value from the change in the angle sensor value in the motor 20, and outputs the calculated motor speed value to the target current calculation unit 42.
Thecontrol circuit 40 communicates with an electronic control device (not shown) provided outside the power conversion device 100, receives a target torque of the motor 20 from the external electronic control device, and inputs the target torque to the target current calculation unit 42.
制御回路40は、電力変換装置100の外部に設けられた電子制御装置(図示省略)と通信を行い、外部の電子制御装置からモータ20の目標トルクを受け取り、目標電流計算部42へ入力する。 The motor
The
目標電流計算部42は、目標トルク、電圧センサ値、モータ速度計算部41が出力するモータ速度値を用いて、モータ20に流すべき電流値を計算し、この電流値を目標電流値としてデューティ計算部43に出力する。この目標電流値は、例えばd軸目標電流値とq軸目標電流値の形で表される。
The target current calculation unit 42 calculates the current value to be passed through the motor 20 by using the target torque, the voltage sensor value, and the motor speed value output by the motor speed calculation unit 41, and calculates the duty using this current value as the target current value. Output to unit 43. This target current value is expressed, for example, in the form of a d-axis target current value and a q-axis target current value.
デューティ計算部43は、目標電流計算部42が出力した目標電流値と交流電流センサ値Ius、Ivs、Iwsに基づいてU相デューティ値Du、V相デューティ値Dv、W相デューティ値Dwを計算し、PWM信号生成部44および模擬直流電流計算部451に出力する。
The duty calculation unit 43 calculates the U-phase duty value Du, the V-phase duty value Dv, and the W-phase duty value Dw based on the target current value output by the target current calculation unit 42 and the AC current sensor values Ius, Ivs, and Iws. , Output to the PWM signal generation unit 44 and the simulated DC current calculation unit 451.
本実施形態では、U相デューティ値Duは、U相上アーム回路パワー半導体のON時間割合を示し、U相下アーム回路パワー半導体のON時間割合は1-Duで示す。同様に、V相デューティ値Dvは、V相上アーム回路パワー半導体のON時間割合を示し、V相下アーム回路パワー半導体のON時間割合は1-Dvで示す。W相デューティ値Dwは、W相上アーム回路パワー半導体のON時間割合を示し、W相下アーム回路パワー半導体のON時間割合は1-Dwで示す。
In the present embodiment, the U-phase duty value Du indicates the ON time ratio of the U-phase upper arm circuit power semiconductor, and the ON time ratio of the U-phase lower arm circuit power semiconductor is indicated by 1-Du. Similarly, the V-phase duty value Dv indicates the ON time ratio of the V-phase upper arm circuit power semiconductor, and the ON time ratio of the V-phase lower arm circuit power semiconductor is indicated by 1-Dv. The W-phase duty value Dw indicates the ON time ratio of the W-phase upper arm circuit power semiconductor, and the ON time ratio of the W-phase lower arm circuit power semiconductor is indicated by 1-Dw.
PWM信号生成部44は、内部にタイマ(図示省略)を有しており、このタイマ値とU相デューティ値Du、V相デューティ値Dv、W相デューティ値Dwに基づいて、PWM(Pulse Wide Modulation)信号を生成し、ドライバ回路50に対して出力する。
The PWM signal generation unit 44 has a timer (not shown) inside, and based on this timer value, U-phase duty value Du, V-phase duty value Dv, and W-phase duty value Dw, PWM (Pulse Wide Modulation). ) Generates a signal and outputs it to the driver circuit 50.
PWM信号生成部44は、パワー半導体診断部45から異常通知信号が出力された場合には、モータ20が駆動しないようにPWM信号を制御する。モータ20が駆動しない状態とは、例えば、電力変換回路60内の6個のパワー半導体をすべてOFFにする状態(本実施形態ではフリーホイール状態と呼ぶ)が挙げられる。その他の例としては、6個のパワー半導体のうち、上アーム回路のパワー半導体3個をONにし、下アーム回路のパワー半導体3個をOFFにする状態(本実施形態では上アームアクティブショート状態と呼ぶ)、逆に上アーム回路のパワー半導体3個をOFFにし、下アーム回路のパワー半導体3個をONにする状態(本実施形態では下アームアクティブショート状態と呼ぶ)が挙げられる。
The PWM signal generation unit 44 controls the PWM signal so that the motor 20 is not driven when an abnormality notification signal is output from the power semiconductor diagnosis unit 45. The state in which the motor 20 is not driven includes, for example, a state in which all six power semiconductors in the power conversion circuit 60 are turned off (referred to as a freewheel state in the present embodiment). As another example, of the six power semiconductors, three power semiconductors in the upper arm circuit are turned on and three power semiconductors in the lower arm circuit are turned off (in this embodiment, the upper arm active short state and the state). (Called), conversely, a state in which three power semiconductors in the upper arm circuit are turned off and three power semiconductors in the lower arm circuit are turned on (referred to as a lower arm active short state in this embodiment) can be mentioned.
ドライバ回路50は、PWM信号生成部44が出力するPWM信号を受けて、パワー半導体のON/OFFを切り替えるための駆動信号を電力変換回路60へ出力する。
電力変換回路60は、内部に平滑コンデンサと6つのパワー半導体を有し、力行時において、直流電源10から得られる直流電力を交流電力に変換してモータ20を駆動する。また、回生時において、モータ20の動力を直流電力に変換して直流電源10を充電する。 Thedriver circuit 50 receives the PWM signal output by the PWM signal generation unit 44 and outputs a drive signal for switching ON / OFF of the power semiconductor to the power conversion circuit 60.
Thepower conversion circuit 60 has a smoothing capacitor and six power semiconductors inside, and converts the DC power obtained from the DC power supply 10 into AC power to drive the motor 20 at the time of power running. Further, at the time of regeneration, the power of the motor 20 is converted into DC power to charge the DC power supply 10.
電力変換回路60は、内部に平滑コンデンサと6つのパワー半導体を有し、力行時において、直流電源10から得られる直流電力を交流電力に変換してモータ20を駆動する。また、回生時において、モータ20の動力を直流電力に変換して直流電源10を充電する。 The
The
パワー半導体診断部45は、電力変換回路60内のパワー半導体の故障診断を行う。パワー半導体診断部45内の模擬直流電流計算部451は、各相のデューティ値Du、Dv、Dwと交流電流センサ値Ius、Ivs、Iwsを基に各相の第1故障時模擬直流電流値を計算し、故障判定部452に出力する。
The power semiconductor diagnosis unit 45 diagnoses the failure of the power semiconductor in the power conversion circuit 60. The simulated DC current calculation unit 451 in the power semiconductor diagnostic unit 45 calculates the simulated DC current value at the time of the first failure of each phase based on the duty values Du, Dv, Dw of each phase and the AC current sensor values Ius, Ivs, Iws. It is calculated and output to the failure determination unit 452.
故障判定部452は、各相の第1故障時模擬直流電流値、直流電流センサ値Idcs、各相のデューティ値Du、Dv、Dw、目標トルクを用いて、電力変換回路60内のパワー半導体のどの箇所が故障しているかを判定し、故障個所に応じた故障通知信号を故障通知装置30とPWM信号生成部44に出力する。なお、故障判定部452は、目標トルクを判別して、力行時であるか回生時であるかを識別する。具体的には、目標トルクが正の場合は力行時であることを、目標トルクが負の場合は回生時であることを指す。他の識別方法として、直流電流センサ値Idcsが正の場合は力行時であるとし、直流電流センサ値Idcsが負の場合は回生時であるとして識別してもよい。
The failure determination unit 452 uses the simulated DC current value at the time of the first failure of each phase, the DC current sensor value Idcs, the duty values Du, Dv, Dw of each phase, and the target torque of the power semiconductor in the power conversion circuit 60. It is determined which part has failed, and a failure notification signal corresponding to the failed part is output to the failure notification device 30 and the PWM signal generation unit 44. The failure determination unit 452 determines the target torque and identifies whether it is during power running or regeneration. Specifically, when the target torque is positive, it means that it is in power running, and when the target torque is negative, it means that it is in regeneration. As another identification method, if the DC current sensor value Idcs is positive, it may be identified as power running, and if the DC current sensor value Idcs is negative, it may be identified as regenerative.
図2は、電力変換回路60の回路構成図である。
電力変換回路60は、UVW相の上下アーム直列回路を有する。U相上下アーム直列回路61は、U相上アームパワー半導体Tuu及びU相上アームダイオードDuuと、U相下アームパワー半導体Tul及びU相下アームダイオードDulとよりなる。V相上下アーム直列回路62は、V相上アームパワー半導体Tvu及びV相上アームダイオードDvuと、V相下アームパワー半導体Tvl及びV相下アームダイオードDvlとよりなる。W相上下アーム直列回路63は、W相上アームパワー半導体Twu及びW相上アームダイオードDwuと、W相下アームパワー半導体Twl及びW相下アームダイオードDwlとよりなる。 FIG. 2 is a circuit configuration diagram of thepower conversion circuit 60.
Thepower conversion circuit 60 has a UVW phase upper and lower arm series circuit. The U-phase upper and lower arm series circuit 61 includes a U-phase upper arm power semiconductor Tu and a U-phase upper arm diode Du, and a U-phase lower arm power semiconductor Tu and a U-phase lower arm diode Du. The V-phase upper and lower arm series circuit 62 includes a V-phase upper arm power semiconductor Tv and a V-phase upper arm diode Dvu, and a V-phase lower arm power semiconductor Tvl and a V-phase lower arm diode Dvl. The W-phase upper and lower arm series circuit 63 includes a W-phase upper arm power semiconductor Tww and a W-phase upper arm diode Dwoo, and a W-phase lower arm power semiconductor Twl and a W-phase lower arm diode Dwl.
電力変換回路60は、UVW相の上下アーム直列回路を有する。U相上下アーム直列回路61は、U相上アームパワー半導体Tuu及びU相上アームダイオードDuuと、U相下アームパワー半導体Tul及びU相下アームダイオードDulとよりなる。V相上下アーム直列回路62は、V相上アームパワー半導体Tvu及びV相上アームダイオードDvuと、V相下アームパワー半導体Tvl及びV相下アームダイオードDvlとよりなる。W相上下アーム直列回路63は、W相上アームパワー半導体Twu及びW相上アームダイオードDwuと、W相下アームパワー半導体Twl及びW相下アームダイオードDwlとよりなる。 FIG. 2 is a circuit configuration diagram of the
The
上アーム回路64は、U相上アームパワー半導体Tuu及びU相上アームダイオードDuuと、V相上アームパワー半導体Tvu及びV相上アームダイオードDvuと、W相上アームパワー半導体Twu及びW相上アームダイオードDwuとを有する。下アーム回路65は、U相下アームパワー半導体Tul及びU相下アームダイオードDulと、V相下アームパワー半導体Tvl及びV相下アームダイオードDvlと、W相下アームパワー半導体Twl及びW相下アームダイオードDwlとを有する。パワー半導体は、例えばパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)などである。
The upper arm circuit 64 includes a U-phase upper arm power semiconductor Tu and a U-phase upper arm diode Du, a V-phase upper arm power semiconductor Tv and a V-phase upper arm diode Dv, and a W-phase upper arm power semiconductor Tww and a W-phase upper arm. It has a diode Dwoo. The lower arm circuit 65 includes a U-phase lower arm power semiconductor Tul and a U-phase lower arm diode Dul, a V-phase lower arm power semiconductor Tvl and a V-phase lower arm diode Dvl, and a W-phase lower arm power semiconductor Twl and a W-phase lower arm. It has a diode Dwl. The power semiconductor is, for example, a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor).
平滑コンデンサ66は、パワー半導体のON/OFFによって生じる電流を平滑化し、直流電源10から電力変換回路60へ供給される直流電流のリップルを抑制する。この平滑コンデンサ66は、例えば電解コンデンサやフィルムコンデンサを用いる。
The smoothing capacitor 66 smoothes the current generated by ON / OFF of the power semiconductor and suppresses the ripple of the DC current supplied from the DC power supply 10 to the power conversion circuit 60. For the smoothing capacitor 66, for example, an electrolytic capacitor or a film capacitor is used.
