WO2019049698A1 - Power conversion circuit and power conversion device - Google Patents

Power conversion circuit and power conversion device Download PDF

Info

Publication number
WO2019049698A1
WO2019049698A1 PCT/JP2018/031466 JP2018031466W WO2019049698A1 WO 2019049698 A1 WO2019049698 A1 WO 2019049698A1 JP 2018031466 W JP2018031466 W JP 2018031466W WO 2019049698 A1 WO2019049698 A1 WO 2019049698A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
potential input
power conversion
conversion circuit
output
Prior art date
Application number
PCT/JP2018/031466
Other languages
French (fr)
Japanese (ja)
Inventor
俊 風間
英一 定行
伸吾 岡浦
隆資 門田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019049698A1 publication Critical patent/WO2019049698A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • Electric power is supplied to the three-phase motor 2 from the u-phase conversion circuit 9 u, the v-phase conversion circuit 9 v, and the w-phase conversion circuit 9 w.
  • the AC power generated by the u-phase conversion circuit 9 u, the v-phase conversion circuit 9 v, and the w-phase conversion circuit 9 w is detected by the current sensors 6 u, 6 v, 6 w as current values and then converted into voltage signals. It is transmitted to the circuit 3.
  • the control circuit 3 causes the u phase conversion circuit 9 u, the v phase conversion circuit 9 v, and the w phase conversion circuit 9 w to output predetermined power in accordance with the current values detected by the current sensors 6 u, 6 v, 6 w.
  • the u-phase conversion circuit 9 u, the v-phase conversion circuit 9 v, and the w-phase conversion circuit 9 w are controlled through the gate drive circuit 4.
  • a failure may occur in the control of the three-phase motor 2, so that the following failure determination is performed.
  • the peak current in the u phase generated by the u phase conversion circuit 9 u is detected by the current sensor 6 u.
  • the current sensor 6v detects the current value in the v phase.
  • the control circuit 3 compares the current value of the u phase with the current value of the v phase, and the abnormality of the current sensors 6u and 6v is determined depending on whether the current value of the v phase is half of the current value of the u phase. Determine the presence or absence.
  • the power converter includes first and second semiconductor switch elements, an output unit, and a signal processing unit.
  • the first semiconductor switch element includes a first switch portion connected in series with the high potential input portion and the connection point between the high potential input portion and the connection point, and a current flowing through the first switch portion And a first sense terminal for transmitting a first responsive sense signal.
  • the second semiconductor switch element includes a second switch portion connected in series to the low potential input portion and the connection point between the low potential input portion and the connection point, and a current flowing through the second switch portion And a second sense terminal for emitting a second sense signal corresponding to the
  • the output unit is connected to the connection point.
  • the current sensor transmits a current detection signal according to the output current flowing through the output unit.
  • the signal processing unit is configured to determine a failure of the current sensor based on a comparison result of the first sense signal and the current detection signal and a comparison result of the second sense signal and the current detection signal. .
  • This power converter can easily determine the abnormality of the current sensor.
  • FIG. 1A is a circuit block diagram of a power conversion circuit according to an embodiment.
  • FIG. 1B is an equivalent circuit block diagram of the power conversion circuit shown in FIG. 1A.
  • FIG. 1C is a diagram showing signals in the operation of the power conversion circuit in the embodiment.
  • FIG. 2 is a diagram showing signals in the operation of the power conversion circuit in the embodiment.
  • FIG. 3 is a diagram showing a signal in another operation of the power conversion circuit in the embodiment.
  • FIG. 4 is a circuit block diagram of another power conversion circuit according to the embodiment.
  • FIG. 5 is a circuit block diagram of the three-phase power converter in the embodiment.
  • FIG. 6 is a circuit block diagram of another three-phase power converter in the embodiment.
  • FIG. 7 is a circuit block diagram of still another three-phase power converter according to the embodiment.
  • FIG. 8 is a circuit block diagram of still another three-phase power converter according to the embodiment.
  • FIG. 9 is a circuit block diagram of a conventional power converter.
  • FIG. 1A is a circuit block diagram of a power conversion circuit 10 according to an embodiment.
  • Power conversion circuit 10 includes a high potential input unit 11, a low potential input unit 12, an upper arm unit 13, a lower arm unit 14, an output unit 15, a current sensor 16, and a signal processing unit 17. .
  • the high DC potential of the DC power supply 24 is applied to the high potential input unit 11.
  • a low DC potential lower than the high DC potential is applied to the low potential input unit 12 from the power supply 24.
  • the upper arm portion 13 has a semiconductor switch element 18, and the high potential input portion 11 is connected to the high potential side of the upper arm portion 13.
  • the semiconductor switch element 18 is provided with a sense terminal 20, and the sense terminal 20 transmits a sense signal S20.
  • the lower arm portion 14 has a semiconductor switch element 19, and the low potential input portion 12 is connected to the low potential side of the lower arm portion 14.
  • the semiconductor switch element 19 is provided with a sense terminal 21.
  • the sense terminal 21 transmits a sense signal S21.
  • the output unit 15 is provided at a connection point 115 between the low potential side of the upper arm unit 13 and the high potential side of the lower arm unit 14. Further, the current sensor 16 detects an output current I15 of the output unit 15, and transmits a current detection signal S16 corresponding to the output current.
  • the signal processing unit 17 is connected to the upper arm 13, the lower arm 14, and the current sensor 16.
  • Signal processing unit 17 receives sense signal S20 transmitted from upper arm unit 13, sense signal S21 transmitted from lower arm unit 14, and current detection signal S16 transmitted from current sensor 16, and sense signal S20. , And S21 are compared with the current detection signal S16.
  • the signal processing unit 17 performs failure determination of the current sensor 16 based on the comparison result of the sense signal S20 and the current detection signal S16 and the comparison result of the sense signal S21 and the current detection signal S16.
  • each of sense signal S20 reflecting the current output from upper arm unit 13 and sense signal S21 reflecting the current output from lower arm unit 14 are currents
  • the signal processing unit 17 compares the current detection signal S16 detected by the sensor 16 with the signal processing unit 17 to detect the presence or absence of a failure of the current sensor 16. That is, the sense signals S20 and S21 are regarded as a virtual output current reflecting the output current I15 in the output unit 15, and the current detection signal S16 in which the virtual output current is actually detected by the current sensor 16 in the output unit 15 and the signal processing unit 17 Compared by
  • the signal processing unit 17 determines that the current sensor 16 is normal. if at least one of the difference between the sense signal S20 and the current detection signal S16 compared by the signal processing unit 17 and the difference between the sense signal S21 and the current detection signal S16 is out of a predetermined range, The signal processing unit 17 determines that the current sensor 16 is abnormal.
  • FIG. 1B is an equivalent circuit block diagram of the power conversion circuit 10.
  • the semiconductor switch element 18 forms a switch section 118 which is formed between the source terminal 18S and the drain terminal 18D and turned on and off by the signal inputted to the gate terminal 18G.
  • the sense terminal 20 transmits a sense signal S20 according to the current flowing to the switch unit 118.
  • the semiconductor switch element 19 forms a switch section 119 which is formed between the source terminal 19S and the drain terminal 19D and turned on / off by the signal inputted to the gate terminal 19G.
  • the sense terminal 21 transmits a sense signal S21 according to the current flowing to the switch section 119.
  • the conventional power conversion device 1 shown in FIG. 9 can detect that an abnormality has occurred in any of the current sensors 6u, 6v, 6w, it specifies the current sensor in which the abnormality has occurred among the current sensors 6u, 6v, 6w You can not do it.
  • the power conversion circuit 22 in the embodiment can facilitate identification of the failed current sensor 16.
  • the power conversion circuit 10 includes a high potential input unit 11, a low potential input unit 12, an upper arm unit 13, a lower arm unit 14, an output unit 15, a current sensor 16, and a signal processing unit 17. Including.
  • the upper arm portion 13 has a semiconductor switch element 18, and the high potential input portion 11 is connected to the high potential side of the upper arm portion 13.
  • the high potential input unit 11 is connected to the drain terminal 18D side of the semiconductor switch element 18.
  • the semiconductor switch element 18 is provided with a sense terminal 20, and the sense terminal 20 transmits a sense signal S20.
  • the lower arm portion 14 has a semiconductor switch element 19, and the low potential input portion 12 is connected to the low potential side of the lower arm portion 14.
  • the low potential input unit 12 is connected to the source terminal 19S side of the semiconductor switch element 19.
  • the semiconductor switch element 19 is provided with a sense terminal 21.
  • the sense terminal 21 transmits a sense signal S21.
  • the output unit 15 is connected to a connection point 115 between the low potential side of the upper arm unit 13 and the high potential side of the lower arm unit 14. In other words, the output unit 15 is connected to the connection point 115 between the source terminal 18S side of the semiconductor switch element 18 and the drain terminal 19D side of the semiconductor switch element 19. Further, the current sensor 16 detects an output current I15 of the output unit 15, and transmits a current detection signal S16 corresponding to the output current I15.
  • FIG. 2 shows sense signals S20 and S21 and a current detection signal S16.
  • FIG. 2 also shows a combined sense signal S22 obtained by combining the sense signals S20 and S21.
  • the signal processing unit 17 generates a combined sense signal S22 obtained by combining the sense signals S20 and S21.
  • FIG. 2 shows the sense signals S20 and S21 as a smooth waveform in which the values at the times of comparison are continuously connected.
  • FIG. 3 shows signals in another operation of the power conversion circuit 10.
  • the combined sense signal S22 is an alternating voltage signal including the broken line shown in FIG. 3 with the polarity of the sense signal S21 inverted to the negative voltage side.
  • the signal processing unit 17 determines the failure of the current sensor 16 based on the comparison result of the combined sense signal S22 and the current detection signal which is an AC voltage.
  • the ratio R1 and the ratio R2 of the above-described initial setting values are stored in the signal processing unit 17.
  • the signal processing unit 17 constantly or at a predetermined timing compares the amplitude V1 of the sense signal S20 with the amplitude V3 on the positive side of the current detection signal S16, and detects the amplitude V2 of the sense signal S21. This is compared with the positive amplitude V4 of the current detection signal S16.
  • the signal processing unit 17 obtains a ratio R3 to the positive amplitude V3 of the current detection signal S16 of the amplitude V1 of the sense signal S20.
  • the signal processing unit 17 obtains a ratio R4 with respect to the negative amplitude V4 of the current detection signal S16 of the amplitude V2 of the sense signal S21.
  • the power conversion circuit 10 In the power conversion circuit 10 outputting power of a single phase by the operation related to the failure determination with respect to the current sensor 16, the power conversion circuit 10 itself is abnormal with respect to the current sensor 16 provided in the power conversion circuit 10. Determine the presence or absence. In other words, the power conversion circuit 10 can detect the presence or absence of an abnormality of a single current sensor 16 corresponding to a single phase, instead of comparing the output current across a plurality of phases to detect an abnormality. As a result, identification of the failed current sensor 16 can be facilitated.
  • the upper arm synchronization signal and the lower arm synchronization signal of the upper arm 13 and the lower arm 14 are transmitted from the drain terminal 18D of the semiconductor switch element 18 to the source terminal 18S, and It is a signal obtained when forward current flows from the drain terminal 19D of the switch element 19 to the source terminal 19S.
  • a reverse current flows from the source terminal 18S to the drain terminal 18D of the semiconductor switch element 18 and a reverse current flows from the source terminal 19S to the drain terminal 19D of the semiconductor switch element 19
  • the upper arm synchronization signal and the lower arm synchronization signal may be generated by further use.
  • the upper arm portion 13 and the lower arm portion 14 basically alternately turn on and off to operate.
  • the on-duty ratio of the upper arm 13 is larger than the on-duty ratio of the lower arm 14, and the upper waveform is the maximum value.
  • the on-duty ratio of 13 is also the largest.
  • the upper arm synchronization signal at the on duty of the upper arm unit 13 is inverted in polarity to the lower arm synchronization signal at the on duty of the lower arm unit 14
  • the synthesized waveform obtained by the interpolation and addition above approximates the waveform of the current flowing to the output unit 15.
  • a waveform obtained by interpolating the upper arm synchronization signal to the lower arm synchronization signal and the current detection signal which is an AC voltage are detected as waveforms, respectively, and the determination accuracy is determined by comparing the failure detection of the current sensor 16 Improve.
  • FIG. 4 is a circuit block diagram of another power conversion circuit 10a according to the embodiment.
  • the same parts as those of the power conversion circuit 10 shown in FIGS. 1A and 1B are denoted by the same reference numerals.
  • Power conversion circuit 10 a includes a conversion circuit 27 connected in series to sense terminal 20 and source terminal 18 S of semiconductor switch element 18, a conversion connected in series to sense terminal 21 and source terminal 19 S of semiconductor switch element 19. And a circuit 28.
  • FIG. 5 is a circuit block diagram of the three-phase power conversion device 22 in the embodiment.
  • the signal processing units 17 u, 17 v, and 17 w in the power conversion circuits 10 u, 10 v, and 10 w of the u-phase, v-phase, and w-phase are connected to the control circuit 25. Then, the signal processing units 17u, 17v, 17w detect the presence or absence of abnormality in the current sensor 16 as described above, and simultaneously detect the output current and the output voltage in the output unit 15 of each phase, and detect the detection result signal As the control circuit 25.
  • the control circuit 25 transmits an operation control signal to the gate drive circuit 26 to control the output current and the output voltage so that the three-phase motor 23 operates in a desired state.
  • FIG. 6 is a circuit block diagram of another three-phase power converter 22a in the embodiment. 6, the same reference numerals as in the three-phase power converter 22 shown in FIG. 5 denote the same parts.
  • the three-phase power conversion device 22a includes a DC power supply 24, a power conversion circuit 10u corresponding to a first phase, a power conversion circuit 10v corresponding to a second phase, a power conversion circuit 10w corresponding to a third phase, and control And a circuit 25.
  • the first phase is described to correspond to the u phase, the second phase to the v phase, and the third phase to the w phase, but the first phase, the second phase, the third phase and the u phase, Correspondence with v phase and w phase does not depend on the above-mentioned form.
  • Each of the power conversion circuits 10 u and 10 v has a current sensor 16.
  • the current sensor 16 is connected to the signal processing units 17 u and 17 v, detects an output current of the output unit 15, and transmits a current detection signal corresponding to the output current to the signal processing unit 17.
  • the control circuit 25 is connected to the signal processing units 17u, 17v, and 17w, and performs failure determination for the current sensor 16, detection of output of the power conversion circuits 10u, 10v, and 10w, and control of the power conversion circuits 10u, 10v, and 10w. Do. With regard to the current sensor 16 of the power conversion circuit 10u, the failure determination for the current sensor 16 in the control circuit 25 includes the sense signals S20 and S21 in the power conversion circuit 10u and the current detection signal by the current sensor 16 in the power conversion circuit 10u. It is performed based on the comparison result with S16.
  • the current sensor 16 of the power conversion circuit 10v is performed based on the comparison result between each of the sense signals S20 and S21 in the power conversion circuit 10v and the current detection signal S16 by the current sensor 16 in the power conversion circuit 10v.
  • the power conversion circuit 10 w does not have a current sensor.
  • the output current I15 obtained by the sense signals S20 and S21 in the power conversion circuit 10u is the phase current Ius.
  • the output current I15 obtained by the sense signals S20 and S21 in the power conversion circuit 10v is the phase current Ivs.
  • the output current I15 obtained by the current sensor 16 in the power conversion circuit 10u is the phase current Iu.
  • the output current I15 obtained by the current sensor 16 in the power conversion circuit 10v is the phase current Iv.
  • the control circuit 25 determines the difference between the phase currents Ius and Iu and the difference between the phase currents Ivs and Iv. When the above difference is within the predetermined range, the control circuit 25 determines that the current sensor 16 in each phase, here, the current sensor 16 in the power conversion circuit 10 u or the current sensor 16 in the power conversion circuit 10 v is normal. .
  • phase current Iw which is the output current I15 in the power conversion circuit 10w not using the current sensor 16 can be obtained as the current detection calculation value according to the following relationship.
  • control circuit 25 can easily identify the failed current sensor 16, and control the power conversion circuit 10w not using the current sensor to a desired operation state as in the power conversion circuits 10u and 10v. Can. Thereby, the number of current sensors 16 in the three-phase power conversion device 22a can also be reduced. And as a result, size reduction and weight reduction of three-phase power converter 22a are attained.
  • control circuit 25 is described using the current value, as described above in the detailed description of the individual power conversion circuit 10, after the current value is voltage-converted, the control circuit 25 is described. May make the determination.
  • FIG. 7 is a circuit block diagram of still another three-phase power conversion device 22b in the embodiment.
  • the same parts as those of the three-phase power conversion device 22b shown in FIG. 5 and FIG. It is also possible to reduce the number of current sensors 16 in the three-phase power conversion device 22b after reducing the sense terminal 20 and the sense terminal 21 and simplifying the calculation and control in the signal processing units 17u, 17v, 17w and the control circuit 25. it can.
  • the three-phase power conversion device 22b includes a DC power supply 24, a power conversion circuit 10u corresponding to a first phase, a power conversion circuit 10v corresponding to a second phase, a power conversion circuit 10w corresponding to a third phase, and control And a circuit 25.
  • the power conversion circuits 10u, 10v, and 10w of the first phase, the second phase, and the third phase respectively include the upper arm unit 13, the lower arm unit 14, the output unit 15, and the signal processing unit 17 (17u, 17 v, 17 w).
  • the first phase is described to correspond to the u phase, the second phase to the v phase, and the third phase to the w phase, but the first phase, the second phase, the third phase and the u phase, Correspondence with v phase and w phase does not depend on the above-mentioned form.
  • the upper arm unit 13 includes the semiconductor switch element 18 whose high potential side is connected to the high potential input unit 11 connected to the DC power supply 24 and the sense terminal 20 which transmits the sense signal S 20.
  • the lower arm unit 14 is connected on the low potential side to the low potential input unit 12 connected to the DC power supply 24, and sense terminals for transmitting the semiconductor switch element 19 and the sense signal S21. And 21.
  • the upper arm unit 13 has the semiconductor switch element 18 whose high potential side is connected to the high potential input unit 11 connected to the DC power supply 24 and does not have the sense terminal 20.
  • the lower arm unit 14 has a low potential side connected to the low potential input unit 12 connected to the DC power supply 24, has a semiconductor switch element 19, and has a sense terminal 21. Not.
  • the output unit 15 is provided at a connection point 115 between the low potential side of the upper arm unit 13 and the high potential side of the lower arm unit 14.
  • signal processing units 17u and 17v are connected to upper arm unit 13 and lower arm unit 14, and in power conversion circuits 10u and 10v, signal processing units 17u and 17v receive sense signals. S20 and S21 are received.
  • Each of the power conversion circuits 10 u and 10 w has a current sensor 16.
  • the current sensor 16 is connected to the signal processing units 17u and 17w of the power conversion circuits 10u and 10w, detects the output current of the output unit 15, and detects a current detection signal corresponding to the output current as the signal processing units 17u and 17w. Send to
  • sense operation values S20c and S21c respectively corresponding to sense signals S20 and S21 in power conversion circuit 10w and current detection signal S16 by current sensor 16 in power conversion circuit 10w. Based on the comparison result, failure determination of the current sensor 16 of the power conversion circuit 10 w is performed.
  • the output current obtained by the sense signals S20 and S21 in the power conversion circuit 10u is the phase current Ius
  • the output current I15 obtained by the sense operation values S20c and S21c in the power conversion circuit 10w is the phase current Iwc
  • the output current obtained by the current sensor 16 in the power conversion circuit 10u is the phase current Iu
  • the output current I15 obtained by the current sensor 16 in the power conversion circuit 10w is the phase current Iw.
  • the difference between the phase currents Ius and Iu and the difference between the phase currents Iwc and Iw are determined by the control circuit 25. When the above difference is within the predetermined range, the control circuit 25 determines that the current sensors in the respective phases, here, the current sensor 16 in the power conversion circuit 10 u and the current sensor 16 in the power conversion circuit 10 w are normal.
  • the sense operation values S20c and S21c are obtained using the relationship in which the sum of all the phase voltages of the three-phase alternating current and the sum of all the phase currents described above are zero.
  • the control circuit 25 can detect the presence or absence of abnormality of the current sensor 16 used for the power conversion circuit 10 w. Becomes easy. Further, the phase current Iv in the power conversion circuit 10v having no current sensor can be obtained as the current detection calculation value according to the following relationship as described above.
  • FIG. 8 is a circuit block diagram of still another three-phase power conversion device 22c in the embodiment.
  • the same reference numerals as in the three-phase power conversion devices 22, 22 a and 22 b shown in FIGS. 5 to 7 denote the same parts.
  • the number of current sensors 16 in the three-phase power conversion device 22c after simplifying the calculation and control in the signal processing units 17u, 17v, 17w and the control circuit 25 with only one phase including the sense terminal 20 and the sense terminal 21. Can also be reduced.
  • the three-phase power conversion device 22c includes a DC power supply 24, a power conversion circuit 10u corresponding to a first phase, a power conversion circuit 10v corresponding to a second phase, a power conversion circuit 10w corresponding to a third phase, and control And a circuit 25.
  • the power conversion circuits 10u, 10v, and 10w of the first phase, the second phase, and the third phase are respectively the upper arm unit 13, the lower arm unit 14, the output unit 15, and the signal processing units 17u, 17v, And 17w.
  • the first phase is described to correspond to the u phase, the second phase to the v phase, and the third phase to the w phase, but the first phase, the second phase, the third phase and the u phase, Correspondence with v phase and w phase does not depend on the above-mentioned form.
  • upper arm unit 13 has semiconductor switch element 18 whose high potential side is connected to high potential input unit 11 connected to DC power supply 24, and sense terminal 20 for transmitting sense signal S20. .
  • the lower arm unit 14 has a low potential side connected to the low potential input unit 12 connected to the DC power supply 24, and the sense terminal 21 transmits the semiconductor switch element 19 and the sense signal S21.
  • the upper arm unit 13 has the semiconductor switch element 18 whose high potential side is connected to the high potential input unit 11 connected to the DC power supply 24 and has the sense terminal 20. Absent.
  • the lower arm unit 14 is connected on the low potential side to the low potential input unit 12 connected to the DC power supply 24 and has a semiconductor switch element 19. I do not have it.
  • narrowing down of the current sensor 16 which has failed even if one phase has two phases without the sense terminal 20 and the sense terminal 21 among the three phases and a phase without the current sensor 16 is This can be easily achieved, and the number of current sensors 16 can be reduced, so that the size and weight of the three-phase power conversion device 22c can be reduced.
  • the phase without the sense terminal 20 and the sense terminal 21 and the phase without the current sensor 16 are different phases.

