WO2018225393A1 - Power conversion device, failure detection circuit, and driving circuit - Google Patents

Power conversion device, failure detection circuit, and driving circuit Download PDF

Info

Publication number
WO2018225393A1
WO2018225393A1 PCT/JP2018/016082 JP2018016082W WO2018225393A1 WO 2018225393 A1 WO2018225393 A1 WO 2018225393A1 JP 2018016082 W JP2018016082 W JP 2018016082W WO 2018225393 A1 WO2018225393 A1 WO 2018225393A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
switching element
arm side
pair
Prior art date
Application number
PCT/JP2018/016082
Other languages
French (fr)
Japanese (ja)
Inventor
遼一 稲田
広津 鉄平
龍太郎 中里
宣信 船崎
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2019523380A priority Critical patent/JP6778324B2/en
Publication of WO2018225393A1 publication Critical patent/WO2018225393A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage

Definitions

  • the present invention relates to a power converter, a failure detection circuit and a drive circuit used in the power converter.
  • a direct current supplied from a battery is changed to an alternating current by switching a motor configured to generate a driving force of the vehicle and a switching element using a power semiconductor or the like.
  • An inverter device power conversion device
  • Such an inverter device is equipped with a failure detection circuit that detects a failure when a failure occurs in an internal circuit.
  • the failure detection circuit includes, for example, an overcurrent detection circuit that detects that a large current has flowed through the power semiconductor due to a failure, and an overheat detection circuit that detects that the power semiconductor has abnormally generated heat due to a failure.
  • Patent Document 1 discloses an overcurrent limiting circuit provided in a high voltage power IC including a high side output switch element and a low side output switch element.
  • This overcurrent limiting circuit includes a voltage comparison circuit that detects when the voltage at the midpoint terminal becomes a voltage corresponding to the overcurrent of the high-side output switch element, and before the drive control signal is input to the high-side output switch element.
  • a logical product of the first delay circuit that delays the edge by the first delay time, the second delay circuit that delays the output signal of the voltage comparison circuit by the second delay time, and the output signal of each delay circuit is obtained.
  • an AND circuit for detecting an overcurrent and outputting an overcurrent detection signal.
  • the main object of the present invention is to provide a technique for identifying a short-circuit fault location when a short-circuit fault occurs in any of the switching elements in a power conversion device having a plurality of switching elements.
  • a power converter includes a pair of switching elements in which a switching element on the upper arm side and a switching element on the lower arm side are connected in series, and drive signals for controlling the pair of switching elements, respectively.
  • a control circuit that outputs a signal, a driver circuit that drives each of the pair of switching elements based on the drive signal, and an overcurrent detection that detects an overcurrent flowing through each of the pair of switching elements and outputs an overcurrent detection signal
  • a failure detection circuit that outputs a failure detection signal when each of the pair of switching elements is short-circuited, and the failure detection circuit is based on the drive signal for each of the pair of switching elements.
  • the failure detection signal is output, and at least one of the delay signal change from on to off and the change from off to on of one of the pair of switching elements, and the other switching element At least one of the change from OFF to ON and the change from ON to OFF of the drive signal is synchronized with each other.
  • the power conversion device includes, for a plurality of phases, a switching circuit having a pair of switching elements in which an upper arm side switching element and a lower arm side switching element are connected in series, A control circuit that outputs a drive signal for controlling the pair of switching elements of a plurality of phases; a driver circuit that drives the pair of switching elements of the plurality of phases based on the drive signal; An overcurrent detection circuit that detects an overcurrent that flows through each of the pair of switching elements of the phase and outputs an overcurrent detection signal, and the overcurrent detection circuit for any one of the plurality of phases When the overcurrent detection signal is output to one of the pair of switching elements, the control circuit
  • the drive signal for the upper arm side switching element is on, or the drive signal for the upper arm side switching element and the drive signal for the lower arm side switching element of the phase are both off.
  • the drive signal for the switching element on the upper arm side of the phase is in the on state immediately before, the switching element on the upper arm side is turned off for all of the plurality of phases.
  • the drive signal is output so that the switching element on the upper arm side is controlled to be on and the switching element on the lower arm side is controlled to be off.
  • the failure detection circuit outputs a pair of switching elements in which an upper arm side switching element and a lower arm side switching element are connected in series, and a drive signal for controlling the pair of switching elements.
  • a delay circuit that outputs a delay signal based on the drive signal for each of the pair of switching elements, and the pair of switching elements has an overcurrent.
  • the drive circuit includes a pair of switching elements in which an upper arm side switching element and a lower arm side switching element are connected in series, and a control for outputting a drive signal for controlling the pair of switching elements.
  • a driver circuit that drives each of the pair of switching elements based on the drive signal, and detects an overcurrent that flows through each of the pair of switching elements.
  • An overcurrent detection circuit that outputs an overcurrent detection signal; and a failure detection circuit that outputs a failure detection signal when each of the pair of switching elements is short-circuited, and the failure detection circuit includes the pair of switching elements.
  • a delay circuit that outputs a delay signal based on the drive signal for each of the switching elements; The failure detection signal is output based on the overcurrent detection signal and the delay signal, and the change of the delay signal from ON to OFF and the change from OFF to ON of one of the pair of switching elements is changed. At least one and at least one of the change from OFF to ON and the change from ON to OFF of the drive signal for the other switching element are synchronized with each other.
  • the short-circuit failure location can be specified.
  • FIG. 1 is a diagram illustrating a configuration of a power conversion device 3 and peripheral circuits according to an embodiment of the present invention.
  • a power conversion device 3 shown in FIG. 1 is connected between an external power source 1 and a load 2 and exchanges power input and output between them.
  • the external power source 1 is a DC power source for driving the load 2 and corresponds to, for example, an in-vehicle battery.
  • the load 2 is a target load to be driven by the power conversion device 3, and examples thereof include a motor, a solenoid, and a transformer for transformation.
  • a three-phase AC motor that is mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle and generates a driving force of the vehicle is used as the load 2 will be described. The same applies to.
  • the power conversion device 3 includes a control circuit 4, a current sensor 5, and an inverter circuit 6.
  • the inverter circuit 6 includes six power semiconductors 6au, 6bu, 6av, 6bv, 6aw, and 6bw that operate as switching elements, and six drive circuits 7au, 7bu, 7av, 7bv, and 7aw that drive each power semiconductor. , 7 bw.
  • the same symbols (au to bw) are added to the end of the reference numerals for power semiconductors and drive circuits that have a corresponding relationship. This also applies to various signals such as drive signals and failure detection signals described later.
  • the power conversion device 3 includes the power semiconductor and the drive circuit for three phases (6) each of the U phase, the V phase, and the W phase as described above.
  • the power semiconductors 6au, 6av, 6aw disposed on the upper side, that is, the high potential side are referred to as upper arm side power semiconductors
  • the power semiconductors 6bu disposed on the lower side, that is, the low potential side, 6bv and 6bw are referred to as lower arm side power semiconductors.
  • the drive circuits 7au, 7av, and 7aw arranged on the upper side, that is, on the high potential side are referred to as upper arm side drive circuits
  • the drive circuits 7bu, 7bv, and 7bw arranged on the lower side, that is, on the low potential side are referred to. This is referred to as a lower arm side drive circuit.
  • the control circuit 4 is a circuit that performs drive control of the load 2 using the inverter circuit 6, and includes a CPU, a RAM, a ROM, a communication circuit (all not shown), and the like.
  • the ROM mounted on the control circuit 4 may be an electrically rewritable ROM, such as an EEPROM (Electrically Erasable Programmable ROM) or a flash ROM.
  • the control circuit 4 communicates with an electronic control device (not shown) connected to the outside of the power conversion device 3 and receives a drive command for the load 2. Based on this drive command and the current value obtained from the current sensor 5, drive control of the load 2 is performed.
  • the drive control of the load 2 is performed by outputting drive signals 8au to 8bw from the control circuit 4 to the drive circuits 7au to 7bw of the inverter circuit 6, respectively. That is, the control circuit 4 receives the drive command from the outside, and the upper arm side power semiconductors 6au, 6av, 6aw and the lower arm side which are switching elements provided for each of the U phase, the V phase, and the W phase.
  • Drive signals 8au to 8bw for controlling each of the power semiconductors 6bu, 6bv and 6bw are output.
  • the control circuit 4 receives the failure detection signals 19au to 19bw output from the drive circuits 7au to 7bw, respectively, and specifies a failure occurrence point based on the failure detection signals 19au to 19bw. Specifically, when any of the failure detection signals 19au to 19bw changes from low indicating normal state to high indicating short-circuit failure, it is determined that a short-circuit failure has occurred in the power semiconductor corresponding to the failure detection signal. . Then, in order to control the inverter circuit 6 corresponding to the specified failure location, the state of the drive signals 8au to 8bw is switched from the normal state. A specific operation at this time will be described later. Further, at this time, the control circuit 4 outputs a failure notification signal to the failure notification device 30 connected to the outside of the power conversion device 3.
  • the current sensor 5 is a sensor for measuring the current flowing through the load 2.
  • a three-phase AC motor is used as the load 2 as described above. Therefore, the current sensor 5 individually measures the current value of each phase and outputs the measured value to the control circuit 4.
  • the power semiconductors 6au to 6bw function as switching elements by being driven to be switched by the drive circuits 7au to 7bw, respectively.
  • the power semiconductors 6 au to 6 bw are switched in response to a drive command, whereby the direct current supplied from the external power supply 1 is converted into a three-phase alternating current and output to the load 2.
  • a power MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • each of the power semiconductors 6au to 6bw has a sense terminal. From this sense terminal, a constant ratio of the current flowing between the drain and source of the power semiconductor, for example, 1 / 100th or 1 / 1000th of current is output.
  • the driving circuits 7 au to 7 bw receive the driving signals 8 au to 8 bw output from the control circuit 4, respectively, and switch on / off the corresponding power semiconductors 6 au to 6 bw.
  • the drive circuits 7 au to 7 bw have a failure detection circuit for detecting a short-circuit failure of the corresponding power semiconductors 6 au to 6 bw. When the failure of the power semiconductor is detected, the drive circuits 7 au to 7 bw Failure detection signals 19au to 19bw are output respectively. The details of the drive circuits 7au to 7bw will be described later with reference to FIG.
  • the failure notification device 30 receives a failure notification signal from the control circuit 4 and notifies the vehicle occupant of the occurrence of the failure.
  • Examples of the failure notification method include a method of lighting a lamp, generating a warning sound, and notifying by voice.
  • FIG. 2 is a diagram showing a configuration of a drive circuit and its peripheral circuits in the power conversion device 3 according to the first embodiment of the present invention.
  • FIG. 2 among the power semiconductors 6 au to 6 bw and the drive circuits 7 au to 7 bw for the three phases shown in FIG. 1, the configuration related to the power semiconductors 6 au and 6 bu for one phase (U phase) and the drive circuits 7 au and 7 bu Only a representative example is shown.
  • the configurations of the other two-phase (V-phase, W-phase) power semiconductors 6av, 6bv, 6aw, 6bw and drive circuits 7av, 7bv, 7aw, 7bw are the same as those shown in FIG. Description of is omitted.
  • the drive circuits 7au and 7bu each have a driver circuit 10, an overcurrent detection circuit 11, and a failure detection circuit 16 therein.
  • the driver circuit 10 controls the gate signal output to the corresponding power semiconductor based on the drive signal output from the control circuit 4. Thereby, on / off of the power semiconductor is switched.
  • the driver circuit 10 inside the drive circuit 7au receives the drive signal 8au from the control circuit 4, controls the gate signal 9au, and switches on / off the target power semiconductor 6au.
  • the driver circuit 10 in the drive circuit 7bu receives the drive signal 8bu from the control circuit 4, controls the gate signal 9bu, and switches on / off the target power semiconductor 6bu. In this way, in the drive circuits 7au and 7bu, the driver circuit 10 drives the pair of upper arm side power semiconductors 6au and lower arm side power semiconductors 6bu based on the drive signals 8au and 8bu, respectively.
  • the overcurrent detection circuit 11 is a circuit that detects an overcurrent flowing through a corresponding power semiconductor and outputs an overcurrent detection signal.
  • the overcurrent detection circuit 11 includes a resistor 12, a reference voltage source 13, and a comparator 14 inside.
  • the overcurrent detection circuit 11 converts the sense current output from the corresponding power semiconductor into a voltage by the resistor 12.
  • the converted voltage and the voltage of the reference voltage source 13 are compared by the comparator 14.
  • the overcurrent detection signal is not output.
  • the overcurrent detection circuit 11 detects the occurrence of an overcurrent and outputs an overcurrent detection signal.
  • the overcurrent detection circuit 11 inside the drive circuit 7au notifies whether or not an overcurrent flows through the target power semiconductor 6au by an overcurrent detection signal 15au.
  • the overcurrent detection circuit 11 in the drive circuit 7bu notifies whether or not an overcurrent is flowing through the target power semiconductor 6bu by an overcurrent detection signal 15bu.
  • the overcurrent detection circuit 11 detects the overcurrents flowing through the pair of upper arm side power semiconductor 6au and lower arm side power semiconductor 6bu, respectively, and overcurrent detection signals 15au and 15bu. Is output.
  • the failure detection circuit 16 has a delay circuit 17 inside.
  • the delay circuit 17 receives a drive signal output to a corresponding power semiconductor and a drive signal output to a power semiconductor paired with the power semiconductor, and outputs a delay signal based on these drive signals. Details of the method of generating the delay signal will be described later.
  • the failure detection circuit 16 fails when the corresponding power semiconductor is short-circuited based on the delay signal generated by the delay circuit 17 and the overcurrent detection signal output from the overcurrent detection circuit 11 described above. Is detected and a failure detection signal is generated. Specifically, when the delay signal is in a low (off) state and the overcurrent detection signal is high (overcurrent state), it is determined that the corresponding power semiconductor is short-circuited and a failure is detected. Set the signal high (failed state). Then, the failure detection circuit 16 outputs the generated failure detection signal to the control circuit 4.
  • the failure detection circuit 16 simulates the original on / off state of the corresponding power semiconductor by the delay signal.
  • an overcurrent detection signal is output from the overcurrent detection circuit 11 when the delay signal is in a low (off) state, that is, when the power semiconductor is supposed to be in an off state
  • the power semiconductor is Estimated that there is a short circuit failure.
  • the overcurrent detection signal is output, the pair of upper arm side power semiconductors and the lower arm side power semiconductors are both turned on. Therefore, the fact that the overcurrent detection signal is output even though the delay signal is off means that the target power semiconductor must be off, but it is erroneously turned on due to a short circuit fault. That's what it means. Therefore, in such a case, it can be determined that the target power semiconductor is short-circuited.
  • the failure detection circuit 16 inside the drive circuit 7au is driven by the internal delay circuit 17 to drive the drive signal 8au corresponding to the corresponding upper arm side power semiconductor 6au and the lower arm side power semiconductor 6bu which forms a pair therewith. Based on the signal 8bu, the value of the delay signal 18au is determined. Then, using the delay signal 18au and the overcurrent detection signal 15au, the value of the failure detection signal 19au is switched and output to the control circuit 4. Further, the failure detection circuit 16 inside the drive circuit 7bu is provided with a drive signal 8bu for the corresponding lower arm side power semiconductor 6bu and a drive signal 8au for the upper arm side power semiconductor 6au paired therewith by an internal delay circuit 17. Based on the above, the value of the delay signal 18bu is determined.
  • the failure detection circuit 16 delays the delay signals 18au and 18bu based on the drive signals 8au and 8bu for each of the pair of upper arm side power semiconductor 6au and lower arm side power semiconductor 6bu.
  • the circuit 17 outputs the failure detection signals 19au and 19bu based on the delay signals 18au and 18bu and the overcurrent detection signals 15au and 15bu.
  • FIGS. 3 and 4 are diagrams respectively showing examples of timing charts of respective signals when the power conversion device 3 according to the first embodiment of the present invention is normal and when a short circuit failure occurs.
  • FIGS. 3 and 4 only timing charts of signals in the power semiconductors 6au and 6bu and the drive circuits 7au and 7bu for one phase (U phase) shown in FIG. 2 are shown as representative examples.
  • the signal change is the same as in FIGS.
  • the drive signals 8au and 8bu are switched between high (on state) and low (off state) at regular intervals.
  • the drive signals 8au and 8bu both have a dead time tdd which is a low (off state) time zone.
  • the power semiconductors 6au and 6bu are delayed from the change of the drive signals 8au and 8bu by a delay time tdr, respectively.
  • Change When the state of the drive signals 8au and 8bu changes from high (on state) to low (off state), the power semiconductors 6au and 6bu are delayed from the change of the drive signals 8au and 8bu by a delay time tdf, respectively. Turn off. As shown in the example of FIG. 3, the delay time tdf is set to be shorter than the dead time tdd in order to avoid the power semiconductors 6au and 6bu being simultaneously turned on.
  • the failure detection circuit 16 in the drive circuit 7au outputs the delay signal 18au related to the upper arm side power semiconductor 6au at the timing shown in FIG. 3 based on the drive signals 8au and 8bu by the delay circuit 17. Specifically, the change of the delay signal 18au from low (off state) to high (on state) is caused by the low (off) state of the drive signal 8au output to the upper arm side power semiconductor 6au corresponding to the drive circuit 7au. State) to high (on state). Further, the change of the delay signal 18au from high (on state) to low (off state) indicates that the drive signal 8bu output to the lower arm side power semiconductor 6bu paired with the upper arm side power semiconductor 6au is low ( Synchronize with the change from off to high. In the delay circuit 17 included in the failure detection circuit 16 in the drive circuit 7au, the change timing of the delay signal 18au is determined and output in this way.
  • the failure detection circuit 16 in the drive circuit 7bu outputs a delay signal 18bu related to the lower arm side power semiconductor 6bu at the timing shown in FIG. 3 based on the drive signals 8au and 8bu by the delay circuit 17.