図3は、パワー半導体診断部45におけるパワー半導体の故障判定処理を示すフローチャートである。
図3のステップS10に示すように、パワー半導体診断部45は、交流電流センサ値Ius、Ivs、Iwsと直流電流センサ値Idcsを取得する。 FIG. 3 is a flowchart showing a failure determination process of the power semiconductor in the powersemiconductor diagnosis unit 45.
As shown in step S10 of FIG. 3, the power semiconductordiagnostic unit 45 acquires the AC current sensor values Ius, Ivs, Iws and the DC current sensor value Idcs.
図3のステップS10に示すように、パワー半導体診断部45は、交流電流センサ値Ius、Ivs、Iwsと直流電流センサ値Idcsを取得する。 FIG. 3 is a flowchart showing a failure determination process of the power semiconductor in the power
As shown in step S10 of FIG. 3, the power semiconductor
ステップS11で、模擬直流電流計算部451は、各相のデューティ値Du、Dv、Dwと交流電流センサ値Ius、Ivs、Iwsから、次式(1)~(3)に基づいて、U相第1故障時模擬直流電流値Idcu、V相第1故障時模擬直流電流値Idcv、W相第1故障時模擬直流電流値Idcwを計算し、故障判定部452に出力する。
U相第1故障時模擬直流電流Idcu=Dv×Ivs+Dw×Iws (1)
V相第1故障時模擬直流電流Idcv=Du×Ius+Dw×Iws (2)
W相第1故障時模擬直流電流Idcw=Du×Ius+Dv×Ivs (3) In step S11, the simulated DCcurrent calculation unit 451 uses the duty values Du, Dv, Dw of each phase and the AC current sensor values Ius, Ivs, and Iws based on the following equations (1) to (3). 1 The simulated DC current value Idcu at the time of failure, the simulated DC current value Idcv at the time of the first failure of the V phase, and the simulated DC current value Idcw at the time of the first failure of the W phase are calculated and output to the failure determination unit 452.
Simulated DC current at the time of U-phase first failure Idcu = Dv × Ivs + Dw × Iws (1)
Simulated DC current at the time of V-phase first failure Idcv = Du × Ius + Dw × Iws (2)
Simulated DC current at the time of W phase 1st failure Idcw = Du × Ius + Dv × Ivs (3)
U相第1故障時模擬直流電流Idcu=Dv×Ivs+Dw×Iws (1)
V相第1故障時模擬直流電流Idcv=Du×Ius+Dw×Iws (2)
W相第1故障時模擬直流電流Idcw=Du×Ius+Dv×Ivs (3) In step S11, the simulated DC
Simulated DC current at the time of U-phase first failure Idcu = Dv × Ivs + Dw × Iws (1)
Simulated DC current at the time of V-phase first failure Idcv = Du × Ius + Dw × Iws (2)
Simulated DC current at the time of W phase 1st failure Idcw = Du × Ius + Dv × Ivs (3)
ステップS12で、故障判定部452は、直流電流センサ値IdcsとU相第1故障時模擬直流電流値Idcuの差が閾値1未満のとき、U相のパワー半導体に故障が発生していると判定する。パワー半導体のOFF固着故障が発生すると、故障したパワー半導体に電流を流そうとする時間帯には、当該相の第1故障時模擬直流電流は、実際の直流電流値と略等しくなる。閾値1は、この関係が成り立つ値に設定される。これにより、どの相で故障が発生したか判別できる。
ステップS13で、故障判定部452は、入力される目標トルク等に基づいてモータ20が力行状態か回生状態かを判定する。 In step S12, thefailure determination unit 452 determines that a failure has occurred in the U-phase power semiconductor when the difference between the DC current sensor value Idcs and the simulated DC current value Idcu at the time of the first U-phase failure is less than the threshold value 1. To do. When an OFF sticking failure of a power semiconductor occurs, the simulated DC current at the time of the first failure of the phase concerned becomes substantially equal to the actual DC current value during the time period when a current is to be passed through the failed power semiconductor. The threshold value 1 is set to a value at which this relationship holds. This makes it possible to determine in which phase the failure occurred.
In step S13, thefailure determination unit 452 determines whether the motor 20 is in the power running state or the regenerative state based on the input target torque or the like.
ステップS13で、故障判定部452は、入力される目標トルク等に基づいてモータ20が力行状態か回生状態かを判定する。 In step S12, the
In step S13, the
力行状態であると判定された場合、ステップS14に進み、ステップS14で故障判定部452は、U相デューティ値Duが閾値2より大きいかを判定する。U相デューティ値Duが閾値2より大きい場合は、ステップS16で、U相上アーム回路パワー半導体のOFF固着故障と判定する。U相デューティ値Duが閾値2より大きくない場合は、ステップS17で、U相下アーム回路パワー半導体のOFF固着故障と判定する。U相デューティ値Duが0~1の範囲であれば、閾値2は例えば、0.5に設定する。これにより、上アーム回路と下アーム回路のどちらに電流を流そうとしているかを判別する。
If it is determined to be in the power running state, the process proceeds to step S14, and in step S14, the failure determination unit 452 determines whether the U-phase duty value Du is larger than the threshold value 2. When the U-phase duty value Du is larger than the threshold value 2, it is determined in step S16 that the U-phase upper arm circuit power semiconductor has an OFF sticking failure. If the U-phase duty value Du is not larger than the threshold value 2, it is determined in step S17 that the U-phase lower arm circuit power semiconductor has an OFF sticking failure. If the U-phase duty value Du is in the range of 0 to 1, the threshold value 2 is set to, for example, 0.5. As a result, it is determined whether the current is going to flow through the upper arm circuit or the lower arm circuit.
ステップS13で回生状態であると判定された場合、ステップS15に進み、ステップS15で、故障判定部452は、U相デューティ値Duが閾値2以下であるかであるかを判定する。U相デューティ値Duが閾値2以下であれば、ステップS16で、U相上アーム回路パワー半導体のOFF固着故障と判定する。U相デューティ値Duが閾値2以下でなければ、ステップS17で、U相下アーム回路パワー半導体のOFF固着故障と判定する。
ステップS18で、故障判定部452は、故障個所に応じた故障通知信号をPWM信号生成部44と故障通知装置30に出力する。 If it is determined in step S13 that the state is regenerated, the process proceeds to step S15, and in step S15, thefailure determination unit 452 determines whether the U-phase duty value Du is equal to or less than the threshold value 2. If the U-phase duty value Du is a threshold value of 2 or less, it is determined in step S16 that the U-phase upper arm circuit power semiconductor has an OFF sticking failure. If the U-phase duty value Du is not equal to or less than the threshold value 2, it is determined in step S17 that the U-phase lower arm circuit power semiconductor has an OFF sticking failure.
In step S18, thefailure determination unit 452 outputs a failure notification signal corresponding to the failure location to the PWM signal generation unit 44 and the failure notification device 30.
ステップS18で、故障判定部452は、故障個所に応じた故障通知信号をPWM信号生成部44と故障通知装置30に出力する。 If it is determined in step S13 that the state is regenerated, the process proceeds to step S15, and in step S15, the
In step S18, the
このように、故障しているパワー半導体には電流が流れないため、故障箇所に電流を流そうとしたときに、直流電流が故障相の第1故障時模擬直流電流と略等しくなる。このとき、故障相のデューティ値によって、上下アームのどちらが主体的にONしているか分かるため、デューティによって上下アームの故障箇所が判別できる。なお、力行時は電圧(つまりデューティ)と電流の位相が同じであるため、デューティが閾値0.5より大きい時間帯と上アームに電流を流そうとする時間帯が一致する。一方、回生時は電圧(つまりデューティ)と電流の位相が180°ずれるため、デューティが閾値0.5より小さい時間帯と上アームに電流を流そうとする時間帯が一致することになる。
ステップS22~S27はV相の故障判定処理を、ステップS32~S37はW相の故障判定処理を示す。 As described above, since no current flows through the failed power semiconductor, the DC current becomes substantially equal to the simulated DC current at the time of the first failure of the failure phase when the current is tried to flow to the failure location. At this time, since it is possible to know which of the upper and lower arms is mainly ON by the duty value of the failure phase, the failure location of the upper and lower arms can be determined by the duty. Since the phases of the voltage (that is, the duty) and the current are the same during power running, the time zone in which the duty is larger than the threshold value 0.5 and the time zone in which the current is to be passed through the upper arm match. On the other hand, during regeneration, the phases of the voltage (that is, the duty) and the current are shifted by 180 °, so that the time zone when the duty is smaller than the threshold value 0.5 and the time zone when the current is to be passed through the upper arm coincide.
Steps S22 to S27 indicate a V-phase failure determination process, and steps S32 to S37 indicate a W-phase failure determination process.
ステップS22~S27はV相の故障判定処理を、ステップS32~S37はW相の故障判定処理を示す。 As described above, since no current flows through the failed power semiconductor, the DC current becomes substantially equal to the simulated DC current at the time of the first failure of the failure phase when the current is tried to flow to the failure location. At this time, since it is possible to know which of the upper and lower arms is mainly ON by the duty value of the failure phase, the failure location of the upper and lower arms can be determined by the duty. Since the phases of the voltage (that is, the duty) and the current are the same during power running, the time zone in which the duty is larger than the threshold value 0.5 and the time zone in which the current is to be passed through the upper arm match. On the other hand, during regeneration, the phases of the voltage (that is, the duty) and the current are shifted by 180 °, so that the time zone when the duty is smaller than the threshold value 0.5 and the time zone when the current is to be passed through the upper arm coincide.
Steps S22 to S27 indicate a V-phase failure determination process, and steps S32 to S37 indicate a W-phase failure determination process.
ステップS12で、直流電流センサ値IdcsとU相第1故障時模擬直流電流値Idcuの差が閾値1未満でなければ、ステップS22の処理に進む。ステップS22で、故障判定部452は、直流電流センサ値IdcsとV相第1故障時模擬直流電流値Idcvの差が閾値1未満のとき、V相のパワー半導体に故障が発生していると判定する。以下、ステップS22~S27はU相の故障判定処理であるステップS12~S17と同様であるのでその説明を省略する。
If the difference between the DC current sensor value Idcs and the simulated DC current value Idcu at the time of the first U-phase failure is not less than the threshold value 1 in step S12, the process proceeds to step S22. In step S22, the failure determination unit 452 determines that a failure has occurred in the V-phase power semiconductor when the difference between the DC current sensor value Idcs and the simulated DC current value Idcv at the time of the first failure of the V phase is less than the threshold value 1. To do. Hereinafter, since steps S22 to S27 are the same as steps S12 to S17 which are U-phase failure determination processes, the description thereof will be omitted.
ステップS22で、直流電流センサ値IdcsとV相第1故障時模擬直流電流値Idcvの差が閾値1未満でなければ、ステップS32の処理に進む。ステップS32で、故障判定部452は、直流電流センサ値IdcsとW相第1故障時模擬直流電流値Idcwの差が閾値1未満のとき、W相のパワー半導体に故障が発生していると判定する。以下、ステップS32~S37はU相の故障判定処理であるステップS12~S17と同様であるのでその説明を省略する。
If the difference between the DC current sensor value Idcs and the simulated DC current value Idcv at the time of the first failure of the V phase is not less than the threshold value 1 in step S22, the process proceeds to step S32. In step S32, the failure determination unit 452 determines that a failure has occurred in the W-phase power semiconductor when the difference between the DC current sensor value Idcs and the simulated DC current value Idcw at the time of the first W-phase failure is less than the threshold value 1. To do. Hereinafter, steps S32 to S37 are the same as steps S12 to S17, which are U-phase failure determination processes, and thus the description thereof will be omitted.
ステップS32で、故障判定部452は、直流電流センサ値IdcsとW相第1故障時模擬直流電流値Idcwの差が閾値1未満でなければ、ステップS39へ進む。ステップS39では、パワー半導体にOFF固着故障なしと判定する。
In step S32, the failure determination unit 452 proceeds to step S39 if the difference between the DC current sensor value Idcs and the simulated DC current value Idcw at the time of the first W phase failure is not less than the threshold value 1. In step S39, it is determined that there is no OFF sticking failure in the power semiconductor.