Abstract

This power conversion device is provided with first and second semiconductor switch elements, an output unit, and a signal processing unit. The first semiconductor switch element includes a first switch portion which is connected in series with a high potential input portion and a connection point between the high potential input portion and the connection point, and a first sense terminal for transmitting a first sense signal corresponding to a current flowing through the first switch portion. The second semiconductor switch element includes a second switch portion which is connected in series with a low potential input portion and the connection point between the low potential input portion and the connection point, and a second sense terminal for transmitting a second sense signal corresponding to a current flowing through the second switch portion. The output unit is connected to the connection point. The current sensor transmits a current detection signal corresponding to an output current flowing through the output unit. The signal processing unit is configured to determine a failure in the current sensor on the basis of the result of comparison of the first sense signal and the current detection signal, and the result of comparison of the second sense signal and the current detection signal. With the power conversion device, anomaly in the current sensor can be easily determined.

Description

電力変換回路および電力変換装置POWER CONVERSION CIRCUIT AND POWER CONVERSION DEVICE
 本発明は、各種電子機器に使用される電力変換装置に関する。 The present invention relates to a power converter used in various electronic devices.
 図9は従来の電力変換装置1の回路ブロック図である。電力変換装置1は三相モータ2を駆動する三相電力を三相モータ2に供給する。電力変換装置1は、制御回路3とゲート駆動回路4と電流センサ6u、6v、6wと電力変換回路7とを有する。電力変換回路7は直流電源8とu相変換回路9uとv相変換回路9vとw相変換回路9wとを有する。 FIG. 9 is a circuit block diagram of the conventional power conversion device 1. The power converter 1 supplies three-phase power for driving the three-phase motor 2 to the three-phase motor 2. The power conversion device 1 has a control circuit 3, a gate drive circuit 4, current sensors 6 u, 6 v, 6 w and a power conversion circuit 7. The power conversion circuit 7 has a DC power supply 8, a u-phase conversion circuit 9u, a v-phase conversion circuit 9v, and a w-phase conversion circuit 9w.
 三相モータ2には、u相変換回路9uとv相変換回路9vとw相変換回路9wとから電力を供給される。u相変換回路9uとv相変換回路9vとw相変換回路9wとで生成された交流電力は、電流値として電流センサ6u、6v、6wで検出されたうえで電圧信号へと変換され、制御回路3へと伝えられる。制御回路3は、電流センサ6u、6v、6wで検出された電流値に応じて、u相変換回路9uとv相変換回路9vとw相変換回路9wとが所定の電力を出力するように、ゲート駆動回路4を通じてu相変換回路9uとv相変換回路9vとw相変換回路9wとを制御する。 Electric power is supplied to the three-phase motor 2 from the u-phase conversion circuit 9 u, the v-phase conversion circuit 9 v, and the w-phase conversion circuit 9 w. The AC power generated by the u-phase conversion circuit 9 u, the v-phase conversion circuit 9 v, and the w-phase conversion circuit 9 w is detected by the current sensors 6 u, 6 v, 6 w as current values and then converted into voltage signals. It is transmitted to the circuit 3. The control circuit 3 causes the u phase conversion circuit 9 u, the v phase conversion circuit 9 v, and the w phase conversion circuit 9 w to output predetermined power in accordance with the current values detected by the current sensors 6 u, 6 v, 6 w. The u-phase conversion circuit 9 u, the v-phase conversion circuit 9 v, and the w-phase conversion circuit 9 w are controlled through the gate drive circuit 4.
 電流センサ6u、6v、6wに異常が生じた場合、三相モータ2の制御において障害が発生するおそれがあるため、以下のような故障判定が行われる。まず、電流センサ6uによってu相変換回路9uで生成されたu相におけるピーク電流を検出する。次にu相における電流がピーク電流である時に、v相における電流値を電流センサ6vが検出する。制御回路3は、u相の電流値とv相の電流値とを比較し、v相の電流値がu相の電流値の半分となっているか否かによって、電流センサ6u、6vの異常の有無を判定する。 When an abnormality occurs in the current sensors 6u, 6v, 6w, a failure may occur in the control of the three-phase motor 2, so that the following failure determination is performed. First, the peak current in the u phase generated by the u phase conversion circuit 9 u is detected by the current sensor 6 u. Next, when the current in the u phase is a peak current, the current sensor 6v detects the current value in the v phase. The control circuit 3 compares the current value of the u phase with the current value of the v phase, and the abnormality of the current sensors 6u and 6v is determined depending on whether the current value of the v phase is half of the current value of the u phase. Determine the presence or absence.
 電力変換装置1に類似の従来の電力変換装置が例えば特許文献1に開示されている。 A conventional power converter similar to the power converter 1 is disclosed in, for example, Patent Document 1.
特開2015-233371号公報JP, 2015-233371, A
 電力変換装置は、第1と第2の半導体スイッチ素子と、出力部と、信号処理部とを備える。第1の半導体スイッチ素子は、高電位入力部と接続点との間で高電位入力部と上記接続点とに直列に接続された第1のスイッチ部と、第1のスイッチ部に流れる電流に応じた第1のセンス信号を発信する第1のセンス端子とを有する。第2の半導体スイッチ素子は、低電位入力部と上記接続点との間で低電位入力部と上記接続点とに直列に接続された第2のスイッチ部と、第2のスイッチ部に流れる電流に応じた第2のセンス信号を発信する第2のセンス端子とを有する。出力部は上記接続点に接続されている。電流センサは、出力部を流れる出力電流に応じた電流検出信号を発信する。信号処理部は、第1のセンス信号と電流検出信号との比較結果と、第2のセンス信号と電流検出信号との比較結果とにもとづいて電流センサの故障を判定するように構成されている。 The power converter includes first and second semiconductor switch elements, an output unit, and a signal processing unit. The first semiconductor switch element includes a first switch portion connected in series with the high potential input portion and the connection point between the high potential input portion and the connection point, and a current flowing through the first switch portion And a first sense terminal for transmitting a first responsive sense signal. The second semiconductor switch element includes a second switch portion connected in series to the low potential input portion and the connection point between the low potential input portion and the connection point, and a current flowing through the second switch portion And a second sense terminal for emitting a second sense signal corresponding to the The output unit is connected to the connection point. The current sensor transmits a current detection signal according to the output current flowing through the output unit. The signal processing unit is configured to determine a failure of the current sensor based on a comparison result of the first sense signal and the current detection signal and a comparison result of the second sense signal and the current detection signal. .
 この電力変換装置は、電流センサの異常を容易に判定できる。 This power converter can easily determine the abnormality of the current sensor.
図1Aは実施の形態における電力変換回路の回路ブロック図である。FIG. 1A is a circuit block diagram of a power conversion circuit according to an embodiment. 図1Bは図1Aに示す電力変換回路の等価回路ブロック図である。FIG. 1B is an equivalent circuit block diagram of the power conversion circuit shown in FIG. 1A. 図1Cは実施の形態における電力変換回路の動作における信号を示す図である。FIG. 1C is a diagram showing signals in the operation of the power conversion circuit in the embodiment. 図2は実施の形態における電力変換回路の動作における信号を示す図である。FIG. 2 is a diagram showing signals in the operation of the power conversion circuit in the embodiment. 図3は実施の形態における電力変換回路の他の動作における信号を示す図である。FIG. 3 is a diagram showing a signal in another operation of the power conversion circuit in the embodiment. 図4は実施の形態における他の電力変換回路の回路ブロック図である。FIG. 4 is a circuit block diagram of another power conversion circuit according to the embodiment. 図5は実施の形態における三相電力変換装置の回路ブロック図である。FIG. 5 is a circuit block diagram of the three-phase power converter in the embodiment. 図6は実施の形態における他の三相電力変換装置の回路ブロック図である。FIG. 6 is a circuit block diagram of another three-phase power converter in the embodiment. 図7は実施の形態におけるさらに他の三相電力変換装置の回路ブロック図である。FIG. 7 is a circuit block diagram of still another three-phase power converter according to the embodiment. 図8は実施の形態におけるさらに他の三相電力変換装置の回路ブロック図である。FIG. 8 is a circuit block diagram of still another three-phase power converter according to the embodiment. 図9は従来の電力変換装置の回路ブロック図である。FIG. 9 is a circuit block diagram of a conventional power converter.
 図1Aは実施の形態における電力変換回路10の回路ブロック図である。電力変換回路10は、高電位入力部11と、低電位入力部12と、上側アーム部13と、下側アーム部14と、出力部15と、電流センサ16と、信号処理部17とを含む。高電位入力部11には直流電源24の高直流電位が印加される。低電位入力部12には高直流電位より低い低直流電位が電源24から印加される。 FIG. 1A is a circuit block diagram of a power conversion circuit 10 according to an embodiment. Power conversion circuit 10 includes a high potential input unit 11, a low potential input unit 12, an upper arm unit 13, a lower arm unit 14, an output unit 15, a current sensor 16, and a signal processing unit 17. . The high DC potential of the DC power supply 24 is applied to the high potential input unit 11. A low DC potential lower than the high DC potential is applied to the low potential input unit 12 from the power supply 24.
 上側アーム部13は半導体スイッチ素子18を有し、上側アーム部13の高電位側に高電位入力部11が接続されている。半導体スイッチ素子18にはセンス端子20が設けられ、センス端子20はセンス信号S20を発信する。下側アーム部14は半導体スイッチ素子19を有し、下側アーム部14の低電位側に低電位入力部12が接続されている。半導体スイッチ素子19にはセンス端子21が設けられ、センス端子21はセンス信号S21を発信する。 The upper arm portion 13 has a semiconductor switch element 18, and the high potential input portion 11 is connected to the high potential side of the upper arm portion 13. The semiconductor switch element 18 is provided with a sense terminal 20, and the sense terminal 20 transmits a sense signal S20. The lower arm portion 14 has a semiconductor switch element 19, and the low potential input portion 12 is connected to the low potential side of the lower arm portion 14. The semiconductor switch element 19 is provided with a sense terminal 21. The sense terminal 21 transmits a sense signal S21.
 出力部15は、上側アーム部13の低電位側と下側アーム部14の高電位側との接続点115に設けられている。また、電流センサ16は出力部15の出力電流I15を検出し、出力電流に対応した電流検出信号S16を発信する。 The output unit 15 is provided at a connection point 115 between the low potential side of the upper arm unit 13 and the high potential side of the lower arm unit 14. Further, the current sensor 16 detects an output current I15 of the output unit 15, and transmits a current detection signal S16 corresponding to the output current.
 信号処理部17は、上側アーム部13と下側アーム部14と電流センサ16とに接続されている。信号処理部17は、上側アーム部13から発信されたセンス信号S20と下側アーム部14から発信されたセンス信号S21と電流センサ16から発信された電流検出信号S16とを受信し、センス信号S20、S21のそれぞれを電流検出信号S16と比較する。信号処理部17は、センス信号S20と電流検出信号S16との比較結果と、センス信号S21と電流検出信号S16との比較結果とにもとづいて電流センサ16の故障判定を行う。 The signal processing unit 17 is connected to the upper arm 13, the lower arm 14, and the current sensor 16. Signal processing unit 17 receives sense signal S20 transmitted from upper arm unit 13, sense signal S21 transmitted from lower arm unit 14, and current detection signal S16 transmitted from current sensor 16, and sense signal S20. , And S21 are compared with the current detection signal S16. The signal processing unit 17 performs failure determination of the current sensor 16 based on the comparison result of the sense signal S20 and the current detection signal S16 and the comparison result of the sense signal S21 and the current detection signal S16.
 以上の構成および動作により電力変換回路10では、上側アーム部13から出力される電流を反映するセンス信号S20と、下側アーム部14から出力される電流を反映するセンス信号S21とのそれぞれが電流センサ16で検出された電流検出信号S16と信号処理部17によって比較されることによって電流センサ16の故障の有無を検出する。つまり、センス信号S20、S21は出力部15における出力電流I15を反映した仮想出力電流とみなし、仮想出力電流が実際に出力部15で電流センサ16によって検出された電流検出信号S16と信号処理部17によって比較される。 With the above configuration and operation, in power conversion circuit 10, each of sense signal S20 reflecting the current output from upper arm unit 13 and sense signal S21 reflecting the current output from lower arm unit 14 are currents The signal processing unit 17 compares the current detection signal S16 detected by the sensor 16 with the signal processing unit 17 to detect the presence or absence of a failure of the current sensor 16. That is, the sense signals S20 and S21 are regarded as a virtual output current reflecting the output current I15 in the output unit 15, and the current detection signal S16 in which the virtual output current is actually detected by the current sensor 16 in the output unit 15 and the signal processing unit 17 Compared by
 信号処理部17によって比較されたセンス信号S20、S21のぞれぞれと電流検出信号S16との差が所定の範囲内であれば、電流センサ16は正常であると信号処理部17は判定する。この一方で、信号処理部17によって比較されたセンス信号S20と電流検出信号S16との差と、センス信号S21と電流検出信号S16との差のうちの少なくとも一方が所定の範囲外であれば、電流センサ16は異常であると信号処理部17は判定する。 If the difference between each of the sense signals S20 and S21 compared by the signal processing unit 17 and the current detection signal S16 is within a predetermined range, the signal processing unit 17 determines that the current sensor 16 is normal. . On the other hand, if at least one of the difference between the sense signal S20 and the current detection signal S16 compared by the signal processing unit 17 and the difference between the sense signal S21 and the current detection signal S16 is out of a predetermined range, The signal processing unit 17 determines that the current sensor 16 is abnormal.
 図1Bは電力変換回路10の等価回路ブロック図である。半導体スイッチ素子18は、ソース端子18Sとドレイン端子18Dとの間に形成されてゲート端子18Gに入力された信号でオンオフされるスイッチ部118を構成する。センス端子20はスイッチ部118に流れる電流に応じたセンス信号S20を発信する。半導体スイッチ素子19は、ソース端子19Sとドレイン端子19Dとの間に形成されてゲート端子19Gに入力された信号でオンオフされるスイッチ部119を構成する。センス端子21はスイッチ部119に流れる電流に応じたセンス信号S21を発信する。 FIG. 1B is an equivalent circuit block diagram of the power conversion circuit 10. The semiconductor switch element 18 forms a switch section 118 which is formed between the source terminal 18S and the drain terminal 18D and turned on and off by the signal inputted to the gate terminal 18G. The sense terminal 20 transmits a sense signal S20 according to the current flowing to the switch unit 118. The semiconductor switch element 19 forms a switch section 119 which is formed between the source terminal 19S and the drain terminal 19D and turned on / off by the signal inputted to the gate terminal 19G. The sense terminal 21 transmits a sense signal S21 according to the current flowing to the switch section 119.
 上記の判定に関する動作は、単一の相の電力を出力する電力変換回路10において、電力変換回路10に設けられた電流センサ16に対し、電力変換回路10が自ら異常の有無を判定する。言い換えると、電力変換回路10は複数の相にわたっての出力電流を比較して異常検出するのではなく、単一の相に対応した単一の電流センサ16の異常の有無を検出することができる。この結果、後述のように、故障した電流センサ16の特定を容易にすることができる。 In the operation related to the above determination, in the power conversion circuit 10 which outputs single phase power, the power conversion circuit 10 itself determines the presence or absence of an abnormality with respect to the current sensor 16 provided in the power conversion circuit 10. In other words, the power conversion circuit 10 can detect the presence or absence of an abnormality of a single current sensor 16 corresponding to a single phase, instead of comparing the output current across a plurality of phases to detect an abnormality. As a result, as described later, identification of the failed current sensor 16 can be facilitated.
 図9に示す従来の電力変換装置1では、電流センサ6u、6v、6wのいずれかに異常が生じたことは検出できるものの、電流センサ6u、6v、6wのうち異常が生じた電流センサを特定することはできない。 Although the conventional power conversion device 1 shown in FIG. 9 can detect that an abnormality has occurred in any of the current sensors 6u, 6v, 6w, it specifies the current sensor in which the abnormality has occurred among the current sensors 6u, 6v, 6w You can not do it.
 したがって、異常が生じた電流センサを特定するためには、u相、v相、w相の全てに電流センサ6u、6v、6wが配置されることが必要である。 Therefore, in order to identify the current sensor in which the abnormality has occurred, it is necessary to arrange the current sensors 6u, 6v, 6w in all of the u phase, v phase, w phase.
 上述のように、実施の形態における電力変換回路22は、故障した電流センサ16の特定を容易にすることができる。 As described above, the power conversion circuit 22 in the embodiment can facilitate identification of the failed current sensor 16.
 電力変換回路10は、高電位入力部11と、低電位入力部12と、上側アーム部13と、下側アーム部14と、出力部15と、電流センサ16と、信号処理部17と、を含む。 The power conversion circuit 10 includes a high potential input unit 11, a low potential input unit 12, an upper arm unit 13, a lower arm unit 14, an output unit 15, a current sensor 16, and a signal processing unit 17. Including.
 上側アーム部13は半導体スイッチ素子18を有し、上側アーム部13の高電位側に高電位入力部11が接続されている。言い換えると、半導体スイッチ素子18のドレイン端子18D側に、高電位入力部11が接続されている。半導体スイッチ素子18にはセンス端子20が設けられ、センス端子20はセンス信号S20を発信する。 The upper arm portion 13 has a semiconductor switch element 18, and the high potential input portion 11 is connected to the high potential side of the upper arm portion 13. In other words, the high potential input unit 11 is connected to the drain terminal 18D side of the semiconductor switch element 18. The semiconductor switch element 18 is provided with a sense terminal 20, and the sense terminal 20 transmits a sense signal S20.
 下側アーム部14は半導体スイッチ素子19を有し、下側アーム部14の低電位側に低電位入力部12が接続されている。言い換えると、半導体スイッチ素子19のソース端子19S側に、低電位入力部12が接続されている。半導体スイッチ素子19にはセンス端子21が設けられ、センス端子21はセンス信号S21を発信する。 The lower arm portion 14 has a semiconductor switch element 19, and the low potential input portion 12 is connected to the low potential side of the lower arm portion 14. In other words, the low potential input unit 12 is connected to the source terminal 19S side of the semiconductor switch element 19. The semiconductor switch element 19 is provided with a sense terminal 21. The sense terminal 21 transmits a sense signal S21.
 厳密には、センス端子20は半導体スイッチ素子18のソース端子18Sに分岐して設けられた端子である。センス端子20には、ソース端子18Sに流れる電流とは分流して流れる微小な電流が流れ、双方の電流値は相互に干渉することはない。そして、センス端子20に流れる電流とソース端子18Sに流れる電流とは、振幅を除いては概ね同じ特性を示す。 Strictly speaking, the sense terminal 20 is a terminal provided branched to the source terminal 18S of the semiconductor switch element 18. A minute current flows separately from the current flowing to the source terminal 18S through the sense terminal 20, and the current values of both do not interfere with each other. The current flowing to the sense terminal 20 and the current flowing to the source terminal 18S exhibit substantially the same characteristics except for the amplitude.
 同様に、センス端子21は半導体スイッチ素子19のソース端子19Sに分岐して設けられた端子である。センス端子21には、ソース端子19Sに流れる電流とは分流して流れる微小な電流が流れ、双方の電流値は相互に干渉することはない。そして、センス端子21に流れる電流とソース端子19Sに流れる電流とは、振幅を除いては概ね同じ特性を示す。 Similarly, the sense terminal 21 is a terminal provided branched to the source terminal 19S of the semiconductor switch element 19. A minute current flows separately from the current flowing to the source terminal 19S through the sense terminal 21, and the current values of both do not interfere with each other. The current flowing to the sense terminal 21 and the current flowing to the source terminal 19S exhibit substantially the same characteristics except for the amplitude.
 出力部15は、上側アーム部13の低電位側と下側アーム部14の高電位側との接続点115に接続されて設けられている。言い換えると出力部15は、半導体スイッチ素子18のソース端子18S側と半導体スイッチ素子19のドレイン端子19D側との接続点115に接続されて設けられている。また、電流センサ16は出力部15の出力電流I15を検出し、出力電流I15に対応した電流検出信号S16を発信する。 The output unit 15 is connected to a connection point 115 between the low potential side of the upper arm unit 13 and the high potential side of the lower arm unit 14. In other words, the output unit 15 is connected to the connection point 115 between the source terminal 18S side of the semiconductor switch element 18 and the drain terminal 19D side of the semiconductor switch element 19. Further, the current sensor 16 detects an output current I15 of the output unit 15, and transmits a current detection signal S16 corresponding to the output current I15.
 信号処理部17は、上側アーム部13のセンス端子20と下側アーム部14のセンス端子21とから、直接に電流信号であるセンス信号S20とセンス信号S21とを受信して、信号処理部17で電圧へ変換したうえで上側アーム同期信号と下側アーム同期信号とを生成し、上側アーム同期信号と下側アーム同期信号のそれぞれを電流検出信号S16とを比較する。 The signal processing unit 17 directly receives a sense signal S20 and a sense signal S21, which are current signals, from the sense terminal 20 of the upper arm unit 13 and the sense terminal 21 of the lower arm unit 14, and Then, the upper arm synchronization signal and the lower arm synchronization signal are generated, and each of the upper arm synchronization signal and the lower arm synchronization signal is compared with the current detection signal S16.