  • the change of the delay signal 18bu from low (off state) to high (on state) indicates that the drive signal 8bu output to the lower arm side power semiconductor 6bu corresponding to the drive circuit 7bu is low (off). State) to high (on state).
  • the change of the delay signal 18bu from high (on state) to low (off state) is caused by the low (in the drive signal 8au output to the upper arm side power semiconductor 6au paired with the lower arm side power semiconductor 6bu ( Synchronize with the change from off to high.
  • the delay circuit 17 included in the failure detection circuit 16 in the drive circuit 7bu the change timing of the delay signal 18bu is determined and output in this way.
  • the upper arm side power semiconductor 6au and the lower arm side power semiconductor 6bu are both in a normal state. Therefore, the overcurrent detection signals 15au and 15bu remain low indicating that both are not in an overcurrent state. Therefore, the failure detection signals 19au and 19bu output from the failure detection circuit 16 of the drive circuits 7au and 7bu, respectively, remain low indicating that no short-circuit failure has occurred. That is, in the case of FIG. 3, the failure detection signal indicating the occurrence of a short-circuit failure is not output from the failure detection circuit 16 in any of the drive circuits 7 au and 7 bu.
  • the delay signals 18 au and 18 bu output from the delay circuit 17 by the failure detection circuit 16 in the drive circuits 7 au and 7 bu indicate the on / off states of the corresponding power semiconductors 6 au and 6 bu as described above. It is a simulation. Therefore, originally, it is desirable that the delay signals 18au and 18bu accurately simulate the delay times tdr and tdf from the change of the drive signals 8au and 8bu to the change of the states of the power semiconductors 6au and 6bu, respectively. However, in order to accurately simulate the delay times tdr and tdf, it is necessary to provide a plurality of timers inside the delay circuit 17.
  • the change of the delay signals 18au and 18bu from off to on is shifted from the timing at which the target power semiconductors 6au and 6bu actually change from off to on.
  • the delay signal 18au related to the power semiconductor 6au on the upper arm side the drive signal output to the drive circuit 7au corresponding to the power semiconductor 6au at the timing when the delay signal 18au changes from off to on. It is synchronized with the timing when 8 au changes from off to on.
  • the delay signal 18bu related to the power semiconductor 6bu on the lower arm side the drive signal 8bu output to the drive circuit 7bu corresponding to the power semiconductor 6bu indicates the timing at which the delay signal 18bu changes from off to on. It is synchronized with the timing when it changes from off to on.
  • the change of the delay signals 18au and 18bu from on to off is also shifted from the timing at which the target power semiconductors 6au and 6bu actually change from on to off.
  • the timing at which the delay signal 18au changes from on to off corresponds to the power semiconductor 6bu on the lower arm side paired with the power semiconductor 6au.
  • the drive signal 8bu output to the drive circuit 7bu is synchronized with the timing when it changes from on to off.
  • the delay signal 18bu related to the power semiconductor 6bu on the lower arm side the drive circuit corresponding to the power semiconductor 6au on the upper arm side that is paired with the power semiconductor 6bu at the timing when the delay signal 18bu changes from on to off.
  • the drive signal 8au output to 7au is synchronized with the timing when it changes from on to off.
  • the change in the delay signal simulating the switching state of the pair of power semiconductors on the upper arm side and the lower arm side is compared with the change in the drive signal of the arm.
  • Each is synchronized with a change in the arm drive signal.
  • the timer in the delay circuit 17 can be deleted, and the delay circuit 17 can be configured only by a simple combination of logic circuits.
  • the delay circuit 17 in the drive circuit 7 au corresponding to the upper arm side power semiconductor 6 au can be realized by using an RS flip-flop having the drive signal 8 au as an S input and the drive signal 8 bu as an R input.
  • the delay circuit 17 in the drive circuit 7bu corresponding to the lower arm side power semiconductor 6bu can be realized by using an RS flip-flop having the drive signal 8bu as an S input and the drive signal 8au as an R input.
  • the scale and area of the delay circuit 17 can be reduced, and the configuration of the power conversion device 3 of the present embodiment can be realized at a lower cost.
  • the change from OFF to ON and the change from ON to OFF of the delay signals 18au and 18bu are both synchronized with the drive signal 8au or 8bu. However, only one of the timings is selected. May be synchronized with the drive signal 8au or 8bu. When only the change of the delay signal from OFF to ON is synchronized with the drive signal, the timer for simulating the delay time tdr can be reduced. Similarly, when only the change of the delay signal from on to off is synchronized with the drive signal, the timer for simulating the delay time tdf can be reduced.
  • a power conversion device to which the present invention is applied can be realized by synchronizing at least one of a change from OFF to ON of a signal and a change from ON to OFF with each other.
  • FIG. 4 shows an example of a timing chart when the power semiconductor 6au has a short circuit failure at the timing of time t1.
  • both the power semiconductors 6au and 6bu are turned on at time t2 when the power semiconductor 6bu is turned on, and a large current flows through them.
  • the overcurrent detection signals 15au and 15bu both become high (overcurrent state).
  • the delay signal 18au is in an off state and the delay signal 18bu is in an on state. Therefore, the failure detection signal 19au becomes high (failure state) at time t2, and the failure detection signal 19bu remains low (normal state).
  • the failure of the power semiconductor 6au is notified to the control circuit 4 by the failure detection signal 19au.
  • FIG. 5 shows a flowchart of the failure detection process executed by the control circuit 4. This process is performed in the control circuit 4 when any of the failure detection signals 19au to 19bw becomes high (failure state).
  • step S100 the control circuit 4 determines whether any of the failure detection signals 19au, 19av, 19aw related to the upper arm side power semiconductors 6au, 6av, 6aw is high (failure state). If any one is high (failure state), the control circuit 4 determines that any one of the upper arm side power semiconductors 6au, 6av, 6aw has a short-circuit fault, and proceeds to the processing of step S101. On the other hand, when all of the failure detection signals 19au, 19av, 19aw are low (normal state), the control circuit 4 proceeds to the process of step S102.
  • step S101 the control circuit 4 controls all the upper arm side power semiconductors 6au, 6av, 6aw to the on state, and controls all the paired lower arm side power semiconductors 6bu, 6bv, 6bw to the off state.
  • the drive signals 8au to 8bw are output to the drive circuits 7au to 7bw, respectively.
  • the drive signals 8au, 8av, 8aw are all set to high (on state), and the lower arm side
  • the drive signals 8au, 8av, 8aw are set to high (on state)
  • the lower arm side For the drive circuits 7bu, 7bv, 7bw corresponding to the power semiconductors 6bu, 6bv, 6bw, all the drive signals 8bu, 8bv, 8bw are set to low (off state).
  • the upper arm side power semiconductors 6au, 6av, 6aw are all turned on, and the lower arm side power semiconductors 6bu, 6bv, 6bw are all turned off.
  • step S101 the control circuit 4 proceeds to the process of step S104.
  • step S102 the control circuit 4 determines whether one of the failure detection signals 19bu, 19bv, 19bw related to the lower arm side power semiconductors 6bu, 6bv, 6bw is high (failure state). If any one is high (failure state), the control circuit 4 determines that any one of the lower arm side power semiconductors 6bu, 6bv, 6bw has a short-circuit failure, and proceeds to the process of step S103. On the other hand, when all of the failure detection signals 19bu, 19bv, 19bw are low (normal state), the control circuit 4 ends the failure detection process shown in FIG.
  • step S103 the control circuit 4 controls all the upper arm side power semiconductors 6au, 6av, 6aw to the off state, and controls all the paired lower arm side power semiconductors 6bu, 6bv, 6bw to the on state.
  • the drive signals 8au to 8bw are output to the drive circuits 7au to 7bw, respectively.
  • the drive signals 8au, 8av, 8aw are all set to low (off state), and the lower arm side
  • the drive signals 8au, 8av, 8aw are all set to low (off state)
  • the lower arm side For the drive circuits 7bu, 7bv, and 7bw corresponding to the power semiconductors 6bu, 6bv, and 6bw, all the drive signals 8bu, 8bv, and 8bw are set to high (on state).
  • the upper arm side power semiconductors 6au, 6av, 6aw are all turned off, and the lower arm side power semiconductors 6bu, 6bv, 6bw are all turned on.
  • step S104 Similar to the state described in step S101, in this state, the three-phase motor connected to the power conversion device 3 as the load 2 is in a state where neither power running nor regeneration is performed, and torque output is lost. Sudden acceleration and sudden deceleration can be prevented.
  • step S103 the control circuit 4 proceeds to the process of step S104.
  • step S104 the control circuit 4 outputs a failure notification signal to the failure notification device 30.
  • additional information for example, information on the location of the power semiconductor in which a short circuit has failed may be transmitted to the failure notification device 30.
  • the control circuit 4 can switch the U-phase, V-phase, and W-phase switching circuits, that is, the upper arm side power semiconductors 6au, 6av, 6aw and the lower arm side power.
  • the overcurrent detection circuit 11 outputs an overcurrent detection signal to any one of the power semiconductors 6au to 6bw for any phase. Then, the following control is performed.
  • the drive signal for the upper arm side power semiconductor of the phase is on, or the drive signal for the upper arm side power semiconductor of the phase and the drive signal for the lower arm side power semiconductor are both off.
  • the upper arm side power semiconductors 6au, 6av, 6aw are controlled to be in the off state for all three phases, and the lower arm side Drive signals 8au to 8bw are output so as to control the power semiconductors 6bu, 6bv, and 6bw to the on state.
  • the drive signal for the lower arm side power semiconductor of the phase is on, or the drive signal for the upper arm side power semiconductor of the phase and the drive signal for the lower arm side power semiconductor are both off, And when the drive signal for the lower arm side power semiconductor of the phase has been turned on immediately before, the upper arm side power semiconductors 6au, 6av, 6aw are controlled to be turned on and the lower arm side for all three phases.
  • Drive signals 8au to 8bw are output so as to control the power semiconductors 6bu, 6bv, and 6bw to an off state.
  • a delay signal is generated using a drive signal, and a short-circuit fault location of a pair of power semiconductors provided in each phase is specified from the delay signal and an overcurrent detection signal.
  • the change of the delay signal from OFF to ON is synchronized with the change of the drive signal for the target power semiconductor from OFF to ON, and the change of the delay signal from OFF to ON is the change of the drive signal for the paired power semiconductor. Synchronize with changes from off to on.
  • the delay circuit can be configured on a small scale, and a short-circuit fault location can be determined at a lower cost.
  • the power semiconductors 6au, 6av, 6aw which are switching elements on the upper arm side and the power semiconductors 6bu, 6bv, 6bw which are switching elements on the lower arm side are respectively connected in series.
  • Inverter circuit 6, control circuit 4 that outputs drive signals 8 au to 8 bw for controlling these power semiconductors 6 au to 6 bw, and power semiconductors 6 au to 6 bw are driven based on the drive signals 8 au to 8 bw, respectively.
  • Driver circuit 10 overcurrent detection circuit 11 for detecting overcurrent flowing through power semiconductors 6au to 6bw and outputting an overcurrent detection signal, and failure detection signal when power semiconductors 6au to 6bw are short-circuited, respectively.
  • a failure detection circuit 16 that outputs.
  • the failure detection circuit 16 includes a delay circuit 17 that outputs a delay signal based on the drive signals 8au to 8bw for each of the power semiconductors 6au to 6bw, and outputs a failure detection signal based on the overcurrent detection signal and the delay signal.
  • At least one and at least one of the change from OFF to ON and the change from ON to OFF of the drive signal 8bu or 8au for the other power semiconductor are synchronized with each other as described with reference to FIG. Since it did in this way, when a short circuit failure generate
  • the failure detection circuit 16 outputs the overcurrent detection signal 15au or 15bu for one power semiconductor of the pair of upper arm side power semiconductor 6au and lower arm side power semiconductor 6bu, and the one power semiconductor.
  • the delay signal 18au or 18bu is in the off state
  • the failure detection signal 19au or 19bu is output for one power semiconductor. Since it did in this way, when a short circuit fault occurs in any power semiconductor, this can be detected reliably and a failure detection signal can be outputted.
  • the control circuit 4 Based on the failure detection signals 19au to 19bw output from the failure detection circuit 16, the control circuit 4 identifies which of the power semiconductors 6au to 6bw has a short circuit failure. Since it did in this way, a short circuit fault location can be specified reliably.
  • the power conversion device 3 has a plurality of combinations of the upper arm side power semiconductor and the lower arm side power semiconductor.
  • the control circuit 4 specifies that the power semiconductor on the upper arm side is short-circuited in any of the combinations of power semiconductors, the upper arm side power semiconductors 6au, 6av, 6aw are used for all the power semiconductor combinations.
  • Drive signals 8au to 8bw are output so that the lower arm side power semiconductors 6bu, 6bv and 6bw are controlled to be turned off.
  • the upper arm side power semiconductors 6au, 6av, 6aw are turned off for all the power semiconductor combinations.
  • the drive signals 8au to 8bw are output so that the lower arm side power semiconductors 6bu, 6bv and 6bw are controlled to be in the ON state. Since it did in this way, when a three-phase motor is connected to the power converter device 3 as the load 2, it is possible to prevent sudden acceleration and sudden deceleration of the three-phase motor due to a short circuit failure.
  • FIG. 6 is a diagram showing a configuration of a drive circuit and its peripheral circuits in the power conversion device according to the second embodiment of the present invention.
  • symbol is provided to the component same as Example 1, and those description is abbreviate
  • the drive circuits 7au and 7bu in FIG. 6 each have a failure detection circuit 16a having a configuration different from that of the failure detection circuit 16 described in the first embodiment.
  • the failure detection circuit 16 a includes a latch circuit 20 in addition to the configuration of the failure detection circuit 16, and the condition for setting the failure detection signal to high (failure state) is different from that of the failure detection circuit 16.
  • the failure detection circuit 16a in the drive circuit 7au corresponding to the upper arm side power semiconductor 6au is in a state where the delay signal 18au output from the delay circuit 17 is low (off), and overcurrent detection is performed.
  • the target failure detection signal 19au is set to high (failure state).
  • the delay signal 18bu output from the delay circuit 17 is in the low (off) state, and the overcurrent detection signal 15bu.
  • the failure detection signal 19bu is set to high (failure state).
  • the latch circuit 20 has a role of maintaining high (failure state) when the failure detection signals 19au and 19bu once become high (failure state).
  • the latch circuit 20 outputs a failure detection signal 19au that is output when a reset signal (not shown) from the control circuit 4 is input. , 19bu are changed from high (failure state) to low (normal state).
  • the failure detection circuit 16a outputs the failure detection signal 19au or 19bu for one of the upper arm side power semiconductor 6au and the lower arm side power semiconductor 6bu, the failure detection signal 19bu for the other power semiconductor.
  • the failure detection signal 19bu for the other power semiconductor.
  • the output of the failure detection signal 19au or 19bu is held for one of the power semiconductors.
  • FIG. 7 is a diagram illustrating an example of a timing chart of each signal when a short circuit fault occurs in the power conversion device according to the second embodiment of the present invention.
  • FIG. 7 also shows an example of a timing chart when the power semiconductor 6au is short-circuited at the timing of time t1, similarly to FIG. 4 described in the first embodiment.
  • the overcurrent detection signals 15au and 15bu become high (overcurrent state) and the failure detection signal 19au changes to high (failure state) at time t2
  • the change in the drive signals 8au and 8bu thereafter occurs.
  • the failure detection signal 19au is maintained high (failure state), and the failure detection signal 19bu is maintained low (normal state).
  • the control circuit 4 can perform the failure detection process at an arbitrary timing. For example, as in the first embodiment, it may be performed at the timing when any of the failure detection signals 19au to 19bw becomes high (failure state), or may be performed periodically at regular intervals. good. Since the failure detection process of the control circuit 4 in this embodiment is the same as the content described in the first embodiment, the description thereof is omitted.
  • the drive signals 8au and 8bu are turned on / off.
  • the failure detection signals 19au and 19bu alternately change between high (failure state) and low (normal state). Therefore, in order to correctly determine which one of the upper arm side power semiconductor 6au and the lower arm side power semiconductor 6bu is short-circuited, the control circuit 4 correctly receives the first of the failure detection signals 19au and 19bu that is output. There is a need.
  • the time during which the failure detection signal corresponding to the correct failure occurrence location is high may be short. Therefore, if the time until the control circuit 4 receives the failure detection signal after the failure detection signal is output becomes longer due to the time taken for other control processing or the like, the failure detection signal output first is correctly received. Otherwise, the control circuit 4 may erroneously determine the failure location. The same applies to the other phases.
  • the control circuit 4 can perform the failure detection process at an arbitrary timing, and can prevent the determination error of the failure location.
  • the failure detection circuit 16a outputs the failure detection signal 19au or 19bu for one power semiconductor of the pair of upper arm side power semiconductor 6au and lower arm side power semiconductor 6bu. If the failure detection signal 19bu or 19au is not output for the other power semiconductor when it is output, the output of the failure detection signal 19au or 19bu is held for the one power semiconductor. Since it did in this way, it is possible to specify a short circuit failure location without error at arbitrary timings.
  • the failure detection circuits 16 and 16a are provided inside the drive circuits 7au to 7bw, respectively, but are provided outside the drive circuits 7au to 7bw. Also good. Further, the failure detection circuits 16 and 16a may be realized by processing executed by the control circuit 4, or may be incorporated in the control circuit 4 as hardware. Further, the overcurrent detection circuit 11 may also be provided outside the drive circuits 7au to 7bw, or may be realized as processing of the control circuit 4 or an internal element.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the correspondence between the high / low state of a signal and the state represented by the signal may be opposite to the example described in the embodiment. good.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is a power conversion device in which when a short-circuit failure occurs in any of a plurality of switching elements, the location of the short-circuit failure is specified. Failure detection circuits 16 inside driving circuits 7au, 7bu have delay circuits 17, respectively, which output delayed signals 18au, 18bu on the basis of drive signals 8au, 8bu for power semiconductors 6au, 6bu and output failure detection signals 19au, 19bu, respectively, on the basis of overcurrent detection signals 15au, 15bu and the delayed signals 18au, 18bu. At least one of the changes from ON to OFF and from OFF to ON in the delayed signal 18au or 18bu associated with one of the pair of power semiconductors 6au, 6bu and at least one of the changes from OFF to ON and from ON to OFF in the drive signal 8bu or 8au for the other of the power semiconductors are synchronized with each other.