図4は、PWM信号生成部44の故障対応処理を示すフローチャートである。
PWM信号生成部44は、故障判定部452からの故障通知信号を受けて、故障対応処理を開始する。図3のステップS18により故障通知信号を受けて、図4のステップS40では、U相、V相、W相いずれかの上アームOFF固着故障が発生していると判定された場合には、ステップS41に進む。
ステップS41では、フリーホイール状態、もしくは下アームアクティブショート状態となるようなPWM信号を生成する。上アーム回路のパワー半導体は故障によりONできないため、上アーム回路アクティブショート状態にはしない。 FIG. 4 is a flowchart showing a failure handling process of the PWMsignal generation unit 44.
The PWMsignal generation unit 44 receives the failure notification signal from the failure determination unit 452 and starts the failure handling process. When the failure notification signal is received in step S18 of FIG. 3 and it is determined in step S40 of FIG. 4 that an upper arm OFF sticking failure of any of the U phase, V phase, and W phase has occurred, the step is taken. Proceed to S41.
In step S41, a PWM signal is generated so as to be in the freewheel state or the lower arm active short state. Since the power semiconductor of the upper arm circuit cannot be turned on due to a failure, the upper arm circuit is not put into the active short state.
PWM信号生成部44は、故障判定部452からの故障通知信号を受けて、故障対応処理を開始する。図3のステップS18により故障通知信号を受けて、図4のステップS40では、U相、V相、W相いずれかの上アームOFF固着故障が発生していると判定された場合には、ステップS41に進む。
ステップS41では、フリーホイール状態、もしくは下アームアクティブショート状態となるようなPWM信号を生成する。上アーム回路のパワー半導体は故障によりONできないため、上アーム回路アクティブショート状態にはしない。 FIG. 4 is a flowchart showing a failure handling process of the PWM
The PWM
In step S41, a PWM signal is generated so as to be in the freewheel state or the lower arm active short state. Since the power semiconductor of the upper arm circuit cannot be turned on due to a failure, the upper arm circuit is not put into the active short state.
ステップS42で、U相、V相、W相いずれかの下アームOFF固着故障が発生していると判定された場合には、ステップS43に進む。
ステップS43では、フリーホイール状態、もしくは上アームアクティブショート状態となるようなPWM信号を生成する。下アーム回路のパワー半導体は故障によりONできないため、下アーム回路アクティブショート状態にはしない。 If it is determined in step S42 that the lower arm OFF sticking failure of any of the U phase, V phase, and W phase has occurred, the process proceeds to step S43.
In step S43, a PWM signal is generated so as to be in the freewheel state or the upper arm active short state. Since the power semiconductor of the lower arm circuit cannot be turned on due to a failure, the lower arm circuit is not put into the active short state.
ステップS43では、フリーホイール状態、もしくは上アームアクティブショート状態となるようなPWM信号を生成する。下アーム回路のパワー半導体は故障によりONできないため、下アーム回路アクティブショート状態にはしない。 If it is determined in step S42 that the lower arm OFF sticking failure of any of the U phase, V phase, and W phase has occurred, the process proceeds to step S43.
In step S43, a PWM signal is generated so as to be in the freewheel state or the upper arm active short state. Since the power semiconductor of the lower arm circuit cannot be turned on due to a failure, the lower arm circuit is not put into the active short state.
ステップS40、ステップS42でいずれの故障にも該当しない場合は、ステップS44へ進む。ステップS44では、故障が発生していないのでPWM信号生成部44は、PWM動作を継続し、各相のデューティ値Du、Dv、Dwに応じたPWM信号を生成し、ドライバ回路50に出力する。
If neither failure corresponds to step S40 or step S42, the process proceeds to step S44. In step S44, since no failure has occurred, the PWM signal generation unit 44 continues the PWM operation, generates a PWM signal corresponding to the duty values Du, Dv, and Dw of each phase, and outputs the PWM signal to the driver circuit 50.
図5(A)、図5(B)、図5(C)は、力行時であってU相上アーム回路にOFF固着の故障が発生した場合の交流電流、デューティ、直流電流のグラフである。
図5(A)は、交流電流を、図5(B)はデューティを、図5(C)は、直流電流を示し、各グラフの横軸は時間である。時刻tにおいて、力行時であってU相上アーム回路にOFF固着の故障が発生した場合を示す。 5 (A), 5 (B), and 5 (C) are graphs of alternating current, duty, and direct current when a failure of OFF sticking occurs in the U-phase upper arm circuit during power running. ..
FIG. 5A shows an alternating current, FIG. 5B shows a duty, FIG. 5C shows a direct current, and the horizontal axis of each graph is time. At time t, a case where a failure of OFF sticking occurs in the U-phase upper arm circuit during power running is shown.
図5(A)は、交流電流を、図5(B)はデューティを、図5(C)は、直流電流を示し、各グラフの横軸は時間である。時刻tにおいて、力行時であってU相上アーム回路にOFF固着の故障が発生した場合を示す。 5 (A), 5 (B), and 5 (C) are graphs of alternating current, duty, and direct current when a failure of OFF sticking occurs in the U-phase upper arm circuit during power running. ..
FIG. 5A shows an alternating current, FIG. 5B shows a duty, FIG. 5C shows a direct current, and the horizontal axis of each graph is time. At time t, a case where a failure of OFF sticking occurs in the U-phase upper arm circuit during power running is shown.
図5(A)に示すように、時刻tにおいてU相上アーム回路にOFF固着の故障が発生しているので、U相を流れる交流電流センサ値Iusはゼロになる。図5(C)に示すように、U相第1故障時模擬直流電流値Idcuが直流電流センサ値Idcsに近い時間帯が生じ、この時間帯で、図3のステップS13で示したように、直流電流センサ値IdcsとU相第1故障時模擬直流電流値Idcuの差が閾値1未満と判定される。そして、この時間帯では、図5(B)に示すように、U相のデューティ値Duは0.5を超過している。したがって、図3のステップS14で示したように、U相デューティ値Duが閾値2より大きいと判定される。この結果、図3のステップS16で、U相上アーム回路パワー半導体のOFF固着故障が判定される。
As shown in FIG. 5 (A), since the failure of OFF sticking occurred in the U-phase upper arm circuit at time t, the AC current sensor value Ius flowing through the U-phase becomes zero. As shown in FIG. 5C, a time zone in which the simulated DC current value Idcu at the time of the first U-phase failure is close to the DC current sensor value Idcs occurs, and in this time zone, as shown in step S13 of FIG. It is determined that the difference between the DC current sensor value Idcs and the simulated DC current value Idcu at the time of the first U-phase failure is less than the threshold value 1. Then, in this time zone, as shown in FIG. 5 (B), the duty value Du of the U phase exceeds 0.5. Therefore, as shown in step S14 of FIG. 3, it is determined that the U-phase duty value Du is larger than the threshold value 2. As a result, in step S16 of FIG. 3, it is determined that the U-phase upper arm circuit power semiconductor has an OFF sticking failure.
[第2の実施形態]
図6は、第2の実施形態に係る電力変換装置200の回路構成図である。
第2の実施形態に係る電力変換装置200は、図1に示す第1の実施形態に係る電力変換装置100と比較して、直流電流センサ80を備えておらず、またパワー半導体診断部46が相違する。第1の実施形態に係る電力変換装置100と同一の個所には同一の符号を付してその説明を省略し、異なる部分について以下に説明する。 [Second Embodiment]
FIG. 6 is a circuit configuration diagram of thepower conversion device 200 according to the second embodiment.
Thepower conversion device 200 according to the second embodiment does not include the DC current sensor 80 as compared with the power conversion device 100 according to the first embodiment shown in FIG. 1, and the power semiconductor diagnostic unit 46 It is different. The same parts as those of the power conversion device 100 according to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the different parts will be described below.
図6は、第2の実施形態に係る電力変換装置200の回路構成図である。
第2の実施形態に係る電力変換装置200は、図1に示す第1の実施形態に係る電力変換装置100と比較して、直流電流センサ80を備えておらず、またパワー半導体診断部46が相違する。第1の実施形態に係る電力変換装置100と同一の個所には同一の符号を付してその説明を省略し、異なる部分について以下に説明する。 [Second Embodiment]
FIG. 6 is a circuit configuration diagram of the
The
パワー半導体診断部46の模擬直流電流計算部461は、各相の第1故障時模擬直流電流を第1の実施形態で示した式(1)~(3)に基づいて計算する。更に、各相デューティDu、Dv、Dwと各相の交流電流センサ値Ius、Ivs、Iwsを用いて、正常時模擬直流電流値を計算する。すなわち、正常時の直流電流は次式(4)で計算できるため、直流電流センサの代わりに、この式(4)で計算した値を用いる。
直流電流=(Du×Ius)+(Dv×Ivs)+(Dv×Iws) (4)
ここで、Du:U相デューティ比、Dv:V相デューティ比、Dw:W相デューティ比、Ius:U相交流電流センサ値、Ivs:V相交流電流センサ値、Iws:W相交流電流センサ値である。 The simulated DCcurrent calculation unit 461 of the power semiconductor diagnostic unit 46 calculates the simulated DC current at the time of the first failure of each phase based on the equations (1) to (3) shown in the first embodiment. Furthermore, the simulated DC current value at normal time is calculated using the phase duty Du, Dv, Dw and the AC current sensor values Ius, Ivs, and Iws of each phase. That is, since the DC current in the normal state can be calculated by the following equation (4), the value calculated by this equation (4) is used instead of the DC current sensor.
DC current = (Du x Ius) + (Dv x Ivs) + (Dv x Iws) (4)
Here, Du: U phase duty ratio, Dv: V phase duty ratio, Dw: W phase duty ratio, Ius: U phase AC current sensor value, Ivs: V phase AC current sensor value, Iws: W phase AC current sensor value Is.
直流電流=(Du×Ius)+(Dv×Ivs)+(Dv×Iws) (4)
ここで、Du:U相デューティ比、Dv:V相デューティ比、Dw:W相デューティ比、Ius:U相交流電流センサ値、Ivs:V相交流電流センサ値、Iws:W相交流電流センサ値である。 The simulated DC
DC current = (Du x Ius) + (Dv x Ivs) + (Dv x Iws) (4)
Here, Du: U phase duty ratio, Dv: V phase duty ratio, Dw: W phase duty ratio, Ius: U phase AC current sensor value, Ivs: V phase AC current sensor value, Iws: W phase AC current sensor value Is.
模擬直流電流計算部461は、算出した直流電流を故障判定部462に出力する。故障判定部462は、各相の第1故障時模擬直流電流値、正常時模擬直流電流値、各相のデューティ値Du、Dv、Dw、目標トルクを用いて、電力変換回路60内のパワー半導体のどの箇所が故障しているかを判定し、故障個所に応じた故障通知信号を故障通知装置30とPWM信号生成部44に出力する。なお、故障判定部462は、目標トルクを判別して、力行時であるか回生時であるかを識別する。具体的には、目標トルクが正の場合は力行時であることを、目標トルクが負の場合は回生時であることを指す。他の識別方法として、模擬直流電流計算部461で算出した正常時模擬直流電流が正の場合は力行時であるとし、模擬直流電流計算部461で算出した正常時模擬直流電流が負の場合は回生時であるとして識別してもよい。
The simulated DC current calculation unit 461 outputs the calculated DC current to the failure determination unit 462. The failure determination unit 462 uses the simulated DC current value at the time of the first failure of each phase, the simulated DC current value at the time of normal operation, the duty values Du, Dv, Dw of each phase, and the target torque, and uses the power semiconductor in the power conversion circuit 60. It is determined which part of the device is out of order, and a failure notification signal corresponding to the failure part is output to the failure notification device 30 and the PWM signal generation unit 44. The failure determination unit 462 determines the target torque to determine whether it is during power running or regeneration. Specifically, when the target torque is positive, it means that it is in power running, and when the target torque is negative, it means that it is in regeneration. As another identification method, when the simulated DC current calculated by the simulated DC current calculation unit 461 during normal operation is positive, it is assumed to be during power running, and when the simulated DC current calculated by the simulated DC current calculation unit 461 during normal operation is negative, it is assumed that it is during power running. It may be identified as being regenerated.