 図1Cはセンス信号S20、S21と電流検出信号S16とを示す。図1Cにおいて縦軸は各振動の値を示し、横軸は時間を示す。出力部15にはモータのコイル等の誘導性負荷が接続されている。半導体スイッチ素子18、19すなわちスイッチ部118、119は相補的に交互に繰り返してオンオフする。すなわち、半導体スイッチ素子18(スイッチ部118)がオンのとき半導体スイッチ素子19(スイッチ部119)はオフであり、半導体スイッチ素子18(スイッチ部118)がオフのとき、半導体スイッチ素子19(スイッチ部119)はオンである。すなわち、半導体スイッチ素子19(スイッチ部119)がオンのとき半導体スイッチ素子18(スイッチ部118)はオフであり、半導体スイッチ素子19(スイッチ部119)がオフのとき、半導体スイッチ素子18(スイッチ部118)はオンである。ゲート端子18G、19Gに適切な制御信号を入力することにより、パルス幅変調(PWM)制御により、出力部15には正弦波である出力電流I15が流れる。 FIG. 1C shows sense signals S20 and S21 and a current detection signal S16. In FIG. 1C, the vertical axis indicates the value of each vibration, and the horizontal axis indicates time. The output unit 15 is connected to an inductive load such as a coil of a motor. The semiconductor switch elements 18 and 19, that is, the switch sections 118 and 119 are alternately repeatedly turned on and off. That is, when the semiconductor switch element 18 (switch section 118) is on, the semiconductor switch element 19 (switch section 119) is off, and when the semiconductor switch element 18 (switch section 118) is off, the semiconductor switch element 19 (switch section) 119) is on. That is, when the semiconductor switch element 19 (switch section 119) is on, the semiconductor switch element 18 (switch section 118) is off, and when the semiconductor switch element 19 (switch section 119) is off, the semiconductor switch element 18 (switch section) 118) is on. By inputting appropriate control signals to the gate terminals 18G and 19G, an output current I15 which is a sine wave flows in the output unit 15 by pulse width modulation (PWM) control.
 センス信号S20、S21は、図1Cに示すように、実際には不連続な波形であり、上側アーム部13のスイッチ部118もしくは下側アーム部14のスイッチ部119がオンとなったときの上側アーム部13もしくは下側アーム部14における電流の波形に相当する複数の台形状のパルス波形として存在する。そして、センス信号S20、S21の台形状のパルス波形の幅は概ね上側アーム部13もしくは下側アーム部14におけるデューティ比に対応した値となる。 The sense signals S20 and S21 actually have discontinuous waveforms as shown in FIG. 1C, and the upper side when the switch portion 118 of the upper arm portion 13 or the switch portion 119 of the lower arm portion 14 is turned on. A plurality of trapezoidal pulse waveforms corresponding to the waveform of the current in the arm 13 or the lower arm 14 exist. The width of the trapezoidal pulse waveform of the sense signals S20 and S21 has a value substantially corresponding to the duty ratio of the upper arm 13 or the lower arm 14.
 したがって、個々の台形状のパルス波形における頂点部分となるタイミングで、あるいは任意の台形状のパルス波形における頂点部分となるタイミングで信号処理部17は、合成センス信号あるいは合成同期信号と、交流電圧である電流検出信号S16とをそれぞれ波形として検出し、比較する。そして、信号処理部17は電流センサ16の故障判定を行う。 Therefore, the signal processing unit 17 generates an alternating voltage and a synthetic sense signal or a synthetic synchronization signal at the timing when it becomes the apex portion of each trapezoidal pulse waveform or at the timing when it becomes the apex portion of any trapezoidal pulse waveform. Each current detection signal S16 is detected as a waveform and compared. Then, the signal processing unit 17 determines the failure of the current sensor 16.
 言い換えると信号処理部17は、合成センス信号あるいは合成同期信号が台形状のパルス波形として発せられるタイミングに同期した、時間的に分散した複数のタイミングもしくは単一のタイミングで比較処理を実施したうえで、電流センサ16の故障判定を行ってよい。全ての台形状のパルス波形において比較が行われる必要はなく、センス信号S20、S21を電流検出信号S16のような滑らかな波形とみなした場合に、傾きが大きくなるタイミングでは比較の頻度は多く設けられ、傾きが小さいタイミングでは比較の頻度を少なくして設けられ、比較の精度の向上が図られてもよい。ここで個々の台形状のパルス波形の幅がPWM制御で調整されることで、出力部15からの出力電流I15が制御される。 In other words, the signal processing unit 17 performs the comparison process at a plurality of temporally dispersed timings or at a single timing synchronized with the timing when the composite sense signal or the composite synchronization signal is emitted as a trapezoidal pulse waveform. The failure determination of the current sensor 16 may be performed. The comparison does not need to be performed for all trapezoidal pulse waveforms, and when the sense signals S20 and S21 are regarded as smooth waveforms such as the current detection signal S16, the frequency of comparison is frequently set at the timing when the slope becomes large. In the timing where the inclination is small, the frequency of comparison may be reduced to improve the accuracy of comparison. Here, the output current I15 from the output unit 15 is controlled by adjusting the width of each trapezoidal pulse waveform by PWM control.
 図2は、センス信号S20、S21と電流検出信号S16とを示す。図2はセンス信号S20、S21を合成して得られた合成センス信号S22も合せて示す。信号処理部17は、センス信号S20、S21を合成した合成センス信号S22を生成する。図2は、センス信号S20、S21は比較される時点の値を連続的に結んだ滑らかな波形として示す。 FIG. 2 shows sense signals S20 and S21 and a current detection signal S16. FIG. 2 also shows a combined sense signal S22 obtained by combining the sense signals S20 and S21. The signal processing unit 17 generates a combined sense signal S22 obtained by combining the sense signals S20 and S21. FIG. 2 shows the sense signals S20 and S21 as a smooth waveform in which the values at the times of comparison are continuously connected.
 センス信号S21もしくは下側アーム同期信号は、半導体スイッチ素子19のソース端子19Sが低電位入力部12よりも高い電位であるため、正の電圧信号となる。このため、合成センス信号S22は、極性を維持したうえで生成された場合は図2に示すような脈流のような正の電圧信号となる。一方で、電流センサ16が発信する電流検出信号S16は、上側アーム部13と下側アーム部14とから交互に正と負の電圧から供給される電流を検出して得られるので、図2に示すような交流電圧信号となる。 The sense signal S21 or the lower arm synchronization signal is a positive voltage signal because the source terminal 19S of the semiconductor switch element 19 has a potential higher than that of the low potential input unit 12. Therefore, when the synthetic sense signal S22 is generated while maintaining the polarity, it becomes a positive voltage signal such as a pulsating current as shown in FIG. On the other hand, since the current detection signal S16 transmitted by the current sensor 16 is obtained by detecting the current supplied from the positive and negative voltages alternately from the upper arm 13 and the lower arm 14, as shown in FIG. It becomes an alternating voltage signal as shown.
 信号処理部17は、合成センス信号S22を電流検出信号S16と容易に比較するために、電流検出信号S16の負電圧側を破線で示すように正電圧側へ反転させる。そして、信号処理部17は、合成センス信号S22と電流検出信号S16との比較結果にもとづいて電流センサ16の故障判定を行う。 In order to easily compare the combined sense signal S22 with the current detection signal S16, the signal processing unit 17 inverts the negative voltage side of the current detection signal S16 to the positive voltage side as indicated by a broken line. Then, the signal processing unit 17 performs failure determination of the current sensor 16 based on the comparison result of the combined sense signal S22 and the current detection signal S16.
 図3は、電力変換回路10の他の動作における信号を示す。図3に示す動作では、合成センス信号S22は、センス信号S21の極性を負電圧側へ反転させて図3に示す破線を含んだ交流電圧信号である。そのうえで信号処理部17は、合成センス信号S22と交流電圧である電流検出信号との比較結果にもとづいて電流センサ16の故障判定を行う。 FIG. 3 shows signals in another operation of the power conversion circuit 10. In the operation shown in FIG. 3, the combined sense signal S22 is an alternating voltage signal including the broken line shown in FIG. 3 with the polarity of the sense signal S21 inverted to the negative voltage side. Then, the signal processing unit 17 determines the failure of the current sensor 16 based on the comparison result of the combined sense signal S22 and the current detection signal which is an AC voltage.
 以下に電流センサ16の故障判定の方法を説明する。例えば故障判定を行う前段階として、電流センサ16が正常なときの電流検出信号S16の振幅と、合成センス信号S22の振幅との関係を信号処理部17は予め比較し記憶する。上記の予め記憶された関係と、測定された電流検出信号S16と合成センス信号S22との関係に、所定量以上の差が生じた場合に電流センサ16が故障していると信号処理部17は判定する。 The method of failure determination of the current sensor 16 will be described below. For example, the signal processing unit 17 compares and stores in advance the relationship between the amplitude of the current detection signal S16 when the current sensor 16 is normal and the amplitude of the combined sense signal S22 as a pre-stage for performing the failure determination. The signal processing unit 17 determines that the current sensor 16 is broken when a difference of a predetermined amount or more occurs between the previously stored relationship and the relationship between the measured current detection signal S16 and the combined sense signal S22. judge.
 例えば、信号処理部17は初期設定値として比率R1および比率R2を記憶しておく。比率R1は、図2もしくは図3に示すセンス信号S20の振幅V1の、電流センサ16が正常であるときの電流検出信号S16の振幅V3に対する比率である。比率R2は、センス信号S21の振幅V2の、電流センサ16が正常であるときの電流検出信号S16の振幅V4に対する比率である。電流センサ16が正常であるとき、センス信号S20の振幅V1の電流検出信号S16の正側の振幅V3に対する比率は常時においてほぼ一定の値となる。この値が比率R1である。同様に、電流センサ16が正常であるとき、センス信号S21の振幅V2と電流検出信号S16における負側の振幅V4に対する比率は常時においてほぼ一定の値となる。この値が比率R2である。 For example, the signal processing unit 17 stores the ratio R1 and the ratio R2 as initial setting values. The ratio R1 is a ratio of the amplitude V1 of the sense signal S20 shown in FIG. 2 or 3 to the amplitude V3 of the current detection signal S16 when the current sensor 16 is normal. The ratio R2 is a ratio of the amplitude V2 of the sense signal S21 to the amplitude V4 of the current detection signal S16 when the current sensor 16 is normal. When the current sensor 16 is normal, the ratio of the amplitude V1 of the sense signal S20 to the amplitude V3 on the positive side of the current detection signal S16 is a substantially constant value at all times. This value is the ratio R1. Similarly, when the current sensor 16 is normal, the ratio of the amplitude V2 of the sense signal S21 to the amplitude V4 on the negative side of the current detection signal S16 is a substantially constant value at all times. This value is the ratio R2.
 上記の初期設定値の比率R1および比率R2が信号処理部17に記憶されている。信号処理部17は電力変換回路10が動作しているとき、常時あるいは所定のタイミングでセンス信号S20の振幅V1を電流検出信号S16の正側の振幅V3と比較し、センス信号S21の振幅V2を電流検出信号S16の正側の振幅V4と比較する。電力変換回路10が動作しているときに、信号処理部17はセンス信号S20の振幅V1の電流検出信号S16の正側の振幅V3に対する比率R3を得る。同様に、信号処理部17はセンス信号S21の振幅V2の電流検出信号S16の負側の振幅V4に対する比率R4を得る。 The ratio R1 and the ratio R2 of the above-described initial setting values are stored in the signal processing unit 17. When the power conversion circuit 10 is operating, the signal processing unit 17 constantly or at a predetermined timing compares the amplitude V1 of the sense signal S20 with the amplitude V3 on the positive side of the current detection signal S16, and detects the amplitude V2 of the sense signal S21. This is compared with the positive amplitude V4 of the current detection signal S16. When the power conversion circuit 10 is operating, the signal processing unit 17 obtains a ratio R3 to the positive amplitude V3 of the current detection signal S16 of the amplitude V1 of the sense signal S20. Similarly, the signal processing unit 17 obtains a ratio R4 with respect to the negative amplitude V4 of the current detection signal S16 of the amplitude V2 of the sense signal S21.
 電流センサ16が正常である場合は、電力変換回路10が動作しているときに求められる上記の比率R3および比率R4は、電力変換回路10へ初期設定値として与えられている比率R1および比率R2とそれぞれ概ね同じ値を示すか、あるいは所定の範囲内での値を示す。しかしながら、電流センサ16に異常が生じている場合は、電流センサ16が正常であるときの電流検出信号S16の振幅V3、V4が示す値とは異なる値となるため、比率R3および比率R4もまた電流センサ16に正常である値とは異なる。したがって、比率R3および比率R4が、比率R1および比率R2に基づく所定の範囲を超えた値を示した場合、信号処理部17は電流センサ16に異常が生じていると判断する。 When current sensor 16 is normal, ratio R3 and ratio R4 obtained when power conversion circuit 10 is operating are ratio R1 and ratio R2 given to power conversion circuit 10 as the initial setting values. And indicate values substantially the same as each other, or indicate values within a predetermined range. However, if there is an abnormality in the current sensor 16, the ratio R3 and the ratio R4 are also different because the values are different from the values indicated by the amplitudes V3 and V4 of the current detection signal S16 when the current sensor 16 is normal. It differs from the value normal to the current sensor 16. Therefore, when the ratio R3 and the ratio R4 indicate values beyond the predetermined range based on the ratio R1 and the ratio R2, the signal processing unit 17 determines that the current sensor 16 has an abnormality.
 また、三相モータのような誘導性負荷が出力部15に接続されることで、出力部15に流れる電流I15は連続した信号となる。したがって、電流センサ16から発せられる電流検出信号S16は、センス信号S20、S21とは異なり、連続した波形となる。 Further, by connecting an inductive load such as a three-phase motor to the output unit 15, the current I15 flowing through the output unit 15 becomes a continuous signal. Therefore, the current detection signal S16 generated from the current sensor 16 has a continuous waveform unlike the sense signals S20 and S21.
 上記の台形状のパルス波形は、半導体スイッチ素子18、19においてボディーダイオードを考慮しない形態で示されている。仮にボディーダイオードを考慮したうえでのパルス波形であっても、合成センス信号S22と、交流電圧である電流検出信号S16とをそれぞれ波形として検出し、比較するタイミングは先に述べた場合と同じである。この場合のパルス波形は上記の台形状の頂点から漸減する信号波形を有した形状となる。 The above trapezoidal pulse waveform is shown in the form which does not consider the body diode in the semiconductor switch elements 18 and 19. Even if it is a pulse waveform in consideration of a body diode, the timing of detecting and comparing the synthesized sense signal S22 and the current detection signal S16 which is an alternating voltage as each waveform is the same as the case described above. is there. In this case, the pulse waveform has a signal waveform which gradually decreases from the top of the trapezoidal shape.
 以上の電流センサ16に対する故障判定に関する動作により、単一の相の電力を出力する電力変換回路10において、電力変換回路10に設けられた電流センサ16に対して、電力変換回路10が自ら異常の有無を判定する。言い換えると、電力変換回路10は複数の相にわたっての出力電流を比較して異常検出するのではなく、単一の相に対応した単一の電流センサ16の異常の有無を検出することができる。この結果、故障した電流センサ16の特定を容易にすることができる。 In the power conversion circuit 10 outputting power of a single phase by the operation related to the failure determination with respect to the current sensor 16, the power conversion circuit 10 itself is abnormal with respect to the current sensor 16 provided in the power conversion circuit 10. Determine the presence or absence. In other words, the power conversion circuit 10 can detect the presence or absence of an abnormality of a single current sensor 16 corresponding to a single phase, instead of comparing the output current across a plurality of phases to detect an abnormality. As a result, identification of the failed current sensor 16 can be facilitated.
 以上の実施の形態においては動作説明の便宜上、信号処理部17で、比較および判定する。したがって、各信号の比較を信号処理部17で行い、制御回路25で電流センサ16に対する判定を行ってもよい。比較および判定を行う機能や電力変換回路10および三相電力変換装置全体を一括して制御する機能として制御回路が設けられていてもよい。言い換えると、制御回路が信号処理部17とゲート端子18G,19Gに信号を供給して半導体スイッチ素子18、19を駆動するゲート駆動回路とを含んでいてもよい。 In the above embodiment, the signal processing unit 17 compares and determines for convenience of the operation description. Therefore, the signal processing unit 17 may compare the signals and the control circuit 25 may make a determination on the current sensor 16. A control circuit may be provided as a function to perform comparison and determination, and a function to collectively control the power conversion circuit 10 and the entire three-phase power conversion device. In other words, the control circuit may include a signal processing unit 17 and a gate drive circuit that supplies signals to the gate terminals 18G and 19G to drive the semiconductor switch elements 18 and 19.
 また、上側アーム部13および下側アーム部14には、半導体スイッチ素子18および半導体スイッチ素子19として図中ではFET(電界効果型トランジスタ)が適用される。半導体スイッチ素子18および半導体スイッチ素子19にはIGBT(絶縁ゲート型バイポーラトランジスタ)をはじめとするバイポーラトランジスタが適用されてもよい。 Further, FETs (field effect transistors) are applied to the upper arm portion 13 and the lower arm portion 14 as the semiconductor switch element 18 and the semiconductor switch element 19 in the drawing. A bipolar transistor such as an IGBT (insulated gate bipolar transistor) may be applied to the semiconductor switch element 18 and the semiconductor switch element 19.
 ここで、上側アーム部13および下側アーム部14に、半導体スイッチ素子18および半導体スイッチ素子19としてMOSFET(金属酸化膜半導体電界効果トランジスタ)が適用された場合、半導体スイッチ素子18および半導体スイッチ素子19が逆方向電流を流すことができる特性を用い、センス信号S20、S21を出力部15に流れる電流I15にさらに近似させることが可能となる。以下で詳細を説明する。 Here, when a MOSFET (metal oxide semiconductor field effect transistor) is applied as the semiconductor switch element 18 and the semiconductor switch element 19 to the upper arm portion 13 and the lower arm portion 14, the semiconductor switch element 18 and the semiconductor switch element 19. It is possible to make the sense signals S20 and S21 approximate to the current I15 flowing to the output unit 15 by using the characteristic that allows the backward current to flow. Details will be described below.
 先に説明した図2および図3においては、上側アーム部13および下側アーム部14の上側アーム同期信号および下側アーム同期信号は、半導体スイッチ素子18のドレイン端子18Dからソース端子18S、および半導体スイッチ素子19のドレイン端子19Dからソース端子19Sへと順方向電流が流れているときに得られる信号である。これに対して、半導体スイッチ素子18のソース端子18Sからドレイン端子18Dへと逆方向電流が流れ、かつ半導体スイッチ素子19のソース端子19Sからドレイン端子19Dへと逆方向電流が流れるときのセンス信号をさらに用いることによって上側アーム同期信号および下側アーム同期信号を生成してもよい。 In FIGS. 2 and 3 described above, the upper arm synchronization signal and the lower arm synchronization signal of the upper arm 13 and the lower arm 14 are transmitted from the drain terminal 18D of the semiconductor switch element 18 to the source terminal 18S, and It is a signal obtained when forward current flows from the drain terminal 19D of the switch element 19 to the source terminal 19S. On the other hand, when a reverse current flows from the source terminal 18S to the drain terminal 18D of the semiconductor switch element 18 and a reverse current flows from the source terminal 19S to the drain terminal 19D of the semiconductor switch element 19 The upper arm synchronization signal and the lower arm synchronization signal may be generated by further use.
 言い換えると、先に説明した図1Cに示す、上側アーム部13および下側アーム部14の上側アーム同期信号(センス信号S20)および下側アーム同期信号(センス信号S21)は、半導体スイッチ素子18および半導体スイッチ素子19のオンデューティ比が大きいときに得られる信号であった。これに対して、半導体スイッチ素子18および半導体スイッチ素子19におけるオンデューティ比が小さいときに得られる信号をさらに用いることによって上側アーム同期信号および下側アーム同期信号を生成してもよい。 In other words, the upper arm synchronization signal (sense signal S20) and the lower arm synchronization signal (sense signal S21) of the upper arm 13 and the lower arm 14 shown in FIG. This is a signal obtained when the on-duty ratio of the semiconductor switch element 19 is large. On the other hand, the upper arm synchronization signal and the lower arm synchronization signal may be generated by further using a signal obtained when the on-duty ratio in the semiconductor switch element 18 and the semiconductor switch element 19 is small.
 上側アーム部13および下側アーム部14とは基本的に交互にオンオフを繰り返して動作する。ここで出力電流波形が正側極性の領域にあるときは、上側アーム部13のオンデューティ比が下側アーム部14のオンデューティ比よりも大きく、電流波形が最大値となるときに上側アーム部13のオンデューティ比もまた最大となる。そして、出力電流波形が正側極性の領域にある場合、上側アーム部13がオン状態となったときに半導体スイッチ素子18には順方向電流が流れ、半導体スイッチ素子18に流れる順方向電流に対応したセンス信号S20あるいは上側アーム同期信号がセンス端子20あるいは上側アーム部13から信号処理部17へと発せられる。 The upper arm portion 13 and the lower arm portion 14 basically alternately turn on and off to operate. Here, when the output current waveform is in the positive polarity region, the on-duty ratio of the upper arm 13 is larger than the on-duty ratio of the lower arm 14, and the upper waveform is the maximum value. The on-duty ratio of 13 is also the largest. Then, when the output current waveform is in the region of positive polarity, when the upper arm portion 13 is turned on, forward current flows through the semiconductor switching device 18 and the forward current flowing through the semiconductor switching device 18 is handled. The sense signal S20 or the upper arm synchronization signal is issued from the sense terminal 20 or the upper arm unit 13 to the signal processing unit 17.
 ここで特に、出力部15に三相モータのように誘導性負荷が接続されている場合、出力電流I15の波形が正側極性の領域にあるときに、下側アーム部14がオン状態となると、誘導性負荷による誘導電力によって半導体スイッチ素子19には逆方向電流が流れる。このため、半導体スイッチ素子19に流れる逆方向電流に対応したセンス信号S21あるいは下側アーム同期信号がセンス端子あるいは下側アーム部14から信号処理部17へと発せられる。上記のように、上側アーム部13および下側アーム部14とは基本的に交互にオンオフを繰り返して動作するので、順方向電流に対応した上側アーム同期信号と、逆方向電流に対応した下側アーム同期信号とは交互に信号処理部17へと発せられる。このとき、上側アーム同期信号と下側アーム同期信号とは、電流の向きに対応して極性が反転した状態となる。 Here, in particular, when an inductive load is connected to the output unit 15 like a three-phase motor, when the lower arm unit 14 is turned on when the waveform of the output current I15 is in the positive polarity region, A reverse current flows in the semiconductor switch element 19 due to the induced power by the inductive load. Therefore, a sense signal S21 or lower arm synchronization signal corresponding to the reverse current flowing in the semiconductor switch element 19 is issued from the sense terminal or lower arm unit 14 to the signal processing unit 17. As described above, since the upper arm 13 and the lower arm 14 basically alternately repeat ON and OFF, the upper arm synchronization signal corresponding to the forward current and the lower side corresponding to the reverse current The arm synchronization signal is alternately issued to the signal processing unit 17. At this time, the polarities of the upper arm synchronization signal and the lower arm synchronization signal are reversed corresponding to the direction of the current.
 このため、出力電流波形が正側極性の領域にあるときは、上側アーム部13のオンデューティ比に比例して幅が下側アーム同期信号に比較して広い複数のパルスによって構成される上側アーム同期信号と、幅が上側アーム同期信号に比較して狭く極性が逆の複数のパルスによって構成される下側アーム同期信号との双方の信号が存在する。そして、信号処理部17は双方の信号を受信する。 Therefore, when the output current waveform is in the positive polarity region, the upper arm is constituted by a plurality of pulses whose width is wider than the lower arm synchronization signal in proportion to the on-duty ratio of the upper arm portion 13 There are both synchronization signals and a lower arm synchronization signal composed of a plurality of pulses of narrower width and opposite polarity compared to the upper arm synchronization signal. Then, the signal processing unit 17 receives both signals.