Description

電力変換装置、故障検知回路、駆動回路Power converter, failure detection circuit, drive circuit
 本発明は、電力変換装置と、電力変換装置において用いられる故障検知回路および駆動回路に関する。 The present invention relates to a power converter, a failure detection circuit and a drive circuit used in the power converter.
 ハイブリッド自動車や電気自動車等の電動車両には、車両の駆動力を発生させるモータと、パワー半導体等を用いて構成されたスイッチング素子をスイッチング動作させることでバッテリから供給される直流電流を交流電流に変換してモータに供給するインバータ装置(電力変換装置)とが搭載されている。一般にこうしたインバータ装置には、内部回路において故障が発生した際に、その故障を検知する故障検知回路が搭載されている。故障検知回路には、例えば、故障によってパワー半導体に大電流が流れたことを検知する過電流検知回路や、故障によってパワー半導体が異常発熱したことを検知する過熱検知回路などがある。 In an electric vehicle such as a hybrid vehicle or an electric vehicle, a direct current supplied from a battery is changed to an alternating current by switching a motor configured to generate a driving force of the vehicle and a switching element using a power semiconductor or the like. An inverter device (power conversion device) that converts and supplies the motor is mounted. Generally, such an inverter device is equipped with a failure detection circuit that detects a failure when a failure occurs in an internal circuit. The failure detection circuit includes, for example, an overcurrent detection circuit that detects that a large current has flowed through the power semiconductor due to a failure, and an overheat detection circuit that detects that the power semiconductor has abnormally generated heat due to a failure.
 本技術分野の背景技術として、特許文献1に記載の技術が知られている。特許文献1には、ハイサイド出力スイッチ素子とローサイド出力スイッチ素子を備えた高耐圧パワーICに設けられた過電流制限回路が開示されている。この過電流制限回路は、中点端子の電圧がハイサイド出力スイッチ素子の過電流時に対応する電圧になった時を検出する電圧比較回路と、ハイサイド出力スイッチ素子への駆動制御信号入力の前縁を第1の遅延時間だけ遅延させる第1の遅延回路と、電圧比較回路の出力信号を第2の遅延時間だけ遅延させる第2の遅延回路と、各遅延回路の出力信号の論理積をとることにより過電流を検出して過電流検出信号を出力する論理積回路とを有する。 The technology described in Patent Document 1 is known as background technology in this technical field. Patent Document 1 discloses an overcurrent limiting circuit provided in a high voltage power IC including a high side output switch element and a low side output switch element. This overcurrent limiting circuit includes a voltage comparison circuit that detects when the voltage at the midpoint terminal becomes a voltage corresponding to the overcurrent of the high-side output switch element, and before the drive control signal is input to the high-side output switch element. A logical product of the first delay circuit that delays the edge by the first delay time, the second delay circuit that delays the output signal of the voltage comparison circuit by the second delay time, and the output signal of each delay circuit is obtained. And an AND circuit for detecting an overcurrent and outputting an overcurrent detection signal.
特開平9-172358号公報JP-A-9-172358
 インバータ装置内部で故障が発生した場合には、前述の故障検知回路を用いて故障箇所を特定し、その箇所に応じた制御を行うことが好ましい。しかしながら、特許文献1に記載の技術では、短絡故障による過電流検知を行うことは可能であるが、ハイサイド出力スイッチ素子とローサイド出力スイッチ素子のどちらで短絡故障が発生しているかを特定する方法は明示されていない。 When a failure occurs in the inverter device, it is preferable to specify the failure location using the above-described failure detection circuit and perform control according to the location. However, in the technique described in Patent Document 1, it is possible to detect an overcurrent due to a short-circuit fault, but a method of specifying which of the high-side output switch element and the low-side output switch element has a short-circuit fault Is not specified.
 そこで、本発明では、複数のスイッチング素子を有する電力変換装置において、いずれかのスイッチング素子で短絡故障が発生した際に、短絡故障箇所を特定する技術を提供することを主な目的とする。 Therefore, the main object of the present invention is to provide a technique for identifying a short-circuit fault location when a short-circuit fault occurs in any of the switching elements in a power conversion device having a plurality of switching elements.
 本発明の一態様による電力変換装置は、上アーム側のスイッチング素子と下アーム側のスイッチング素子とが直列に接続された一対のスイッチング素子と、前記一対のスイッチング素子をそれぞれ制御するための駆動信号を出力する制御回路と、前記駆動信号に基づいて前記一対のスイッチング素子をそれぞれ駆動するドライバ回路と、前記一対のスイッチング素子にそれぞれ流れる過電流を検知して過電流検知信号を出力する過電流検知回路と、前記一対のスイッチング素子がそれぞれ短絡故障しているときに故障検知信号を出力する故障検知回路と、を備え、前記故障検知回路は、前記一対のスイッチング素子の各々について前記駆動信号に基づく遅延信号を出力する遅延回路を有しており、前記過電流検知信号および前記遅延信号に基づいて前記故障検知信号を出力し、前記一対のスイッチング素子のうち一方のスイッチング素子についての前記遅延信号のオンからオフへの変化およびオフからオンへの変化の少なくとも一つと、他方のスイッチング素子についての前記駆動信号のオフからオンへの変化およびオンからオフへの変化の少なくとも一つとは、互いに同期している。
 本発明の他の一態様による電力変換装置は、複数の相について、上アーム側のスイッチング素子と下アーム側のスイッチング素子とが直列に接続された一対のスイッチング素子をそれぞれ有するスイッチング回路と、前記複数の相の前記一対のスイッチング素子をそれぞれ制御するための駆動信号を出力する制御回路と、前記駆動信号に基づいて前記複数の相の前記一対のスイッチング素子をそれぞれ駆動するドライバ回路と、前記複数の相の前記一対のスイッチング素子にそれぞれ流れる過電流を検知して過電流検知信号を出力する過電流検知回路と、を備え、前記複数の相のうちいずれかの相について、前記過電流検知回路が前記一対のスイッチング素子のいずれかに対して前記過電流検知信号を出力したときに、前記制御回路は、当該相の前記上アーム側のスイッチング素子に対する前記駆動信号がオン状態であるか、または、当該相の前記上アーム側のスイッチング素子に対する前記駆動信号および前記下アーム側のスイッチング素子に対する前記駆動信号が共にオフ状態であって、かつ当該相の前記上アーム側のスイッチング素子に対する前記駆動信号が直前にオン状態となっていた場合は、前記複数の相の全てについて、前記上アーム側のスイッチング素子をオフ状態に制御すると共に前記下アーム側のスイッチング素子をオン状態に制御するように、前記駆動信号を出力し、当該相の前記下アーム側のスイッチング素子に対する前記駆動信号がオン状態であるか、または、当該相の前記上アーム側のスイッチング素子に対する前記駆動信号および前記下アーム側のスイッチング素子に対する前記駆動信号が共にオフ状態であって、かつ当該相の前記下アーム側のスイッチング素子に対する前記駆動信号が直前にオン状態となっていた場合は、前記複数の相の全てについて、前記上アーム側のスイッチング素子をオン状態に制御すると共に前記下アーム側のスイッチング素子をオフ状態に制御するように、前記駆動信号を出力する。
 本発明による故障検知回路は、上アーム側のスイッチング素子と下アーム側のスイッチング素子とが直列に接続された一対のスイッチング素子と、前記一対のスイッチング素子をそれぞれ制御するための駆動信号を出力する制御回路と、を備えた電力変換装置において用いられるものであって、前記一対のスイッチング素子の各々について前記駆動信号に基づく遅延信号を出力する遅延回路を有し、前記一対のスイッチング素子に過電流が流れたときに、前記遅延信号に基づいて、前記一対のスイッチング素子のいずれが短絡故障しているかを判断して故障検知信号を出力し、前記一対のスイッチング素子のうち一方のスイッチング素子についての前記遅延信号のオンからオフへの変化およびオフからオンへの変化の少なくとも一つと、他方のスイッチング素子についての前記駆動信号のオフからオンへの変化およびオンからオフへの変化の少なくとも一つとは、互いに同期している。
 本発明による駆動回路は、上アーム側のスイッチング素子と下アーム側のスイッチング素子とが直列に接続された一対のスイッチング素子と、前記一対のスイッチング素子をそれぞれ制御するための駆動信号を出力する制御回路と、を備えた電力変換装置において用いられるものであって、前記駆動信号に基づいて前記一対のスイッチング素子をそれぞれ駆動するドライバ回路と、前記一対のスイッチング素子にそれぞれ流れる過電流を検知して過電流検知信号を出力する過電流検知回路と、前記一対のスイッチング素子がそれぞれ短絡故障しているときに故障検知信号を出力する故障検知回路と、を備え、前記故障検知回路は、前記一対のスイッチング素子の各々について前記駆動信号に基づく遅延信号を出力する遅延回路を有しており、前記過電流検知信号および前記遅延信号に基づいて前記故障検知信号を出力し、前記一対のスイッチング素子のうち一方のスイッチング素子についての前記遅延信号のオンからオフへの変化およびオフからオンへの変化の少なくとも一つと、他方のスイッチング素子についての前記駆動信号のオフからオンへの変化およびオンからオフへの変化の少なくとも一つとは、互いに同期している。
A power converter according to an aspect of the present invention includes a pair of switching elements in which a switching element on the upper arm side and a switching element on the lower arm side are connected in series, and drive signals for controlling the pair of switching elements, respectively. A control circuit that outputs a signal, a driver circuit that drives each of the pair of switching elements based on the drive signal, and an overcurrent detection that detects an overcurrent flowing through each of the pair of switching elements and outputs an overcurrent detection signal A failure detection circuit that outputs a failure detection signal when each of the pair of switching elements is short-circuited, and the failure detection circuit is based on the drive signal for each of the pair of switching elements. A delay circuit for outputting a delay signal, based on the overcurrent detection signal and the delay signal; The failure detection signal is output, and at least one of the delay signal change from on to off and the change from off to on of one of the pair of switching elements, and the other switching element At least one of the change from OFF to ON and the change from ON to OFF of the drive signal is synchronized with each other.
The power conversion device according to another aspect of the present invention includes, for a plurality of phases, a switching circuit having a pair of switching elements in which an upper arm side switching element and a lower arm side switching element are connected in series, A control circuit that outputs a drive signal for controlling the pair of switching elements of a plurality of phases; a driver circuit that drives the pair of switching elements of the plurality of phases based on the drive signal; An overcurrent detection circuit that detects an overcurrent that flows through each of the pair of switching elements of the phase and outputs an overcurrent detection signal, and the overcurrent detection circuit for any one of the plurality of phases When the overcurrent detection signal is output to one of the pair of switching elements, the control circuit The drive signal for the upper arm side switching element is on, or the drive signal for the upper arm side switching element and the drive signal for the lower arm side switching element of the phase are both off. And when the drive signal for the switching element on the upper arm side of the phase is in the on state immediately before, the switching element on the upper arm side is turned off for all of the plurality of phases. Output the drive signal so as to control the switching element on the lower arm side to the on state, and the driving signal for the switching element on the lower arm side in the phase is on, or The drive signal for the upper arm side switching element and the lower arm side switch of the phase. When both of the drive signals for the switching element are in an off state and the drive signal for the switching element on the lower arm side of the phase is in the on state immediately before, for all of the plurality of phases, The drive signal is output so that the switching element on the upper arm side is controlled to be on and the switching element on the lower arm side is controlled to be off.
The failure detection circuit according to the present invention outputs a pair of switching elements in which an upper arm side switching element and a lower arm side switching element are connected in series, and a drive signal for controlling the pair of switching elements. A delay circuit that outputs a delay signal based on the drive signal for each of the pair of switching elements, and the pair of switching elements has an overcurrent. Is detected, based on the delay signal, it is determined which one of the pair of switching elements has a short-circuit fault, and a failure detection signal is output, and one of the pair of switching elements At least one of a change from on to off and a change from off to on of the delayed signal, and the other The at least one change to the off from the change and on from OFF to ON of the drive signal for the switching element, are synchronized with each other.
The drive circuit according to the present invention includes a pair of switching elements in which an upper arm side switching element and a lower arm side switching element are connected in series, and a control for outputting a drive signal for controlling the pair of switching elements. A driver circuit that drives each of the pair of switching elements based on the drive signal, and detects an overcurrent that flows through each of the pair of switching elements. An overcurrent detection circuit that outputs an overcurrent detection signal; and a failure detection circuit that outputs a failure detection signal when each of the pair of switching elements is short-circuited, and the failure detection circuit includes the pair of switching elements. A delay circuit that outputs a delay signal based on the drive signal for each of the switching elements; The failure detection signal is output based on the overcurrent detection signal and the delay signal, and the change of the delay signal from ON to OFF and the change from OFF to ON of one of the pair of switching elements is changed. At least one and at least one of the change from OFF to ON and the change from ON to OFF of the drive signal for the other switching element are synchronized with each other.
 本発明によれば、複数のスイッチング素子のいずれかで短絡故障が発生した際に、短絡故障箇所を特定することができる。 According to the present invention, when a short-circuit failure occurs in any of the plurality of switching elements, the short-circuit failure location can be specified.
本発明の一実施形態に係る電力変換装置および周辺回路の構成を示した図である。It is the figure which showed the structure of the power converter device and peripheral circuit which concern on one Embodiment of this invention. 本発明の第1の実施形態に係る電力変換装置における駆動回路とその周辺回路の構成を示した図である。It is the figure which showed the structure of the drive circuit and its peripheral circuit in the power converter device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る電力変換装置における正常時の各信号のタイミングチャートの例を表した図である。It is a figure showing the example of the timing chart of each signal at the time of normal in the power converter device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る電力変換装置における短絡故障発生時の各信号のタイミングチャートの例を表した図である。It is a figure showing the example of the timing chart of each signal at the time of the occurrence of the short circuit fault in the power converter device which concerns on the 1st Embodiment of this invention. 故障検知処理のフローチャートを示した図である。It is the figure which showed the flowchart of a failure detection process. 本発明の第2の実施形態に係る電力変換装置における駆動回路とその周辺回路の構成を示した図である。It is the figure which showed the structure of the drive circuit and its peripheral circuit in the power converter device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る電力変換装置における短絡故障発生時の各信号のタイミングチャートの例を表した図である。It is a figure showing the example of the timing chart of each signal at the time of the occurrence of the short circuit fault in the power converter device which concerns on the 2nd Embodiment of this invention.
 以下、図面を用いて本発明の実施形態を説明する。以下に説明する各実施形態では、スイッチング素子であるパワー半導体が上アームと下アームで直列に接続された電力変換装置において、いずれかのパワー半導体が短絡故障した際に、その故障箇所を特定できる構成の例を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each embodiment described below, when a power semiconductor that is a switching element is connected in series by an upper arm and a lower arm, when one of the power semiconductors is short-circuited, the failure location can be specified. The example of a structure is shown.
(第1の実施形態)
 図1は、本発明の一実施形態に係る電力変換装置3および周辺回路の構成を示した図である。図1に示す電力変換装置3は、外部電源1と負荷2の間に接続されており、これらの間で入出力される電力の授受を行う。
(First embodiment)
FIG. 1 is a diagram illustrating a configuration of a power conversion device 3 and peripheral circuits according to an embodiment of the present invention. A power conversion device 3 shown in FIG. 1 is connected between an external power source 1 and a load 2 and exchanges power input and output between them.
 外部電源1は、負荷2を駆動させるための直流電源であり、例えば車載バッテリなどが該当する。負荷2は、電力変換装置3が駆動させる対象負荷であり、例えばモータやソレノイド、変圧用トランスなどが挙げられる。以下の説明では、負荷2として、ハイブリッド自動車や電気自動車等の電動車両に搭載されており、その車両の駆動力を発生させる3相交流モータを用いた場合の例を記載するが、他の負荷についても同様である。 The external power source 1 is a DC power source for driving the load 2 and corresponds to, for example, an in-vehicle battery. The load 2 is a target load to be driven by the power conversion device 3, and examples thereof include a motor, a solenoid, and a transformer for transformation. In the following description, an example in which a three-phase AC motor that is mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle and generates a driving force of the vehicle is used as the load 2 will be described. The same applies to.
 電力変換装置3は、制御回路4、電流センサ5、およびインバータ回路6を有している。インバータ回路6は、スイッチング素子としてそれぞれ動作する6個のパワー半導体6au、6bu、6av、6bv、6aw、6bwと、各パワー半導体をスイッチング駆動させる6個の駆動回路7au、7bu、7av、7bv、7aw、7bwとを有している。なお、本実施形態においては、互いに対応関係にあるパワー半導体と駆動回路については、符号の末尾に同じ記号(au~bw)を付している。この点は、後で説明する駆動信号や故障検知信号などの各種信号についても同様である。 The power conversion device 3 includes a control circuit 4, a current sensor 5, and an inverter circuit 6. The inverter circuit 6 includes six power semiconductors 6au, 6bu, 6av, 6bv, 6aw, and 6bw that operate as switching elements, and six drive circuits 7au, 7bu, 7av, 7bv, and 7aw that drive each power semiconductor. , 7 bw. In the present embodiment, the same symbols (au to bw) are added to the end of the reference numerals for power semiconductors and drive circuits that have a corresponding relationship. This also applies to various signals such as drive signals and failure detection signals described later.
 本実施形態では、前述のように負荷2として3相交流モータを用いている。そのため、電力変換装置3は、上記のようにパワー半導体と駆動回路をそれぞれU相、V相、W相の3相分(6個)ずつ有している。なお、本実施形態では、上側すなわち高電位側に配置された各パワー半導体6au、6av、6awを、上アーム側パワー半導体と呼称し、下側すなわち低電位側に配置された各パワー半導体6bu、6bv、6bwを、下アーム側パワー半導体と呼称する。同様に、上側すなわち高電位側に配置された各駆動回路7au、7av、7awを、上アーム側駆動回路と呼称し、下側すなわち低電位側に配置された各駆動回路7bu、7bv、7bwを、下アーム側駆動回路と呼称する。 In this embodiment, a three-phase AC motor is used as the load 2 as described above. For this reason, the power conversion device 3 includes the power semiconductor and the drive circuit for three phases (6) each of the U phase, the V phase, and the W phase as described above. In the present embodiment, the power semiconductors 6au, 6av, 6aw disposed on the upper side, that is, the high potential side are referred to as upper arm side power semiconductors, and the power semiconductors 6bu disposed on the lower side, that is, the low potential side, 6bv and 6bw are referred to as lower arm side power semiconductors. Similarly, the drive circuits 7au, 7av, and 7aw arranged on the upper side, that is, on the high potential side are referred to as upper arm side drive circuits, and the drive circuits 7bu, 7bv, and 7bw arranged on the lower side, that is, on the low potential side are referred to. This is referred to as a lower arm side drive circuit.
 制御回路4は、インバータ回路6を用いて負荷2の駆動制御を行う回路であり、その内部にCPU、RAM、ROM、通信回路(いずれも図示せず)等を有している。なお、制御回路4に搭載されるROMは、電気的に書き換え可能なROM、例えばEEPROM(Electrically Erasable Programmable ROM)や、フラッシュROMであっても良い。 The control circuit 4 is a circuit that performs drive control of the load 2 using the inverter circuit 6, and includes a CPU, a RAM, a ROM, a communication circuit (all not shown), and the like. The ROM mounted on the control circuit 4 may be an electrically rewritable ROM, such as an EEPROM (Electrically Erasable Programmable ROM) or a flash ROM.
 制御回路4は、電力変換装置3の外部に接続された電子制御装置(図示せず)と通信を行い、負荷2の駆動命令を受け取る。そして、この駆動命令と電流センサ5から得られる電流値に基づいて、負荷2の駆動制御を行う。この負荷2の駆動制御は、制御回路4からインバータ回路6の駆動回路7au~7bwに対して、駆動信号8au~8bwをそれぞれ出力することで行われる。すなわち、制御回路4は、外部からの駆動命令を受けて、U相、V相、W相に対して一対ずつ設けられたスイッチング素子である上アーム側パワー半導体6au、6av、6awおよび下アーム側パワー半導体6bu、6bv、6bwのそれぞれを制御するための駆動信号8au~8bwを出力する。 The control circuit 4 communicates with an electronic control device (not shown) connected to the outside of the power conversion device 3 and receives a drive command for the load 2. Based on this drive command and the current value obtained from the current sensor 5, drive control of the load 2 is performed. The drive control of the load 2 is performed by outputting drive signals 8au to 8bw from the control circuit 4 to the drive circuits 7au to 7bw of the inverter circuit 6, respectively. That is, the control circuit 4 receives the drive command from the outside, and the upper arm side power semiconductors 6au, 6av, 6aw and the lower arm side which are switching elements provided for each of the U phase, the V phase, and the W phase. Drive signals 8au to 8bw for controlling each of the power semiconductors 6bu, 6bv and 6bw are output.