図7は、パワー半導体診断部46におけるパワー半導体の故障判定処理を示すフローチャートである。
第2の実施形態に係るパワー半導体診断部46における故障判定処理は、図3に示す第1の実施形態に係る故障判定処理を示すフローチャートと同一の個所には同一の符号を付してその説明を省略し、異なる部分について以下に説明する。
図7のステップS10’に示すように、パワー半導体診断部46は、交流電流センサ値Ius、Ivs、Iwsを取得する。 FIG. 7 is a flowchart showing a failure determination process of the power semiconductor in the powersemiconductor diagnosis unit 46.
The failure determination process in the power semiconductordiagnostic unit 46 according to the second embodiment is described by assigning the same reference numerals to the same parts as the flowchart showing the failure determination process according to the first embodiment shown in FIG. Will be omitted, and the different parts will be described below.
As shown in step S10'in FIG. 7, the power semiconductordiagnostic unit 46 acquires the AC current sensor values Ius, Ivs, and Iws.
第2の実施形態に係るパワー半導体診断部46における故障判定処理は、図3に示す第1の実施形態に係る故障判定処理を示すフローチャートと同一の個所には同一の符号を付してその説明を省略し、異なる部分について以下に説明する。
図7のステップS10’に示すように、パワー半導体診断部46は、交流電流センサ値Ius、Ivs、Iwsを取得する。 FIG. 7 is a flowchart showing a failure determination process of the power semiconductor in the power
The failure determination process in the power semiconductor
As shown in step S10'in FIG. 7, the power semiconductor
ステップS11’で、模擬直流電流計算部461は、各相のデューティ値Du、Dv、Dwと交流電流センサ値Ius、Ivs、Iwsから、式(1)~(3)に基づいて、U相第1故障時模擬直流電流値Idcu、V相第1故障時模擬直流電流値Idcv、W相第1故障時模擬直流電流値Idcwを計算し、故障判定部462に出力する。更に、正常時の直流電流である正常時模擬直流電流Idceを式(4)に基づいて計算し、故障判定部462に出力する。
In step S11', the simulated DC current calculation unit 461 uses the duty values Du, Dv, Dw of each phase and the AC current sensor values Ius, Ivs, and Iws based on the equations (1) to (3), and the U phase phase. 1 The simulated DC current value Idcu at the time of failure, the simulated DC current value Idcv at the time of the first failure of the V phase, and the simulated DC current value Idcw at the time of the first failure of the W phase are calculated and output to the failure determination unit 462. Further, the normal simulated DC current Idce, which is the normal DC current, is calculated based on the equation (4) and output to the failure determination unit 462.
ステップS12’で、故障判定部462は、正常時模擬直流電流IdceとU相第1故障時模擬直流電流値Idcuの差が閾値1未満のとき、U相のパワー半導体に故障が発生していると判定する。パワー半導体のOFF固着故障が発生すると、故障したパワー半導体に電流を流そうとする時間帯には、当該相の第1故障時模擬直流電流は、実際の直流電流値と略等しくなる。閾値1は、この関係が成り立つ値に設定される。これにより、どの相で故障が発生したか判別できる。
In step S12', when the difference between the normal simulated DC current Idce and the U-phase first fault simulated DC current value Idcu is less than the threshold value 1, the fault determination unit 462 has failed in the U-phase power semiconductor. Is determined. When an OFF sticking failure of a power semiconductor occurs, the simulated DC current at the time of the first failure of the phase concerned becomes substantially equal to the actual DC current value during the time period when a current is to be passed through the failed power semiconductor. The threshold value 1 is set to a value at which this relationship holds. This makes it possible to determine in which phase the failure occurred.
ステップS13で、故障判定部462は、入力される目標トルク等に基づいてモータ20が力行状態か回生状態かを判定する。以下、図3に示す第1の実施形態に係る故障判定処理を示すフローチャートと同様である。
In step S13, the failure determination unit 462 determines whether the motor 20 is in the power running state or the regenerative state based on the input target torque or the like. Hereinafter, it is the same as the flowchart showing the failure determination process according to the first embodiment shown in FIG.
ステップS12’で、正常時模擬直流電流IdceとU相第1故障時模擬直流電流値Idcuの差が閾値1未満でなければ、ステップS22’の処理に進む。ステップS22’で、故障判定部462は、正常時模擬直流電流IdceとV相第1故障時模擬直流電流値Idcvの差が閾値1未満のとき、V相のパワー半導体に故障が発生していると判定する。以下、ステップS23~S27はU相の故障判定処理ステップS13~S17と同様であるのでその説明を省略する。
If the difference between the normal simulated DC current Idce and the U-phase first failure simulated DC current value Idcu is not less than the threshold value 1 in step S12', the process proceeds to step S22'. In step S22', when the difference between the normal simulated DC current Idce and the V-phase first fault simulated DC current value Idcv is less than the threshold value 1, the fault determination unit 462 has failed in the V-phase power semiconductor. Is determined. Hereinafter, since steps S23 to S27 are the same as the U-phase failure determination processing steps S13 to S17, the description thereof will be omitted.
ステップS22’で、正常時模擬直流電流IdceとV相第1故障時模擬直流電流値Idcvの差が閾値1未満でなければ、ステップS32’の処理に進む。ステップS32’で、故障判定部462は、正常時模擬直流電流IdceとW相第1故障時模擬直流電流値Idcwの差が閾値1未満のとき、W相のパワー半導体に故障が発生していると判定する。以下、ステップS33~S37はU相の故障判定処理ステップS13~S17と同様であるのでその説明を省略する。
In step S22', if the difference between the normal simulated DC current Idce and the V-phase first fault simulated DC current value Idcv is not less than the threshold value 1, the process proceeds to step S32'. In step S32', when the difference between the normal simulated DC current Idce and the W-phase first fault simulated DC current value Idcw is less than the threshold value 1, the failure determination unit 462 has failed in the W-phase power semiconductor. Is determined. Hereinafter, since steps S33 to S37 are the same as the U-phase failure determination processing steps S13 to S17, the description thereof will be omitted.
ステップS32’で、故障判定部462は、正常時模擬直流電流IdceとW相第1故障時模擬直流電流値Idcwの差が閾値1未満でなければ、ステップS39へ進む。ステップS39では、パワー半導体にOFF固着故障なしと判定する。
In step S32', the failure determination unit 462 proceeds to step S39 if the difference between the normal simulated DC current Idce and the W-phase first fault simulated DC current value Idcw is not less than the threshold value 1. In step S39, it is determined that there is no OFF sticking failure in the power semiconductor.
[第3の実施形態]
図8は、第3の実施形態に係る電力変換装置300の回路構成図である。
第3の実施形態に係る電力変換装置300は、図1に示す第1の実施形態に係る電力変換装置100におけるパワー半導体診断部47が相違する。第1の実施形態に係る電力変換装置100と同一の個所には同一の符号を付してその説明を省略し、異なる部分について以下に説明する。 [Third Embodiment]
FIG. 8 is a circuit configuration diagram of thepower conversion device 300 according to the third embodiment.
Thepower conversion device 300 according to the third embodiment is different from the power semiconductor diagnostic unit 47 in the power conversion device 100 according to the first embodiment shown in FIG. The same parts as those of the power conversion device 100 according to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the different parts will be described below.
図8は、第3の実施形態に係る電力変換装置300の回路構成図である。
第3の実施形態に係る電力変換装置300は、図1に示す第1の実施形態に係る電力変換装置100におけるパワー半導体診断部47が相違する。第1の実施形態に係る電力変換装置100と同一の個所には同一の符号を付してその説明を省略し、異なる部分について以下に説明する。 [Third Embodiment]
FIG. 8 is a circuit configuration diagram of the
The
パワー半導体診断部47の模擬直流電流計算部471は、各相の第1故障時模擬直流電流を第1の実施形態で示した式(1)~(3)に基づいて計算する。更に、各相の第2故障時模擬直流電流を次式(5)~(7)に基づいて計算する。
U相第2故障時模擬直流電流Idcu2=K×Ius+Dv×Ivs+Dw×Iws (5)
V相第2故障時模擬直流電流Idcv2=Du×Ius+K×Ivs+Dw×Iws (6)
W相第2故障時模擬直流電流Idcw2=Du×Ius+Dv×Ivs+K×Iws (7)
ここで、Du:U相デューティ比、Dv:V相デューティ比、Dw:W相デューティ比、Ius:U相交流電流センサ値、Ivs:V相交流電流センサ値、Iws:W相交流電流センサ値、Kは係数である。係数Kは、0<K≦1の範囲で設定される。第1の実施形態で示した式(1)~(3)の第1故障時模擬直流電流は、K=0で式(5)~(7)を計算した場合に相当する。正常時の誤検知回避のためには、Kは0から大きく異なる値(例えばK=1)に設定することが望ましい。 The simulated DCcurrent calculation unit 471 of the power semiconductor diagnostic unit 47 calculates the simulated DC current at the time of the first failure of each phase based on the equations (1) to (3) shown in the first embodiment. Further, the simulated DC current at the time of the second failure of each phase is calculated based on the following equations (5) to (7).
Simulated DC current at the time of U-phase second failure Idcu2 = K × Ius + Dv × Ivs + Dw × Iws (5)
Simulated DC current at the time of V-phase second failure Idcv2 = Du × Ius + K × Ivs + Dw × Iws (6)
Simulated DC current at the time of W phase second failure Idcw2 = Du × Ius + Dv × Ivs + K × Iws (7)
Here, Du: U phase duty ratio, Dv: V phase duty ratio, Dw: W phase duty ratio, Ius: U phase AC current sensor value, Ivs: V phase AC current sensor value, Iws: W phase AC current sensor value , K is a coefficient. The coefficient K is set in the range of 0 <K ≦ 1. The simulated DC current at the time of the first failure of the equations (1) to (3) shown in the first embodiment corresponds to the case where the equations (5) to (7) are calculated with K = 0. To avoid false positives during normal operation, it is desirable to set K to a value that differs significantly from 0 (for example, K = 1).
U相第2故障時模擬直流電流Idcu2=K×Ius+Dv×Ivs+Dw×Iws (5)
V相第2故障時模擬直流電流Idcv2=Du×Ius+K×Ivs+Dw×Iws (6)
W相第2故障時模擬直流電流Idcw2=Du×Ius+Dv×Ivs+K×Iws (7)
ここで、Du:U相デューティ比、Dv:V相デューティ比、Dw:W相デューティ比、Ius:U相交流電流センサ値、Ivs:V相交流電流センサ値、Iws:W相交流電流センサ値、Kは係数である。係数Kは、0<K≦1の範囲で設定される。第1の実施形態で示した式(1)~(3)の第1故障時模擬直流電流は、K=0で式(5)~(7)を計算した場合に相当する。正常時の誤検知回避のためには、Kは0から大きく異なる値(例えばK=1)に設定することが望ましい。 The simulated DC
Simulated DC current at the time of U-phase second failure Idcu2 = K × Ius + Dv × Ivs + Dw × Iws (5)
Simulated DC current at the time of V-phase second failure Idcv2 = Du × Ius + K × Ivs + Dw × Iws (6)
Simulated DC current at the time of W phase second failure Idcw2 = Du × Ius + Dv × Ivs + K × Iws (7)
Here, Du: U phase duty ratio, Dv: V phase duty ratio, Dw: W phase duty ratio, Ius: U phase AC current sensor value, Ivs: V phase AC current sensor value, Iws: W phase AC current sensor value , K is a coefficient. The coefficient K is set in the range of 0 <K ≦ 1. The simulated DC current at the time of the first failure of the equations (1) to (3) shown in the first embodiment corresponds to the case where the equations (5) to (7) are calculated with K = 0. To avoid false positives during normal operation, it is desirable to set K to a value that differs significantly from 0 (for example, K = 1).
模擬直流電流計算部471で算出された各相の第1故障時模擬直流電流および第2故障時模擬直流電流は、故障判定部472に出力する。
The simulated DC current at the time of the first failure and the simulated DC current at the time of the second failure of each phase calculated by the simulated DC current calculation unit 471 are output to the failure determination unit 472.