 出力電流波形が正側極性の領域にあるとき、上側アーム部13のオンデューティでの上側アーム同期信号に、下側アーム部14のオンデューティでの下側アーム同期信号を極性反転させたうえで補間して加えることにより得られる合成された波形は、出力部15に流れる電流I15の波形に近似する。この結果として、上側アーム同期信号に下側アーム同期信号を補間した波形と、交流電圧である電流検出信号S16とをそれぞれ波形として検出し、比較して電流センサ16の故障判定を行うことにより判定精度は向上する。 When the output current waveform is in the positive polarity region, the polarity of the lower arm synchronization signal at the on duty of the lower arm portion 14 is inverted to the upper arm synchronization signal at the on duty of the upper arm portion 13 The synthesized waveform obtained by interpolation and addition approximates the waveform of the current I15 flowing to the output unit 15. As a result of this, the waveform obtained by interpolating the lower arm synchronization signal to the upper arm synchronization signal and the current detection signal S16 which is an AC voltage are detected as waveforms, respectively, and the determination is made by comparing the failure detection of the current sensor 16 Accuracy is improved.
 そして、出力電流I15の波形が負側極性の領域にあるときは、下側アーム部14のオンデューティ比が上側アーム部13のオンデューティ比よりも大きく、電流波形が最小値となるときに下側アーム部14のオンデューティ比もまた最大となる。そして、出力電流I15の波形が負側極性の領域にある場合、下側アーム部14がオン状態となったときに半導体スイッチ素子19には順方向電流が流れ、半導体スイッチ素子19に流れる順方向電流に対応したセンス信号S21あるいは下側アーム同期信号がセンス端子21あるいは下側アーム部14から信号処理部17へと発せられる。 When the waveform of the output current I15 is in the negative polarity region, the on-duty ratio of the lower arm unit 14 is larger than the on-duty ratio of the upper arm unit 13, and the current waveform has a minimum value. The on-duty ratio of the side arm portion 14 also becomes maximum. When the waveform of the output current I15 is in the negative polarity region, when the lower arm portion 14 is turned on, forward current flows through the semiconductor switch element 19 and forward current flows through the semiconductor switch element 19 A sense signal S21 corresponding to the current or a lower arm synchronization signal is issued from the sense terminal 21 or the lower arm unit 14 to the signal processing unit 17.
 先述と同様に、出力部15に三相モータのように誘導性負荷が接続されている場合、出力電流波形が負側極性の領域にあるときに、上側アーム部13がオン状態となると、誘導性負荷による誘導電力によって半導体スイッチ素子18には逆方向電流が流れる。このため、半導体スイッチ素子18に流れる逆方向電流に対応したセンス信号S20あるいは上側アーム同期信号がセンス端子20あるいは上側アーム部13から信号処理部17へと発せられる。ここでも、上側アーム部13および下側アーム部14とは基本的に交互にオンオフを繰り返して動作するので、順方向電流に対応した下側アーム同期信号と、逆方向電流に対応した上側アーム同期信号とは交互に信号処理部17へと発せられる。このとき、下側アーム同期信号と上側アーム同期信号とは、電流の向きに対応して極性が反転した状態となる。 In the same manner as described above, when the inductive load is connected to the output unit 15 like a three-phase motor, induction is performed when the upper arm unit 13 is turned on when the output current waveform is in the negative polarity region. Reverse current flows in the semiconductor switch element 18 due to the induced power by the load. Therefore, a sense signal S20 or an upper arm synchronization signal corresponding to the reverse current flowing to the semiconductor switch element 18 is issued from the sense terminal 20 or the upper arm unit 13 to the signal processing unit 17. Also here, since the upper arm unit 13 and the lower arm unit 14 basically alternately turn on and off repeatedly, the lower arm synchronization signal corresponding to the forward current and the upper arm synchronization corresponding to the reverse current The signal is alternately issued to the signal processing unit 17. At this time, the lower arm synchronization signal and the upper arm synchronization signal are in a state in which the polarity is inverted in accordance with the direction of the current.
 このため、出力電流I15波形が負側極性の領域にあるときは、オンデューティ比に比例して幅が上側アーム同期信号に比較して広い複数のパルスによって構成される下側アーム同期信号と、オンデューティ比に比例して幅が下側アーム同期信号に比較して狭く極性が逆の複数のパルスによって構成される上側アーム同期信号との双方の信号が存在する。そして、信号処理部17は双方の信号を受信する。 Therefore, when the waveform of the output current I15 is in the negative polarity region, a lower arm synchronization signal composed of a plurality of pulses whose width is wider than the upper arm synchronization signal in proportion to the on duty ratio; There are both signals with the upper arm synchronization signal constituted by a plurality of pulses whose width is narrower and opposite in polarity to the lower arm synchronization signal in proportion to the on duty ratio. Then, the signal processing unit 17 receives both signals.
 出力電流I15の波形が負側極性の領域にあるとき、下側アーム部14のオンデューティでの下側アーム同期信号に、上側アーム部13のオンデューティでの上側アーム同期信号を極性反転させたうえで補間して加えることにより得られる合成された波形は、出力部15に流れる電流の波形に近似する。この結果として、下側アーム同期信号に上側アーム同期信号を補間した波形と、交流電圧である電流検出信号とをそれぞれ波形として検出し、比較して電流センサ16の故障判定を行ことにより判定精度は向上する。 When the waveform of the output current I15 is in the negative polarity region, the upper arm synchronization signal at the on duty of the upper arm unit 13 is inverted in polarity to the lower arm synchronization signal at the on duty of the lower arm unit 14 The synthesized waveform obtained by the interpolation and addition above approximates the waveform of the current flowing to the output unit 15. As a result, a waveform obtained by interpolating the upper arm synchronization signal to the lower arm synchronization signal and the current detection signal which is an AC voltage are detected as waveforms, respectively, and the determination accuracy is determined by comparing the failure detection of the current sensor 16 Improve.
 図4は実施の形態における他の電力変換回路10aの回路ブロック図である。図4において、図1Aと図1Bに示す電力変換回路10と同じ部分には同じ参照番号を付す。 FIG. 4 is a circuit block diagram of another power conversion circuit 10a according to the embodiment. In FIG. 4, the same parts as those of the power conversion circuit 10 shown in FIGS. 1A and 1B are denoted by the same reference numerals.
 電力変換回路10aは、センス端子20と半導体スイッチ素子18のソース端子18Sとに直列に接続された変換回路27と、センス端子21と半導体スイッチ素子19のソース端子19Sとに直列に接続された変換回路28とをさらに備える。 Power conversion circuit 10 a includes a conversion circuit 27 connected in series to sense terminal 20 and source terminal 18 S of semiconductor switch element 18, a conversion connected in series to sense terminal 21 and source terminal 19 S of semiconductor switch element 19. And a circuit 28.
 信号処理部17は、上側アーム部13と下側アーム部14と電流センサ16とに接続されている。そして信号処理部17は、上側アーム部13から発信される変換回路27の両端の電位差に相当する上側アーム同期信号(センス信号S20)と、下側アーム部14から発信される変換回路28の両端の電位差に相当する下側アーム同期信号(センス信号S21)と、電流を電圧へと変換して電流センサ16から発信された電流検出信号S16とを受信する。信号処理部17は、上側アーム同期信号(センス信号S20)を電流検出信号と比較し、下側アーム同期信号(センス信号S21)を電流検出信号S16と比較する。 The signal processing unit 17 is connected to the upper arm 13, the lower arm 14, and the current sensor 16. Then, the signal processing unit 17 controls the upper arm synchronization signal (sense signal S20) corresponding to the potential difference between both ends of the conversion circuit 27 transmitted from the upper arm unit 13, and both ends of the conversion circuit 28 transmitted from the lower arm unit 14. A lower arm synchronization signal (sense signal S21) corresponding to the potential difference between the two, and a current detection signal S16 transmitted from the current sensor 16 by converting the current into a voltage. The signal processing unit 17 compares the upper arm synchronization signal (sense signal S20) with the current detection signal, and compares the lower arm synchronization signal (sense signal S21) with the current detection signal S16.
 以上では、単一の相に対応した単一の電流センサ16の異常の有無を検出し、故障した電流センサ16の特定する電力変換回路10、10aについて説明した。さらに以下で説明するように、単一の相に対応した単一の電流センサ16の異常の有無を検出することが可能であることを用いて、三相電力変換装置における電流センサ16の数量を削減することもできる。そしてこの結果として、三相電力変換装置の小型化や軽量化が可能となる。 In the above, the power conversion circuit 10, 10a which detects the presence or absence of abnormality of the single current sensor 16 corresponding to a single phase and specifies the failed current sensor 16 has been described. Further, as described below, the number of current sensors 16 in the three-phase power converter can be determined using the ability to detect the presence or absence of a single current sensor 16 corresponding to a single phase. It can also be reduced. And as a result, size reduction and weight reduction of a three-phase power converter are attained.
 以下で電力変換回路10を用いた電力変換装置について説明する。図5は実施の形態における三相電力変換装置22の回路ブロック図である。 The power converter using the power converter circuit 10 will be described below. FIG. 5 is a circuit block diagram of the three-phase power conversion device 22 in the embodiment.
 図5に示すように、三相電力変換装置22は、三相モータ23へ電力を供給する電力変換回路10u、10v、10wを有する。電力変換回路10u、10v、10wは三相モータ23へu相の電力、v相の電力、w相の電力をそれぞれ供給する。電力変換回路10u、10v、10wそれぞれの構成は先に説明した電力変換回路10と同じであり、電力変換回路10が異なった位相で動作することによって、三相電力変換装置22における電力変換回路10u、10v、10wとして動作している。 As shown in FIG. 5, the three-phase power conversion device 22 has power conversion circuits 10 u, 10 v, and 10 w for supplying power to the three-phase motor 23. The power conversion circuits 10 u, 10 v and 10 w respectively supply u-phase power, v-phase power and w-phase power to the three-phase motor 23. The configuration of each of the power conversion circuits 10 u, 10 v and 10 w is the same as the power conversion circuit 10 described above, and the power conversion circuit 10 in the three-phase power conversion device 22 operates by operating with different phases. It operates as 10v and 10w.
 三相電力変換装置22はまた、直流電源24と制御回路25とゲート駆動回路26とを有する。直流電源24は電力変換回路10u、10v、10wにおける高電位入力部11へ高電位の直流電力を供給している。また、直流電源24は電力変換回路10u、10v、10wにおける低電位入力部12へ高電位の直流電力を供給している。 The three-phase power converter 22 also has a DC power supply 24, a control circuit 25 and a gate drive circuit 26. The DC power supply 24 supplies DC power of high potential to the high potential input unit 11 in the power conversion circuits 10 u, 10 v, 10 w. Further, the direct current power supply 24 supplies high potential direct current power to the low potential input unit 12 in the power conversion circuits 10 u, 10 v, 10 w.
 u相、v相、w相の各相の電力変換回路10u、10v、10wにおける信号処理部17u、17v、17wは制御回路25に接続されている。そして信号処理部17u、17v、17wは先に述べたように電流センサ16における異常の有無を判定すると同時に各相の出力部15における出力電流および出力電圧を検出し、その検出結果を検出結果信号として制御回路25へと伝える。そして制御回路25は三相モータ23が所望の状態で動作するように出力電流および出力電圧を制御するための、動作制御信号をゲート駆動回路26へと伝える。そしてさらにゲート駆動回路26は動作制御信号にもとづいて、電力変換回路10u、10v、10wの各相の上側アーム部13と下側アーム部14とを駆動する。制御回路25は演算部と記憶部などを有し、ゲート駆動回路26は制御回路25からの制御信号に対応したPWM信号などを生成し、上側アーム部13や下側アーム部14をPWM信号などによって駆動する。 The signal processing units 17 u, 17 v, and 17 w in the power conversion circuits 10 u, 10 v, and 10 w of the u-phase, v-phase, and w-phase are connected to the control circuit 25. Then, the signal processing units 17u, 17v, 17w detect the presence or absence of abnormality in the current sensor 16 as described above, and simultaneously detect the output current and the output voltage in the output unit 15 of each phase, and detect the detection result signal As the control circuit 25. The control circuit 25 transmits an operation control signal to the gate drive circuit 26 to control the output current and the output voltage so that the three-phase motor 23 operates in a desired state. Further, the gate drive circuit 26 drives the upper arm 13 and the lower arm 14 of each phase of the power conversion circuits 10 u, 10 v, 10 w based on the operation control signal. The control circuit 25 includes an operation unit and a storage unit, and the gate drive circuit 26 generates a PWM signal corresponding to a control signal from the control circuit 25. The upper arm unit 13 and the lower arm unit 14 receive PWM signals etc. Driven by
 図6は実施の形態における他の三相電力変換装置22aの回路ブロック図である。図6において、図5に示す三相電力変換装置22と同じ部分には同じ参照番号を付す。三相電力変換装置22aは、直流電源24と、第1相に相当する電力変換回路10uと、第2相に相当する電力変換回路10vと、第3相に相当する電力変換回路10wと、制御回路25とを有する。ここでは一例として、第1相をu相、第2相をv相、第3相をw相に対応させて説明しているが、第1相、第2相、第3相とu相、v相、w相との対応は上記の形態に拘るものではない。 FIG. 6 is a circuit block diagram of another three-phase power converter 22a in the embodiment. 6, the same reference numerals as in the three-phase power converter 22 shown in FIG. 5 denote the same parts. The three-phase power conversion device 22a includes a DC power supply 24, a power conversion circuit 10u corresponding to a first phase, a power conversion circuit 10v corresponding to a second phase, a power conversion circuit 10w corresponding to a third phase, and control And a circuit 25. Here, as an example, the first phase is described to correspond to the u phase, the second phase to the v phase, and the third phase to the w phase, but the first phase, the second phase, the third phase and the u phase, Correspondence with v phase and w phase does not depend on the above-mentioned form.
 第1相、第2相、第3相の各相の電力変換回路10u、10v、10wはそれぞれ、上側アーム部13と、下側アーム部14と、出力部15と信号処理部17(17u、17v、17w)とを有する。上側アーム部13は、直流電源24に接続された高電位入力部11に高電位側が接続されている半導体スイッチ素子18とセンス信号を発信するセンス端子20とを有する。下側アーム部14は、直流電源24に接続された低電位入力部12に低電位側が接続されていて、半導体スイッチ素子19とセンス信号を発信するセンス端子21とを有する。出力部15は、上側アーム部13の低電位側と下側アーム部14の高電位側との接続点115に設けられている。信号処理部17u、17v、17wは、上側アーム部13と下側アーム部14とに接続されていて、センス信号S20、S21を受信する。 The power conversion circuits 10u, 10v, and 10w of the first phase, the second phase, and the third phase respectively include the upper arm unit 13, the lower arm unit 14, the output unit 15, and the signal processing unit 17 (17u, 17 v, 17 w). The upper arm unit 13 has a semiconductor switch element 18 whose high potential side is connected to the high potential input unit 11 connected to the DC power supply 24 and a sense terminal 20 for transmitting a sense signal. The lower arm unit 14 has a low potential side connected to the low potential input unit 12 connected to the DC power supply 24 and has a semiconductor switch element 19 and a sense terminal 21 for transmitting a sense signal. The output unit 15 is provided at a connection point 115 between the low potential side of the upper arm unit 13 and the high potential side of the lower arm unit 14. The signal processing units 17u, 17v, and 17w are connected to the upper arm unit 13 and the lower arm unit 14, and receive the sense signals S20 and S21.
 また、電力変換回路10u、10vはそれぞれ、電流センサ16を有する。電流センサ16は、信号処理部17u、17vに接続されていて、出力部15の出力電流を検出して、出力電流に対応した電流検出信号を信号処理部17に発信する。 Each of the power conversion circuits 10 u and 10 v has a current sensor 16. The current sensor 16 is connected to the signal processing units 17 u and 17 v, detects an output current of the output unit 15, and transmits a current detection signal corresponding to the output current to the signal processing unit 17.
 制御回路25は、信号処理部17u、17v、17wに接続されていて、電流センサ16に対する故障判定と、電力変換回路10u、10v、10wの出力検出や電力変換回路10u、10v、10wに対する制御を行う。制御回路25での電流センサ16に対する故障判定は、電力変換回路10uの電流センサ16に関しては、電力変換回路10uにおけるセンス信号S20、S21のそれぞれと、電力変換回路10uにおける電流センサ16による電流検出信号S16との比較結果に基づいて行われる。電力変換回路10vの電流センサ16に関しては、電力変換回路10vにおけるセンス信号S20、S21のそれぞれと、電力変換回路10vにおける電流センサ16による電流検出信号S16との比較結果に基づいて行われる。電力変換回路10wは電流センサを有していない。 The control circuit 25 is connected to the signal processing units 17u, 17v, and 17w, and performs failure determination for the current sensor 16, detection of output of the power conversion circuits 10u, 10v, and 10w, and control of the power conversion circuits 10u, 10v, and 10w. Do. With regard to the current sensor 16 of the power conversion circuit 10u, the failure determination for the current sensor 16 in the control circuit 25 includes the sense signals S20 and S21 in the power conversion circuit 10u and the current detection signal by the current sensor 16 in the power conversion circuit 10u. It is performed based on the comparison result with S16. The current sensor 16 of the power conversion circuit 10v is performed based on the comparison result between each of the sense signals S20 and S21 in the power conversion circuit 10v and the current detection signal S16 by the current sensor 16 in the power conversion circuit 10v. The power conversion circuit 10 w does not have a current sensor.
 電力変換回路10uにおけるセンス信号S20、S21によって得られる出力電流I15は相電流Iusである。電力変換回路10vにおけるセンス信号S20、S21によって得られる出力電流I15は相電流Ivsである。また、電力変換回路10uにおける電流センサ16によって得られる出力電流I15は相電流Iuである。電力変換回路10vにおける電流センサ16によって得られる出力電流I15は相電流Ivである。そして、相電流Ius、Iuの差と、相電流Ivs、Ivの差とが制御回路25によって求められる。上記の差が所定の範囲にある場合、それぞれの相における電流センサ16、ここでは電力変換回路10uにおける電流センサ16や、電力変換回路10vにおける電流センサ16は正常であると制御回路25は判断する。 The output current I15 obtained by the sense signals S20 and S21 in the power conversion circuit 10u is the phase current Ius. The output current I15 obtained by the sense signals S20 and S21 in the power conversion circuit 10v is the phase current Ivs. The output current I15 obtained by the current sensor 16 in the power conversion circuit 10u is the phase current Iu. The output current I15 obtained by the current sensor 16 in the power conversion circuit 10v is the phase current Iv. Then, the control circuit 25 determines the difference between the phase currents Ius and Iu and the difference between the phase currents Ivs and Iv. When the above difference is within the predetermined range, the control circuit 25 determines that the current sensor 16 in each phase, here, the current sensor 16 in the power conversion circuit 10 u or the current sensor 16 in the power conversion circuit 10 v is normal. .
 三相交流では、電力変換回路10u、10v、10wの電力変換動作での異常がない、あるいは、給配電経路に短絡や地絡が生じていない、正常状態において、全ての相電圧の総和および全ての相電流の総和は0となる。したがって、電流センサ16を用いない電力変換回路10wにおける出力電流I15である相電流Iwは、電流検出演算値として以下の関係で得られる。 In the three-phase alternating current, there is no abnormality in the power conversion operation of the power conversion circuits 10u, 10v, 10w, or no short circuit or ground fault occurs in the power supply and distribution path. The sum of the phase currents of the two is zero. Therefore, the phase current Iw which is the output current I15 in the power conversion circuit 10w not using the current sensor 16 can be obtained as the current detection calculation value according to the following relationship.
 Iw=0-Iu-Iv
 したがって、制御回路25は、故障した電流センサ16の特定を容易に可能となり、さらに電流センサを用いない電力変換回路10wに対して電力変換回路10u、10vと同様に所望の動作状態へ制御することができる。これにより、三相電力変換装置22aにおける電流センサ16の数量を削減することもできる。そしてこの結果として、三相電力変換装置22aの小型化や軽量化が可能となる。
Iw = 0-Iu-Iv
Therefore, the control circuit 25 can easily identify the failed current sensor 16, and control the power conversion circuit 10w not using the current sensor to a desired operation state as in the power conversion circuits 10u and 10v. Can. Thereby, the number of current sensors 16 in the three-phase power conversion device 22a can also be reduced. And as a result, size reduction and weight reduction of three-phase power converter 22a are attained.
 ここでは制御回路25での判定に関して電流値を用いて説明しているが、先に個別の電力変換回路10についての詳細説明で述べたように、電流値が電圧変換されたうえで制御回路25が判定を行ってもよい。 Here, although the determination by the control circuit 25 is described using the current value, as described above in the detailed description of the individual power conversion circuit 10, after the current value is voltage-converted, the control circuit 25 is described. May make the determination.
 図7は実施の形態におけるさらに他の三相電力変換装置22bの回路ブロック図である。図7において、図5と図6に示す三相電力変換装置22bと同じ部分には同じ参照番号を付す。センス端子20およびセンス端子21を減らして信号処理部17u、17v、17wや制御回路25での演算や制御を簡略化したうえで三相電力変換装置22bにおける電流センサ16の数量を削減することもできる。 FIG. 7 is a circuit block diagram of still another three-phase power conversion device 22b in the embodiment. In FIG. 7, the same parts as those of the three-phase power conversion device 22b shown in FIG. 5 and FIG. It is also possible to reduce the number of current sensors 16 in the three-phase power conversion device 22b after reducing the sense terminal 20 and the sense terminal 21 and simplifying the calculation and control in the signal processing units 17u, 17v, 17w and the control circuit 25. it can.
 三相電力変換装置22bは、直流電源24と、第1相に相当する電力変換回路10uと、第2相に相当する電力変換回路10vと、第3相に相当する電力変換回路10wと、制御回路25とを有する。第1相、第2相、第3相の各相の電力変換回路10u、10v、10wはそれぞれ、上側アーム部13と、下側アーム部14と、出力部15と信号処理部17(17u、17v、17w)とを有する。ここでも一例として、第1相をu相、第2相をv相、第3相をw相に対応させて説明しているが、第1相、第2相、第3相とu相、v相、w相との対応は上記の形態に拘るものではない。 The three-phase power conversion device 22b includes a DC power supply 24, a power conversion circuit 10u corresponding to a first phase, a power conversion circuit 10v corresponding to a second phase, a power conversion circuit 10w corresponding to a third phase, and control And a circuit 25. The power conversion circuits 10u, 10v, and 10w of the first phase, the second phase, and the third phase respectively include the upper arm unit 13, the lower arm unit 14, the output unit 15, and the signal processing unit 17 (17u, 17 v, 17 w). Here, as an example, the first phase is described to correspond to the u phase, the second phase to the v phase, and the third phase to the w phase, but the first phase, the second phase, the third phase and the u phase, Correspondence with v phase and w phase does not depend on the above-mentioned form.