 また、制御回路4は、駆動回路7au~7bwからそれぞれ出力される故障検知信号19au~19bwを受け、これに基づいて故障発生箇所の特定を行う。具体的には、故障検知信号19au~19bwのいずれかが正常状態を示すローから短絡故障を示すハイに変化した場合に、その故障検知信号に対応するパワー半導体において短絡故障が発生したと判断する。そして、特定した故障箇所に対応したインバータ回路6の制御を行うために、駆動信号8au~8bwの状態を正常時とは切り替える。なお、このときの具体的な動作については後で説明する。さらにこのとき、制御回路4は、電力変換装置3の外部に接続された故障通知装置30に対して故障通知信号を出力する。 Further, the control circuit 4 receives the failure detection signals 19au to 19bw output from the drive circuits 7au to 7bw, respectively, and specifies a failure occurrence point based on the failure detection signals 19au to 19bw. Specifically, when any of the failure detection signals 19au to 19bw changes from low indicating normal state to high indicating short-circuit failure, it is determined that a short-circuit failure has occurred in the power semiconductor corresponding to the failure detection signal. . Then, in order to control the inverter circuit 6 corresponding to the specified failure location, the state of the drive signals 8au to 8bw is switched from the normal state. A specific operation at this time will be described later. Further, at this time, the control circuit 4 outputs a failure notification signal to the failure notification device 30 connected to the outside of the power conversion device 3.
 電流センサ5は、負荷2に流れる電流を測定するためのセンサである。本実施形態では、前述のように負荷2として3相交流モータを用いている。そのため、電流センサ5は各相の電流値を個別に測定し、測定値を制御回路4に対して出力する。 The current sensor 5 is a sensor for measuring the current flowing through the load 2. In the present embodiment, a three-phase AC motor is used as the load 2 as described above. Therefore, the current sensor 5 individually measures the current value of each phase and outputs the measured value to the control circuit 4.
 パワー半導体6au~6bwは、それぞれ駆動回路7au~7bwによってスイッチング駆動されることにより、スイッチング素子として機能する。インバータ回路6において各パワー半導体6au~6bwが駆動命令に応じてスイッチング駆動されることで、外部電源1から供給された直流電流が3相交流電流に変換され、負荷2に出力される。なお、パワー半導体6au~6bwには、例えばパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)や、IGBT(Insulated Gate Bipolar Transistor)などが用いられる。 The power semiconductors 6au to 6bw function as switching elements by being driven to be switched by the drive circuits 7au to 7bw, respectively. In the inverter circuit 6, the power semiconductors 6 au to 6 bw are switched in response to a drive command, whereby the direct current supplied from the external power supply 1 is converted into a three-phase alternating current and output to the load 2. As the power semiconductors 6au to 6bw, for example, a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor) is used.
 また、パワー半導体6au~6bwはそれぞれセンス端子を有している。このセンス端子からは、当該パワー半導体のドレイン-ソース間を流れる電流のうちの一定割合、例えば100分の1や1000分の1の電流が出力される。 Moreover, each of the power semiconductors 6au to 6bw has a sense terminal. From this sense terminal, a constant ratio of the current flowing between the drain and source of the power semiconductor, for example, 1 / 100th or 1 / 1000th of current is output.
 駆動回路7au~7bwは、それぞれ制御回路4から出力される駆動信号8au~8bwを受けて、対応するパワー半導体6au~6bwのオン/オフを切り替える。また、駆動回路7au~7bwは、対応するパワー半導体6au~6bwの短絡故障を検知する故障検知回路を内部に有しており、当該パワー半導体の故障を検知した場合には、制御回路4に対して故障検知信号19au~19bwをそれぞれ出力する。なお、駆動回路7au~7bwの詳細については、後で図2を参照して説明する。 The driving circuits 7 au to 7 bw receive the driving signals 8 au to 8 bw output from the control circuit 4, respectively, and switch on / off the corresponding power semiconductors 6 au to 6 bw. The drive circuits 7 au to 7 bw have a failure detection circuit for detecting a short-circuit failure of the corresponding power semiconductors 6 au to 6 bw. When the failure of the power semiconductor is detected, the drive circuits 7 au to 7 bw Failure detection signals 19au to 19bw are output respectively. The details of the drive circuits 7au to 7bw will be described later with reference to FIG.
 故障通知装置30は、制御回路4からの故障通知信号を受け付け、車両の搭乗者に対して故障の発生を通知する。故障発生の通知方法としては、例えば、ランプを点灯させる、警告音を発生させる、音声で通知するなどの方法が挙げられる。 The failure notification device 30 receives a failure notification signal from the control circuit 4 and notifies the vehicle occupant of the occurrence of the failure. Examples of the failure notification method include a method of lighting a lamp, generating a warning sound, and notifying by voice.
 図2は、本発明の第1の実施形態に係る電力変換装置3における駆動回路とその周辺回路の構成を示した図である。なお、図2では、図1で示した3相分のパワー半導体6au~6bwおよび駆動回路7au~7bwのうち、1相分(U相)のパワー半導体6au、6buおよび駆動回路7au、7buに関する構成のみを代表例として示している。他の2相(V相、W相)のパワー半導体6av、6bv、6aw、6bwおよび駆動回路7av、7bv、7aw、7bwの構成は、図2で示した構成と同様であるため、以下ではそれらの説明は省略する。 FIG. 2 is a diagram showing a configuration of a drive circuit and its peripheral circuits in the power conversion device 3 according to the first embodiment of the present invention. In FIG. 2, among the power semiconductors 6 au to 6 bw and the drive circuits 7 au to 7 bw for the three phases shown in FIG. 1, the configuration related to the power semiconductors 6 au and 6 bu for one phase (U phase) and the drive circuits 7 au and 7 bu Only a representative example is shown. The configurations of the other two-phase (V-phase, W-phase) power semiconductors 6av, 6bv, 6aw, 6bw and drive circuits 7av, 7bv, 7aw, 7bw are the same as those shown in FIG. Description of is omitted.
 図2に示すように、駆動回路7auおよび7buは、内部にドライバ回路10、過電流検知回路11、故障検知回路16をそれぞれ有している。 As shown in FIG. 2, the drive circuits 7au and 7bu each have a driver circuit 10, an overcurrent detection circuit 11, and a failure detection circuit 16 therein.
 ドライバ回路10は、制御回路4が出力する駆動信号に基づき、対応するパワー半導体に対して出力するゲート信号の制御を行う。これにより、当該パワー半導体のオン/オフを切り替える。図2の場合、駆動回路7au内部のドライバ回路10は、制御回路4から駆動信号8auを受けて、ゲート信号9auを制御し、対象のパワー半導体6auのオン/オフを切り替える。また、駆動回路7bu内部のドライバ回路10は、制御回路4から駆動信号8buを受けて、ゲート信号9buを制御し、対象のパワー半導体6buのオン/オフを切り替える。このようにして、駆動回路7au、7buにおいてドライバ回路10は、駆動信号8au、8buに基づいて、一対の上アーム側パワー半導体6auおよび下アーム側パワー半導体6buをそれぞれ駆動させる。 The driver circuit 10 controls the gate signal output to the corresponding power semiconductor based on the drive signal output from the control circuit 4. Thereby, on / off of the power semiconductor is switched. In the case of FIG. 2, the driver circuit 10 inside the drive circuit 7au receives the drive signal 8au from the control circuit 4, controls the gate signal 9au, and switches on / off the target power semiconductor 6au. The driver circuit 10 in the drive circuit 7bu receives the drive signal 8bu from the control circuit 4, controls the gate signal 9bu, and switches on / off the target power semiconductor 6bu. In this way, in the drive circuits 7au and 7bu, the driver circuit 10 drives the pair of upper arm side power semiconductors 6au and lower arm side power semiconductors 6bu based on the drive signals 8au and 8bu, respectively.
 過電流検知回路11は、対応するパワー半導体に流れる過電流を検知し、過電流検知信号を出力する回路である。過電流検知回路11は、内部に抵抗12、基準電圧源13、コンパレータ14を有している。過電流検知回路11は、対応するパワー半導体から出力されるセンス電流を抵抗12によって電圧に変換する。そして、この変換後の電圧と基準電圧源13の電圧をコンパレータ14によって比較する。その結果、対応するパワー半導体に大電流が流れていない場合には、抵抗12による変換後の電圧が基準電圧源13の電圧よりも低く、コンパレータ14の出力はロー(正常状態)である。このとき、過電流検知信号は出力されない。一方、対応するパワー半導体に大電流が流れ、抵抗12が変換した後の電圧が基準電圧源13の電圧よりも高くなると、コンパレータ14から出力される過電流検知信号がハイ(過電流状態)になる。これによって過電流検知回路11は過電流の発生を検知し、過電流検知信号を出力する。 The overcurrent detection circuit 11 is a circuit that detects an overcurrent flowing through a corresponding power semiconductor and outputs an overcurrent detection signal. The overcurrent detection circuit 11 includes a resistor 12, a reference voltage source 13, and a comparator 14 inside. The overcurrent detection circuit 11 converts the sense current output from the corresponding power semiconductor into a voltage by the resistor 12. The converted voltage and the voltage of the reference voltage source 13 are compared by the comparator 14. As a result, when a large current does not flow through the corresponding power semiconductor, the voltage after conversion by the resistor 12 is lower than the voltage of the reference voltage source 13, and the output of the comparator 14 is low (normal state). At this time, the overcurrent detection signal is not output. On the other hand, when a large current flows through the corresponding power semiconductor and the voltage after conversion by the resistor 12 becomes higher than the voltage of the reference voltage source 13, the overcurrent detection signal output from the comparator 14 becomes high (overcurrent state). Become. As a result, the overcurrent detection circuit 11 detects the occurrence of an overcurrent and outputs an overcurrent detection signal.
 図2の場合、駆動回路7au内部の過電流検知回路11は、対象のパワー半導体6auに過電流が流れているか否かを過電流検知信号15auによって通知する。また、駆動回路7bu内部の過電流検知回路11は、対象のパワー半導体6buに過電流が流れているか否かを過電流検知信号15buによって通知する。このようにして、駆動回路7au、7buにおいて過電流検知回路11は、一対の上アーム側パワー半導体6auおよび下アーム側パワー半導体6buにそれぞれ流れる過電流を検知して、過電流検知信号15au、15buを出力する。 In the case of FIG. 2, the overcurrent detection circuit 11 inside the drive circuit 7au notifies whether or not an overcurrent flows through the target power semiconductor 6au by an overcurrent detection signal 15au. The overcurrent detection circuit 11 in the drive circuit 7bu notifies whether or not an overcurrent is flowing through the target power semiconductor 6bu by an overcurrent detection signal 15bu. In this way, in the drive circuits 7au and 7bu, the overcurrent detection circuit 11 detects the overcurrents flowing through the pair of upper arm side power semiconductor 6au and lower arm side power semiconductor 6bu, respectively, and overcurrent detection signals 15au and 15bu. Is output.
 故障検知回路16は、内部に遅延回路17を有している。遅延回路17は、対応するパワー半導体に出力される駆動信号と、当該パワー半導体と対をなすパワー半導体に出力される駆動信号とを受け付け、これらの駆動信号を基にして遅延信号を出力する。この遅延信号の生成方法の詳細については、後述する。故障検知回路16は、遅延回路17で生成した遅延信号と、前述の過電流検知回路11から出力される過電流検知信号とを基にして、対応するパワー半導体が短絡故障しているときに故障を検知し、故障検知信号を生成する。具体的には、遅延信号がロー(オフ)の状態であり、かつ過電流検知信号がハイ(過電流状態)のときに、対応するパワー半導体が短絡故障していると判断して、故障検知信号をハイ(故障状態)にする。そして、故障検知回路16は、生成した故障検知信号を制御回路4に対して出力する。 The failure detection circuit 16 has a delay circuit 17 inside. The delay circuit 17 receives a drive signal output to a corresponding power semiconductor and a drive signal output to a power semiconductor paired with the power semiconductor, and outputs a delay signal based on these drive signals. Details of the method of generating the delay signal will be described later. The failure detection circuit 16 fails when the corresponding power semiconductor is short-circuited based on the delay signal generated by the delay circuit 17 and the overcurrent detection signal output from the overcurrent detection circuit 11 described above. Is detected and a failure detection signal is generated. Specifically, when the delay signal is in a low (off) state and the overcurrent detection signal is high (overcurrent state), it is determined that the corresponding power semiconductor is short-circuited and a failure is detected. Set the signal high (failed state). Then, the failure detection circuit 16 outputs the generated failure detection signal to the control circuit 4.
 上記の動作において、故障検知回路16は、遅延信号によって対応するパワー半導体の本来のオン/オフ状態を模擬している。そして、遅延信号がロー(オフ)の状態、つまり当該パワー半導体が本来はオフ状態であるはずのときに、過電流検知回路11から過電流検知信号が出力された場合には、当該パワー半導体が短絡故障していると推定する。ここで、過電流検知信号が出力されたときには、一対の上アーム側パワー半導体および下アーム側パワー半導体が共にオンとなっている状態である。そのため、遅延信号がオフであるにも関わらず過電流検知信号が出力されるということは、対象のパワー半導体が本来はオフでなければならないのに、短絡故障により誤ってオン状態になっているということである。したがって、このような場合には対象のパワー半導体が短絡故障していると判断することができる。 In the above operation, the failure detection circuit 16 simulates the original on / off state of the corresponding power semiconductor by the delay signal. When an overcurrent detection signal is output from the overcurrent detection circuit 11 when the delay signal is in a low (off) state, that is, when the power semiconductor is supposed to be in an off state, the power semiconductor is Estimated that there is a short circuit failure. Here, when the overcurrent detection signal is output, the pair of upper arm side power semiconductors and the lower arm side power semiconductors are both turned on. Therefore, the fact that the overcurrent detection signal is output even though the delay signal is off means that the target power semiconductor must be off, but it is erroneously turned on due to a short circuit fault. That's what it means. Therefore, in such a case, it can be determined that the target power semiconductor is short-circuited.
 図2の場合、駆動回路7au内部の故障検知回路16は、内部の遅延回路17により、対応する上アーム側パワー半導体6auに対する駆動信号8auと、これと対をなす下アーム側パワー半導体6buに対する駆動信号8buとに基づき、遅延信号18auの値を決定する。そして、この遅延信号18auと過電流検知信号15auを用いて、故障検知信号19auの値を切り替え、制御回路4に出力する。また、駆動回路7bu内部の故障検知回路16は、内部の遅延回路17により、対応する下アーム側パワー半導体6buに対する駆動信号8buと、これと対をなす上アーム側パワー半導体6auに対する駆動信号8auとに基づき、遅延信号18buの値を決定する。そして、この遅延信号18buと過電流検知信号15buを用いて、故障検知信号19buの値を切り替え、制御回路4に出力する。このようにして、駆動回路7au、7buにおいて故障検知回路16は、一対の上アーム側パワー半導体6auおよび下アーム側パワー半導体6buの各々について、駆動信号8au、8buに基づく遅延信号18au、18buを遅延回路17により出力し、この遅延信号18au、18buおよび過電流検知信号15au、15buに基づいて故障検知信号19au、19buを出力する。 In the case of FIG. 2, the failure detection circuit 16 inside the drive circuit 7au is driven by the internal delay circuit 17 to drive the drive signal 8au corresponding to the corresponding upper arm side power semiconductor 6au and the lower arm side power semiconductor 6bu which forms a pair therewith. Based on the signal 8bu, the value of the delay signal 18au is determined. Then, using the delay signal 18au and the overcurrent detection signal 15au, the value of the failure detection signal 19au is switched and output to the control circuit 4. Further, the failure detection circuit 16 inside the drive circuit 7bu is provided with a drive signal 8bu for the corresponding lower arm side power semiconductor 6bu and a drive signal 8au for the upper arm side power semiconductor 6au paired therewith by an internal delay circuit 17. Based on the above, the value of the delay signal 18bu is determined. Then, using the delay signal 18bu and the overcurrent detection signal 15bu, the value of the failure detection signal 19bu is switched and output to the control circuit 4. Thus, in the drive circuits 7au and 7bu, the failure detection circuit 16 delays the delay signals 18au and 18bu based on the drive signals 8au and 8bu for each of the pair of upper arm side power semiconductor 6au and lower arm side power semiconductor 6bu. The circuit 17 outputs the failure detection signals 19au and 19bu based on the delay signals 18au and 18bu and the overcurrent detection signals 15au and 15bu.
 次に、本発明の第1の実施形態に係る電力変換装置3の動作について、図3および図4のタイミングチャートを参照して説明する。図3、図4は、本発明の第1の実施形態に係る電力変換装置3における正常時と短絡故障発生時の各信号のタイミングチャートの例をそれぞれ表した図である。なお、図3および図4では、図2に記載した1相分(U相)のパワー半導体6au、6buおよび駆動回路7au、7buにおける各信号のタイミングチャートのみを代表例として示している。他の2相(V相、W相)についても、信号変化は図3および図4と同様である。 Next, the operation of the power conversion device 3 according to the first embodiment of the present invention will be described with reference to the timing charts of FIGS. 3 and 4 are diagrams respectively showing examples of timing charts of respective signals when the power conversion device 3 according to the first embodiment of the present invention is normal and when a short circuit failure occurs. In FIGS. 3 and 4, only timing charts of signals in the power semiconductors 6au and 6bu and the drive circuits 7au and 7bu for one phase (U phase) shown in FIG. 2 are shown as representative examples. With respect to the other two phases (V phase and W phase), the signal change is the same as in FIGS.
 図3に示すように、例えば駆動信号8auおよび8buは、一定の周期でハイ(オン状態)とロー(オフ状態)が相互に切り替わる。ただし、駆動信号8auおよび8buは、共にロー(オフ状態)の時間帯であるデッドタイムtddを有している。 As shown in FIG. 3, for example, the drive signals 8au and 8bu are switched between high (on state) and low (off state) at regular intervals. However, the drive signals 8au and 8bu both have a dead time tdd which is a low (off state) time zone.
 駆動信号8au、8buの状態がロー(オフ状態)からハイ(オン状態)に変化すると、パワー半導体6au、6buは、駆動信号8au、8buの変化から遅延時間tdrだけ遅れて、それぞれオフからオンに変化する。また、駆動信号8au、8buの状態がハイ(オン状態)からロー(オフ状態)に変化すると、パワー半導体6au、6buは、駆動信号8au、8buの変化から遅延時間tdfだけ遅れて、それぞれオンからオフに変化する。なお、図3の例に示すように、パワー半導体6auおよび6buが同時にオンになるのを避けるために、遅延時間tdfはデッドタイムtddよりも短くなるように設定されている。 When the state of the drive signals 8au and 8bu changes from low (off state) to high (on state), the power semiconductors 6au and 6bu are delayed from the change of the drive signals 8au and 8bu by a delay time tdr, respectively. Change. When the state of the drive signals 8au and 8bu changes from high (on state) to low (off state), the power semiconductors 6au and 6bu are delayed from the change of the drive signals 8au and 8bu by a delay time tdf, respectively. Turn off. As shown in the example of FIG. 3, the delay time tdf is set to be shorter than the dead time tdd in order to avoid the power semiconductors 6au and 6bu being simultaneously turned on.
 本実施形態では、駆動回路7au内部の故障検知回路16は、遅延回路17により、駆動信号8auおよび8buに基づいて、図3に示すタイミングで上アーム側パワー半導体6auに関する遅延信号18auを出力する。具体的には、遅延信号18auのロー(オフ状態)からハイ(オン状態)への変化は、駆動回路7auに対応する上アーム側パワー半導体6auに対して出力される駆動信号8auのロー(オフ状態)からハイ(オン状態)への変化に同期させる。また、遅延信号18auのハイ(オン状態)からロー(オフ状態)への変化は、上アーム側パワー半導体6auと対になる下アーム側パワー半導体6buに対して出力される駆動信号8buのロー(オフ状態)からハイ(オン状態)への変化に同期させる。駆動回路7auにおいて故障検知回路16が有する遅延回路17では、このようにして遅延信号18auの変化タイミングを決定し、出力する。 In this embodiment, the failure detection circuit 16 in the drive circuit 7au outputs the delay signal 18au related to the upper arm side power semiconductor 6au at the timing shown in FIG. 3 based on the drive signals 8au and 8bu by the delay circuit 17. Specifically, the change of the delay signal 18au from low (off state) to high (on state) is caused by the low (off) state of the drive signal 8au output to the upper arm side power semiconductor 6au corresponding to the drive circuit 7au. State) to high (on state). Further, the change of the delay signal 18au from high (on state) to low (off state) indicates that the drive signal 8bu output to the lower arm side power semiconductor 6bu paired with the upper arm side power semiconductor 6au is low ( Synchronize with the change from off to high. In the delay circuit 17 included in the failure detection circuit 16 in the drive circuit 7au, the change timing of the delay signal 18au is determined and output in this way.
 同様に、駆動回路7bu内部の故障検知回路16は、遅延回路17により、駆動信号8auおよび8buに基づいて、図3に示すタイミングで下アーム側パワー半導体6buに関する遅延信号18buを出力する。具体的には、遅延信号18buのロー(オフ状態)からハイ(オン状態)への変化は、駆動回路7buに対応する下アーム側パワー半導体6buに対して出力される駆動信号8buのロー(オフ状態)からハイ(オン状態)への変化に同期させる。また、遅延信号18buのハイ(オン状態)からロー(オフ状態)への変化は、下アーム側パワー半導体6buと対になる上アーム側パワー半導体6auに対して出力される駆動信号8auのロー(オフ状態)からハイ(オン状態)への変化に同期させる。駆動回路7buにおいて故障検知回路16が有する遅延回路17では、このようにして遅延信号18buの変化タイミングを決定し、出力する。 Similarly, the failure detection circuit 16 in the drive circuit 7bu outputs a delay signal 18bu related to the lower arm side power semiconductor 6bu at the timing shown in FIG. 3 based on the drive signals 8au and 8bu by the delay circuit 17. Specifically, the change of the delay signal 18bu from low (off state) to high (on state) indicates that the drive signal 8bu output to the lower arm side power semiconductor 6bu corresponding to the drive circuit 7bu is low (off). State) to high (on state). Further, the change of the delay signal 18bu from high (on state) to low (off state) is caused by the low (in the drive signal 8au output to the upper arm side power semiconductor 6au paired with the lower arm side power semiconductor 6bu ( Synchronize with the change from off to high. In the delay circuit 17 included in the failure detection circuit 16 in the drive circuit 7bu, the change timing of the delay signal 18bu is determined and output in this way.