故障判定部472は、各相の第1故障時模擬直流電流値、各相の第2故障時模擬直流電流値、直流電流センサ値Idcs、各相のデューティ値Du、Dv、Dw、目標トルクを用いて、電力変換回路60内のパワー半導体のどの箇所が故障しているかを判定し、故障個所に応じた故障通知信号を故障通知装置30とPWM信号生成部44に出力する。
The failure determination unit 472 determines the simulated DC current value at the time of the first failure of each phase, the simulated DC current value at the time of the second failure of each phase, the DC current sensor value Idcs, the duty values Du, Dv, Dw of each phase, and the target torque. It is used to determine which part of the power semiconductor in the power conversion circuit 60 has failed, and outputs a failure notification signal corresponding to the failed part to the failure notification device 30 and the PWM signal generation unit 44.
本実施形態では故障判定部472は、直流電流センサ値Idcsと第1故障時模擬直流電流値との差が閾値1未満で、かつ、直流電流センサ値Idcsと第2故障時模擬直流電流値がとの差が閾値1未満であるかを判定する。
In the present embodiment, the failure determination unit 472 has a difference between the DC current sensor value Idcs and the simulated DC current value at the time of the first failure less than the threshold value 1, and the DC current sensor value Idcs and the simulated DC current value at the time of the second failure are It is determined whether the difference between the and is less than the threshold value 1.
故障しているパワー半導体には電流が流れないため、3相全ての交流電流を用いた第2故障時模擬直流電流と直流電流も等しくなる。そのため、第2故障時模擬直流電流を追加で用いても故障個所の特定は可能である。直流電流センサ値Idcsと第1故障時模擬直流電流値との差のみを判定した場合には、デューティが小さい(デューティ≒0)タイミングでは故障相以外の第1故障時模擬直流電流値と直流電流が近似するため、故障の誤検知を誘発する虞がある。これに対して、本実施形態では、直流電流センサ値Idcsと第1故障時模擬直流電流値との差が閾値1未満で、かつ、直流電流センサ値Idcsと第2故障時模擬直流電流値がとの差が閾値1未満であるかを判定することにより、故障の誤検知を無くすことができる。
Since no current flows through the failed power semiconductor, the simulated DC current at the time of the second failure using the AC current of all three phases and the DC current are also equal. Therefore, it is possible to identify the faulty part even if the simulated DC current at the time of the second fault is additionally used. When only the difference between the DC current sensor value Idcs and the simulated DC current value at the time of the first failure is judged, the simulated DC current value at the time of the first failure and the DC current other than the failure phase at the timing when the duty is small (duty ≈ 0) Is close to each other, which may induce false detection of failure. On the other hand, in the present embodiment, the difference between the DC current sensor value Idcs and the simulated DC current value at the time of the first failure is less than the threshold value 1, and the DC current sensor value Idcs and the simulated DC current value at the time of the second failure are By determining whether the difference between the current and the current is less than the threshold value 1, the false detection of the failure can be eliminated.
図9は、パワー半導体診断部47におけるパワー半導体の故障判定処理を示すフローチャートである。
FIG. 9 is a flowchart showing a failure determination process of the power semiconductor in the power semiconductor diagnosis unit 47.
第3の実施形態に係るパワー半導体診断部47における故障判定処理は、図3に示す第1の実施形態に係る故障判定処理を示すフローチャートと同一の個所には同一の符号を付してその説明を省略し、異なる部分について以下に説明する。
The failure determination process in the power semiconductor diagnostic unit 47 according to the third embodiment is described by assigning the same reference numerals to the same parts as the flowchart showing the failure determination process according to the first embodiment shown in FIG. Will be omitted, and the different parts will be described below.
図9のステップS10で、パワー半導体診断部45は、交流電流センサ値Ius、Ivs、Iwsと直流電流センサ値Idcsを取得し、ステップS11’’で、模擬直流電流計算部471は、デューティ値Du、Dv、Dwと交流電流センサ値Ius、Ivs、Iwsから、第1の実施形態で述べた式(1)~(3)に基づいて、U相第1故障時模擬直流電流値Idcu、V相第1故障時模擬直流電流値Idcv、W相第1故障時模擬直流電流値Idcwを計算し、故障判定部472に出力する。さらに、模擬直流電流計算部471は、式(5)~(7)に基づいて、U相第2故障時模擬直流電流値Idcu2、V相第2故障時模擬直流電流値Idcv2、W相第2故障時模擬直流電流値Idcw2を計算し、故障判定部472に出力する。
In step S10 of FIG. 9, the power semiconductor diagnostic unit 45 acquires the AC current sensor values Ius, Ivs, Iws and the DC current sensor value Idcs, and in step S11'', the simulated DC current calculation unit 471 obtains the duty value Du. , Dv, Dw and AC current sensor values Ius, Ivs, Iws, U phase, simulated DC current value at the time of the first failure, Idcu, V phase, based on the equations (1) to (3) described in the first embodiment. The simulated DC current value Idcv at the time of the first failure and the W phase simulated DC current value Idcw at the time of the first failure are calculated and output to the failure determination unit 472. Further, the simulated DC current calculation unit 471 is based on the equations (5) to (7), the simulated DC current value Idcu2 at the time of the U-phase second failure, the simulated DC current value Idcv2 at the time of the V-phase second failure, and the W-phase second. The simulated DC current value Idcw2 at the time of failure is calculated and output to the failure determination unit 472.
ステップS12’’で、故障判定部472は、直流電流センサ値IdcsとU相第1故障時模擬直流電流値Idcuの差が閾値1未満、かつ直流電流センサ値IdcsとU相第2故障時模擬直流電流値Idcu2の差が閾値1未満のとき、U相のパワー半導体に故障が発生していると判定する。
In step S12'', the failure determination unit 472 simulates that the difference between the DC current sensor value Idcs and the U-phase first failure simulated DC current value Idcu is less than the threshold value 1 and the DC current sensor value Idcs and the U-phase second failure. When the difference between the DC current values Idcu2 is less than the threshold value 1, it is determined that the U-phase power semiconductor has a failure.
ステップS13で、故障判定部462は、入力される目標トルク等に基づいてモータ20が力行状態か回生状態かを判定する。以下、ステップS13~ステップS18は、図3に示す第1の実施形態に係る故障判定処理を示すフローチャートと同様である。
In step S13, the failure determination unit 462 determines whether the motor 20 is in the power running state or the regenerative state based on the input target torque or the like. Hereinafter, steps S13 to S18 are the same as the flowchart showing the failure determination process according to the first embodiment shown in FIG.
ステップS12’’で、故障判定部472は、直流電流センサ値IdcsとU相第1故障時模擬直流電流値Idcuの差が閾値1未満、かつ直流電流センサ値IdcsとU相第2故障時模擬直流電流値Idcu2の差が閾値1未満の条件を満たさなければ、ステップS22’’の処理に進む。ステップS22’’で、故障判定部472は、直流電流センサ値IdcsとV相第1故障時模擬直流電流値Idcvの差が閾値1未満、かつ直流電流センサ値IdcsとV相第2故障時模擬直流電流値Idcv2の差が閾値1未満のとき、V相のパワー半導体に故障が発生していると判定する。以下、ステップS23~S27はU相の故障判定処理ステップS13~S17と同様であるのでその説明を省略する。
In step S12'', the failure determination unit 472 simulates that the difference between the DC current sensor value Idcs and the U-phase first failure simulated DC current value Idcu is less than the threshold value 1 and the DC current sensor value Idcs and the U-phase second failure. If the condition that the difference between the DC current values Idcu2 is less than the threshold value 1 is not satisfied, the process proceeds to step S22''. In step S22'', the failure determination unit 472 simulates that the difference between the DC current sensor value Idcs and the V-phase first failure simulated DC current value Idcv is less than the threshold value 1 and the DC current sensor value Idcs and the V-phase second failure. When the difference between the DC current values Idcv2 is less than the threshold value 1, it is determined that the V-phase power semiconductor has a failure. Hereinafter, since steps S23 to S27 are the same as the U-phase failure determination processing steps S13 to S17, the description thereof will be omitted.
ステップS22’’で、直流電流センサ値IdcsとV相第1故障時模擬直流電流値Idcvの差が閾値1未満、かつ直流電流センサ値IdcsとV相第2故障時模擬直流電流値Idcv2の差が閾値1未満の条件を満たさなければ、ステップS32’’の処理に進む。ステップS32’’で、故障判定部472は、直流電流センサ値IdcsとW相第1故障時模擬直流電流値Idcwの差が閾値1未満、かつ直流電流センサ値IdcsとW相第2故障時模擬直流電流値Idcw2の差が閾値1未満のとき、W相のパワー半導体に故障が発生していると判定する。以下、ステップS33~S37はU相の故障判定処理ステップS13~S17と同様であるのでその説明を省略する。
In step S22'', the difference between the DC current sensor value Idcs and the simulated DC current value Idcv at the time of the first failure of the V phase is less than the threshold value 1, and the difference between the DC current sensor value Idcs and the simulated DC current value Idcv2 at the time of the second failure of the V phase. If does not satisfy the condition of less than the threshold value 1, the process proceeds to step S32''. In step S32'', the failure determination unit 472 simulates that the difference between the DC current sensor value Idcs and the W-phase first failure simulated DC current value Idcw is less than the threshold value 1 and the DC current sensor value Idcs and the W-phase second failure. When the difference between the DC current values Idcw2 is less than the threshold value 1, it is determined that the W-phase power semiconductor has a failure. Hereinafter, since steps S33 to S37 are the same as the U-phase failure determination processing steps S13 to S17, the description thereof will be omitted.
ステップS32’’で、故障判定部462は、直流電流センサ値IdcsとW相第1故障時模擬直流電流値Idcwの差が閾値1未満、かつ直流電流センサ値IdcsとW相第2故障時模擬直流電流値Idcw2の差が閾値1未満の条件を満たさなければ、ステップS39へ進む。ステップS39では、パワー半導体にOFF固着故障なしと判定する。
In step S32'', the failure determination unit 462 simulates that the difference between the DC current sensor value Idcs and the W-phase first failure simulated DC current value Idcw is less than the threshold value 1, and the DC current sensor value Idcs and the W-phase second failure simulation. If the difference between the DC current values Idcw2 does not satisfy the condition of less than the threshold value 1, the process proceeds to step S39. In step S39, it is determined that there is no OFF sticking failure in the power semiconductor.
[第4の実施形態]
第4の実施形態に係る電力変換装置100は、図1に示す第1の実施形態に係る電力変換装置100と同様であるので同一の個所には同一の符号を付してその説明を省略する。 [Fourth Embodiment]
Since thepower conversion device 100 according to the fourth embodiment is the same as the power conversion device 100 according to the first embodiment shown in FIG. 1, the same reference numerals are given to the same parts and the description thereof will be omitted. ..
第4の実施形態に係る電力変換装置100は、図1に示す第1の実施形態に係る電力変換装置100と同様であるので同一の個所には同一の符号を付してその説明を省略する。 [Fourth Embodiment]
Since the
図10は、本実施形態におけるパワー半導体の故障判定処理を示すフローチャートである。本実施形態では、図3に示す第1の実施形態に係る故障判定処理を示すフローチャートと故障判定処理が異なる部分がある。図3に示す第1の実施形態に係る故障判定処理を示すフローチャートと同一の個所には同一の符号を付してその説明を省略し、異なる部分について以下に説明する。
FIG. 10 is a flowchart showing a failure determination process of the power semiconductor in the present embodiment. In this embodiment, there is a part in which the failure determination process is different from the flowchart showing the failure determination process according to the first embodiment shown in FIG. The same parts as those in the flowchart showing the failure determination process according to the first embodiment shown in FIG. 3 are designated by the same reference numerals, the description thereof will be omitted, and the different parts will be described below.