 電力変換回路10u、10vにおいては、上側アーム部13は、直流電源24に接続された高電位入力部11に高電位側が接続されている半導体スイッチ素子18とセンス信号S20を発信するセンス端子20とを有する。同様に電力変換回路10u、10vにおいて下側アーム部14は、直流電源24に接続された低電位入力部12に低電位側が接続されていて、半導体スイッチ素子19とセンス信号S21を発信するセンス端子21とを有する。 In the power conversion circuits 10 u and 10 v, the upper arm unit 13 includes the semiconductor switch element 18 whose high potential side is connected to the high potential input unit 11 connected to the DC power supply 24 and the sense terminal 20 which transmits the sense signal S 20. Have. Similarly, in the power conversion circuits 10u and 10v, the lower arm unit 14 is connected on the low potential side to the low potential input unit 12 connected to the DC power supply 24, and sense terminals for transmitting the semiconductor switch element 19 and the sense signal S21. And 21.
 電力変換回路10wにおいては、上側アーム部13は、直流電源24に接続された高電位入力部11に高電位側が接続されている半導体スイッチ素子18を有し、センス端子20を有していない。同様に電力変換回路10wにおいて、下側アーム部14は、直流電源24に接続された低電位入力部12に低電位側が接続されていて、半導体スイッチ素子19を有し、センス端子21を有していない。 In the power conversion circuit 10 w, the upper arm unit 13 has the semiconductor switch element 18 whose high potential side is connected to the high potential input unit 11 connected to the DC power supply 24 and does not have the sense terminal 20. Similarly, in the power conversion circuit 10w, the lower arm unit 14 has a low potential side connected to the low potential input unit 12 connected to the DC power supply 24, has a semiconductor switch element 19, and has a sense terminal 21. Not.
 電力変換回路10u、10v、10wそれぞれにおいて、出力部15は、上側アーム部13の低電位側と下側アーム部14の高電位側との接続点115に設けられている。電力変換回路10u、10vそれぞれにおいて、信号処理部17u、17vは、上側アーム部13と下側アーム部14とに接続されていて、電力変換回路10u、10vでは信号処理部17u、17vはセンス信号S20、S21を受信する。 In each of the power conversion circuits 10 u, 10 v, 10 w, the output unit 15 is provided at a connection point 115 between the low potential side of the upper arm unit 13 and the high potential side of the lower arm unit 14. In each of power conversion circuits 10u and 10v, signal processing units 17u and 17v are connected to upper arm unit 13 and lower arm unit 14, and in power conversion circuits 10u and 10v, signal processing units 17u and 17v receive sense signals. S20 and S21 are received.
 また、電力変換回路10u、10w、はそれぞれ、電流センサ16を有する。電流センサ16は、電力変換回路10u、10wの信号処理部17u、17wに接続されていて、出力部15の出力電流を検出して、出力電流に対応した電流検出信号を信号処理部17u、17wに発信する。 Each of the power conversion circuits 10 u and 10 w has a current sensor 16. The current sensor 16 is connected to the signal processing units 17u and 17w of the power conversion circuits 10u and 10w, detects the output current of the output unit 15, and detects a current detection signal corresponding to the output current as the signal processing units 17u and 17w. Send to
 制御回路25は、信号処理部17u、17v、17wに接続されていて、電流センサ16に対する故障判定と、電力変換回路10u、10v、10wの出力検出や電力変換回路10u、10v、10wに対する制御を行う。制御回路25での電流センサ16に対する故障判定は、電力変換回路10uの電流センサ16に関しては、電力変換回路10uにおけるセンス信号およびセンス信号と、電力変換回路10uにおける電流センサ16による電流検出信号との比較結果に基づいて行われる。電力変換回路10wの電流センサ16に関しては、電力変換回路10wにおけるセンス信号S20、S21にそれぞれ相当するセンス演算値S20c、S21cのそれぞれと、電力変換回路10wにおける電流センサ16による電流検出信号S16との比較結果に基づいて電力変換回路10wの電流センサ16の故障判定が行われる。 The control circuit 25 is connected to the signal processing units 17u, 17v, and 17w, and performs failure determination for the current sensor 16, detection of output of the power conversion circuits 10u, 10v, and 10w, and control of the power conversion circuits 10u, 10v, and 10w. Do. For the current sensor 16 of the power conversion circuit 10u, the failure determination for the current sensor 16 in the control circuit 25 is performed between the sense signal and the sense signal in the power conversion circuit 10u and the current detection signal by the current sensor 16 in the power conversion circuit 10u. It is performed based on the comparison result. Regarding current sensor 16 of power conversion circuit 10w, sense operation values S20c and S21c respectively corresponding to sense signals S20 and S21 in power conversion circuit 10w and current detection signal S16 by current sensor 16 in power conversion circuit 10w. Based on the comparison result, failure determination of the current sensor 16 of the power conversion circuit 10 w is performed.
 ここで、電力変換回路10uにおけるセンス信号S20、S21によって得られる出力電流が相電流Iusであり、電力変換回路10wにおけるセンス演算値S20c、S21cによって得られる出力電流I15が相電流Iwcである。また、電力変換回路10uにおける電流センサ16によって得られる出力電流が相電流Iuであり、電力変換回路10wにおける電流センサ16によって得られる出力電流I15が相電流Iwである。そして、相電流Ius、Iuの差と、相電流Iwc、Iwの差が制御回路25によって求められる。上記の差が所定の範囲にある場合、それぞれの相における電流センサ、ここでは電力変換回路10uにおける電流センサ16や、電力変換回路10wにおける電流センサ16は正常であると制御回路25は判断する。 Here, the output current obtained by the sense signals S20 and S21 in the power conversion circuit 10u is the phase current Ius, and the output current I15 obtained by the sense operation values S20c and S21c in the power conversion circuit 10w is the phase current Iwc. The output current obtained by the current sensor 16 in the power conversion circuit 10u is the phase current Iu, and the output current I15 obtained by the current sensor 16 in the power conversion circuit 10w is the phase current Iw. The difference between the phase currents Ius and Iu and the difference between the phase currents Iwc and Iw are determined by the control circuit 25. When the above difference is within the predetermined range, the control circuit 25 determines that the current sensors in the respective phases, here, the current sensor 16 in the power conversion circuit 10 u and the current sensor 16 in the power conversion circuit 10 w are normal.
 センス演算値S20c、S21cは、先に説明した三相交流の全ての相電圧の総和および全ての相電流の総和は0となる関係を用いて得られる。 The sense operation values S20c and S21c are obtained using the relationship in which the sum of all the phase voltages of the three-phase alternating current and the sum of all the phase currents described above are zero.
 電力変換回路10u、10vでは信号処理部17はセンス端子20およびセンス端子21からセンス信号S20およびセンス信号S21をそれぞれ受信する。そして、電力変換回路10uにおけるセンス信号S20、S21によって得られる出力電流I15が相電流Iusである。電力変換回路10vにおけるセンス信号S20、S21によって得られる出力電流I15が相電流Ivsである。センス演算値S20c、S21cとして得られる相電流の演算値Iwcは以下の関係で得られる。 In the power conversion circuits 10 u and 10 v, the signal processing unit 17 receives the sense signal S 20 and the sense signal S 21 from the sense terminal 20 and the sense terminal 21, respectively. The output current I15 obtained by the sense signals S20 and S21 in the power conversion circuit 10u is the phase current Ius. The output current I15 obtained by the sense signals S20 and S21 in the power conversion circuit 10v is the phase current Ivs. The operation value Iwc of the phase current obtained as the sense operation values S20c and S21c is obtained by the following relationship.
 Iwc=0-Ius-Ivs
 したがって、制御回路25はセンス端子20、センス端子21を有さない電力変換回路10wにおいて、電力変換回路10wに用いた電流センサ16の異常の有無を検出することができる、故障した電流センサの特定が容易となる。また、電流センサを有しない電力変換回路10vにおける相電流Ivは、先に述べたように電流検出演算値として以下の関係で得られる。
Iwc = 0-Ius-Ivs
Therefore, in the power conversion circuit 10 w having neither the sense terminal 20 nor the sense terminal 21, the control circuit 25 can detect the presence or absence of abnormality of the current sensor 16 used for the power conversion circuit 10 w. Becomes easy. Further, the phase current Iv in the power conversion circuit 10v having no current sensor can be obtained as the current detection calculation value according to the following relationship as described above.
 Iv=0-Iu-Iw
 したがって、電流センサを有しない電力変換回路10vに対して電力変換回路10u、10wと同様に所望の動作状態へ制御することができる。これにより、三相電力変換装置22bにおける電流センサ16の数量を削減することもできる。そしてこの結果として、三相電力変換装置22bの小型化や軽量化が可能となる。
Iv = 0-Iu-Iw
Therefore, the power conversion circuit 10v having no current sensor can be controlled to a desired operating state as in the power conversion circuits 10u and 10w. Thereby, the number of current sensors 16 in the three-phase power conversion device 22b can also be reduced. And as a result, size reduction and weight reduction of the three-phase power converter 22b are attained.
 言い換えると、三相のうちセンス端子20、センス端子21を有さない相と、電流センサ16を有さない相が、各1つの相で存在しても故障した電流センサ16を容易に特定でき、かつ、電流センサ16の数量を削減することができて三相電力変換装置22bの小型化や軽量化が可能となる。ここでは、センス端子20、センス端子21を有していない相と、電流センサ16を有していない相とは異なる。 In other words, even if one of the three phases, the phase without the sense terminal 20 and the phase without the sense terminal 21 and the phase without the current sensor 16, can easily identify the failed current sensor 16 In addition, the number of current sensors 16 can be reduced, and the size and weight of the three-phase power conversion device 22b can be reduced. Here, the phase without the sense terminal 20 and the sense terminal 21 is different from the phase without the current sensor 16.
 図8は実施の形態におけるさらに他の三相電力変換装置22cの回路ブロック図である。図8において、図5から図7に示す三相電力変換装置22、22a、22bと同じ部分には同じ参照番号を付す。センス端子20およびセンス端子21を有する相は1相のみとして信号処理部17u、17v、17wや制御回路25での演算や制御を簡略化したうえで三相電力変換装置22cにおける電流センサ16の数量を削減することもできる。 FIG. 8 is a circuit block diagram of still another three-phase power conversion device 22c in the embodiment. In FIG. 8, the same reference numerals as in the three-phase power conversion devices 22, 22 a and 22 b shown in FIGS. 5 to 7 denote the same parts. The number of current sensors 16 in the three-phase power conversion device 22c after simplifying the calculation and control in the signal processing units 17u, 17v, 17w and the control circuit 25 with only one phase including the sense terminal 20 and the sense terminal 21. Can also be reduced.
 三相電力変換装置22cは、直流電源24と、第1相に相当する電力変換回路10uと、第2相に相当する電力変換回路10vと、第3相に相当する電力変換回路10wと、制御回路25とを有する。第1相、第2相、第3相の各相の電力変換回路10u、10v、10wはそれぞれ、上側アーム部13と、下側アーム部14と、出力部15と信号処理部17u、17v、17wとを有する。ここでも一例として、第1相をu相、第2相をv相、第3相をw相に対応させて説明しているが、第1相、第2相、第3相とu相、v相、w相との対応は上記の形態に拘るものではない。 The three-phase power conversion device 22c includes a DC power supply 24, a power conversion circuit 10u corresponding to a first phase, a power conversion circuit 10v corresponding to a second phase, a power conversion circuit 10w corresponding to a third phase, and control And a circuit 25. The power conversion circuits 10u, 10v, and 10w of the first phase, the second phase, and the third phase are respectively the upper arm unit 13, the lower arm unit 14, the output unit 15, and the signal processing units 17u, 17v, And 17w. Here, as an example, the first phase is described to correspond to the u phase, the second phase to the v phase, and the third phase to the w phase, but the first phase, the second phase, the third phase and the u phase, Correspondence with v phase and w phase does not depend on the above-mentioned form.
 電力変換回路10uにおいては、上側アーム部13は、直流電源24に接続された高電位入力部11に高電位側が接続されている半導体スイッチ素子18とセンス信号S20を発信するセンス端子20とを有する。同様に電力変換回路10uにおいて、下側アーム部14は、直流電源24に接続された低電位入力部12に低電位側が接続されていて、半導体スイッチ素子19とセンス信号S21を発信するセンス端子21とを有する。 In power conversion circuit 10u, upper arm unit 13 has semiconductor switch element 18 whose high potential side is connected to high potential input unit 11 connected to DC power supply 24, and sense terminal 20 for transmitting sense signal S20. . Similarly, in the power conversion circuit 10u, the lower arm unit 14 has a low potential side connected to the low potential input unit 12 connected to the DC power supply 24, and the sense terminal 21 transmits the semiconductor switch element 19 and the sense signal S21. And.
 電力変換回路10v、10wにおいては、上側アーム部13は、直流電源24に接続された高電位入力部11に高電位側が接続されている半導体スイッチ素子18を有し、センス端子20を有していない。同様に電力変換回路10v、10wにおいて、下側アーム部14は、直流電源24に接続された低電位入力部12に低電位側が接続されていて、半導体スイッチ素子19を有し、センス端子21を有していない。 In the power conversion circuits 10v and 10w, the upper arm unit 13 has the semiconductor switch element 18 whose high potential side is connected to the high potential input unit 11 connected to the DC power supply 24 and has the sense terminal 20. Absent. Similarly, in the power conversion circuits 10v and 10w, the lower arm unit 14 is connected on the low potential side to the low potential input unit 12 connected to the DC power supply 24 and has a semiconductor switch element 19. I do not have it.
 電力変換回路10u、10v、10wそれぞれにおいて、出力部15は、上側アーム部13の低電位側と下側アーム部14の高電位側との接続点115に設けられている。電力変換回路10uにおいて、信号処理部17uは、上側アーム部13と下側アーム部14とに接続されていて、電力変換回路10uでは信号処理部17はセンス信号S20、S21を受信する。 In each of the power conversion circuits 10 u, 10 v, 10 w, the output unit 15 is provided at a connection point 115 between the low potential side of the upper arm unit 13 and the high potential side of the lower arm unit 14. In the power conversion circuit 10u, the signal processing unit 17u is connected to the upper arm unit 13 and the lower arm unit 14, and in the power conversion circuit 10u, the signal processing unit 17 receives the sense signals S20 and S21.
 また、電力変換回路10v、10w、はそれぞれ、電流センサ16を有する。電流センサ16は、電力変換回路10v、10wの信号処理部17v、17wに接続されていて、出力部15の出力電流を検出して、出力電流に対応した電流検出信号を信号処理部17v、17wに発信する。 Each of the power conversion circuits 10 v and 10 w has a current sensor 16. The current sensor 16 is connected to the signal processing units 17v and 17w of the power conversion circuits 10v and 10w, detects the output current of the output unit 15, and detects a current detection signal corresponding to the output current as the signal processing units 17v and 17w. Send to
 制御回路25は、信号処理部17u、17v、17wに接続されていて、電流センサ16に対する故障判定と、電力変換回路10u、10v、10wの出力検出や電力変換回路10u、10v、10wに対する制御を行う。制御回路25での電流センサ16に対する故障判定は、電力変換回路10vもしくは電力変換回路10wのいずれかの電流センサ16に関しては、電力変換回路10uにおけるセンス信号S20、S21と、電力変換回路10vにおける電流センサ16による電流検出信号S16と、電力変換回路10wにおける電流センサ16による電流検出信号S16と、3つの値の総和に基づいて行われる。 The control circuit 25 is connected to the signal processing units 17u, 17v, and 17w, and performs failure determination for the current sensor 16, detection of output of the power conversion circuits 10u, 10v, and 10w, and control of the power conversion circuits 10u, 10v, and 10w. Do. The failure determination for the current sensor 16 in the control circuit 25 can be performed by detecting the sense signals S20 and S21 in the power conversion circuit 10u and the current in the power conversion circuit 10v with respect to the current sensor 16 of either the power conversion circuit 10v or the power conversion circuit 10w. This is performed based on the sum of the three values of the current detection signal S16 by the sensor 16, the current detection signal S16 by the current sensor 16 in the power conversion circuit 10w, and the like.
 ここで、電力変換回路10uにおけるセンス信号S20、S21によって得られる出力電流I15が相電流Iusである。また、電力変換回路10vにおける電流センサ16によって得られる出力電流I15は相電流Ivである。電力変換回路10wにおける電流センサ16によって得られる出力電流I15が相電流Iwである。そして、相電流Ius、Iv、Iwの総和が制御回路25によって求められる。上記の差が所定の範囲にある場合、それぞれの相における電流センサ16、ここでは電力変換回路10vにおける電流センサ16と電力変換回路10wにおける電流センサ16との双方は正常であると制御回路25は判断する。 Here, the output current I15 obtained by the sense signals S20 and S21 in the power conversion circuit 10u is the phase current Ius. Further, an output current I15 obtained by the current sensor 16 in the power conversion circuit 10v is a phase current Iv. The output current I15 obtained by the current sensor 16 in the power conversion circuit 10w is the phase current Iw. Then, the sum of the phase currents Ius, Iv, Iw is obtained by the control circuit 25. If the above difference is within a predetermined range, control circuit 25 determines that current sensor 16 in each phase, here, current sensor 16 in power conversion circuit 10 v and current sensor 16 in power conversion circuit 10 w are normal. to decide.
 ここでも、先に述べた三相交流の全ての相電圧の総和および全ての相電流の総和は0となる関係を用いて以下の関係が得られる。 Here too, the following relationship is obtained using the relationship in which the sum of all phase voltages of the three-phase alternating current and the sum of all phase currents described above are zero.
 Ius+Iv+Iw=0
 上記の値が0に近い値の範囲内にあるとき、制御回路25は、故障した電流センサ16の特定を電力変換回路10vもしくは電力変換回路10wの何れかであることを容易に判断することが可能となる。さらに電流センサを有していない電力変換回路10uに対して電力変換回路10v、10wと同様に所望の動作状態へ制御することができる。
Ius + Iv + Iw = 0
When the above value is in the range of values close to 0, the control circuit 25 can easily determine that the specified current sensor 16 is either the power conversion circuit 10v or the power conversion circuit 10w. It becomes possible. Further, the power conversion circuit 10 u having no current sensor can be controlled to a desired operating state in the same manner as the power conversion circuits 10 v and 10 w.
 また、上記の関係は先に述べた三相交流の全ての相電圧の総和および全ての相電流の総和は0となる関係を用いて同様に、電流センサを用いない電力変換回路10uにおける相電流Iuは、電流検出演算値として以下の関係で得られる。 Further, the above relationship is the same as the phase current in the power conversion circuit 10 u not using the current sensor, using the relationship in which the sum of all the phase voltages of the three-phase alternating current and the sum of all the phase currents is zero. Iu is obtained by the following relationship as a current detection calculation value.
 Iu=0-Iv-Iw
 電流検出演算値として電流センサを有していない電力変換回路10wに対して電力変換回路10v、10wと同様に所望の動作状態へ制御することができる。またここで、電力変換回路10uにおけるセンス信号S20、S21によって得られ出力電流I15は相電流Iusである。相電流Ius、Iuの差が所定の範囲にある場合、第1相における電流センサ16、ここでは電力変換回路10vにおける電流センサ16や、電力変換回路10wにおける双方の電流センサ16が正常であると、制御回路25は判定する。これにより、三相電力変換装置22cにおける電流センサ16の数量を削減することもできる。そしてこの結果として、三相電力変換装置22cの小型化や軽量化が可能となる。
Iu = 0-Iv-Iw
The power conversion circuit 10 w having no current sensor as the current detection calculation value can be controlled to a desired operating state as in the power conversion circuits 10 v and 10 w. Here, the output current I15 obtained by the sense signals S20 and S21 in the power conversion circuit 10u is the phase current Ius. When the difference between the phase currents Ius and Iu is within a predetermined range, it is assumed that the current sensor 16 in the first phase, in this case, the current sensor 16 in the power conversion circuit 10v, and both current sensors 16 in the power conversion circuit 10w are normal. The control circuit 25 makes a determination. Thereby, the number of current sensors 16 in the three-phase power conversion device 22c can also be reduced. And as a result, size reduction and weight reduction of the three-phase power converter 22c are attained.
 言い換えると、三相のうちセンス端子20、センス端子21を有さない2つの相と、電流センサ16を有していない相が、1つの相で存在しても故障した電流センサ16の絞込みは容易に可能であり、かつ、電流センサ16の数量を削減することができて三相電力変換装置22cの小型化や軽量化が可能となる。ここでは、センス端子20、センス端子21を有さない相と、電流センサ16を有さない相とは異なる相である。 In other words, narrowing down of the current sensor 16 which has failed even if one phase has two phases without the sense terminal 20 and the sense terminal 21 among the three phases and a phase without the current sensor 16 is This can be easily achieved, and the number of current sensors 16 can be reduced, so that the size and weight of the three-phase power conversion device 22c can be reduced. Here, the phase without the sense terminal 20 and the sense terminal 21 and the phase without the current sensor 16 are different phases.
 本発明の電力変換回路は、故障した電流センサを容易に特定でき、各種電子機器において有用である。 The power conversion circuit of the present invention can easily identify a failed current sensor and is useful in various electronic devices.
10,10a  電力変換回路
10u  電力変換回路(第1の電力変換回路)
10v  電力変換回路(第2の電力変換回路)
10w  電力変換回路(第3の電力変換回路)
11  高電位入力部
12  低電位入力部
13  上側アーム部
14  下側アーム部
15  出力部
16  電流センサ
17  信号処理部
17u,17v,17w  信号処理部
18  半導体スイッチ素子
18D  ドレイン端子
18S  ソース端子
19  半導体スイッチ素子
19D  ドレイン端子
19S  ソース端子
20  センス端子
21  センス端子
22  電力変換装置
23  三相モータ
24  直流電源
25  制御回路
26  ゲート駆動回路
27  変換回路(第1の変換回路)
28  変換回路(第2の変換回路)
10, 10a power conversion circuit 10 u power conversion circuit (first power conversion circuit)
10v power converter (second power converter)
10w power converter (third power converter)
11 high potential input section 12 low potential input section 13 upper arm section 14 lower arm section 15 output section 16 current sensor 17 signal processing section 17u, 17v, 17w signal processing section 18 semiconductor switch element 18D drain terminal 18S source terminal 19 semiconductor switch Element 19D Drain terminal 19S Source terminal 20 Sense terminal 21 Sense terminal 22 Power converter 23 Three-phase motor 24 DC power supply 25 Control circuit 26 Gate drive circuit 27 Conversion circuit (first conversion circuit)
28 converter (second converter)