 図3の場合、上アーム側パワー半導体6auおよび下アーム側パワー半導体6buは、両方とも正常状態である。そのため、過電流検知信号15auおよび15buは、共に過電流状態ではないことを示すローのままで変化しない。したがって、駆動回路7au、7buの故障検知回路16からそれぞれ出力される故障検知信号19au、19buは、いずれも短絡故障が発生していないことを示すローのままで変化しない。すなわち、図3の場合には、駆動回路7au、7buのいずれにおいても、故障検知回路16から短絡故障の発生を示す故障検知信号は出力されない。 In the case of FIG. 3, the upper arm side power semiconductor 6au and the lower arm side power semiconductor 6bu are both in a normal state. Therefore, the overcurrent detection signals 15au and 15bu remain low indicating that both are not in an overcurrent state. Therefore, the failure detection signals 19au and 19bu output from the failure detection circuit 16 of the drive circuits 7au and 7bu, respectively, remain low indicating that no short-circuit failure has occurred. That is, in the case of FIG. 3, the failure detection signal indicating the occurrence of a short-circuit failure is not output from the failure detection circuit 16 in any of the drive circuits 7 au and 7 bu.
 なお、本実施形態において、駆動回路7au、7bu内の故障検知回路16が遅延回路17からそれぞれ出力する遅延信号18au、18buは、前述のように対応するパワー半導体6au、6buのオン/オフ状態を模擬したものである。そのため、本来であれば遅延信号18au、18buは、駆動信号8au、8buの変化からパワー半導体6au、6buの状態がそれぞれ変化するまでの遅延時間tdr、tdfも正確に模擬することが望ましい。しかし、遅延時間tdr、tdfを正確に模擬するためには、遅延回路17の内部に複数のタイマを設ける必要がある。また、パワー半導体6au、6buが共にオフの時間帯(図3のtoffの期間)では、パワー半導体6au、6buのいずれか一方が短絡故障したとしても、もう一方のパワー半導体がオフ状態であるため、パワー半導体6au、6buに過電流は流れず、過電流検知信号15au、15buが出力されることはない。したがって、toffの期間内であれば、パワー半導体6au、6buの状態が実際に変化するタイミングと遅延信号18au、18buが変化するタイミングの間にずれがあったとしても、故障検知回路16から出力される故障検知信号19au、19buがロー(正常状態)からハイ(故障状態)に変化するタイミングは変わらず、故障箇所の特定には差し支えない。 In this embodiment, the delay signals 18 au and 18 bu output from the delay circuit 17 by the failure detection circuit 16 in the drive circuits 7 au and 7 bu indicate the on / off states of the corresponding power semiconductors 6 au and 6 bu as described above. It is a simulation. Therefore, originally, it is desirable that the delay signals 18au and 18bu accurately simulate the delay times tdr and tdf from the change of the drive signals 8au and 8bu to the change of the states of the power semiconductors 6au and 6bu, respectively. However, in order to accurately simulate the delay times tdr and tdf, it is necessary to provide a plurality of timers inside the delay circuit 17. Further, in a time zone where both the power semiconductors 6au and 6bu are off (period of toff in FIG. 3), even if one of the power semiconductors 6au and 6bu is short-circuited, the other power semiconductor is in the off state. The overcurrent does not flow through the power semiconductors 6au and 6bu, and the overcurrent detection signals 15au and 15bu are not output. Therefore, within the period of toff, even if there is a difference between the timing at which the states of the power semiconductors 6au and 6bu actually change and the timing at which the delay signals 18au and 18bu change, there is an output from the failure detection circuit 16. The timing at which the failure detection signals 19au and 19bu change from low (normal state) to high (failure state) does not change, and the failure location can be specified.
 そこで本実施形態では、上記のことを利用して、遅延信号18au、18buのオフからオンへの変化を、対象のパワー半導体6au、6buが実際にオフからオンに変化するタイミングからずらしている。具体的には、上アーム側のパワー半導体6auに関する遅延信号18auについては、遅延信号18auがオフからオンに変化するタイミングを、当該パワー半導体6auに対応する駆動回路7auに対して出力される駆動信号8auがオフからオンに変化するタイミングに同期させている。同様に、下アーム側のパワー半導体6buに関する遅延信号18buについては、遅延信号18buがオフからオンに変化するタイミングを、当該パワー半導体6buに対応する駆動回路7buに対して出力される駆動信号8buがオフからオンに変化するタイミングに同期させている。 Therefore, in the present embodiment, by utilizing the above, the change of the delay signals 18au and 18bu from off to on is shifted from the timing at which the target power semiconductors 6au and 6bu actually change from off to on. Specifically, for the delay signal 18au related to the power semiconductor 6au on the upper arm side, the drive signal output to the drive circuit 7au corresponding to the power semiconductor 6au at the timing when the delay signal 18au changes from off to on. It is synchronized with the timing when 8 au changes from off to on. Similarly, for the delay signal 18bu related to the power semiconductor 6bu on the lower arm side, the drive signal 8bu output to the drive circuit 7bu corresponding to the power semiconductor 6bu indicates the timing at which the delay signal 18bu changes from off to on. It is synchronized with the timing when it changes from off to on.
 さらに、遅延信号18au、18buのオンからオフへの変化についても、対象のパワー半導体6au、6buが実際にオンからオフに変化するタイミングからずらしている。具体的には、上アーム側のパワー半導体6auに関する遅延信号18auについては、遅延信号18auがオンからオフに変化するタイミングを、当該パワー半導体6auと対になる下アーム側のパワー半導体6buに対応する駆動回路7buに対して出力される駆動信号8buがオンからオフに変化するタイミングに同期させている。同様に、下アーム側のパワー半導体6buに関する遅延信号18buについては、遅延信号18buがオンからオフに変化するタイミングを、当該パワー半導体6buと対になる上アーム側のパワー半導体6auに対応する駆動回路7auに対して出力される駆動信号8auがオンからオフに変化するタイミングに同期させている。 Furthermore, the change of the delay signals 18au and 18bu from on to off is also shifted from the timing at which the target power semiconductors 6au and 6bu actually change from on to off. Specifically, for the delay signal 18au related to the power semiconductor 6au on the upper arm side, the timing at which the delay signal 18au changes from on to off corresponds to the power semiconductor 6bu on the lower arm side paired with the power semiconductor 6au. The drive signal 8bu output to the drive circuit 7bu is synchronized with the timing when it changes from on to off. Similarly, for the delay signal 18bu related to the power semiconductor 6bu on the lower arm side, the drive circuit corresponding to the power semiconductor 6au on the upper arm side that is paired with the power semiconductor 6bu at the timing when the delay signal 18bu changes from on to off. The drive signal 8au output to 7au is synchronized with the timing when it changes from on to off.
 以上説明したように、本実施形態の電力変換装置3では、上アーム側および下アーム側の一対のパワー半導体の切り替え状態をそれぞれ模擬した遅延信号の変化を、当該アームの駆動信号の変化と対アームの駆動信号の変化にそれぞれ同期させている。これにより、遅延回路17内部のタイマを削除でき、簡易な論理回路の組み合わせのみで遅延回路17を構成可能となる。例えば、上アーム側パワー半導体6auに対応する駆動回路7au内の遅延回路17は、駆動信号8auをS入力、駆動信号8buをR入力とするRSフリップフロップ等を用いて実現できる。同様に、下アーム側パワー半導体6buに対応する駆動回路7bu内の遅延回路17は、駆動信号8buをS入力、駆動信号8auをR入力とするRSフリップフロップ等を用いて実現できる。その結果、遅延回路17の規模や面積を削減でき、より低コストで本実施形態の電力変換装置3の構成を実現可能となる。 As described above, in the power conversion device 3 of the present embodiment, the change in the delay signal simulating the switching state of the pair of power semiconductors on the upper arm side and the lower arm side is compared with the change in the drive signal of the arm. Each is synchronized with a change in the arm drive signal. Thereby, the timer in the delay circuit 17 can be deleted, and the delay circuit 17 can be configured only by a simple combination of logic circuits. For example, the delay circuit 17 in the drive circuit 7 au corresponding to the upper arm side power semiconductor 6 au can be realized by using an RS flip-flop having the drive signal 8 au as an S input and the drive signal 8 bu as an R input. Similarly, the delay circuit 17 in the drive circuit 7bu corresponding to the lower arm side power semiconductor 6bu can be realized by using an RS flip-flop having the drive signal 8bu as an S input and the drive signal 8au as an R input. As a result, the scale and area of the delay circuit 17 can be reduced, and the configuration of the power conversion device 3 of the present embodiment can be realized at a lower cost.
 なお、以上説明した実施形態では、遅延信号18au、18buのオフからオンへの変化とオンからオフへの変化を、共に駆動信号8auまたは8buに同期させることとしたが、いずれか片方のタイミングのみを駆動信号8auまたは8buに同期させてもよい。遅延信号のオフからオンへの変化のみを駆動信号と同期させた場合は、遅延時間tdrを模擬するためのタイマを削減できる。同様に、遅延信号のオンからオフへの変化のみを駆動信号と同期させた場合は、遅延時間tdfを模擬するためのタイマを削減できる。すなわち、上アーム側および下アーム側の一対のパワー半導体のうち一方のパワー半導体についての遅延信号のオンからオフへの変化およびオフからオンへの変化の少なくとも一つと、他方のパワー半導体についての駆動信号のオフからオンへの変化およびオンからオフへの変化の少なくとも一つとを、互いに同期させることにより、本発明を適用した電力変換装置を実現可能である。 In the embodiment described above, the change from OFF to ON and the change from ON to OFF of the delay signals 18au and 18bu are both synchronized with the drive signal 8au or 8bu. However, only one of the timings is selected. May be synchronized with the drive signal 8au or 8bu. When only the change of the delay signal from OFF to ON is synchronized with the drive signal, the timer for simulating the delay time tdr can be reduced. Similarly, when only the change of the delay signal from on to off is synchronized with the drive signal, the timer for simulating the delay time tdf can be reduced. That is, at least one of the change from ON to OFF and the change from OFF to ON of the delay signal for one of the pair of power semiconductors on the upper arm side and the lower arm side, and driving for the other power semiconductor A power conversion device to which the present invention is applied can be realized by synchronizing at least one of a change from OFF to ON of a signal and a change from ON to OFF with each other.
 図4では、時間t1のタイミングでパワー半導体6auが短絡故障した場合のタイミングチャートの例を示している。パワー半導体6auで短絡故障が発生すると、パワー半導体6buがオン状態となった時間t2において、パワー半導体6auと6buが共にオン状態となり、これらに大電流が流れる。その結果、図4に示すように、過電流検知信号15au、15buが共にハイ(過電流状態)となる。一方、時間t2において、遅延信号18auはオフ状態、遅延信号18buはオン状態である。そのため、時間t2において故障検知信号19auはハイ(故障状態)となり、故障検知信号19buはロー(正常状態)のままとなる。この結果、故障検知信号19auによって制御回路4にパワー半導体6auの故障が通知される。 FIG. 4 shows an example of a timing chart when the power semiconductor 6au has a short circuit failure at the timing of time t1. When a short circuit failure occurs in the power semiconductor 6au, both the power semiconductors 6au and 6bu are turned on at time t2 when the power semiconductor 6bu is turned on, and a large current flows through them. As a result, as shown in FIG. 4, the overcurrent detection signals 15au and 15bu both become high (overcurrent state). On the other hand, at time t2, the delay signal 18au is in an off state and the delay signal 18bu is in an on state. Therefore, the failure detection signal 19au becomes high (failure state) at time t2, and the failure detection signal 19bu remains low (normal state). As a result, the failure of the power semiconductor 6au is notified to the control circuit 4 by the failure detection signal 19au.
 図5は、制御回路4により実行される故障検知処理のフローチャートを示した図である。この処理は、制御回路4において、故障検知信号19au~19bwのいずれかがハイ(故障状態)になったタイミングで行われる。 FIG. 5 shows a flowchart of the failure detection process executed by the control circuit 4. This process is performed in the control circuit 4 when any of the failure detection signals 19au to 19bw becomes high (failure state).
 ステップS100において、制御回路4は、上アーム側パワー半導体6au、6av、6awに関する故障検知信号19au、19av、19awのいずれかがハイ(故障状態)であるか判定する。いずれかがハイ(故障状態)である場合には、制御回路4は上アーム側パワー半導体6au、6av、6awのいずれかが短絡故障していると判断し、ステップS101の処理に移る。一方、故障検知信号19au、19av、19awが全てロー(正常状態)である場合には、制御回路4はステップS102の処理に移る。 In step S100, the control circuit 4 determines whether any of the failure detection signals 19au, 19av, 19aw related to the upper arm side power semiconductors 6au, 6av, 6aw is high (failure state). If any one is high (failure state), the control circuit 4 determines that any one of the upper arm side power semiconductors 6au, 6av, 6aw has a short-circuit fault, and proceeds to the processing of step S101. On the other hand, when all of the failure detection signals 19au, 19av, 19aw are low (normal state), the control circuit 4 proceeds to the process of step S102.
 ステップS101において、制御回路4は、上アーム側パワー半導体6au、6av、6awを全てオン状態に制御すると共に、対となる下アーム側パワー半導体6bu、6bv、6bwを全てオフ状態に制御するように、駆動回路7au~7bwに対して駆動信号8au~8bwをそれぞれ出力する。具体的には、上アーム側パワー半導体6au、6av、6awにそれぞれ対応する駆動回路7au、7av、7awに対しては、駆動信号8au、8av、8awを全てハイ(オン状態)にし、下アーム側パワー半導体6bu、6bv、6bwにそれぞれ対応する駆動回路7bu、7bv、7bwに対しては、駆動信号8bu、8bv、8bwを全てロー(オフ状態)にする。その結果、上アーム側パワー半導体6au、6av、6awは全てオン状態になり、下アーム側パワー半導体6bu、6bv、6bwは全てオフ状態となる。この状態では、負荷2として電力変換装置3に接続された3相モータを流れる電流は、上アーム側パワー半導体6au、6av、6awを介して3相モータ内部で還流するため、外部電源1と負荷2の間での電力の授受が無くなる。その結果、3相モータは力行も回生もしない状態となり、トルク出力がなくなるため、短絡故障による3相モータの急加速や急減速を防止することができる。ステップS101の処理を実行後、制御回路4はステップS104の処理に移る。 In step S101, the control circuit 4 controls all the upper arm side power semiconductors 6au, 6av, 6aw to the on state, and controls all the paired lower arm side power semiconductors 6bu, 6bv, 6bw to the off state. The drive signals 8au to 8bw are output to the drive circuits 7au to 7bw, respectively. Specifically, for the drive circuits 7au, 7av, 7aw corresponding to the upper arm side power semiconductors 6au, 6av, 6aw, respectively, the drive signals 8au, 8av, 8aw are all set to high (on state), and the lower arm side For the drive circuits 7bu, 7bv, 7bw corresponding to the power semiconductors 6bu, 6bv, 6bw, all the drive signals 8bu, 8bv, 8bw are set to low (off state). As a result, the upper arm side power semiconductors 6au, 6av, 6aw are all turned on, and the lower arm side power semiconductors 6bu, 6bv, 6bw are all turned off. In this state, the current flowing through the three-phase motor connected to the power conversion device 3 as the load 2 circulates inside the three-phase motor via the upper arm side power semiconductors 6au, 6av, 6aw, so the external power source 1 and the load No power exchange between the two. As a result, the three-phase motor is in a state in which neither power running nor regeneration is performed, and torque output is lost. Therefore, sudden acceleration or sudden deceleration of the three-phase motor due to a short circuit failure can be prevented. After executing the process of step S101, the control circuit 4 proceeds to the process of step S104.
 ステップS102において、制御回路4は、下アーム側パワー半導体6bu、6bv、6bwに関する故障検知信号19bu、19bv、19bwのいずれかがハイ(故障状態)であるか判定する。いずれかがハイ(故障状態)である場合には、制御回路4は下アーム側パワー半導体6bu、6bv、6bwのいずれかが短絡故障していると判断し、ステップS103の処理に移る。一方、故障検知信号19bu、19bv、19bwが全てロー(正常状態)である場合には、制御回路4は図5に示した故障検知処理を終了する。 In step S102, the control circuit 4 determines whether one of the failure detection signals 19bu, 19bv, 19bw related to the lower arm side power semiconductors 6bu, 6bv, 6bw is high (failure state). If any one is high (failure state), the control circuit 4 determines that any one of the lower arm side power semiconductors 6bu, 6bv, 6bw has a short-circuit failure, and proceeds to the process of step S103. On the other hand, when all of the failure detection signals 19bu, 19bv, 19bw are low (normal state), the control circuit 4 ends the failure detection process shown in FIG.
 ステップS103において、制御回路4は、上アーム側パワー半導体6au、6av、6awを全てオフ状態に制御すると共に、対となる下アーム側パワー半導体6bu、6bv、6bwを全てオン状態に制御するように、駆動回路7au~7bwに対して駆動信号8au~8bwをそれぞれ出力する。具体的には、上アーム側パワー半導体6au、6av、6awにそれぞれ対応する駆動回路7au、7av、7awに対しては、駆動信号8au、8av、8awを全てロー(オフ状態)にし、下アーム側パワー半導体6bu、6bv、6bwにそれぞれ対応する駆動回路7bu、7bv、7bwに対しては、駆動信号8bu、8bv、8bwを全てハイ(オン状態)にする。その結果、上アーム側パワー半導体6au、6av、6awは全てオフ状態になり、下アーム側パワー半導体6bu、6bv、6bwは全てオン状態となる。ステップS101で述べた状態と同様に、この状態では、負荷2として電力変換装置3に接続された3相モータは力行も回生もしない状態となり、トルク出力がなくなるため、短絡故障による3相モータの急加速や急減速を防止することができる。ステップS103の処理を実行後、制御回路4はステップS104の処理に移る。 In step S103, the control circuit 4 controls all the upper arm side power semiconductors 6au, 6av, 6aw to the off state, and controls all the paired lower arm side power semiconductors 6bu, 6bv, 6bw to the on state. The drive signals 8au to 8bw are output to the drive circuits 7au to 7bw, respectively. Specifically, for the drive circuits 7au, 7av, 7aw corresponding to the upper arm side power semiconductors 6au, 6av, 6aw, respectively, the drive signals 8au, 8av, 8aw are all set to low (off state), and the lower arm side For the drive circuits 7bu, 7bv, and 7bw corresponding to the power semiconductors 6bu, 6bv, and 6bw, all the drive signals 8bu, 8bv, and 8bw are set to high (on state). As a result, the upper arm side power semiconductors 6au, 6av, 6aw are all turned off, and the lower arm side power semiconductors 6bu, 6bv, 6bw are all turned on. Similar to the state described in step S101, in this state, the three-phase motor connected to the power conversion device 3 as the load 2 is in a state where neither power running nor regeneration is performed, and torque output is lost. Sudden acceleration and sudden deceleration can be prevented. After executing the process of step S103, the control circuit 4 proceeds to the process of step S104.
 ステップS104において、制御回路4は、故障通知装置30に対して故障通知信号を出力する。このとき、追加情報、例えば短絡故障したパワー半導体の箇所情報などを故障通知装置30に対して送信しても良い。ステップS104の処理終了後、制御回路4は図5に示した故障検知処理を終了する。 In step S104, the control circuit 4 outputs a failure notification signal to the failure notification device 30. At this time, additional information, for example, information on the location of the power semiconductor in which a short circuit has failed may be transmitted to the failure notification device 30. After the process of step S104 is completed, the control circuit 4 ends the failure detection process shown in FIG.
 以上説明した図5の故障検知処理を実行することで、制御回路4は、U相、V相、W相の各スイッチング回路、すなわち、上アーム側パワー半導体6au、6av、6awと下アーム側パワー半導体6bu、6bv、6bwとがそれぞれ対をなして直列に接続された回路構成において、過電流検知回路11がいずれかの相についてパワー半導体6au~6bwのいずれかに対して過電流検知信号を出力したときに、次のような制御を行う。すなわち、当該相の上アーム側パワー半導体に対する駆動信号がオン状態であるか、または、当該相の上アーム側パワー半導体に対する駆動信号および下アーム側パワー半導体に対する駆動信号が共にオフ状態であって、かつ当該相の上アーム側パワー半導体に対する駆動信号が直前にオン状態となっていた場合は、3相の全てについて、上アーム側パワー半導体6au、6av、6awをオフ状態に制御すると共に下アーム側パワー半導体6bu、6bv、6bwをオン状態に制御するように、駆動信号8au~8bwを出力する。また、当該相の下アーム側パワー半導体に対する駆動信号がオン状態であるか、または、当該相の上アーム側パワー半導体に対する駆動信号および下アーム側パワー半導体に対する駆動信号が共にオフ状態であって、かつ当該相の下アーム側パワー半導体に対する駆動信号が直前にオン状態となっていた場合は、3相の全てについて、上アーム側パワー半導体6au、6av、6awをオン状態に制御すると共に下アーム側パワー半導体6bu、6bv、6bwをオフ状態に制御するように、駆動信号8au~8bwを出力する。 By executing the failure detection process of FIG. 5 described above, the control circuit 4 can switch the U-phase, V-phase, and W-phase switching circuits, that is, the upper arm side power semiconductors 6au, 6av, 6aw and the lower arm side power. In a circuit configuration in which the semiconductors 6bu, 6bv, 6bw are connected in series in pairs, the overcurrent detection circuit 11 outputs an overcurrent detection signal to any one of the power semiconductors 6au to 6bw for any phase. Then, the following control is performed. That is, the drive signal for the upper arm side power semiconductor of the phase is on, or the drive signal for the upper arm side power semiconductor of the phase and the drive signal for the lower arm side power semiconductor are both off, When the drive signal for the upper arm side power semiconductor of the phase is in the on state immediately before, the upper arm side power semiconductors 6au, 6av, 6aw are controlled to be in the off state for all three phases, and the lower arm side Drive signals 8au to 8bw are output so as to control the power semiconductors 6bu, 6bv, and 6bw to the on state. In addition, the drive signal for the lower arm side power semiconductor of the phase is on, or the drive signal for the upper arm side power semiconductor of the phase and the drive signal for the lower arm side power semiconductor are both off, And when the drive signal for the lower arm side power semiconductor of the phase has been turned on immediately before, the upper arm side power semiconductors 6au, 6av, 6aw are controlled to be turned on and the lower arm side for all three phases. Drive signals 8au to 8bw are output so as to control the power semiconductors 6bu, 6bv, and 6bw to an off state.