第1の実施形態では、図3のステップS12で、直流電流センサ値IdcsとU相第1故障時模擬直流電流値Idcuの差が閾値1未満であるかを判定していた。本実施形態では、図10のステップS12’’’で、直流電流センサ値IdcsとU相第1故障時模擬直流電流値Idcuの差が閾値1未満の状態が一定時間以上継続したかを判定する。パワー半導体が故障していなくても、ある相の交流電流が0のときには、直流電流センサ値と該当相の第1故障時模擬直流電流値が一致するため、故障を誤検知が発生する虞がある。そのため、本実施形態では、直流電流センサ値IdcsとU相第1故障時模擬直流電流値Idcuの差が閾値1未満の状態が一定時間以上継続している場合に故障を検知することで、故障の誤検知を回避する。
In the first embodiment, in step S12 of FIG. 3, it was determined whether the difference between the DC current sensor value Idcs and the simulated DC current value Idcu at the time of the first U-phase failure is less than the threshold value 1. In the present embodiment, in step S12 ″ of FIG. 10, it is determined whether the difference between the DC current sensor value Idcs and the simulated DC current value Idcu at the time of the first U-phase failure continues to be less than the threshold value 1 for a certain period of time or longer. .. Even if the power semiconductor has not failed, when the AC current of a certain phase is 0, the DC current sensor value and the simulated DC current value at the time of the first failure of the corresponding phase match, so there is a risk of false detection of failure. is there. Therefore, in the present embodiment, the failure is detected by detecting the failure when the difference between the DC current sensor value Idcs and the simulated DC current value Idcu at the time of the first U-phase failure is less than the threshold value 1 for a certain period of time or longer. Avoid false positives.
図10のステップS22’’’では、直流電流センサ値IdcsとV相第1故障時模擬直流電流値Idcvの差が閾値1未満の状態が一定時間以上継続したかを判定する。
図10のステップS32’’’では、直流電流センサ値IdcsとW相第1故障時模擬直流電流値Idcwの差が閾値1未満の状態が一定時間以上継続したかを判定する。 In step S22'''' in FIG. 10, it is determined whether the state in which the difference between the DC current sensor value Idcs and the simulated DC current value Idcv at the time of the first failure of the V phase is less than the threshold value 1 continues for a certain period of time or more.
In step S32'''in FIG. 10, it is determined whether the state in which the difference between the DC current sensor value Idcs and the simulated DC current value Idcw at the time of the first W phase failure is less than the threshold value 1 continues for a certain period of time or more.
図10のステップS32’’’では、直流電流センサ値IdcsとW相第1故障時模擬直流電流値Idcwの差が閾値1未満の状態が一定時間以上継続したかを判定する。 In step S22'''' in FIG. 10, it is determined whether the state in which the difference between the DC current sensor value Idcs and the simulated DC current value Idcv at the time of the first failure of the V phase is less than the threshold value 1 continues for a certain period of time or more.
In step S32'''in FIG. 10, it is determined whether the state in which the difference between the DC current sensor value Idcs and the simulated DC current value Idcw at the time of the first W phase failure is less than the threshold value 1 continues for a certain period of time or more.
[第5の実施形態]
第5の実施形態に係る電力変換装置300は、図8に示す第3の実施形態に係る電力変換装置300と同様であるので同一の個所には同一の符号を付してその説明を省略する。 [Fifth Embodiment]
Since thepower conversion device 300 according to the fifth embodiment is the same as the power conversion device 300 according to the third embodiment shown in FIG. 8, the same reference numerals are given to the same parts and the description thereof will be omitted. ..
第5の実施形態に係る電力変換装置300は、図8に示す第3の実施形態に係る電力変換装置300と同様であるので同一の個所には同一の符号を付してその説明を省略する。 [Fifth Embodiment]
Since the
図11は、本実施形態におけるパワー半導体の故障判定処理を示すフローチャートである。本実施形態では、図9に示す第3の実施形態に係る故障判定処理を示すフローチャートと故障判定処理が異なる部分がある。図9に示す第3の実施形態に係る故障判定処理を示すフローチャートと同一の個所には同一の符号を付してその説明を省略し、異なる部分について以下に説明する。
FIG. 11 is a flowchart showing a failure determination process of the power semiconductor in the present embodiment. In the present embodiment, there is a part in which the failure determination process is different from the flowchart showing the failure determination process according to the third embodiment shown in FIG. The same parts as those in the flowchart showing the failure determination process according to the third embodiment shown in FIG. 9 are designated by the same reference numerals, the description thereof will be omitted, and the different parts will be described below.
第3の実施形態では、図9のステップS12’’で、直流電流センサ値IdcsとU相第1故障時模擬直流電流値Idcuの差が閾値1未満、かつ直流電流センサ値IdcsとU相第2故障時模擬直流電流値Idcu2の差が閾値1未満であるかを判定していた。本実施形態では、図11のステップS12’’’’で、U相第1故障時模擬直流電流値IdcuとU相第2故障時模擬直流電流値Idcu2の差が閾値1未満であるかを判定する。第3の実施形態において、直流電流センサ値IdcsとU相第1故障時模擬直流電流値Idcuの差が閾値1未満、かつ直流電流センサ値IdcsとU相第2故障時模擬直流電流値Idcu2の差が閾値1未満の条件が成り立つ場合には、U相第1故障時模擬直流電流値IdcuとU相第2故障時模擬直流電流値Idcu2の差も一定範囲内に収まる。そのため、本実施形態の判定条件にすることで、第3の実施形態よりも判定条件を簡略化しつつ、第3の実施形態の判定条件と同等の判定を行うことができる。
In the third embodiment, in step S12 ″ of FIG. 9, the difference between the DC current sensor value Idcs and the simulated DC current value Idcu at the time of the first U-phase failure is less than the threshold value 1, and the DC current sensor values Idcs and the U-phase first. 2 It was determined whether the difference between the simulated DC current values Idcu2 at the time of failure was less than the threshold value 1. In the present embodiment, in step S12'''' of FIG. 11, it is determined whether the difference between the simulated DC current value Idcu at the time of the first U-phase failure and the simulated DC current value Idcu2 at the time of the second U-phase failure is less than the threshold value 1. To do. In the third embodiment, the difference between the DC current sensor value Idcs and the U-phase first failure simulated DC current value Idcu is less than the threshold value 1, and the DC current sensor value Idcs and the U-phase second failure simulated DC current value Idcu2. When the condition that the difference is less than the threshold value 1 is satisfied, the difference between the simulated DC current value Idcu at the time of the first U-phase failure and the simulated DC current value Idcu2 at the time of the second U-phase failure also falls within a certain range. Therefore, by setting the determination conditions of the present embodiment, it is possible to perform a determination equivalent to the determination conditions of the third embodiment while simplifying the determination conditions as compared with the third embodiment.
図11のステップS22’’’’では、V相第1故障時模擬直流電流値IdcvとV相第2故障時模擬直流電流値Idcv2の差が閾値1未満であるかを判定する。
図11のステップS32’’’’では、W相第1故障時模擬直流電流値IdcwとW相第2故障時模擬直流電流値Idcw2の差が閾値1未満であるかを判定する。 In step S22'''' in FIG. 11, it is determined whether the difference between the simulated DC current value Idcv at the time of the first failure of the V phase and the simulated DC current value Idcv2 at the time of the second failure of the V phase is less than the threshold value 1.
In step S32'''' of FIG. 11, it is determined whether the difference between the simulated DC current value Idcw at the time of the first failure of the W phase and the simulated DC current value Idcw2 at the time of the second failure of the W phase is less than the threshold value 1.
図11のステップS32’’’’では、W相第1故障時模擬直流電流値IdcwとW相第2故障時模擬直流電流値Idcw2の差が閾値1未満であるかを判定する。 In step S22'''' in FIG. 11, it is determined whether the difference between the simulated DC current value Idcv at the time of the first failure of the V phase and the simulated DC current value Idcv2 at the time of the second failure of the V phase is less than the threshold value 1.
In step S32'''' of FIG. 11, it is determined whether the difference between the simulated DC current value Idcw at the time of the first failure of the W phase and the simulated DC current value Idcw2 at the time of the second failure of the W phase is less than the threshold value 1.
以上説明した実施形態によれば、次の作用効果が得られる。
(1)電力変換装置100は、複数相のモータ20の各相に対応して上アーム回路と下アーム回路により構成され、直流電流を複数相の交流電流に変換する電力変換回路60と、上アーム回路と下アーム回路にPWM信号を出力する制御回路40と、電力変換回路60より出力される交流電流とPWM信号のデューティ比とに基づいて、複数相のうち1つ相が故障した場合の残りの相の交流電流値に基づく第1故障時模擬直流電流を算出する模擬直流電流計算部451と、電力変換回路60へ入力される直流電流、もしくは電力変換回路60から出力される交流電流値に基づく直流電流と、PWM信号のデューティ比と、第1故障時模擬直流電流とに基づいて、いずれかの相の上アーム回路もしくは下アーム回路の故障を検出する故障判定部452とを備える。これにより、上アーム回路と下アーム回路を構成するパワー半導体のどの箇所が故障しているかを特定することができる。 According to the embodiment described above, the following effects can be obtained.
(1) Thepower conversion device 100 is composed of an upper arm circuit and a lower arm circuit corresponding to each phase of the multi-phase motor 20, and includes a power conversion circuit 60 that converts a direct current into a multi-phase alternating current. When one of the plurality of phases fails based on the control circuit 40 that outputs the PWM signal to the arm circuit and the lower arm circuit, and the direct current output from the power conversion circuit 60 and the duty ratio of the PWM signal. The simulated DC current calculation unit 451 that calculates the simulated DC current at the time of the first failure based on the AC current value of the remaining phases, the DC current input to the power conversion circuit 60, or the AC current value output from the power conversion circuit 60. Based on the DC current based on the above, the duty ratio of the PWM signal, and the simulated DC current at the time of the first failure, the failure determination unit 452 for detecting the failure of the upper arm circuit or the lower arm circuit of either phase is provided. Thereby, it is possible to identify which part of the power semiconductor constituting the upper arm circuit and the lower arm circuit is out of order.
(1)電力変換装置100は、複数相のモータ20の各相に対応して上アーム回路と下アーム回路により構成され、直流電流を複数相の交流電流に変換する電力変換回路60と、上アーム回路と下アーム回路にPWM信号を出力する制御回路40と、電力変換回路60より出力される交流電流とPWM信号のデューティ比とに基づいて、複数相のうち1つ相が故障した場合の残りの相の交流電流値に基づく第1故障時模擬直流電流を算出する模擬直流電流計算部451と、電力変換回路60へ入力される直流電流、もしくは電力変換回路60から出力される交流電流値に基づく直流電流と、PWM信号のデューティ比と、第1故障時模擬直流電流とに基づいて、いずれかの相の上アーム回路もしくは下アーム回路の故障を検出する故障判定部452とを備える。これにより、上アーム回路と下アーム回路を構成するパワー半導体のどの箇所が故障しているかを特定することができる。 According to the embodiment described above, the following effects can be obtained.
(1) The
(2)電力変換装置100の制御方法は、複数相のモータ20の各相に対応して上アーム回路と下アーム回路により電力変換回路60を構成し、直流電流を複数相の交流電流に変換し、上アーム回路と下アーム回路にPWM信号を出力し、電力変換回路60より出力される交流電流とPWM信号のデューティ比とに基づいて、複数相のうち1つ相が故障した場合の残りの相の交流電流値に基づく第1故障時模擬直流電流を算出し、電力変換回路60へ入力される直流電流、もしくは電力変換回路60から出力される交流電流値に基づく直流電流と、PWM信号のデューティ比と、第1故障時模擬直流電流とに基づいて、いずれかの相の上アーム回路もしくは下アーム回路の故障を検出する。これにより、上アーム回路と下アーム回路を構成するパワー半導体のどの箇所が故障しているかを特定することができる。
(2) In the control method of the power conversion device 100, a power conversion circuit 60 is configured by an upper arm circuit and a lower arm circuit corresponding to each phase of the multi-phase motor 20, and a direct current is converted into a multi-phase alternating current. Then, a PWM signal is output to the upper arm circuit and the lower arm circuit, and the remainder when one of the plurality of phases fails based on the AC current output from the power conversion circuit 60 and the duty ratio of the PWM signal. The simulated DC current at the time of the first failure is calculated based on the AC current value of the phase, and the DC current input to the power conversion circuit 60 or the DC current based on the AC current value output from the power conversion circuit 60 and the PWM signal. The failure of the upper arm circuit or the lower arm circuit of either phase is detected based on the duty ratio of the above and the simulated DC current at the time of the first failure. Thereby, it is possible to identify which part of the power semiconductor constituting the upper arm circuit and the lower arm circuit is out of order.
(変形例)
本発明は、以上説明した第1乃至第5の実施形態を次のように変形して実施することができる。
(1)モータ20は内部に3個の巻き線を有した3相の例で説明したが、3相に限らず、複数相のモータであってもよい。この場合も、いずれかの相の上アーム回路もしくは下アーム回路の故障を検出することができる。 (Modification example)
The present invention can be implemented by modifying the first to fifth embodiments described above as follows.