Claims (13)

  1. 高直流電位が印加される高電位入力部と、
    前記高直流電位より低い低直流電位が印加される低電位入力部と、
    前記高電位入力部と接続点との間で前記高電位入力部と前記接続点とに直列に接続された第1のスイッチ部と、前記第1のスイッチ部に流れる電流に応じた第1のセンス信号を発信する第1のセンス端子を有する第1の半導体スイッチ素子と、
    前記低電位入力部と前記接続点との間で前記低電位入力部と前記接続点とに直列に接続された第2のスイッチ部と、前記第2のスイッチ部に流れる電流に応じた第2のセンス信号を発信する第2のセンス端子とを有する第2の半導体スイッチ素子と、
    前記接続点に接続された出力部と、
    前記出力部を流れる出力電流に応じた電流検出信号を発信する電流センサと、
    前記第1のセンス信号と前記電流検出信号との比較結果と、前記第2のセンス信号と前記電流検出信号との比較結果とにもとづいて前記電流センサの故障を判定するように構成された信号処理部と、
    を備えた電力変換回路。
    A high potential input unit to which a high DC potential is applied;
    A low potential input unit to which a low direct current potential lower than the high direct current potential is applied;
    A first switch unit connected in series to the high potential input unit and the connection point between the high potential input unit and the connection point, and a first switch corresponding to a current flowing through the first switch unit A first semiconductor switch element having a first sense terminal for transmitting a sense signal;
    A second switch unit connected in series to the low potential input unit and the connection point between the low potential input unit and the connection point, and a second according to a current flowing through the second switch unit A second semiconductor switch element having a second sense terminal for emitting a sense signal of
    An output connected to the connection point;
    A current sensor that generates a current detection signal according to an output current flowing through the output unit;
    A signal configured to determine failure of the current sensor based on the comparison result of the first sense signal and the current detection signal, and the comparison result of the second sense signal and the current detection signal. A processing unit,
    Power converter circuit with.
  2. 前記信号処理部は、
       前記第1のセンス信号と前記第2のセンス信号とを合成することで合成センス信号を得て、
       前記合成センス信号と前記前記電流検出信号とを、極性を一致させたうえで比較した比較結果にもとづいて前記電流センサの故障を判定する、
    ように構成されている、請求項1に記載の電力変換回路。
    The signal processing unit
    A combined sense signal is obtained by combining the first sense signal and the second sense signal,
    The failure of the current sensor is determined based on the comparison result obtained by comparing the combined sense signal and the current detection signal after making the polarities match.
    The power conversion circuit according to claim 1, wherein the power conversion circuit is configured as follows.
  3. 前記信号処理部は、
       前記合成センス信号と前記電流検出信号との差が所定の範囲にある場合に前記電流センサが故障していないと判定し、
       前記合成センス信号と前記電流検出信号との前記差が前記所定の範囲にない場合に前記電流センサが故障していると判定する、
    ように構成されている、請求項2に記載の電力変換回路。
    The signal processing unit
    When the difference between the combined sense signal and the current detection signal is within a predetermined range, it is determined that the current sensor has not failed.
    When the difference between the combined sense signal and the current detection signal is not within the predetermined range, it is determined that the current sensor is broken.
    The power conversion circuit according to claim 2, wherein the power conversion circuit is configured as follows.
  4. 前記信号処理部は、
       前記合成センス信号と前記電流検出信号との比が所定の範囲にある場合に前記電流センサが故障していないと判定し、
       前記合成センス信号と前記電流検出信号との前記比が前記所定の範囲にない場合に前記電流センサが故障していると判定する、
    ように構成されている、請求項2に記載の電力変換回路。
    The signal processing unit
    When the ratio between the combined sense signal and the current detection signal is within a predetermined range, it is determined that the current sensor has not failed.
    When the ratio between the combined sense signal and the current detection signal is not within the predetermined range, it is determined that the current sensor is broken.
    The power conversion circuit according to claim 2, wherein the power conversion circuit is configured as follows.
  5. 前記信号処理部は、
       前記第1のセンス信号と前記電流検出信号との差と、前記第2のセンス信号と前記電流検出信号との差とが所定の範囲にある場合に前記電流センサが故障していないと判定し、
       前記第1のセンス信号と前記電流検出信号との前記差と、前記第2のセンス信号と前記電流検出信号との前記差との少なくとも一方が前記所定の範囲にない場合に前記電流センサが故障していると判定する、
    ように構成されている、請求項1に記載の電力変換回路。
    The signal processing unit
    When the difference between the first sense signal and the current detection signal and the difference between the second sense signal and the current detection signal are within a predetermined range, it is determined that the current sensor has not failed. ,
    The current sensor is broken when at least one of the difference between the first sense signal and the current detection signal and the difference between the second sense signal and the current detection signal is not within the predetermined range. To determine that
    The power conversion circuit according to claim 1, wherein the power conversion circuit is configured as follows.
  6. 前記信号処理部は、
       前記第1のセンス信号と前記電流検出信号との比と、前記第2のセンス信号と前記電流検出信号との比とが所定の範囲にある場合に前記電流センサが故障していないと判定し、
       前記第1のセンス信号と前記電流検出信号との前記比と、前記第2のセンス信号と前記電流検出信号との前記比との少なくとも一方が前記所定の範囲にない場合に前記電流センサが故障していると判定する、
    ように構成されている、請求項1に記載の電力変換回路。
    The signal processing unit
    When the ratio of the first sense signal to the current detection signal and the ratio of the second sense signal to the current detection signal are within a predetermined range, it is determined that the current sensor has not failed. ,
    The current sensor is broken when at least one of the ratio between the first sense signal and the current detection signal and the ratio between the second sense signal and the current detection signal is not within the predetermined range. To determine that
    The power conversion circuit according to claim 1, wherein the power conversion circuit is configured as follows.
  7. 前記第1のセンス信号を第1の電圧に変換して発信する第1の変換回路と、
    前記第2のセンス信号を第2の電圧に変換して発信する第2の変換回路と、
    をさらに備え、
    前記信号処理部は、前記第1の電圧と前記電流検出信号との比較結果と、前記第2の電圧と前記電流検出信号との比較結果とにもとづいて前記電流センサの故障を判定するように構成されている、請求項1から6のいずれか一項に記載の電力変換回路。
    A first conversion circuit which converts the first sense signal into a first voltage and transmits the voltage;
    A second conversion circuit which converts the second sense signal into a second voltage and transmits the second voltage;
    And further
    The signal processing unit may determine the failure of the current sensor based on a comparison result of the first voltage and the current detection signal and a comparison result of the second voltage and the current detection signal. The power conversion circuit according to any one of claims 1 to 6, which is configured.
  8. 高直流電位が印加される高電位入力部と、
    前記高直流電位より低い低直流電位が印加される低電位入力部と、
    前記高電位入力部と前記低電位入力部とに接続されて、第1の出力電流を出力する第1の電力変換回路と、
    前記高電位入力部と前記低電位入力部とに接続されて、第2の出力電流を出力する第2の電力変換回路と、
    前記高電位入力部と前記低電位入力部とに接続されて、第3の出力電流を出力する第3の電力変換回路と、
    前記第1の電力変換回路と前記第2の電力変換回路と前記第3電力変換回路とを制御する制御回路と、
    を備え、
    前記第1の電力変換回路は、
       前記高電位入力部と第1の接続点との間で前記高電位入力部と前記第1の接続点とに直列に接続された第1のスイッチ部と、前記第1のスイッチ部に流れる電流に応じた第1のセンス信号を発信する第1のセンス端子を有する第1の半導体スイッチ素子と、
       前記低電位入力部と前記第1の接続点との間で前記低電位入力部と前記第1の接続点とに直列に接続された第2のスイッチ部と、前記第2のスイッチ部に流れる電流に応じた第2のセンス信号を発信する第2のセンス端子とを有する第2の半導体スイッチ素子と、
       前記第1の接続点に接続されて、前記第1の出力電流を出力する第1の出力部と、
       前記第1の出力電流に応じた第1の電流検出信号を発信する第1の電流センサと、
    を有し、
    前記第2の電力変換回路は、
       前記高電位入力部と第2の接続点との間で前記高電位入力部と前記第2の接続点とに直列に接続された第3のスイッチ部と、前記第3のスイッチ部に流れる電流に応じた第3のセンス信号を発信する第3のセンス端子を有する第3の半導体スイッチ素子と、
       前記低電位入力部と前記第2の接続点との間で前記低電位入力部と前記第2の接続点とに直列に接続された第4のスイッチ部と、前記第4のスイッチ部に流れる電流に応じた第4のセンス信号を発信する第4のセンス端子とを有する第4の半導体スイッチ素子と、
       前記第2の接続点に接続されて、前記第2の出力電流を出力する第2の出力部と、
       前記第2の出力電流に応じた第2の電流検出信号を発信する第2の電流センサと、
    前記第3の電力変換回路は、
       前記高電位入力部と第3の接続点との間で前記高電位入力部と前記第3の接続点とに直列に接続された第5のスイッチ部と、前記第5のスイッチ部に流れる電流に応じた第5のセンス信号を発信する第5のセンス端子を有する第5の半導体スイッチ素子と、
       前記低電位入力部と前記第3の接続点との間で前記低電位入力部と前記第3の接続点とに直列に接続された第6のスイッチ部と、前記第6のスイッチ部に流れる電流に応じた第6のセンス信号を発信する第6のセンス端子とを有する第6の半導体スイッチ素子と、
       前記第3の接続点に接続されて、前記第3の出力電流を出力する第3の出力部と、
       前記第3の出力電流に応じた第3の電流検出信号を発信する第3の電流センサと、
    を有し、
    前記制御回路は、
       前記第1のセンス信号と前記第1の電流検出信号との比較結果と、前記第2のセンス信号と前記第1の電流検出信号との比較結果とにもとづいて前記第1の電流センサの故障を判定し、
       前記第3のセンス信号と前記第2の電流検出信号との比較結果と、前記第4のセンス信号と前記第2の電流検出信号との比較結果とにもとづいて前記第2の電流センサの故障を判定し、
       前記第5のセンス信号と前記第3の電流検出信号との比較結果と、前記第6のセンス信号と前記第3の電流検出信号との比較結果とにもとづいて前記第3の電流センサの故障を判定する、
    ように構成されている、電力変換装置。
    A high potential input unit to which a high DC potential is applied;
    A low potential input unit to which a low direct current potential lower than the high direct current potential is applied;
    A first power conversion circuit connected to the high potential input unit and the low potential input unit to output a first output current;
    A second power conversion circuit connected to the high potential input unit and the low potential input unit to output a second output current;
    A third power conversion circuit connected to the high potential input unit and the low potential input unit to output a third output current;
    A control circuit that controls the first power conversion circuit, the second power conversion circuit, and the third power conversion circuit;
    Equipped with
    The first power conversion circuit is
    A first switch connected in series with the high potential input and the first connection between the high potential input and the first connection, and a current flowing through the first switch A first semiconductor switch element having a first sense terminal for emitting a first sense signal according to
    A second switch connected in series with the low potential input and the first connection between the low potential input and the first connection, and a current flowing through the second switch A second semiconductor switch element having a second sense terminal for transmitting a second sense signal according to the current;
    A first output connected to the first connection point for outputting the first output current;
    A first current sensor for emitting a first current detection signal according to the first output current;
    Have
    The second power conversion circuit is
    A third switch connected in series with the high potential input and the second connection between the high potential input and the second connection, and a current flowing through the third switch A third semiconductor switch element having a third sense terminal for transmitting a third sense signal according to
    It flows into the 4th switch part connected in series with the low potential input part and the 2nd connection point between the low potential input part and the 2nd connection point, and flows into the 4th switch part A fourth semiconductor switch element having a fourth sense terminal for transmitting a fourth sense signal according to the current;
    A second output connected to the second connection point for outputting the second output current;
    A second current sensor transmitting a second current detection signal according to the second output current;
    The third power conversion circuit is
    A fifth switch connected in series with the high potential input and the third connection between the high potential input and the third connection, and a current flowing through the fifth switch A fifth semiconductor switch element having a fifth sense terminal for transmitting a fifth sense signal according to
    It flows in the 6th switch part connected in series with the low potential input part and the 3rd connection point between the low potential input part and the 3rd connection point, and flows into the 6th switch part A sixth semiconductor switch element having a sixth sense terminal for transmitting a sixth sense signal according to the current;
    A third output unit connected to the third connection point for outputting the third output current;
    A third current sensor for transmitting a third current detection signal according to the third output current;
    Have
    The control circuit
    Failure of the first current sensor based on the comparison result of the first sense signal and the first current detection signal, and the comparison result of the second sense signal and the first current detection signal To determine
    Failure of the second current sensor based on the comparison result of the third sense signal and the second current detection signal and the comparison result of the fourth sense signal and the second current detection signal To determine
    Failure of the third current sensor based on the comparison result of the fifth sense signal and the third current detection signal and the comparison result of the sixth sense signal and the third current detection signal To determine
    A power converter that is configured to:
  9. 高直流電位が印加される高電位入力部と、
    前記高直流電位より低い低直流電位が印加される低電位入力部と、
    前記高電位入力部と前記低電位入力部とに接続されて、第1の出力電流を出力する第1の電力変換回路と、
    前記高電位入力部と前記低電位入力部とに接続されて、第2の出力電流を出力する第2の電力変換回路と、
    前記高電位入力部と前記低電位入力部とに接続されて、第3の出力電流を出力する第3の電力変換回路と、
    前記第1の電力変換回路と前記第2の電力変換回路と前記第3の電力変換回路とを制御する制御回路と、
    を備え、
    前記第1の電力変換回路は、
       前記高電位入力部と第1の接続点との間で前記高電位入力部と前記第1の接続点とに直列に接続された第1のスイッチ部と、前記第1のスイッチ部に流れる電流に応じた第1のセンス信号を発信する第1のセンス端子を有する第1の半導体スイッチ素子と、
       前記低電位入力部と前記第1の接続点との間で前記低電位入力部と前記第1の接続点とに直列に接続された第2のスイッチ部と、前記第2のスイッチ部に流れる電流に応じた第2のセンス信号を発信する第2のセンス端子とを有する第2の半導体スイッチ素子と、
       前記第1の接続点に接続されて、前記第1の出力電流を出力する第1の出力部と、
       前記第1の出力電流に応じた第1の電流検出信号を発信する第1の電流センサと、
    を有し、
    前記第2の電力変換回路は、
       前記高電位入力部と第2の接続点との間で前記高電位入力部と前記第2の接続点とに直列に接続された第3のスイッチ部と、前記第3のスイッチ部に流れる電流に応じた第3のセンス信号を発信する第3のセンス端子を有する第3の半導体スイッチ素子と、
       前記低電位入力部と前記第2の接続点との間で前記低電位入力部と前記第2の接続点とに直列に接続された第4のスイッチ部と、前記第4のスイッチ部に流れる電流に応じた第4のセンス信号を発信する第4のセンス端子とを有する第4の半導体スイッチ素子と、
       前記第2の接続点に接続されて、前記第2の出力電流を出力する第2の出力部と、
       前記第2の出力電流に応じた第2の電流検出信号を発信する第2の電流センサと、
    前記第3の電力変換回路は、
       前記高電位入力部と第3の接続点との間で前記高電位入力部と前記第3の接続点とに直列に接続された第5のスイッチ部と、前記第5のスイッチ部に流れる電流に応じた第5のセンス信号を発信する第5のセンス端子を有する第5の半導体スイッチ素子と、
       前記低電位入力部と前記第3の接続点との間で前記低電位入力部と前記第3の接続点とに直列に接続された第6のスイッチ部と、前記第6のスイッチ部に流れる電流に応じた第6のセンス信号を発信する第6のセンス端子とを有する第6の半導体スイッチ素子と、
       前記第3の接続点に接続されて、前記第3の出力電流を出力する第3の出力部と、
    を有し、
    前記制御回路は、
       前記第1のセンス信号と前記第1の電流検出信号との比較結果と、前記第2のセンス信号と前記第1の電流検出信号との比較結果とにもとづいて前記第1の電流センサの故障を判定し、
       前記第3のセンス信号と前記第2の電流検出信号との比較結果と、前記第4のセンス信号と前記第2の電流検出信号との比較結果とにもとづいて前記第2の電流センサの故障を判定する
    ように構成されている、電力変換装置。
    A high potential input unit to which a high DC potential is applied;
    A low potential input unit to which a low direct current potential lower than the high direct current potential is applied;
    A first power conversion circuit connected to the high potential input unit and the low potential input unit to output a first output current;
    A second power conversion circuit connected to the high potential input unit and the low potential input unit to output a second output current;
    A third power conversion circuit connected to the high potential input unit and the low potential input unit to output a third output current;
    A control circuit that controls the first power conversion circuit, the second power conversion circuit, and the third power conversion circuit;
    Equipped with
    The first power conversion circuit is
    A first switch connected in series with the high potential input and the first connection between the high potential input and the first connection, and a current flowing through the first switch A first semiconductor switch element having a first sense terminal for emitting a first sense signal according to
    A second switch connected in series with the low potential input and the first connection between the low potential input and the first connection, and a current flowing through the second switch A second semiconductor switch element having a second sense terminal for transmitting a second sense signal according to the current;
    A first output connected to the first connection point for outputting the first output current;
    A first current sensor for emitting a first current detection signal according to the first output current;
    Have
    The second power conversion circuit is
    A third switch connected in series with the high potential input and the second connection between the high potential input and the second connection, and a current flowing through the third switch A third semiconductor switch element having a third sense terminal for transmitting a third sense signal according to
    It flows into the 4th switch part connected in series with the low potential input part and the 2nd connection point between the low potential input part and the 2nd connection point, and flows into the 4th switch part A fourth semiconductor switch element having a fourth sense terminal for transmitting a fourth sense signal according to the current;
    A second output connected to the second connection point for outputting the second output current;
    A second current sensor transmitting a second current detection signal according to the second output current;
    The third power conversion circuit is
    A fifth switch connected in series with the high potential input and the third connection between the high potential input and the third connection, and a current flowing through the fifth switch A fifth semiconductor switch element having a fifth sense terminal for transmitting a fifth sense signal according to
    It flows in the 6th switch part connected in series with the low potential input part and the 3rd connection point between the low potential input part and the 3rd connection point, and flows into the 6th switch part A sixth semiconductor switch element having a sixth sense terminal for transmitting a sixth sense signal according to the current;