 以上のように本実施形態によれば、駆動信号を用いて遅延信号を生成し、この遅延信号と過電流検知信号から、各相に設けられた一対のパワー半導体の短絡故障箇所を特定する。このとき、遅延信号のオフからオンへの変化は対象のパワー半導体に対する駆動信号のオフからオンへの変化に同期させ、遅延信号のオフからオンへの変化は対となるパワー半導体に対する駆動信号のオフからオンへの変化に同期させる。これにより、遅延回路を小規模に構成でき、より低コストで短絡故障箇所の判定が可能となる。 As described above, according to the present embodiment, a delay signal is generated using a drive signal, and a short-circuit fault location of a pair of power semiconductors provided in each phase is specified from the delay signal and an overcurrent detection signal. At this time, the change of the delay signal from OFF to ON is synchronized with the change of the drive signal for the target power semiconductor from OFF to ON, and the change of the delay signal from OFF to ON is the change of the drive signal for the paired power semiconductor. Synchronize with changes from off to on. As a result, the delay circuit can be configured on a small scale, and a short-circuit fault location can be determined at a lower cost.
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。 According to the first embodiment of the present invention described above, the following operational effects are obtained.
(1)電力変換装置3は、上アーム側のスイッチング素子であるパワー半導体6au、6av、6awと下アーム側のスイッチング素子であるパワー半導体6bu、6bv、6bwとがそれぞれ対になって直列に接続されたインバータ回路6と、これらのパワー半導体6au~6bwをそれぞれ制御するための駆動信号8au~8bwを出力する制御回路4と、駆動信号8au~8bwに基づいてパワー半導体6au~6bwをそれぞれ駆動するドライバ回路10と、パワー半導体6au~6bwにそれぞれ流れる過電流を検知して過電流検知信号を出力する過電流検知回路11と、パワー半導体6au~6bwがそれぞれ短絡故障しているときに故障検知信号を出力する故障検知回路16と、を備える。故障検知回路16は、パワー半導体6au~6bwの各々について駆動信号8au~8bwに基づく遅延信号を出力する遅延回路17を有しており、過電流検知信号および遅延信号に基づいて故障検知信号を出力する。この電力変換装置3において、一対の上アーム側パワー半導体6auおよび下アーム側パワー半導体6buのうち一方のパワー半導体についての遅延信号18auまたは18buのオンからオフへの変化およびオフからオンへの変化の少なくとも一つと、他方のパワー半導体についての駆動信号8buまたは8auのオフからオンへの変化およびオンからオフへの変化の少なくとも一つとは、図3で説明したように、互いに同期している。このようにしたので、複数のスイッチング素子であるパワー半導体6au~6bwのいずれかで短絡故障が発生した際に、短絡故障箇所を特定することができる。 (1) In the power converter 3, the power semiconductors 6au, 6av, 6aw which are switching elements on the upper arm side and the power semiconductors 6bu, 6bv, 6bw which are switching elements on the lower arm side are respectively connected in series. Inverter circuit 6, control circuit 4 that outputs drive signals 8 au to 8 bw for controlling these power semiconductors 6 au to 6 bw, and power semiconductors 6 au to 6 bw are driven based on the drive signals 8 au to 8 bw, respectively. Driver circuit 10, overcurrent detection circuit 11 for detecting overcurrent flowing through power semiconductors 6au to 6bw and outputting an overcurrent detection signal, and failure detection signal when power semiconductors 6au to 6bw are short-circuited, respectively. And a failure detection circuit 16 that outputs. The failure detection circuit 16 includes a delay circuit 17 that outputs a delay signal based on the drive signals 8au to 8bw for each of the power semiconductors 6au to 6bw, and outputs a failure detection signal based on the overcurrent detection signal and the delay signal. To do. In this power conversion device 3, the change of the delay signal 18 au or 18 bu from one of the pair of upper arm side power semiconductor 6 au and lower arm side power semiconductor 6 bu from on to off, and the change from off to on. At least one and at least one of the change from OFF to ON and the change from ON to OFF of the drive signal 8bu or 8au for the other power semiconductor are synchronized with each other as described with reference to FIG. Since it did in this way, when a short circuit failure generate | occur | produces in either of the power semiconductors 6au-6bw which are several switching elements, a short circuit failure location can be specified.
(2)故障検知回路16は、一対の上アーム側パワー半導体6auおよび下アーム側パワー半導体6buのうち一方のパワー半導体について過電流検知信号15auまたは15buが出力されており、かつ一方のパワー半導体について遅延信号18auまたは18buがオフ状態であるときに、一方のパワー半導体について故障検知信号19auまたは19buを出力する。このようにしたので、いずれかのパワー半導体に短絡故障が発生した場合に、これを確実に検知して故障検知信号を出力することができる。 (2) The failure detection circuit 16 outputs the overcurrent detection signal 15au or 15bu for one power semiconductor of the pair of upper arm side power semiconductor 6au and lower arm side power semiconductor 6bu, and the one power semiconductor. When the delay signal 18au or 18bu is in the off state, the failure detection signal 19au or 19bu is output for one power semiconductor. Since it did in this way, when a short circuit fault occurs in any power semiconductor, this can be detected reliably and a failure detection signal can be outputted.
(3)制御回路4は、故障検知回路16が出力する故障検知信号19au~19bwに基づいて、パワー半導体6au~6bwのうちいずれのパワー半導体が短絡故障しているかを特定する。このようにしたので、短絡故障箇所を確実に特定することができる。 (3) Based on the failure detection signals 19au to 19bw output from the failure detection circuit 16, the control circuit 4 identifies which of the power semiconductors 6au to 6bw has a short circuit failure. Since it did in this way, a short circuit fault location can be specified reliably.
(4)電力変換装置3は、上アーム側パワー半導体と下アーム側パワー半導体の組み合わせを複数有している。制御回路4は、このパワー半導体の組み合わせのいずれかにおいて上アーム側のパワー半導体が短絡故障していると特定した場合は、パワー半導体の組み合わせの全てについて、上アーム側パワー半導体6au、6av、6awをオン状態に制御すると共に下アーム側パワー半導体6bu、6bv、6bwをオフ状態に制御するように、駆動信号8au~8bwを出力する。また、パワー半導体の組み合わせのいずれかにおいて下アーム側のパワー半導体が短絡故障していると特定した場合は、パワー半導体の組み合わせの全てについて、上アーム側パワー半導体6au、6av、6awをオフ状態に制御すると共に下アーム側パワー半導体6bu、6bv、6bwをオン状態に制御するように、駆動信号8au~8bwを出力する。このようにしたので、負荷2として3相モータが電力変換装置3に接続された場合に、短絡故障による3相モータの急加速や急減速を防止することができる。 (4) The power conversion device 3 has a plurality of combinations of the upper arm side power semiconductor and the lower arm side power semiconductor. When the control circuit 4 specifies that the power semiconductor on the upper arm side is short-circuited in any of the combinations of power semiconductors, the upper arm side power semiconductors 6au, 6av, 6aw are used for all the power semiconductor combinations. Drive signals 8au to 8bw are output so that the lower arm side power semiconductors 6bu, 6bv and 6bw are controlled to be turned off. In addition, when it is specified that the power semiconductor on the lower arm side is short-circuited in any of the power semiconductor combinations, the upper arm side power semiconductors 6au, 6av, 6aw are turned off for all the power semiconductor combinations. The drive signals 8au to 8bw are output so that the lower arm side power semiconductors 6bu, 6bv and 6bw are controlled to be in the ON state. Since it did in this way, when a three-phase motor is connected to the power converter device 3 as the load 2, it is possible to prevent sudden acceleration and sudden deceleration of the three-phase motor due to a short circuit failure.
(第2の実施形態)
 次に本発明の第2の実施形態について説明する。本実施形態では、任意のタイミングで故障検知処理を実施可能な電力変換装置の例を示す。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In the present embodiment, an example of a power conversion device capable of performing a failure detection process at an arbitrary timing is shown.
 図6は、本発明の第2の実施形態に係る電力変換装置における駆動回路とその周辺回路の構成を示した図である。なお、実施例1と同一の構成要素には同一の記号を付与しており、それらの説明は省略する。 FIG. 6 is a diagram showing a configuration of a drive circuit and its peripheral circuits in the power conversion device according to the second embodiment of the present invention. In addition, the same code | symbol is provided to the component same as Example 1, and those description is abbreviate | omitted.
 図6における駆動回路7au、7buは、第1の実施形態で説明した故障検知回路16とは異なる構成の故障検知回路16aをそれぞれ有している。故障検知回路16aは、故障検知回路16の構成に加えてラッチ回路20を有しており、故障検知信号をハイ(故障状態)にする条件が故障検知回路16とは異なる。具体的には、上アーム側パワー半導体6auに対応する駆動回路7au内の故障検知回路16aは、遅延回路17から出力された遅延信号18auがロー(オフ)の状態であり、かつ、過電流検知信号15auがハイ(過電流状態)の状態、および上アーム側パワー半導体6auと対をなす下アーム側パワー半導体6buに対応する駆動回路7buからの故障検知信号19buがロー(正常状態)の場合に、対象の故障検知信号19auをハイ(故障状態)にする。同様に、下アーム側パワー半導体6buに対応する駆動回路7bu内の故障検知回路16aは、遅延回路17から出力された遅延信号18buがロー(オフ)の状態であり、かつ、過電流検知信号15buがハイ(過電流状態)の状態、および下アーム側パワー半導体6buと対をなす上アーム側パワー半導体6auに対応する駆動回路7auからの故障検知信号19auがロー(正常状態)の場合に、対象の故障検知信号19buをハイ(故障状態)にする。ラッチ回路20は、故障検知信号19au、19buがそれぞれ一度ハイ(故障状態)になった場合に、ハイ(故障状態)を維持する役割を持つ。ラッチ回路20は、制御回路4からのリセット信号(図示せず)が入力された場合に、出力している故障検知信号19au
、19buをハイ(故障状態)からロー(正常状態)に変化させる。これにより、故障検知回路16aは、上アーム側パワー半導体6auと下アーム側パワー半導体6buのうち一方のパワー半導体について故障検知信号19auまたは19buを出力したときに、他方のパワー半導体について故障検知信号19buまたは19auが出力されていない場合に、一方のパワー半導体について故障検知信号19auまたは19buの出力を保持するようにしている。
The drive circuits 7au and 7bu in FIG. 6 each have a failure detection circuit 16a having a configuration different from that of the failure detection circuit 16 described in the first embodiment. The failure detection circuit 16 a includes a latch circuit 20 in addition to the configuration of the failure detection circuit 16, and the condition for setting the failure detection signal to high (failure state) is different from that of the failure detection circuit 16. Specifically, the failure detection circuit 16a in the drive circuit 7au corresponding to the upper arm side power semiconductor 6au is in a state where the delay signal 18au output from the delay circuit 17 is low (off), and overcurrent detection is performed. When the signal 15au is high (overcurrent state) and when the failure detection signal 19bu from the drive circuit 7bu corresponding to the lower arm side power semiconductor 6bu paired with the upper arm side power semiconductor 6au is low (normal state) The target failure detection signal 19au is set to high (failure state). Similarly, in the failure detection circuit 16a in the drive circuit 7bu corresponding to the lower arm side power semiconductor 6bu, the delay signal 18bu output from the delay circuit 17 is in the low (off) state, and the overcurrent detection signal 15bu. When the failure detection signal 19au from the drive circuit 7au corresponding to the upper arm side power semiconductor 6au paired with the lower arm side power semiconductor 6bu is low (normal state) The failure detection signal 19bu is set to high (failure state). The latch circuit 20 has a role of maintaining high (failure state) when the failure detection signals 19au and 19bu once become high (failure state). The latch circuit 20 outputs a failure detection signal 19au that is output when a reset signal (not shown) from the control circuit 4 is input.
, 19bu are changed from high (failure state) to low (normal state). Thus, when the failure detection circuit 16a outputs the failure detection signal 19au or 19bu for one of the upper arm side power semiconductor 6au and the lower arm side power semiconductor 6bu, the failure detection signal 19bu for the other power semiconductor. Alternatively, when 19au is not output, the output of the failure detection signal 19au or 19bu is held for one of the power semiconductors.
 図7は、本発明の第2の実施形態に係る電力変換装置における短絡故障発生時の各信号のタイミングチャートの例を表した図である。図7でも、第1の実施形態で説明した図4と同様に、時間t1のタイミングでパワー半導体6auが短絡故障した場合のタイミングチャートの例を示している。図7では、時間t2で過電流検知信号15au、15buが共にハイ(過電流状態)となって故障検知信号19auがハイ(故障状態)に変化すると、その後の駆動信号8au、8buの変化に関わらず、故障検知信号19auがハイ(故障状態)を維持し、故障検知信号19buがロー(正常状態)を維持している。 FIG. 7 is a diagram illustrating an example of a timing chart of each signal when a short circuit fault occurs in the power conversion device according to the second embodiment of the present invention. FIG. 7 also shows an example of a timing chart when the power semiconductor 6au is short-circuited at the timing of time t1, similarly to FIG. 4 described in the first embodiment. In FIG. 7, when both of the overcurrent detection signals 15au and 15bu become high (overcurrent state) and the failure detection signal 19au changes to high (failure state) at time t2, the change in the drive signals 8au and 8bu thereafter occurs. The failure detection signal 19au is maintained high (failure state), and the failure detection signal 19bu is maintained low (normal state).
 なお、本実施形態において、制御回路4は任意のタイミングで故障検知処理を実施可能である。例えば、第1の実施形態と同様に、故障検知信号19au~19bwのいずれかがハイ(故障状態)になったタイミングで実施しても良いし、あるいは一定期間ごとに周期的に実施しても良い。本実施形態における制御回路4の故障検知処理は、第1の実施形態で説明した内容と同様であるため、説明を省略する。 In this embodiment, the control circuit 4 can perform the failure detection process at an arbitrary timing. For example, as in the first embodiment, it may be performed at the timing when any of the failure detection signals 19au to 19bw becomes high (failure state), or may be performed periodically at regular intervals. good. Since the failure detection process of the control circuit 4 in this embodiment is the same as the content described in the first embodiment, the description thereof is omitted.
 前述の第1の実施例形態では、図4のタイミングチャートで示したように、上アーム側パワー半導体6auと下アーム側パワー半導体6buのいずれかが短絡故障すると、駆動信号8au、8buのオン/オフの変化に伴って、故障検知信号19au、19buはそれぞれハイ(故障状態)とロー(正常状態)が交互に変化する。そのため、上アーム側パワー半導体6auと下アーム側パワー半導体6buのどちらが短絡故障しているかを正しく判断するために、制御回路4は故障検知信号19auと19buのうち最初に出力された方を正しく受け取る必要がある。しかし、短絡故障の発生タイミングによっては、正しい故障発生箇所に対応する故障検知信号がハイ(故障状態)となっている時間が短いことがある。したがって、他の制御処理に時間を取られる等の理由により、故障検知信号が出力されてから制御回路4がこれを受信するまでの時間が長くなると、最初に出力された故障検知信号を正しく受信できずに、制御回路4において故障箇所の判定を誤る可能性がある。これは、他の相についても同様である。 In the first embodiment described above, as shown in the timing chart of FIG. 4, when one of the upper arm side power semiconductor 6au and the lower arm side power semiconductor 6bu is short-circuited, the drive signals 8au and 8bu are turned on / off. With the change of OFF, the failure detection signals 19au and 19bu alternately change between high (failure state) and low (normal state). Therefore, in order to correctly determine which one of the upper arm side power semiconductor 6au and the lower arm side power semiconductor 6bu is short-circuited, the control circuit 4 correctly receives the first of the failure detection signals 19au and 19bu that is output. There is a need. However, depending on the occurrence timing of the short-circuit failure, the time during which the failure detection signal corresponding to the correct failure occurrence location is high (failure state) may be short. Therefore, if the time until the control circuit 4 receives the failure detection signal after the failure detection signal is output becomes longer due to the time taken for other control processing or the like, the failure detection signal output first is correctly received. Otherwise, the control circuit 4 may erroneously determine the failure location. The same applies to the other phases.
 一方、第2の実施形態の構成では、図7のタイミングチャートで示したように、先にハイ(故障状態)となった故障検知信号が保持され、対となる故障検知信号がハイ(故障状態)となることは無い。したがって、制御回路4は任意のタイミングで故障検知処理を行うことができ、故障箇所の判定誤りを防止できる。 On the other hand, in the configuration of the second embodiment, as shown in the timing chart of FIG. 7, the failure detection signal that has previously been high (failure state) is retained, and the paired failure detection signal is high (failure state). ). Therefore, the control circuit 4 can perform the failure detection process at an arbitrary timing, and can prevent the determination error of the failure location.
 以上説明した本発明の第2の実施形態によれば、故障検知回路16aは、一対の上アーム側パワー半導体6auおよび下アーム側パワー半導体6buのうち一方のパワー半導体について故障検知信号19auまたは19buを出力したときに、他方のパワー半導体について故障検知信号19buまたは19auが出力されていない場合は、一方のパワー半導体について故障検知信号19auまたは19buの出力を保持する。このようにしたので、任意のタイミングで短絡故障箇所を誤りなく特定することが可能である。 According to the second embodiment of the present invention described above, the failure detection circuit 16a outputs the failure detection signal 19au or 19bu for one power semiconductor of the pair of upper arm side power semiconductor 6au and lower arm side power semiconductor 6bu. If the failure detection signal 19bu or 19au is not output for the other power semiconductor when it is output, the output of the failure detection signal 19au or 19bu is held for the one power semiconductor. Since it did in this way, it is possible to specify a short circuit failure location without error at arbitrary timings.
 なお、以上説明した第1および第2の各実施形態において、故障検知回路16、16aは駆動回路7au~7bwの内部にそれぞれ設けられているが、駆動回路7au~7bwの外部に設けられていても良い。また、故障検知回路16、16aを制御回路4が実行する処理によってそれぞれ実現しても良いし、制御回路4の内部にハードウェア的に組み込んでも良い。さらに、過電流検知回路11についても同様に、駆動回路7au~7bwの外部に設けられていても良いし、制御回路4の処理や内部要素として実現しても良い。 In each of the first and second embodiments described above, the failure detection circuits 16 and 16a are provided inside the drive circuits 7au to 7bw, respectively, but are provided outside the drive circuits 7au to 7bw. Also good. Further, the failure detection circuits 16 and 16a may be realized by processing executed by the control circuit 4, or may be incorporated in the control circuit 4 as hardware. Further, the overcurrent detection circuit 11 may also be provided outside the drive circuits 7au to 7bw, or may be realized as processing of the control circuit 4 or an internal element.
 本発明は、上述した各実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、信号のハイ/ロー状態とその信号が表す状態(オン状態/オフ状態、過電流状態/正常状態、故障状態/正常状態)の対応は、実施例に記載した例と逆であっても良い。また、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現しても良い。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現しても良い。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the correspondence between the high / low state of a signal and the state represented by the signal (on state / off state, overcurrent state / normal state, failure state / normal state) may be opposite to the example described in the embodiment. good. The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Each embodiment and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired. Moreover, although various embodiment and the modification were demonstrated above, this invention is not limited to these content. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 3・・・電力変換装置、4・・・制御回路、6・・・インバータ回路、6au~6bw・・・パワー半導体、7au~7bw・・・駆動回路、8au~8bw・・・駆動信号、10・・・ドライバ回路、11・・・過電流検知回路、15au、15bu・・・過電流検知信号、16、16a・・・故障検知回路、17・・・遅延回路、18au、18bu・・・遅延信号、19au~19bw・・・故障検知信号 DESCRIPTION OF SYMBOLS 3 ... Power converter device, 4 ... Control circuit, 6 ... Inverter circuit, 6au-6bw ... Power semiconductor, 7au-7bw ... Drive circuit, 8au-8bw ... Drive signal, 10 ... Driver circuit, 11 ... Overcurrent detection circuit, 15au, 15bu ... Overcurrent detection signal, 16, 16a ... Failure detection circuit, 17 ... Delay circuit, 18au, 18bu ... Delay Signal, 19au to 19bw ... Failure detection signal