(1) Although themotor 20 has been described with the example of three phases having three windings inside, the motor 20 is not limited to the three phases and may be a multi-phase motor. In this case as well, a failure of the upper arm circuit or the lower arm circuit of either phase can be detected.
本発明は、以上説明した第1乃至第5の実施形態を次のように変形して実施することができる。
(1)モータ20は内部に3個の巻き線を有した3相の例で説明したが、3相に限らず、複数相のモータであってもよい。この場合も、いずれかの相の上アーム回路もしくは下アーム回路の故障を検出することができる。 (Modification example)
The present invention can be implemented by modifying the first to fifth embodiments described above as follows.
(1) Although the
(2)電力変換装置100は内部に3相分の交流電流センサ90を有しているが、2相分のみ有してもよい。この場合、残りの1相の交流電流については、3相の交流電流の総和が0になることを利用して計算することができ、3相分の交流電流センサ90を有する場合と同様に、いずれかの相の上アーム回路もしくは下アーム回路の故障を検出することができる。
(2) The power conversion device 100 has an AC current sensor 90 for three phases inside, but may have only two phases. In this case, the remaining one-phase alternating current can be calculated by utilizing the fact that the sum of the three-phase alternating currents becomes 0, as in the case of having the three-phase alternating current sensors 90. Failure of the upper arm circuit or lower arm circuit of either phase can be detected.
本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態を組み合わせた構成としてもよい。
The present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiments.
10 直流電源
20 モータ
40 制御回路
41 モータ速度計算部
42 目標電流計算部
43 デューティ計算部
44 PWM信号生成部
45 パワー半導体診断部
50 ドライバ回路
60 電力変換回路
100 電力変換装置
451 模擬直流電流計算部
452 故障判定部 10DC power supply 20 Motor 40 Control circuit 41 Motor speed calculation unit 42 Target current calculation unit 43 Duty calculation unit 44 PWM signal generation unit 45 Power semiconductor diagnostic unit 50 Driver circuit 60 Power conversion circuit 100 Power conversion device 451 Simulated DC current calculation unit 452 Failure judgment unit
20 モータ
40 制御回路
41 モータ速度計算部
42 目標電流計算部
43 デューティ計算部
44 PWM信号生成部
45 パワー半導体診断部
50 ドライバ回路
60 電力変換回路
100 電力変換装置
451 模擬直流電流計算部
452 故障判定部 10
Claims (20)
- 複数相のモータの各相に対応して上アーム回路と下アーム回路により構成され、直流電流を複数相の交流電流に変換する電力変換回路と、
前記上アーム回路と前記下アーム回路にPWM信号を出力する制御回路と、
前記電力変換回路より出力される前記交流電流と前記PWM信号のデューティ比とに基づいて、複数相のうち1つ相が故障した場合の残りの相の交流電流値に基づく第1故障時模擬直流電流を算出する模擬直流電流計算部と、
前記電力変換回路へ入力される直流電流、もしくは前記電力変換回路から出力される交流電流値に基づく直流電流と、前記PWM信号のデューティ比と、前記第1故障時模擬直流電流とに基づいて、いずれかの相の前記上アーム回路もしくは前記下アーム回路の故障を検出する故障判定部とを備える電力変換装置。 A power conversion circuit that is composed of an upper arm circuit and a lower arm circuit corresponding to each phase of a multi-phase motor and converts a direct current into a multi-phase alternating current.
A control circuit that outputs a PWM signal to the upper arm circuit and the lower arm circuit,
Based on the AC current output from the power conversion circuit and the duty ratio of the PWM signal, a simulated direct current at the time of the first failure based on the AC current value of the remaining phase when one of the plurality of phases fails. A simulated DC current calculation unit that calculates the current,
Based on the DC current input to the power conversion circuit or the DC current based on the AC current value output from the power conversion circuit, the duty ratio of the PWM signal, and the simulated DC current at the time of the first failure. A power conversion device including a failure determination unit for detecting a failure of the upper arm circuit or the lower arm circuit of any phase. - 請求項1に記載の電力変換装置において、
前記電力変換回路へ入力される直流電流を測定する直流電流センサを備え、
前記故障判定部は、前記直流電流センサで測定された直流電流に基づいて、いずれかの相の前記上アーム回路もしくは前記下アーム回路の故障を検出する電力変換装置。 In the power conversion device according to claim 1,
A DC current sensor that measures the DC current input to the power conversion circuit is provided.
The failure determination unit is a power conversion device that detects a failure of the upper arm circuit or the lower arm circuit of any phase based on the DC current measured by the DC current sensor. - 請求項1に記載の電力変換装置において、
前記模擬直流電流計算部は、前記電力変換回路から出力される交流電流値と前記PWM信号のデューティ比とに基づいて、前記電力変換回路から出力される交流電流値に基づく前記直流電流を算出し、
前記故障判定部は、前記算出された前記直流電流に基づいて、いずれかの相の前記上アーム回路もしくは前記下アーム回路の故障を検出する電力変換装置。 In the power conversion device according to claim 1,
The simulated DC current calculation unit calculates the DC current based on the AC current value output from the power conversion circuit based on the AC current value output from the power conversion circuit and the duty ratio of the PWM signal. ,
The failure determination unit is a power conversion device that detects a failure of the upper arm circuit or the lower arm circuit of any phase based on the calculated direct current. - 請求項1から請求項3までのいずれか一項に記載の電力変換装置において、
前記模擬直流電流計算部は、前記複数相の全ての交流電流値に基づく第2故障時模擬直流電流を算出し、前記第1故障時模擬直流電流および前記第2故障時模擬直流電流に基づいて、いずれかの相の前記上アーム回路と前記下アーム回路の故障を検出する電力変換装置。 In the power conversion device according to any one of claims 1 to 3.
The simulated DC current calculation unit calculates a simulated DC current at the time of a second failure based on all the AC current values of the plurality of phases, and is based on the simulated DC current at the time of the first failure and the simulated DC current at the time of the second failure. , A power conversion device that detects a failure of the upper arm circuit and the lower arm circuit in any phase. - 請求項1から請求項3までのいずれか一項に記載の電力変換装置において、
前記故障判定部は、前記直流電流とある相の前記第1故障時模擬直流電流との差分が一定値以下のとき、前記モータの力行時に当該相の前記デューティ比が閾値以上、もしくは前記モータの回生時に当該相の前記デューティ比が閾値以下であれば、当該相の前記上アーム回路が故障していると判定する電力変換装置。 In the power conversion device according to any one of claims 1 to 3.
When the difference between the DC current and the simulated DC current at the time of the first failure of a certain phase is a certain value or less, the failure determination unit determines that the duty ratio of the phase is equal to or more than the threshold value or the motor of the motor during power running. A power conversion device that determines that the upper arm circuit of the phase has failed if the duty ratio of the phase is equal to or less than a threshold value during regeneration. - 請求項5に記載の電力変換装置において、
前記故障判定部は、前記直流電流とある相の前記第1故障時模擬直流電流との差分が一定値以下である状態が一定時間以上継続したとき、前記モータの力行時に当該相の前記デューティ比が閾値以上、もしくは前記モータの回生時に当該相の前記デューティ比が閾値以下であれば、当該相の前記上アーム回路が故障していると判定する電力変換装置。 In the power conversion device according to claim 5,
When the difference between the DC current and the simulated DC current at the time of the first failure of a certain phase is equal to or less than a certain value for a certain period of time or more, the failure determination unit determines the duty ratio of the phase during power running of the motor. A power conversion device for determining that the upper arm circuit of the phase has failed if the duty ratio of the phase is equal to or higher than the threshold value or the duty ratio of the phase is equal to or lower than the threshold value when the motor is regenerated. - 請求項5に記載の電力変換装置において、
前記制御回路は、前記故障判定部で前記上アーム回路が故障していると判定された場合に、前記電力変換回路の前記上アーム回路および前記下アーム回路を構成する全てのパワー半導体をオフにする、もしくは前記電力変換回路の前記下アーム回路を構成する全てのパワー半導体をオンにする前記PWM信号を出力する電力変換装置。 In the power conversion device according to claim 5,
When the failure determination unit determines that the upper arm circuit has failed, the control circuit turns off all the power semiconductors constituting the upper arm circuit and the lower arm circuit of the power conversion circuit. A power conversion device that outputs the PWM signal that turns on all the power semiconductors constituting the lower arm circuit of the power conversion circuit. - 請求項1から請求項3までのいずれか一項に記載の電力変換装置において、
前記故障判定部は、前記直流電流とある相の前記第1故障時模擬直流電流との差分が一定値以下のとき、前記モータの力行時に当該相の前記デューティ比が閾値以下、もしくは前記モータの回生時に当該相の前記デューティ比が閾値以上であれば、当該相の前記下アーム回路が故障していると判定する電力変換装置。 In the power conversion device according to any one of claims 1 to 3.
When the difference between the DC current and the simulated DC current at the time of the first failure of a certain phase is a certain value or less, the failure determination unit determines that the duty ratio of the phase is equal to or less than the threshold value or the motor of the motor during power running of the motor. A power conversion device that determines that the lower arm circuit of the phase has failed if the duty ratio of the phase is equal to or greater than the threshold value during regeneration. - 請求項8に記載の電力変換装置において、
前記故障判定部は、前記直流電流とある相の前記第1故障時模擬直流電流との差分が一定値以下である状態が一定時間以上継続したとき、前記モータの力行時に当該相の前記デューティ比が閾値以下、もしくは前記モータの回生時に当該相の前記デューティ比が閾値以上であれば、当該相の前記下アーム回路が故障していると判定する電力変換装置。 In the power conversion device according to claim 8,
When the difference between the DC current and the simulated DC current at the time of the first failure of a certain phase is equal to or less than a certain value for a certain period of time or more, the failure determination unit determines the duty ratio of the phase during power running of the motor. A power conversion device that determines that the lower arm circuit of the phase has failed if is equal to or less than the threshold value, or if the duty ratio of the phase is equal to or greater than the threshold value during regeneration of the motor. - 請求項8に記載の電力変換装置において、
前記制御回路は、前記故障判定部で前記下アーム回路が故障していると判定された場合に、前記電力変換回路の前記上アーム回路および前記下アーム回路を構成する全てのパワー半導体をオフにする前記PWM信号を、もしくは前記電力変換回路の前記上アーム回路を構成する全てのパワー半導体をオンにする前記PWM信号を出力する電力変換装置。 In the power conversion device according to claim 8,
When the failure determination unit determines that the lower arm circuit has failed, the control circuit turns off all the power semiconductors constituting the upper arm circuit and the lower arm circuit of the power conversion circuit. A power conversion device that outputs the PWM signal that turns on the PWM signal or all the power semiconductors constituting the upper arm circuit of the power conversion circuit. - 複数相のモータの各相に対応して上アーム回路と下アーム回路により電力変換回路を構成し、直流電流を複数相の交流電流に変換し、
前記上アーム回路と前記下アーム回路にPWM信号を出力し、
前記電力変換回路より出力される前記交流電流と前記PWM信号のデューティ比とに基づいて、複数相のうち1つ相が故障した場合の残りの相の交流電流値に基づく第1故障時模擬直流電流を算出し、
前記電力変換回路へ入力される直流電流、もしくは前記電力変換回路から出力される交流電流値に基づく直流電流と、前記PWM信号のデューティ比と、前記第1故障時模擬直流電流とに基づいて、いずれかの相の前記上アーム回路もしくは前記下アーム回路の故障を検出する電力変換装置の制御方法。 A power conversion circuit is composed of an upper arm circuit and a lower arm circuit corresponding to each phase of a multi-phase motor, and a direct current is converted into a multi-phase alternating current.