    A third output unit connected to the third connection point for outputting the third output current;
    Have
    The control circuit
    Failure of the first current sensor based on the comparison result of the first sense signal and the first current detection signal, and the comparison result of the second sense signal and the first current detection signal To determine
    Failure of the second current sensor based on the comparison result of the third sense signal and the second current detection signal and the comparison result of the fourth sense signal and the second current detection signal A power converter, which is configured to determine
  10. 前記制御回路は、
       前記第1の電流検出信号と前記第2の電流検出信号とから前記第3の出力電流の値を電流演算値として得て、
       前記第1の電流検出信号と前記第2の電流検出信号と前記電流演算値とに基づいて前記第1の電力変換回路の出力と前記第2の電力変換回路の出力と前記第3の電力変換回路の出力とを制御する、
    ように構成されている、請求項9に記載の電力変換装置。
    The control circuit
    A value of the third output current is obtained as a current operation value from the first current detection signal and the second current detection signal,
    An output of the first power conversion circuit, an output of the second power conversion circuit, and the third power conversion based on the first current detection signal, the second current detection signal, and the current operation value Control the output of the circuit,
    The power converter according to claim 9, configured as follows.
  11. 高直流電位が印加される高電位入力部と、
    前記高直流電位より低い低直流電位が印加される低電位入力部と、
    前記高電位入力部と前記低電位入力部とに接続されて、第1の出力電流を出力する第1の電力変換回路と、
    前記高電位入力部と前記低電位入力部とに接続されて、第2の出力電流を出力する第2の電力変換回路と、
    前記高電位入力部と前記低電位入力部とに接続されて、第3の出力電流を出力する第3の電力変換回路と、
    前記第1の電力変換回路と前記第2の電力変換回路と前記第3の電力変換回路とを制御する制御回路と、
    を備え、
    前記第1の電力変換回路は、
       前記高電位入力部と第1の接続点との間で前記高電位入力部と前記第1の接続点とに直列に接続された第1のスイッチ部と、前記第1のスイッチ部に流れる電流に応じた第1のセンス信号を発信する第1のセンス端子を有する第1の半導体スイッチ素子と、
       前記低電位入力部と前記第1の接続点との間で前記低電位入力部と前記第1の接続点とに直列に接続された第2のスイッチ部と、前記第2のスイッチ部に流れる電流に応じた第2のセンス信号を発信する第2のセンス端子とを有する第2の半導体スイッチ素子と、
       前記第1の接続点に接続されて、前記第1の出力電流を出力する第1の出力部と、
       前記第1の出力電流に応じた第1の電流検出信号を発信する第1の電流センサと、
    を有し、
    前記第2の電力変換回路は、
       前記高電位入力部と第2の接続点との間で前記高電位入力部と前記第2の接続点とに直列に接続された第3のスイッチ部と、前記第3のスイッチ部に流れる電流に応じた第3のセンス信号を発信する第3のセンス端子を有する第3の半導体スイッチ素子と、
       前記低電位入力部と前記第2の接続点との間で前記低電位入力部と前記第2の接続点とに直列に接続された第4のスイッチ部と、前記第4のスイッチ部に流れる電流に応じた第4のセンス信号を発信する第4のセンス端子とを有する第4の半導体スイッチ素子と、
       前記第2の接続点に接続されて、前記第2の出力電流を出力する第2の出力部と、
    前記第3の電力変換回路は、
       前記高電位入力部と第3の接続点との間で前記高電位入力部と前記第3の接続点とに直列に接続された第5のスイッチ部を有する第5の半導体スイッチ素子と、
       前記低電位入力部と前記第3の接続点との間で前記低電位入力部と前記第3の接続点とに直列に接続された第6のスイッチ部を有する第6の半導体スイッチ素子と、
       前記第3の接続点に接続されて、前記第3の出力電流を出力する第3の出力部と、
       前記第3の出力電流に応じた第2の電流検出信号を発信する第2の電流センサと、
    を有し、
    前記制御回路は、
       前記第1のセンス信号と前記第1の電流検出信号との比較結果と、前記第2のセンス信号と前記第1の電流検出信号との比較結果とにもとづいて前記第1の電流センサの故障を判定し、
       前記第1のセンス信号と前記第2のセンス信号と前記第3のセンス信号と前記第4のセンス信号とからセンス演算値を得て、
       前記センス演算値と前記第2の電流検出信号との比較結果にもとづいて前記第2の電流センサの故障を判定する、
    ように構成されている、電力変換装置。
    A high potential input unit to which a high DC potential is applied;
    A low potential input unit to which a low direct current potential lower than the high direct current potential is applied;
    A first power conversion circuit connected to the high potential input unit and the low potential input unit to output a first output current;
    A second power conversion circuit connected to the high potential input unit and the low potential input unit to output a second output current;
    A third power conversion circuit connected to the high potential input unit and the low potential input unit to output a third output current;
    A control circuit that controls the first power conversion circuit, the second power conversion circuit, and the third power conversion circuit;
    Equipped with
    The first power conversion circuit is
    A first switch connected in series with the high potential input and the first connection between the high potential input and the first connection, and a current flowing through the first switch A first semiconductor switch element having a first sense terminal for emitting a first sense signal according to
    A second switch connected in series with the low potential input and the first connection between the low potential input and the first connection, and a current flowing through the second switch A second semiconductor switch element having a second sense terminal for transmitting a second sense signal according to the current;
    A first output connected to the first connection point for outputting the first output current;
    A first current sensor for emitting a first current detection signal according to the first output current;
    Have
    The second power conversion circuit is
    A third switch connected in series with the high potential input and the second connection between the high potential input and the second connection, and a current flowing through the third switch A third semiconductor switch element having a third sense terminal for transmitting a third sense signal according to
    It flows into the 4th switch part connected in series with the low potential input part and the 2nd connection point between the low potential input part and the 2nd connection point, and flows into the 4th switch part A fourth semiconductor switch element having a fourth sense terminal for transmitting a fourth sense signal according to the current;
    A second output connected to the second connection point for outputting the second output current;
    The third power conversion circuit is
    A fifth semiconductor switch element having a fifth switch portion connected in series to the high potential input portion and the third connection point between the high potential input portion and the third connection point;
    A sixth semiconductor switch element having a sixth switch portion connected in series to the low potential input portion and the third connection point between the low potential input portion and the third connection point;
    A third output unit connected to the third connection point for outputting the third output current;
    A second current sensor that transmits a second current detection signal according to the third output current;
    Have
    The control circuit
    Failure of the first current sensor based on the comparison result of the first sense signal and the first current detection signal, and the comparison result of the second sense signal and the first current detection signal To determine
    A sense operation value is obtained from the first sense signal, the second sense signal, the third sense signal, and the fourth sense signal,
    Determining a failure of the second current sensor based on a comparison result of the sense calculation value and the second current detection signal;
    A power converter that is configured to:
  12. 高直流電位が印加される高電位入力部と、
    前記高直流電位より低い低直流電位が印加される低電位入力部と、
    前記高電位入力部と前記低電位入力部とに接続されて、第1の出力電流を出力する第1の電力変換回路と、
    前記高電位入力部と前記低電位入力部とに接続されて、第2の出力電流を出力する第2の電力変換回路と、
    前記高電位入力部と前記低電位入力部とに接続されて、第3の出力電流を出力する第3の電力変換回路と、
    前記第1の電力変換回路と前記第2の電力変換回路と前記第3の電力変換回路とを制御する制御回路と、
    を備え、
    前記第1の電力変換回路は、
       前記高電位入力部と第1の接続点との間で前記高電位入力部と前記第1の接続点とに直列に接続された第1のスイッチ部と、前記第1のスイッチ部に流れる電流に応じた第1のセンス信号を発信する第1のセンス端子を有する第1の半導体スイッチ素子と、
       前記低電位入力部と前記第1の接続点との間で前記低電位入力部と前記第1の接続点とに直列に接続された第2のスイッチ部と、前記第2のスイッチ部に流れる電流に応じた第2のセンス信号を発信する第2のセンス端子とを有する第2の半導体スイッチ素子と、
       前記第1の接続点に接続されて、前記第1の出力電流を出力する第1の出力部と、
       前記第1の出力電流に応じた第1の電流検出信号を発信する第1の電流センサと、
    を有し、
    前記第2の電力変換回路は、
       前記高電位入力部と第2の接続点との間で前記高電位入力部と前記第2の接続点とに直列に接続された第3のスイッチ部と、前記第3のスイッチ部に流れる電流に応じた第3のセンス信号を発信する第3のセンス端子を有する第3の半導体スイッチ素子と、
       前記低電位入力部と前記第2の接続点との間で前記低電位入力部と前記第2の接続点とに直列に接続された第4のスイッチ部と、前記第4のスイッチ部に流れる電流に応じた第4のセンス信号を発信する第4のセンス端子とを有する第4の半導体スイッチ素子と、
       前記第2の接続点に接続されて、前記第2の出力電流を出力する第2の出力部と、
    前記第3の電力変換回路は、
       前記高電位入力部と第3の接続点との間で前記高電位入力部と前記第3の接続点とに直列に接続された第5のスイッチ部を有する第5の半導体スイッチ素子と、
       前記低電位入力部と前記第3の接続点との間で前記低電位入力部と前記第3の接続点とに直列に接続された第6のスイッチ部を有する第6の半導体スイッチ素子と、
       前記第3の接続点に接続されて、前記第3の出力電流を出力する第3の出力部と、
       前記第3の出力電流に応じた第2の電流検出信号を発信する第2の電流センサと、
    を有し、
    前記制御回路は、
       前記第1のセンス信号と前記第1の電流検出信号との比較結果と、前記第2のセンス信号と前記第1の電流検出信号との比較結果とにもとづいて前記第1の電流センサの故障を判定し、
       前記第1の電流検出信号と前記第2の電流検出信号とから前記第2の出力電流の値を電流演算値として得て、
       前記第3のセンス信号と前記第電流演算値との比較結果と、前記第4のセンス信号と前記第電流演算値との比較結果とにもとづいて前記第2の電流センサの故障を判定する、
    ように構成されている、電力変換装置。
    A high potential input unit to which a high DC potential is applied;
    A low potential input unit to which a low direct current potential lower than the high direct current potential is applied;
    A first power conversion circuit connected to the high potential input unit and the low potential input unit to output a first output current;
    A second power conversion circuit connected to the high potential input unit and the low potential input unit to output a second output current;
    A third power conversion circuit connected to the high potential input unit and the low potential input unit to output a third output current;
    A control circuit that controls the first power conversion circuit, the second power conversion circuit, and the third power conversion circuit;
    Equipped with
    The first power conversion circuit is
    A first switch connected in series with the high potential input and the first connection between the high potential input and the first connection, and a current flowing through the first switch A first semiconductor switch element having a first sense terminal for emitting a first sense signal according to
    A second switch connected in series with the low potential input and the first connection between the low potential input and the first connection, and a current flowing through the second switch A second semiconductor switch element having a second sense terminal for transmitting a second sense signal according to the current;
    A first output connected to the first connection point for outputting the first output current;
    A first current sensor for emitting a first current detection signal according to the first output current;
    Have
    The second power conversion circuit is
    A third switch connected in series with the high potential input and the second connection between the high potential input and the second connection, and a current flowing through the third switch A third semiconductor switch element having a third sense terminal for transmitting a third sense signal according to
    It flows into the 4th switch part connected in series with the low potential input part and the 2nd connection point between the low potential input part and the 2nd connection point, and flows into the 4th switch part A fourth semiconductor switch element having a fourth sense terminal for transmitting a fourth sense signal according to the current;
    A second output connected to the second connection point for outputting the second output current;
    The third power conversion circuit is
    A fifth semiconductor switch element having a fifth switch portion connected in series to the high potential input portion and the third connection point between the high potential input portion and the third connection point;
    A sixth semiconductor switch element having a sixth switch portion connected in series to the low potential input portion and the third connection point between the low potential input portion and the third connection point;
    A third output unit connected to the third connection point for outputting the third output current;
    A second current sensor that transmits a second current detection signal according to the third output current;
    Have
    The control circuit
    Failure of the first current sensor based on the comparison result of the first sense signal and the first current detection signal, and the comparison result of the second sense signal and the first current detection signal To determine
    The value of the second output current is obtained as a current operation value from the first current detection signal and the second current detection signal,
    Determining a failure of the second current sensor based on a comparison result of the third sense signal and the fourth current operation value, and a comparison result of the fourth sense signal and the second current value;
    A power converter that is configured to:
  13. 高直流電位が印加される高電位入力部と、
    前記高直流電位より低い低直流電位が印加される低電位入力部と、
    前記高電位入力部と前記低電位入力部とに接続されて、第1の出力電流を出力する第1の電力変換回路と、
    前記高電位入力部と前記低電位入力部とに接続されて、第2の出力電流を出力する第2の電力変換回路と、
    前記高電位入力部と前記低電位入力部とに接続されて、第3の出力電流を出力する第3の電力変換回路と、
    前記第1の電力変換回路と前記第2の電力変換回路と前記第3の電力変換回路とを制御する制御回路と、
    を備え、
    前記第1の電力変換回路は、
       前記高電位入力部と第1の接続点との間で前記高電位入力部と前記第1の接続点とに直列に接続された第1のスイッチ部と、前記第1のスイッチ部に流れる電流に応じた第1のセンス信号を発信する第1のセンス端子を有する第1の半導体スイッチ素子と、
       前記低電位入力部と前記第1の接続点との間で前記低電位入力部と前記第1の接続点とに直列に接続された第2のスイッチ部と、前記第2のスイッチ部に流れる電流に応じた第2のセンス信号を発信する第2のセンス端子とを有する第2の半導体スイッチ素子と、
       前記第1の接続点に接続されて、前記第1の出力電流を出力する第1の出力部と、
    を有し、
    前記第2の電力変換回路は、
       前記高電位入力部と第2の接続点との間で前記高電位入力部と前記第2の接続点とに直列に接続された第3のスイッチ部を有する第3の半導体スイッチ素子と、
       前記低電位入力部と前記第2の接続点との間で前記低電位入力部と前記第2の接続点とに直列に接続された第4のスイッチ部を有する第4の半導体スイッチ素子と、
       前記第2の接続点に接続されて、前記第2の出力電流を出力する第2の出力部と、
       前記第2の出力電流に応じた第1の電流検出信号を発信する第1の電流センサと、
    前記第3の電力変換回路は、
       前記高電位入力部と第3の接続点との間で前記高電位入力部と前記第3の接続点とに直列に接続された第5のスイッチ部を有する第5の半導体スイッチ素子と、
       前記低電位入力部と前記第3の接続点との間で前記低電位入力部と前記第3の接続点とに直列に接続された第6のスイッチ部を有する第6の半導体スイッチ素子と、
       前記第3の接続点に接続されて、前記第3の出力電流を出力する第3の出力部と、
       前記第3の出力電流に応じた第2の電流検出信号を発信する第2の電流センサと、
    を有し、
    前記制御回路は、
       前記第1の電流検出信号と前記第2の電流検出信号とから前記第1の出力電流の値を電流演算値として得て、
       前記第1のセンス信号と前記第電流演算値との比較結果と、前記第2のセンス信号と前記第電流演算値との比較結果とにもとづいて前記第1の電流センサと前記第2の電流センサの故障を判定する、
    ように構成されている、電力変換装置。
    A high potential input unit to which a high DC potential is applied;
    A low potential input unit to which a low direct current potential lower than the high direct current potential is applied;
    A first power conversion circuit connected to the high potential input unit and the low potential input unit to output a first output current;
    A second power conversion circuit connected to the high potential input unit and the low potential input unit to output a second output current;
    A third power conversion circuit connected to the high potential input unit and the low potential input unit to output a third output current;
    A control circuit that controls the first power conversion circuit, the second power conversion circuit, and the third power conversion circuit;
    Equipped with
    The first power conversion circuit is
    A first switch connected in series with the high potential input and the first connection between the high potential input and the first connection, and a current flowing through the first switch A first semiconductor switch element having a first sense terminal for emitting a first sense signal according to
    A second switch connected in series with the low potential input and the first connection between the low potential input and the first connection, and a current flowing through the second switch A second semiconductor switch element having a second sense terminal for transmitting a second sense signal according to the current;
    A first output connected to the first connection point for outputting the first output current;
    Have
    The second power conversion circuit is
    A third semiconductor switch element having a third switch portion connected in series to the high potential input portion and the second connection point between the high potential input portion and the second connection point;
    A fourth semiconductor switch element having a fourth switch portion connected in series to the low potential input portion and the second connection point between the low potential input portion and the second connection point;
    A second output connected to the second connection point for outputting the second output current;
    A first current sensor transmitting a first current detection signal according to the second output current;
    The third power conversion circuit is
    A fifth semiconductor switch element having a fifth switch portion connected in series to the high potential input portion and the third connection point between the high potential input portion and the third connection point;
    A sixth semiconductor switch element having a sixth switch portion connected in series to the low potential input portion and the third connection point between the low potential input portion and the third connection point;
    A third output unit connected to the third connection point for outputting the third output current;
    A second current sensor that transmits a second current detection signal according to the third output current;
    Have
    The control circuit
    The value of the first output current is obtained as a current operation value from the first current detection signal and the second current detection signal,
    The first current sensor and the second current based on the comparison result of the first sense signal and the first current operation value and the comparison result of the second sense signal and the first current value Determine sensor failure,
    A power converter that is configured to:
PCT/JP2018/031466 2017-09-08 2018-08-27 Power conversion circuit and power conversion device WO2019049698A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-172711 2017-09-08
JP2017172711 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019049698A1 true WO2019049698A1 (en) 2019-03-14