Claims (8)

  1.  上アーム側のスイッチング素子と下アーム側のスイッチング素子とが直列に接続された一対のスイッチング素子と、
     前記一対のスイッチング素子をそれぞれ制御するための駆動信号を出力する制御回路と、
     前記駆動信号に基づいて前記一対のスイッチング素子をそれぞれ駆動するドライバ回路と、
     前記一対のスイッチング素子にそれぞれ流れる過電流を検知して過電流検知信号を出力する過電流検知回路と、
     前記一対のスイッチング素子がそれぞれ短絡故障しているときに故障検知信号を出力する故障検知回路と、を備え、
     前記故障検知回路は、前記一対のスイッチング素子の各々について前記駆動信号に基づく遅延信号を出力する遅延回路を有しており、前記過電流検知信号および前記遅延信号に基づいて前記故障検知信号を出力し、
     前記一対のスイッチング素子のうち一方のスイッチング素子についての前記遅延信号のオンからオフへの変化およびオフからオンへの変化の少なくとも一つと、他方のスイッチング素子についての前記駆動信号のオフからオンへの変化およびオンからオフへの変化の少なくとも一つとは、互いに同期している電力変換装置。
    A pair of switching elements in which a switching element on the upper arm side and a switching element on the lower arm side are connected in series;
    A control circuit for outputting a drive signal for controlling the pair of switching elements, and
    A driver circuit for driving each of the pair of switching elements based on the drive signal;
    An overcurrent detection circuit that detects an overcurrent flowing through each of the pair of switching elements and outputs an overcurrent detection signal;
    A failure detection circuit that outputs a failure detection signal when each of the pair of switching elements has a short-circuit failure, and
    The failure detection circuit includes a delay circuit that outputs a delay signal based on the drive signal for each of the pair of switching elements, and outputs the failure detection signal based on the overcurrent detection signal and the delay signal. And
    At least one of a change from ON to OFF of the delay signal for one switching element of the pair of switching elements and a change from OFF to ON, and the driving signal for the other switching element from OFF to ON. The power conversion device is synchronized with at least one of the change and the change from on to off.
  2.  請求項1に記載の電力変換装置において、
     前記故障検知回路は、前記一方のスイッチング素子について前記過電流検知信号が出力されており、かつ前記一方のスイッチング素子について前記遅延信号がオフ状態であるときに、前記一方のスイッチング素子について前記故障検知信号を出力する電力変換装置。
    The power conversion device according to claim 1,
    The failure detection circuit detects the failure of the one switching element when the overcurrent detection signal is output for the one switching element and the delay signal is off for the one switching element. A power converter that outputs signals.
  3.  請求項2に記載の電力変換装置において、
     前記故障検知回路は、前記一方のスイッチング素子について前記故障検知信号を出力したときに、前記他方のスイッチング素子について前記故障検知信号が出力されていない場合は、前記一方のスイッチング素子について前記故障検知信号の出力を保持する電力変換装置。
    The power conversion device according to claim 2,
    The failure detection circuit outputs the failure detection signal for the one switching element when the failure detection signal is not output for the other switching element when the failure detection signal is output for the other switching element. Power converter that holds the output of
  4.  請求項1から請求項3までのいずれか一項に記載の電力変換装置において、
     前記制御回路は、前記故障検知回路が出力する前記故障検知信号に基づいて、前記一対のスイッチング素子のうちいずれのスイッチング素子が短絡故障しているかを特定する電力変換装置。
    In the power converter device as described in any one of Claim 1- Claim 3,
    The said control circuit is a power converter device which specifies which switching element among the said pair of switching elements is a short circuit failure based on the said failure detection signal which the said failure detection circuit outputs.
  5.  請求項4に記載の電力変換装置において、
     前記一対のスイッチング素子の組み合わせを複数有し、
     前記制御回路は、
     前記組み合わせのいずれかにおいて前記上アーム側のスイッチング素子が短絡故障していると特定した場合は、前記組み合わせの全てについて、前記上アーム側のスイッチング素子をオン状態に制御すると共に前記下アーム側のスイッチング素子をオフ状態に制御するように、前記駆動信号を出力し、
     前記組み合わせのいずれかにおいて前記下アーム側のスイッチング素子が短絡故障していると特定した場合は、前記組み合わせの全てについて、前記上アーム側のスイッチング素子をオフ状態に制御すると共に前記下アーム側のスイッチング素子をオン状態に制御するように、前記駆動信号を出力する電力変換装置。
    The power conversion device according to claim 4,
    A plurality of combinations of the pair of switching elements;
    The control circuit includes:
    When the switching element on the upper arm side is specified to be short-circuited in any of the combinations, the switching element on the upper arm side is controlled to be turned on for all the combinations, and the lower arm side switching element is controlled. Outputting the drive signal so as to control the switching element to an off state;
    If it is specified that the switching element on the lower arm side is short-circuited in any of the combinations, the switching element on the upper arm side is controlled to be in an off state for all the combinations, and the lower arm side switching element is controlled. A power converter that outputs the drive signal so as to control the switching element to be in an ON state.
  6.  複数の相について、上アーム側のスイッチング素子と下アーム側のスイッチング素子とが直列に接続された一対のスイッチング素子をそれぞれ有するスイッチング回路と、
     前記複数の相の前記一対のスイッチング素子をそれぞれ制御するための駆動信号を出力する制御回路と、
     前記駆動信号に基づいて前記複数の相の前記一対のスイッチング素子をそれぞれ駆動するドライバ回路と、
     前記複数の相の前記一対のスイッチング素子にそれぞれ流れる過電流を検知して過電流検知信号を出力する過電流検知回路と、を備え、
     前記複数の相のうちいずれかの相について、前記過電流検知回路が前記一対のスイッチング素子のいずれかに対して前記過電流検知信号を出力したときに、前記制御回路は、当該相の前記上アーム側のスイッチング素子に対する前記駆動信号がオン状態であるか、または、当該相の前記上アーム側のスイッチング素子に対する前記駆動信号および前記下アーム側のスイッチング素子に対する前記駆動信号が共にオフ状態であって、かつ当該相の前記上アーム側のスイッチング素子に対する前記駆動信号が直前にオン状態となっていた場合は、前記複数の相の全てについて、前記上アーム側のスイッチング素子をオフ状態に制御すると共に前記下アーム側のスイッチング素子をオン状態に制御するように、前記駆動信号を出力し、
     当該相の前記下アーム側のスイッチング素子に対する前記駆動信号がオン状態であるか、または、当該相の前記上アーム側のスイッチング素子に対する前記駆動信号および前記下アーム側のスイッチング素子に対する前記駆動信号が共にオフ状態であって、かつ当該相の前記下アーム側のスイッチング素子に対する前記駆動信号が直前にオン状態となっていた場合は、前記複数の相の全てについて、前記上アーム側のスイッチング素子をオン状態に制御すると共に前記下アーム側のスイッチング素子をオフ状態に制御するように、前記駆動信号を出力する電力変換装置。
    For a plurality of phases, a switching circuit having a pair of switching elements each having a switching element on the upper arm side and a switching element on the lower arm side connected in series,
    A control circuit for outputting drive signals for controlling the pair of switching elements of the plurality of phases,
    A driver circuit for driving each of the pair of switching elements of the plurality of phases based on the drive signal;
    An overcurrent detection circuit that detects an overcurrent flowing through each of the pair of switching elements of the plurality of phases and outputs an overcurrent detection signal; and
    For any one of the plurality of phases, when the overcurrent detection circuit outputs the overcurrent detection signal to any one of the pair of switching elements, the control circuit The drive signal for the arm-side switching element is on, or both the drive signal for the upper-arm switching element and the drive signal for the lower-arm switching element in the phase are off. And when the driving signal for the upper arm side switching element of the phase has been turned on immediately before, the upper arm side switching element is controlled to be turned off for all of the plurality of phases. And outputting the drive signal so as to control the switching element on the lower arm side to the on state,
    The driving signal for the switching element on the lower arm side in the phase is in an ON state, or the driving signal for the switching element on the upper arm side in the phase and the driving signal for the switching element on the lower arm side are When both are in an off state and the drive signal for the switching element on the lower arm side of the phase is on state immediately before, the switching element on the upper arm side is turned on for all of the plurality of phases. A power converter that outputs the drive signal so that the lower arm side switching element is controlled to be turned off while being controlled to be turned on.
  7.  上アーム側のスイッチング素子と下アーム側のスイッチング素子とが直列に接続された一対のスイッチング素子と、前記一対のスイッチング素子をそれぞれ制御するための駆動信号を出力する制御回路と、を備えた電力変換装置において用いられる故障検知回路であって、
     前記一対のスイッチング素子の各々について前記駆動信号に基づく遅延信号を出力する遅延回路を有し、
     前記一対のスイッチング素子に過電流が流れたときに、前記遅延信号に基づいて、前記一対のスイッチング素子のいずれが短絡故障しているかを判断して故障検知信号を出力し、
     前記一対のスイッチング素子のうち一方のスイッチング素子についての前記遅延信号のオンからオフへの変化およびオフからオンへの変化の少なくとも一つと、他方のスイッチング素子についての前記駆動信号のオフからオンへの変化およびオンからオフへの変化の少なくとも一つとは、互いに同期している故障検知回路。
    A power comprising: a pair of switching elements in which an upper arm side switching element and a lower arm side switching element are connected in series; and a control circuit that outputs a drive signal for controlling the pair of switching elements. A failure detection circuit used in a converter,
    A delay circuit that outputs a delay signal based on the drive signal for each of the pair of switching elements;
    When an overcurrent flows through the pair of switching elements, based on the delay signal, it is determined which one of the pair of switching elements has a short circuit fault, and outputs a failure detection signal,
    At least one of a change from ON to OFF of the delay signal for one switching element of the pair of switching elements and a change from OFF to ON, and the driving signal for the other switching element from OFF to ON. A fault detection circuit that is synchronized with each other with at least one of the change and the change from on to off.
  8.  上アーム側のスイッチング素子と下アーム側のスイッチング素子とが直列に接続された一対のスイッチング素子と、前記一対のスイッチング素子をそれぞれ制御するための駆動信号を出力する制御回路と、を備えた電力変換装置において用いられる駆動回路であって、
     前記駆動信号に基づいて前記一対のスイッチング素子をそれぞれ駆動するドライバ回路と、
     前記一対のスイッチング素子にそれぞれ流れる過電流を検知して過電流検知信号を出力する過電流検知回路と、
     前記一対のスイッチング素子がそれぞれ短絡故障しているときに故障検知信号を出力する故障検知回路と、を備え、
     前記故障検知回路は、前記一対のスイッチング素子の各々について前記駆動信号に基づく遅延信号を出力する遅延回路を有しており、前記過電流検知信号および前記遅延信号に基づいて前記故障検知信号を出力し、
     前記一対のスイッチング素子のうち一方のスイッチング素子についての前記遅延信号のオンからオフへの変化およびオフからオンへの変化の少なくとも一つと、他方のスイッチング素子についての前記駆動信号のオフからオンへの変化およびオンからオフへの変化の少なくとも一つとは、互いに同期している駆動回路。
    A power comprising: a pair of switching elements in which an upper arm side switching element and a lower arm side switching element are connected in series; and a control circuit that outputs a drive signal for controlling the pair of switching elements. A drive circuit used in the conversion device,
    A driver circuit for driving each of the pair of switching elements based on the drive signal;
    An overcurrent detection circuit that detects an overcurrent flowing through each of the pair of switching elements and outputs an overcurrent detection signal;
    A failure detection circuit that outputs a failure detection signal when each of the pair of switching elements has a short-circuit failure, and
    The failure detection circuit includes a delay circuit that outputs a delay signal based on the drive signal for each of the pair of switching elements, and outputs the failure detection signal based on the overcurrent detection signal and the delay signal. And
    At least one of a change from ON to OFF of the delay signal for one switching element of the pair of switching elements and a change from OFF to ON, and the driving signal for the other switching element from OFF to ON. A drive circuit that is synchronized with each other with at least one of the change and the change from on to off.
PCT/JP2018/016082 2017-06-05 2018-04-19 Power conversion device, failure detection circuit, and driving circuit WO2018225393A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019523380A JP6778324B2 (en) 2017-06-05 2018-04-19 Power converter, failure detection circuit, drive circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017111056 2017-06-05
JP2017-111056 2017-06-05

Publications (1)

Publication Number Publication Date
WO2018225393A1 true WO2018225393A1 (en) 2018-12-13

Family

ID=64566592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016082 WO2018225393A1 (en) 2017-06-05 2018-04-19 Power conversion device, failure detection circuit, and driving circuit

Country Status (2)

Country Link
JP (1) JP6778324B2 (en)
WO (1) WO2018225393A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020241366A1 (en) * 2019-05-24 2020-12-03

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723998U (en) * 1993-09-30 1995-05-02 日新電機株式会社 Inverter short circuit detection circuit
JP2008220045A (en) * 2007-03-05 2008-09-18 Honda Motor Co Ltd Motor controller and vehicle
JP2013169102A (en) * 2012-02-16 2013-08-29 Denso Corp Gate drive circuit
JP2016111858A (en) * 2014-12-09 2016-06-20 株式会社デンソー Electric power conversion system
JP2017022678A (en) * 2015-07-15 2017-01-26 ルネサスエレクトロニクス株式会社 Semiconductor device and power control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723998U (en) * 1993-09-30 1995-05-02 日新電機株式会社 Inverter short circuit detection circuit
JP2008220045A (en) * 2007-03-05 2008-09-18 Honda Motor Co Ltd Motor controller and vehicle
JP2013169102A (en) * 2012-02-16 2013-08-29 Denso Corp Gate drive circuit
JP2016111858A (en) * 2014-12-09 2016-06-20 株式会社デンソー Electric power conversion system
JP2017022678A (en) * 2015-07-15 2017-01-26 ルネサスエレクトロニクス株式会社 Semiconductor device and power control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020241366A1 (en) * 2019-05-24 2020-12-03
WO2020241366A1 (en) * 2019-05-24 2020-12-03 日立オートモティブシステムズ株式会社 Power conversion device and power conversion device control method
JP7124218B2 (en) 2019-05-24 2022-08-23 日立Astemo株式会社 POWER CONVERSION DEVICE AND CONTROL METHOD OF POWER CONVERSION DEVICE

Also Published As

Publication number Publication date
JPWO2018225393A1 (en) 2020-03-19
JP6778324B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
CN107820664B (en) Drive device
WO2012165196A1 (en) Inverter driving device
JP6201296B2 (en) Control device for power converter
CN102237849A (en) Motor drive device
EP3109990B1 (en) Semiconductor devices and methods for dead time optimization
JP6582714B2 (en) Method for cooperative control of power semiconductor elements connected in parallel, current balance control device, and power module
JP2008118834A (en) Surge reduction circuit and inverter device equipped with surge reduction circuit
US9667129B2 (en) Power conversion device with overcurrent protection
US11063423B2 (en) Driving circuit for power transistor
JP6086047B2 (en) Power converter
JP6063136B2 (en) Apparatus and method for controlling switching element for DC motor
WO2018225393A1 (en) Power conversion device, failure detection circuit, and driving circuit
JP6717380B2 (en) Semiconductor module and chip design method of switching element used in semiconductor module
CN112350550B (en) Switch driving circuit and switch driving device
JP2005304143A (en) Power converter
CN111817594A (en) Method for determining polarity of half-bridge current and half-bridge controller
JP4655056B2 (en) Driving device for switching element
WO2020044945A1 (en) Drive circuit for switch
JP2015154572A (en) Failure detection method of inverter circuit, driving device and motor driving system
JP6536791B2 (en) POWER CONVERTER AND CONTROL METHOD OF POWER CONVERTER
JP4770063B2 (en) IPM circuit
JP2023053563A (en) Power supply device
JP7028039B2 (en) Switch drive circuit
JP5170088B2 (en) Voltage source inverter device and its operation method
WO2021048999A1 (en) Electric power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523380

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813144

Country of ref document: EP

Kind code of ref document: A1