A PWM signal is output to the upper arm circuit and the lower arm circuit,
Based on the AC current output from the power conversion circuit and the duty ratio of the PWM signal, the simulated DC at the time of the first failure based on the AC current value of the remaining phase when one of the plurality of phases fails. Calculate the current and
Based on the DC current input to the power conversion circuit or the DC current based on the AC current value output from the power conversion circuit, the duty ratio of the PWM signal, and the simulated DC current at the time of the first failure. A method for controlling a power converter that detects a failure of the upper arm circuit or the lower arm circuit of any phase. - 請求項11に記載の電力変換装置の制御方法において、
前記電力変換回路へ入力される直流電流を測定する直流電流センサを備え、
前記直流電流センサで測定された直流電流に基づいて、いずれかの相の前記上アーム回路もしくは前記下アーム回路の故障を検出する電力変換装置の制御方法。 In the control method of the power conversion device according to claim 11,
A DC current sensor that measures the DC current input to the power conversion circuit is provided.
A control method for a power conversion device that detects a failure of the upper arm circuit or the lower arm circuit of any phase based on the direct current measured by the direct current sensor. - 請求項11に記載の電力変換装置の制御方法において、
前記電力変換回路から出力される交流電流値と前記PWM信号のデューティ比とに基づいて、前記電力変換回路から出力される交流電流値に基づく前記直流電流を算出し、
前記算出された前記直流電流に基づいて、いずれかの相の前記上アーム回路もしくは前記下アーム回路の故障を検出する電力変換装置の制御方法。 In the control method of the power conversion device according to claim 11,
Based on the AC current value output from the power conversion circuit and the duty ratio of the PWM signal, the DC current based on the AC current value output from the power conversion circuit is calculated.
A control method for a power conversion device that detects a failure of the upper arm circuit or the lower arm circuit of any phase based on the calculated direct current. - 請求項11から請求項13までのいずれか一項に記載の電力変換装置の制御方法において、
前記複数相の全ての交流電流値に基づく第2故障時模擬直流電流を算出し、前記第1故障時模擬直流電流および前記第2故障時模擬直流電流に基づいて、いずれかの相の前記上アーム回路と前記下アーム回路の故障を検出する電力変換装置の制御方法。 The method for controlling a power conversion device according to any one of claims 11 to 13.
A second failure simulated DC current is calculated based on all the AC current values of the plurality of phases, and based on the first failure simulated DC current and the second failure simulated DC current, the above of any phase. A method for controlling a power conversion device that detects a failure of an arm circuit and the lower arm circuit. - 請求項11から請求項13までのいずれか一項に記載の電力変換装置の制御方法において、
前記直流電流とある相の前記第1故障時模擬直流電流との差分が一定値以下のとき、前記モータの力行時に当該相の前記デューティ比が閾値以上、もしくは前記モータの回生時に当該相の前記デューティ比が閾値以下であれば、当該相の前記上アーム回路が故障していると判定する電力変換装置の制御方法。 The method for controlling a power conversion device according to any one of claims 11 to 13.
When the difference between the DC current and the simulated DC current at the time of the first failure of a certain phase is equal to or less than a certain value, the duty ratio of the phase is equal to or more than the threshold value when the motor is running, or the phase is said to regenerate. A control method for a power conversion device that determines that the upper arm circuit of the relevant phase has failed if the duty ratio is equal to or less than a threshold value. - 請求項15に記載の電力変換装置の制御方法において、
前記直流電流とある相の前記第1故障時模擬直流電流との差分が一定値以下である状態が一定時間以上継続したとき、前記モータの力行時に当該相の前記デューティ比が閾値以上、もしくは前記モータの回生時に当該相の前記デューティ比が閾値以下であれば、当該相の前記上アーム回路が故障していると判定する電力変換装置の制御方法。 In the control method of the power conversion device according to claim 15,
When the difference between the DC current and the simulated DC current at the time of the first failure of a certain phase is equal to or less than a certain value for a certain period of time or more, the duty ratio of the phase is equal to or more than the threshold value or the said. A control method for a power conversion device that determines that the upper arm circuit of the phase is out of order if the duty ratio of the phase is equal to or less than a threshold value when the motor is regenerated. - 請求項15に記載の電力変換装置の制御方法において、
前記上アーム回路が故障していると判定された場合に、前記電力変換回路の前記上アーム回路および前記下アーム回路を構成する全てのパワー半導体をオフにする、もしくは前記電力変換回路の前記下アーム回路を構成する全てのパワー半導体をオンにする前記PWM信号を出力する電力変換装置の制御方法。 In the control method of the power conversion device according to claim 15,
When it is determined that the upper arm circuit is out of order, all the power semiconductors constituting the upper arm circuit and the lower arm circuit of the power conversion circuit are turned off, or the lower part of the power conversion circuit is turned off. A method for controlling a power conversion device that outputs a PWM signal that turns on all power semiconductors constituting an arm circuit. - 請求項11から請求項13までのいずれか一項に記載の電力変換装置の制御方法において、
前記直流電流とある相の前記第1故障時模擬直流電流との差分が一定値以下のとき、前記モータの力行時に当該相の前記デューティ比が閾値以下、もしくは前記モータの回生時に当該相の前記デューティ比が閾値以上であれば、当該相の前記下アーム回路が故障していると判定する電力変換装置の制御方法。 The method for controlling a power conversion device according to any one of claims 11 to 13.
When the difference between the DC current and the simulated DC current at the time of the first failure of a certain phase is equal to or less than a certain value, the duty ratio of the phase is equal to or less than the threshold value during power running of the motor, or the said phase of the phase is regenerated. A control method for a power conversion device that determines that the lower arm circuit of the relevant phase has failed if the duty ratio is equal to or greater than a threshold value. - 請求項18に記載の電力変換装置の制御方法において、
前記直流電流とある相の前記第1故障時模擬直流電流との差分が一定値以下である状態が一定時間以上継続したとき、前記モータの力行時に当該相の前記デューティ比が閾値以下、もしくは前記モータの回生時に当該相の前記デューティ比が閾値以上であれば、当該相の前記下アーム回路が故障していると判定する電力変換装置の制御方法。 In the control method of the power conversion device according to claim 18,
When the difference between the DC current and the simulated DC current at the time of the first failure of a certain phase is equal to or less than a certain value for a certain period of time or more, the duty ratio of the phase is equal to or less than the threshold value or the said. A control method for a power conversion device that determines that the lower arm circuit of the phase is out of order if the duty ratio of the phase is equal to or greater than a threshold value when the motor is regenerated. - 請求項18に記載の電力変換装置の制御方法において、
前記下アーム回路が故障していると判定された場合に、前記電力変換回路の前記上アーム回路および前記下アーム回路を構成する全てのパワー半導体をオフにする前記PWM信号を、もしくは前記電力変換回路の前記上アーム回路を構成する全てのパワー半導体をオンにする前記PWM信号を出力する電力変換装置の制御方法。 In the control method of the power conversion device according to claim 18,
When it is determined that the lower arm circuit is out of order, the PWM signal that turns off the upper arm circuit of the power conversion circuit and all the power semiconductors constituting the lower arm circuit, or the power conversion. A method for controlling a power conversion device that outputs a PWM signal that turns on all power semiconductors constituting the upper arm circuit of the circuit.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021522246A JP7124218B2 (en) | 2019-05-24 | 2020-05-19 | POWER CONVERSION DEVICE AND CONTROL METHOD OF POWER CONVERSION DEVICE |
CN202080037695.4A CN113875143A (en) | 2019-05-24 | 2020-05-19 | Power conversion device and control method for power conversion device |
DE112020002128.9T DE112020002128T5 (en) | 2019-05-24 | 2020-05-19 | Power conversion device and method for controlling the power conversion device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-097865 | 2019-05-24 | ||
JP2019097865 | 2019-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020241366A1 true WO2020241366A1 (en) | 2020-12-03 |
Family
ID=73552956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/019719 WO2020241366A1 (en) | 2019-05-24 | 2020-05-19 | Power conversion device and power conversion device control method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7124218B2 (en) |
CN (1) | CN113875143A (en) |
DE (1) | DE112020002128T5 (en) |
WO (1) | WO2020241366A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022201539A1 (en) | 2022-02-15 | 2023-08-17 | Zf Friedrichshafen Ag | Determination of a safe state of a power converter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008011683A (en) * | 2006-06-30 | 2008-01-17 | Toyota Motor Corp | Motor driving apparatus |
JP2012095508A (en) * | 2010-10-29 | 2012-05-17 | Noritz Corp | Power conditioner |
JP2018033214A (en) * | 2016-08-23 | 2018-03-01 | トヨタ自動車株式会社 | Power supply system |
WO2018225393A1 (en) * | 2017-06-05 | 2018-12-13 | 日立オートモティブシステムズ株式会社 | Power conversion device, failure detection circuit, and driving circuit |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5057908B2 (en) * | 2007-09-13 | 2012-10-24 | オムロンオートモーティブエレクトロニクス株式会社 | Multi-phase AC motor drive device |
WO2009087775A1 (en) * | 2008-01-10 | 2009-07-16 | Mitsubishi Electric Corporation | Power conversion device |
US8730702B2 (en) * | 2009-03-03 | 2014-05-20 | Renewable Power Conversion, Inc. | Very high efficiency three phase power converter |
JP6704293B2 (en) * | 2016-05-17 | 2020-06-03 | 日立オートモティブシステムズ株式会社 | Inverter control device and power conversion device |
WO2019049698A1 (en) * | 2017-09-08 | 2019-03-14 | パナソニックIpマネジメント株式会社 | Power conversion circuit and power conversion device |
-
2020
- 2020-05-19 WO PCT/JP2020/019719 patent/WO2020241366A1/en active Application Filing
- 2020-05-19 CN CN202080037695.4A patent/CN113875143A/en active Pending
- 2020-05-19 JP JP2021522246A patent/JP7124218B2/en active Active
- 2020-05-19 DE DE112020002128.9T patent/DE112020002128T5/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008011683A (en) * | 2006-06-30 | 2008-01-17 | Toyota Motor Corp | Motor driving apparatus |
JP2012095508A (en) * | 2010-10-29 | 2012-05-17 | Noritz Corp | Power conditioner |
JP2018033214A (en) * | 2016-08-23 | 2018-03-01 | トヨタ自動車株式会社 | Power supply system |
WO2018225393A1 (en) * | 2017-06-05 | 2018-12-13 | 日立オートモティブシステムズ株式会社 | Power conversion device, failure detection circuit, and driving circuit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022201539A1 (en) | 2022-02-15 | 2023-08-17 | Zf Friedrichshafen Ag | Determination of a safe state of a power converter |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020241366A1 (en) | 2020-12-03 |
CN113875143A (en) | 2021-12-31 |
DE112020002128T5 (en) | 2022-02-24 |
JP7124218B2 (en) | 2022-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3661572B2 (en) | Inverter current sensor diagnostic device | |
JP5003589B2 (en) | Short-circuit phase identification method | |
JP6704293B2 (en) | Inverter control device and power conversion device | |
US8878477B2 (en) | Electric motor driving apparatus having failure detection circuit, and failure detection method for the electric motor driving apparatus having failure detection circuit | |
US10598085B2 (en) | Marine vessel operated with hybrid turbocharged internal combustion engine | |
JP4793058B2 (en) | Fault diagnosis device for voltage sensor | |
CN107112922B (en) | Converter and method for operating a converter | |
KR20150122069A (en) | Electric motor driving device | |
JP2010246327A (en) | Fault diagnostic device for inverter | |
JP6652073B2 (en) | Motor control device | |
JP2010246328A (en) | Fault diagnostic device for inverter | |
WO2020241366A1 (en) | Power conversion device and power conversion device control method | |
JP6674765B2 (en) | Electric motor control device and electric vehicle using the same | |
WO2021049230A1 (en) | Power conversion device and method for controlling power conversion device | |
JP2011244577A (en) | Inverter circuit failure detection device | |
JP6879143B2 (en) | Power system | |
JP2020014326A (en) | Electric power conversion device | |
JP7307704B2 (en) | Inverter controller | |
JP6890700B2 (en) | Power converter | |
JP2009278790A (en) | Motor controller and its controlling method | |
JP7441135B2 (en) | Rotating electric machine drive device | |
JP2019170057A (en) | Motor control device | |
WO2021111856A1 (en) | Power conversion device, diagonosis device, and diagnosis method | |
JP2022090317A (en) | Inverter control device, and control method of inverter | |
JP2010124662A (en) | Motor drive system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20814682 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021522246 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20814682 Country of ref document: EP Kind code of ref document: A1 |