Family

ID=65634082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031466 WO2019049698A1 (en) 2017-09-08 2018-08-27 Power conversion circuit and power conversion device

Country Status (1)

Country Link
WO (1) WO2019049698A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821746A (en) * 2021-02-03 2021-05-18 浙江日风电气股份有限公司 Soft starting method for boost circuit bus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006949A1 (en) * 2015-07-09 2017-01-12 日立オートモティブシステムズ株式会社 Drive device
JP2017050984A (en) * 2015-09-02 2017-03-09 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device and electronic device
JP2017060276A (en) * 2015-09-16 2017-03-23 富士電機株式会社 Three-phase inverter device
JP2017060314A (en) * 2015-09-17 2017-03-23 富士電機株式会社 Three-phase inverter device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006949A1 (en) * 2015-07-09 2017-01-12 日立オートモティブシステムズ株式会社 Drive device
JP2017050984A (en) * 2015-09-02 2017-03-09 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device and electronic device
JP2017060276A (en) * 2015-09-16 2017-03-23 富士電機株式会社 Three-phase inverter device
JP2017060314A (en) * 2015-09-17 2017-03-23 富士電機株式会社 Three-phase inverter device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821746A (en) * 2021-02-03 2021-05-18 浙江日风电气股份有限公司 Soft starting method for boost circuit bus

Similar Documents

Publication Publication Date Title
JP5178799B2 (en) Motor control device
JP6045765B1 (en) Power conversion device and vehicle drive system using the same
US8159851B2 (en) Matrix converter
US9130481B2 (en) Power converting appartatus
US8878477B2 (en) Electric motor driving apparatus having failure detection circuit, and failure detection method for the electric motor driving apparatus having failure detection circuit
JP4942569B2 (en) Power converter
US9979311B2 (en) Matrix converter
JP5205094B2 (en) Inverter control device
US10972026B2 (en) Motor controlling device
JP2017534240A (en) Converter and method of operating the converter
US9520805B2 (en) Control method and control system of three level inverter
JP4274023B2 (en) PWM cycloconverter control method and control apparatus
JP2013066256A (en) Motor controller
RU2632916C1 (en) Switching device, power conversion device, engine exciter, air pump, compressor, air conditioner, fridge and freezer
JP2018164347A (en) Inverter device, air conditioner, control method for inverter device, and program
WO2019049698A1 (en) Power conversion circuit and power conversion device
JP2012182874A (en) Motor control device
JP2013066255A (en) Motor controller
JP6573197B2 (en) Power converter
JP7192889B2 (en) Power conversion device and its control method
JP4765539B2 (en) Gate drive circuit for voltage-driven semiconductor element and power converter using the same
JP6690071B1 (en) Parallel inverter device
JP4448294B2 (en) Power converter
WO2023175759A1 (en) Power conversion apparatus
US11716045B2 (en) Motor controller, motor system and method for controlling motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP